Scientific Programming
Practical 7/

Introduction

Luca Bianco - Academic Year 2019-20
luca.bianco@fmach.it

Functions: just a reminder

A function is a block of code that has The basic definition of a function is:

a name and that performs a task. A
function can be thought of as a box
that gets an input and returns an
output.

def function name(input) :
#code implementing the function

return return_value

1. Reduce code duplication: put in functions parts of code that are needed several
times in the whole program so that you don’t need to repeat the same code over and
over again;

2. Decompose a complex task: make the code easier to write and understand by
splitting the whole program in several easier functions

Passing parameters from command line

Python provides the module
sys to interact with the
interpreter. .
- From the terminal:

sys.argv is a list

representing all the python3 my program.py paraml param2 param3
arguments passed to the

python script from the

command line.

Passing parameters from command line

Python provides the module
sys to interact with the

interpreter. -int("\n")
(sys.argv)
sys.argv is a list rint("\n")
representing all the types = [x + ":\t" + str(type(x)) for x in sys.argv]
arguments passed to the
python script from the int("\n".join(types))

command line.

Passing parameters from command line

port Ssys

Python provides the module
sys to interact with the
interpreter.

t("\n")
t(sys.argv)
nt("\n")

sys.argv is a list types = [x + ":\t" + str(type(x)) for x in sys.argv]

representing all the
arguments passed to the
python script from the
command line.

t("\n".join(types))

biancol@bluhp: /tmpS python3 intest.py paraml parameter2 29 "hi there" 129

['intest.py', 'paraml', 'parameter2', '29', 'hi there', '129']

intest.py: <class 'str's

paraml: <class 'str's
parameter2: <class 'str's
29: <class 'str's>
hi there: <class 'str's
129: <class 'str'>
biancol@bluhp:/tmpS i

Passing parameters from command line

Python provides the module import sys
sys to interact with the """Test input from command line in systest.py"""
interpreter.

if(len(sys.argv) != 4):
print("Dear user, I was expecting 3 params. You gave me ",len(sys.argv)-1)

sys.argv is a list exit(1)

representing all the else:

arguments_ passed to the for i in range(0,len(sys.argv)):

python script from the print(“Param {}:{} ({})".format(i,sys.argv[i],type(sys.argv[i])))

command line.

Check out: https://docs.python.org/3/
e

Passing parameters from command line

import sys
"""Test input from command line in systest.py"""

if(len(sys.argv) != 4):
print("Dear user, I was expecting 3 params. You gave me ",len(sys.argv)-1)
exit(1)
else:
for i in range(0,len(sys.argv)):
print("Param {}:{} ({})".format(i,sys.argv[i],type(sys.argv[i])))

TERMINAL 2: Python

'‘python3.6 “Jhomeﬁb;ancc_.eocg e Dr e/w
]] ; xercises$ /usr/bi

Dear user, I was cupcc~;ng [g _gave me 0

bianc luhp:~/Google Dr /work/ rses/scip)1/exercises$ /usr/bin/python3.6 "/home/biancol/Google Dri
‘'Wor 'sesxsc;pro-ab:‘ xercises/ .py" parami 2 param3

Param ©: /home/biancol/ rive/work/courses/sciprolabi/exercises/systest.py (<class 'str'>)

Param] :

Param

Param 3:

biancol@ b-uhp

Example: Write a script that takes two integers in input, i1 and 12, and computes the sum, difference, multiplication and division on them.

import sys
"""Maths example with input from command line"""

if(len(sys.argv) != 3):
print("Dear user, I was expecting 2 params. You gave me ",len(sys.argv)-1)
exit(1)
else:
il = int(sys.argv[1])
i2 = int(sys.argv[2])
print("{} + {} = {}".format(il,i2, il + i2))

print("{} - {} = {}".format(il,i2, il - i2))
print("{} * {} = {}".format(il,i2, il * i2))
if(i2 != 0):

print("{} / {} = {}".format(il,i2, i1 / i2))
else:

print("{} / {}

biancol@bluhp:~/Google Drive/work/scripts$ python3.6 /tmp/test.py
Dear user, I was expecting 2 params. You gave me 0
biancol@bluhp:~/Google Drive/work/scripts$ python3.6 /tmp/test.py 75 32
75 + 32 107
75 - 32 43
75 * 32 2400
75 [32 2.34375
biancol@bluhp:~/Google Drive/work/scripts$ python3.6 /tmp/test.py 75 ©
75 + 0 75
75 - 0 75
75 * 0 0
75 / © = Infinite
biancol@bluhp:~/Google Drive/work/scripts$ python3.6 /tmp/test.py 75 t
Traceback (most recent call last):

File "/tmp/test.py", line 9, in <module>

12 = int(sys.arqgv[2])

ValueError: invalid literal for int() with base 10: 't'

Infinite".format(il,i2))

Argparse

A more flexible solution...

Argparse is a command line
parsing module which deals
with positional arguments
and optional arguments.

directory: mandatory argument

biancol@bludell:~S mkdir --help

mkdir [OPTION]... DIRECTORY...

Create the DIRECTORY(ies), if they do not already exist.

Mandatory arguments to long options are mandatory for short options too.

-M,

. P,
optional params

]

- -mode=MC set file mode (as in chmod), not a=rwx - umask
no error if existing, make parent directories

print a message for each created directory
set SELinux security context of each created directory
to the default type
-context[=CTX] 1like -Z, or if CTX is specified then set the SELinux
or SMACK security context to CTX
--help display this help and exit
--version output version information and exit

Six steps:

Argparse

1. Import the module

import argparse
A more flexible solution... 2. Create the parser object

Argparse is a command line parser = argparse.ArgumentParser(description="This is the description of the program")

parsing module which deals 3. Add positional arguments
with positional arguments

and optional arguments parser.add_argument("arg_name", type = obj,

help = "Description of the parameter)

4. Add optional arguments

o i e e parser.add_argument("-p", "--optional arg", type = obj, default = def val,
ist information about the FILEs (the current directory by default). help = "Descrlptlon of the pa rameter)

Kort entries alphabetically if none of -cftuvSUX nor --sort is specified.

andatory arguments to long options are mandatory for short options too.
1

--al do not ignore entries starting with .
-almost-all do not list implied . and ..
-author with -1, print the author of each file 5- Parse the arguments
- -escape print C-style escapes for nongraphic characters
--block-size=SIZE scale sizes by SIZE before printing them; e.g.,
'--block-size=M' prints sizes in units of

1,048,576 bytes; see SIZE format below .
- -ignore-backups do not list implied entries ending with ~ args g parser . parse, a rgS(]

6. Retrieve and process the arguments

myArgName = args.arg name
myOptArg = args.optional arg

https://docs.python.org/3/howto/argparse.htmi

https://docs.python.org/3/howto/argparse.html

import argparse
import gzip
Ar arse parser = argparse.ArgumentParser(description="""Reads and prints a text file""")
parser.add argument(”filename”, type=str, help="The file name")
parser.add argument("-z", "--gzipped", action="store true",

help="If set, input file is assumed gzipped")

args = parser.parse args()
inputFile = args.filename

Thi=:*
if(args.gzipped):

fh = gzip.open(inputFile, "rt")
else:

fh = open(inputFile, "r")
for line in fh:

line = line.strip("\n")

print(line)

fh.close()

biancol@bluhp:~/Google Drive/work/courses/sciprolab1$ python3 exercises/readFile_gz.py -h
usage: readfFile gz.py [-h] [-z] filename

Reads and prints a text file

positional arguments:
filename The file name

optional arguments:

-h, --help show this help message and exit

-z, --gzipped If set, input file is assumed gzipped
biancol@bluhp:~/Google Drive/work/courses/sciprolabi$ [}

import argparse
ip

import gzip
Ar arse parser = argparse.ArgumentParser(description="""Reads and prints a text file""")
gp parser.add argument(”filename”, type=str, help="The file name")
parser.add argument("-z", "--gzipped", action="store true",

help="If set, input file is assumed gzipped")

args = parser.parse args()
inputFile = args.filename
Thim:*
if(args.gzipped):

fh = gzip.open(inputFile, "rt")
else:

fh = open(inputFile, "r")

for line in fh:
line = line.strip("\n")
print(line)

fh.close()

biancol@bluhp:~/Google Drive/work/courses/sciprolabl$ python3 exercises/readFile_gz.py file_samples/textFile.txt
i everybody,

his is my first file

and it contains a total of

our lines!

biancol@bluhp:~/Google Drive/work/courses/sciprolab1$ python3 exercises/readFile_gz.py file_samples/textFile.gz -z
Hi everybody,

This is my first file

and it contains a total of

four lines!

https://docs.python.org/3/library/index.html

@, Python » |English v|[3.6.3

v | Documentation » lgzip |[Go || previous | next | modules | index

Previous topic
10. Full Grammar specification

Next topic
1. Introduction

This Page

Report a Bug
Show Source

«

The Python Standard Library

While The Python Language Reference describes the exact syntax and semantics of the Python language, this library reference manual describes the standard library that is
distributed with Python. It also describes some of the optional components that are commonly included in Python distributions.

Python’s standard library is very extensive, offering a wide range of facilities as indicated by the long table of contents listed below. The library contains built-in modules
(written in C) that provide access to system functionality such as file 1/0O that would otherwise be inaccessible to Python programmers, as well as modules written in Python that
provide standardized solutions for many problems that occur in everyday programming. Some of these modules are explicitly designed to encourage and enhance the
portability of Python programs by abstracting away platform-specifics into platform-neutral APIs.

The Python installers for the Windows platform usually include the entire standard library and often also include many additional components. For Unix-like operating systems
Python is normally provided as a collection of packages, so it may be necessary to use the packaging tools provided with the operating system to obtain some or all of the
optional components.

In addition to the standard library, there is a growing collection of several thousand components (from individual programs and modules to packages and entire application
development frameworks), available from the Python Package Index.

e 1. Introduction
e 2. Built-in Functions
o 3. Built-in Constants
o 3.1. Constants added by the site module
e 4, Built-in Types
o 4.1. Truth Value Testing
4.2. Boolean Operations — and, or, not
4.3. Comparisons
4.4, Numeric Types — int, float, complex
4.5. lterator Types
4.6. Sequence Types — list, tuple, range
4.7. Text Sequence Type — str
4.8. Binary Sequence Types — bytes, bytearray, memoryview
4.9. Set Types — set, frozenset

© 0 0 0 0 0o © ©

Example: Let's write a program that reads the content of a file and prints to screen some stats like
the number of lines, the number of characters and maximum number of characters in one line.
Optionally (if flag -v is set) it should print the content of the file. You can find a text file here

textFile.txt:
def readText(f):

"""reads the file and returns a list with
each line as separate element"""

myF = open(f, "r")

ret = myF.readlines()

return ret

def computeStats(filelList):
"""returns a tuple (num.lines, num.characters,max char.line)"""
num lines = len(filelList)
lines len = [len(x.replace("\n", "")) for x in filelist]
num_char = sum(lines len)
max_char = max(lines len)
return (num_lines, num_char, max_char)

parser = argparse.ArgumentParser(description="Computes file stats")
parser.add_argument("inputFile", type=str, help="The input file")
parser.add argument(

“-v", "--verbose", action="store true", help="if set, prints the file content")

args = parser.parse args()

inFile = args.inputFile
lines = readText(inFile)
stats = computeStats(lines)
if args.verbose:
print("File content:\n{}\n".format("".join(lines)))
print(
"Stats:\nN.lines:{}\nN.chars:{}\nMax. char in line:{}".format(
stats[0], stats[1l], stats[2]))

Example: Let's write a program that reads the content of a file and prints to screen some stats like
the number of lines, the number of characters and maximum number of characters in one line.
Optionally (if flag -v is set) it should print the content of the file. You can find a text file here

textFile.txt:

Output with -v flag:

and it contains a

four lines!

Stats:

N.1is

N.chars:71

Max. char in line:26

Output without -v flag:

biancol@bluhp:~/Google Drive/work/courses/QCBsciprolab$ python3 fileStats.py file_samples/textFile.tx
Stats:

N.lines:4
N.chars:71
Max. char in line:26

http://gcbprolab2019.readthedocs.io/en/latest/practical7.html

Exercises

1. Modify the program of Exercise 4 of Practical 6 in order to allow users to specify the input and
output files from command line. Then test it with the provided files. The text of the exercise
follows:

Write a python program that reads two files. The first is a one column text file (contig_ids.txt) with
the identifiers of some contigs that are present in the second file, which is a fasta formatted file
(contigs82.fasta). The program will write on a third, fasta formatted file (e.g. filtered_contigs.fasta)
only those entries in contigs82.fasta having identifier in contig_ids.txt.

Show/Hide Solution

2. Cytoscape is a well known tool to perform network analysis. It is well integrated with several
online databases housing for example protein-protein interactions like EBI’s IntAct. It is also able
to read and write a very simple text file called .sif to represent interactions between the
nodes of a network. Sif formatted files are tab separated (\t) and each line represents a
connection between the nodes of the network. For example:

nodel interactionl node2
nodel interaction2 node3
node2 interactionl node3

represents two types of interactions between nodel, node2 and node3. Normally nodes are
represented as circles in a network (graph) and interactions as lines (that can be of different
kinds) connecting nodes (edges). The following is an extract from the file pka.sif that has been
downloaded by Cytoscape from the database IntAct and represents the interactions of the
Protein Kinase A (PKA) of E.coli:

P75742 EBI-9168813 P76594
D

