Scientific Programming
Practical 5

Introduction

Luca Bianco - Academic Year 2019-20
luca.bianco@fmach.it

More on loops...

Statement

Statement

Statement

Statement

Newlines

Conditional statement

if - elif - else

Loop statement

for - while

Ternary operator

Example: The discount rate applied to a purchase depends on the amount of the sale. Create a
variable discount setting its value to O if the variable amount is lower than 100 euros, to 10% if it is

higher.

In some cases it is handy
o In [1]: | amount = 110
to be able to initialize a discount = @

if(amount >100):
discount = 6.1

else:
the value of another one. discount = @ # not necessary

variable depending on

print("Total amount:", amount, "discount:", discount)

Total amount: 110 discount: 0.1

Ternary operator

In some cases it is handy

Syntax:

to be able to initialize a

variable depending on variable = value if condition else other _value

the value of another one.

amount = 110
discount = 0.1 if amount > 100 else ©
print("Total amount:", amount, "discount:", discount)

Total amount: 110 discount: 0.1

Continue - Break

Sometimes it is useful to skip an
entire iteration of a loop or end the
loop before its supposed end.

This can be achieved with two
different statements:

continue and break.

Continue

Example: Print all the odd numbers from 1 to 20.

Within a for or while loop, continue #Two equivalent ways
makes the interpreter skip that f;‘r :ef;”r’gngs’é’gl’;?’e’ ==
iteration and move to the next. 11(i % 2 == 1)§
print(i, end = " ")
print("")
#2. Skipping iT remainder == @ in for

for i 1n range(21):
1f(i % 2 == 0):
continue
print(i, end = " ")

11 13 15 17 19

57 9
5 911 13 15 17 1%

Continue

Continue can be used also within while
loops but we need to be careful and
remember to update the value of the
variable before reaching the continue
statement or we will get stuck in
never-ending loops.

Example: Print all the odd numbers from 1 to 20.

#¥Wrong code.
i=0
while (i < 21):
1f(i %2 == 0):
continue
print(i, end = " ")
i=1+ 1 ¥ NEVER EXECUTED

T |

2,
©

2 == @91!!!

Continue

Continue can be used also within while
loops but we need to be careful and
remember to update the value of the
variable before reaching the continue
statement or we will get stuck in
never-ending loops.

Example: Print all the odd numbers from 1 to 20.

i= -1
while(i< 20): #i
1 =] % #the variable
1f(i % 2 ==0):
continue
print(i, end = " ")

1357911 13 15 17 19

is incremented in the loop, so 26!!!

is updated no matter what

Example: Pick a random number from 1 and 50 and count how many times it takes to randomly
choose number 27. Limit the number of random picks to 40 (i.e. if more than 40 picks have been
done and 27 has not been found exit anyway with a message).

Break

Within a for or while loop,
break makes the interpreter exit
the loop and continue with the
sequential execution.
Sometimes it is useful to get out
of the loop if to complete our
task we do not need to get to
the end of the loop.

import random

iterations = 1

picks = []

while(iterations <= 40):
pick = random.randint(1,50)
picks.append(pick)

if(pick == 27):
break
iterations += 1 #equivalent to iterations = iterations + 1

if(iterations == 41):
print("Sorry number 27 was never found!")
else:
print("27 found in ", iterations, "iterations")

print(picks)

27 found in 14 iterations
[6, 33, 41, 45, 34, 20, 41, 7, 17, 39, 22, 45, 11, 27]

Example: Pick a random number from 1 and 50 and count how many times it takes to randomly
choose number 27. Limit the number of random picks to 40 (i.e. if more than 40 picks have been
done and 27 has not been found exit anyway with a message).

Break

import random

iterations = 1

picks = []

while(iterations <= 40):
pick = random.randint(1,50)
picks.append(pick)

if(pick == 27):
break
iterations += 1

if(iterations == 41):
print("Sorry number 27 was never found!")
else:
print("27 found in ", iterations, "iterations")

print(picks)

27 found in 14 iterations
[6, 33, 41, 45, 34, 20, 41, 7, 17, 39, 22, 45, 11, 27]

Using breaks or flags....

import random
found = False # This is called flag
iterations = 1
picks = []
while iterations <= 40 and found == False: #the flag is used to exit
pick = random.randint(1,50)
picks.append(pick)
if pick == 27:
found = True #update the flag, will exit at next iteration
iterations += 1

if iterations == 41 and not found:
print("Sorry number 27 was never found!")
else:
print("27 found in ", iterations -1, "iterations")

print(picks)

27 found in 10 iterations
[41;:1; 45, 39, 24; 11,22, T, 25; 27]

List comprehension

List comprehension is a quick way to
new_list = [some_function (x) for x in start_list if condition]

create a list. E
if condition
The resulting list is normally obtained O optional
by applying a function or a method to
the elements of another list that
remains unchanged. new_list = [x.some_method() for x in start_list if condition]

List comprehension

Example: Given a list of strings [“dog”, “cat”, “rabbit”, “guinea pig”, “hamster”, “canary”, “goldfish”]
create a list with the elements starting with a “c” or “g".

pets = ["dog", "cat", "rabbit", "guinea pig", "hamster", "canary", "goldfish"]
cg pets = [x for x in pets if x.startswith("c") or x.startswith("g")]

print("Original:")
print(pets)
print("Filtered:")
print(cg pets)

Original:

['dog', 'cat', 'rabbit', 'guinea pig', 'hamster', ‘'canary', 'goldfish’']
Filtered:

['cat', 'guinea pig', 'canary', 'goldfish']

List comprehension

Example: Given the list: [*Hotel", "Icon”," Bus","Train", "Hotel", "Eye", "Rain", "Elephant”] create a list with all the first letters.

myList = ["Hotel", "Icon"," Bus","Train", "Hotel", "Eye", "Rain", "Elephant"]
initials = [x[0] for x in myList]

print(myList)
print(initials)
print("".join(initials))

['Hotel', 'Icon', ' Bus', 'Train', 'Hotel', 'Eye', 'Rain', 'Elephant']
[IHI, III') l’ ITI' IHI' IEI, IRI' IEI]
HI THERE

Dictionaries

A dictionary is a map between one

object, the key and another object, the
value. Dictionaries are mutable

objects and contain sequences of

mappings: I_{ey_> O_bjGCthtthere is first_dict = {"one" : 1, "two": 2, "three" : 3, "four" : 4}
not specific ordering among them. print("First:", first_dict)

Lo . . . empty_dict = dict()
Dictionaries are defined using the curly print("empty: " empty dict)
braces {key1 : value1, key2 : value2}
and : to separate keys from values. second dict = {1 : "one", 2 : "two", "three" :3 } #BAD IDEA BUT POSSIBLE!!!
print(second_dict)

third_dict = dict(zip(["one",6"two",6 "three" "four"],[1,2,3,4]))
print(third_dict)
print(first_dict == third_dict)

Fipst: {{ithreel: 3: lone¥s I: *Tour's: 4, "two'l: 2}

Empty: {}

{1: 'one', 2: '"two', 'three': 3}

{'three': 3, 'one': 1, 'four': 4, 'two': 2}

True
D

Dictionaries

a = (1,2,3) #a,b are tuples: hence immutable
b = (1,3,5)
. . my dict = {a : 6, b : 9
Keys must be immutable objects p¥?nt(my_d1{ct) :
c =[1,2,3] #c.d are lists: hence mutable
d =[1,3,5]

dict2. = {c 2 6, d = 9}
print(dict2)

(L5 35 5)% 9 Ay 2y 3) 6}

TypeError Traceback (most recent call last)
<ipython-input-49-0fe98c7f5acd> in <module>()

8d=1[1,3,5]

9

---> 10 dict2 = {c : 6, d : 9}
11 print(dict2)

TypeError: unhashable type: 'list'

D i Cti O n a ri e S Result| Operator Meaning
bool obj in dict Return True if a key is present in the
dictionary
int len(dict) Return the number of elements in the
dictionary
obj dict[obj] Read the value associate with a key
Functions on dictionaries dict[obj] = obj | Add or modify the value associated R/W
with a key mutable!

myDict = {"one" : 1, "two" : 2, "twentyfive" : 25}

print(myDict)

myDict["ten"] = 10

myDict["twenty"] = 20

print(myDict)

myDict["ten"] = "10-again"

print(myDict)

print("The dictionary has ", len(myDict), " elements")
print("The value of \"ten\" is:", myDict["ten"])
print("The value of \"two\" is:", myDict["two"])

print("Is \"twentyfive\" in dictionary?"“, "twentyfive" in myDict)
print("Is \"seven\" in dictionary?", "seven" in myDict)

{'one': 1, "two': 2, 'twentyfive': 25}

{'one': 1, 'two': 2, 'twentyfive': 25, 'ten': 10, 'twenty': 20}

{'one': 1, 'two': 2, 'twentyfive': 25, 'ten': 'l@-again’', 'twenty': 20}
The dictionary has 5 elements

The value of "ten" is: 10-again

The value of "two" is: 2

Is "twentyfive" in dictionary? True

Is "seven" in dictionary? False

Dictionaries

Return | Method Meaning

list dict.keys() Returns the list of the keys that
are present in the dictionary

Methods of dictionaries list dict.values() Returns the list of the values that

are present in the dictionary

list of | dict.items() Returns the list of pairs (key,

tuples value) that are present in the
dictionary

ERRATUM: dict.keys() returnsa dict keys object not a list. To cast it to list, we need to call

list(dict.keys()) .

Dictionaries

Accessing a value through the key of a myDict = {"one" : 1, "two" : 2, "three" : 3}

dictionary requires that the pair key-value print (myDict["one"])

one searches for is present in the print(myDict["seven"])
dictionary. If the searched key is not
present the interpreter crashes out 1

throwing a KeyError

KeyError Traceback (most recent call last)
<ipython-input-5-a@5b31e54a02> in <module>
2

3 print(myDict["one"])
----> 4 print(myDict["seven"])

KeyError: 'seven'

Dictionaries

Explicitly test presence of key Use get
myDict = {"one" : 1, "two" : 2, "three" : 3} myDict = {"one" : 1, "two" : 2, "three" : 3}
search_keys = ["one", "seven"] search keys = ["one", "seven"]
for s in search keys: for s in search keys:
if s in myDict:) print("key:", s, "value:", myDict.get(s, "not found"))
print("key:", s, "value:", myDict[s])
else: key: one value: 1
print("key", s, "not found in dictionary") key: seven value: not found

key: one value: 1
key seven not found in dictionary

Return | Method Meaning

list dict.keys () Returns the list of the keys that
are present in the dictionary

D | Cti O n a rl eS list dict.values() Returns the list of the values that

are present in the dictionary

list of | dict.items() Returns the list of pairs (key,
tuples value) that are present in the
dictionary
Use the in-line help...
:u A = dict()
23 a.
Qiclear ‘ def clear (self) x
@ copy) o
§ fromkeys dict() -> new empty dictionary
@ get - dict(mapping) -> new dictionary initialized from a
Q items mapping object's
® keys (key, value) pairs
@ pop dict(iterable) -> new dictionary initialized as if via: |
@ popitem d={} o
Q@ setdefault fork, viniterable:
@ update N dlk]:v .« g TR 1] .
@ values dict(**kwargs) -> new dictionary initialized with
%: class the name=value pairs

protein = """MGNAAAAKKGSEQESVKEFLAKAKEDFLKKWENPAQNTAHLDQFERIKTLGTGSFGRVML
VKHMETGNHYAMKILDKQKVVKLKQIEHTLNEKRILQAVNFPFLVKLEFSFKDNSNLYMV
MEYVPGGEMFSHLRRIGRFSEPHARFYAAQIVLTFEYLHSLDLIYRDLKPENLLIDQQGY
IQVTDFGFAKRVKGRTWTLCGTPEYLAPEIILSKGYNKAVDWWALGVLIYEMAAGYPPFF
ADQPIQIYEKIVSGKVRFPSHFSSDLKDLLRNLLQVDLTKRFGNLKNGVNDIKNHKWFAT
TDWIAIYQRKVEAPFIPKFKGPGDTSNFDDYEEEEIRVSINEKCGKEFSEF"""

Dictionaries e e

Example Given the protein sequence below, store ina P/t (Proteim

dictionary all the aminoacids present and count how amino_acids = dict()
many times they appear. Finally print out the stats (e.g. for a in protein:
. . if(a 1n amino_acids):
how many amino-acids are present, the most frequ_ent, 1o ACidata] = akina acidspal & 1
the least frequent and the frequency of all of them in else:

. amino_acids[a] = 1
alphabetical order). -

num_aminos = len(amino_acids)

MGNAAAAKKGSEQESVKEFLAKAKEDFLKKWENPAQNTAHL print("The number of amino-acids present is ", num_aminos)
The number of amino-acids present is 20 #let's get all aminoacids

A 1is present 23 times #and sort them alphabetically

C 1is present 2 times a_keys = list(amino_acids.keys())

D 1is present 18 times

E 1is present 27 times a_keys.sort()

F s present 25 times -

6 1s present 22 times mostF = {"frequency" : @, "aminoacid" : "-"}

f 1s present.d Limes leastF = {"frequency" : num_aminos, "aminoacid" : "-"}

I 1is present 21 times = :

K 1is present 34 times 2

L 1is present 32 times tor : tn f—keXS' id

M s present 8 times LEQ S raminh_acs S[f])

N is present 17 times 1f(mostF[frequency 1 <_freq).

P is present 14 times mostf ["frequency™] = freq

Q is present 14 times mostF["aminoacid"] = a

R 1is present 15 times

S is present 16 times if(leastF["frequency”] > freq):

T s present 14 times leastF["frequency"] = freq

V is present 20 times leastF["aminoacid"] = a

W 1is present 6 times print(a, " is present", freq, "times")

Y 1is present 14 times

Amino C has the lowest freq. (2) print("Amino", leastF["aminoacid"], "has the lowest freq. (",leastF["frequency"],")")
Amino K has the highest freq. (34) print("Amino", mostF["aminoacid"], "has the highest freq. (",mostF["frequency"],")")

http://gcbsciprolab2019.readthedocs.io/en/latest/practical5.html

Exercises

1. Given the following two lists of integers: [1, 13, 22, 7,43, 81, 77, 12, 15,21, 84,100] and
[44,32,7,100, 81, 13, 1, 21, 71]:
1. Sort the two lists
2. Create a third list as intersection of the two lists (i.e. an element is in the intersection if it is
present in both lists).
3. Print the three lists.

Show/Hide Solution

2. Given the string “nOBody Said iT was eAsy, No oNe Ever sald it WoulD be tHis hArd..."
1. Create a list with all the letters that are capitalized (use str.isupper)
2. Print the list
3. Use the string method join to concatenate all the letters in a string, using “*” as separator.
The syntax of join is str.join(list) and it outputs a string with all the elements in list joined
with the character in str (es. “+”"join([1,2,3]) returns “1+2+3”).

wkn

The expected output:

. ! . AL, CNY, CMNY, NEY, NI, WY, NDY, CHY, . AN
O*B*S*T*A*N*N*E*I*W*D*H*A

Show/Hide Solution

3. Given the following list of gene correlations:

geneCorr = [["G1C2W9", "G1C2Q7", ©.2], ["G1C2W9", "G1C2Q4", 0.9],
["Q6NMS1™, "G1C2W9", ©.8],["G1C2W9", "Q6NMS1",0.4], ["G1C2Q7", "G1C2Q4",0.76]]

