Scientific Programming
Practical 6

Introduction

Luca Bianco - Academic Year 2019-20
luca.bianco@fmach.it

Functions

A function is a block of code that The basic definition of a function is:
has a name and that performs a

task.
def function name(input) :
. #code implementing the function
A function can be thought of as a box X . g

that gets an input and returns an

output (or None). return return_value

1. Reduce code duplication: put in functions parts of code that are needed several
times in the whole program so that you don’t need to repeat the same code over and
over again;

2. Decompose a complex task: make the code easier to write and understand by
splitting the whole program in several easier functions

Functions

Example: define a function that gets def my sum(myList):
a list of integers and returns its sum. ret = 0
for el in myList:
ret += el # == ret = ret + el

return ret
A =[1,2,3,4,5,6]
B=1[7, 9, 4]
s = my sum(A)

print("List A:", A)
print("Sum:", s)

s = my sum(B)
print("List B:", B)
print("Sum:", s)

ListaA: J1,52,.3.'4, 5; 6]
Sum: 21

Eist B: ‘[7..9,.4]

Sum: 20

Namespace and scope

Namespaces are mappings from names
to objects, or in other words places where
names are associated to objects.

1. **Local**: the innermost that contains local names (inside a function or a class);
Namespaces can be considered as the _ _ .
. , 2. **Enclosing**: the scope of the enclosing function,
context. According to Python’s reference it does not contain local nor global names (nested functions) ;
a scope is a textual region of a Python
program, where a namespace is directly
accessible

3. **Global**: contains the global names;

4. *#¥Built-in**: contains all built in names
(e.g. print, if, while, for,...)

LEGB order for finding variable

Functions

Example: define a function that gets Q;s‘[j,},zlz\jn

a list of integers and returns its sum.
def my sum(myList):

ret = 0
for el in mylList:
ret += el
Importantly enough, a function return ret
needs to be defined (i.e. its code
has to be written) BEFORE it can
dcialyjoellised: NameError Traceback (most recent call last)
<ipython-input-7-585169a2991a> in <module>()
A =[152,3]
----> 2 my_sum(A)
3
4 def my sum(myList):
5 ret =0

NameError: name 'my sum' is not defined

Argument passing

Things to remember

1. Passing an argument is actually assigning an object to a local variable name;
2. Assigning an object to a variable name within a function does not affect the caller;
3. Changing a mutable object variable name within a function affects the caller

1. Passing an argument is actually assigning an object to a local variable name;
2. Assigning an object to a variable name within a function does not affect the caller;
3. Changing a mutable object variable name within a function affects the caller

Argument passing

"""Assigning the argument does not affect the caller"""

def my_f(x):
x = "local value" #local
print("Local: ", x)

x = "global value" #global
my f(x)

print("Global:", x)

my f(x)

Local: 1local value
Global: global value
Local: 1local value

1. Passing an argument is actually assigning an object to a local variable name;
2. Assigning an object to a variable name within a function does not affect the caller;
3. Changing a mutable object variable name within a function affects the caller

Argument passing

"*"Changing a mutable affects the caller"""

def my_f(myList):
myList[1] = “"new valuel"
myList[3] = "new value2"
print("Local: ", myList)

myList = ["old value"]*4
print("Global:", myList)

my f(myList)

print("Global now: ", myList)

Global: ['old value', 'old value’, 'old value', 'old value'l]
Local: ['old value', 'new valuel', 'old value', 'new value2']
Global now: ['old value', 'new valuel', 'old value', 'new value2']

Functions

Example: Let's write a function that, given a list of integers, returns the number of elements, the
maximum and minimum.

def get info(myList):
"""returns len of myList, min and max value (assumes elements are integers)"""
tmp = myList[:] #copy the input list
tmp.sort()
return len(tmp), tmp[0O], tmp[-1] #return type is a tuple
A=1[7, 1, 125, 4, -1, 0]
print("Original A:", A, "\n")
result = get info(A)
print("Len:", result[@], "Min:", result[l], "Max:",result[2], "\n")

print("A now:", A)

Original A: [7, 1, 125, 4, -1, 0]
Len: 6 Min: -1 Max: 125
A-now: [7; 1; 125; 4;: =1, O]

Argument passing by keyword and defaults

def print _parameters(a="defaultA", b="defaultB",c="defaultC"):
print("a:",a)
print("b:",b)
print(“c:",c)

print_parameters("param A")

print ("\ n####HHHRHHHEE ")
print_parameters(b="PARAMETER B")

print ("\ n###aEHE A \N")

print _parameters()

print ("\ n##E####HHH#HHEE\D")
print_parameters(c="PARAMETER C", b="PAR B")

a: param A
b: defaultB
c: defaultC

FHHHRRAH R

a: defaultA
b: PARAMETER B
c: defaultC

FERHHBRAA AR

a: defaultA
b: defaultB
c: defaultC

RARHRHRARARR AR R

a: defaultA
b: PAR B
Cc: PARAMETER C

File Input/Output

With files you need to perform 3 steps:

Open the file, read/write, close

Result | Built-in function | Meaning

file open(str, [str]) | Get a handle to a file

Result | Method Meaning

str file.read() Read all the file as a single string
list file.readlines() | Read all lines of the file as a list of
of str strings

str file.readline() | Read one line of the file as a string
None file.write(str) | Write one string to the file

None file.close() Close the file (i.e. flushes changes

to disk)

File Input/Output

file handle = open("file name", "file mode")

With files you need to: Read

Open read/write. close 1. content = fh.read() reads the whole file in the content string. Good for small and not
J J

structured files.
2. line = fh.readline() reads the file one line at a time storing it in the string line
3. lines = fh.readlines() reads all the lines of the file storing them as a list lines

4. using the iterator:
Opening mode: “r”, “w”, “a”,”’b”,...

f for line in f:

#process the information

overwrites!

which is the most convenient way for big files.

Write

file handle.write(data to be written)

file handle.close()

fh = open("file samples/textFile.txt", "r") #read-only mode

content = fh.read()

. print("--- Model (the whole file in a string) ---")
File Input/Output e
print("")
print("--- Mode2 (line by line) ---")

with open("file samples/textFile.txt","r") as f:
: print("Linel: ", f.readline(), end = "")

print("Line2: ", f.readline(), end = "")

print("")

print("--- Mode3 (all lines as a list) ---")

with open("file samples/textFile.txt","r") as f:
print(f.readlines())

print(nn)
print("--- Mode4 (as a stream) ---")
with open("file samples/textFile.txt","r") as f:
for line in f:
print(line, end = "")
--- Model (the whole file in a string) ---
Hi everybody,
This is my first file

and it contains a total of
four lines!

--- Mode2 (line by line) ---
Linel: Hi everybody,
Line2: This is my first file

--- Mode3 (all lines as a list) ---
more ir1ft) ir] tr1€9 ['Hi everybody,\n', 'This is my first file\n', 'and it contains a total of\n', 'four lines!']

i --- Mode4 () ---
Practical6 notes... 2 e'JZriﬁodif a stream

This is my first file
and it contains a total of
four lines!

String formatting

I like python more than java.

I like python more than java or C++.
I like C++ more than java or python.
I like java more than C++ or python.
The square root of 2 is 1.414214.

The square root of 2 is 1.41.

[l el el el el el el el el =
COSNOUVAWNMFOOOONOWUVAEWNKE-O

BAAEERWWWWWWWNNNNNMRM O

square
0

1

4
9
16
25
36
49
64
81
100
121
144
169
196
225
256
289
324
361

#simple empty placeholders
print("I like {} more than {}.\n".format("python", "java"))

#indexed placeholders, note order
print("I like {0} more than {1} or {2}.\n".format("python", “"java", "C++"))
print("I like {2} more than {1} or {0}.\n".format("python", "java", "C++"))

#indexed and named placeholders
print("I like {1} more than {c} or {0}.\n".format("python", "java", c="C++"))

#with type specification
import math
print("The square root of {0} is {1:f}.\n".format(2, math.sqrt(2)))

#with type and format specification (NOTE: {.2f})
print("The square root of {0} is {1:.2f}.\n".format(2, math.sqrt(2)))

#spacing data properly

print("{:2s}|{:5}|{:6}".format("N","sqrt","square"))

for i in range(0,20):
print("{:2d}|{:5.3f}|{:6d}".format(i,math.sqrt(i),i*i))

Format can be used to add values to a string in
specific placeholders (normally defined with the
syntax {}) or to format values according to the
user specifications (e.g. number of decimal
places for floating point numbers).

http://gcbsciprolab2019.readthedocs.io/en/latest/practical6.html

Exercises

1. Implement a function that takes in input a string representing a DNA sequence and computes
its reverse-complement. Take care to reverse complement any character other than
(AT,C,G,at,c,g) to N. The function should preserve the case of each letter (i.e. A becomes T, but
a becomes t). For simplicity all bases that do not represent nucleotides are converted to a capital
N. Hint: create a dictionary revDict with bases as keys and their complements as values. Ex.
revDict:={*A” :*T","a%: *t. ..k

1. Apply the function to the DNA sequence “ATTACATATCATACTATCGCNTTCTAAATA"

2. Apply the function to the DNA sequence “acal TACAtagataATACTaccataGCNTTCTAAATA”

3. Apply the function to the DNA sequence “TTTTACCKKKAKTUUUITTTARRRRRAIUTYYA”

4. Check that the reverse complement of the reverse complement of the sequence in 1. is
exactly as the original sequence.

Show/Hide Solution

2. Blast is a well known tool to perform sequence alignment between a pool of query sequences
and a pool of subject sequences. Among the other formats, it can produce an text output that is
tab separated (\t) capturing user specified output. Comments in the file are written in lines
starting with an hash key (“#”). A sample blast output file is blast_sample.tsv, please download it
and spend some time to look at it. The meaning of all columns is specified in the file header:

Fields: query id, subject id, query length, % identity, alignment length,
identical, gap opens, q. start, gq. end, s. start, s. end, evalue

Write a python program with:

