
pandas: powerful Python data analysis
toolkit

Release 0.23.4

Wes McKinney & PyData Development Team

Aug 06, 2018

CONTENTS

i

ii

pandas: powerful Python data analysis toolkit, Release 0.23.4

PDF Version

Zipped HTML

Date: Aug 06, 2018 Version: 0.23.4

Binary Installers: https://pypi.org/project/pandas

Source Repository: http://github.com/pandas-dev/pandas

Issues & Ideas: https://github.com/pandas-dev/pandas/issues

Q&A Support: http://stackoverflow.com/questions/tagged/pandas

Developer Mailing List: http://groups.google.com/group/pydata

pandas is a Python package providing fast, flexible, and expressive data structures designed to make working with
“relational” or “labeled” data both easy and intuitive. It aims to be the fundamental high-level building block for doing
practical, real world data analysis in Python. Additionally, it has the broader goal of becoming the most powerful
and flexible open source data analysis / manipulation tool available in any language. It is already well on its way
toward this goal.

pandas is well suited for many different kinds of data:

• Tabular data with heterogeneously-typed columns, as in an SQL table or Excel spreadsheet

• Ordered and unordered (not necessarily fixed-frequency) time series data.

• Arbitrary matrix data (homogeneously typed or heterogeneous) with row and column labels

• Any other form of observational / statistical data sets. The data actually need not be labeled at all to be placed
into a pandas data structure

The two primary data structures of pandas, Series (1-dimensional) and DataFrame (2-dimensional), handle the
vast majority of typical use cases in finance, statistics, social science, and many areas of engineering. For R users,
DataFrame provides everything that R’s data.frame provides and much more. pandas is built on top of NumPy
and is intended to integrate well within a scientific computing environment with many other 3rd party libraries.

Here are just a few of the things that pandas does well:

• Easy handling of missing data (represented as NaN) in floating point as well as non-floating point data

• Size mutability: columns can be inserted and deleted from DataFrame and higher dimensional objects

• Automatic and explicit data alignment: objects can be explicitly aligned to a set of labels, or the user can
simply ignore the labels and let Series, DataFrame, etc. automatically align the data for you in computations

• Powerful, flexible group by functionality to perform split-apply-combine operations on data sets, for both ag-
gregating and transforming data

• Make it easy to convert ragged, differently-indexed data in other Python and NumPy data structures into
DataFrame objects

• Intelligent label-based slicing, fancy indexing, and subsetting of large data sets

• Intuitive merging and joining data sets

• Flexible reshaping and pivoting of data sets

• Hierarchical labeling of axes (possible to have multiple labels per tick)

• Robust IO tools for loading data from flat files (CSV and delimited), Excel files, databases, and saving / loading
data from the ultrafast HDF5 format

• Time series-specific functionality: date range generation and frequency conversion, moving window statistics,
moving window linear regressions, date shifting and lagging, etc.

CONTENTS 1

pandas.zip
https://pypi.org/project/pandas
http://github.com/pandas-dev/pandas
https://github.com/pandas-dev/pandas/issues
http://stackoverflow.com/questions/tagged/pandas
http://groups.google.com/group/pydata
http://www.python.org
http://www.numpy.org

pandas: powerful Python data analysis toolkit, Release 0.23.4

Many of these principles are here to address the shortcomings frequently experienced using other languages / scientific
research environments. For data scientists, working with data is typically divided into multiple stages: munging and
cleaning data, analyzing / modeling it, then organizing the results of the analysis into a form suitable for plotting or
tabular display. pandas is the ideal tool for all of these tasks.

Some other notes

• pandas is fast. Many of the low-level algorithmic bits have been extensively tweaked in Cython code. However,
as with anything else generalization usually sacrifices performance. So if you focus on one feature for your
application you may be able to create a faster specialized tool.

• pandas is a dependency of statsmodels, making it an important part of the statistical computing ecosystem in
Python.

• pandas has been used extensively in production in financial applications.

Note: This documentation assumes general familiarity with NumPy. If you haven’t used NumPy much or at all, do
invest some time in learning about NumPy first.

See the package overview for more detail about what’s in the library.

2 CONTENTS

http://cython.org
http://www.statsmodels.org/stable/index.html
http://docs.scipy.org

CHAPTER

ONE

WHAT’S NEW

These are new features and improvements of note in each release.

1.1 v0.23.4 (August 3, 2018)

This is a minor bug-fix release in the 0.23.x series and includes some small regression fixes and bug fixes. We
recommend that all users upgrade to this version.

Warning: Starting January 1, 2019, pandas feature releases will support Python 3 only. See Plan for dropping
Python 2.7 for more.

What’s new in v0.23.4

• Fixed Regressions

• Bug Fixes

1.1.1 Fixed Regressions

• Python 3.7 with Windows gave all missing values for rolling variance calculations (GH21813)

1.1.2 Bug Fixes

Groupby/Resample/Rolling

• Bug where calling DataFrameGroupBy.agg() with a list of functions including ohlc as the non-initial
element would raise a ValueError (GH21716)

• Bug in roll_quantile caused a memory leak when calling .rolling(...).quantile(q) with q in
(0,1) (GH21965)

Missing

• Bug in Series.clip() and DataFrame.clip() cannot accept list-like threshold containing NaN
(GH19992)

3

https://github.com/pandas-dev/pandas/issues/21813
https://github.com/pandas-dev/pandas/issues/21716
https://github.com/pandas-dev/pandas/issues/21965
https://github.com/pandas-dev/pandas/issues/19992

pandas: powerful Python data analysis toolkit, Release 0.23.4

1.2 v0.23.3 (July 7, 2018)

This release fixes a build issue with the sdist for Python 3.7 (GH21785) There are no other changes.

1.3 v0.23.2

This is a minor bug-fix release in the 0.23.x series and includes some small regression fixes and bug fixes. We
recommend that all users upgrade to this version.

Note: Pandas 0.23.2 is first pandas release that’s compatible with Python 3.7 (GH20552)

Warning: Starting January 1, 2019, pandas feature releases will support Python 3 only. See Plan for dropping
Python 2.7 for more.

What’s new in v0.23.2

• Logical Reductions over Entire DataFrame

• Fixed Regressions

• Build Changes

• Bug Fixes

1.3.1 Logical Reductions over Entire DataFrame

DataFrame.all() and DataFrame.any() now accept axis=None to reduce over all axes to a scalar
(GH19976)

In [1]: df = pd.DataFrame({"A": [1, 2], "B": [True, False]})

In [2]: df.all(axis=None)
Out[2]: False

This also provides compatibility with NumPy 1.15, which now dispatches to DataFrame.all. With NumPy 1.15
and pandas 0.23.1 or earlier, numpy.all() will no longer reduce over every axis:

>>> # NumPy 1.15, pandas 0.23.1
>>> np.any(pd.DataFrame({"A": [False], "B": [False]}))
A False
B False
dtype: bool

With pandas 0.23.2, that will correctly return False, as it did with NumPy < 1.15.

In [3]: np.any(pd.DataFrame({"A": [False], "B": [False]}))
Out[3]: False

4 Chapter 1. What’s New

https://github.com/pandas-dev/pandas/issues/21785
https://github.com/pandas-dev/pandas/issues/20552
https://github.com/pandas-dev/pandas/issues/19976
https://docs.scipy.org/doc/numpy/reference/generated/numpy.all.html#numpy.all

pandas: powerful Python data analysis toolkit, Release 0.23.4

1.3.2 Fixed Regressions

• Fixed regression in to_csv() when handling file-like object incorrectly (GH21471)

• Re-allowed duplicate level names of a MultiIndex. Accessing a level that has a duplicate name by name still
raises an error (GH19029).

• Bug in both DataFrame.first_valid_index() and Series.first_valid_index() raised for a
row index having duplicate values (GH21441)

• Fixed printing of DataFrames with hierarchical columns with long names (GH21180)

• Fixed regression in reindex() and groupby() with a MultiIndex or multiple keys that contains categorical
datetime-like values (GH21390).

• Fixed regression in unary negative operations with object dtype (GH21380)

• Bug in Timestamp.ceil() and Timestamp.floor() when timestamp is a multiple of the rounding
frequency (GH21262)

• Fixed regression in to_clipboard() that defaulted to copying dataframes with space delimited instead of
tab delimited (GH21104)

1.3.3 Build Changes

• The source and binary distributions no longer include test data files, resulting in smaller download sizes. Tests
relying on these data files will be skipped when using pandas.test(). (GH19320)

1.3.4 Bug Fixes

Conversion

• Bug in constructing Index with an iterator or generator (GH21470)

• Bug in Series.nlargest() for signed and unsigned integer dtypes when the minimum value is present
(GH21426)

Indexing

• Bug in Index.get_indexer_non_unique() with categorical key (GH21448)

• Bug in comparison operations for MultiIndex where error was raised on equality / inequality comparison
involving a MultiIndex with nlevels == 1 (GH21149)

• Bug in DataFrame.drop() behaviour is not consistent for unique and non-unique indexes (GH21494)

• Bug in DataFrame.duplicated() with a large number of columns causing a ‘maximum recursion depth
exceeded’ (GH21524).

I/O

• Bug in read_csv() that caused it to incorrectly raise an error when nrows=0, low_memory=True, and
index_col was not None (GH21141)

• Bug in json_normalize() when formatting the record_prefix with integer columns (GH21536)

Categorical

• Bug in rendering Series with Categorical dtype in rare conditions under Python 2.7 (GH21002)

Timezones

1.3. v0.23.2 5

https://github.com/pandas-dev/pandas/issues/21471
https://github.com/pandas-dev/pandas/issues/19029
https://github.com/pandas-dev/pandas/issues/21441
https://github.com/pandas-dev/pandas/issues/21180
https://github.com/pandas-dev/pandas/issues/21390
https://github.com/pandas-dev/pandas/issues/21380
https://github.com/pandas-dev/pandas/issues/21262
https://github.com/pandas-dev/pandas/issues/21104
https://github.com/pandas-dev/pandas/issues/19320
https://github.com/pandas-dev/pandas/issues/21470
https://github.com/pandas-dev/pandas/issues/21426
https://github.com/pandas-dev/pandas/issues/21448
https://github.com/pandas-dev/pandas/issues/21149
https://github.com/pandas-dev/pandas/issues/21494
https://github.com/pandas-dev/pandas/issues/21524
https://github.com/pandas-dev/pandas/issues/21141
https://github.com/pandas-dev/pandas/issues/21536
https://github.com/pandas-dev/pandas/issues/21002

pandas: powerful Python data analysis toolkit, Release 0.23.4

• Bug in Timestamp and DatetimeIndex where passing a Timestamp localized after a DST transition
would return a datetime before the DST transition (GH20854)

• Bug in comparing DataFrame`s with tz-aware :class:`DatetimeIndex columns with a DST
transition that raised a KeyError (GH19970)

Timedelta

• Bug in Timedelta where non-zero timedeltas shorter than 1 microsecond were considered False (GH21484)

1.4 v0.23.1

This is a minor bug-fix release in the 0.23.x series and includes some small regression fixes and bug fixes. We
recommend that all users upgrade to this version.

Warning: Starting January 1, 2019, pandas feature releases will support Python 3 only. See Plan for dropping
Python 2.7 for more.

What’s new in v0.23.1

• Fixed Regressions

• Performance Improvements

• Bug Fixes

1.4.1 Fixed Regressions

Comparing Series with datetime.date

We’ve reverted a 0.23.0 change to comparing a Series holding datetimes and a datetime.date object
(GH21152). In pandas 0.22 and earlier, comparing a Series holding datetimes and datetime.date objects would
coerce the datetime.date to a datetime before comapring. This was inconsistent with Python, NumPy, and
DatetimeIndex, which never consider a datetime and datetime.date equal.

In 0.23.0, we unified operations between DatetimeIndex and Series, and in the process changed comparisons between
a Series of datetimes and datetime.date without warning.

We’ve temporarily restored the 0.22.0 behavior, so datetimes and dates may again compare equal, but restore the 0.23.0
behavior in a future release.

To summarize, here’s the behavior in 0.22.0, 0.23.0, 0.23.1:

0.22.0... Silently coerce the datetime.date
>>> Series(pd.date_range('2017', periods=2)) == datetime.date(2017, 1, 1)
0 True
1 False
dtype: bool

0.23.0... Do not coerce the datetime.date
>>> Series(pd.date_range('2017', periods=2)) == datetime.date(2017, 1, 1)
0 False
1 False

(continues on next page)

6 Chapter 1. What’s New

https://github.com/pandas-dev/pandas/issues/20854
https://github.com/pandas-dev/pandas/issues/19970
https://github.com/pandas-dev/pandas/issues/21484
https://github.com/pandas-dev/pandas/issues/21152

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

dtype: bool

0.23.1... Coerce the datetime.date with a warning
>>> Series(pd.date_range('2017', periods=2)) == datetime.date(2017, 1, 1)
/bin/python:1: FutureWarning: Comparing Series of datetimes with 'datetime.date'.
→˓Currently, the
'datetime.date' is coerced to a datetime. In the future pandas will
not coerce, and the values not compare equal to the 'datetime.date'.
To retain the current behavior, convert the 'datetime.date' to a
datetime with 'pd.Timestamp'.

#!/bin/python3
0 True
1 False
dtype: bool

In addition, ordering comparisons will raise a TypeError in the future.

Other Fixes

• Reverted the ability of to_sql() to perform multivalue inserts as this caused regression in certain cases
(GH21103). In the future this will be made configurable.

• Fixed regression in the DatetimeIndex.date and DatetimeIndex.time attributes in case of
timezone-aware data: DatetimeIndex.time returned a tz-aware time instead of tz-naive (GH21267) and
DatetimeIndex.date returned incorrect date when the input date has a non-UTC timezone (GH21230).

• Fixed regression in pandas.io.json.json_normalize() when called with None values in nested lev-
els in JSON, and to not drop keys with value as None (GH21158, GH21356).

• Bug in to_csv() causes encoding error when compression and encoding are specified (GH21241, GH21118)

• Bug preventing pandas from being importable with -OO optimization (GH21071)

• Bug in Categorical.fillna() incorrectly raising a TypeError when value the individual categories
are iterable and value is an iterable (GH21097, GH19788)

• Fixed regression in constructors coercing NA values like None to strings when passing dtype=str
(GH21083)

• Regression in pivot_table() where an ordered Categorical with missing values for the pivot’s index
would give a mis-aligned result (GH21133)

• Fixed regression in merging on boolean index/columns (GH21119).

1.4.2 Performance Improvements

• Improved performance of CategoricalIndex.is_monotonic_increasing(),
CategoricalIndex.is_monotonic_decreasing() and CategoricalIndex.
is_monotonic() (GH21025)

• Improved performance of CategoricalIndex.is_unique() (GH21107)

1.4.3 Bug Fixes

Groupby/Resample/Rolling

• Bug in DataFrame.agg() where applying multiple aggregation functions to a DataFrame with duplicated
column names would cause a stack overflow (GH21063)

1.4. v0.23.1 7

https://github.com/pandas-dev/pandas/issues/21103
https://github.com/pandas-dev/pandas/issues/21267
https://github.com/pandas-dev/pandas/issues/21230
https://github.com/pandas-dev/pandas/issues/21158
https://github.com/pandas-dev/pandas/issues/21356
https://github.com/pandas-dev/pandas/issues/21241
https://github.com/pandas-dev/pandas/issues/21118
https://github.com/pandas-dev/pandas/issues/21071
https://github.com/pandas-dev/pandas/issues/21097
https://github.com/pandas-dev/pandas/issues/19788
https://github.com/pandas-dev/pandas/issues/21083
https://github.com/pandas-dev/pandas/issues/21133
https://github.com/pandas-dev/pandas/issues/21119
https://github.com/pandas-dev/pandas/issues/21025
https://github.com/pandas-dev/pandas/issues/21107
https://github.com/pandas-dev/pandas/issues/21063

pandas: powerful Python data analysis toolkit, Release 0.23.4

• Bug in pandas.core.groupby.GroupBy.ffill() and pandas.core.groupby.GroupBy.
bfill() where the fill within a grouping would not always be applied as intended due to the implementations’
use of a non-stable sort (GH21207)

• Bug in pandas.core.groupby.GroupBy.rank() where results did not scale to 100% when specifying
method='dense' and pct=True

• Bug in pandas.DataFrame.rolling() and pandas.Series.rolling() which incorrectly ac-
cepted a 0 window size rather than raising (GH21286)

Data-type specific

• Bug in Series.str.replace() where the method throws TypeError on Python 3.5.2 (GH21078)

• Bug in Timedelta: where passing a float with a unit would prematurely round the float precision (GH14156)

• Bug in pandas.testing.assert_index_equal() which raised AssertionError incorrectly,
when comparing two CategoricalIndex objects with param check_categorical=False
(GH19776)

Sparse

• Bug in SparseArray.shape which previously only returned the shape SparseArray.sp_values
(GH21126)

Indexing

• Bug in Series.reset_index() where appropriate error was not raised with an invalid level name
(GH20925)

• Bug in interval_range() when start/periods or end/periods are specified with float start or
end (GH21161)

• Bug in MultiIndex.set_names() where error raised for a MultiIndex with nlevels == 1
(GH21149)

• Bug in IntervalIndex constructors where creating an IntervalIndex from categorical data was not
fully supported (GH21243, GH21253)

• Bug in MultiIndex.sort_index() which was not guaranteed to sort correctly with level=1; this
was also causing data misalignment in particular DataFrame.stack() operations (GH20994, GH20945,
GH21052)

Plotting

• New keywords (sharex, sharey) to turn on/off sharing of x/y-axis by subplots generated with pan-
das.DataFrame().groupby().boxplot() (GH20968)

I/O

• Bug in IO methods specifying compression='zip'which produced uncompressed zip archives (GH17778,
GH21144)

• Bug in DataFrame.to_stata() which prevented exporting DataFrames to buffers and most file-like ob-
jects (GH21041)

• Bug in read_stata() and StataReader which did not correctly decode utf-8 strings on Python 3 from
Stata 14 files (dta version 118) (GH21244)

• Bug in IO JSON read_json() reading empty JSON schema with orient='table' back to DataFrame
caused an error (GH21287)

Reshaping

8 Chapter 1. What’s New

https://github.com/pandas-dev/pandas/issues/21207
https://github.com/pandas-dev/pandas/issues/21286
https://github.com/pandas-dev/pandas/issues/21078
https://github.com/pandas-dev/pandas/issues/14156
https://github.com/pandas-dev/pandas/issues/19776
https://github.com/pandas-dev/pandas/issues/21126
https://github.com/pandas-dev/pandas/issues/20925
https://github.com/pandas-dev/pandas/issues/21161
https://github.com/pandas-dev/pandas/issues/21149
https://github.com/pandas-dev/pandas/issues/21243
https://github.com/pandas-dev/pandas/issues/21253
https://github.com/pandas-dev/pandas/issues/20994
https://github.com/pandas-dev/pandas/issues/20945
https://github.com/pandas-dev/pandas/issues/21052
https://github.com/pandas-dev/pandas/issues/20968
https://github.com/pandas-dev/pandas/issues/17778
https://github.com/pandas-dev/pandas/issues/21144
https://github.com/pandas-dev/pandas/issues/21041
https://github.com/pandas-dev/pandas/issues/21244
https://github.com/pandas-dev/pandas/issues/21287

pandas: powerful Python data analysis toolkit, Release 0.23.4

• Bug in concat() where error was raised in concatenating Series with numpy scalar and tuple names
(GH21015)

• Bug in concat() warning message providing the wrong guidance for future behavior (GH21101)

Other

• Tab completion on Index in IPython no longer outputs deprecation warnings (GH21125)

• Bug preventing pandas being used on Windows without C++ redistributable installed (GH21106)

1.5 v0.23.0 (May 15, 2018)

This is a major release from 0.22.0 and includes a number of API changes, deprecations, new features, enhancements,
and performance improvements along with a large number of bug fixes. We recommend that all users upgrade to this
version.

Highlights include:

• Round-trippable JSON format with ‘table’ orient.

• Instantiation from dicts respects order for Python 3.6+.

• Dependent column arguments for assign.

• Merging / sorting on a combination of columns and index levels.

• Extending Pandas with custom types.

• Excluding unobserved categories from groupby.

• Changes to make output shape of DataFrame.apply consistent.

Check the API Changes and deprecations before updating.

Warning: Starting January 1, 2019, pandas feature releases will support Python 3 only. See Plan for dropping
Python 2.7 for more.

What’s new in v0.23.0

• New features

– JSON read/write round-trippable with orient='table'

– .assign() accepts dependent arguments

– Merging on a combination of columns and index levels

– Sorting by a combination of columns and index levels

– Extending Pandas with Custom Types (Experimental)

– New observed keyword for excluding unobserved categories in groupby

– Rolling/Expanding.apply() accepts raw=False to pass a Series to the function

– DataFrame.interpolate has gained the limit_area kwarg

– get_dummies now supports dtype argument

– Timedelta mod method

1.5. v0.23.0 (May 15, 2018) 9

https://github.com/pandas-dev/pandas/issues/21015
https://github.com/pandas-dev/pandas/issues/21101
https://github.com/pandas-dev/pandas/issues/21125
https://github.com/pandas-dev/pandas/issues/21106

pandas: powerful Python data analysis toolkit, Release 0.23.4

– .rank() handles inf values when NaN are present

– Series.str.cat has gained the join kwarg

– DataFrame.astype performs column-wise conversion to Categorical

– Other Enhancements

• Backwards incompatible API changes

– Dependencies have increased minimum versions

– Instantiation from dicts preserves dict insertion order for python 3.6+

– Deprecate Panel

– pandas.core.common removals

– Changes to make output of DataFrame.apply consistent

– Concatenation will no longer sort

– Build Changes

– Index Division By Zero Fills Correctly

– Extraction of matching patterns from strings

– Default value for the ordered parameter of CategoricalDtype

– Better pretty-printing of DataFrames in a terminal

– Datetimelike API Changes

– Other API Changes

• Deprecations

• Removal of prior version deprecations/changes

• Performance Improvements

• Documentation Changes

• Bug Fixes

– Categorical

– Datetimelike

– Timedelta

– Timezones

– Offsets

– Numeric

– Strings

– Indexing

– MultiIndex

– I/O

– Plotting

– Groupby/Resample/Rolling

10 Chapter 1. What’s New

pandas: powerful Python data analysis toolkit, Release 0.23.4

– Sparse

– Reshaping

– Other

1.5.1 New features

1.5.1.1 JSON read/write round-trippable with orient='table'

A DataFrame can now be written to and subsequently read back via JSON while preserving metadata through usage
of the orient='table' argument (see GH18912 and GH9146). Previously, none of the available orient values
guaranteed the preservation of dtypes and index names, amongst other metadata.

In [1]: df = pd.DataFrame({'foo': [1, 2, 3, 4],
...: 'bar': ['a', 'b', 'c', 'd'],
...: 'baz': pd.date_range('2018-01-01', freq='d', periods=4),
...: 'qux': pd.Categorical(['a', 'b', 'c', 'c'])
...: }, index=pd.Index(range(4), name='idx'))
...:

In [2]: df
Out[2]:

foo bar baz qux
idx
0 1 a 2018-01-01 a
1 2 b 2018-01-02 b
2 3 c 2018-01-03 c
3 4 d 2018-01-04 c

In [3]: df.dtypes
\\\Out[3]:
→˓

foo int64
bar object
baz datetime64[ns]
qux category
dtype: object

In [4]: df.to_json('test.json', orient='table')

In [5]: new_df = pd.read_json('test.json', orient='table')

In [6]: new_df
Out[6]:

foo bar baz qux
idx
0 1 a 2018-01-01 a
1 2 b 2018-01-02 b
2 3 c 2018-01-03 c
3 4 d 2018-01-04 c

In [7]: new_df.dtypes
\\\Out[7]:
→˓

foo int64

(continues on next page)

1.5. v0.23.0 (May 15, 2018) 11

https://github.com/pandas-dev/pandas/issues/18912
https://github.com/pandas-dev/pandas/issues/9146

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

bar object
baz datetime64[ns]
qux category
dtype: object

Please note that the string index is not supported with the round trip format, as it is used by default in write_json
to indicate a missing index name.

In [8]: df.index.name = 'index'

In [9]: df.to_json('test.json', orient='table')

In [10]: new_df = pd.read_json('test.json', orient='table')

In [11]: new_df
Out[11]:

foo bar baz qux
0 1 a 2018-01-01 a
1 2 b 2018-01-02 b
2 3 c 2018-01-03 c
3 4 d 2018-01-04 c

In [12]: new_df.dtypes
\\Out[12]:
→˓

foo int64
bar object
baz datetime64[ns]
qux category
dtype: object

1.5.1.2 .assign() accepts dependent arguments

The DataFrame.assign() now accepts dependent keyword arguments for python version later than 3.6 (see also
PEP 468). Later keyword arguments may now refer to earlier ones if the argument is a callable. See the documentation
here (GH14207)

In [13]: df = pd.DataFrame({'A': [1, 2, 3]})

In [14]: df
Out[14]:

A
0 1
1 2
2 3

In [15]: df.assign(B=df.A, C=lambda x:x['A']+ x['B'])
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\Out[15]:

A B C
0 1 1 2
1 2 2 4
2 3 3 6

12 Chapter 1. What’s New

https://www.python.org/dev/peps/pep-0468/
https://github.com/pandas-dev/pandas/issues/14207

pandas: powerful Python data analysis toolkit, Release 0.23.4

Warning: This may subtly change the behavior of your code when you’re using .assign() to update an
existing column. Previously, callables referring to other variables being updated would get the “old” values

Previous Behavior:

In [2]: df = pd.DataFrame({"A": [1, 2, 3]})

In [3]: df.assign(A=lambda df: df.A + 1, C=lambda df: df.A * -1)
Out[3]:

A C
0 2 -1
1 3 -2
2 4 -3

New Behavior:

In [16]: df.assign(A=df.A+1, C= lambda df: df.A* -1)
Out[16]:

A C
0 2 -2
1 3 -3
2 4 -4

1.5.1.3 Merging on a combination of columns and index levels

Strings passed to DataFrame.merge() as the on, left_on, and right_on parameters may now refer to either
column names or index level names. This enables merging DataFrame instances on a combination of index levels
and columns without resetting indexes. See the Merge on columns and levels documentation section. (GH14355)

In [17]: left_index = pd.Index(['K0', 'K0', 'K1', 'K2'], name='key1')

In [18]: left = pd.DataFrame({'A': ['A0', 'A1', 'A2', 'A3'],
....: 'B': ['B0', 'B1', 'B2', 'B3'],
....: 'key2': ['K0', 'K1', 'K0', 'K1']},
....: index=left_index)
....:

In [19]: right_index = pd.Index(['K0', 'K1', 'K2', 'K2'], name='key1')

In [20]: right = pd.DataFrame({'C': ['C0', 'C1', 'C2', 'C3'],
....: 'D': ['D0', 'D1', 'D2', 'D3'],
....: 'key2': ['K0', 'K0', 'K0', 'K1']},
....: index=right_index)
....:

In [21]: left.merge(right, on=['key1', 'key2'])
Out[21]:

A B key2 C D
key1
K0 A0 B0 K0 C0 D0
K1 A2 B2 K0 C1 D1
K2 A3 B3 K1 C3 D3

1.5. v0.23.0 (May 15, 2018) 13

https://github.com/pandas-dev/pandas/issues/14355

pandas: powerful Python data analysis toolkit, Release 0.23.4

1.5.1.4 Sorting by a combination of columns and index levels

Strings passed to DataFrame.sort_values() as the by parameter may now refer to either column names or
index level names. This enables sorting DataFrame instances by a combination of index levels and columns without
resetting indexes. See the Sorting by Indexes and Values documentation section. (GH14353)

Build MultiIndex
In [22]: idx = pd.MultiIndex.from_tuples([('a', 1), ('a', 2), ('a', 2),

....: ('b', 2), ('b', 1), ('b', 1)])

....:

In [23]: idx.names = ['first', 'second']

Build DataFrame
In [24]: df_multi = pd.DataFrame({'A': np.arange(6, 0, -1)},

....: index=idx)

....:

In [25]: df_multi
Out[25]:

A
first second
a 1 6

2 5
2 4

b 2 3
1 2
1 1

Sort by 'second' (index) and 'A' (column)
In [26]: df_multi.sort_values(by=['second', 'A'])
\\Out[26]:
→˓

A
first second
b 1 1

1 2
a 1 6
b 2 3
a 2 4

2 5

1.5.1.5 Extending Pandas with Custom Types (Experimental)

Pandas now supports storing array-like objects that aren’t necessarily 1-D NumPy arrays as columns in a DataFrame or
values in a Series. This allows third-party libraries to implement extensions to NumPy’s types, similar to how pandas
implemented categoricals, datetimes with timezones, periods, and intervals.

As a demonstration, we’ll use cyberpandas, which provides an IPArray type for storing ip addresses.

In [1]: from cyberpandas import IPArray

In [2]: values = IPArray([
...: 0,
...: 3232235777,
...: 42540766452641154071740215577757643572

(continues on next page)

14 Chapter 1. What’s New

https://github.com/pandas-dev/pandas/issues/14353
https://cyberpandas.readthedocs.io/en/latest/

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

...:])

...:

...:

IPArray isn’t a normal 1-D NumPy array, but because it’s a pandas ~pandas.api.extension.ExtensionArray, it can be
stored properly inside pandas’ containers.

In [3]: ser = pd.Series(values)

In [4]: ser
Out[4]:
0 0.0.0.0
1 192.168.1.1
2 2001:db8:85a3::8a2e:370:7334
dtype: ip

Notice that the dtype is ip. The missing value semantics of the underlying array are respected:

In [5]: ser.isna()
Out[5]:
0 True
1 False
2 False
dtype: bool

For more, see the extension types documentation. If you build an extension array, publicize it on our ecosystem page.

1.5.1.6 New observed keyword for excluding unobserved categories in groupby

Grouping by a categorical includes the unobserved categories in the output. When grouping by multiple categorical
columns, this means you get the cartesian product of all the categories, including combinations where there are no
observations, which can result in a large number of groups. We have added a keyword observed to control this
behavior, it defaults to observed=False for backward-compatiblity. (GH14942, GH8138, GH15217, GH17594,
GH8669, GH20583, GH20902)

In [27]: cat1 = pd.Categorical(["a", "a", "b", "b"],
....: categories=["a", "b", "z"], ordered=True)
....:

In [28]: cat2 = pd.Categorical(["c", "d", "c", "d"],
....: categories=["c", "d", "y"], ordered=True)
....:

In [29]: df = pd.DataFrame({"A": cat1, "B": cat2, "values": [1, 2, 3, 4]})

In [30]: df['C'] = ['foo', 'bar'] * 2

In [31]: df
Out[31]:

A B values C
0 a c 1 foo
1 a d 2 bar
2 b c 3 foo
3 b d 4 bar

To show all values, the previous behavior:

1.5. v0.23.0 (May 15, 2018) 15

https://github.com/pandas-dev/pandas/issues/14942
https://github.com/pandas-dev/pandas/issues/8138
https://github.com/pandas-dev/pandas/issues/15217
https://github.com/pandas-dev/pandas/issues/17594
https://github.com/pandas-dev/pandas/issues/8669
https://github.com/pandas-dev/pandas/issues/20583
https://github.com/pandas-dev/pandas/issues/20902

pandas: powerful Python data analysis toolkit, Release 0.23.4

In [32]: df.groupby(['A', 'B', 'C'], observed=False).count()
Out[32]:

values
A B C
a c bar NaN

foo 1.0
d bar 1.0
foo NaN

y bar NaN
foo NaN

b c bar NaN
... ...

y foo NaN
z c bar NaN

foo NaN
d bar NaN
foo NaN

y bar NaN
foo NaN

[18 rows x 1 columns]

To show only observed values:

In [33]: df.groupby(['A', 'B', 'C'], observed=True).count()
Out[33]:

values
A B C
a c foo 1

d bar 1
b c foo 1

d bar 1

For pivotting operations, this behavior is already controlled by the dropna keyword:

In [34]: cat1 = pd.Categorical(["a", "a", "b", "b"],
....: categories=["a", "b", "z"], ordered=True)
....:

In [35]: cat2 = pd.Categorical(["c", "d", "c", "d"],
....: categories=["c", "d", "y"], ordered=True)
....:

In [36]: df = DataFrame({"A": cat1, "B": cat2, "values": [1, 2, 3, 4]})

In [37]: df
Out[37]:

A B values
0 a c 1
1 a d 2
2 b c 3
3 b d 4

In [38]: pd.pivot_table(df, values='values', index=['A', 'B'],
....: dropna=True)
....:

Out[38]:
(continues on next page)

16 Chapter 1. What’s New

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

values
A B
a c 1

d 2
b c 3

d 4

In [39]: pd.pivot_table(df, values='values', index=['A', 'B'],
....: dropna=False)
....:

\\Out[39]:
→˓

values
A B
a c 1.0

d 2.0
y NaN

b c 3.0
d 4.0
y NaN

z c NaN
d NaN
y NaN

1.5.1.7 Rolling/Expanding.apply() accepts raw=False to pass a Series to the function

Series.rolling().apply(), DataFrame.rolling().apply(), Series.expanding().
apply(), and DataFrame.expanding().apply() have gained a raw=None parameter. This is similar to
DataFame.apply(). This parameter, if True allows one to send a np.ndarray to the applied function. If
False a Series will be passed. The default is None, which preserves backward compatibility, so this will default
to True, sending an np.ndarray. In a future version the default will be changed to False, sending a Series.
(GH5071, GH20584)

In [40]: s = pd.Series(np.arange(5), np.arange(5) + 1)

In [41]: s
Out[41]:
1 0
2 1
3 2
4 3
5 4
dtype: int64

Pass a Series:

In [42]: s.rolling(2, min_periods=1).apply(lambda x: x.iloc[-1], raw=False)
Out[42]:
1 0.0
2 1.0
3 2.0
4 3.0
5 4.0
dtype: float64

1.5. v0.23.0 (May 15, 2018) 17

https://github.com/pandas-dev/pandas/issues/5071
https://github.com/pandas-dev/pandas/issues/20584

pandas: powerful Python data analysis toolkit, Release 0.23.4

Mimic the original behavior of passing a ndarray:

In [43]: s.rolling(2, min_periods=1).apply(lambda x: x[-1], raw=True)
Out[43]:
1 0.0
2 1.0
3 2.0
4 3.0
5 4.0
dtype: float64

1.5.1.8 DataFrame.interpolate has gained the limit_area kwarg

DataFrame.interpolate() has gained a limit_area parameter to allow further control of which
NaN s are replaced. Use limit_area='inside' to fill only NaNs surrounded by valid values or use
limit_area='outside' to fill only NaN s outside the existing valid values while preserving those inside.
(GH16284) See the full documentation here.

In [44]: ser = pd.Series([np.nan, np.nan, 5, np.nan, np.nan, np.nan, 13, np.nan, np.
→˓nan])

In [45]: ser
Out[45]:
0 NaN
1 NaN
2 5.0
3 NaN
4 NaN
5 NaN
6 13.0
7 NaN
8 NaN
dtype: float64

Fill one consecutive inside value in both directions

In [46]: ser.interpolate(limit_direction='both', limit_area='inside', limit=1)
Out[46]:
0 NaN
1 NaN
2 5.0
3 7.0
4 NaN
5 11.0
6 13.0
7 NaN
8 NaN
dtype: float64

Fill all consecutive outside values backward

In [47]: ser.interpolate(limit_direction='backward', limit_area='outside')
Out[47]:
0 5.0
1 5.0
2 5.0

(continues on next page)

18 Chapter 1. What’s New

https://github.com/pandas-dev/pandas/issues/16284

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

3 NaN
4 NaN
5 NaN
6 13.0
7 NaN
8 NaN
dtype: float64

Fill all consecutive outside values in both directions

In [48]: ser.interpolate(limit_direction='both', limit_area='outside')
Out[48]:
0 5.0
1 5.0
2 5.0
3 NaN
4 NaN
5 NaN
6 13.0
7 13.0
8 13.0
dtype: float64

1.5.1.9 get_dummies now supports dtype argument

The get_dummies() now accepts a dtype argument, which specifies a dtype for the new columns. The default
remains uint8. (GH18330)

In [49]: df = pd.DataFrame({'a': [1, 2], 'b': [3, 4], 'c': [5, 6]})

In [50]: pd.get_dummies(df, columns=['c']).dtypes
Out[50]:
a int64
b int64
c_5 uint8
c_6 uint8
dtype: object

In [51]: pd.get_dummies(df, columns=['c'], dtype=bool).dtypes
\\Out[51]:
a int64
b int64
c_5 bool
c_6 bool
dtype: object

1.5.1.10 Timedelta mod method

mod (%) and divmod operations are now defined on Timedelta objects when operating with either timedelta-like
or with numeric arguments. See the documentation here. (GH19365)

In [52]: td = pd.Timedelta(hours=37)

(continues on next page)

1.5. v0.23.0 (May 15, 2018) 19

https://github.com/pandas-dev/pandas/issues/18330
https://github.com/pandas-dev/pandas/issues/19365

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

In [53]: td % pd.Timedelta(minutes=45)
Out[53]: Timedelta('0 days 00:15:00')

1.5.1.11 .rank() handles inf values when NaN are present

In previous versions, .rank() would assign inf elements NaN as their ranks. Now ranks are calculated properly.
(GH6945)

In [54]: s = pd.Series([-np.inf, 0, 1, np.nan, np.inf])

In [55]: s
Out[55]:
0 -inf
1 0.000000
2 1.000000
3 NaN
4 inf
dtype: float64

Previous Behavior:

In [11]: s.rank()
Out[11]:
0 1.0
1 2.0
2 3.0
3 NaN
4 NaN
dtype: float64

Current Behavior:

In [56]: s.rank()
Out[56]:
0 1.0
1 2.0
2 3.0
3 NaN
4 4.0
dtype: float64

Furthermore, previously if you rank inf or -inf values together with NaN values, the calculation won’t distinguish
NaN from infinity when using ‘top’ or ‘bottom’ argument.

In [57]: s = pd.Series([np.nan, np.nan, -np.inf, -np.inf])

In [58]: s
Out[58]:
0 NaN
1 NaN
2 -inf
3 -inf
dtype: float64

Previous Behavior:

20 Chapter 1. What’s New

https://github.com/pandas-dev/pandas/issues/6945

pandas: powerful Python data analysis toolkit, Release 0.23.4

In [15]: s.rank(na_option='top')
Out[15]:
0 2.5
1 2.5
2 2.5
3 2.5
dtype: float64

Current Behavior:

In [59]: s.rank(na_option='top')
Out[59]:
0 1.5
1 1.5
2 3.5
3 3.5
dtype: float64

These bugs were squashed:

• Bug in DataFrame.rank() and Series.rank() when method='dense' and pct=True in which
percentile ranks were not being used with the number of distinct observations (GH15630)

• Bug in Series.rank() and DataFrame.rank() when ascending='False' failed to return correct
ranks for infinity if NaN were present (GH19538)

• Bug in DataFrameGroupBy.rank() where ranks were incorrect when both infinity and NaN were present
(GH20561)

1.5.1.12 Series.str.cat has gained the join kwarg

Previously, Series.str.cat() did not – in contrast to most of pandas – align Series on their index before
concatenation (see GH18657). The method has now gained a keyword join to control the manner of alignment, see
examples below and here.

In v.0.23 join will default to None (meaning no alignment), but this default will change to 'left' in a future version
of pandas.

In [60]: s = pd.Series(['a', 'b', 'c', 'd'])

In [61]: t = pd.Series(['b', 'd', 'e', 'c'], index=[1, 3, 4, 2])

In [62]: s.str.cat(t)
Out[62]:
0 ab
1 bd
2 ce
3 dc
dtype: object

In [63]: s.str.cat(t, join='left', na_rep='-')
\\Out[63]:
0 a-
1 bb
2 cc
3 dd
dtype: object

1.5. v0.23.0 (May 15, 2018) 21

https://github.com/pandas-dev/pandas/issues/15630
https://github.com/pandas-dev/pandas/issues/19538
https://github.com/pandas-dev/pandas/issues/20561
https://github.com/pandas-dev/pandas/issues/18657

pandas: powerful Python data analysis toolkit, Release 0.23.4

Furthermore, Series.str.cat() now works for CategoricalIndex as well (previously raised a
ValueError; see GH20842).

1.5.1.13 DataFrame.astype performs column-wise conversion to Categorical

DataFrame.astype() can now perform column-wise conversion to Categorical by supplying the string
'category' or a CategoricalDtype. Previously, attempting this would raise a NotImplementedError.
See the Object Creation section of the documentation for more details and examples. (GH12860, GH18099)

Supplying the string 'category' performs column-wise conversion, with only labels appearing in a given column
set as categories:

In [64]: df = pd.DataFrame({'A': list('abca'), 'B': list('bccd')})

In [65]: df = df.astype('category')

In [66]: df['A'].dtype
Out[66]: CategoricalDtype(categories=['a', 'b', 'c'], ordered=False)

In [67]: df['B'].dtype
\\\Out[67]:
→˓CategoricalDtype(categories=['b', 'c', 'd'], ordered=False)

Supplying a CategoricalDtype will make the categories in each column consistent with the supplied dtype:

In [68]: from pandas.api.types import CategoricalDtype

In [69]: df = pd.DataFrame({'A': list('abca'), 'B': list('bccd')})

In [70]: cdt = CategoricalDtype(categories=list('abcd'), ordered=True)

In [71]: df = df.astype(cdt)

In [72]: df['A'].dtype
Out[72]: CategoricalDtype(categories=['a', 'b', 'c', 'd'], ordered=True)

In [73]: df['B'].dtype
\\\Out[73]:
→˓CategoricalDtype(categories=['a', 'b', 'c', 'd'], ordered=True)

1.5.1.14 Other Enhancements

• Unary + now permitted for Series and DataFrame as numeric operator (GH16073)

• Better support for to_excel() output with the xlsxwriter engine. (GH16149)

• pandas.tseries.frequencies.to_offset() now accepts leading ‘+’ signs e.g. ‘+1h’. (GH18171)

• MultiIndex.unique() now supports the level= argument, to get unique values from a specific index
level (GH17896)

• pandas.io.formats.style.Styler now has method hide_index() to determine whether the index
will be rendered in output (GH14194)

• pandas.io.formats.style.Styler now has method hide_columns() to determine whether
columns will be hidden in output (GH14194)

22 Chapter 1. What’s New

https://github.com/pandas-dev/pandas/issues/20842
https://github.com/pandas-dev/pandas/issues/12860
https://github.com/pandas-dev/pandas/issues/18099
https://github.com/pandas-dev/pandas/issues/16073
https://github.com/pandas-dev/pandas/issues/16149
https://github.com/pandas-dev/pandas/issues/18171
https://github.com/pandas-dev/pandas/issues/17896
https://github.com/pandas-dev/pandas/issues/14194
https://github.com/pandas-dev/pandas/issues/14194

pandas: powerful Python data analysis toolkit, Release 0.23.4

• Improved wording of ValueError raised in to_datetime()when unit= is passed with a non-convertible
value (GH14350)

• Series.fillna() now accepts a Series or a dict as a value for a categorical dtype (GH17033)

• pandas.read_clipboard() updated to use qtpy, falling back to PyQt5 and then PyQt4, adding compati-
bility with Python3 and multiple python-qt bindings (GH17722)

• Improved wording of ValueError raised in read_csv() when the usecols argument cannot match all
columns. (GH17301)

• DataFrame.corrwith() now silently drops non-numeric columns when passed a Series. Before, an ex-
ception was raised (GH18570).

• IntervalIndex now supports time zone aware Interval objects (GH18537, GH18538)

• Series() / DataFrame() tab completion also returns identifiers in the first level of a MultiIndex().
(GH16326)

• read_excel() has gained the nrows parameter (GH16645)

• DataFrame.append() can now in more cases preserve the type of the calling dataframe’s columns (e.g. if
both are CategoricalIndex) (GH18359)

• DataFrame.to_json() and Series.to_json() now accept an index argument which allows the
user to exclude the index from the JSON output (GH17394)

• IntervalIndex.to_tuples() has gained the na_tuple parameter to control whether NA is returned
as a tuple of NA, or NA itself (GH18756)

• Categorical.rename_categories, CategoricalIndex.rename_categories and Series.
cat.rename_categories can now take a callable as their argument (GH18862)

• Interval and IntervalIndex have gained a length attribute (GH18789)

• Resampler objects now have a functioning pipe method. Previously, calls to pipe were diverted to the
mean method (GH17905).

• is_scalar() now returns True for DateOffset objects (GH18943).

• DataFrame.pivot() now accepts a list for the values= kwarg (GH17160).

• Added pandas.api.extensions.register_dataframe_accessor(), pandas.
api.extensions.register_series_accessor(), and pandas.api.extensions.
register_index_accessor(), accessor for libraries downstream of pandas to register custom
accessors like .cat on pandas objects. See Registering Custom Accessors for more (GH14781).

• IntervalIndex.astype now supports conversions between subtypes when passed an IntervalDtype
(GH19197)

• IntervalIndex and its associated constructor methods (from_arrays, from_breaks,
from_tuples) have gained a dtype parameter (GH19262)

• Added pandas.core.groupby.SeriesGroupBy.is_monotonic_increasing() and pandas.
core.groupby.SeriesGroupBy.is_monotonic_decreasing() (GH17015)

• For subclassed DataFrames, DataFrame.apply() will now preserve the Series subclass (if defined)
when passing the data to the applied function (GH19822)

• DataFrame.from_dict() now accepts a columns argument that can be used to specify the column names
when orient='index' is used (GH18529)

• Added option display.html.use_mathjax so MathJax can be disabled when rendering tables in
Jupyter notebooks (GH19856, GH19824)

1.5. v0.23.0 (May 15, 2018) 23

https://github.com/pandas-dev/pandas/issues/14350
https://github.com/pandas-dev/pandas/issues/17033
https://github.com/pandas-dev/pandas/issues/17722
https://github.com/pandas-dev/pandas/issues/17301
https://github.com/pandas-dev/pandas/issues/18570
https://github.com/pandas-dev/pandas/issues/18537
https://github.com/pandas-dev/pandas/issues/18538
https://github.com/pandas-dev/pandas/issues/16326
https://github.com/pandas-dev/pandas/issues/16645
https://github.com/pandas-dev/pandas/issues/18359
https://github.com/pandas-dev/pandas/issues/17394
https://github.com/pandas-dev/pandas/issues/18756
https://github.com/pandas-dev/pandas/issues/18862
https://github.com/pandas-dev/pandas/issues/18789
https://github.com/pandas-dev/pandas/issues/17905
https://github.com/pandas-dev/pandas/issues/18943
https://github.com/pandas-dev/pandas/issues/17160
https://github.com/pandas-dev/pandas/issues/14781
https://github.com/pandas-dev/pandas/issues/19197
https://github.com/pandas-dev/pandas/issues/19262
https://github.com/pandas-dev/pandas/issues/17015
https://github.com/pandas-dev/pandas/issues/19822
https://github.com/pandas-dev/pandas/issues/18529
https://www.mathjax.org/
https://github.com/pandas-dev/pandas/issues/19856
https://github.com/pandas-dev/pandas/issues/19824

pandas: powerful Python data analysis toolkit, Release 0.23.4

• DataFrame.replace() now supports the method parameter, which can be used to specify the replacement
method when to_replace is a scalar, list or tuple and value is None (GH19632)

• Timestamp.month_name(), DatetimeIndex.month_name(), and Series.dt.
month_name() are now available (GH12805)

• Timestamp.day_name() and DatetimeIndex.day_name() are now available to return day names
with a specified locale (GH12806)

• DataFrame.to_sql() now performs a multivalue insert if the underlying connection supports itk
rather than inserting row by row. SQLAlchemy dialects supporting multivalue inserts include: mysql,
postgresql, sqlite and any dialect with supports_multivalues_insert. (GH14315, GH8953)

• read_html() now accepts a displayed_only keyword argument to controls whether or not hidden ele-
ments are parsed (True by default) (GH20027)

• read_html() now reads all <tbody> elements in a <table>, not just the first. (GH20690)

• quantile() and quantile() now accept the interpolation keyword, linear by default
(GH20497)

• zip compression is supported via compression=zip in DataFrame.to_pickle(), Series.
to_pickle(), DataFrame.to_csv(), Series.to_csv(), DataFrame.to_json(), Series.
to_json(). (GH17778)

• WeekOfMonth constructor now supports n=0 (GH20517).

• DataFrame and Series now support matrix multiplication (@) operator (GH10259) for Python>=3.5

• Updated DataFrame.to_gbq() and pandas.read_gbq() signature and documentation to reflect
changes from the Pandas-GBQ library version 0.4.0. Adds intersphinx mapping to Pandas-GBQ library.
(GH20564)

• Added new writer for exporting Stata dta files in version 117, StataWriter117. This format supports
exporting strings with lengths up to 2,000,000 characters (GH16450)

• to_hdf() and read_hdf() now accept an errors keyword argument to control encoding error handling
(GH20835)

• cut() has gained the duplicates='raise'|'drop' option to control whether to raise on duplicated
edges (GH20947)

• date_range(), timedelta_range(), and interval_range() now return a linearly spaced index if
start, stop, and periods are specified, but freq is not. (GH20808, GH20983, GH20976)

1.5.2 Backwards incompatible API changes

1.5.2.1 Dependencies have increased minimum versions

We have updated our minimum supported versions of dependencies (GH15184). If installed, we now require:

Package Minimum Version Required Issue
python-dateutil 2.5.0 X GH15184
openpyxl 2.4.0 GH15184
beautifulsoup4 4.2.1 GH20082
setuptools 24.2.0 GH20698

24 Chapter 1. What’s New

https://github.com/pandas-dev/pandas/issues/19632
https://github.com/pandas-dev/pandas/issues/12805
https://github.com/pandas-dev/pandas/issues/12806
https://github.com/pandas-dev/pandas/issues/14315
https://github.com/pandas-dev/pandas/issues/8953
https://github.com/pandas-dev/pandas/issues/20027
https://github.com/pandas-dev/pandas/issues/20690
https://github.com/pandas-dev/pandas/issues/20497
https://github.com/pandas-dev/pandas/issues/17778
https://github.com/pandas-dev/pandas/issues/20517
https://github.com/pandas-dev/pandas/issues/10259
https://github.com/pandas-dev/pandas/issues/20564
https://github.com/pandas-dev/pandas/issues/16450
https://github.com/pandas-dev/pandas/issues/20835
https://github.com/pandas-dev/pandas/issues/20947
https://github.com/pandas-dev/pandas/issues/20808
https://github.com/pandas-dev/pandas/issues/20983
https://github.com/pandas-dev/pandas/issues/20976
https://github.com/pandas-dev/pandas/issues/15184
https://github.com/pandas-dev/pandas/issues/15184
https://github.com/pandas-dev/pandas/issues/15184
https://github.com/pandas-dev/pandas/issues/20082
https://github.com/pandas-dev/pandas/issues/20698

pandas: powerful Python data analysis toolkit, Release 0.23.4

1.5.2.2 Instantiation from dicts preserves dict insertion order for python 3.6+

Until Python 3.6, dicts in Python had no formally defined ordering. For Python version 3.6 and later, dicts are ordered
by insertion order, see PEP 468. Pandas will use the dict’s insertion order, when creating a Series or DataFrame
from a dict and you’re using Python version 3.6 or higher. (GH19884)

Previous Behavior (and current behavior if on Python < 3.6):

pd.Series({'Income': 2000,
'Expenses': -1500,
'Taxes': -200,
'Net result': 300})

Expenses -1500
Income 2000
Net result 300
Taxes -200
dtype: int64

Note the Series above is ordered alphabetically by the index values.

New Behavior (for Python >= 3.6):

In [74]: pd.Series({'Income': 2000,
....: 'Expenses': -1500,
....: 'Taxes': -200,
....: 'Net result': 300})
....:

Out[74]:
Income 2000
Expenses -1500
Taxes -200
Net result 300
dtype: int64

Notice that the Series is now ordered by insertion order. This new behavior is used for all relevant pandas types
(Series, DataFrame, SparseSeries and SparseDataFrame).

If you wish to retain the old behavior while using Python >= 3.6, you can use .sort_index():

In [75]: pd.Series({'Income': 2000,
....: 'Expenses': -1500,
....: 'Taxes': -200,
....: 'Net result': 300}).sort_index()
....:

Out[75]:
Expenses -1500
Income 2000
Net result 300
Taxes -200
dtype: int64

1.5.2.3 Deprecate Panel

Panel was deprecated in the 0.20.x release, showing as a DeprecationWarning. Using Panel will now show a
FutureWarning. The recommended way to represent 3-D data are with a MultiIndex on a DataFrame via the
to_frame() or with the xarray package. Pandas provides a to_xarray() method to automate this conversion.
For more details see Deprecate Panel documentation. (GH13563, GH18324).

1.5. v0.23.0 (May 15, 2018) 25

https://www.python.org/dev/peps/pep-0468/
https://github.com/pandas-dev/pandas/issues/19884
http://xarray.pydata.org/en/stable/
https://github.com/pandas-dev/pandas/issues/13563
https://github.com/pandas-dev/pandas/issues/18324

pandas: powerful Python data analysis toolkit, Release 0.23.4

In [76]: p = tm.makePanel()

In [77]: p
Out[77]:
<class 'pandas.core.panel.Panel'>
Dimensions: 3 (items) x 3 (major_axis) x 4 (minor_axis)
Items axis: ItemA to ItemC
Major_axis axis: 2000-01-03 00:00:00 to 2000-01-05 00:00:00
Minor_axis axis: A to D

Convert to a MultiIndex DataFrame

In [78]: p.to_frame()
Out[78]:

ItemA ItemB ItemC
major minor
2000-01-03 A 1.474071 -0.964980 -1.197071

B 0.781836 1.846883 -0.858447
C 2.353925 -1.717693 0.384316
D -0.744471 0.901805 0.476720

2000-01-04 A -0.064034 -0.845696 -1.066969
B -1.071357 -1.328865 0.306996
C 0.583787 0.888782 1.574159
D 0.758527 1.171216 0.473424

2000-01-05 A -1.282782 -1.340896 -0.303421
B 0.441153 1.682706 -0.028665
C 0.221471 0.228440 1.588931
D 1.729689 0.520260 -0.242861

Convert to an xarray DataArray

In [79]: p.to_xarray()
Out[79]:
<xarray.DataArray (items: 3, major_axis: 3, minor_axis: 4)>
array([[[1.474071, 0.781836, 2.353925, -0.744471],

[-0.064034, -1.071357, 0.583787, 0.758527],
[-1.282782, 0.441153, 0.221471, 1.729689]],

[[-0.96498 , 1.846883, -1.717693, 0.901805],
[-0.845696, -1.328865, 0.888782, 1.171216],
[-1.340896, 1.682706, 0.22844 , 0.52026]],

[[-1.197071, -0.858447, 0.384316, 0.47672],
[-1.066969, 0.306996, 1.574159, 0.473424],
[-0.303421, -0.028665, 1.588931, -0.242861]]])

Coordinates:

* items (items) object 'ItemA' 'ItemB' 'ItemC'

* major_axis (major_axis) datetime64[ns] 2000-01-03 2000-01-04 2000-01-05

* minor_axis (minor_axis) object 'A' 'B' 'C' 'D'

1.5.2.4 pandas.core.common removals

The following error & warning messages are removed from pandas.core.common (GH13634, GH19769):

• PerformanceWarning

• UnsupportedFunctionCall

26 Chapter 1. What’s New

https://github.com/pandas-dev/pandas/issues/13634
https://github.com/pandas-dev/pandas/issues/19769

pandas: powerful Python data analysis toolkit, Release 0.23.4

• UnsortedIndexError

• AbstractMethodError

These are available from import from pandas.errors (since 0.19.0).

1.5.2.5 Changes to make output of DataFrame.apply consistent

DataFrame.apply() was inconsistent when applying an arbitrary user-defined-function that returned a list-like
with axis=1. Several bugs and inconsistencies are resolved. If the applied function returns a Series, then pandas will
return a DataFrame; otherwise a Series will be returned, this includes the case where a list-like (e.g. tuple or list
is returned) (GH16353, GH17437, GH17970, GH17348, GH17892, GH18573, GH17602, GH18775, GH18901,
GH18919).

In [80]: df = pd.DataFrame(np.tile(np.arange(3), 6).reshape(6, -1) + 1, columns=['A',
→˓'B', 'C'])

In [81]: df
Out[81]:

A B C
0 1 2 3
1 1 2 3
2 1 2 3
3 1 2 3
4 1 2 3
5 1 2 3

Previous Behavior: if the returned shape happened to match the length of original columns, this would return a
DataFrame. If the return shape did not match, a Series with lists was returned.

In [3]: df.apply(lambda x: [1, 2, 3], axis=1)
Out[3]:

A B C
0 1 2 3
1 1 2 3
2 1 2 3
3 1 2 3
4 1 2 3
5 1 2 3

In [4]: df.apply(lambda x: [1, 2], axis=1)
Out[4]:
0 [1, 2]
1 [1, 2]
2 [1, 2]
3 [1, 2]
4 [1, 2]
5 [1, 2]
dtype: object

New Behavior: When the applied function returns a list-like, this will now always return a Series.

In [82]: df.apply(lambda x: [1, 2, 3], axis=1)
Out[82]:
0 [1, 2, 3]
1 [1, 2, 3]
2 [1, 2, 3]

(continues on next page)

1.5. v0.23.0 (May 15, 2018) 27

https://github.com/pandas-dev/pandas/issues/16353
https://github.com/pandas-dev/pandas/issues/17437
https://github.com/pandas-dev/pandas/issues/17970
https://github.com/pandas-dev/pandas/issues/17348
https://github.com/pandas-dev/pandas/issues/17892
https://github.com/pandas-dev/pandas/issues/18573
https://github.com/pandas-dev/pandas/issues/17602
https://github.com/pandas-dev/pandas/issues/18775
https://github.com/pandas-dev/pandas/issues/18901
https://github.com/pandas-dev/pandas/issues/18919

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

3 [1, 2, 3]
4 [1, 2, 3]
5 [1, 2, 3]
dtype: object

In [83]: df.apply(lambda x: [1, 2], axis=1)
\\Out[83]:
→˓

0 [1, 2]
1 [1, 2]
2 [1, 2]
3 [1, 2]
4 [1, 2]
5 [1, 2]
dtype: object

To have expanded columns, you can use result_type='expand'

In [84]: df.apply(lambda x: [1, 2, 3], axis=1, result_type='expand')
Out[84]:

0 1 2
0 1 2 3
1 1 2 3
2 1 2 3
3 1 2 3
4 1 2 3
5 1 2 3

To broadcast the result across the original columns (the old behaviour for list-likes of the correct length), you can use
result_type='broadcast'. The shape must match the original columns.

In [85]: df.apply(lambda x: [1, 2, 3], axis=1, result_type='broadcast')
Out[85]:

A B C
0 1 2 3
1 1 2 3
2 1 2 3
3 1 2 3
4 1 2 3
5 1 2 3

Returning a Series allows one to control the exact return structure and column names:

In [86]: df.apply(lambda x: Series([1, 2, 3], index=['D', 'E', 'F']), axis=1)
Out[86]:

D E F
0 1 2 3
1 1 2 3
2 1 2 3
3 1 2 3
4 1 2 3
5 1 2 3

28 Chapter 1. What’s New

pandas: powerful Python data analysis toolkit, Release 0.23.4

1.5.2.6 Concatenation will no longer sort

In a future version of pandas pandas.concat() will no longer sort the non-concatenation axis when it is not
already aligned. The current behavior is the same as the previous (sorting), but now a warning is issued when sort is
not specified and the non-concatenation axis is not aligned (GH4588).

In [87]: df1 = pd.DataFrame({"a": [1, 2], "b": [1, 2]}, columns=['b', 'a'])

In [88]: df2 = pd.DataFrame({"a": [4, 5]})

In [89]: pd.concat([df1, df2])
Out[89]:

a b
0 1 1.0
1 2 2.0
0 4 NaN
1 5 NaN

To keep the previous behavior (sorting) and silence the warning, pass sort=True

In [90]: pd.concat([df1, df2], sort=True)
Out[90]:

a b
0 1 1.0
1 2 2.0
0 4 NaN
1 5 NaN

To accept the future behavior (no sorting), pass sort=False

Note that this change also applies to DataFrame.append(), which has also received a sort keyword for control-
ling this behavior.

1.5.2.7 Build Changes

• Building pandas for development now requires cython >= 0.24 (GH18613)

• Building from source now explicitly requires setuptools in setup.py (GH18113)

• Updated conda recipe to be in compliance with conda-build 3.0+ (GH18002)

1.5.2.8 Index Division By Zero Fills Correctly

Division operations on Index and subclasses will now fill division of positive numbers by zero with np.inf, division
of negative numbers by zero with -np.inf and 0 / 0 with np.nan. This matches existing Series behavior.
(GH19322, GH19347)

Previous Behavior:

In [6]: index = pd.Int64Index([-1, 0, 1])

In [7]: index / 0
Out[7]: Int64Index([0, 0, 0], dtype='int64')

Previous behavior yielded different results depending on the type of zero in the
→˓divisor

(continues on next page)

1.5. v0.23.0 (May 15, 2018) 29

https://github.com/pandas-dev/pandas/issues/4588
https://github.com/pandas-dev/pandas/issues/18613
https://github.com/pandas-dev/pandas/issues/18113
https://github.com/pandas-dev/pandas/issues/18002
https://github.com/pandas-dev/pandas/issues/19322
https://github.com/pandas-dev/pandas/issues/19347

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

In [8]: index / 0.0
Out[8]: Float64Index([-inf, nan, inf], dtype='float64')

In [9]: index = pd.UInt64Index([0, 1])

In [10]: index / np.array([0, 0], dtype=np.uint64)
Out[10]: UInt64Index([0, 0], dtype='uint64')

In [11]: pd.RangeIndex(1, 5) / 0
ZeroDivisionError: integer division or modulo by zero

Current Behavior:

In [91]: index = pd.Int64Index([-1, 0, 1])

division by zero gives -infinity where negative, +infinity where positive, and NaN
→˓for 0 / 0
In [92]: index / 0
Out[92]: Float64Index([-inf, nan, inf], dtype='float64')

The result of division by zero should not depend on whether the zero is int or float
In [93]: index / 0.0
\\\Out[93]: Float64Index([-inf,
→˓nan, inf], dtype='float64')

In [94]: index = pd.UInt64Index([0, 1])

In [95]: index / np.array([0, 0], dtype=np.uint64)
Out[95]: Float64Index([nan, inf], dtype='float64')

In [96]: pd.RangeIndex(1, 5) / 0
\\\Out[96]: Float64Index([inf, inf,
→˓inf, inf], dtype='float64')

1.5.2.9 Extraction of matching patterns from strings

By default, extracting matching patterns from strings with str.extract() used to return a Series if a sin-
gle group was being extracted (a DataFrame if more than one group was extracted). As of Pandas 0.23.0 str.
extract() always returns a DataFrame, unless expand is set to False. Finallay, None was an accepted value
for the expand parameter (which was equivalent to False), but now raises a ValueError. (GH11386)

Previous Behavior:

In [1]: s = pd.Series(['number 10', '12 eggs'])

In [2]: extracted = s.str.extract('.*(\d\d).*')

In [3]: extracted
Out [3]:
0 10
1 12
dtype: object

In [4]: type(extracted)
Out [4]:
pandas.core.series.Series

30 Chapter 1. What’s New

https://github.com/pandas-dev/pandas/issues/11386

pandas: powerful Python data analysis toolkit, Release 0.23.4

New Behavior:

In [97]: s = pd.Series(['number 10', '12 eggs'])

In [98]: extracted = s.str.extract('.*(\d\d).*')

In [99]: extracted
Out[99]:

0
0 10
1 12

In [100]: type(extracted)
\\\\\\\\\\\\\\\\\\\\\\\\\\\\Out[100]: pandas.core.frame.DataFrame

To restore previous behavior, simply set expand to False:

In [101]: s = pd.Series(['number 10', '12 eggs'])

In [102]: extracted = s.str.extract('.*(\d\d).*', expand=False)

In [103]: extracted
Out[103]:
0 10
1 12
dtype: object

In [104]: type(extracted)
\\\Out[104]: pandas.core.series.Series

1.5.2.10 Default value for the ordered parameter of CategoricalDtype

The default value of the ordered parameter for CategoricalDtype has changed from False to None to allow
updating of categories without impacting ordered. Behavior should remain consistent for downstream objects,
such as Categorical (GH18790)

In previous versions, the default value for the ordered parameter was False. This could potentially lead
to the ordered parameter unintentionally being changed from True to False when users attempt to update
categories if ordered is not explicitly specified, as it would silently default to False. The new behavior
for ordered=None is to retain the existing value of ordered.

New Behavior:

In [105]: from pandas.api.types import CategoricalDtype

In [106]: cat = pd.Categorical(list('abcaba'), ordered=True, categories=list('cba'))

In [107]: cat
Out[107]:
[a, b, c, a, b, a]
Categories (3, object): [c < b < a]

In [108]: cdt = CategoricalDtype(categories=list('cbad'))

In [109]: cat.astype(cdt)
Out[109]:

(continues on next page)

1.5. v0.23.0 (May 15, 2018) 31

https://github.com/pandas-dev/pandas/issues/18790

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

[a, b, c, a, b, a]
Categories (4, object): [c < b < a < d]

Notice in the example above that the converted Categorical has retained ordered=True. Had the default
value for ordered remained as False, the converted Categorical would have become unordered, despite
ordered=False never being explicitly specified. To change the value of ordered, explicitly pass it to the new
dtype, e.g. CategoricalDtype(categories=list('cbad'), ordered=False).

Note that the unintenional conversion of ordered discussed above did not arise in previous versions due to separate
bugs that prevented astype from doing any type of category to category conversion (GH10696, GH18593). These
bugs have been fixed in this release, and motivated changing the default value of ordered.

1.5.2.11 Better pretty-printing of DataFrames in a terminal

Previously, the default value for the maximum number of columns was pd.options.display.
max_columns=20. This meant that relatively wide data frames would not fit within the terminal width, and pandas
would introduce line breaks to display these 20 columns. This resulted in an output that was relatively difficult to read:

If Python runs in a terminal, the maximum number of columns is now determined automatically so that the printed data
frame fits within the current terminal width (pd.options.display.max_columns=0) (GH17023). If Python
runs as a Jupyter kernel (such as the Jupyter QtConsole or a Jupyter notebook, as well as in many IDEs), this value
cannot be inferred automatically and is thus set to 20 as in previous versions. In a terminal, this results in a much nicer
output:

32 Chapter 1. What’s New

https://github.com/pandas-dev/pandas/issues/10696
https://github.com/pandas-dev/pandas/issues/18593
https://github.com/pandas-dev/pandas/issues/17023

pandas: powerful Python data analysis toolkit, Release 0.23.4

Note that if you don’t like the new default, you can always set this option yourself. To revert to the old setting, you
can run this line:

pd.options.display.max_columns = 20

1.5.2.12 Datetimelike API Changes

• The default Timedelta constructor now accepts an ISO 8601 Duration string as an argument
(GH19040)

• Subtracting NaT from a Series with dtype='datetime64[ns]' returns a Series with
dtype='timedelta64[ns]' instead of dtype='datetime64[ns]' (GH18808)

• Addition or subtraction of NaT from TimedeltaIndex will return TimedeltaIndex instead of
DatetimeIndex (GH19124)

• DatetimeIndex.shift() and TimedeltaIndex.shift() will now raise NullFrequencyError
(which subclasses ValueError, which was raised in older versions) when the index object frequency is None
(GH19147)

• Addition and subtraction of NaN from a Series with dtype='timedelta64[ns]' will raise a
TypeError instead of treating the NaN as NaT (GH19274)

• NaT division with datetime.timedelta will now return NaN instead of raising (GH17876)

1.5. v0.23.0 (May 15, 2018) 33

https://github.com/pandas-dev/pandas/issues/19040
https://github.com/pandas-dev/pandas/issues/18808
https://github.com/pandas-dev/pandas/issues/19124
https://github.com/pandas-dev/pandas/issues/19147
https://github.com/pandas-dev/pandas/issues/19274
https://docs.python.org/3/library/datetime.html#datetime.timedelta
https://github.com/pandas-dev/pandas/issues/17876

pandas: powerful Python data analysis toolkit, Release 0.23.4

• Operations between a Series with dtype dtype='datetime64[ns]' and a PeriodIndex will cor-
rectly raises TypeError (GH18850)

• Subtraction of Series with timezone-aware dtype='datetime64[ns]' with mis-matched timezones
will raise TypeError instead of ValueError (GH18817)

• Timestamp will no longer silently ignore unused or invalid tz or tzinfo keyword arguments (GH17690)

• Timestamp will no longer silently ignore invalid freq arguments (GH5168)

• CacheableOffset and WeekDay are no longer available in the pandas.tseries.offsets module
(GH17830)

• pandas.tseries.frequencies.get_freq_group() and pandas.tseries.frequencies.
DAYS are removed from the public API (GH18034)

• Series.truncate() and DataFrame.truncate()will raise a ValueError if the index is not sorted
instead of an unhelpful KeyError (GH17935)

• Series.first and DataFrame.first will now raise a TypeError rather than
NotImplementedError when index is not a DatetimeIndex (GH20725).

• Series.last and DataFrame.last will now raise a TypeError rather than
NotImplementedError when index is not a DatetimeIndex (GH20725).

• Restricted DateOffset keyword arguments. Previously, DateOffset subclasses allowed arbitrary keyword
arguments which could lead to unexpected behavior. Now, only valid arguments will be accepted. (GH17176,
GH18226).

• pandas.merge() provides a more informative error message when trying to merge on timezone-aware and
timezone-naive columns (GH15800)

• For DatetimeIndex and TimedeltaIndex with freq=None, addition or subtraction of integer-dtyped
array or Index will raise NullFrequencyError instead of TypeError (GH19895)

• Timestamp constructor now accepts a nanosecond keyword or positional argument (GH18898)

• DatetimeIndex will now raise an AttributeError when the tz attribute is set after instantiation
(GH3746)

• DatetimeIndex with a pytz timezone will now return a consistent pytz timezone (GH18595)

1.5.2.13 Other API Changes

• Series.astype() and Index.astype() with an incompatible dtype will now raise a TypeError
rather than a ValueError (GH18231)

• Series construction with an object dtyped tz-aware datetime and dtype=object specified, will now
return an object dtyped Series, previously this would infer the datetime dtype (GH18231)

• A Series of dtype=category constructed from an empty dict will now have categories of
dtype=object rather than dtype=float64, consistently with the case in which an empty list is passed
(GH18515)

• All-NaN levels in a MultiIndex are now assigned float rather than object dtype, promoting consistency
with Index (GH17929).

• Levels names of a MultiIndex (when not None) are now required to be unique: trying to create a
MultiIndex with repeated names will raise a ValueError (GH18872)

• Both construction and renaming of Index/MultiIndex with non-hashable name/names will now raise
TypeError (GH20527)

34 Chapter 1. What’s New

https://github.com/pandas-dev/pandas/issues/18850
https://github.com/pandas-dev/pandas/issues/18817
https://github.com/pandas-dev/pandas/issues/17690
https://github.com/pandas-dev/pandas/issues/5168
https://github.com/pandas-dev/pandas/issues/17830
https://github.com/pandas-dev/pandas/issues/18034
https://github.com/pandas-dev/pandas/issues/17935
https://github.com/pandas-dev/pandas/issues/20725
https://github.com/pandas-dev/pandas/issues/20725
https://github.com/pandas-dev/pandas/issues/17176
https://github.com/pandas-dev/pandas/issues/18226
https://github.com/pandas-dev/pandas/issues/15800
https://github.com/pandas-dev/pandas/issues/19895
https://github.com/pandas-dev/pandas/issues/18898
https://github.com/pandas-dev/pandas/issues/3746
https://github.com/pandas-dev/pandas/issues/18595
https://github.com/pandas-dev/pandas/issues/18231
https://github.com/pandas-dev/pandas/issues/18231
https://github.com/pandas-dev/pandas/issues/18515
https://github.com/pandas-dev/pandas/issues/17929
https://github.com/pandas-dev/pandas/issues/18872
https://github.com/pandas-dev/pandas/issues/20527

pandas: powerful Python data analysis toolkit, Release 0.23.4

• Index.map() can now accept Series and dictionary input objects (GH12756, GH18482, GH18509).

• DataFrame.unstack() will now default to filling with np.nan for object columns. (GH12815)

• IntervalIndex constructor will raise if the closed parameter conflicts with how the input data is inferred
to be closed (GH18421)

• Inserting missing values into indexes will work for all types of indexes and automatically insert the correct type
of missing value (NaN, NaT, etc.) regardless of the type passed in (GH18295)

• When created with duplicate labels, MultiIndex now raises a ValueError. (GH17464)

• Series.fillna() now raises a TypeError instead of a ValueError when passed a list, tuple or
DataFrame as a value (GH18293)

• pandas.DataFrame.merge() no longer casts a float column to object when merging on int and
float columns (GH16572)

• pandas.merge() now raises a ValueError when trying to merge on incompatible data types (GH9780)

• The default NA value for UInt64Index has changed from 0 to NaN, which impacts methods that mask with
NA, such as UInt64Index.where() (GH18398)

• Refactored setup.py to use find_packages instead of explicitly listing out all subpackages (GH18535)

• Rearranged the order of keyword arguments in read_excel() to align with read_csv() (GH16672)

• wide_to_long() previously kept numeric-like suffixes as object dtype. Now they are cast to numeric if
possible (GH17627)

• In read_excel(), the comment argument is now exposed as a named parameter (GH18735)

• Rearranged the order of keyword arguments in read_excel() to align with read_csv() (GH16672)

• The options html.border and mode.use_inf_as_null were deprecated in prior versions, these will
now show FutureWarning rather than a DeprecationWarning (GH19003)

• IntervalIndex and IntervalDtype no longer support categorical, object, and string subtypes
(GH19016)

• IntervalDtype now returns True when compared against 'interval' regardless of subtype, and
IntervalDtype.name now returns 'interval' regardless of subtype (GH18980)

• KeyError now raises instead of ValueError in drop(), drop(), drop(), drop() when dropping a
non-existent element in an axis with duplicates (GH19186)

• Series.to_csv() now accepts a compression argument that works in the same way as the
compression argument in DataFrame.to_csv() (GH18958)

• Set operations (union, difference. . .) on IntervalIndex with incompatible index types will now raise a
TypeError rather than a ValueError (GH19329)

• DateOffset objects render more simply, e.g. <DateOffset: days=1> instead of <DateOffset:
kwds={'days': 1}> (GH19403)

• Categorical.fillna now validates its value and method keyword arguments. It now raises when both
or none are specified, matching the behavior of Series.fillna() (GH19682)

• pd.to_datetime('today') now returns a datetime, consistent with pd.Timestamp('today'); pre-
viously pd.to_datetime('today') returned a .normalized() datetime (GH19935)

• Series.str.replace() now takes an optional regex keyword which, when set to False, uses literal
string replacement rather than regex replacement (GH16808)

• DatetimeIndex.strftime() and PeriodIndex.strftime() now return an Index instead of a
numpy array to be consistent with similar accessors (GH20127)

1.5. v0.23.0 (May 15, 2018) 35

https://github.com/pandas-dev/pandas/issues/12756
https://github.com/pandas-dev/pandas/issues/18482
https://github.com/pandas-dev/pandas/issues/18509
https://github.com/pandas-dev/pandas/issues/12815
https://github.com/pandas-dev/pandas/issues/18421
https://github.com/pandas-dev/pandas/issues/18295
https://github.com/pandas-dev/pandas/issues/17464
https://github.com/pandas-dev/pandas/issues/18293
https://github.com/pandas-dev/pandas/issues/16572
https://github.com/pandas-dev/pandas/issues/9780
https://github.com/pandas-dev/pandas/issues/18398
https://github.com/pandas-dev/pandas/issues/18535
https://github.com/pandas-dev/pandas/issues/16672
https://github.com/pandas-dev/pandas/issues/17627
https://github.com/pandas-dev/pandas/issues/18735
https://github.com/pandas-dev/pandas/issues/16672
https://github.com/pandas-dev/pandas/issues/19003
https://github.com/pandas-dev/pandas/issues/19016
https://github.com/pandas-dev/pandas/issues/18980
https://github.com/pandas-dev/pandas/issues/19186
https://github.com/pandas-dev/pandas/issues/18958
https://github.com/pandas-dev/pandas/issues/19329
https://github.com/pandas-dev/pandas/issues/19403
https://github.com/pandas-dev/pandas/issues/19682
https://github.com/pandas-dev/pandas/issues/19935
https://github.com/pandas-dev/pandas/issues/16808
https://github.com/pandas-dev/pandas/issues/20127

pandas: powerful Python data analysis toolkit, Release 0.23.4

• Constructing a Series from a list of length 1 no longer broadcasts this list when a longer index is specified
(GH19714, GH20391).

• DataFrame.to_dict() with orient='index' no longer casts int columns to float for a DataFrame
with only int and float columns (GH18580)

• A user-defined-function that is passed to Series.rolling().aggregate(), DataFrame.
rolling().aggregate(), or its expanding cousins, will now always be passed a Series, rather
than a np.array; .apply() only has the raw keyword, see here. This is consistent with the signatures of
.aggregate() across pandas (GH20584)

• Rolling and Expanding types raise NotImplementedError upon iteration (GH11704).

1.5.3 Deprecations

• Series.from_array and SparseSeries.from_array are deprecated. Use the normal constructor
Series(..) and SparseSeries(..) instead (GH18213).

• DataFrame.as_matrix is deprecated. Use DataFrame.values instead (GH18458).

• Series.asobject, DatetimeIndex.asobject, PeriodIndex.asobject and
TimeDeltaIndex.asobject have been deprecated. Use .astype(object) instead (GH18572)

• Grouping by a tuple of keys now emits a FutureWarning and is deprecated. In the future, a tuple passed to
'by' will always refer to a single key that is the actual tuple, instead of treating the tuple as multiple keys. To
retain the previous behavior, use a list instead of a tuple (GH18314)

• Series.valid is deprecated. Use Series.dropna() instead (GH18800).

• read_excel() has deprecated the skip_footer parameter. Use skipfooter instead (GH18836)

• ExcelFile.parse() has deprecated sheetname in favor of sheet_name for consistency with
read_excel() (GH20920).

• The is_copy attribute is deprecated and will be removed in a future version (GH18801).

• IntervalIndex.from_intervals is deprecated in favor of the IntervalIndex constructor
(GH19263)

• DataFrame.from_items is deprecated. Use DataFrame.from_dict() instead, or DataFrame.
from_dict(OrderedDict()) if you wish to preserve the key order (GH17320, GH17312)

• Indexing a MultiIndex or a FloatIndex with a list containing some missing keys will now show a
FutureWarning, which is consistent with other types of indexes (GH17758).

• The broadcast parameter of .apply() is deprecated in favor of result_type='broadcast'
(GH18577)

• The reduce parameter of .apply() is deprecated in favor of result_type='reduce' (GH18577)

• The order parameter of factorize() is deprecated and will be removed in a future release (GH19727)

• Timestamp.weekday_name, DatetimeIndex.weekday_name, and Series.dt.
weekday_name are deprecated in favor of Timestamp.day_name(), DatetimeIndex.
day_name(), and Series.dt.day_name() (GH12806)

• pandas.tseries.plotting.tsplot is deprecated. Use Series.plot() instead (GH18627)

• Index.summary() is deprecated and will be removed in a future version (GH18217)

• NDFrame.get_ftype_counts() is deprecated and will be removed in a future version (GH18243)

36 Chapter 1. What’s New

https://github.com/pandas-dev/pandas/issues/19714
https://github.com/pandas-dev/pandas/issues/20391
https://github.com/pandas-dev/pandas/issues/18580
https://github.com/pandas-dev/pandas/issues/20584
https://github.com/pandas-dev/pandas/issues/11704
https://github.com/pandas-dev/pandas/issues/18213
https://github.com/pandas-dev/pandas/issues/18458
https://github.com/pandas-dev/pandas/issues/18572
https://github.com/pandas-dev/pandas/issues/18314
https://github.com/pandas-dev/pandas/issues/18800
https://github.com/pandas-dev/pandas/issues/18836
https://github.com/pandas-dev/pandas/issues/20920
https://github.com/pandas-dev/pandas/issues/18801
https://github.com/pandas-dev/pandas/issues/19263
https://github.com/pandas-dev/pandas/issues/17320
https://github.com/pandas-dev/pandas/issues/17312
https://docs.python.org/3/library/exceptions.html#FutureWarning
https://github.com/pandas-dev/pandas/issues/17758
https://github.com/pandas-dev/pandas/issues/18577
https://github.com/pandas-dev/pandas/issues/18577
https://github.com/pandas-dev/pandas/issues/19727
https://github.com/pandas-dev/pandas/issues/12806
https://github.com/pandas-dev/pandas/issues/18627
https://github.com/pandas-dev/pandas/issues/18217
https://github.com/pandas-dev/pandas/issues/18243

pandas: powerful Python data analysis toolkit, Release 0.23.4

• The convert_datetime64 parameter in DataFrame.to_records() has been deprecated and will be
removed in a future version. The NumPy bug motivating this parameter has been resolved. The default value
for this parameter has also changed from True to None (GH18160).

• Series.rolling().apply(), DataFrame.rolling().apply(), Series.expanding().
apply(), and DataFrame.expanding().apply() have deprecated passing an np.array by default.
One will need to pass the new raw parameter to be explicit about what is passed (GH20584)

• The data, base, strides, flags and itemsize properties of the Series and Index classes have been
deprecated and will be removed in a future version (GH20419).

• DatetimeIndex.offset is deprecated. Use DatetimeIndex.freq instead (GH20716)

• Floor division between an integer ndarray and a Timedelta is deprecated. Divide by Timedelta.value
instead (GH19761)

• Setting PeriodIndex.freq (which was not guaranteed to work correctly) is deprecated. Use
PeriodIndex.asfreq() instead (GH20678)

• Index.get_duplicates() is deprecated and will be removed in a future version (GH20239)

• The previous default behavior of negative indices in Categorical.take is deprecated. In a future version
it will change from meaning missing values to meaning positional indices from the right. The future behavior is
consistent with Series.take() (GH20664).

• Passing multiple axes to the axis parameter in DataFrame.dropna() has been deprecated and will be
removed in a future version (GH20987)

1.5.4 Removal of prior version deprecations/changes

• Warnings against the obsolete usage Categorical(codes, categories), which were emitted for in-
stance when the first two arguments to Categorical() had different dtypes, and recommended the use of
Categorical.from_codes, have now been removed (GH8074)

• The levels and labels attributes of a MultiIndex can no longer be set directly (GH4039).

• pd.tseries.util.pivot_annual has been removed (deprecated since v0.19). Use pivot_table
instead (GH18370)

• pd.tseries.util.isleapyear has been removed (deprecated since v0.19). Use .is_leap_year
property in Datetime-likes instead (GH18370)

• pd.ordered_merge has been removed (deprecated since v0.19). Use pd.merge_ordered instead
(GH18459)

• The SparseList class has been removed (GH14007)

• The pandas.io.wb and pandas.io.data stub modules have been removed (GH13735)

• Categorical.from_array has been removed (GH13854)

• The freq and how parameters have been removed from the rolling/expanding/ewm methods of
DataFrame and Series (deprecated since v0.18). Instead, resample before calling the methods. (GH18601
& GH18668)

• DatetimeIndex.to_datetime, Timestamp.to_datetime, PeriodIndex.to_datetime, and
Index.to_datetime have been removed (GH8254, GH14096, GH14113)

• read_csv() has dropped the skip_footer parameter (GH13386)

• read_csv() has dropped the as_recarray parameter (GH13373)

• read_csv() has dropped the buffer_lines parameter (GH13360)

1.5. v0.23.0 (May 15, 2018) 37

https://github.com/pandas-dev/pandas/issues/18160
https://github.com/pandas-dev/pandas/issues/20584
https://github.com/pandas-dev/pandas/issues/20419
https://github.com/pandas-dev/pandas/issues/20716
https://github.com/pandas-dev/pandas/issues/19761
https://github.com/pandas-dev/pandas/issues/20678
https://github.com/pandas-dev/pandas/issues/20239
https://github.com/pandas-dev/pandas/issues/20664
https://github.com/pandas-dev/pandas/issues/20987
https://github.com/pandas-dev/pandas/issues/8074
https://github.com/pandas-dev/pandas/issues/4039
https://github.com/pandas-dev/pandas/issues/18370
https://github.com/pandas-dev/pandas/issues/18370
https://github.com/pandas-dev/pandas/issues/18459
https://github.com/pandas-dev/pandas/issues/14007
https://github.com/pandas-dev/pandas/issues/13735
https://github.com/pandas-dev/pandas/issues/13854
https://github.com/pandas-dev/pandas/issues/18601
https://github.com/pandas-dev/pandas/issues/18668
https://github.com/pandas-dev/pandas/issues/8254
https://github.com/pandas-dev/pandas/issues/14096
https://github.com/pandas-dev/pandas/issues/14113
https://github.com/pandas-dev/pandas/issues/13386
https://github.com/pandas-dev/pandas/issues/13373
https://github.com/pandas-dev/pandas/issues/13360

pandas: powerful Python data analysis toolkit, Release 0.23.4

• read_csv() has dropped the compact_ints and use_unsigned parameters (GH13323)

• The Timestamp class has dropped the offset attribute in favor of freq (GH13593)

• The Series, Categorical, and Index classes have dropped the reshape method (GH13012)

• pandas.tseries.frequencies.get_standard_freq has been removed in favor of pandas.
tseries.frequencies.to_offset(freq).rule_code (GH13874)

• The freqstr keyword has been removed from pandas.tseries.frequencies.to_offset in favor
of freq (GH13874)

• The Panel4D and PanelND classes have been removed (GH13776)

• The Panel class has dropped the to_long and toLong methods (GH19077)

• The options display.line_with and display.height are removed in favor of display.width and
display.max_rows respectively (GH4391, GH19107)

• The labels attribute of the Categorical class has been removed in favor of Categorical.codes
(GH7768)

• The flavor parameter have been removed from func:to_sql method (GH13611)

• The modules pandas.tools.hashing and pandas.util.hashing have been removed (GH16223)

• The top-level functions pd.rolling_*, pd.expanding_* and pd.ewm* have been removed (Deprecated
since v0.18). Instead, use the DataFrame/Series methods rolling, expanding and ewm (GH18723)

• Imports from pandas.core.common for functions such as is_datetime64_dtype are now removed.
These are located in pandas.api.types. (GH13634, GH19769)

• The infer_dst keyword in Series.tz_localize(), DatetimeIndex.tz_localize() and
DatetimeIndex have been removed. infer_dst=True is equivalent to ambiguous='infer', and
infer_dst=False to ambiguous='raise' (GH7963).

• When .resample() was changed from an eager to a lazy operation, like .groupby() in v0.18.0, we put
in place compatibility (with a FutureWarning), so operations would continue to work. This is now fully
removed, so a Resampler will no longer forward compat operations (GH20554)

• Remove long deprecated axis=None parameter from .replace() (GH20271)

1.5.5 Performance Improvements

• Indexers on Series or DataFrame no longer create a reference cycle (GH17956)

• Added a keyword argument, cache, to to_datetime() that improved the performance of converting dupli-
cate datetime arguments (GH11665)

• DateOffset arithmetic performance is improved (GH18218)

• Converting a Series of Timedelta objects to days, seconds, etc. . . sped up through vectorization of under-
lying methods (GH18092)

• Improved performance of .map() with a Series/dict input (GH15081)

• The overridden Timedelta properties of days, seconds and microseconds have been removed, leveraging their
built-in Python versions instead (GH18242)

• Series construction will reduce the number of copies made of the input data in certain cases (GH17449)

• Improved performance of Series.dt.date() and DatetimeIndex.date() (GH18058)

• Improved performance of Series.dt.time() and DatetimeIndex.time() (GH18461)

38 Chapter 1. What’s New

https://github.com/pandas-dev/pandas/issues/13323
https://github.com/pandas-dev/pandas/issues/13593
https://github.com/pandas-dev/pandas/issues/13012
https://github.com/pandas-dev/pandas/issues/13874
https://github.com/pandas-dev/pandas/issues/13874
https://github.com/pandas-dev/pandas/issues/13776
https://github.com/pandas-dev/pandas/issues/19077
https://github.com/pandas-dev/pandas/issues/4391
https://github.com/pandas-dev/pandas/issues/19107
https://github.com/pandas-dev/pandas/issues/7768
https://github.com/pandas-dev/pandas/issues/13611
https://github.com/pandas-dev/pandas/issues/16223
https://github.com/pandas-dev/pandas/issues/18723
https://github.com/pandas-dev/pandas/issues/13634
https://github.com/pandas-dev/pandas/issues/19769
https://github.com/pandas-dev/pandas/issues/7963
https://github.com/pandas-dev/pandas/issues/20554
https://github.com/pandas-dev/pandas/issues/20271
https://github.com/pandas-dev/pandas/issues/17956
https://github.com/pandas-dev/pandas/issues/11665
https://github.com/pandas-dev/pandas/issues/18218
https://github.com/pandas-dev/pandas/issues/18092
https://github.com/pandas-dev/pandas/issues/15081
https://github.com/pandas-dev/pandas/issues/18242
https://github.com/pandas-dev/pandas/issues/17449
https://github.com/pandas-dev/pandas/issues/18058
https://github.com/pandas-dev/pandas/issues/18461

pandas: powerful Python data analysis toolkit, Release 0.23.4

• Improved performance of IntervalIndex.symmetric_difference() (GH18475)

• Improved performance of DatetimeIndex and Series arithmetic operations with Business-Month and
Business-Quarter frequencies (GH18489)

• Series() / DataFrame() tab completion limits to 100 values, for better performance. (GH18587)

• Improved performance of DataFrame.median()with axis=1when bottleneck is not installed (GH16468)

• Improved performance of MultiIndex.get_loc() for large indexes, at the cost of a reduction in perfor-
mance for small ones (GH18519)

• Improved performance of MultiIndex.remove_unused_levels() when there are no unused levels, at
the cost of a reduction in performance when there are (GH19289)

• Improved performance of Index.get_loc() for non-unique indexes (GH19478)

• Improved performance of pairwise .rolling() and .expanding() with .cov() and .corr() opera-
tions (GH17917)

• Improved performance of pandas.core.groupby.GroupBy.rank() (GH15779)

• Improved performance of variable .rolling() on .min() and .max() (GH19521)

• Improved performance of pandas.core.groupby.GroupBy.ffill() and pandas.core.
groupby.GroupBy.bfill() (GH11296)

• Improved performance of pandas.core.groupby.GroupBy.any() and pandas.core.groupby.
GroupBy.all() (GH15435)

• Improved performance of pandas.core.groupby.GroupBy.pct_change() (GH19165)

• Improved performance of Series.isin() in the case of categorical dtypes (GH20003)

• Improved performance of getattr(Series, attr) when the Series has certain index types. This manifi-
ested in slow printing of large Series with a DatetimeIndex (GH19764)

• Fixed a performance regression for GroupBy.nth() and GroupBy.last() with some object columns
(GH19283)

• Improved performance of pandas.core.arrays.Categorical.from_codes() (GH18501)

1.5.6 Documentation Changes

Thanks to all of the contributors who participated in the Pandas Documentation Sprint, which took place on March
10th. We had about 500 participants from over 30 locations across the world. You should notice that many of the API
docstrings have greatly improved.

There were too many simultaneous contributions to include a release note for each improvement, but this GitHub
search should give you an idea of how many docstrings were improved.

Special thanks to Marc Garcia for organizing the sprint. For more information, read the NumFOCUS blogpost recap-
ping the sprint.

• Changed spelling of “numpy” to “NumPy”, and “python” to “Python”. (GH19017)

• Consistency when introducing code samples, using either colon or period. Rewrote some sentences for greater
clarity, added more dynamic references to functions, methods and classes. (GH18941, GH18948, GH18973,
GH19017)

• Added a reference to DataFrame.assign() in the concatenate section of the merging documentation
(GH18665)

1.5. v0.23.0 (May 15, 2018) 39

https://github.com/pandas-dev/pandas/issues/18475
https://github.com/pandas-dev/pandas/issues/18489
https://github.com/pandas-dev/pandas/issues/18587
https://github.com/pandas-dev/pandas/issues/16468
https://github.com/pandas-dev/pandas/issues/18519
https://github.com/pandas-dev/pandas/issues/19289
https://github.com/pandas-dev/pandas/issues/19478
https://github.com/pandas-dev/pandas/issues/17917
https://github.com/pandas-dev/pandas/issues/15779
https://github.com/pandas-dev/pandas/issues/19521
https://github.com/pandas-dev/pandas/issues/11296
https://github.com/pandas-dev/pandas/issues/15435
https://github.com/pandas-dev/pandas/issues/19165
https://github.com/pandas-dev/pandas/issues/20003
https://github.com/pandas-dev/pandas/issues/19764
https://github.com/pandas-dev/pandas/issues/19283
https://github.com/pandas-dev/pandas/issues/18501
https://github.com/pandas-dev/pandas/pulls?utf8=%E2%9C%93&q=is%3Apr+label%3ADocs+created%3A2018-03-10..2018-03-15+
https://github.com/pandas-dev/pandas/pulls?utf8=%E2%9C%93&q=is%3Apr+label%3ADocs+created%3A2018-03-10..2018-03-15+
https://github.com/datapythonista
https://www.numfocus.org/blog/worldwide-pandas-sprint/
https://github.com/pandas-dev/pandas/issues/19017
https://github.com/pandas-dev/pandas/issues/18941
https://github.com/pandas-dev/pandas/issues/18948
https://github.com/pandas-dev/pandas/issues/18973
https://github.com/pandas-dev/pandas/issues/19017
https://github.com/pandas-dev/pandas/issues/18665

pandas: powerful Python data analysis toolkit, Release 0.23.4

1.5.7 Bug Fixes

1.5.7.1 Categorical

Warning: A class of bugs were introduced in pandas 0.21 with CategoricalDtype that affects the correctness
of operations like merge, concat, and indexing when comparing multiple unordered Categorical arrays
that have the same categories, but in a different order. We highly recommend upgrading or manually aligning your
categories before doing these operations.

• Bug in Categorical.equals returning the wrong result when comparing two unordered Categorical
arrays with the same categories, but in a different order (GH16603)

• Bug in pandas.api.types.union_categoricals() returning the wrong result when for unordered
categoricals with the categories in a different order. This affected pandas.concat() with Categorical data
(GH19096).

• Bug in pandas.merge() returning the wrong result when joining on an unordered Categorical that had
the same categories but in a different order (GH19551)

• Bug in CategoricalIndex.get_indexer() returning the wrong result when target was an un-
ordered Categorical that had the same categories as self but in a different order (GH19551)

• Bug in Index.astype() with a categorical dtype where the resultant index is not converted to a
CategoricalIndex for all types of index (GH18630)

• Bug in Series.astype() and Categorical.astype() where an existing categorical data does not get
updated (GH10696, GH18593)

• Bug in Series.str.split() with expand=True incorrectly raising an IndexError on empty strings
(GH20002).

• Bug in Index constructor with dtype=CategoricalDtype(...) where categories and ordered
are not maintained (GH19032)

• Bug in Series constructor with scalar and dtype=CategoricalDtype(...) where categories and
ordered are not maintained (GH19565)

• Bug in Categorical.__iter__ not converting to Python types (GH19909)

• Bug in pandas.factorize() returning the unique codes for the uniques. This now returns a
Categorical with the same dtype as the input (GH19721)

• Bug in pandas.factorize() including an item for missing values in the uniques return value
(GH19721)

• Bug in Series.take() with categorical data interpreting -1 in indices as missing value markers, rather than
the last element of the Series (GH20664)

1.5.7.2 Datetimelike

• Bug in Series.__sub__() subtracting a non-nanosecond np.datetime64 object from a Series gave
incorrect results (GH7996)

• Bug in DatetimeIndex, TimedeltaIndex addition and subtraction of zero-dimensional integer arrays
gave incorrect results (GH19012)

40 Chapter 1. What’s New

https://github.com/pandas-dev/pandas/issues/16603
https://github.com/pandas-dev/pandas/issues/19096
https://github.com/pandas-dev/pandas/issues/19551
https://github.com/pandas-dev/pandas/issues/19551
https://github.com/pandas-dev/pandas/issues/18630
https://github.com/pandas-dev/pandas/issues/10696
https://github.com/pandas-dev/pandas/issues/18593
https://github.com/pandas-dev/pandas/issues/20002
https://github.com/pandas-dev/pandas/issues/19032
https://github.com/pandas-dev/pandas/issues/19565
https://github.com/pandas-dev/pandas/issues/19909
https://github.com/pandas-dev/pandas/issues/19721
https://github.com/pandas-dev/pandas/issues/19721
https://github.com/pandas-dev/pandas/issues/20664
https://github.com/pandas-dev/pandas/issues/7996
https://github.com/pandas-dev/pandas/issues/19012

pandas: powerful Python data analysis toolkit, Release 0.23.4

• Bug in DatetimeIndex and TimedeltaIndex where adding or subtracting an array-like of
DateOffset objects either raised (np.array, pd.Index) or broadcast incorrectly (pd.Series)
(GH18849)

• Bug in Series.__add__() adding Series with dtype timedelta64[ns] to a timezone-aware
DatetimeIndex incorrectly dropped timezone information (GH13905)

• Adding a Period object to a datetime or Timestamp object will now correctly raise a TypeError
(GH17983)

• Bug in Timestamp where comparison with an array of Timestamp objects would result in a
RecursionError (GH15183)

• Bug in Series floor-division where operating on a scalar timedelta raises an exception (GH18846)

• Bug in DatetimeIndex where the repr was not showing high-precision time values at the end of a day (e.g.,
23:59:59.999999999) (GH19030)

• Bug in .astype() to non-ns timedelta units would hold the incorrect dtype (GH19176, GH19223, GH12425)

• Bug in subtracting Series from NaT incorrectly returning NaT (GH19158)

• Bug in Series.truncate() which raises TypeError with a monotonic PeriodIndex (GH17717)

• Bug in pct_change() using periods and freq returned different length outputs (GH7292)

• Bug in comparison of DatetimeIndex against None or datetime.date objects raising TypeError for
== and != comparisons instead of all-False and all-True, respectively (GH19301)

• Bug in Timestamp and to_datetime() where a string representing a barely out-of-bounds timestamp
would be incorrectly rounded down instead of raising OutOfBoundsDatetime (GH19382)

• Bug in Timestamp.floor() DatetimeIndex.floor() where time stamps far in the future and past
were not rounded correctly (GH19206)

• Bug in to_datetime() where passing an out-of-bounds datetime with errors='coerce' and
utc=True would raise OutOfBoundsDatetime instead of parsing to NaT (GH19612)

• Bug in DatetimeIndex and TimedeltaIndex addition and subtraction where name of the returned object
was not always set consistently. (GH19744)

• Bug in DatetimeIndex and TimedeltaIndex addition and subtraction where operations with numpy
arrays raised TypeError (GH19847)

• Bug in DatetimeIndex and TimedeltaIndex where setting the freq attribute was not fully supported
(GH20678)

1.5.7.3 Timedelta

• Bug in Timedelta.__mul__() where multiplying by NaT returned NaT instead of raising a TypeError
(GH19819)

• Bug in Series with dtype='timedelta64[ns]' where addition or subtraction of TimedeltaIndex
had results cast to dtype='int64' (GH17250)

• Bug in Series with dtype='timedelta64[ns]' where addition or subtraction of TimedeltaIndex
could return a Series with an incorrect name (GH19043)

• Bug in Timedelta.__floordiv__() and Timedelta.__rfloordiv__() dividing by many incom-
patible numpy objects was incorrectly allowed (GH18846)

• Bug where dividing a scalar timedelta-like object with TimedeltaIndex performed the reciprocal operation
(GH19125)

1.5. v0.23.0 (May 15, 2018) 41

https://github.com/pandas-dev/pandas/issues/18849
https://github.com/pandas-dev/pandas/issues/13905
https://github.com/pandas-dev/pandas/issues/17983
https://github.com/pandas-dev/pandas/issues/15183
https://github.com/pandas-dev/pandas/issues/18846
https://github.com/pandas-dev/pandas/issues/19030
https://github.com/pandas-dev/pandas/issues/19176
https://github.com/pandas-dev/pandas/issues/19223
https://github.com/pandas-dev/pandas/issues/12425
https://github.com/pandas-dev/pandas/issues/19158
https://github.com/pandas-dev/pandas/issues/17717
https://github.com/pandas-dev/pandas/issues/7292
https://github.com/pandas-dev/pandas/issues/19301
https://github.com/pandas-dev/pandas/issues/19382
https://github.com/pandas-dev/pandas/issues/19206
https://github.com/pandas-dev/pandas/issues/19612
https://github.com/pandas-dev/pandas/issues/19744
https://github.com/pandas-dev/pandas/issues/19847
https://github.com/pandas-dev/pandas/issues/20678
https://github.com/pandas-dev/pandas/issues/19819
https://github.com/pandas-dev/pandas/issues/17250
https://github.com/pandas-dev/pandas/issues/19043
https://github.com/pandas-dev/pandas/issues/18846
https://github.com/pandas-dev/pandas/issues/19125

pandas: powerful Python data analysis toolkit, Release 0.23.4

• Bug in TimedeltaIndex where division by a Series would return a TimedeltaIndex instead of a
Series (GH19042)

• Bug in Timedelta.__add__(), Timedelta.__sub__() where adding or subtracting a np.
timedelta64 object would return another np.timedelta64 instead of a Timedelta (GH19738)

• Bug in Timedelta.__floordiv__(), Timedelta.__rfloordiv__()where operating with a Tick
object would raise a TypeError instead of returning a numeric value (GH19738)

• Bug in Period.asfreq() where periods near datetime(1, 1, 1) could be converted incorrectly
(GH19643, GH19834)

• Bug in Timedelta.total_seconds() causing precision errors, for example Timedelta('30S').
total_seconds()==30.000000000000004 (GH19458)

• Bug in Timedelta.__rmod__() where operating with a numpy.timedelta64 returned a
timedelta64 object instead of a Timedelta (GH19820)

• Multiplication of TimedeltaIndex by TimedeltaIndex will now raise TypeError instead of raising
ValueError in cases of length mis-match (GH19333)

• Bug in indexing a TimedeltaIndex with a np.timedelta64 object which was raising a TypeError
(GH20393)

1.5.7.4 Timezones

• Bug in creating a Series from an array that contains both tz-naive and tz-aware values will result in a Series
whose dtype is tz-aware instead of object (GH16406)

• Bug in comparison of timezone-aware DatetimeIndex against NaT incorrectly raising TypeError
(GH19276)

• Bug in DatetimeIndex.astype() when converting between timezone aware dtypes, and converting from
timezone aware to naive (GH18951)

• Bug in comparing DatetimeIndex, which failed to raise TypeError when attempting to compare
timezone-aware and timezone-naive datetimelike objects (GH18162)

• Bug in localization of a naive, datetime string in a Series constructor with a datetime64[ns, tz] dtype
(GH174151)

• Timestamp.replace() will now handle Daylight Savings transitions gracefully (GH18319)

• Bug in tz-aware DatetimeIndex where addition/subtraction with a TimedeltaIndex or array with
dtype='timedelta64[ns]' was incorrect (GH17558)

• Bug in DatetimeIndex.insert() where inserting NaT into a timezone-aware index incorrectly raised
(GH16357)

• Bug in DataFrame constructor, where tz-aware Datetimeindex and a given column name will result in an
empty DataFrame (GH19157)

• Bug in Timestamp.tz_localize() where localizing a timestamp near the minimum or maximum valid
values could overflow and return a timestamp with an incorrect nanosecond value (GH12677)

• Bug when iterating over DatetimeIndex that was localized with fixed timezone offset that rounded nanosec-
ond precision to microseconds (GH19603)

• Bug in DataFrame.diff() that raised an IndexError with tz-aware values (GH18578)

• Bug in melt() that converted tz-aware dtypes to tz-naive (GH15785)

42 Chapter 1. What’s New

https://github.com/pandas-dev/pandas/issues/19042
https://github.com/pandas-dev/pandas/issues/19738
https://github.com/pandas-dev/pandas/issues/19738
https://github.com/pandas-dev/pandas/issues/19643
https://github.com/pandas-dev/pandas/issues/19834
https://github.com/pandas-dev/pandas/issues/19458
https://github.com/pandas-dev/pandas/issues/19820
https://github.com/pandas-dev/pandas/issues/19333
https://github.com/pandas-dev/pandas/issues/20393
https://github.com/pandas-dev/pandas/issues/16406
https://github.com/pandas-dev/pandas/issues/19276
https://github.com/pandas-dev/pandas/issues/18951
https://github.com/pandas-dev/pandas/issues/18162
https://github.com/pandas-dev/pandas/issues/174151
https://github.com/pandas-dev/pandas/issues/18319
https://github.com/pandas-dev/pandas/issues/17558
https://github.com/pandas-dev/pandas/issues/16357
https://github.com/pandas-dev/pandas/issues/19157
https://github.com/pandas-dev/pandas/issues/12677
https://github.com/pandas-dev/pandas/issues/19603
https://github.com/pandas-dev/pandas/issues/18578
https://github.com/pandas-dev/pandas/issues/15785

pandas: powerful Python data analysis toolkit, Release 0.23.4

• Bug in Dataframe.count() that raised an ValueError, if Dataframe.dropna() was called for a
single column with timezone-aware values. (GH13407)

1.5.7.5 Offsets

• Bug in WeekOfMonth and Week where addition and subtraction did not roll correctly (GH18510, GH18672,
GH18864)

• Bug in WeekOfMonth and LastWeekOfMonth where default keyword arguments for constructor raised
ValueError (GH19142)

• Bug in FY5253Quarter, LastWeekOfMonth where rollback and rollforward behavior was inconsistent
with addition and subtraction behavior (GH18854)

• Bug in FY5253 where datetime addition and subtraction incremented incorrectly for dates on the year-end
but not normalized to midnight (GH18854)

• Bug in FY5253 where date offsets could incorrectly raise an AssertionError in arithmetic operatons
(GH14774)

1.5.7.6 Numeric

• Bug in Series constructor with an int or float list where specifying dtype=str, dtype='str' or
dtype='U' failed to convert the data elements to strings (GH16605)

• Bug in Index multiplication and division methods where operating with a Series would return an Index
object instead of a Series object (GH19042)

• Bug in the DataFrame constructor in which data containing very large positive or very large negative numbers
was causing OverflowError (GH18584)

• Bug in Index constructor with dtype='uint64' where int-like floats were not coerced to UInt64Index
(GH18400)

• Bug in DataFrame flex arithmetic (e.g. df.add(other, fill_value=foo)) with a fill_value
other than None failed to raise NotImplementedError in corner cases where either the frame or other
has length zero (GH19522)

• Multiplication and division of numeric-dtyped Index objects with timedelta-like scalars returns
TimedeltaIndex instead of raising TypeError (GH19333)

• Bug where NaN was returned instead of 0 by Series.pct_change() and DataFrame.pct_change()
when fill_method is not None (GH19873)

1.5.7.7 Strings

• Bug in Series.str.get() with a dictionary in the values and the index not in the keys, raising KeyError
(GH20671)

1.5.7.8 Indexing

• Bug in Index construction from list of mixed type tuples (GH18505)

• Bug in Index.drop() when passing a list of both tuples and non-tuples (GH18304)

• Bug in DataFrame.drop(), Panel.drop(), Series.drop(), Index.drop() where no
KeyError is raised when dropping a non-existent element from an axis that contains duplicates (GH19186)

1.5. v0.23.0 (May 15, 2018) 43

https://github.com/pandas-dev/pandas/issues/13407
https://github.com/pandas-dev/pandas/issues/18510
https://github.com/pandas-dev/pandas/issues/18672
https://github.com/pandas-dev/pandas/issues/18864
https://github.com/pandas-dev/pandas/issues/19142
https://github.com/pandas-dev/pandas/issues/18854
https://github.com/pandas-dev/pandas/issues/18854
https://github.com/pandas-dev/pandas/issues/14774
https://github.com/pandas-dev/pandas/issues/16605
https://github.com/pandas-dev/pandas/issues/19042
https://github.com/pandas-dev/pandas/issues/18584
https://github.com/pandas-dev/pandas/issues/18400
https://github.com/pandas-dev/pandas/issues/19522
https://github.com/pandas-dev/pandas/issues/19333
https://github.com/pandas-dev/pandas/issues/19873
https://github.com/pandas-dev/pandas/issues/20671
https://github.com/pandas-dev/pandas/issues/18505
https://github.com/pandas-dev/pandas/issues/18304
https://github.com/pandas-dev/pandas/issues/19186

pandas: powerful Python data analysis toolkit, Release 0.23.4

• Bug in indexing a datetimelike Index that raised ValueError instead of IndexError (GH18386).

• Index.to_series() now accepts index and name kwargs (GH18699)

• DatetimeIndex.to_series() now accepts index and name kwargs (GH18699)

• Bug in indexing non-scalar value from Series having non-unique Index will return value flattened
(GH17610)

• Bug in indexing with iterator containing only missing keys, which raised no error (GH20748)

• Fixed inconsistency in .ix between list and scalar keys when the index has integer dtype and does not include
the desired keys (GH20753)

• Bug in __setitem__ when indexing a DataFrame with a 2-d boolean ndarray (GH18582)

• Bug in str.extractall when there were no matches empty Index was returned instead of appropriate
MultiIndex (GH19034)

• Bug in IntervalIndex where empty and purely NA data was constructed inconsistently depending on the
construction method (GH18421)

• Bug in IntervalIndex.symmetric_difference() where the symmetric difference with a non-
IntervalIndex did not raise (GH18475)

• Bug in IntervalIndex where set operations that returned an empty IntervalIndex had the wrong dtype
(GH19101)

• Bug in DataFrame.drop_duplicates() where no KeyError is raised when passing in columns that
don’t exist on the DataFrame (GH19726)

• Bug in Index subclasses constructors that ignore unexpected keyword arguments (GH19348)

• Bug in Index.difference() when taking difference of an Index with itself (GH20040)

• Bug in DataFrame.first_valid_index() and DataFrame.last_valid_index() in presence
of entire rows of NaNs in the middle of values (GH20499).

• Bug in IntervalIndex where some indexing operations were not supported for overlapping or non-
monotonic uint64 data (GH20636)

• Bug in Series.is_unique where extraneous output in stderr is shown if Series contains objects with
__ne__ defined (GH20661)

• Bug in .loc assignment with a single-element list-like incorrectly assigns as a list (GH19474)

• Bug in partial string indexing on a Series/DataFrame with a monotonic decreasing DatetimeIndex
(GH19362)

• Bug in performing in-place operations on a DataFrame with a duplicate Index (GH17105)

• Bug in IntervalIndex.get_loc() and IntervalIndex.get_indexer() when used with an
IntervalIndex containing a single interval (GH17284, GH20921)

• Bug in .loc with a uint64 indexer (GH20722)

1.5.7.9 MultiIndex

• Bug in MultiIndex.__contains__() where non-tuple keys would return True even if they had been
dropped (GH19027)

• Bug in MultiIndex.set_labels()which would cause casting (and potentially clipping) of the new labels
if the level argument is not 0 or a list like [0, 1, . . .] (GH19057)

44 Chapter 1. What’s New

https://github.com/pandas-dev/pandas/issues/18386
https://github.com/pandas-dev/pandas/issues/18699
https://github.com/pandas-dev/pandas/issues/18699
https://github.com/pandas-dev/pandas/issues/17610
https://github.com/pandas-dev/pandas/issues/20748
https://github.com/pandas-dev/pandas/issues/20753
https://github.com/pandas-dev/pandas/issues/18582
https://github.com/pandas-dev/pandas/issues/19034
https://github.com/pandas-dev/pandas/issues/18421
https://github.com/pandas-dev/pandas/issues/18475
https://github.com/pandas-dev/pandas/issues/19101
https://github.com/pandas-dev/pandas/issues/19726
https://github.com/pandas-dev/pandas/issues/19348
https://github.com/pandas-dev/pandas/issues/20040
https://github.com/pandas-dev/pandas/issues/20499
https://github.com/pandas-dev/pandas/issues/20636
https://github.com/pandas-dev/pandas/issues/20661
https://github.com/pandas-dev/pandas/issues/19474
https://github.com/pandas-dev/pandas/issues/19362
https://github.com/pandas-dev/pandas/issues/17105
https://github.com/pandas-dev/pandas/issues/17284
https://github.com/pandas-dev/pandas/issues/20921
https://github.com/pandas-dev/pandas/issues/20722
https://github.com/pandas-dev/pandas/issues/19027
https://github.com/pandas-dev/pandas/issues/19057

pandas: powerful Python data analysis toolkit, Release 0.23.4

• Bug in MultiIndex.get_level_values() which would return an invalid index on level of ints with
missing values (GH17924)

• Bug in MultiIndex.unique() when called on empty MultiIndex (GH20568)

• Bug in MultiIndex.unique() which would not preserve level names (GH20570)

• Bug in MultiIndex.remove_unused_levels() which would fill nan values (GH18417)

• Bug in MultiIndex.from_tuples() which would fail to take zipped tuples in python3 (GH18434)

• Bug in MultiIndex.get_loc() which would fail to automatically cast values between float and int
(GH18818, GH15994)

• Bug in MultiIndex.get_loc() which would cast boolean to integer labels (GH19086)

• Bug in MultiIndex.get_loc() which would fail to locate keys containing NaN (GH18485)

• Bug in MultiIndex.get_loc() in large MultiIndex, would fail when levels had different dtypes
(GH18520)

• Bug in indexing where nested indexers having only numpy arrays are handled incorrectly (GH19686)

1.5.7.10 I/O

• read_html() now rewinds seekable IO objects after parse failure, before attempting to parse with a new
parser. If a parser errors and the object is non-seekable, an informative error is raised suggesting the use of a
different parser (GH17975)

• DataFrame.to_html() now has an option to add an id to the leading <table> tag (GH8496)

• Bug in read_msgpack() with a non existent file is passed in Python 2 (GH15296)

• Bug in read_csv() where a MultiIndex with duplicate columns was not being mangled appropriately
(GH18062)

• Bug in read_csv() where missing values were not being handled properly when
keep_default_na=False with dictionary na_values (GH19227)

• Bug in read_csv() causing heap corruption on 32-bit, big-endian architectures (GH20785)

• Bug in read_sas() where a file with 0 variables gave an AttributeError incorrectly. Now it gives an
EmptyDataError (GH18184)

• Bug in DataFrame.to_latex() where pairs of braces meant to serve as invisible placeholders were es-
caped (GH18667)

• Bug in DataFrame.to_latex() where a NaN in a MultiIndex would cause an IndexError or incor-
rect output (GH14249)

• Bug in DataFrame.to_latex() where a non-string index-level name would result in an
AttributeError (GH19981)

• Bug in DataFrame.to_latex() where the combination of an index name and the index_names=False
option would result in incorrect output (GH18326)

• Bug in DataFrame.to_latex() where a MultiIndex with an empty string as its name would result in
incorrect output (GH18669)

• Bug in DataFrame.to_latex() where missing space characters caused wrong escaping and produced
non-valid latex in some cases (GH20859)

• Bug in read_json() where large numeric values were causing an OverflowError (GH18842)

• Bug in DataFrame.to_parquet() where an exception was raised if the write destination is S3 (GH19134)

1.5. v0.23.0 (May 15, 2018) 45

https://github.com/pandas-dev/pandas/issues/17924
https://github.com/pandas-dev/pandas/issues/20568
https://github.com/pandas-dev/pandas/issues/20570
https://github.com/pandas-dev/pandas/issues/18417
https://github.com/pandas-dev/pandas/issues/18434
https://github.com/pandas-dev/pandas/issues/18818
https://github.com/pandas-dev/pandas/issues/15994
https://github.com/pandas-dev/pandas/issues/19086
https://github.com/pandas-dev/pandas/issues/18485
https://github.com/pandas-dev/pandas/issues/18520
https://github.com/pandas-dev/pandas/issues/19686
https://github.com/pandas-dev/pandas/issues/17975
https://github.com/pandas-dev/pandas/issues/8496
https://github.com/pandas-dev/pandas/issues/15296
https://github.com/pandas-dev/pandas/issues/18062
https://github.com/pandas-dev/pandas/issues/19227
https://github.com/pandas-dev/pandas/issues/20785
https://github.com/pandas-dev/pandas/issues/18184
https://github.com/pandas-dev/pandas/issues/18667
https://github.com/pandas-dev/pandas/issues/14249
https://github.com/pandas-dev/pandas/issues/19981
https://github.com/pandas-dev/pandas/issues/18326
https://github.com/pandas-dev/pandas/issues/18669
https://github.com/pandas-dev/pandas/issues/20859
https://github.com/pandas-dev/pandas/issues/18842
https://github.com/pandas-dev/pandas/issues/19134

pandas: powerful Python data analysis toolkit, Release 0.23.4

• Interval now supported in DataFrame.to_excel() for all Excel file types (GH19242)

• Timedelta now supported in DataFrame.to_excel() for all Excel file types (GH19242, GH9155,
GH19900)

• Bug in pandas.io.stata.StataReader.value_labels() raising an AttributeError when
called on very old files. Now returns an empty dict (GH19417)

• Bug in read_pickle() when unpickling objects with TimedeltaIndex or Float64Index created
with pandas prior to version 0.20 (GH19939)

• Bug in pandas.io.json.json_normalize() where subrecords are not properly normalized if any sub-
records values are NoneType (GH20030)

• Bug in usecols parameter in read_csv() where error is not raised correctly when passing a string.
(GH20529)

• Bug in HDFStore.keys() when reading a file with a softlink causes exception (GH20523)

• Bug in HDFStore.select_column()where a key which is not a valid store raised an AttributeError
instead of a KeyError (GH17912)

1.5.7.11 Plotting

• Better error message when attempting to plot but matplotlib is not installed (GH19810).

• DataFrame.plot() now raises a ValueErrorwhen the x or y argument is improperly formed (GH18671)

• Bug in DataFrame.plot()when x and y arguments given as positions caused incorrect referenced columns
for line, bar and area plots (GH20056)

• Bug in formatting tick labels with datetime.time() and fractional seconds (GH18478).

• Series.plot.kde() has exposed the args ind and bw_method in the docstring (GH18461). The argu-
ment ind may now also be an integer (number of sample points).

• DataFrame.plot() now supports multiple columns to the y argument (GH19699)

1.5.7.12 Groupby/Resample/Rolling

• Bug when grouping by a single column and aggregating with a class like list or tuple (GH18079)

• Fixed regression in DataFrame.groupby() which would not emit an error when called with a tuple key not
in the index (GH18798)

• Bug in DataFrame.resample() which silently ignored unsupported (or mistyped) options for label,
closed and convention (GH19303)

• Bug in DataFrame.groupby() where tuples were interpreted as lists of keys rather than as keys (GH17979,
GH18249)

• Bug in DataFrame.groupby() where aggregation by first/last/min/max was causing timestamps to
lose precision (GH19526)

• Bug in DataFrame.transform() where particular aggregation functions were being incorrectly cast to
match the dtype(s) of the grouped data (GH19200)

• Bug in DataFrame.groupby() passing the on= kwarg, and subsequently using .apply() (GH17813)

• Bug in DataFrame.resample().aggregate not raising a KeyError when aggregating a non-existent
column (GH16766, GH19566)

46 Chapter 1. What’s New

https://github.com/pandas-dev/pandas/issues/19242
https://github.com/pandas-dev/pandas/issues/19242
https://github.com/pandas-dev/pandas/issues/9155
https://github.com/pandas-dev/pandas/issues/19900
https://github.com/pandas-dev/pandas/issues/19417
https://github.com/pandas-dev/pandas/issues/19939
https://github.com/pandas-dev/pandas/issues/20030
https://github.com/pandas-dev/pandas/issues/20529
https://github.com/pandas-dev/pandas/issues/20523
https://github.com/pandas-dev/pandas/issues/17912
https://github.com/pandas-dev/pandas/issues/19810
https://github.com/pandas-dev/pandas/issues/18671
https://github.com/pandas-dev/pandas/issues/20056
https://github.com/pandas-dev/pandas/issues/18478
https://github.com/pandas-dev/pandas/issues/18461
https://github.com/pandas-dev/pandas/issues/19699
https://github.com/pandas-dev/pandas/issues/18079
https://github.com/pandas-dev/pandas/issues/18798
https://github.com/pandas-dev/pandas/issues/19303
https://github.com/pandas-dev/pandas/issues/17979
https://github.com/pandas-dev/pandas/issues/18249
https://github.com/pandas-dev/pandas/issues/19526
https://github.com/pandas-dev/pandas/issues/19200
https://github.com/pandas-dev/pandas/issues/17813
https://github.com/pandas-dev/pandas/issues/16766
https://github.com/pandas-dev/pandas/issues/19566

pandas: powerful Python data analysis toolkit, Release 0.23.4

• Bug in DataFrameGroupBy.cumsum() and DataFrameGroupBy.cumprod() when skipna was
passed (GH19806)

• Bug in DataFrame.resample() that dropped timezone information (GH13238)

• Bug in DataFrame.groupby() where transformations using np.all and np.any were raising a
ValueError (GH20653)

• Bug in DataFrame.resample() where ffill, bfill, pad, backfill, fillna, interpolate,
and asfreq were ignoring loffset. (GH20744)

• Bug in DataFrame.groupby() when applying a function that has mixed data types and the user supplied
function can fail on the grouping column (GH20949)

• Bug in DataFrameGroupBy.rolling().apply() where operations performed against the associated
DataFrameGroupBy object could impact the inclusion of the grouped item(s) in the result (GH14013)

1.5.7.13 Sparse

• Bug in which creating a SparseDataFrame from a dense Series or an unsupported type raised an uncon-
trolled exception (GH19374)

• Bug in SparseDataFrame.to_csv causing exception (GH19384)

• Bug in SparseSeries.memory_usage which caused segfault by accessing non sparse elements
(GH19368)

• Bug in constructing a SparseArray: if data is a scalar and index is defined it will coerce to float64
regardless of scalar’s dtype. (GH19163)

1.5.7.14 Reshaping

• Bug in DataFrame.merge() where referencing a CategoricalIndex by name, where the by kwarg
would KeyError (GH20777)

• Bug in DataFrame.stack() which fails trying to sort mixed type levels under Python 3 (GH18310)

• Bug in DataFrame.unstack() which casts int to float if columns is a MultiIndex with unused levels
(GH17845)

• Bug in DataFrame.unstack() which raises an error if index is a MultiIndex with unused labels on
the unstacked level (GH18562)

• Fixed construction of a Series from a dict containing NaN as key (GH18480)

• Fixed construction of a DataFrame from a dict containing NaN as key (GH18455)

• Disabled construction of a Series where len(index) > len(data) = 1, which previously would broadcast the
data item, and now raises a ValueError (GH18819)

• Suppressed error in the construction of a DataFrame from a dict containing scalar values when the corre-
sponding keys are not included in the passed index (GH18600)

• Fixed (changed from object to float64) dtype of DataFrame initialized with axes, no data, and
dtype=int (GH19646)

• Bug in Series.rank() where Series containing NaT modifies the Series inplace (GH18521)

• Bug in cut() which fails when using readonly arrays (GH18773)

• Bug in DataFrame.pivot_table() which fails when the aggfunc arg is of type string. The behavior is
now consistent with other methods like agg and apply (GH18713)

1.5. v0.23.0 (May 15, 2018) 47

https://github.com/pandas-dev/pandas/issues/19806
https://github.com/pandas-dev/pandas/issues/13238
https://github.com/pandas-dev/pandas/issues/20653
https://github.com/pandas-dev/pandas/issues/20744
https://github.com/pandas-dev/pandas/issues/20949
https://github.com/pandas-dev/pandas/issues/14013
https://github.com/pandas-dev/pandas/issues/19374
https://github.com/pandas-dev/pandas/issues/19384
https://github.com/pandas-dev/pandas/issues/19368
https://github.com/pandas-dev/pandas/issues/19163
https://github.com/pandas-dev/pandas/issues/20777
https://github.com/pandas-dev/pandas/issues/18310
https://github.com/pandas-dev/pandas/issues/17845
https://github.com/pandas-dev/pandas/issues/18562
https://github.com/pandas-dev/pandas/issues/18480
https://github.com/pandas-dev/pandas/issues/18455
https://github.com/pandas-dev/pandas/issues/18819
https://github.com/pandas-dev/pandas/issues/18600
https://github.com/pandas-dev/pandas/issues/19646
https://github.com/pandas-dev/pandas/issues/18521
https://github.com/pandas-dev/pandas/issues/18773
https://github.com/pandas-dev/pandas/issues/18713

pandas: powerful Python data analysis toolkit, Release 0.23.4

• Bug in DataFrame.merge() in which merging using Index objects as vectors raised an Exception
(GH19038)

• Bug in DataFrame.stack(), DataFrame.unstack(), Series.unstack() which were not return-
ing subclasses (GH15563)

• Bug in timezone comparisons, manifesting as a conversion of the index to UTC in .concat() (GH18523)

• Bug in concat() when concatting sparse and dense series it returns only a SparseDataFrame. Should be
a DataFrame. (GH18914, GH18686, and GH16874)

• Improved error message for DataFrame.merge() when there is no common merge key (GH19427)

• Bug in DataFrame.join() which does an outer instead of a left join when being called with multiple
DataFrames and some have non-unique indices (GH19624)

• Series.rename() now accepts axis as a kwarg (GH18589)

• Bug in rename() where an Index of same-length tuples was converted to a MultiIndex (GH19497)

• Comparisons between Series and Index would return a Series with an incorrect name, ignoring the
Index’s name attribute (GH19582)

• Bug in qcut() where datetime and timedelta data with NaT present raised a ValueError (GH19768)

• Bug in DataFrame.iterrows(), which would infers strings not compliant to ISO8601 to datetimes
(GH19671)

• Bug in Series constructor with Categorical where a ValueError is not raised when an index of dif-
ferent length is given (GH19342)

• Bug in DataFrame.astype() where column metadata is lost when converting to categorical or a dictionary
of dtypes (GH19920)

• Bug in cut() and qcut() where timezone information was dropped (GH19872)

• Bug in Series constructor with a dtype=str, previously raised in some cases (GH19853)

• Bug in get_dummies(), and select_dtypes(), where duplicate column names caused incorrect behav-
ior (GH20848)

• Bug in isna(), which cannot handle ambiguous typed lists (GH20675)

• Bug in concat() which raises an error when concatenating TZ-aware dataframes and all-NaT dataframes
(GH12396)

• Bug in concat() which raises an error when concatenating empty TZ-aware series (GH18447)

1.5.7.15 Other

• Improved error message when attempting to use a Python keyword as an identifier in a numexpr backed query
(GH18221)

• Bug in accessing a pandas.get_option(), which raised KeyError rather than OptionError when
looking up a non-existant option key in some cases (GH19789)

• Bug in testing.assert_series_equal() and testing.assert_frame_equal() for Series or
DataFrames with differing unicode data (GH20503)

48 Chapter 1. What’s New

https://github.com/pandas-dev/pandas/issues/19038
https://github.com/pandas-dev/pandas/issues/15563
https://github.com/pandas-dev/pandas/issues/18523
https://github.com/pandas-dev/pandas/issues/18914
https://github.com/pandas-dev/pandas/issues/18686
https://github.com/pandas-dev/pandas/issues/16874
https://github.com/pandas-dev/pandas/issues/19427
https://github.com/pandas-dev/pandas/issues/19624
https://github.com/pandas-dev/pandas/issues/18589
https://github.com/pandas-dev/pandas/issues/19497
https://github.com/pandas-dev/pandas/issues/19582
https://github.com/pandas-dev/pandas/issues/19768
https://en.wikipedia.org/wiki/ISO_8601
https://github.com/pandas-dev/pandas/issues/19671
https://github.com/pandas-dev/pandas/issues/19342
https://github.com/pandas-dev/pandas/issues/19920
https://github.com/pandas-dev/pandas/issues/19872
https://github.com/pandas-dev/pandas/issues/19853
https://github.com/pandas-dev/pandas/issues/20848
https://github.com/pandas-dev/pandas/issues/20675
https://github.com/pandas-dev/pandas/issues/12396
https://github.com/pandas-dev/pandas/issues/18447
https://github.com/pandas-dev/pandas/issues/18221
https://github.com/pandas-dev/pandas/issues/19789
https://github.com/pandas-dev/pandas/issues/20503

pandas: powerful Python data analysis toolkit, Release 0.23.4

1.6 v0.22.0 (December 29, 2017)

This is a major release from 0.21.1 and includes a single, API-breaking change. We recommend that all users upgrade
to this version after carefully reading the release note (singular!).

1.6.1 Backwards incompatible API changes

Pandas 0.22.0 changes the handling of empty and all-NA sums and products. The summary is that

• The sum of an empty or all-NA Series is now 0

• The product of an empty or all-NA Series is now 1

• We’ve added a min_count parameter to .sum() and .prod() controlling the minimum number of valid
values for the result to be valid. If fewer than min_count non-NA values are present, the result is NA. The
default is 0. To return NaN, the 0.21 behavior, use min_count=1.

Some background: In pandas 0.21, we fixed a long-standing inconsistency in the return value of all-NA series de-
pending on whether or not bottleneck was installed. See Sum/Prod of all-NaN or empty Series/DataFrames is now
consistently NaN. At the same time, we changed the sum and prod of an empty Series to also be NaN.

Based on feedback, we’ve partially reverted those changes.

1.6.1.1 Arithmetic Operations

The default sum for empty or all-NA Series is now 0.

pandas 0.21.x

In [1]: pd.Series([]).sum()
Out[1]: nan

In [2]: pd.Series([np.nan]).sum()
Out[2]: nan

pandas 0.22.0

In [1]: pd.Series([]).sum()
Out[1]: 0.0

In [2]: pd.Series([np.nan]).sum()
\\\\\\\\\\\\Out[2]: 0.0

The default behavior is the same as pandas 0.20.3 with bottleneck installed. It also matches the behavior of NumPy’s
np.nansum on empty and all-NA arrays.

To have the sum of an empty series return NaN (the default behavior of pandas 0.20.3 without bottleneck, or pandas
0.21.x), use the min_count keyword.

In [3]: pd.Series([]).sum(min_count=1)
Out[3]: nan

Thanks to the skipna parameter, the .sum on an all-NA series is conceptually the same as the .sum of an empty
one with skipna=True (the default).

In [4]: pd.Series([np.nan]).sum(min_count=1) # skipna=True by default
Out[4]: nan

1.6. v0.22.0 (December 29, 2017) 49

pandas: powerful Python data analysis toolkit, Release 0.23.4

The min_count parameter refers to the minimum number of non-null values required for a non-NA sum or product.

Series.prod() has been updated to behave the same as Series.sum(), returning 1 instead.

In [5]: pd.Series([]).prod()
Out[5]: 1.0

In [6]: pd.Series([np.nan]).prod()
\\\\\\\\\\\\Out[6]: 1.0

In [7]: pd.Series([]).prod(min_count=1)
\\\\\\\\\\\\\\\\\\\\\\\\Out[7]: nan

These changes affect DataFrame.sum() and DataFrame.prod() as well. Finally, a few less obvious places in
pandas are affected by this change.

1.6.1.2 Grouping by a Categorical

Grouping by a Categorical and summing now returns 0 instead of NaN for categories with no observations. The
product now returns 1 instead of NaN.

pandas 0.21.x

In [8]: grouper = pd.Categorical(['a', 'a'], categories=['a', 'b'])

In [9]: pd.Series([1, 2]).groupby(grouper).sum()
Out[9]:
a 3.0
b NaN
dtype: float64

pandas 0.22

In [8]: grouper = pd.Categorical(['a', 'a'], categories=['a', 'b'])

In [9]: pd.Series([1, 2]).groupby(grouper).sum()
Out[9]:
a 3
b 0
dtype: int64

To restore the 0.21 behavior of returning NaN for unobserved groups, use min_count>=1.

In [10]: pd.Series([1, 2]).groupby(grouper).sum(min_count=1)
Out[10]:
a 3.0
b NaN
dtype: float64

1.6.1.3 Resample

The sum and product of all-NA bins has changed from NaN to 0 for sum and 1 for product.

pandas 0.21.x

50 Chapter 1. What’s New

pandas: powerful Python data analysis toolkit, Release 0.23.4

In [11]: s = pd.Series([1, 1, np.nan, np.nan],
...: index=pd.date_range('2017', periods=4))
...: s

Out[11]:
2017-01-01 1.0
2017-01-02 1.0
2017-01-03 NaN
2017-01-04 NaN
Freq: D, dtype: float64

In [12]: s.resample('2d').sum()
Out[12]:
2017-01-01 2.0
2017-01-03 NaN
Freq: 2D, dtype: float64

pandas 0.22.0

In [11]: s = pd.Series([1, 1, np.nan, np.nan],
....: index=pd.date_range('2017', periods=4))
....:

In [12]: s.resample('2d').sum()
Out[12]:
2017-01-01 2.0
2017-01-03 0.0
dtype: float64

To restore the 0.21 behavior of returning NaN, use min_count>=1.

In [13]: s.resample('2d').sum(min_count=1)
Out[13]:
2017-01-01 2.0
2017-01-03 NaN
dtype: float64

In particular, upsampling and taking the sum or product is affected, as upsampling introduces missing values even if
the original series was entirely valid.

pandas 0.21.x

In [14]: idx = pd.DatetimeIndex(['2017-01-01', '2017-01-02'])

In [15]: pd.Series([1, 2], index=idx).resample('12H').sum()
Out[15]:
2017-01-01 00:00:00 1.0
2017-01-01 12:00:00 NaN
2017-01-02 00:00:00 2.0
Freq: 12H, dtype: float64

pandas 0.22.0

In [14]: idx = pd.DatetimeIndex(['2017-01-01', '2017-01-02'])

In [15]: pd.Series([1, 2], index=idx).resample("12H").sum()
Out[15]:
2017-01-01 00:00:00 1

(continues on next page)

1.6. v0.22.0 (December 29, 2017) 51

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

2017-01-01 12:00:00 0
2017-01-02 00:00:00 2
Freq: 12H, dtype: int64

Once again, the min_count keyword is available to restore the 0.21 behavior.

In [16]: pd.Series([1, 2], index=idx).resample("12H").sum(min_count=1)
Out[16]:
2017-01-01 00:00:00 1.0
2017-01-01 12:00:00 NaN
2017-01-02 00:00:00 2.0
Freq: 12H, dtype: float64

1.6.1.4 Rolling and Expanding

Rolling and expanding already have a min_periods keyword that behaves similar to min_count. The only case
that changes is when doing a rolling or expanding sum with min_periods=0. Previously this returned NaN, when
fewer than min_periods non-NA values were in the window. Now it returns 0.

pandas 0.21.1

In [17]: s = pd.Series([np.nan, np.nan])

In [18]: s.rolling(2, min_periods=0).sum()
Out[18]:
0 NaN
1 NaN
dtype: float64

pandas 0.22.0

In [17]: s = pd.Series([np.nan, np.nan])

In [18]: s.rolling(2, min_periods=0).sum()
Out[18]:
0 0.0
1 0.0
dtype: float64

The default behavior of min_periods=None, implying that min_periods equals the window size, is unchanged.

1.6.2 Compatibility

If you maintain a library that should work across pandas versions, it may be easiest to exclude pandas 0.21 from your
requirements. Otherwise, all your sum() calls would need to check if the Series is empty before summing.

With setuptools, in your setup.py use:

install_requires=['pandas!=0.21.*', ...]

With conda, use

requirements:
run:
- pandas !=0.21.0,!=0.21.1

52 Chapter 1. What’s New

pandas: powerful Python data analysis toolkit, Release 0.23.4

Note that the inconsistency in the return value for all-NA series is still there for pandas 0.20.3 and earlier. Avoiding
pandas 0.21 will only help with the empty case.

1.7 v0.21.1 (December 12, 2017)

This is a minor bug-fix release in the 0.21.x series and includes some small regression fixes, bug fixes and performance
improvements. We recommend that all users upgrade to this version.

Highlights include:

• Temporarily restore matplotlib datetime plotting functionality. This should resolve issues for users who implic-
itly relied on pandas to plot datetimes with matplotlib. See here.

• Improvements to the Parquet IO functions introduced in 0.21.0. See here.

What’s new in v0.21.1

• Restore Matplotlib datetime Converter Registration

• New features

– Improvements to the Parquet IO functionality

– Other Enhancements

• Deprecations

• Performance Improvements

• Bug Fixes

– Conversion

– Indexing

– I/O

– Plotting

– Groupby/Resample/Rolling

– Reshaping

– Numeric

– Categorical

– String

1.7.1 Restore Matplotlib datetime Converter Registration

Pandas implements some matplotlib converters for nicely formatting the axis labels on plots with datetime or
Period values. Prior to pandas 0.21.0, these were implicitly registered with matplotlib, as a side effect of import
pandas.

In pandas 0.21.0, we required users to explicitly register the converter. This caused problems for some users who
relied on those converters being present for regular matplotlib.pyplot plotting methods, so we’re temporarily
reverting that change; pandas 0.21.1 again registers the converters on import, just like before 0.21.0.

1.7. v0.21.1 (December 12, 2017) 53

pandas: powerful Python data analysis toolkit, Release 0.23.4

We’ve added a new option to control the converters: pd.options.plotting.matplotlib.
register_converters. By default, they are registered. Toggling this to False removes pandas’ formatters and
restore any converters we overwrote when registering them (GH18301).

We’re working with the matplotlib developers to make this easier. We’re trying to balance user convenience (auto-
matically registering the converters) with import performance and best practices (importing pandas shouldn’t have the
side effect of overwriting any custom converters you’ve already set). In the future we hope to have most of the date-
time formatting functionality in matplotlib, with just the pandas-specific converters in pandas. We’ll then gracefully
deprecate the automatic registration of converters in favor of users explicitly registering them when they want them.

1.7.2 New features

1.7.2.1 Improvements to the Parquet IO functionality

• DataFrame.to_parquet() will now write non-default indexes when the underlying engine supports it.
The indexes will be preserved when reading back in with read_parquet() (GH18581).

• read_parquet() now allows to specify the columns to read from a parquet file (GH18154)

• read_parquet() now allows to specify kwargs which are passed to the respective engine (GH18216)

1.7.2.2 Other Enhancements

• Timestamp.timestamp() is now available in Python 2.7. (GH17329)

• Grouper and TimeGrouper now have a friendly repr output (GH18203).

1.7.3 Deprecations

• pandas.tseries.register has been renamed to pandas.plotting.
register_matplotlib_converters() (GH18301)

1.7.4 Performance Improvements

• Improved performance of plotting large series/dataframes (GH18236).

1.7.5 Bug Fixes

1.7.5.1 Conversion

• Bug in TimedeltaIndex subtraction could incorrectly overflow when NaT is present (GH17791)

• Bug in DatetimeIndex subtracting datetimelike from DatetimeIndex could fail to overflow (GH18020)

• Bug in IntervalIndex.copy() when copying and IntervalIndex with non-default closed
(GH18339)

• Bug in DataFrame.to_dict() where columns of datetime that are tz-aware were not converted to required
arrays when used with orient='records', raising TypeError (GH18372)

• Bug in DateTimeIndex and date_range() where mismatching tz-aware start and end timezones
would not raise an err if end.tzinfo is None (GH18431)

• Bug in Series.fillna() which raised when passed a long integer on Python 2 (GH18159).

54 Chapter 1. What’s New

https://github.com/pandas-dev/pandas/issues/18301
https://github.com/pandas-dev/pandas/issues/18581
https://github.com/pandas-dev/pandas/issues/18154
https://github.com/pandas-dev/pandas/issues/18216
https://github.com/pandas-dev/pandas/issues/17329
https://github.com/pandas-dev/pandas/issues/18203
https://github.com/pandas-dev/pandas/issues/18301
https://github.com/pandas-dev/pandas/issues/18236
https://github.com/pandas-dev/pandas/issues/17791
https://github.com/pandas-dev/pandas/issues/18020
https://github.com/pandas-dev/pandas/issues/18339
https://github.com/pandas-dev/pandas/issues/18372
https://github.com/pandas-dev/pandas/issues/18431
https://github.com/pandas-dev/pandas/issues/18159

pandas: powerful Python data analysis toolkit, Release 0.23.4

1.7.5.2 Indexing

• Bug in a boolean comparison of a datetime.datetime and a datetime64[ns] dtype Series (GH17965)

• Bug where a MultiIndex with more than a million records was not raising AttributeError when trying
to access a missing attribute (GH18165)

• Bug in IntervalIndex constructor when a list of intervals is passed with non-default closed (GH18334)

• Bug in Index.putmask when an invalid mask passed (GH18368)

• Bug in masked assignment of a timedelta64[ns] dtype Series, incorrectly coerced to float (GH18493)

1.7.5.3 I/O

• Bug in class:~pandas.io.stata.StataReader not converting date/time columns with display formatting addressed
(GH17990). Previously columns with display formatting were normally left as ordinal numbers and not con-
verted to datetime objects.

• Bug in read_csv() when reading a compressed UTF-16 encoded file (GH18071)

• Bug in read_csv() for handling null values in index columns when specifying na_filter=False
(GH5239)

• Bug in read_csv() when reading numeric category fields with high cardinality (GH18186)

• Bug in DataFrame.to_csv() when the table had MultiIndex columns, and a list of strings was passed
in for header (GH5539)

• Bug in parsing integer datetime-like columns with specified format in read_sql (GH17855).

• Bug in DataFrame.to_msgpack() when serializing data of the numpy.bool_ datatype (GH18390)

• Bug in read_json() not decoding when reading line deliminted JSON from S3 (GH17200)

• Bug in pandas.io.json.json_normalize() to avoid modification of meta (GH18610)

• Bug in to_latex() where repeated multi-index values were not printed even though a higher level index
differed from the previous row (GH14484)

• Bug when reading NaN-only categorical columns in HDFStore (GH18413)

• Bug in DataFrame.to_latex()with longtable=Truewhere a latex multicolumn always spanned over
three columns (GH17959)

1.7.5.4 Plotting

• Bug in DataFrame.plot() and Series.plot() with DatetimeIndex where a figure generated by
them is not pickleable in Python 3 (GH18439)

1.7.5.5 Groupby/Resample/Rolling

• Bug in DataFrame.resample(...).apply(...)when there is a callable that returns different columns
(GH15169)

• Bug in DataFrame.resample(...) when there is a time change (DST) and resampling frequecy is 12h or
higher (GH15549)

• Bug in pd.DataFrameGroupBy.count() when counting over a datetimelike column (GH13393)

• Bug in rolling.var where calculation is inaccurate with a zero-valued array (GH18430)

1.7. v0.21.1 (December 12, 2017) 55

https://github.com/pandas-dev/pandas/issues/17965
https://github.com/pandas-dev/pandas/issues/18165
https://github.com/pandas-dev/pandas/issues/18334
https://github.com/pandas-dev/pandas/issues/18368
https://github.com/pandas-dev/pandas/issues/18493
https://github.com/pandas-dev/pandas/issues/17990
https://github.com/pandas-dev/pandas/issues/18071
https://github.com/pandas-dev/pandas/issues/5239
https://github.com/pandas-dev/pandas/issues/18186
https://github.com/pandas-dev/pandas/issues/5539
https://github.com/pandas-dev/pandas/issues/17855
https://github.com/pandas-dev/pandas/issues/18390
https://github.com/pandas-dev/pandas/issues/17200
https://github.com/pandas-dev/pandas/issues/18610
https://github.com/pandas-dev/pandas/issues/14484
https://github.com/pandas-dev/pandas/issues/18413
https://github.com/pandas-dev/pandas/issues/17959
https://github.com/pandas-dev/pandas/issues/18439
https://github.com/pandas-dev/pandas/issues/15169
https://github.com/pandas-dev/pandas/issues/15549
https://github.com/pandas-dev/pandas/issues/13393
https://github.com/pandas-dev/pandas/issues/18430

pandas: powerful Python data analysis toolkit, Release 0.23.4

1.7.5.6 Reshaping

• Error message in pd.merge_asof() for key datatype mismatch now includes datatype of left and right key
(GH18068)

• Bug in pd.concat when empty and non-empty DataFrames or Series are concatenated (GH18178 GH18187)

• Bug in DataFrame.filter(...) when unicode is passed as a condition in Python 2 (GH13101)

• Bug when merging empty DataFrames when np.seterr(divide='raise') is set (GH17776)

1.7.5.7 Numeric

• Bug in pd.Series.rolling.skew() and rolling.kurt() with all equal values has floating issue
(GH18044)

1.7.5.8 Categorical

• Bug in DataFrame.astype() where casting to ‘category’ on an empty DataFrame causes a segmentation
fault (GH18004)

• Error messages in the testing module have been improved when items have different CategoricalDtype
(GH18069)

• CategoricalIndex can now correctly take a pd.api.types.CategoricalDtype as its dtype
(GH18116)

• Bug in Categorical.unique() returning read-only codes array when all categories were NaN
(GH18051)

• Bug in DataFrame.groupby(axis=1) with a CategoricalIndex (GH18432)

1.7.5.9 String

• Series.str.split() will now propagate NaN values across all expanded columns instead of None
(GH18450)

1.8 v0.21.0 (October 27, 2017)

This is a major release from 0.20.3 and includes a number of API changes, deprecations, new features, enhancements,
and performance improvements along with a large number of bug fixes. We recommend that all users upgrade to this
version.

Highlights include:

• Integration with Apache Parquet, including a new top-level read_parquet() function and DataFrame.
to_parquet() method, see here.

• New user-facing pandas.api.types.CategoricalDtype for specifying categoricals independent of
the data, see here.

• The behavior of sum and prod on all-NaN Series/DataFrames is now consistent and no longer depends on
whether bottleneck is installed, and sum and prod on empty Series now return NaN instead of 0, see here.

• Compatibility fixes for pypy, see here.

• Additions to the drop, reindex and rename API to make them more consistent, see here.

56 Chapter 1. What’s New

https://github.com/pandas-dev/pandas/issues/18068
https://github.com/pandas-dev/pandas/issues/18178
https://github.com/pandas-dev/pandas/issues/18187
https://github.com/pandas-dev/pandas/issues/13101
https://github.com/pandas-dev/pandas/issues/17776
https://github.com/pandas-dev/pandas/issues/18044
https://github.com/pandas-dev/pandas/issues/18004
https://github.com/pandas-dev/pandas/issues/18069
https://github.com/pandas-dev/pandas/issues/18116
https://github.com/pandas-dev/pandas/issues/18051
https://github.com/pandas-dev/pandas/issues/18432
https://github.com/pandas-dev/pandas/issues/18450
https://parquet.apache.org/
http://berkeleyanalytics.com/bottleneck

pandas: powerful Python data analysis toolkit, Release 0.23.4

• Addition of the new methods DataFrame.infer_objects (see here) and GroupBy.pipe (see here).

• Indexing with a list of labels, where one or more of the labels is missing, is deprecated and will raise a KeyError
in a future version, see here.

Check the API Changes and deprecations before updating.

What’s new in v0.21.0

• New features

– Integration with Apache Parquet file format

– infer_objects type conversion

– Improved warnings when attempting to create columns

– drop now also accepts index/columns keywords

– rename, reindex now also accept axis keyword

– CategoricalDtype for specifying categoricals

– GroupBy objects now have a pipe method

– Categorical.rename_categories accepts a dict-like

– Other Enhancements

• Backwards incompatible API changes

– Dependencies have increased minimum versions

– Sum/Prod of all-NaN or empty Series/DataFrames is now consistently NaN

– Indexing with a list with missing labels is Deprecated

– NA naming Changes

– Iteration of Series/Index will now return Python scalars

– Indexing with a Boolean Index

– PeriodIndex resampling

– Improved error handling during item assignment in pd.eval

– Dtype Conversions

– MultiIndex Constructor with a Single Level

– UTC Localization with Series

– Consistency of Range Functions

– No Automatic Matplotlib Converters

– Other API Changes

• Deprecations

– Series.select and DataFrame.select

– Series.argmax and Series.argmin

• Removal of prior version deprecations/changes

• Performance Improvements

1.8. v0.21.0 (October 27, 2017) 57

pandas: powerful Python data analysis toolkit, Release 0.23.4

• Documentation Changes

• Bug Fixes

– Conversion

– Indexing

– I/O

– Plotting

– Groupby/Resample/Rolling

– Sparse

– Reshaping

– Numeric

– Categorical

– PyPy

– Other

1.8.1 New features

1.8.1.1 Integration with Apache Parquet file format

Integration with Apache Parquet, including a new top-level read_parquet() and DataFrame.to_parquet()
method, see here (GH15838, GH17438).

Apache Parquet provides a cross-language, binary file format for reading and writing data frames efficiently. Parquet is
designed to faithfully serialize and de-serialize DataFrame s, supporting all of the pandas dtypes, including extension
dtypes such as datetime with timezones.

This functionality depends on either the pyarrow or fastparquet library. For more details, see see the IO docs on
Parquet.

1.8.1.2 infer_objects type conversion

The DataFrame.infer_objects() and Series.infer_objects() methods have been added to perform
dtype inference on object columns, replacing some of the functionality of the deprecated convert_objects
method. See the documentation here for more details. (GH11221)

This method only performs soft conversions on object columns, converting Python objects to native types, but not any
coercive conversions. For example:

In [1]: df = pd.DataFrame({'A': [1, 2, 3],
...: 'B': np.array([1, 2, 3], dtype='object'),
...: 'C': ['1', '2', '3']})
...:

In [2]: df.dtypes
Out[2]:
A int64
B object
C object

(continues on next page)

58 Chapter 1. What’s New

https://parquet.apache.org/
https://github.com/pandas-dev/pandas/issues/15838
https://github.com/pandas-dev/pandas/issues/17438
https://parquet.apache.org/
http://arrow.apache.org/docs/python/
https://fastparquet.readthedocs.io/en/latest/
https://github.com/pandas-dev/pandas/issues/11221

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

dtype: object

In [3]: df.infer_objects().dtypes
\\\Out[3]:
A int64
B int64
C object
dtype: object

Note that column 'C' was not converted - only scalar numeric types will be converted to a new type.
Other types of conversion should be accomplished using the to_numeric() function (or to_datetime(),
to_timedelta()).

In [4]: df = df.infer_objects()

In [5]: df['C'] = pd.to_numeric(df['C'], errors='coerce')

In [6]: df.dtypes
Out[6]:
A int64
B int64
C int64
dtype: object

1.8.1.3 Improved warnings when attempting to create columns

New users are often puzzled by the relationship between column operations and attribute access on DataFrame
instances (GH7175). One specific instance of this confusion is attempting to create a new column by setting an
attribute on the DataFrame:

In[1]: df = pd.DataFrame({'one': [1., 2., 3.]})
In[2]: df.two = [4, 5, 6]

This does not raise any obvious exceptions, but also does not create a new column:

In[3]: df
Out[3]:

one
0 1.0
1 2.0
2 3.0

Setting a list-like data structure into a new attribute now raises a UserWarning about the potential for unexpected
behavior. See Attribute Access.

1.8.1.4 drop now also accepts index/columns keywords

The drop() method has gained index/columns keywords as an alternative to specifying the axis. This is similar
to the behavior of reindex (GH12392).

For example:

1.8. v0.21.0 (October 27, 2017) 59

https://github.com/pandas-dev/pandas/issues/7175
https://github.com/pandas-dev/pandas/issues/12392

pandas: powerful Python data analysis toolkit, Release 0.23.4

In [7]: df = pd.DataFrame(np.arange(8).reshape(2,4),
...: columns=['A', 'B', 'C', 'D'])
...:

In [8]: df
Out[8]:

A B C D
0 0 1 2 3
1 4 5 6 7

In [9]: df.drop(['B', 'C'], axis=1)
\\\Out[9]:

A D
0 0 3
1 4 7

the following is now equivalent
In [10]: df.drop(columns=['B', 'C'])
\\Out[10]:
→˓

A D
0 0 3
1 4 7

1.8.1.5 rename, reindex now also accept axis keyword

The DataFrame.rename() and DataFrame.reindex() methods have gained the axis keyword to specify
the axis to target with the operation (GH12392).

Here’s rename:

In [11]: df = pd.DataFrame({"A": [1, 2, 3], "B": [4, 5, 6]})

In [12]: df.rename(str.lower, axis='columns')
Out[12]:

a b
0 1 4
1 2 5
2 3 6

In [13]: df.rename(id, axis='index')
\\Out[13]:

A B
94270759180800 1 4
94270759180832 2 5
94270759180864 3 6

And reindex:

In [14]: df.reindex(['A', 'B', 'C'], axis='columns')
Out[14]:

A B C
0 1 4 NaN
1 2 5 NaN
2 3 6 NaN

(continues on next page)

60 Chapter 1. What’s New

https://github.com/pandas-dev/pandas/issues/12392

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

In [15]: df.reindex([0, 1, 3], axis='index')
\\Out[15]:

A B
0 1.0 4.0
1 2.0 5.0
3 NaN NaN

The “index, columns” style continues to work as before.

In [16]: df.rename(index=id, columns=str.lower)
Out[16]:

a b
94270759180800 1 4
94270759180832 2 5
94270759180864 3 6

In [17]: df.reindex(index=[0, 1, 3], columns=['A', 'B', 'C'])
\\Out[17]:
→˓

A B C
0 1.0 4.0 NaN
1 2.0 5.0 NaN
3 NaN NaN NaN

We highly encourage using named arguments to avoid confusion when using either style.

1.8.1.6 CategoricalDtype for specifying categoricals

pandas.api.types.CategoricalDtype has been added to the public API and expanded to include the
categories and ordered attributes. A CategoricalDtype can be used to specify the set of categories and
orderedness of an array, independent of the data. This can be useful for example, when converting string data to a
Categorical (GH14711, GH15078, GH16015, GH17643):

In [18]: from pandas.api.types import CategoricalDtype

In [19]: s = pd.Series(['a', 'b', 'c', 'a']) # strings

In [20]: dtype = CategoricalDtype(categories=['a', 'b', 'c', 'd'], ordered=True)

In [21]: s.astype(dtype)
Out[21]:
0 a
1 b
2 c
3 a
dtype: category
Categories (4, object): [a < b < c < d]

One place that deserves special mention is in read_csv(). Previously, with dtype={'col': 'category'},
the returned values and categories would always be strings.

In [22]: data = 'A,B\na,1\nb,2\nc,3'

In [23]: pd.read_csv(StringIO(data), dtype={'B': 'category'}).B.cat.categories
Out[23]: Index(['1', '2', '3'], dtype='object')

1.8. v0.21.0 (October 27, 2017) 61

https://github.com/pandas-dev/pandas/issues/14711
https://github.com/pandas-dev/pandas/issues/15078
https://github.com/pandas-dev/pandas/issues/16015
https://github.com/pandas-dev/pandas/issues/17643

pandas: powerful Python data analysis toolkit, Release 0.23.4

Notice the “object” dtype.

With a CategoricalDtype of all numerics, datetimes, or timedeltas, we can automatically convert to the correct
type

In [24]: dtype = {'B': CategoricalDtype([1, 2, 3])}

In [25]: pd.read_csv(StringIO(data), dtype=dtype).B.cat.categories
Out[25]: Int64Index([1, 2, 3], dtype='int64')

The values have been correctly interpreted as integers.

The .dtype property of a Categorical, CategoricalIndex or a Series with categorical type will now
return an instance of CategoricalDtype. While the repr has changed, str(CategoricalDtype()) is still
the string 'category'. We’ll take this moment to remind users that the preferred way to detect categorical data is
to use pandas.api.types.is_categorical_dtype(), and not str(dtype) == 'category'.

See the CategoricalDtype docs for more.

1.8.1.7 GroupBy objects now have a pipe method

GroupBy objects now have a pipemethod, similar to the one on DataFrame and Series, that allow for functions
that take a GroupBy to be composed in a clean, readable syntax. (GH17871)

For a concrete example on combining .groupby and .pipe , imagine having a DataFrame with columns for stores,
products, revenue and sold quantity. We’d like to do a groupwise calculation of prices (i.e. revenue/quantity) per store
and per product. We could do this in a multi-step operation, but expressing it in terms of piping can make the code
more readable.

First we set the data:

In [26]: import numpy as np

In [27]: n = 1000

In [28]: df = pd.DataFrame({'Store': np.random.choice(['Store_1', 'Store_2'], n),
....: 'Product': np.random.choice(['Product_1', 'Product_2',

→˓'Product_3'], n),
....: 'Revenue': (np.random.random(n)*50+10).round(2),
....: 'Quantity': np.random.randint(1, 10, size=n)})
....:

In [29]: df.head(2)
Out[29]:

Store Product Revenue Quantity
0 Store_1 Product_3 54.28 3
1 Store_2 Product_2 30.91 1

Now, to find prices per store/product, we can simply do:

In [30]: (df.groupby(['Store', 'Product'])
....: .pipe(lambda grp: grp.Revenue.sum()/grp.Quantity.sum())
....: .unstack().round(2))
....:

Out[30]:
Product Product_1 Product_2 Product_3
Store

(continues on next page)

62 Chapter 1. What’s New

https://github.com/pandas-dev/pandas/issues/17871

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

Store_1 6.37 6.98 7.49
Store_2 7.60 7.01 7.13

See the documentation for more.

1.8.1.8 Categorical.rename_categories accepts a dict-like

rename_categories() now accepts a dict-like argument for new_categories. The previous categories are
looked up in the dictionary’s keys and replaced if found. The behavior of missing and extra keys is the same as in
DataFrame.rename().

In [31]: c = pd.Categorical(['a', 'a', 'b'])

In [32]: c.rename_categories({"a": "eh", "b": "bee"})
Out[32]:
[eh, eh, bee]
Categories (2, object): [eh, bee]

Warning: To assist with upgrading pandas, rename_categories treats Series as list-like. Typically, Series
are considered to be dict-like (e.g. in .rename, .map). In a future version of pandas rename_categories
will change to treat them as dict-like. Follow the warning message’s recommendations for writing future-proof
code.

In [33]: c.rename_categories(pd.Series([0, 1], index=['a', 'c']))
FutureWarning: Treating Series 'new_categories' as a list-like and using the values.
In a future version, 'rename_categories' will treat Series like a dictionary.
For dict-like, use 'new_categories.to_dict()'
For list-like, use 'new_categories.values'.
Out[33]:
[0, 0, 1]
Categories (2, int64): [0, 1]

1.8.1.9 Other Enhancements

New functions or methods

• nearest() is added to support nearest-neighbor upsampling (GH17496).

• Index has added support for a to_frame method (GH15230).

New keywords

• Added a skipna parameter to infer_dtype() to support type inference in the presence of missing values
(GH17059).

• Series.to_dict() and DataFrame.to_dict() now support an into keyword which allows you to
specify the collections.Mapping subclass that you would like returned. The default is dict, which is
backwards compatible. (GH16122)

• Series.set_axis() and DataFrame.set_axis() now support the inplace parameter. (GH14636)

1.8. v0.21.0 (October 27, 2017) 63

https://github.com/pandas-dev/pandas/issues/17496
https://github.com/pandas-dev/pandas/issues/15230
https://github.com/pandas-dev/pandas/issues/17059
https://github.com/pandas-dev/pandas/issues/16122
https://github.com/pandas-dev/pandas/issues/14636

pandas: powerful Python data analysis toolkit, Release 0.23.4

• Series.to_pickle() and DataFrame.to_pickle() have gained a protocol parameter
(GH16252). By default, this parameter is set to HIGHEST_PROTOCOL

• read_feather() has gained the nthreads parameter for multi-threaded operations (GH16359)

• DataFrame.clip() and Series.clip() have gained an inplace argument. (GH15388)

• crosstab() has gained a margins_name parameter to define the name of the row / column that will contain
the totals when margins=True. (GH15972)

• read_json() now accepts a chunksize parameter that can be used when lines=True. If chunksize
is passed, read_json now returns an iterator which reads in chunksize lines with each iteration. (GH17048)

• read_json() and to_json() now accept a compression argument which allows them to transparently
handle compressed files. (GH17798)

Various enhancements

• Improved the import time of pandas by about 2.25x. (GH16764)

• Support for PEP 519 – Adding a file system path protocol on most readers (e.g. read_csv()) and writers
(e.g. DataFrame.to_csv()) (GH13823).

• Added a __fspath__ method to pd.HDFStore, pd.ExcelFile, and pd.ExcelWriter to work prop-
erly with the file system path protocol (GH13823).

• The validate argument for merge() now checks whether a merge is one-to-one, one-to-many, many-to-
one, or many-to-many. If a merge is found to not be an example of specified merge type, an exception of type
MergeError will be raised. For more, see here (GH16270)

• Added support for PEP 518 (pyproject.toml) to the build system (GH16745)

• RangeIndex.append() now returns a RangeIndex object when possible (GH16212)

• Series.rename_axis() and DataFrame.rename_axis() with inplace=True now return None
while renaming the axis inplace. (GH15704)

• api.types.infer_dtype() now infers decimals. (GH15690)

• DataFrame.select_dtypes() now accepts scalar values for include/exclude as well as list-like.
(GH16855)

• date_range() now accepts ‘YS’ in addition to ‘AS’ as an alias for start of year. (GH9313)

• date_range() now accepts ‘Y’ in addition to ‘A’ as an alias for end of year. (GH9313)

• DataFrame.add_prefix() and DataFrame.add_suffix() now accept strings containing the ‘%’
character. (GH17151)

• Read/write methods that infer compression (read_csv(), read_table(), read_pickle(), and
to_pickle()) can now infer from path-like objects, such as pathlib.Path. (GH17206)

• read_sas() now recognizes much more of the most frequently used date (datetime) formats in SAS7BDAT
files. (GH15871)

• DataFrame.items() and Series.items() are now present in both Python 2 and 3 and is lazy in all
cases. (GH13918, GH17213)

• pandas.io.formats.style.Styler.where() has been implemented as a convenience for pandas.
io.formats.style.Styler.applymap(). (GH17474)

• MultiIndex.is_monotonic_decreasing() has been implemented. Previously returned False in all
cases. (GH16554)

64 Chapter 1. What’s New

https://github.com/pandas-dev/pandas/issues/16252
https://docs.python.org/3/library/pickle.html#data-stream-format
https://github.com/pandas-dev/pandas/issues/16359
https://github.com/pandas-dev/pandas/issues/15388
https://github.com/pandas-dev/pandas/issues/15972
https://github.com/pandas-dev/pandas/issues/17048
https://github.com/pandas-dev/pandas/issues/17798
https://github.com/pandas-dev/pandas/issues/16764
https://www.python.org/dev/peps/pep-0519/
https://github.com/pandas-dev/pandas/issues/13823
https://github.com/pandas-dev/pandas/issues/13823
https://github.com/pandas-dev/pandas/issues/16270
https://www.python.org/dev/peps/pep-0518/
https://github.com/pandas-dev/pandas/issues/16745
https://github.com/pandas-dev/pandas/issues/16212
https://github.com/pandas-dev/pandas/issues/15704
https://github.com/pandas-dev/pandas/issues/15690
https://github.com/pandas-dev/pandas/issues/16855
https://github.com/pandas-dev/pandas/issues/9313
https://github.com/pandas-dev/pandas/issues/9313
https://github.com/pandas-dev/pandas/issues/17151
https://github.com/pandas-dev/pandas/issues/17206
https://github.com/pandas-dev/pandas/issues/15871
https://github.com/pandas-dev/pandas/issues/13918
https://github.com/pandas-dev/pandas/issues/17213
https://github.com/pandas-dev/pandas/issues/17474
https://github.com/pandas-dev/pandas/issues/16554

pandas: powerful Python data analysis toolkit, Release 0.23.4

• read_excel() raises ImportError with a better message if xlrd is not installed. (GH17613)

• DataFrame.assign() will preserve the original order of **kwargs for Python 3.6+ users instead of
sorting the column names. (GH14207)

• Series.reindex(), DataFrame.reindex(), Index.get_indexer() now support list-like argu-
ment for tolerance. (GH17367)

1.8.2 Backwards incompatible API changes

1.8.2.1 Dependencies have increased minimum versions

We have updated our minimum supported versions of dependencies (GH15206, GH15543, GH15214). If installed, we
now require:

Package Minimum Version Required
Numpy 1.9.0 X
Matplotlib 1.4.3
Scipy 0.14.0
Bottleneck 1.0.0

Additionally, support has been dropped for Python 3.4 (GH15251).

1.8.2.2 Sum/Prod of all-NaN or empty Series/DataFrames is now consistently NaN

Note: The changes described here have been partially reverted. See the v0.22.0 Whatsnew for more.

The behavior of sum and prod on all-NaN Series/DataFrames no longer depends on whether bottleneck is installed,
and return value of sum and prod on an empty Series has changed (GH9422, GH15507).

Calling sum or prod on an empty or all-NaN Series, or columns of a DataFrame, will result in NaN. See the
docs.

In [33]: s = Series([np.nan])

Previously WITHOUT bottleneck installed:

In [2]: s.sum()
Out[2]: np.nan

Previously WITH bottleneck:

In [2]: s.sum()
Out[2]: 0.0

New Behavior, without regard to the bottleneck installation:

In [34]: s.sum()
Out[34]: 0.0

Note that this also changes the sum of an empty Series. Previously this always returned 0 regardless of a
bottlenck installation:

1.8. v0.21.0 (October 27, 2017) 65

https://github.com/pandas-dev/pandas/issues/17613
https://github.com/pandas-dev/pandas/issues/14207
https://github.com/pandas-dev/pandas/issues/17367
https://github.com/pandas-dev/pandas/issues/15206
https://github.com/pandas-dev/pandas/issues/15543
https://github.com/pandas-dev/pandas/issues/15214
https://github.com/pandas-dev/pandas/issues/15251
http://berkeleyanalytics.com/bottleneck
https://github.com/pandas-dev/pandas/issues/9422
https://github.com/pandas-dev/pandas/issues/15507

pandas: powerful Python data analysis toolkit, Release 0.23.4

In [1]: pd.Series([]).sum()
Out[1]: 0

but for consistency with the all-NaN case, this was changed to return NaN as well:

In [35]: pd.Series([]).sum()
Out[35]: 0.0

1.8.2.3 Indexing with a list with missing labels is Deprecated

Previously, selecting with a list of labels, where one or more labels were missing would always succeed, returning NaN
for missing labels. This will now show a FutureWarning. In the future this will raise a KeyError (GH15747).
This warning will trigger on a DataFrame or a Series for using .loc[] or [[]] when passing a list-of-labels
with at least 1 missing label. See the deprecation docs.

In [36]: s = pd.Series([1, 2, 3])

In [37]: s
Out[37]:
0 1
1 2
2 3
dtype: int64

Previous Behavior

In [4]: s.loc[[1, 2, 3]]
Out[4]:
1 2.0
2 3.0
3 NaN
dtype: float64

Current Behavior

In [4]: s.loc[[1, 2, 3]]
Passing list-likes to .loc or [] with any missing label will raise
KeyError in the future, you can use .reindex() as an alternative.

See the documentation here:
http://pandas.pydata.org/pandas-docs/stable/indexing.html#deprecate-loc-reindex-
→˓listlike

Out[4]:
1 2.0
2 3.0
3 NaN
dtype: float64

The idiomatic way to achieve selecting potentially not-found elements is via .reindex()

In [38]: s.reindex([1, 2, 3])
Out[38]:
1 2.0
2 3.0

(continues on next page)

66 Chapter 1. What’s New

https://github.com/pandas-dev/pandas/issues/15747

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

3 NaN
dtype: float64

Selection with all keys found is unchanged.

In [39]: s.loc[[1, 2]]
Out[39]:
1 2
2 3
dtype: int64

1.8.2.4 NA naming Changes

In order to promote more consistency among the pandas API, we have added additional top-level functions isna()
and notna() that are aliases for isnull() and notnull(). The naming scheme is now more consistent with
methods like .dropna() and .fillna(). Furthermore in all cases where .isnull() and .notnull() meth-
ods are defined, these have additional methods named .isna() and .notna(), these are included for classes
Categorical, Index, Series, and DataFrame. (GH15001).

The configuration option pd.options.mode.use_inf_as_null is deprecated, and pd.options.mode.
use_inf_as_na is added as a replacement.

1.8.2.5 Iteration of Series/Index will now return Python scalars

Previously, when using certain iteration methods for a Series with dtype int or float, you would receive a
numpy scalar, e.g. a np.int64, rather than a Python int. Issue (GH10904) corrected this for Series.tolist()
and list(Series). This change makes all iteration methods consistent, in particular, for __iter__() and .
map(); note that this only affects int/float dtypes. (GH13236, GH13258, GH14216).

In [40]: s = pd.Series([1, 2, 3])

In [41]: s
Out[41]:
0 1
1 2
2 3
dtype: int64

Previously:

In [2]: type(list(s)[0])
Out[2]: numpy.int64

New Behaviour:

In [42]: type(list(s)[0])
Out[42]: int

Furthermore this will now correctly box the results of iteration for DataFrame.to_dict() as well.

In [43]: d = {'a':[1], 'b':['b']}

In [44]: df = pd.DataFrame(d)

1.8. v0.21.0 (October 27, 2017) 67

https://github.com/pandas-dev/pandas/issues/15001
https://github.com/pandas-dev/pandas/issues/10904
https://github.com/pandas-dev/pandas/issues/13236
https://github.com/pandas-dev/pandas/issues/13258
https://github.com/pandas-dev/pandas/issues/14216

pandas: powerful Python data analysis toolkit, Release 0.23.4

Previously:

In [8]: type(df.to_dict()['a'][0])
Out[8]: numpy.int64

New Behaviour:

In [45]: type(df.to_dict()['a'][0])
Out[45]: int

1.8.2.6 Indexing with a Boolean Index

Previously when passing a boolean Index to .loc, if the index of the Series/DataFrame had boolean labels,
you would get a label based selection, potentially duplicating result labels, rather than a boolean indexing selection
(where True selects elements), this was inconsistent how a boolean numpy array indexed. The new behavior is to act
like a boolean numpy array indexer. (GH17738)

Previous Behavior:

In [46]: s = pd.Series([1, 2, 3], index=[False, True, False])

In [47]: s
Out[47]:
False 1
True 2
False 3
dtype: int64

In [59]: s.loc[pd.Index([True, False, True])]
Out[59]:
True 2
False 1
False 3
True 2
dtype: int64

Current Behavior

In [48]: s.loc[pd.Index([True, False, True])]
Out[48]:
False 1
False 3
dtype: int64

Furthermore, previously if you had an index that was non-numeric (e.g. strings), then a boolean Index would raise a
KeyError. This will now be treated as a boolean indexer.

Previously Behavior:

In [49]: s = pd.Series([1,2,3], index=['a', 'b', 'c'])

In [50]: s
Out[50]:
a 1
b 2
c 3
dtype: int64

68 Chapter 1. What’s New

https://github.com/pandas-dev/pandas/issues/17738

pandas: powerful Python data analysis toolkit, Release 0.23.4

In [39]: s.loc[pd.Index([True, False, True])]
KeyError: "None of [Index([True, False, True], dtype='object')] are in the [index]"

Current Behavior

In [51]: s.loc[pd.Index([True, False, True])]
Out[51]:
a 1
c 3
dtype: int64

1.8.2.7 PeriodIndex resampling

In previous versions of pandas, resampling a Series/DataFrame indexed by a PeriodIndex returned a
DatetimeIndex in some cases (GH12884). Resampling to a multiplied frequency now returns a PeriodIndex
(GH15944). As a minor enhancement, resampling a PeriodIndex can now handle NaT values (GH13224)

Previous Behavior:

In [1]: pi = pd.period_range('2017-01', periods=12, freq='M')

In [2]: s = pd.Series(np.arange(12), index=pi)

In [3]: resampled = s.resample('2Q').mean()

In [4]: resampled
Out[4]:
2017-03-31 1.0
2017-09-30 5.5
2018-03-31 10.0
Freq: 2Q-DEC, dtype: float64

In [5]: resampled.index
Out[5]: DatetimeIndex(['2017-03-31', '2017-09-30', '2018-03-31'], dtype=
→˓'datetime64[ns]', freq='2Q-DEC')

New Behavior:

In [52]: pi = pd.period_range('2017-01', periods=12, freq='M')

In [53]: s = pd.Series(np.arange(12), index=pi)

In [54]: resampled = s.resample('2Q').mean()

In [55]: resampled
Out[55]:
2017Q1 2.5
2017Q3 8.5
Freq: 2Q-DEC, dtype: float64

In [56]: resampled.index
\\\Out[56]:
→˓PeriodIndex(['2017Q1', '2017Q3'], dtype='period[2Q-DEC]', freq='2Q-DEC')

Upsampling and calling .ohlc() previously returned a Series, basically identical to calling .asfreq(). OHLC
upsampling now returns a DataFrame with columns open, high, low and close (GH13083). This is consistent
with downsampling and DatetimeIndex behavior.

1.8. v0.21.0 (October 27, 2017) 69

https://github.com/pandas-dev/pandas/issues/12884
https://github.com/pandas-dev/pandas/issues/15944
https://github.com/pandas-dev/pandas/issues/13224
https://github.com/pandas-dev/pandas/issues/13083

pandas: powerful Python data analysis toolkit, Release 0.23.4

Previous Behavior:

In [1]: pi = pd.PeriodIndex(start='2000-01-01', freq='D', periods=10)

In [2]: s = pd.Series(np.arange(10), index=pi)

In [3]: s.resample('H').ohlc()
Out[3]:
2000-01-01 00:00 0.0

...
2000-01-10 23:00 NaN
Freq: H, Length: 240, dtype: float64

In [4]: s.resample('M').ohlc()
Out[4]:

open high low close
2000-01 0 9 0 9

New Behavior:

In [57]: pi = pd.PeriodIndex(start='2000-01-01', freq='D', periods=10)

In [58]: s = pd.Series(np.arange(10), index=pi)

In [59]: s.resample('H').ohlc()
Out[59]:

open high low close
2000-01-01 00:00 0.0 0.0 0.0 0.0
2000-01-01 01:00 NaN NaN NaN NaN
2000-01-01 02:00 NaN NaN NaN NaN
2000-01-01 03:00 NaN NaN NaN NaN
2000-01-01 04:00 NaN NaN NaN NaN
2000-01-01 05:00 NaN NaN NaN NaN
2000-01-01 06:00 NaN NaN NaN NaN
...
2000-01-10 17:00 NaN NaN NaN NaN
2000-01-10 18:00 NaN NaN NaN NaN
2000-01-10 19:00 NaN NaN NaN NaN
2000-01-10 20:00 NaN NaN NaN NaN
2000-01-10 21:00 NaN NaN NaN NaN
2000-01-10 22:00 NaN NaN NaN NaN
2000-01-10 23:00 NaN NaN NaN NaN

[240 rows x 4 columns]

In [60]: s.resample('M').ohlc()
\\Out[60]:
→˓

open high low close
2000-01 0 9 0 9

1.8.2.8 Improved error handling during item assignment in pd.eval

eval() will now raise a ValueError when item assignment malfunctions, or inplace operations are specified, but
there is no item assignment in the expression (GH16732)

70 Chapter 1. What’s New

https://github.com/pandas-dev/pandas/issues/16732

pandas: powerful Python data analysis toolkit, Release 0.23.4

In [61]: arr = np.array([1, 2, 3])

Previously, if you attempted the following expression, you would get a not very helpful error message:

In [3]: pd.eval("a = 1 + 2", target=arr, inplace=True)
...
IndexError: only integers, slices (`:`), ellipsis (`...`), numpy.newaxis (`None`)
and integer or boolean arrays are valid indices

This is a very long way of saying numpy arrays don’t support string-item indexing. With this change, the error message
is now this:

In [3]: pd.eval("a = 1 + 2", target=arr, inplace=True)
...
ValueError: Cannot assign expression output to target

It also used to be possible to evaluate expressions inplace, even if there was no item assignment:

In [4]: pd.eval("1 + 2", target=arr, inplace=True)
Out[4]: 3

However, this input does not make much sense because the output is not being assigned to the target. Now, a
ValueError will be raised when such an input is passed in:

In [4]: pd.eval("1 + 2", target=arr, inplace=True)
...
ValueError: Cannot operate inplace if there is no assignment

1.8.2.9 Dtype Conversions

Previously assignments, .where() and .fillna() with a bool assignment, would coerce to same the type (e.g.
int / float), or raise for datetimelikes. These will now preserve the bools with object dtypes. (GH16821).

In [62]: s = Series([1, 2, 3])

In [5]: s[1] = True

In [6]: s
Out[6]:
0 1
1 1
2 3
dtype: int64

New Behavior

In [63]: s[1] = True

In [64]: s
Out[64]:
0 1
1 True
2 3
dtype: object

1.8. v0.21.0 (October 27, 2017) 71

https://github.com/pandas-dev/pandas/issues/16821

pandas: powerful Python data analysis toolkit, Release 0.23.4

Previously, as assignment to a datetimelike with a non-datetimelike would coerce the non-datetime-like item being
assigned (GH14145).

In [65]: s = pd.Series([pd.Timestamp('2011-01-01'), pd.Timestamp('2012-01-01')])

In [1]: s[1] = 1

In [2]: s
Out[2]:
0 2011-01-01 00:00:00.000000000
1 1970-01-01 00:00:00.000000001
dtype: datetime64[ns]

These now coerce to object dtype.

In [66]: s[1] = 1

In [67]: s
Out[67]:
0 2011-01-01 00:00:00
1 1
dtype: object

• Inconsistent behavior in .where() with datetimelikes which would raise rather than coerce to object
(GH16402)

• Bug in assignment against int64 data with np.ndarray with float64 dtype may keep int64 dtype
(GH14001)

1.8.2.10 MultiIndex Constructor with a Single Level

The MultiIndex constructors no longer squeezes a MultiIndex with all length-one levels down to a regular Index.
This affects all the MultiIndex constructors. (GH17178)

Previous behavior:

In [2]: pd.MultiIndex.from_tuples([('a',), ('b',)])
Out[2]: Index(['a', 'b'], dtype='object')

Length 1 levels are no longer special-cased. They behave exactly as if you had length 2+ levels, so a MultiIndex
is always returned from all of the MultiIndex constructors:

In [68]: pd.MultiIndex.from_tuples([('a',), ('b',)])
Out[68]:
MultiIndex(levels=[['a', 'b']],

labels=[[0, 1]])

1.8.2.11 UTC Localization with Series

Previously, to_datetime() did not localize datetime Series data when utc=True was passed. Now,
to_datetime() will correctly localize Series with a datetime64[ns, UTC] dtype to be consistent with
how list-like and Index data are handled. (GH6415).

Previous Behavior

72 Chapter 1. What’s New

https://github.com/pandas-dev/pandas/issues/14145
https://github.com/pandas-dev/pandas/issues/16402
https://github.com/pandas-dev/pandas/issues/14001
https://github.com/pandas-dev/pandas/issues/17178
https://github.com/pandas-dev/pandas/issues/6415

pandas: powerful Python data analysis toolkit, Release 0.23.4

In [69]: s = Series(['20130101 00:00:00'] * 3)

In [12]: pd.to_datetime(s, utc=True)
Out[12]:
0 2013-01-01
1 2013-01-01
2 2013-01-01
dtype: datetime64[ns]

New Behavior

In [70]: pd.to_datetime(s, utc=True)
Out[70]:
0 2013-01-01 00:00:00+00:00
1 2013-01-01 00:00:00+00:00
2 2013-01-01 00:00:00+00:00
dtype: datetime64[ns, UTC]

Additionally, DataFrames with datetime columns that were parsed by read_sql_table() and
read_sql_query() will also be localized to UTC only if the original SQL columns were timezone aware
datetime columns.

1.8.2.12 Consistency of Range Functions

In previous versions, there were some inconsistencies between the various range functions: date_range(),
bdate_range(), period_range(), timedelta_range(), and interval_range(). (GH17471).

One of the inconsistent behaviors occurred when the start, end and period parameters were all specified, poten-
tially leading to ambiguous ranges. When all three parameters were passed, interval_range ignored the period
parameter, period_range ignored the end parameter, and the other range functions raised. To promote consistency
among the range functions, and avoid potentially ambiguous ranges, interval_range and period_range will
now raise when all three parameters are passed.

Previous Behavior:

In [2]: pd.interval_range(start=0, end=4, periods=6)
Out[2]:
IntervalIndex([(0, 1], (1, 2], (2, 3]]

closed='right',
dtype='interval[int64]')

In [3]: pd.period_range(start='2017Q1', end='2017Q4', periods=6, freq='Q')
Out[3]: PeriodIndex(['2017Q1', '2017Q2', '2017Q3', '2017Q4', '2018Q1', '2018Q2'],
→˓dtype='period[Q-DEC]', freq='Q-DEC')

New Behavior:

In [2]: pd.interval_range(start=0, end=4, periods=6)

ValueError: Of the three parameters: start, end, and periods, exactly two must be
→˓specified

In [3]: pd.period_range(start='2017Q1', end='2017Q4', periods=6, freq='Q')

ValueError: Of the three parameters: start, end, and periods, exactly two must be
→˓specified

1.8. v0.21.0 (October 27, 2017) 73

https://github.com/pandas-dev/pandas/issues/17471

pandas: powerful Python data analysis toolkit, Release 0.23.4

Additionally, the endpoint parameter end was not included in the intervals produced by interval_range. How-
ever, all other range functions include end in their output. To promote consistency among the range functions,
interval_range will now include end as the right endpoint of the final interval, except if freq is specified in a
way which skips end.

Previous Behavior:

In [4]: pd.interval_range(start=0, end=4)
Out[4]:
IntervalIndex([(0, 1], (1, 2], (2, 3]]

closed='right',
dtype='interval[int64]')

New Behavior:

In [71]: pd.interval_range(start=0, end=4)
Out[71]:
IntervalIndex([(0, 1], (1, 2], (2, 3], (3, 4]]

closed='right',
dtype='interval[int64]')

1.8.2.13 No Automatic Matplotlib Converters

Pandas no longer registers our date, time, datetime, datetime64, and Period converters with matplotlib
when pandas is imported. Matplotlib plot methods (plt.plot, ax.plot, . . .), will not nicely format the x-axis for
DatetimeIndex or PeriodIndex values. You must explicitly register these methods:

Pandas built-in Series.plot and DataFrame.plot will register these converters on first-use (GH17710).

Note: This change has been temporarily reverted in pandas 0.21.1, for more details see here.

1.8.2.14 Other API Changes

• The Categorical constructor no longer accepts a scalar for the categories keyword. (GH16022)

• Accessing a non-existent attribute on a closed HDFStore will now raise an AttributeError rather than a
ClosedFileError (GH16301)

• read_csv() now issues a UserWarning if the names parameter contains duplicates (GH17095)

• read_csv() now treats 'null' and 'n/a' strings as missing values by default (GH16471, GH16078)

• pandas.HDFStore’s string representation is now faster and less detailed. For the previous behavior, use
pandas.HDFStore.info(). (GH16503).

• Compression defaults in HDF stores now follow pytables standards. Default is no compression and if complib
is missing and complevel > 0 zlib is used (GH15943)

• Index.get_indexer_non_unique() now returns a ndarray indexer rather than an Index; this is con-
sistent with Index.get_indexer() (GH16819)

• Removed the @slow decorator from pandas.util.testing, which caused issues for some downstream
packages’ test suites. Use @pytest.mark.slow instead, which achieves the same thing (GH16850)

• Moved definition of MergeError to the pandas.errors module.

74 Chapter 1. What’s New

https://github.com/pandas-dev/pandas/issues/17710
https://github.com/pandas-dev/pandas/issues/16022
https://github.com/pandas-dev/pandas/issues/16301
https://github.com/pandas-dev/pandas/issues/17095
https://github.com/pandas-dev/pandas/issues/16471
https://github.com/pandas-dev/pandas/issues/16078
https://github.com/pandas-dev/pandas/issues/16503
https://github.com/pandas-dev/pandas/issues/15943
https://github.com/pandas-dev/pandas/issues/16819
https://github.com/pandas-dev/pandas/issues/16850

pandas: powerful Python data analysis toolkit, Release 0.23.4

• The signature of Series.set_axis() and DataFrame.set_axis() has been changed from
set_axis(axis, labels) to set_axis(labels, axis=0), for consistency with the rest of the
API. The old signature is deprecated and will show a FutureWarning (GH14636)

• Series.argmin() and Series.argmax() will now raise a TypeError when used with object
dtypes, instead of a ValueError (GH13595)

• Period is now immutable, and will now raise an AttributeError when a user tries to assign a new value
to the ordinal or freq attributes (GH17116).

• to_datetime() when passed a tz-aware origin= kwarg will now raise a more informative ValueError
rather than a TypeError (GH16842)

• to_datetime() now raises a ValueError when format includes %W or %U without also including day of
the week and calendar year (GH16774)

• Renamed non-functional index to index_col in read_stata() to improve API consistency (GH16342)

• Bug in DataFrame.drop() caused boolean labels False and True to be treated as labels 0 and 1 respec-
tively when dropping indices from a numeric index. This will now raise a ValueError (GH16877)

• Restricted DateOffset keyword arguments. Previously, DateOffset subclasses allowed arbitrary keyword
arguments which could lead to unexpected behavior. Now, only valid arguments will be accepted. (GH17176).

1.8.3 Deprecations

• DataFrame.from_csv() and Series.from_csv() have been deprecated in favor of read_csv()
(GH4191)

• read_excel() has deprecated sheetname in favor of sheet_name for consistency with .to_excel()
(GH10559).

• read_excel() has deprecated parse_cols in favor of usecols for consistency with read_csv()
(GH4988)

• read_csv() has deprecated the tupleize_cols argument. Column tuples will always be converted to a
MultiIndex (GH17060)

• DataFrame.to_csv() has deprecated the tupleize_cols argument. Multi-index columns will be al-
ways written as rows in the CSV file (GH17060)

• The convert parameter has been deprecated in the .take() method, as it was not being respected
(GH16948)

• pd.options.html.border has been deprecated in favor of pd.options.display.html.border
(GH15793).

• SeriesGroupBy.nth() has deprecated True in favor of 'all' for its kwarg dropna (GH11038).

• DataFrame.as_blocks() is deprecated, as this is exposing the internal implementation (GH17302)

• pd.TimeGrouper is deprecated in favor of pandas.Grouper (GH16747)

• cdate_range has been deprecated in favor of bdate_range(), which has gained weekmask and
holidays parameters for building custom frequency date ranges. See the documentation for more details
(GH17596)

• passing categories or ordered kwargs to Series.astype() is deprecated, in favor of passing a Cat-
egoricalDtype (GH17636)

• .get_value and .set_value on Series, DataFrame, Panel, SparseSeries, and
SparseDataFrame are deprecated in favor of using .iat[] or .at[] accessors (GH15269)

1.8. v0.21.0 (October 27, 2017) 75

https://github.com/pandas-dev/pandas/issues/14636
https://github.com/pandas-dev/pandas/issues/13595
https://github.com/pandas-dev/pandas/issues/17116
https://github.com/pandas-dev/pandas/issues/16842
https://github.com/pandas-dev/pandas/issues/16774
https://github.com/pandas-dev/pandas/issues/16342
https://github.com/pandas-dev/pandas/issues/16877
https://github.com/pandas-dev/pandas/issues/17176
https://github.com/pandas-dev/pandas/issues/4191
https://github.com/pandas-dev/pandas/issues/10559
https://github.com/pandas-dev/pandas/issues/4988
https://github.com/pandas-dev/pandas/issues/17060
https://github.com/pandas-dev/pandas/issues/17060
https://github.com/pandas-dev/pandas/issues/16948
https://github.com/pandas-dev/pandas/issues/15793
https://github.com/pandas-dev/pandas/issues/11038
https://github.com/pandas-dev/pandas/issues/17302
https://github.com/pandas-dev/pandas/issues/16747
https://github.com/pandas-dev/pandas/issues/17596
https://github.com/pandas-dev/pandas/issues/17636
https://github.com/pandas-dev/pandas/issues/15269

pandas: powerful Python data analysis toolkit, Release 0.23.4

• Passing a non-existent column in .to_excel(..., columns=) is deprecated and will raise a KeyError
in the future (GH17295)

• raise_on_error parameter to Series.where(), Series.mask(), DataFrame.where(),
DataFrame.mask() is deprecated, in favor of errors= (GH14968)

• Using DataFrame.rename_axis() and Series.rename_axis() to alter index or column labels is
now deprecated in favor of using .rename. rename_axis may still be used to alter the name of the index or
columns (GH17833).

• reindex_axis() has been deprecated in favor of reindex(). See here for more (GH17833).

1.8.3.1 Series.select and DataFrame.select

The Series.select() and DataFrame.select() methods are deprecated in favor of using df.
loc[labels.map(crit)] (GH12401)

In [72]: df = DataFrame({'A': [1, 2, 3]}, index=['foo', 'bar', 'baz'])

In [3]: df.select(lambda x: x in ['bar', 'baz'])
FutureWarning: select is deprecated and will be removed in a future release. You can
→˓use .loc[crit] as a replacement
Out[3]:

A
bar 2
baz 3

In [73]: df.loc[df.index.map(lambda x: x in ['bar', 'baz'])]
Out[73]:

A
bar 2
baz 3

1.8.3.2 Series.argmax and Series.argmin

The behavior of Series.argmax() and Series.argmin() have been deprecated in favor of Series.
idxmax() and Series.idxmin(), respectively (GH16830).

For compatibility with NumPy arrays, pd.Series implements argmax and argmin. Since pandas 0.13.0,
argmax has been an alias for pandas.Series.idxmax(), and argmin has been an alias for pandas.
Series.idxmin(). They return the label of the maximum or minimum, rather than the position.

We’ve deprecated the current behavior of Series.argmax and Series.argmin. Using either of these will emit
a FutureWarning. Use Series.idxmax() if you want the label of the maximum. Use Series.values.
argmax() if you want the position of the maximum. Likewise for the minimum. In a future release Series.
argmax and Series.argmin will return the position of the maximum or minimum.

1.8.4 Removal of prior version deprecations/changes

• read_excel() has dropped the has_index_names parameter (GH10967)

• The pd.options.display.height configuration has been dropped (GH3663)

• The pd.options.display.line_width configuration has been dropped (GH2881)

• The pd.options.display.mpl_style configuration has been dropped (GH12190)

76 Chapter 1. What’s New

https://github.com/pandas-dev/pandas/issues/17295
https://github.com/pandas-dev/pandas/issues/14968
https://github.com/pandas-dev/pandas/issues/17833
https://github.com/pandas-dev/pandas/issues/17833
https://github.com/pandas-dev/pandas/issues/12401
https://github.com/pandas-dev/pandas/issues/16830
https://github.com/pandas-dev/pandas/issues/10967
https://github.com/pandas-dev/pandas/issues/3663
https://github.com/pandas-dev/pandas/issues/2881
https://github.com/pandas-dev/pandas/issues/12190

pandas: powerful Python data analysis toolkit, Release 0.23.4

• Index has dropped the .sym_diff() method in favor of .symmetric_difference() (GH12591)

• Categorical has dropped the .order() and .sort() methods in favor of .sort_values()
(GH12882)

• eval() and DataFrame.eval() have changed the default of inplace from None to False (GH11149)

• The function get_offset_name has been dropped in favor of the .freqstr attribute for an offset
(GH11834)

• pandas no longer tests for compatibility with hdf5-files created with pandas < 0.11 (GH17404).

1.8.5 Performance Improvements

• Improved performance of instantiating SparseDataFrame (GH16773)

• Series.dt no longer performs frequency inference, yielding a large speedup when accessing the attribute
(GH17210)

• Improved performance of set_categories() by not materializing the values (GH17508)

• Timestamp.microsecond no longer re-computes on attribute access (GH17331)

• Improved performance of the CategoricalIndex for data that is already categorical dtype (GH17513)

• Improved performance of RangeIndex.min() and RangeIndex.max() by using RangeIndex prop-
erties to perform the computations (GH17607)

1.8.6 Documentation Changes

• Several NaT method docstrings (e.g. NaT.ctime()) were incorrect (GH17327)

• The documentation has had references to versions < v0.17 removed and cleaned up (GH17442, GH17442,
GH17404 & GH17504)

1.8.7 Bug Fixes

1.8.7.1 Conversion

• Bug in assignment against datetime-like data with int may incorrectly convert to datetime-like (GH14145)

• Bug in assignment against int64 data with np.ndarray with float64 dtype may keep int64 dtype
(GH14001)

• Fixed the return type of IntervalIndex.is_non_overlapping_monotonic to be a Python bool
for consistency with similar attributes/methods. Previously returned a numpy.bool_. (GH17237)

• Bug in IntervalIndex.is_non_overlapping_monotonic when intervals are closed on both sides
and overlap at a point (GH16560)

• Bug in Series.fillna() returns frame when inplace=True and value is dict (GH16156)

• Bug in Timestamp.weekday_name returning a UTC-based weekday name when localized to a timezone
(GH17354)

• Bug in Timestamp.replace when replacing tzinfo around DST changes (GH15683)

• Bug in Timedelta construction and arithmetic that would not propagate the Overflow exception (GH17367)

1.8. v0.21.0 (October 27, 2017) 77

https://github.com/pandas-dev/pandas/issues/12591
https://github.com/pandas-dev/pandas/issues/12882
https://github.com/pandas-dev/pandas/issues/11149
https://github.com/pandas-dev/pandas/issues/11834
https://github.com/pandas-dev/pandas/issues/17404
https://github.com/pandas-dev/pandas/issues/16773
https://github.com/pandas-dev/pandas/issues/17210
https://github.com/pandas-dev/pandas/issues/17508
https://github.com/pandas-dev/pandas/issues/17331
https://github.com/pandas-dev/pandas/issues/17513
https://github.com/pandas-dev/pandas/issues/17607
https://github.com/pandas-dev/pandas/issues/17327
https://github.com/pandas-dev/pandas/issues/17442
https://github.com/pandas-dev/pandas/issues/17442
https://github.com/pandas-dev/pandas/issues/17404
https://github.com/pandas-dev/pandas/issues/17504
https://github.com/pandas-dev/pandas/issues/14145
https://github.com/pandas-dev/pandas/issues/14001
https://github.com/pandas-dev/pandas/issues/17237
https://github.com/pandas-dev/pandas/issues/16560
https://github.com/pandas-dev/pandas/issues/16156
https://github.com/pandas-dev/pandas/issues/17354
https://github.com/pandas-dev/pandas/issues/15683
https://github.com/pandas-dev/pandas/issues/17367

pandas: powerful Python data analysis toolkit, Release 0.23.4

• Bug in astype() converting to object dtype when passed extension type classes (DatetimeTZDtype,
CategoricalDtype) rather than instances. Now a TypeError is raised when a class is passed (GH17780).

• Bug in to_numeric() in which elements were not always being coerced to numeric when
errors='coerce' (GH17007, GH17125)

• Bug in DataFrame and Series constructors where range objects are converted to int32 dtype on Win-
dows instead of int64 (GH16804)

1.8.7.2 Indexing

• When called with a null slice (e.g. df.iloc[:]), the .iloc and .loc indexers return a shallow copy of the
original object. Previously they returned the original object. (GH13873).

• When called on an unsorted MultiIndex, the loc indexer now will raise UnsortedIndexError only if
proper slicing is used on non-sorted levels (GH16734).

• Fixes regression in 0.20.3 when indexing with a string on a TimedeltaIndex (GH16896).

• Fixed TimedeltaIndex.get_loc() handling of np.timedelta64 inputs (GH16909).

• Fix MultiIndex.sort_index() ordering when ascending argument is a list, but not all levels are
specified, or are in a different order (GH16934).

• Fixes bug where indexing with np.inf caused an OverflowError to be raised (GH16957)

• Bug in reindexing on an empty CategoricalIndex (GH16770)

• Fixes DataFrame.loc for setting with alignment and tz-aware DatetimeIndex (GH16889)

• Avoids IndexError when passing an Index or Series to .iloc with older numpy (GH17193)

• Allow unicode empty strings as placeholders in multilevel columns in Python 2 (GH17099)

• Bug in .iloc when used with inplace addition or assignment and an int indexer on a MultiIndex causing
the wrong indexes to be read from and written to (GH17148)

• Bug in .isin() in which checking membership in empty Series objects raised an error (GH16991)

• Bug in CategoricalIndex reindexing in which specified indices containing duplicates were not being re-
spected (GH17323)

• Bug in intersection of RangeIndex with negative step (GH17296)

• Bug in IntervalIndex where performing a scalar lookup fails for included right endpoints of non-
overlapping monotonic decreasing indexes (GH16417, GH17271)

• Bug in DataFrame.first_valid_index() and DataFrame.last_valid_index() when no
valid entry (GH17400)

• Bug in Series.rename() when called with a callable, incorrectly alters the name of the Series, rather
than the name of the Index. (GH17407)

• Bug in String.str_get() raises IndexError instead of inserting NaNs when using a negative index.
(GH17704)

1.8.7.3 I/O

• Bug in read_hdf() when reading a timezone aware index from fixed format HDFStore (GH17618)

• Bug in read_csv() in which columns were not being thoroughly de-duplicated (GH17060)

• Bug in read_csv() in which specified column names were not being thoroughly de-duplicated (GH17095)

78 Chapter 1. What’s New

https://github.com/pandas-dev/pandas/issues/17780
https://github.com/pandas-dev/pandas/issues/17007
https://github.com/pandas-dev/pandas/issues/17125
https://github.com/pandas-dev/pandas/issues/16804
https://github.com/pandas-dev/pandas/issues/13873
https://github.com/pandas-dev/pandas/issues/16734
https://github.com/pandas-dev/pandas/issues/16896
https://github.com/pandas-dev/pandas/issues/16909
https://github.com/pandas-dev/pandas/issues/16934
https://github.com/pandas-dev/pandas/issues/16957
https://github.com/pandas-dev/pandas/issues/16770
https://github.com/pandas-dev/pandas/issues/16889
https://github.com/pandas-dev/pandas/issues/17193
https://github.com/pandas-dev/pandas/issues/17099
https://github.com/pandas-dev/pandas/issues/17148
https://github.com/pandas-dev/pandas/issues/16991
https://github.com/pandas-dev/pandas/issues/17323
https://github.com/pandas-dev/pandas/issues/17296
https://github.com/pandas-dev/pandas/issues/16417
https://github.com/pandas-dev/pandas/issues/17271
https://github.com/pandas-dev/pandas/issues/17400
https://github.com/pandas-dev/pandas/issues/17407
https://github.com/pandas-dev/pandas/issues/17704
https://github.com/pandas-dev/pandas/issues/17618
https://github.com/pandas-dev/pandas/issues/17060
https://github.com/pandas-dev/pandas/issues/17095

pandas: powerful Python data analysis toolkit, Release 0.23.4

• Bug in read_csv() in which non integer values for the header argument generated an unhelpful / unrelated
error message (GH16338)

• Bug in read_csv() in which memory management issues in exception handling, under certain conditions,
would cause the interpreter to segfault (GH14696, GH16798).

• Bug in read_csv() when called with low_memory=False in which a CSV with at least one column >
2GB in size would incorrectly raise a MemoryError (GH16798).

• Bug in read_csv() when called with a single-element list header would return a DataFrame of all NaN
values (GH7757)

• Bug in DataFrame.to_csv() defaulting to ‘ascii’ encoding in Python 3, instead of ‘utf-8’ (GH17097)

• Bug in read_stata() where value labels could not be read when using an iterator (GH16923)

• Bug in read_stata() where the index was not set (GH16342)

• Bug in read_html() where import check fails when run in multiple threads (GH16928)

• Bug in read_csv() where automatic delimiter detection caused a TypeError to be thrown when a bad line
was encountered rather than the correct error message (GH13374)

• Bug in DataFrame.to_html() with notebook=True where DataFrames with named indices or non-
MultiIndex indices had undesired horizontal or vertical alignment for column or row labels, respectively
(GH16792)

• Bug in DataFrame.to_html() in which there was no validation of the justify parameter (GH17527)

• Bug in HDFStore.select() when reading a contiguous mixed-data table featuring VLArray (GH17021)

• Bug in to_json() where several conditions (including objects with unprintable symbols, objects with deep
recursion, overlong labels) caused segfaults instead of raising the appropriate exception (GH14256)

1.8.7.4 Plotting

• Bug in plotting methods using secondary_y and fontsize not setting secondary axis font size (GH12565)

• Bug when plotting timedelta and datetime dtypes on y-axis (GH16953)

• Line plots no longer assume monotonic x data when calculating xlims, they show the entire lines now even for
unsorted x data. (GH11310, GH11471)

• With matplotlib 2.0.0 and above, calculation of x limits for line plots is left to matplotlib, so that its new default
settings are applied. (GH15495)

• Bug in Series.plot.bar or DataFrame.plot.bar with y not respecting user-passed color
(GH16822)

• Bug causing plotting.parallel_coordinates to reset the random seed when using random colors
(GH17525)

1.8.7.5 Groupby/Resample/Rolling

• Bug in DataFrame.resample(...).size() where an empty DataFrame did not return a Series
(GH14962)

• Bug in infer_freq() causing indices with 2-day gaps during the working week to be wrongly inferred as
business daily (GH16624)

• Bug in .rolling(...).quantile() which incorrectly used different defaults than Series.
quantile() and DataFrame.quantile() (GH9413, GH16211)

1.8. v0.21.0 (October 27, 2017) 79

https://github.com/pandas-dev/pandas/issues/16338
https://github.com/pandas-dev/pandas/issues/14696
https://github.com/pandas-dev/pandas/issues/16798
https://github.com/pandas-dev/pandas/issues/16798
https://github.com/pandas-dev/pandas/issues/7757
https://github.com/pandas-dev/pandas/issues/17097
https://github.com/pandas-dev/pandas/issues/16923
https://github.com/pandas-dev/pandas/issues/16342
https://github.com/pandas-dev/pandas/issues/16928
https://github.com/pandas-dev/pandas/issues/13374
https://github.com/pandas-dev/pandas/issues/16792
https://github.com/pandas-dev/pandas/issues/17527
https://github.com/pandas-dev/pandas/issues/17021
https://github.com/pandas-dev/pandas/issues/14256
https://github.com/pandas-dev/pandas/issues/12565
https://github.com/pandas-dev/pandas/issues/16953
https://github.com/pandas-dev/pandas/issues/11310
https://github.com/pandas-dev/pandas/issues/11471
https://github.com/pandas-dev/pandas/issues/15495
https://github.com/pandas-dev/pandas/issues/16822
https://github.com/pandas-dev/pandas/issues/17525
https://github.com/pandas-dev/pandas/issues/14962
https://github.com/pandas-dev/pandas/issues/16624
https://github.com/pandas-dev/pandas/issues/9413
https://github.com/pandas-dev/pandas/issues/16211

pandas: powerful Python data analysis toolkit, Release 0.23.4

• Bug in groupby.transform() that would coerce boolean dtypes back to float (GH16875)

• Bug in Series.resample(...).apply() where an empty Series modified the source index and did
not return the name of a Series (GH14313)

• Bug in .rolling(...).apply(...) with a DataFrame with a DatetimeIndex, a window of a
timedelta-convertible and min_periods >= 1 (GH15305)

• Bug in DataFrame.groupby where index and column keys were not recognized correctly when the number
of keys equaled the number of elements on the groupby axis (GH16859)

• Bug in groupby.nunique() with TimeGrouper which cannot handle NaT correctly (GH17575)

• Bug in DataFrame.groupby where a single level selection from a MultiIndex unexpectedly sorts
(GH17537)

• Bug in DataFrame.groupby where spurious warning is raised when Grouper object is used to override
ambiguous column name (GH17383)

• Bug in TimeGrouper differs when passes as a list and as a scalar (GH17530)

1.8.7.6 Sparse

• Bug in SparseSeries raises AttributeError when a dictionary is passed in as data (GH16905)

• Bug in SparseDataFrame.fillna() not filling all NaNs when frame was instantiated from SciPy sparse
matrix (GH16112)

• Bug in SparseSeries.unstack() and SparseDataFrame.stack() (GH16614, GH15045)

• Bug in make_sparse() treating two numeric/boolean data, which have same bits, as same when array dtype
is object (GH17574)

• SparseArray.all() and SparseArray.any() are now implemented to handle SparseArray, these
were used but not implemented (GH17570)

1.8.7.7 Reshaping

• Joining/Merging with a non unique PeriodIndex raised a TypeError (GH16871)

• Bug in crosstab() where non-aligned series of integers were casted to float (GH17005)

• Bug in merging with categorical dtypes with datetimelikes incorrectly raised a TypeError (GH16900)

• Bug when using isin() on a large object series and large comparison array (GH16012)

• Fixes regression from 0.20, Series.aggregate() and DataFrame.aggregate() allow dictionaries
as return values again (GH16741)

• Fixes dtype of result with integer dtype input, from pivot_table() when called with margins=True
(GH17013)

• Bug in crosstab() where passing two Series with the same name raised a KeyError (GH13279)

• Series.argmin(), Series.argmax(), and their counterparts on DataFrame and groupby objects
work correctly with floating point data that contains infinite values (GH13595).

• Bug in unique() where checking a tuple of strings raised a TypeError (GH17108)

• Bug in concat() where order of result index was unpredictable if it contained non-comparable elements
(GH17344)

80 Chapter 1. What’s New

https://github.com/pandas-dev/pandas/issues/16875
https://github.com/pandas-dev/pandas/issues/14313
https://github.com/pandas-dev/pandas/issues/15305
https://github.com/pandas-dev/pandas/issues/16859
https://github.com/pandas-dev/pandas/issues/17575
https://github.com/pandas-dev/pandas/issues/17537
https://github.com/pandas-dev/pandas/issues/17383
https://github.com/pandas-dev/pandas/issues/17530
https://github.com/pandas-dev/pandas/issues/16905
https://github.com/pandas-dev/pandas/issues/16112
https://github.com/pandas-dev/pandas/issues/16614
https://github.com/pandas-dev/pandas/issues/15045
https://github.com/pandas-dev/pandas/issues/17574
https://github.com/pandas-dev/pandas/issues/17570
https://github.com/pandas-dev/pandas/issues/16871
https://github.com/pandas-dev/pandas/issues/17005
https://github.com/pandas-dev/pandas/issues/16900
https://github.com/pandas-dev/pandas/issues/16012
https://github.com/pandas-dev/pandas/issues/16741
https://github.com/pandas-dev/pandas/issues/17013
https://github.com/pandas-dev/pandas/issues/13279
https://github.com/pandas-dev/pandas/issues/13595
https://github.com/pandas-dev/pandas/issues/17108
https://github.com/pandas-dev/pandas/issues/17344

pandas: powerful Python data analysis toolkit, Release 0.23.4

• Fixes regression when sorting by multiple columns on a datetime64 dtype Series with NaT values
(GH16836)

• Bug in pivot_table() where the result’s columns did not preserve the categorical dtype of columns when
dropna was False (GH17842)

• Bug in DataFrame.drop_duplicates where dropping with non-unique column names raised a
ValueError (GH17836)

• Bug in unstack() which, when called on a list of levels, would discard the fillna argument (GH13971)

• Bug in the alignment of range objects and other list-likes with DataFrame leading to operations being
performed row-wise instead of column-wise (GH17901)

1.8.7.8 Numeric

• Bug in .clip() with axis=1 and a list-like for threshold is passed; previously this raised ValueError
(GH15390)

• Series.clip() and DataFrame.clip() now treat NA values for upper and lower arguments as None
instead of raising ValueError (GH17276).

1.8.7.9 Categorical

• Bug in Series.isin() when called with a categorical (GH16639)

• Bug in the categorical constructor with empty values and categories causing the .categories to be an empty
Float64Index rather than an empty Index with object dtype (GH17248)

• Bug in categorical operations with Series.cat not preserving the original Series’ name (GH17509)

• Bug in DataFrame.merge() failing for categorical columns with boolean/int data types (GH17187)

• Bug in constructing a Categorical/CategoricalDtype when the specified categories are of cate-
gorical type (GH17884).

1.8.7.10 PyPy

• Compatibility with PyPy in read_csv() with usecols=[<unsorted ints>] and read_json()
(GH17351)

• Split tests into cases for CPython and PyPy where needed, which highlights the fragility of index matching with
float('nan'), np.nan and NAT (GH17351)

• Fix DataFrame.memory_usage() to support PyPy. Objects on PyPy do not have a fixed size, so an
approximation is used instead (GH17228)

1.8.7.11 Other

• Bug where some inplace operators were not being wrapped and produced a copy when invoked (GH12962)

• Bug in eval() where the inplace parameter was being incorrectly handled (GH16732)

1.8. v0.21.0 (October 27, 2017) 81

https://github.com/pandas-dev/pandas/issues/16836
https://github.com/pandas-dev/pandas/issues/17842
https://github.com/pandas-dev/pandas/issues/17836
https://github.com/pandas-dev/pandas/issues/13971
https://github.com/pandas-dev/pandas/issues/17901
https://github.com/pandas-dev/pandas/issues/15390
https://github.com/pandas-dev/pandas/issues/17276
https://github.com/pandas-dev/pandas/issues/16639
https://github.com/pandas-dev/pandas/issues/17248
https://github.com/pandas-dev/pandas/issues/17509
https://github.com/pandas-dev/pandas/issues/17187
https://github.com/pandas-dev/pandas/issues/17884
https://github.com/pandas-dev/pandas/issues/17351
https://github.com/pandas-dev/pandas/issues/17351
https://github.com/pandas-dev/pandas/issues/17228
https://github.com/pandas-dev/pandas/issues/12962
https://github.com/pandas-dev/pandas/issues/16732

pandas: powerful Python data analysis toolkit, Release 0.23.4

1.9 v0.20.3 (July 7, 2017)

This is a minor bug-fix release in the 0.20.x series and includes some small regression fixes and bug fixes. We
recommend that all users upgrade to this version.

What’s new in v0.20.3

• Bug Fixes

– Conversion

– Indexing

– I/O

– Plotting

– Reshaping

– Categorical

1.9.1 Bug Fixes

• Fixed a bug in failing to compute rolling computations of a column-MultiIndexed DataFrame (GH16789,
GH16825)

• Fixed a pytest marker failing downstream packages’ tests suites (GH16680)

1.9.1.1 Conversion

• Bug in pickle compat prior to the v0.20.x series, when UTC is a timezone in a Series/DataFrame/Index
(GH16608)

• Bug in Series construction when passing a Series with dtype='category' (GH16524).

• Bug in DataFrame.astype() when passing a Series as the dtype kwarg. (GH16717).

1.9.1.2 Indexing

• Bug in Float64Index causing an empty array instead of None to be returned from .get(np.nan) on a
Series whose index did not contain any NaN s (GH8569)

• Bug in MultiIndex.isin causing an error when passing an empty iterable (GH16777)

• Fixed a bug in a slicing DataFrame/Series that have a TimedeltaIndex (GH16637)

1.9.1.3 I/O

• Bug in read_csv() in which files weren’t opened as binary files by the C engine on Windows, causing EOF
characters mid-field, which would fail (GH16039, GH16559, GH16675)

• Bug in read_hdf() in which reading a Series saved to an HDF file in ‘fixed’ format fails when an explicit
mode='r' argument is supplied (GH16583)

82 Chapter 1. What’s New

https://github.com/pandas-dev/pandas/issues/16789
https://github.com/pandas-dev/pandas/issues/16825
https://github.com/pandas-dev/pandas/issues/16680
https://github.com/pandas-dev/pandas/issues/16608
https://github.com/pandas-dev/pandas/issues/16524
https://github.com/pandas-dev/pandas/issues/16717
https://github.com/pandas-dev/pandas/issues/8569
https://github.com/pandas-dev/pandas/issues/16777
https://github.com/pandas-dev/pandas/issues/16637
https://github.com/pandas-dev/pandas/issues/16039
https://github.com/pandas-dev/pandas/issues/16559
https://github.com/pandas-dev/pandas/issues/16675
https://github.com/pandas-dev/pandas/issues/16583

pandas: powerful Python data analysis toolkit, Release 0.23.4

• Bug in DataFrame.to_latex() where bold_rows was wrongly specified to be True by default,
whereas in reality row labels remained non-bold whatever parameter provided. (GH16707)

• Fixed an issue with DataFrame.style() where generated element ids were not unique (GH16780)

• Fixed loading a DataFrame with a PeriodIndex, from a format='fixed' HDFStore, in Python 3, that
was written in Python 2 (GH16781)

1.9.1.4 Plotting

• Fixed regression that prevented RGB and RGBA tuples from being used as color arguments (GH16233)

• Fixed an issue with DataFrame.plot.scatter() that incorrectly raised a KeyError when categorical
data is used for plotting (GH16199)

1.9.1.5 Reshaping

• PeriodIndex / TimedeltaIndex.join was missing the sort= kwarg (GH16541)

• Bug in joining on a MultiIndex with a category dtype for a level (GH16627).

• Bug in merge() when merging/joining with multiple categorical columns (GH16767)

1.9.1.6 Categorical

• Bug in DataFrame.sort_values not respecting the kind parameter with categorical data (GH16793)

1.10 v0.20.2 (June 4, 2017)

This is a minor bug-fix release in the 0.20.x series and includes some small regression fixes, bug fixes and performance
improvements. We recommend that all users upgrade to this version.

What’s new in v0.20.2

• Enhancements

• Performance Improvements

• Bug Fixes

– Conversion

– Indexing

– I/O

– Plotting

– Groupby/Resample/Rolling

– Sparse

– Reshaping

– Numeric

– Categorical

1.10. v0.20.2 (June 4, 2017) 83

https://github.com/pandas-dev/pandas/issues/16707
https://github.com/pandas-dev/pandas/issues/16780
https://github.com/pandas-dev/pandas/issues/16781
https://github.com/pandas-dev/pandas/issues/16233
https://github.com/pandas-dev/pandas/issues/16199
https://github.com/pandas-dev/pandas/issues/16541
https://github.com/pandas-dev/pandas/issues/16627
https://github.com/pandas-dev/pandas/issues/16767
https://github.com/pandas-dev/pandas/issues/16793

pandas: powerful Python data analysis toolkit, Release 0.23.4

– Other

1.10.1 Enhancements

• Unblocked access to additional compression types supported in pytables: ‘blosc:blosclz, ‘blosc:lz4’,
‘blosc:lz4hc’, ‘blosc:snappy’, ‘blosc:zlib’, ‘blosc:zstd’ (GH14478)

• Series provides a to_latex method (GH16180)

• A new groupby method ngroup(), parallel to the existing cumcount(), has been added to return the group
order (GH11642); see here.

1.10.2 Performance Improvements

• Performance regression fix when indexing with a list-like (GH16285)

• Performance regression fix for MultiIndexes (GH16319, GH16346)

• Improved performance of .clip() with scalar arguments (GH15400)

• Improved performance of groupby with categorical groupers (GH16413)

• Improved performance of MultiIndex.remove_unused_levels() (GH16556)

1.10.3 Bug Fixes

• Silenced a warning on some Windows environments about “tput: terminal attributes: No such device or address”
when detecting the terminal size. This fix only applies to python 3 (GH16496)

• Bug in using pathlib.Path or py.path.local objects with io functions (GH16291)

• Bug in Index.symmetric_difference() on two equal MultiIndex’s, results in a TypeError
(GH13490)

• Bug in DataFrame.update() with overwrite=False and NaN values (GH15593)

• Passing an invalid engine to read_csv() now raises an informative ValueError rather than
UnboundLocalError. (GH16511)

• Bug in unique() on an array of tuples (GH16519)

• Bug in cut() when labels are set, resulting in incorrect label ordering (GH16459)

• Fixed a compatibility issue with IPython 6.0’s tab completion showing deprecation warnings on
Categoricals (GH16409)

1.10.3.1 Conversion

• Bug in to_numeric() in which empty data inputs were causing a segfault of the interpreter (GH16302)

• Silence numpy warnings when broadcasting DataFrame to Series with comparison ops (GH16378,
GH16306)

84 Chapter 1. What’s New

https://github.com/pandas-dev/pandas/issues/14478
https://github.com/pandas-dev/pandas/issues/16180
https://github.com/pandas-dev/pandas/issues/11642
https://github.com/pandas-dev/pandas/issues/16285
https://github.com/pandas-dev/pandas/issues/16319
https://github.com/pandas-dev/pandas/issues/16346
https://github.com/pandas-dev/pandas/issues/15400
https://github.com/pandas-dev/pandas/issues/16413
https://github.com/pandas-dev/pandas/issues/16556
https://github.com/pandas-dev/pandas/issues/16496
https://github.com/pandas-dev/pandas/issues/16291
https://github.com/pandas-dev/pandas/issues/13490
https://github.com/pandas-dev/pandas/issues/15593
https://github.com/pandas-dev/pandas/issues/16511
https://github.com/pandas-dev/pandas/issues/16519
https://github.com/pandas-dev/pandas/issues/16459
https://github.com/pandas-dev/pandas/issues/16409
https://github.com/pandas-dev/pandas/issues/16302
https://github.com/pandas-dev/pandas/issues/16378
https://github.com/pandas-dev/pandas/issues/16306

pandas: powerful Python data analysis toolkit, Release 0.23.4

1.10.3.2 Indexing

• Bug in DataFrame.reset_index(level=) with single level index (GH16263)

• Bug in partial string indexing with a monotonic, but not strictly-monotonic, index incorrectly reversing the slice
bounds (GH16515)

• Bug in MultiIndex.remove_unused_levels() that would not return a MultiIndex equal to the
original. (GH16556)

1.10.3.3 I/O

• Bug in read_csv() when comment is passed in a space delimited text file (GH16472)

• Bug in read_csv() not raising an exception with nonexistent columns in usecols when it had the correct
length (GH14671)

• Bug that would force importing of the clipboard routines unnecessarily, potentially causing an import error on
startup (GH16288)

• Bug that raised IndexError when HTML-rendering an empty DataFrame (GH15953)

• Bug in read_csv() in which tarfile object inputs were raising an error in Python 2.x for the C engine
(GH16530)

• Bug where DataFrame.to_html() ignored the index_names parameter (GH16493)

• Bug where pd.read_hdf() returns numpy strings for index names (GH13492)

• Bug in HDFStore.select_as_multiple() where start/stop arguments were not respected (GH16209)

1.10.3.4 Plotting

• Bug in DataFrame.plot with a single column and a list-like color (GH3486)

• Bug in plot where NaT in DatetimeIndex results in Timestamp.min (GH12405)

• Bug in DataFrame.boxplot where figsize keyword was not respected for non-grouped boxplots
(GH11959)

1.10.3.5 Groupby/Resample/Rolling

• Bug in creating a time-based rolling window on an empty DataFrame (GH15819)

• Bug in rolling.cov() with offset window (GH16058)

• Bug in .resample() and .groupby() when aggregating on integers (GH16361)

1.10.3.6 Sparse

• Bug in construction of SparseDataFrame from scipy.sparse.dok_matrix (GH16179)

1.10. v0.20.2 (June 4, 2017) 85

https://github.com/pandas-dev/pandas/issues/16263
https://github.com/pandas-dev/pandas/issues/16515
https://github.com/pandas-dev/pandas/issues/16556
https://github.com/pandas-dev/pandas/issues/16472
https://github.com/pandas-dev/pandas/issues/14671
https://github.com/pandas-dev/pandas/issues/16288
https://github.com/pandas-dev/pandas/issues/15953
https://github.com/pandas-dev/pandas/issues/16530
https://github.com/pandas-dev/pandas/issues/16493
https://github.com/pandas-dev/pandas/issues/13492
https://github.com/pandas-dev/pandas/issues/16209
https://github.com/pandas-dev/pandas/issues/3486
https://github.com/pandas-dev/pandas/issues/12405
https://github.com/pandas-dev/pandas/issues/11959
https://github.com/pandas-dev/pandas/issues/15819
https://github.com/pandas-dev/pandas/issues/16058
https://github.com/pandas-dev/pandas/issues/16361
https://github.com/pandas-dev/pandas/issues/16179

pandas: powerful Python data analysis toolkit, Release 0.23.4

1.10.3.7 Reshaping

• Bug in DataFrame.stack with unsorted levels in MultiIndex columns (GH16323)

• Bug in pd.wide_to_long() where no error was raised when i was not a unique identifier (GH16382)

• Bug in Series.isin(..) with a list of tuples (GH16394)

• Bug in construction of a DataFrame with mixed dtypes including an all-NaT column. (GH16395)

• Bug in DataFrame.agg() and Series.agg() with aggregating on non-callable attributes (GH16405)

1.10.3.8 Numeric

• Bug in .interpolate(), where limit_direction was not respected when limit=None (default)
was passed (GH16282)

1.10.3.9 Categorical

• Fixed comparison operations considering the order of the categories when both categoricals are unordered
(GH16014)

1.10.3.10 Other

• Bug in DataFrame.drop() with an empty-list with non-unique indices (GH16270)

1.11 v0.20.1 (May 5, 2017)

This is a major release from 0.19.2 and includes a number of API changes, deprecations, new features, enhancements,
and performance improvements along with a large number of bug fixes. We recommend that all users upgrade to this
version.

Highlights include:

• New .agg() API for Series/DataFrame similar to the groupby-rolling-resample API’s, see here

• Integration with the feather-format, including a new top-level pd.read_feather() and
DataFrame.to_feather() method, see here.

• The .ix indexer has been deprecated, see here

• Panel has been deprecated, see here

• Addition of an IntervalIndex and Interval scalar type, see here

• Improved user API when grouping by index levels in .groupby(), see here

• Improved support for UInt64 dtypes, see here

• A new orient for JSON serialization, orient='table', that uses the Table Schema spec and that gives the
possibility for a more interactive repr in the Jupyter Notebook, see here

• Experimental support for exporting styled DataFrames (DataFrame.style) to Excel, see here

• Window binary corr/cov operations now return a MultiIndexed DataFrame rather than a Panel, as Panel is
now deprecated, see here

• Support for S3 handling now uses s3fs, see here

86 Chapter 1. What’s New

https://github.com/pandas-dev/pandas/issues/16323
https://github.com/pandas-dev/pandas/issues/16382
https://github.com/pandas-dev/pandas/issues/16394
https://github.com/pandas-dev/pandas/issues/16395
https://github.com/pandas-dev/pandas/issues/16405
https://github.com/pandas-dev/pandas/issues/16282
https://github.com/pandas-dev/pandas/issues/16014
https://github.com/pandas-dev/pandas/issues/16270

pandas: powerful Python data analysis toolkit, Release 0.23.4

• Google BigQuery support now uses the pandas-gbq library, see here

Warning: Pandas has changed the internal structure and layout of the codebase. This can affect imports that are
not from the top-level pandas.* namespace, please see the changes here.

Check the API Changes and deprecations before updating.

Note: This is a combined release for 0.20.0 and and 0.20.1. Version 0.20.1 contains one additional change for
backwards-compatibility with downstream projects using pandas’ utils routines. (GH16250)

What’s new in v0.20.0

• New features

– agg API for DataFrame/Series

– dtype keyword for data IO

– .to_datetime() has gained an origin parameter

– Groupby Enhancements

– Better support for compressed URLs in read_csv

– Pickle file I/O now supports compression

– UInt64 Support Improved

– GroupBy on Categoricals

– Table Schema Output

– SciPy sparse matrix from/to SparseDataFrame

– Excel output for styled DataFrames

– IntervalIndex

– Other Enhancements

• Backwards incompatible API changes

– Possible incompatibility for HDF5 formats created with pandas < 0.13.0

– Map on Index types now return other Index types

– Accessing datetime fields of Index now return Index

– pd.unique will now be consistent with extension types

– S3 File Handling

– Partial String Indexing Changes

– Concat of different float dtypes will not automatically upcast

– Pandas Google BigQuery support has moved

– Memory Usage for Index is more Accurate

– DataFrame.sort_index changes

1.11. v0.20.1 (May 5, 2017) 87

https://github.com/pandas-dev/pandas/issues/16250

pandas: powerful Python data analysis toolkit, Release 0.23.4

– Groupby Describe Formatting

– Window Binary Corr/Cov operations return a MultiIndex DataFrame

– HDFStore where string comparison

– Index.intersection and inner join now preserve the order of the left Index

– Pivot Table always returns a DataFrame

– Other API Changes

• Reorganization of the library: Privacy Changes

– Modules Privacy Has Changed

– pandas.errors

– pandas.testing

– pandas.plotting

– Other Development Changes

• Deprecations

– Deprecate .ix

– Deprecate Panel

– Deprecate groupby.agg() with a dictionary when renaming

– Deprecate .plotting

– Other Deprecations

• Removal of prior version deprecations/changes

• Performance Improvements

• Bug Fixes

– Conversion

– Indexing

– I/O

– Plotting

– Groupby/Resample/Rolling

– Sparse

– Reshaping

– Numeric

– Other

1.11.1 New features

1.11.1.1 agg API for DataFrame/Series

Series & DataFrame have been enhanced to support the aggregation API. This is a familiar API from groupby,
window operations, and resampling. This allows aggregation operations in a concise way by using agg() and

88 Chapter 1. What’s New

pandas: powerful Python data analysis toolkit, Release 0.23.4

transform(). The full documentation is here (GH1623).

Here is a sample

In [1]: df = pd.DataFrame(np.random.randn(10, 3), columns=['A', 'B', 'C'],
...: index=pd.date_range('1/1/2000', periods=10))
...:

In [2]: df.iloc[3:7] = np.nan

In [3]: df
Out[3]:

A B C
2000-01-01 1.682600 0.413582 1.689516
2000-01-02 -2.099110 -1.180182 1.595661
2000-01-03 -0.419048 0.522165 -1.208946
2000-01-04 NaN NaN NaN
2000-01-05 NaN NaN NaN
2000-01-06 NaN NaN NaN
2000-01-07 NaN NaN NaN
2000-01-08 0.955435 -0.133009 2.011466
2000-01-09 0.578780 0.897126 -0.980013
2000-01-10 -0.045748 0.361601 -0.208039

One can operate using string function names, callables, lists, or dictionaries of these.

Using a single function is equivalent to .apply.

In [4]: df.agg('sum')
Out[4]:
A 0.652908
B 0.881282
C 2.899645
dtype: float64

Multiple aggregations with a list of functions.

In [5]: df.agg(['sum', 'min'])
Out[5]:

A B C
sum 0.652908 0.881282 2.899645
min -2.099110 -1.180182 -1.208946

Using a dict provides the ability to apply specific aggregations per column. You will get a matrix-like output of all of
the aggregators. The output has one column per unique function. Those functions applied to a particular column will
be NaN:

In [6]: df.agg({'A' : ['sum', 'min'], 'B' : ['min', 'max']})
Out[6]:

A B
max NaN 0.897126
min -2.099110 -1.180182
sum 0.652908 NaN

The API also supports a .transform() function for broadcasting results.

In [7]: df.transform(['abs', lambda x: x - x.min()])
Out[7]:

(continues on next page)

1.11. v0.20.1 (May 5, 2017) 89

https://github.com/pandas-dev/pandas/issues/1623

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

A B C
abs <lambda> abs <lambda> abs <lambda>

2000-01-01 1.682600 3.781710 0.413582 1.593764 1.689516 2.898461
2000-01-02 2.099110 0.000000 1.180182 0.000000 1.595661 2.804606
2000-01-03 0.419048 1.680062 0.522165 1.702346 1.208946 0.000000
2000-01-04 NaN NaN NaN NaN NaN NaN
2000-01-05 NaN NaN NaN NaN NaN NaN
2000-01-06 NaN NaN NaN NaN NaN NaN
2000-01-07 NaN NaN NaN NaN NaN NaN
2000-01-08 0.955435 3.054545 0.133009 1.047173 2.011466 3.220412
2000-01-09 0.578780 2.677890 0.897126 2.077307 0.980013 0.228932
2000-01-10 0.045748 2.053362 0.361601 1.541782 0.208039 1.000907

When presented with mixed dtypes that cannot be aggregated, .agg() will only take the valid aggregations. This is
similar to how groupby .agg() works. (GH15015)

In [8]: df = pd.DataFrame({'A': [1, 2, 3],
...: 'B': [1., 2., 3.],
...: 'C': ['foo', 'bar', 'baz'],
...: 'D': pd.date_range('20130101', periods=3)})
...:

In [9]: df.dtypes
Out[9]:
A int64
B float64
C object
D datetime64[ns]
dtype: object

In [10]: df.agg(['min', 'sum'])
Out[10]:

A B C D
min 1 1.0 bar 2013-01-01
sum 6 6.0 foobarbaz NaT

1.11.1.2 dtype keyword for data IO

The 'python' engine for read_csv(), as well as the read_fwf() function for parsing fixed-width text files
and read_excel() for parsing Excel files, now accept the dtype keyword argument for specifying the types of
specific columns (GH14295). See the io docs for more information.

In [11]: data = "a b\n1 2\n3 4"

In [12]: pd.read_fwf(StringIO(data)).dtypes
Out[12]:
a int64
b int64
dtype: object

In [13]: pd.read_fwf(StringIO(data), dtype={'a':'float64', 'b':'object'}).dtypes
\\Out[13]:
a float64
b object
dtype: object

90 Chapter 1. What’s New

https://github.com/pandas-dev/pandas/issues/15015
https://github.com/pandas-dev/pandas/issues/14295

pandas: powerful Python data analysis toolkit, Release 0.23.4

1.11.1.3 .to_datetime() has gained an origin parameter

to_datetime() has gained a new parameter, origin, to define a reference date from where to compute the
resulting timestamps when parsing numerical values with a specific unit specified. (GH11276, GH11745)

For example, with 1960-01-01 as the starting date:

In [14]: pd.to_datetime([1, 2, 3], unit='D', origin=pd.Timestamp('1960-01-01'))
Out[14]: DatetimeIndex(['1960-01-02', '1960-01-03', '1960-01-04'], dtype=
→˓'datetime64[ns]', freq=None)

The default is set at origin='unix', which defaults to 1970-01-01 00:00:00, which is commonly called
‘unix epoch’ or POSIX time. This was the previous default, so this is a backward compatible change.

In [15]: pd.to_datetime([1, 2, 3], unit='D')
Out[15]: DatetimeIndex(['1970-01-02', '1970-01-03', '1970-01-04'], dtype=
→˓'datetime64[ns]', freq=None)

1.11.1.4 Groupby Enhancements

Strings passed to DataFrame.groupby() as the by parameter may now reference either column names or index
level names. Previously, only column names could be referenced. This allows to easily group by a column and index
level at the same time. (GH5677)

In [16]: arrays = [['bar', 'bar', 'baz', 'baz', 'foo', 'foo', 'qux', 'qux'],
....: ['one', 'two', 'one', 'two', 'one', 'two', 'one', 'two']]
....:

In [17]: index = pd.MultiIndex.from_arrays(arrays, names=['first', 'second'])

In [18]: df = pd.DataFrame({'A': [1, 1, 1, 1, 2, 2, 3, 3],
....: 'B': np.arange(8)},
....: index=index)
....:

In [19]: df
Out[19]:

A B
first second
bar one 1 0

two 1 1
baz one 1 2

two 1 3
foo one 2 4

two 2 5
qux one 3 6

two 3 7

In [20]: df.groupby(['second', 'A']).sum()
\\Out[20]:
→˓

B
second A
one 1 2

2 4
3 6

(continues on next page)

1.11. v0.20.1 (May 5, 2017) 91

https://github.com/pandas-dev/pandas/issues/11276
https://github.com/pandas-dev/pandas/issues/11745
https://github.com/pandas-dev/pandas/issues/5677

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

two 1 4
2 5
3 7

1.11.1.5 Better support for compressed URLs in read_csv

The compression code was refactored (GH12688). As a result, reading dataframes from URLs in read_csv() or
read_table() now supports additional compression methods: xz, bz2, and zip (GH14570). Previously, only
gzip compression was supported. By default, compression of URLs and paths are now inferred using their file
extensions. Additionally, support for bz2 compression in the python 2 C-engine improved (GH14874).

In [21]: url = 'https://github.com/{repo}/raw/{branch}/{path}'.format(
....: repo = 'pandas-dev/pandas',
....: branch = 'master',
....: path = 'pandas/tests/io/parser/data/salaries.csv.bz2',
....:)
....:

In [22]: df = pd.read_table(url, compression='infer') # default, infer compression

In [23]: df = pd.read_table(url, compression='bz2') # explicitly specify compression

In [24]: df.head(2)
Out[24]:

S X E M
0 13876 1 1 1
1 11608 1 3 0

1.11.1.6 Pickle file I/O now supports compression

read_pickle(), DataFrame.to_pickle() and Series.to_pickle() can now read from and write to
compressed pickle files. Compression methods can be an explicit parameter or be inferred from the file extension. See
the docs here.

In [25]: df = pd.DataFrame({
....: 'A': np.random.randn(1000),
....: 'B': 'foo',
....: 'C': pd.date_range('20130101', periods=1000, freq='s')})
....:

Using an explicit compression type

In [26]: df.to_pickle("data.pkl.compress", compression="gzip")

In [27]: rt = pd.read_pickle("data.pkl.compress", compression="gzip")

In [28]: rt.head()
Out[28]:

A B C
0 1.578227 foo 2013-01-01 00:00:00
1 -0.230575 foo 2013-01-01 00:00:01
2 0.695530 foo 2013-01-01 00:00:02
3 -0.466001 foo 2013-01-01 00:00:03
4 -0.154972 foo 2013-01-01 00:00:04

92 Chapter 1. What’s New

https://github.com/pandas-dev/pandas/issues/12688
https://github.com/pandas-dev/pandas/issues/14570
https://github.com/pandas-dev/pandas/issues/14874

pandas: powerful Python data analysis toolkit, Release 0.23.4

The default is to infer the compression type from the extension (compression='infer'):

In [29]: df.to_pickle("data.pkl.gz")

In [30]: rt = pd.read_pickle("data.pkl.gz")

In [31]: rt.head()
Out[31]:

A B C
0 1.578227 foo 2013-01-01 00:00:00
1 -0.230575 foo 2013-01-01 00:00:01
2 0.695530 foo 2013-01-01 00:00:02
3 -0.466001 foo 2013-01-01 00:00:03
4 -0.154972 foo 2013-01-01 00:00:04

In [32]: df["A"].to_pickle("s1.pkl.bz2")

In [33]: rt = pd.read_pickle("s1.pkl.bz2")

In [34]: rt.head()
Out[34]:
0 1.578227
1 -0.230575
2 0.695530
3 -0.466001
4 -0.154972
Name: A, dtype: float64

1.11.1.7 UInt64 Support Improved

Pandas has significantly improved support for operations involving unsigned, or purely non-negative, integers. Pre-
viously, handling these integers would result in improper rounding or data-type casting, leading to incorrect results.
Notably, a new numerical index, UInt64Index, has been created (GH14937)

In [35]: idx = pd.UInt64Index([1, 2, 3])

In [36]: df = pd.DataFrame({'A': ['a', 'b', 'c']}, index=idx)

In [37]: df.index
Out[37]: UInt64Index([1, 2, 3], dtype='uint64')

• Bug in converting object elements of array-like objects to unsigned 64-bit integers (GH4471, GH14982)

• Bug in Series.unique() in which unsigned 64-bit integers were causing overflow (GH14721)

• Bug in DataFrame construction in which unsigned 64-bit integer elements were being converted to objects
(GH14881)

• Bug in pd.read_csv() in which unsigned 64-bit integer elements were being improperly converted to the
wrong data types (GH14983)

• Bug in pd.unique() in which unsigned 64-bit integers were causing overflow (GH14915)

• Bug in pd.value_counts() in which unsigned 64-bit integers were being erroneously truncated in the
output (GH14934)

1.11. v0.20.1 (May 5, 2017) 93

https://github.com/pandas-dev/pandas/issues/14937
https://github.com/pandas-dev/pandas/issues/4471
https://github.com/pandas-dev/pandas/issues/14982
https://github.com/pandas-dev/pandas/issues/14721
https://github.com/pandas-dev/pandas/issues/14881
https://github.com/pandas-dev/pandas/issues/14983
https://github.com/pandas-dev/pandas/issues/14915
https://github.com/pandas-dev/pandas/issues/14934

pandas: powerful Python data analysis toolkit, Release 0.23.4

1.11.1.8 GroupBy on Categoricals

In previous versions, .groupby(..., sort=False) would fail with a ValueError when grouping on a cat-
egorical series with some categories not appearing in the data. (GH13179)

In [38]: chromosomes = np.r_[np.arange(1, 23).astype(str), ['X', 'Y']]

In [39]: df = pd.DataFrame({
....: 'A': np.random.randint(100),
....: 'B': np.random.randint(100),
....: 'C': np.random.randint(100),
....: 'chromosomes': pd.Categorical(np.random.choice(chromosomes, 100),
....: categories=chromosomes,
....: ordered=True)})
....:

In [40]: df
Out[40]:

A B C chromosomes
0 80 36 94 12
1 80 36 94 X
2 80 36 94 19
3 80 36 94 22
4 80 36 94 17
5 80 36 94 6
6 80 36 94 13
..
93 80 36 94 21
94 80 36 94 20
95 80 36 94 11
96 80 36 94 16
97 80 36 94 21
98 80 36 94 18
99 80 36 94 8

[100 rows x 4 columns]

Previous Behavior:

In [3]: df[df.chromosomes != '1'].groupby('chromosomes', sort=False).sum()

ValueError: items in new_categories are not the same as in old categories

New Behavior:

In [41]: df[df.chromosomes != '1'].groupby('chromosomes', sort=False).sum()
Out[41]:

A B C
chromosomes
2 320 144 376
3 400 180 470
4 240 108 282
5 240 108 282
6 400 180 470
7 400 180 470
8 480 216 564
...
19 400 180 470

(continues on next page)

94 Chapter 1. What’s New

https://github.com/pandas-dev/pandas/issues/13179

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

20 160 72 188
21 480 216 564
22 160 72 188
X 400 180 470
Y 320 144 376
1 0 0 0

[24 rows x 3 columns]

1.11.1.9 Table Schema Output

The new orient 'table' for DataFrame.to_json() will generate a Table Schema compatible string represen-
tation of the data.

In [42]: df = pd.DataFrame(
....: {'A': [1, 2, 3],
....: 'B': ['a', 'b', 'c'],
....: 'C': pd.date_range('2016-01-01', freq='d', periods=3),
....: }, index=pd.Index(range(3), name='idx'))
....:

In [43]: df
Out[43]:

A B C
idx
0 1 a 2016-01-01
1 2 b 2016-01-02
2 3 c 2016-01-03

In [44]: df.to_json(orient='table')
\\\Out[44]:
→˓'{"schema": {"fields":[{"name":"idx","type":"integer"},{"name":"A","type":"integer"}
→˓,{"name":"B","type":"string"},{"name":"C","type":"datetime"}],"primaryKey":["idx"],
→˓"pandas_version":"0.20.0"}, "data": [{"idx":0,"A":1,"B":"a","C":"2016-01-
→˓01T00:00:00.000Z"},{"idx":1,"A":2,"B":"b","C":"2016-01-02T00:00:00.000Z"},{"idx":2,
→˓"A":3,"B":"c","C":"2016-01-03T00:00:00.000Z"}]}'

See IO: Table Schema for more information.

Additionally, the repr for DataFrame and Series can now publish this JSON Table schema representation of the
Series or DataFrame if you are using IPython (or another frontend like nteract using the Jupyter messaging protocol).
This gives frontends like the Jupyter notebook and nteract more flexiblity in how they display pandas objects, since
they have more information about the data. You must enable this by setting the display.html.table_schema
option to True.

1.11.1.10 SciPy sparse matrix from/to SparseDataFrame

Pandas now supports creating sparse dataframes directly from scipy.sparse.spmatrix instances. See the doc-
umentation for more information. (GH4343)

All sparse formats are supported, but matrices that are not in COOrdinate format will be converted, copying data as
needed.

1.11. v0.20.1 (May 5, 2017) 95

http://specs.frictionlessdata.io/json-table-schema/
http://nteract.io/
http://nteract.io/
https://github.com/pandas-dev/pandas/issues/4343
https://docs.scipy.org/doc/scipy/reference/sparse.html#module-scipy.sparse

pandas: powerful Python data analysis toolkit, Release 0.23.4

In [45]: from scipy.sparse import csr_matrix

In [46]: arr = np.random.random(size=(1000, 5))

In [47]: arr[arr < .9] = 0

In [48]: sp_arr = csr_matrix(arr)

In [49]: sp_arr
Out[49]:
<1000x5 sparse matrix of type '<class 'numpy.float64'>'

with 521 stored elements in Compressed Sparse Row format>

In [50]: sdf = pd.SparseDataFrame(sp_arr)

In [51]: sdf
Out[51]:

0 1 2 3 4
0 NaN NaN NaN NaN NaN
1 NaN NaN NaN 0.955103 NaN
2 NaN NaN NaN 0.900469 NaN
3 NaN NaN NaN NaN NaN
4 NaN 0.924771 NaN NaN NaN
5 NaN NaN NaN NaN NaN
6 NaN NaN NaN NaN NaN
..
993 NaN NaN NaN NaN NaN
994 NaN NaN NaN NaN 0.972191
995 NaN 0.979898 0.97901 NaN NaN
996 NaN NaN NaN NaN NaN
997 NaN NaN NaN NaN NaN
998 NaN NaN NaN NaN NaN
999 NaN NaN NaN NaN NaN

[1000 rows x 5 columns]

To convert a SparseDataFrame back to sparse SciPy matrix in COO format, you can use:

In [52]: sdf.to_coo()
Out[52]:
<1000x5 sparse matrix of type '<class 'numpy.float64'>'

with 521 stored elements in COOrdinate format>

1.11.1.11 Excel output for styled DataFrames

Experimental support has been added to export DataFrame.style formats to Excel using the openpyxl engine.
(GH15530)

For example, after running the following, styled.xlsx renders as below:

In [53]: np.random.seed(24)

In [54]: df = pd.DataFrame({'A': np.linspace(1, 10, 10)})

In [55]: df = pd.concat([df, pd.DataFrame(np.random.RandomState(24).randn(10, 4),
....: columns=list('BCDE'))],

(continues on next page)

96 Chapter 1. What’s New

https://github.com/pandas-dev/pandas/issues/15530

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

....: axis=1)

....:

In [56]: df.iloc[0, 2] = np.nan

In [57]: df
Out[57]:

A B C D E
0 1.0 1.329212 NaN -0.316280 -0.990810
1 2.0 -1.070816 -1.438713 0.564417 0.295722
2 3.0 -1.626404 0.219565 0.678805 1.889273
3 4.0 0.961538 0.104011 -0.481165 0.850229
4 5.0 1.453425 1.057737 0.165562 0.515018
5 6.0 -1.336936 0.562861 1.392855 -0.063328
6 7.0 0.121668 1.207603 -0.002040 1.627796
7 8.0 0.354493 1.037528 -0.385684 0.519818
8 9.0 1.686583 -1.325963 1.428984 -2.089354
9 10.0 -0.129820 0.631523 -0.586538 0.290720

In [58]: styled = df.style.\
....: applymap(lambda val: 'color: %s' % 'red' if val < 0 else 'black').\
....: highlight_max()
....:

In [59]: styled.to_excel('styled.xlsx', engine='openpyxl')

See the Style documentation for more detail.

1.11.1.12 IntervalIndex

pandas has gained an IntervalIndexwith its own dtype, interval as well as the Interval scalar type. These
allow first-class support for interval notation, specifically as a return type for the categories in cut() and qcut().
The IntervalIndex allows some unique indexing, see the docs. (GH7640, GH8625)

1.11. v0.20.1 (May 5, 2017) 97

https://github.com/pandas-dev/pandas/issues/7640
https://github.com/pandas-dev/pandas/issues/8625

pandas: powerful Python data analysis toolkit, Release 0.23.4

Warning: These indexing behaviors of the IntervalIndex are provisional and may change in a future version of
pandas. Feedback on usage is welcome.

Previous behavior:

The returned categories were strings, representing Intervals

In [1]: c = pd.cut(range(4), bins=2)

In [2]: c
Out[2]:
[(-0.003, 1.5], (-0.003, 1.5], (1.5, 3], (1.5, 3]]
Categories (2, object): [(-0.003, 1.5] < (1.5, 3]]

In [3]: c.categories
Out[3]: Index(['(-0.003, 1.5]', '(1.5, 3]'], dtype='object')

New behavior:

In [60]: c = pd.cut(range(4), bins=2)

In [61]: c
Out[61]:
[(-0.003, 1.5], (-0.003, 1.5], (1.5, 3.0], (1.5, 3.0]]
Categories (2, interval[float64]): [(-0.003, 1.5] < (1.5, 3.0]]

In [62]: c.categories
\\\Out[62]:
→˓

IntervalIndex([(-0.003, 1.5], (1.5, 3.0]]
closed='right',
dtype='interval[float64]')

Furthermore, this allows one to bin other data with these same bins, with NaN representing a missing value similar to
other dtypes.

In [63]: pd.cut([0, 3, 5, 1], bins=c.categories)
Out[63]:
[(-0.003, 1.5], (1.5, 3.0], NaN, (-0.003, 1.5]]
Categories (2, interval[float64]): [(-0.003, 1.5] < (1.5, 3.0]]

An IntervalIndex can also be used in Series and DataFrame as the index.

In [64]: df = pd.DataFrame({'A': range(4),
....: 'B': pd.cut([0, 3, 1, 1], bins=c.categories)}
....:).set_index('B')
....:

In [65]: df
Out[65]:

A
B
(-0.003, 1.5] 0
(1.5, 3.0] 1
(-0.003, 1.5] 2
(-0.003, 1.5] 3

98 Chapter 1. What’s New

pandas: powerful Python data analysis toolkit, Release 0.23.4

Selecting via a specific interval:

In [66]: df.loc[pd.Interval(1.5, 3.0)]
Out[66]:
A 1
Name: (1.5, 3.0], dtype: int64

Selecting via a scalar value that is contained in the intervals.

In [67]: df.loc[0]
Out[67]:

A
B
(-0.003, 1.5] 0
(-0.003, 1.5] 2
(-0.003, 1.5] 3

1.11.1.13 Other Enhancements

• DataFrame.rolling() now accepts the parameter closed='right'|'left'|'both'|'neither'
to choose the rolling window-endpoint closedness. See the documentation (GH13965)

• Integration with the feather-format, including a new top-level pd.read_feather() and
DataFrame.to_feather() method, see here.

• Series.str.replace() now accepts a callable, as replacement, which is passed to re.sub (GH15055)

• Series.str.replace() now accepts a compiled regular expression as a pattern (GH15446)

• Series.sort_index accepts parameters kind and na_position (GH13589, GH14444)

• DataFrame and DataFrame.groupby() have gained a nunique() method to count the distinct values
over an axis (GH14336, GH15197).

• DataFrame has gained a melt() method, equivalent to pd.melt(), for unpivoting from a wide to long
format (GH12640).

• pd.read_excel() now preserves sheet order when using sheetname=None (GH9930)

• Multiple offset aliases with decimal points are now supported (e.g. 0.5min is parsed as 30s) (GH8419)

• .isnull() and .notnull() have been added to Index object to make them more consistent with the
Series API (GH15300)

• New UnsortedIndexError (subclass of KeyError) raised when indexing/slicing into an unsorted Mul-
tiIndex (GH11897). This allows differentiation between errors due to lack of sorting or an incorrect key. See
here

• MultiIndex has gained a .to_frame() method to convert to a DataFrame (GH12397)

• pd.cut and pd.qcut now support datetime64 and timedelta64 dtypes (GH14714, GH14798)

• pd.qcut has gained the duplicates='raise'|'drop' option to control whether to raise on duplicated
edges (GH7751)

• Series provides a to_excel method to output Excel files (GH8825)

• The usecols argument in pd.read_csv() now accepts a callable function as a value (GH14154)

• The skiprows argument in pd.read_csv() now accepts a callable function as a value (GH10882)

• The nrows and chunksize arguments in pd.read_csv() are supported if both are passed (GH6774,
GH15755)

1.11. v0.20.1 (May 5, 2017) 99

https://github.com/pandas-dev/pandas/issues/13965
https://github.com/pandas-dev/pandas/issues/15055
https://github.com/pandas-dev/pandas/issues/15446
https://github.com/pandas-dev/pandas/issues/13589
https://github.com/pandas-dev/pandas/issues/14444
https://github.com/pandas-dev/pandas/issues/14336
https://github.com/pandas-dev/pandas/issues/15197
https://github.com/pandas-dev/pandas/issues/12640
https://github.com/pandas-dev/pandas/issues/9930
https://github.com/pandas-dev/pandas/issues/8419
https://github.com/pandas-dev/pandas/issues/15300
https://github.com/pandas-dev/pandas/issues/11897
https://github.com/pandas-dev/pandas/issues/12397
https://github.com/pandas-dev/pandas/issues/14714
https://github.com/pandas-dev/pandas/issues/14798
https://github.com/pandas-dev/pandas/issues/7751
https://github.com/pandas-dev/pandas/issues/8825
https://github.com/pandas-dev/pandas/issues/14154
https://github.com/pandas-dev/pandas/issues/10882
https://github.com/pandas-dev/pandas/issues/6774
https://github.com/pandas-dev/pandas/issues/15755

pandas: powerful Python data analysis toolkit, Release 0.23.4

• DataFrame.plot now prints a title above each subplot if suplots=True and title is a list of strings
(GH14753)

• DataFrame.plot can pass the matplotlib 2.0 default color cycle as a single string as color parameter, see
here. (GH15516)

• Series.interpolate() now supports timedelta as an index type with method='time' (GH6424)

• Addition of a level keyword to DataFrame/Series.rename to rename labels in the specified level of a
MultiIndex (GH4160).

• DataFrame.reset_index() will now interpret a tuple index.name as a key spanning across levels of
columns, if this is a MultiIndex (GH16164)

• Timedelta.isoformat method added for formatting Timedeltas as an ISO 8601 duration. See the
Timedelta docs (GH15136)

• .select_dtypes() now allows the string datetimetz to generically select datetimes with tz (GH14910)

• The .to_latex() method will now accept multicolumn and multirow arguments to use the accompa-
nying LaTeX enhancements

• pd.merge_asof() gained the option direction='backward'|'forward'|'nearest'
(GH14887)

• Series/DataFrame.asfreq() have gained a fill_value parameter, to fill missing values (GH3715).

• Series/DataFrame.resample.asfreq have gained a fill_value parameter, to fill missing values
during resampling (GH3715).

• pandas.util.hash_pandas_object() has gained the ability to hash a MultiIndex (GH15224)

• Series/DataFrame.squeeze() have gained the axis parameter. (GH15339)

• DataFrame.to_excel() has a new freeze_panes parameter to turn on Freeze Panes when exporting
to Excel (GH15160)

• pd.read_html() will parse multiple header rows, creating a MutliIndex header. (GH13434).

• HTML table output skips colspan or rowspan attribute if equal to 1. (GH15403)

• pandas.io.formats.style.Styler template now has blocks for easier extension, see the example
notebook (GH15649)

• Styler.render() now accepts **kwargs to allow user-defined variables in the template (GH15649)

• Compatibility with Jupyter notebook 5.0; MultiIndex column labels are left-aligned and MultiIndex row-labels
are top-aligned (GH15379)

• TimedeltaIndex now has a custom date-tick formatter specifically designed for nanosecond level precision
(GH8711)

• pd.api.types.union_categoricals gained the ignore_ordered argument to allow ignoring the
ordered attribute of unioned categoricals (GH13410). See the categorical union docs for more information.

• DataFrame.to_latex() and DataFrame.to_string() now allow optional header aliases.
(GH15536)

• Re-enable the parse_dates keyword of pd.read_excel() to parse string columns as dates (GH14326)

• Added .empty property to subclasses of Index. (GH15270)

• Enabled floor division for Timedelta and TimedeltaIndex (GH15828)

• pandas.io.json.json_normalize() gained the option errors='ignore'|'raise'; the default
is errors='raise' which is backward compatible. (GH14583)

100 Chapter 1. What’s New

https://github.com/pandas-dev/pandas/issues/14753
http://matplotlib.org/2.0.0/users/colors.html#cn-color-selection
https://github.com/pandas-dev/pandas/issues/15516
https://github.com/pandas-dev/pandas/issues/6424
https://github.com/pandas-dev/pandas/issues/4160
https://github.com/pandas-dev/pandas/issues/16164
https://en.wikipedia.org/wiki/ISO_8601#Durations
https://github.com/pandas-dev/pandas/issues/15136
https://github.com/pandas-dev/pandas/issues/14910
https://github.com/pandas-dev/pandas/issues/14887
https://github.com/pandas-dev/pandas/issues/3715
https://github.com/pandas-dev/pandas/issues/3715
https://github.com/pandas-dev/pandas/issues/15224
https://github.com/pandas-dev/pandas/issues/15339
https://github.com/pandas-dev/pandas/issues/15160
https://github.com/pandas-dev/pandas/issues/13434
https://github.com/pandas-dev/pandas/issues/15403
https://github.com/pandas-dev/pandas/issues/15649
https://github.com/pandas-dev/pandas/issues/15649
https://github.com/pandas-dev/pandas/issues/15379
https://github.com/pandas-dev/pandas/issues/8711
https://github.com/pandas-dev/pandas/issues/13410
https://github.com/pandas-dev/pandas/issues/15536
https://github.com/pandas-dev/pandas/issues/14326
https://github.com/pandas-dev/pandas/issues/15270
https://github.com/pandas-dev/pandas/issues/15828
https://github.com/pandas-dev/pandas/issues/14583

pandas: powerful Python data analysis toolkit, Release 0.23.4

• pandas.io.json.json_normalize() with an empty list will return an empty DataFrame
(GH15534)

• pandas.io.json.json_normalize() has gained a sep option that accepts str to separate joined
fields; the default is “.”, which is backward compatible. (GH14883)

• MultiIndex.remove_unused_levels() has been added to facilitate removing unused levels.
(GH15694)

• pd.read_csv() will now raise a ParserError error whenever any parsing error occurs (GH15913,
GH15925)

• pd.read_csv() now supports the error_bad_lines and warn_bad_lines arguments for the Python
parser (GH15925)

• The display.show_dimensions option can now also be used to specify whether the length of a Series
should be shown in its repr (GH7117).

• parallel_coordinates() has gained a sort_labels keyword argument that sorts class labels and the
colors assigned to them (GH15908)

• Options added to allow one to turn on/off using bottleneck and numexpr, see here (GH16157)

• DataFrame.style.bar() now accepts two more options to further customize the bar chart. Bar alignment
is set with align='left'|'mid'|'zero', the default is “left”, which is backward compatible; You can
now pass a list of color=[color_negative, color_positive]. (GH14757)

1.11.2 Backwards incompatible API changes

1.11.2.1 Possible incompatibility for HDF5 formats created with pandas < 0.13.0

pd.TimeSeries was deprecated officially in 0.17.0, though has already been an alias since 0.13.0. It has been
dropped in favor of pd.Series. (GH15098).

This may cause HDF5 files that were created in prior versions to become unreadable if pd.TimeSeries was used.
This is most likely to be for pandas < 0.13.0. If you find yourself in this situation. You can use a recent prior version
of pandas to read in your HDF5 files, then write them out again after applying the procedure below.

In [2]: s = pd.TimeSeries([1,2,3], index=pd.date_range('20130101', periods=3))

In [3]: s
Out[3]:
2013-01-01 1
2013-01-02 2
2013-01-03 3
Freq: D, dtype: int64

In [4]: type(s)
Out[4]: pandas.core.series.TimeSeries

In [5]: s = pd.Series(s)

In [6]: s
Out[6]:
2013-01-01 1
2013-01-02 2
2013-01-03 3
Freq: D, dtype: int64

(continues on next page)

1.11. v0.20.1 (May 5, 2017) 101

https://github.com/pandas-dev/pandas/issues/15534
https://github.com/pandas-dev/pandas/issues/14883
https://github.com/pandas-dev/pandas/issues/15694
https://github.com/pandas-dev/pandas/issues/15913
https://github.com/pandas-dev/pandas/issues/15925
https://github.com/pandas-dev/pandas/issues/15925
https://github.com/pandas-dev/pandas/issues/7117
https://github.com/pandas-dev/pandas/issues/15908
https://github.com/pandas-dev/pandas/issues/16157
https://github.com/pandas-dev/pandas/issues/14757
https://github.com/pandas-dev/pandas/issues/15098

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

In [7]: type(s)
Out[7]: pandas.core.series.Series

1.11.2.2 Map on Index types now return other Index types

map on an Index now returns an Index, not a numpy array (GH12766)

In [68]: idx = Index([1, 2])

In [69]: idx
Out[69]: Int64Index([1, 2], dtype='int64')

In [70]: mi = MultiIndex.from_tuples([(1, 2), (2, 4)])

In [71]: mi
Out[71]:
MultiIndex(levels=[[1, 2], [2, 4]],

labels=[[0, 1], [0, 1]])

Previous Behavior:

In [5]: idx.map(lambda x: x * 2)
Out[5]: array([2, 4])

In [6]: idx.map(lambda x: (x, x * 2))
Out[6]: array([(1, 2), (2, 4)], dtype=object)

In [7]: mi.map(lambda x: x)
Out[7]: array([(1, 2), (2, 4)], dtype=object)

In [8]: mi.map(lambda x: x[0])
Out[8]: array([1, 2])

New Behavior:

In [72]: idx.map(lambda x: x * 2)
Out[72]: Int64Index([2, 4], dtype='int64')

In [73]: idx.map(lambda x: (x, x * 2))
\\\Out[73]:
MultiIndex(levels=[[1, 2], [2, 4]],

labels=[[0, 1], [0, 1]])

In [74]: mi.map(lambda x: x)
\\\Out[74]:
→˓

MultiIndex(levels=[[1, 2], [2, 4]],
labels=[[0, 1], [0, 1]])

In [75]: mi.map(lambda x: x[0])
\\\Out[75]:
→˓Int64Index([1, 2], dtype='int64')

map on a Series with datetime64 values may return int64 dtypes rather than int32

102 Chapter 1. What’s New

https://github.com/pandas-dev/pandas/issues/12766

pandas: powerful Python data analysis toolkit, Release 0.23.4

In [76]: s = Series(date_range('2011-01-02T00:00', '2011-01-02T02:00', freq='H').tz_
→˓localize('Asia/Tokyo'))

In [77]: s
Out[77]:
0 2011-01-02 00:00:00+09:00
1 2011-01-02 01:00:00+09:00
2 2011-01-02 02:00:00+09:00
dtype: datetime64[ns, Asia/Tokyo]

Previous Behavior:

In [9]: s.map(lambda x: x.hour)
Out[9]:
0 0
1 1
2 2
dtype: int32

New Behavior:

In [78]: s.map(lambda x: x.hour)
Out[78]:
0 0
1 1
2 2
dtype: int64

1.11.2.3 Accessing datetime fields of Index now return Index

The datetime-related attributes (see here for an overview) of DatetimeIndex, PeriodIndex and
TimedeltaIndex previously returned numpy arrays. They will now return a new Index object, except in the
case of a boolean field, where the result will still be a boolean ndarray. (GH15022)

Previous behaviour:

In [1]: idx = pd.date_range("2015-01-01", periods=5, freq='10H')

In [2]: idx.hour
Out[2]: array([0, 10, 20, 6, 16], dtype=int32)

New Behavior:

In [79]: idx = pd.date_range("2015-01-01", periods=5, freq='10H')

In [80]: idx.hour
Out[80]: Int64Index([0, 10, 20, 6, 16], dtype='int64')

This has the advantage that specific Index methods are still available on the result. On the other hand, this might
have backward incompatibilities: e.g. compared to numpy arrays, Index objects are not mutable. To get the original
ndarray, you can always convert explicitly using np.asarray(idx.hour).

1.11.2.4 pd.unique will now be consistent with extension types

In prior versions, using Series.unique() and pandas.unique() on Categorical and tz-aware data-types
would yield different return types. These are now made consistent. (GH15903)

1.11. v0.20.1 (May 5, 2017) 103

https://github.com/pandas-dev/pandas/issues/15022
https://github.com/pandas-dev/pandas/issues/15903

pandas: powerful Python data analysis toolkit, Release 0.23.4

• Datetime tz-aware

Previous behaviour:

Series
In [5]: pd.Series([pd.Timestamp('20160101', tz='US/Eastern'),

pd.Timestamp('20160101', tz='US/Eastern')]).unique()
Out[5]: array([Timestamp('2016-01-01 00:00:00-0500', tz='US/Eastern')],
→˓dtype=object)

In [6]: pd.unique(pd.Series([pd.Timestamp('20160101', tz='US/Eastern'),
pd.Timestamp('20160101', tz='US/Eastern')]))

Out[6]: array(['2016-01-01T05:00:00.000000000'], dtype='datetime64[ns]')

Index
In [7]: pd.Index([pd.Timestamp('20160101', tz='US/Eastern'),

pd.Timestamp('20160101', tz='US/Eastern')]).unique()
Out[7]: DatetimeIndex(['2016-01-01 00:00:00-05:00'], dtype='datetime64[ns, US/
→˓Eastern]', freq=None)

In [8]: pd.unique([pd.Timestamp('20160101', tz='US/Eastern'),
pd.Timestamp('20160101', tz='US/Eastern')])

Out[8]: array(['2016-01-01T05:00:00.000000000'], dtype='datetime64[ns]')

New Behavior:

Series, returns an array of Timestamp tz-aware
In [81]: pd.Series([pd.Timestamp('20160101', tz='US/Eastern'),

....: pd.Timestamp('20160101', tz='US/Eastern')]).unique()

....:
Out[81]: array([Timestamp('2016-01-01 00:00:00-0500', tz='US/Eastern')],
→˓dtype=object)

In [82]: pd.unique(pd.Series([pd.Timestamp('20160101', tz='US/Eastern'),
....: pd.Timestamp('20160101', tz='US/Eastern')]))
....:

\\\Out[82]:
→˓array([Timestamp('2016-01-01 00:00:00-0500', tz='US/Eastern')], dtype=object)

Index, returns a DatetimeIndex
In [83]: pd.Index([pd.Timestamp('20160101', tz='US/Eastern'),

....: pd.Timestamp('20160101', tz='US/Eastern')]).unique()

....:
\\Out[83]:
→˓DatetimeIndex(['2016-01-01 05:00:00-05:00'], dtype='datetime64[ns, US/Eastern]',
→˓ freq=None)

In [84]: pd.unique(pd.Index([pd.Timestamp('20160101', tz='US/Eastern'),
....: pd.Timestamp('20160101', tz='US/Eastern')]))
....:

\\\Out[84]:
→˓DatetimeIndex(['2016-01-01 00:00:00-05:00'], dtype='datetime64[ns, US/Eastern]',
→˓ freq=None)

• Categoricals

Previous behaviour:

104 Chapter 1. What’s New

pandas: powerful Python data analysis toolkit, Release 0.23.4

In [1]: pd.Series(list('baabc'), dtype='category').unique()
Out[1]:
[b, a, c]
Categories (3, object): [b, a, c]

In [2]: pd.unique(pd.Series(list('baabc'), dtype='category'))
Out[2]: array(['b', 'a', 'c'], dtype=object)

New Behavior:

returns a Categorical
In [85]: pd.Series(list('baabc'), dtype='category').unique()
Out[85]:
[b, a, c]
Categories (3, object): [b, a, c]

In [86]: pd.unique(pd.Series(list('baabc'), dtype='category'))
\\Out[86]:
[b, a, c]
Categories (3, object): [b, a, c]

1.11.2.5 S3 File Handling

pandas now uses s3fs for handling S3 connections. This shouldn’t break any code. However, since s3fs is not a
required dependency, you will need to install it separately, like boto in prior versions of pandas. (GH11915).

1.11.2.6 Partial String Indexing Changes

DatetimeIndex Partial String Indexing now works as an exact match, provided that string resolution coincides with
index resolution, including a case when both are seconds (GH14826). See Slice vs. Exact Match for details.

In [87]: df = DataFrame({'a': [1, 2, 3]}, DatetimeIndex(['2011-12-31 23:59:59',
....: '2012-01-01 00:00:00',
....: '2012-01-01 00:00:01']))
....:

Previous Behavior:

In [4]: df['2011-12-31 23:59:59']
Out[4]:

a
2011-12-31 23:59:59 1

In [5]: df['a']['2011-12-31 23:59:59']
Out[5]:
2011-12-31 23:59:59 1
Name: a, dtype: int64

New Behavior:

In [4]: df['2011-12-31 23:59:59']
KeyError: '2011-12-31 23:59:59'

In [5]: df['a']['2011-12-31 23:59:59']
Out[5]: 1

1.11. v0.20.1 (May 5, 2017) 105

http://s3fs.readthedocs.io/
https://github.com/pandas-dev/pandas/issues/11915
https://github.com/pandas-dev/pandas/issues/14826

pandas: powerful Python data analysis toolkit, Release 0.23.4

1.11.2.7 Concat of different float dtypes will not automatically upcast

Previously, concat of multiple objects with different float dtypes would automatically upcast results to a dtype of
float64. Now the smallest acceptable dtype will be used (GH13247)

In [88]: df1 = pd.DataFrame(np.array([1.0], dtype=np.float32, ndmin=2))

In [89]: df1.dtypes
Out[89]:
0 float32
dtype: object

In [90]: df2 = pd.DataFrame(np.array([np.nan], dtype=np.float32, ndmin=2))

In [91]: df2.dtypes
Out[91]:
0 float32
dtype: object

Previous Behavior:

In [7]: pd.concat([df1, df2]).dtypes
Out[7]:
0 float64
dtype: object

New Behavior:

In [92]: pd.concat([df1, df2]).dtypes
Out[92]:
0 float32
dtype: object

1.11.2.8 Pandas Google BigQuery support has moved

pandas has split off Google BigQuery support into a separate package pandas-gbq. You can conda
install pandas-gbq -c conda-forge or pip install pandas-gbq to get it. The functional-
ity of read_gbq() and DataFrame.to_gbq() remain the same with the currently released version of
pandas-gbq=0.1.4. Documentation is now hosted here (GH15347)

1.11.2.9 Memory Usage for Index is more Accurate

In previous versions, showing .memory_usage() on a pandas structure that has an index, would only include
actual index values and not include structures that facilitated fast indexing. This will generally be different for Index
and MultiIndex and less-so for other index types. (GH15237)

Previous Behavior:

In [8]: index = Index(['foo', 'bar', 'baz'])

In [9]: index.memory_usage(deep=True)
Out[9]: 180

In [10]: index.get_loc('foo')
Out[10]: 0

(continues on next page)

106 Chapter 1. What’s New

https://github.com/pandas-dev/pandas/issues/13247
https://pandas-gbq.readthedocs.io/
https://github.com/pandas-dev/pandas/issues/15347
https://github.com/pandas-dev/pandas/issues/15237

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

In [11]: index.memory_usage(deep=True)
Out[11]: 180

New Behavior:

In [8]: index = Index(['foo', 'bar', 'baz'])

In [9]: index.memory_usage(deep=True)
Out[9]: 180

In [10]: index.get_loc('foo')
Out[10]: 0

In [11]: index.memory_usage(deep=True)
Out[11]: 260

1.11.2.10 DataFrame.sort_index changes

In certain cases, calling .sort_index() on a MultiIndexed DataFrame would return the same DataFrame without
seeming to sort. This would happen with a lexsorted, but non-monotonic levels. (GH15622, GH15687, GH14015,
GH13431, GH15797)

This is unchanged from prior versions, but shown for illustration purposes:

In [93]: df = DataFrame(np.arange(6), columns=['value'], index=MultiIndex.from_
→˓product([list('BA'), range(3)]))

In [94]: df
Out[94]:

value
B 0 0

1 1
2 2

A 0 3
1 4
2 5

In [95]: df.index.is_lexsorted()
Out[95]: False

In [96]: df.index.is_monotonic
\\\\\\\\\\\\\\\Out[96]: False

Sorting works as expected

In [97]: df.sort_index()
Out[97]:

value
A 0 3

1 4
2 5

B 0 0
1 1
2 2

1.11. v0.20.1 (May 5, 2017) 107

https://github.com/pandas-dev/pandas/issues/15622
https://github.com/pandas-dev/pandas/issues/15687
https://github.com/pandas-dev/pandas/issues/14015
https://github.com/pandas-dev/pandas/issues/13431
https://github.com/pandas-dev/pandas/issues/15797

pandas: powerful Python data analysis toolkit, Release 0.23.4

In [98]: df.sort_index().index.is_lexsorted()
Out[98]: True

In [99]: df.sort_index().index.is_monotonic
\\\\\\\\\\\\\\Out[99]: True

However, this example, which has a non-monotonic 2nd level, doesn’t behave as desired.

In [100]: df = pd.DataFrame(
.....: {'value': [1, 2, 3, 4]},
.....: index=pd.MultiIndex(levels=[['a', 'b'], ['bb', 'aa']],
.....: labels=[[0, 0, 1, 1], [0, 1, 0, 1]]))
.....:

In [101]: df
Out[101]:

value
a bb 1

aa 2
b bb 3

aa 4

Previous Behavior:

In [11]: df.sort_index()
Out[11]:

value
a bb 1

aa 2
b bb 3

aa 4

In [14]: df.sort_index().index.is_lexsorted()
Out[14]: True

In [15]: df.sort_index().index.is_monotonic
Out[15]: False

New Behavior:

In [102]: df.sort_index()
Out[102]:

value
a aa 2

bb 1
b aa 4

bb 3

In [103]: df.sort_index().index.is_lexsorted()
\\\Out[103]: True

In [104]: df.sort_index().index.is_monotonic
\\Out[104]:
→˓True

108 Chapter 1. What’s New

pandas: powerful Python data analysis toolkit, Release 0.23.4

1.11.2.11 Groupby Describe Formatting

The output formatting of groupby.describe() now labels the describe() metrics in the columns instead of
the index. This format is consistent with groupby.agg() when applying multiple functions at once. (GH4792)

Previous Behavior:

In [1]: df = pd.DataFrame({'A': [1, 1, 2, 2], 'B': [1, 2, 3, 4]})

In [2]: df.groupby('A').describe()
Out[2]:

B
A
1 count 2.000000

mean 1.500000
std 0.707107
min 1.000000
25% 1.250000
50% 1.500000
75% 1.750000
max 2.000000

2 count 2.000000
mean 3.500000
std 0.707107
min 3.000000
25% 3.250000
50% 3.500000
75% 3.750000
max 4.000000

In [3]: df.groupby('A').agg([np.mean, np.std, np.min, np.max])
Out[3]:

B
mean std amin amax

A
1 1.5 0.707107 1 2
2 3.5 0.707107 3 4

New Behavior:

In [105]: df = pd.DataFrame({'A': [1, 1, 2, 2], 'B': [1, 2, 3, 4]})

In [106]: df.groupby('A').describe()
Out[106]:

B
count mean std min 25% 50% 75% max

A
1 2.0 1.5 0.707107 1.0 1.25 1.5 1.75 2.0
2 2.0 3.5 0.707107 3.0 3.25 3.5 3.75 4.0

In [107]: df.groupby('A').agg([np.mean, np.std, np.min, np.max])
\\\Out[107]:
→˓

B
mean std amin amax

A
1 1.5 0.707107 1 2
2 3.5 0.707107 3 4

1.11. v0.20.1 (May 5, 2017) 109

https://github.com/pandas-dev/pandas/issues/4792

pandas: powerful Python data analysis toolkit, Release 0.23.4

1.11.2.12 Window Binary Corr/Cov operations return a MultiIndex DataFrame

A binary window operation, like .corr() or .cov(), when operating on a .rolling(..), .expanding(..
), or .ewm(..) object, will now return a 2-level MultiIndexed DataFrame rather than a Panel, as Panel
is now deprecated, see here. These are equivalent in function, but a MultiIndexed DataFrame enjoys more support
in pandas. See the section on Windowed Binary Operations for more information. (GH15677)

In [108]: np.random.seed(1234)

In [109]: df = pd.DataFrame(np.random.rand(100, 2),
.....: columns=pd.Index(['A', 'B'], name='bar'),
.....: index=pd.date_range('20160101',
.....: periods=100, freq='D', name='foo'))
.....:

In [110]: df.tail()
Out[110]:
bar A B
foo
2016-04-05 0.640880 0.126205
2016-04-06 0.171465 0.737086
2016-04-07 0.127029 0.369650
2016-04-08 0.604334 0.103104
2016-04-09 0.802374 0.945553

Previous Behavior:

In [2]: df.rolling(12).corr()
Out[2]:
<class 'pandas.core.panel.Panel'>
Dimensions: 100 (items) x 2 (major_axis) x 2 (minor_axis)
Items axis: 2016-01-01 00:00:00 to 2016-04-09 00:00:00
Major_axis axis: A to B
Minor_axis axis: A to B

New Behavior:

In [111]: res = df.rolling(12).corr()

In [112]: res.tail()
Out[112]:
bar A B
foo bar
2016-04-07 B -0.132090 1.000000
2016-04-08 A 1.000000 -0.145775

B -0.145775 1.000000
2016-04-09 A 1.000000 0.119645

B 0.119645 1.000000

Retrieving a correlation matrix for a cross-section

In [113]: df.rolling(12).corr().loc['2016-04-07']
Out[113]:
bar A B
foo bar
2016-04-07 A 1.00000 -0.13209

B -0.13209 1.00000

110 Chapter 1. What’s New

https://github.com/pandas-dev/pandas/issues/15677

pandas: powerful Python data analysis toolkit, Release 0.23.4

1.11.2.13 HDFStore where string comparison

In previous versions most types could be compared to string column in a HDFStore usually resulting in an invalid
comparison, returning an empty result frame. These comparisons will now raise a TypeError (GH15492)

In [114]: df = pd.DataFrame({'unparsed_date': ['2014-01-01', '2014-01-01']})

In [115]: df.to_hdf('store.h5', 'key', format='table', data_columns=True)

In [116]: df.dtypes
Out[116]:
unparsed_date object
dtype: object

Previous Behavior:

In [4]: pd.read_hdf('store.h5', 'key', where='unparsed_date > ts')
File "<string>", line 1

(unparsed_date > 1970-01-01 00:00:01.388552400)
^

SyntaxError: invalid token

New Behavior:

In [18]: ts = pd.Timestamp('2014-01-01')

In [19]: pd.read_hdf('store.h5', 'key', where='unparsed_date > ts')
TypeError: Cannot compare 2014-01-01 00:00:00 of
type <class 'pandas.tslib.Timestamp'> to string column

1.11.2.14 Index.intersection and inner join now preserve the order of the left Index

Index.intersection() now preserves the order of the calling Index (left) instead of the other Index (right)
(GH15582). This affects inner joins, DataFrame.join() and merge(), and the .align method.

• Index.intersection

In [117]: left = pd.Index([2, 1, 0])

In [118]: left
Out[118]: Int64Index([2, 1, 0], dtype='int64')

In [119]: right = pd.Index([1, 2, 3])

In [120]: right
Out[120]: Int64Index([1, 2, 3], dtype='int64')

Previous Behavior:

In [4]: left.intersection(right)
Out[4]: Int64Index([1, 2], dtype='int64')

New Behavior:

In [121]: left.intersection(right)
Out[121]: Int64Index([2, 1], dtype='int64')

1.11. v0.20.1 (May 5, 2017) 111

https://github.com/pandas-dev/pandas/issues/15492
https://github.com/pandas-dev/pandas/issues/15582

pandas: powerful Python data analysis toolkit, Release 0.23.4

• DataFrame.join and pd.merge

In [122]: left = pd.DataFrame({'a': [20, 10, 0]}, index=[2, 1, 0])

In [123]: left
Out[123]:

a
2 20
1 10
0 0

In [124]: right = pd.DataFrame({'b': [100, 200, 300]}, index=[1, 2, 3])

In [125]: right
Out[125]:

b
1 100
2 200
3 300

Previous Behavior:

In [4]: left.join(right, how='inner')
Out[4]:

a b
1 10 100
2 20 200

New Behavior:

In [126]: left.join(right, how='inner')
Out[126]:

a b
2 20 200
1 10 100

1.11.2.15 Pivot Table always returns a DataFrame

The documentation for pivot_table() states that a DataFrame is always returned. Here a bug is fixed that
allowed this to return a Series under certain circumstance. (GH4386)

In [127]: df = DataFrame({'col1': [3, 4, 5],
.....: 'col2': ['C', 'D', 'E'],
.....: 'col3': [1, 3, 9]})
.....:

In [128]: df
Out[128]:

col1 col2 col3
0 3 C 1
1 4 D 3
2 5 E 9

Previous Behavior:

112 Chapter 1. What’s New

https://github.com/pandas-dev/pandas/issues/4386

pandas: powerful Python data analysis toolkit, Release 0.23.4

In [2]: df.pivot_table('col1', index=['col3', 'col2'], aggfunc=np.sum)
Out[2]:
col3 col2
1 C 3
3 D 4
9 E 5
Name: col1, dtype: int64

New Behavior:

In [129]: df.pivot_table('col1', index=['col3', 'col2'], aggfunc=np.sum)
Out[129]:

col1
col3 col2
1 C 3
3 D 4
9 E 5

1.11.2.16 Other API Changes

• numexpr version is now required to be >= 2.4.6 and it will not be used at all if this requisite is not fulfilled
(GH15213).

• CParserError has been renamed to ParserError in pd.read_csv() and will be removed in the future
(GH12665)

• SparseArray.cumsum() and SparseSeries.cumsum() will now always return SparseArray and
SparseSeries respectively (GH12855)

• DataFrame.applymap()with an empty DataFramewill return a copy of the empty DataFrame instead
of a Series (GH8222)

• Series.map() now respects default values of dictionary subclasses with a __missing__ method, such as
collections.Counter (GH15999)

• .loc has compat with .ix for accepting iterators, and NamedTuples (GH15120)

• interpolate() and fillna() will raise a ValueError if the limit keyword argument is not greater
than 0. (GH9217)

• pd.read_csv() will now issue a ParserWarning whenever there are conflicting values provided by the
dialect parameter and the user (GH14898)

• pd.read_csv() will now raise a ValueError for the C engine if the quote character is larger than than
one byte (GH11592)

• inplace arguments now require a boolean value, else a ValueError is thrown (GH14189)

• pandas.api.types.is_datetime64_ns_dtype will now report True on a tz-aware dtype, similar
to pandas.api.types.is_datetime64_any_dtype

• DataFrame.asof() will return a null filled Series instead the scalar NaN if a match is not found
(GH15118)

• Specific support for copy.copy() and copy.deepcopy() functions on NDFrame objects (GH15444)

• Series.sort_values() accepts a one element list of bool for consistency with the behavior of
DataFrame.sort_values() (GH15604)

• .merge() and .join() on category dtype columns will now preserve the category dtype when possible
(GH10409)

1.11. v0.20.1 (May 5, 2017) 113

https://github.com/pandas-dev/pandas/issues/15213
https://github.com/pandas-dev/pandas/issues/12665
https://github.com/pandas-dev/pandas/issues/12855
https://github.com/pandas-dev/pandas/issues/8222
https://github.com/pandas-dev/pandas/issues/15999
https://github.com/pandas-dev/pandas/issues/15120
https://github.com/pandas-dev/pandas/issues/9217
https://github.com/pandas-dev/pandas/issues/14898
https://github.com/pandas-dev/pandas/issues/11592
https://github.com/pandas-dev/pandas/issues/14189
https://github.com/pandas-dev/pandas/issues/15118
https://github.com/pandas-dev/pandas/issues/15444
https://github.com/pandas-dev/pandas/issues/15604
https://github.com/pandas-dev/pandas/issues/10409

pandas: powerful Python data analysis toolkit, Release 0.23.4

• SparseDataFrame.default_fill_value will be 0, previously was nan in the return from pd.
get_dummies(..., sparse=True) (GH15594)

• The default behaviour of Series.str.match has changed from extracting groups to matching the pattern.
The extracting behaviour was deprecated since pandas version 0.13.0 and can be done with the Series.str.
extract method (GH5224). As a consequence, the as_indexer keyword is ignored (no longer needed to
specify the new behaviour) and is deprecated.

• NaT will now correctly report False for datetimelike boolean operations such as is_month_start
(GH15781)

• NaT will now correctly return np.nan for Timedelta and Period accessors such as days and quarter
(GH15782)

• NaT will now returns NaT for tz_localize and tz_convert methods (GH15830)

• DataFrame and Panel constructors with invalid input will now raise ValueError rather than
PandasError, if called with scalar inputs and not axes (GH15541)

• DataFrame and Panel constructors with invalid input will now raise ValueError rather than pandas.
core.common.PandasError, if called with scalar inputs and not axes; The exception PandasError is
removed as well. (GH15541)

• The exception pandas.core.common.AmbiguousIndexError is removed as it is not referenced
(GH15541)

1.11.3 Reorganization of the library: Privacy Changes

1.11.3.1 Modules Privacy Has Changed

Some formerly public python/c/c++/cython extension modules have been moved and/or renamed. These are all re-
moved from the public API. Furthermore, the pandas.core, pandas.compat, and pandas.util top-level
modules are now considered to be PRIVATE. If indicated, a deprecation warning will be issued if you reference theses
modules. (GH12588)

114 Chapter 1. What’s New

https://github.com/pandas-dev/pandas/issues/15594
https://github.com/pandas-dev/pandas/issues/5224
https://github.com/pandas-dev/pandas/issues/15781
https://github.com/pandas-dev/pandas/issues/15782
https://github.com/pandas-dev/pandas/issues/15830
https://github.com/pandas-dev/pandas/issues/15541
https://github.com/pandas-dev/pandas/issues/15541
https://github.com/pandas-dev/pandas/issues/15541
https://github.com/pandas-dev/pandas/issues/12588

pandas: powerful Python data analysis toolkit, Release 0.23.4

Previous Location New Location Deprecated
pandas.lib pandas._libs.lib X
pandas.tslib pandas._libs.tslib X
pandas.computation pandas.core.computation X
pandas.msgpack pandas.io.msgpack
pandas.index pandas._libs.index
pandas.algos pandas._libs.algos
pandas.hashtable pandas._libs.hashtable
pandas.indexes pandas.core.indexes
pandas.json pandas._libs.json / pandas.io.json X
pandas.parser pandas._libs.parsers X
pandas.formats pandas.io.formats
pandas.sparse pandas.core.sparse
pandas.tools pandas.core.reshape X
pandas.types pandas.core.dtypes X
pandas.io.sas.saslib pandas.io.sas._sas
pandas._join pandas._libs.join
pandas._hash pandas._libs.hashing
pandas._period pandas._libs.period
pandas._sparse pandas._libs.sparse
pandas._testing pandas._libs.testing
pandas._window pandas._libs.window

Some new subpackages are created with public functionality that is not directly exposed in the top-level namespace:
pandas.errors, pandas.plotting and pandas.testing (more details below). Together with pandas.
api.types and certain functions in the pandas.io and pandas.tseries submodules, these are now the public
subpackages.

Further changes:

• The function union_categoricals() is now importable from pandas.api.types, formerly from
pandas.types.concat (GH15998)

• The type import pandas.tslib.NaTType is deprecated and can be replaced by using type(pandas.
NaT) (GH16146)

• The public functions in pandas.tools.hashing deprecated from that locations, but are now importable
from pandas.util (GH16223)

• The modules in pandas.util: decorators, print_versions, doctools, validators,
depr_module are now private. Only the functions exposed in pandas.util itself are public (GH16223)

1.11.3.2 pandas.errors

We are adding a standard public module for all pandas exceptions & warnings pandas.errors. (GH14800). Pre-
viously these exceptions & warnings could be imported from pandas.core.common or pandas.io.common.
These exceptions and warnings will be removed from the *.common locations in a future release. (GH15541)

The following are now part of this API:

['DtypeWarning',
'EmptyDataError',
'OutOfBoundsDatetime',
'ParserError',

(continues on next page)

1.11. v0.20.1 (May 5, 2017) 115

https://github.com/pandas-dev/pandas/issues/15998
https://github.com/pandas-dev/pandas/issues/16146
https://github.com/pandas-dev/pandas/issues/16223
https://github.com/pandas-dev/pandas/issues/16223
https://github.com/pandas-dev/pandas/issues/14800
https://github.com/pandas-dev/pandas/issues/15541

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

'ParserWarning',
'PerformanceWarning',
'UnsortedIndexError',
'UnsupportedFunctionCall']

1.11.3.3 pandas.testing

We are adding a standard module that exposes the public testing functions in pandas.testing (GH9895). Those
functions can be used when writing tests for functionality using pandas objects.

The following testing functions are now part of this API:

• testing.assert_frame_equal()

• testing.assert_series_equal()

• testing.assert_index_equal()

1.11.3.4 pandas.plotting

A new public pandas.plotting module has been added that holds plotting functionality that was previously in
either pandas.tools.plotting or in the top-level namespace. See the deprecations sections for more details.

1.11.3.5 Other Development Changes

• Building pandas for development now requires cython >= 0.23 (GH14831)

• Require at least 0.23 version of cython to avoid problems with character encodings (GH14699)

• Switched the test framework to use pytest (GH13097)

• Reorganization of tests directory layout (GH14854, GH15707).

1.11.4 Deprecations

1.11.4.1 Deprecate .ix

The .ix indexer is deprecated, in favor of the more strict .iloc and .loc indexers. .ix offers a lot of magic on the
inference of what the user wants to do. To wit, .ix can decide to index positionally OR via labels, depending on the
data type of the index. This has caused quite a bit of user confusion over the years. The full indexing documentation
is here. (GH14218)

The recommended methods of indexing are:

• .loc if you want to label index

• .iloc if you want to positionally index.

Using .ix will now show a DeprecationWarning with a link to some examples of how to convert code here.

In [130]: df = pd.DataFrame({'A': [1, 2, 3],
.....: 'B': [4, 5, 6]},
.....: index=list('abc'))
.....:

(continues on next page)

116 Chapter 1. What’s New

https://github.com/pandas-dev/pandas/issues/9895
https://github.com/pandas-dev/pandas/issues/14831
https://github.com/pandas-dev/pandas/issues/14699
http://doc.pytest.org/en/latest
https://github.com/pandas-dev/pandas/issues/13097
https://github.com/pandas-dev/pandas/issues/14854
https://github.com/pandas-dev/pandas/issues/15707
https://github.com/pandas-dev/pandas/issues/14218

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

In [131]: df
Out[131]:

A B
a 1 4
b 2 5
c 3 6

Previous Behavior, where you wish to get the 0th and the 2nd elements from the index in the ‘A’ column.

In [3]: df.ix[[0, 2], 'A']
Out[3]:
a 1
c 3
Name: A, dtype: int64

Using .loc. Here we will select the appropriate indexes from the index, then use label indexing.

In [132]: df.loc[df.index[[0, 2]], 'A']
Out[132]:
a 1
c 3
Name: A, dtype: int64

Using .iloc. Here we will get the location of the ‘A’ column, then use positional indexing to select things.

In [133]: df.iloc[[0, 2], df.columns.get_loc('A')]
Out[133]:
a 1
c 3
Name: A, dtype: int64

1.11.4.2 Deprecate Panel

Panel is deprecated and will be removed in a future version. The recommended way to represent 3-D data
are with a MultiIndex on a DataFrame via the to_frame() or with the xarray package. Pandas pro-
vides a to_xarray() method to automate this conversion. For more details see Deprecate Panel documentation.
(GH13563).

In [134]: p = tm.makePanel()

In [135]: p
Out[135]:
<class 'pandas.core.panel.Panel'>
Dimensions: 3 (items) x 3 (major_axis) x 4 (minor_axis)
Items axis: ItemA to ItemC
Major_axis axis: 2000-01-03 00:00:00 to 2000-01-05 00:00:00
Minor_axis axis: A to D

Convert to a MultiIndex DataFrame

In [136]: p.to_frame()
Out[136]:

ItemA ItemB ItemC
major minor
2000-01-03 A 0.628776 -1.409432 0.209395

(continues on next page)

1.11. v0.20.1 (May 5, 2017) 117

http://xarray.pydata.org/en/stable/
https://github.com/pandas-dev/pandas/issues/13563

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

B 0.988138 -1.347533 -0.896581
C -0.938153 1.272395 -0.161137
D -0.223019 -0.591863 -1.051539

2000-01-04 A 0.186494 1.422986 -0.592886
B -0.072608 0.363565 1.104352
C -1.239072 -1.449567 0.889157
D 2.123692 -0.414505 -0.319561

2000-01-05 A 0.952478 -2.147855 -1.473116
B -0.550603 -0.014752 -0.431550
C 0.139683 -1.195524 0.288377
D 0.122273 -1.425795 -0.619993

Convert to an xarray DataArray

In [137]: p.to_xarray()
Out[137]:
<xarray.DataArray (items: 3, major_axis: 3, minor_axis: 4)>
array([[[0.628776, 0.988138, -0.938153, -0.223019],

[0.186494, -0.072608, -1.239072, 2.123692],
[0.952478, -0.550603, 0.139683, 0.122273]],

[[-1.409432, -1.347533, 1.272395, -0.591863],
[1.422986, 0.363565, -1.449567, -0.414505],
[-2.147855, -0.014752, -1.195524, -1.425795]],

[[0.209395, -0.896581, -0.161137, -1.051539],
[-0.592886, 1.104352, 0.889157, -0.319561],
[-1.473116, -0.43155 , 0.288377, -0.619993]]])

Coordinates:

* items (items) object 'ItemA' 'ItemB' 'ItemC'

* major_axis (major_axis) datetime64[ns] 2000-01-03 2000-01-04 2000-01-05

* minor_axis (minor_axis) object 'A' 'B' 'C' 'D'

1.11.4.3 Deprecate groupby.agg() with a dictionary when renaming

The .groupby(..).agg(..), .rolling(..).agg(..), and .resample(..).agg(..) syntax can ac-
cept a variable of inputs, including scalars, list, and a dict of column names to scalars or lists. This provides a useful
syntax for constructing multiple (potentially different) aggregations.

However, .agg(..) can also accept a dict that allows ‘renaming’ of the result columns. This is a complicated and
confusing syntax, as well as not consistent between Series and DataFrame. We are deprecating this ‘renaming’
functionaility.

• We are deprecating passing a dict to a grouped/rolled/resampled Series. This allowed one to rename
the resulting aggregation, but this had a completely different meaning than passing a dictionary to a grouped
DataFrame, which accepts column-to-aggregations.

• We are deprecating passing a dict-of-dicts to a grouped/rolled/resampled DataFrame in a similar manner.

This is an illustrative example:

In [138]: df = pd.DataFrame({'A': [1, 1, 1, 2, 2],
.....: 'B': range(5),
.....: 'C': range(5)})
.....:

(continues on next page)

118 Chapter 1. What’s New

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

In [139]: df
Out[139]:

A B C
0 1 0 0
1 1 1 1
2 1 2 2
3 2 3 3
4 2 4 4

Here is a typical useful syntax for computing different aggregations for different columns. This is a natural, and useful
syntax. We aggregate from the dict-to-list by taking the specified columns and applying the list of functions. This
returns a MultiIndex for the columns (this is not deprecated).

In [140]: df.groupby('A').agg({'B': 'sum', 'C': 'min'})
Out[140]:

B C
A
1 3 0
2 7 3

Here’s an example of the first deprecation, passing a dict to a grouped Series. This is a combination aggregation &
renaming:

In [6]: df.groupby('A').B.agg({'foo': 'count'})
FutureWarning: using a dict on a Series for aggregation
is deprecated and will be removed in a future version

Out[6]:
foo

A
1 3
2 2

You can accomplish the same operation, more idiomatically by:

In [141]: df.groupby('A').B.agg(['count']).rename(columns={'count': 'foo'})
Out[141]:

foo
A
1 3
2 2

Here’s an example of the second deprecation, passing a dict-of-dict to a grouped DataFrame:

In [23]: (df.groupby('A')
.agg({'B': {'foo': 'sum'}, 'C': {'bar': 'min'}})

)
FutureWarning: using a dict with renaming is deprecated and
will be removed in a future version

Out[23]:
B C

foo bar
A
1 3 0
2 7 3

1.11. v0.20.1 (May 5, 2017) 119

pandas: powerful Python data analysis toolkit, Release 0.23.4

You can accomplish nearly the same by:

In [142]: (df.groupby('A')
.....: .agg({'B': 'sum', 'C': 'min'})
.....: .rename(columns={'B': 'foo', 'C': 'bar'})
.....:)
.....:

Out[142]:
foo bar

A
1 3 0
2 7 3

1.11.4.4 Deprecate .plotting

The pandas.tools.plotting module has been deprecated, in favor of the top level pandas.plotting mod-
ule. All the public plotting functions are now available from pandas.plotting (GH12548).

Furthermore, the top-level pandas.scatter_matrix and pandas.plot_params are deprecated. Users can
import these from pandas.plotting as well.

Previous script:

pd.tools.plotting.scatter_matrix(df)
pd.scatter_matrix(df)

Should be changed to:

pd.plotting.scatter_matrix(df)

1.11.4.5 Other Deprecations

• SparseArray.to_dense() has deprecated the fill parameter, as that parameter was not being respected
(GH14647)

• SparseSeries.to_dense() has deprecated the sparse_only parameter (GH14647)

• Series.repeat() has deprecated the reps parameter in favor of repeats (GH12662)

• The Series constructor and .astype method have deprecated accepting timestamp dtypes without a fre-
quency (e.g. np.datetime64) for the dtype parameter (GH15524)

• Index.repeat() and MultiIndex.repeat() have deprecated the n parameter in favor of repeats
(GH12662)

• Categorical.searchsorted() and Series.searchsorted() have deprecated the v parameter in
favor of value (GH12662)

• TimedeltaIndex.searchsorted(), DatetimeIndex.searchsorted(), and PeriodIndex.
searchsorted() have deprecated the key parameter in favor of value (GH12662)

• DataFrame.astype() has deprecated the raise_on_error parameter in favor of errors (GH14878)

• Series.sortlevel and DataFrame.sortlevel have been deprecated in favor of Series.
sort_index and DataFrame.sort_index (GH15099)

• importing concat from pandas.tools.merge has been deprecated in favor of imports from the pandas
namespace. This should only affect explicit imports (GH15358)

120 Chapter 1. What’s New

https://github.com/pandas-dev/pandas/issues/12548
https://github.com/pandas-dev/pandas/issues/14647
https://github.com/pandas-dev/pandas/issues/14647
https://github.com/pandas-dev/pandas/issues/12662
https://github.com/pandas-dev/pandas/issues/15524
https://github.com/pandas-dev/pandas/issues/12662
https://github.com/pandas-dev/pandas/issues/12662
https://github.com/pandas-dev/pandas/issues/12662
https://github.com/pandas-dev/pandas/issues/14878
https://github.com/pandas-dev/pandas/issues/15099
https://github.com/pandas-dev/pandas/issues/15358

pandas: powerful Python data analysis toolkit, Release 0.23.4

• Series/DataFrame/Panel.consolidate() been deprecated as a public method. (GH15483)

• The as_indexer keyword of Series.str.match() has been deprecated (ignored keyword) (GH15257).

• The following top-level pandas functions have been deprecated and will be removed in a future version
(GH13790, GH15940)

– pd.pnow(), replaced by Period.now()

– pd.Term, is removed, as it is not applicable to user code. Instead use in-line string expressions in the
where clause when searching in HDFStore

– pd.Expr, is removed, as it is not applicable to user code.

– pd.match(), is removed.

– pd.groupby(), replaced by using the .groupby() method directly on a Series/DataFrame

– pd.get_store(), replaced by a direct call to pd.HDFStore(...)

• is_any_int_dtype, is_floating_dtype, and is_sequence are deprecated from pandas.api.
types (GH16042)

1.11.5 Removal of prior version deprecations/changes

• The pandas.rpy module is removed. Similar functionality can be accessed through the rpy2 project. See the
R interfacing docs for more details.

• The pandas.io.ga module with a google-analytics interface is removed (GH11308). Similar func-
tionality can be found in the Google2Pandas package.

• pd.to_datetime and pd.to_timedelta have dropped the coerce parameter in favor of errors
(GH13602)

• pandas.stats.fama_macbeth, pandas.stats.ols, pandas.stats.plm and pandas.
stats.var, as well as the top-level pandas.fama_macbeth and pandas.ols routines are removed.
Similar functionaility can be found in the statsmodels package. (GH11898)

• The TimeSeries and SparseTimeSeries classes, aliases of Series and SparseSeries, are removed
(GH10890, GH15098).

• Series.is_time_series is dropped in favor of Series.index.is_all_dates (GH15098)

• The deprecated irow, icol, iget and iget_value methods are removed in favor of iloc and iat as
explained here (GH10711).

• The deprecated DataFrame.iterkv() has been removed in favor of DataFrame.iteritems()
(GH10711)

• The Categorical constructor has dropped the name parameter (GH10632)

• Categorical has dropped support for NaN categories (GH10748)

• The take_last parameter has been dropped from duplicated(), drop_duplicates(),
nlargest(), and nsmallest() methods (GH10236, GH10792, GH10920)

• Series, Index, and DataFrame have dropped the sort and order methods (GH10726)

• Where clauses in pytables are only accepted as strings and expressions types and not other data-types
(GH12027)

• DataFrame has dropped the combineAdd and combineMult methods in favor of add and mul respec-
tively (GH10735)

1.11. v0.20.1 (May 5, 2017) 121

https://github.com/pandas-dev/pandas/issues/15483
https://github.com/pandas-dev/pandas/issues/15257
https://github.com/pandas-dev/pandas/issues/13790
https://github.com/pandas-dev/pandas/issues/15940
https://github.com/pandas-dev/pandas/issues/16042
https://rpy2.readthedocs.io/
https://github.com/pandas-dev/pandas/issues/11308
https://github.com/panalysis/Google2Pandas
https://github.com/pandas-dev/pandas/issues/13602
shttp://www.statsmodels.org/dev/
https://github.com/pandas-dev/pandas/issues/11898
https://github.com/pandas-dev/pandas/issues/10890
https://github.com/pandas-dev/pandas/issues/15098
https://github.com/pandas-dev/pandas/issues/15098
https://github.com/pandas-dev/pandas/issues/10711
https://github.com/pandas-dev/pandas/issues/10711
https://github.com/pandas-dev/pandas/issues/10632
https://github.com/pandas-dev/pandas/issues/10748
https://github.com/pandas-dev/pandas/issues/10236
https://github.com/pandas-dev/pandas/issues/10792
https://github.com/pandas-dev/pandas/issues/10920
https://github.com/pandas-dev/pandas/issues/10726
https://github.com/pandas-dev/pandas/issues/12027
https://github.com/pandas-dev/pandas/issues/10735

pandas: powerful Python data analysis toolkit, Release 0.23.4

1.11.6 Performance Improvements

• Improved performance of pd.wide_to_long() (GH14779)

• Improved performance of pd.factorize() by releasing the GIL with object dtype when inferred as
strings (GH14859, GH16057)

• Improved performance of timeseries plotting with an irregular DatetimeIndex (or with compat_x=True)
(GH15073).

• Improved performance of groupby().cummin() and groupby().cummax() (GH15048, GH15109,
GH15561, GH15635)

• Improved performance and reduced memory when indexing with a MultiIndex (GH15245)

• When reading buffer object in read_sas() method without specified format, filepath string is inferred rather
than buffer object. (GH14947)

• Improved performance of .rank() for categorical data (GH15498)

• Improved performance when using .unstack() (GH15503)

• Improved performance of merge/join on category columns (GH10409)

• Improved performance of drop_duplicates() on bool columns (GH12963)

• Improve performance of pd.core.groupby.GroupBy.applywhen the applied function used the .name
attribute of the group DataFrame (GH15062).

• Improved performance of iloc indexing with a list or array (GH15504).

• Improved performance of Series.sort_index() with a monotonic index (GH15694)

• Improved performance in pd.read_csv() on some platforms with buffered reads (GH16039)

1.11.7 Bug Fixes

1.11.7.1 Conversion

• Bug in Timestamp.replace now raises TypeErrorwhen incorrect argument names are given; previously
this raised ValueError (GH15240)

• Bug in Timestamp.replace with compat for passing long integers (GH15030)

• Bug in Timestamp returning UTC based time/date attributes when a timezone was provided (GH13303,
GH6538)

• Bug in Timestamp incorrectly localizing timezones during construction (GH11481, GH15777)

• Bug in TimedeltaIndex addition where overflow was being allowed without error (GH14816)

• Bug in TimedeltaIndex raising a ValueError when boolean indexing with loc (GH14946)

• Bug in catching an overflow in Timestamp + Timedelta/Offset operations (GH15126)

• Bug in DatetimeIndex.round() and Timestamp.round() floating point accuracy when rounding by
milliseconds or less (GH14440, GH15578)

• Bug in astype() where inf values were incorrectly converted to integers. Now raises error now with
astype() for Series and DataFrames (GH14265)

• Bug in DataFrame(..).apply(to_numeric) when values are of type decimal.Decimal. (GH14827)

122 Chapter 1. What’s New

https://github.com/pandas-dev/pandas/issues/14779
https://github.com/pandas-dev/pandas/issues/14859
https://github.com/pandas-dev/pandas/issues/16057
https://github.com/pandas-dev/pandas/issues/15073
https://github.com/pandas-dev/pandas/issues/15048
https://github.com/pandas-dev/pandas/issues/15109
https://github.com/pandas-dev/pandas/issues/15561
https://github.com/pandas-dev/pandas/issues/15635
https://github.com/pandas-dev/pandas/issues/15245
https://github.com/pandas-dev/pandas/issues/14947
https://github.com/pandas-dev/pandas/issues/15498
https://github.com/pandas-dev/pandas/issues/15503
https://github.com/pandas-dev/pandas/issues/10409
https://github.com/pandas-dev/pandas/issues/12963
https://github.com/pandas-dev/pandas/issues/15062
https://github.com/pandas-dev/pandas/issues/15504
https://github.com/pandas-dev/pandas/issues/15694
https://github.com/pandas-dev/pandas/issues/16039
https://github.com/pandas-dev/pandas/issues/15240
https://github.com/pandas-dev/pandas/issues/15030
https://github.com/pandas-dev/pandas/issues/13303
https://github.com/pandas-dev/pandas/issues/6538
https://github.com/pandas-dev/pandas/issues/11481
https://github.com/pandas-dev/pandas/issues/15777
https://github.com/pandas-dev/pandas/issues/14816
https://github.com/pandas-dev/pandas/issues/14946
https://github.com/pandas-dev/pandas/issues/15126
https://github.com/pandas-dev/pandas/issues/14440
https://github.com/pandas-dev/pandas/issues/15578
https://github.com/pandas-dev/pandas/issues/14265
https://github.com/pandas-dev/pandas/issues/14827

pandas: powerful Python data analysis toolkit, Release 0.23.4

• Bug in describe() when passing a numpy array which does not contain the median to the percentiles
keyword argument (GH14908)

• Cleaned up PeriodIndex constructor, including raising on floats more consistently (GH13277)

• Bug in using __deepcopy__ on empty NDFrame objects (GH15370)

• Bug in .replace() may result in incorrect dtypes. (GH12747, GH15765)

• Bug in Series.replace and DataFrame.replace which failed on empty replacement dicts (GH15289)

• Bug in Series.replace which replaced a numeric by string (GH15743)

• Bug in Index construction with NaN elements and integer dtype specified (GH15187)

• Bug in Series construction with a datetimetz (GH14928)

• Bug in Series.dt.round() inconsistent behaviour on NaT ‘s with different arguments (GH14940)

• Bug in Series constructor when both copy=True and dtype arguments are provided (GH15125)

• Incorrect dtyped Series was returned by comparison methods (e.g., lt, gt, . . .) against a constant for an
empty DataFrame (GH15077)

• Bug in Series.ffill() with mixed dtypes containing tz-aware datetimes. (GH14956)

• Bug in DataFrame.fillna() where the argument downcast was ignored when fillna value was of type
dict (GH15277)

• Bug in .asfreq(), where frequency was not set for empty Series (GH14320)

• Bug in DataFrame construction with nulls and datetimes in a list-like (GH15869)

• Bug in DataFrame.fillna() with tz-aware datetimes (GH15855)

• Bug in is_string_dtype, is_timedelta64_ns_dtype, and is_string_like_dtype in which
an error was raised when None was passed in (GH15941)

• Bug in the return type of pd.unique on a Categorical, which was returning an ndarray and not a
Categorical (GH15903)

• Bug in Index.to_series() where the index was not copied (and so mutating later would change the
original), (GH15949)

• Bug in indexing with partial string indexing with a len-1 DataFrame (GH16071)

• Bug in Series construction where passing invalid dtype didn’t raise an error. (GH15520)

1.11.7.2 Indexing

• Bug in Index power operations with reversed operands (GH14973)

• Bug in DataFrame.sort_values() when sorting by multiple columns where one column is of type
int64 and contains NaT (GH14922)

• Bug in DataFrame.reindex() in which method was ignored when passing columns (GH14992)

• Bug in DataFrame.loc with indexing a MultiIndex with a Series indexer (GH14730, GH15424)

• Bug in DataFrame.loc with indexing a MultiIndex with a numpy array (GH15434)

• Bug in Series.asof which raised if the series contained all np.nan (GH15713)

• Bug in .at when selecting from a tz-aware column (GH15822)

• Bug in Series.where() and DataFrame.where() where array-like conditionals were being rejected
(GH15414)

1.11. v0.20.1 (May 5, 2017) 123

https://github.com/pandas-dev/pandas/issues/14908
https://github.com/pandas-dev/pandas/issues/13277
https://github.com/pandas-dev/pandas/issues/15370
https://github.com/pandas-dev/pandas/issues/12747
https://github.com/pandas-dev/pandas/issues/15765
https://github.com/pandas-dev/pandas/issues/15289
https://github.com/pandas-dev/pandas/issues/15743
https://github.com/pandas-dev/pandas/issues/15187
https://github.com/pandas-dev/pandas/issues/14928
https://github.com/pandas-dev/pandas/issues/14940
https://github.com/pandas-dev/pandas/issues/15125
https://github.com/pandas-dev/pandas/issues/15077
https://github.com/pandas-dev/pandas/issues/14956
https://github.com/pandas-dev/pandas/issues/15277
https://github.com/pandas-dev/pandas/issues/14320
https://github.com/pandas-dev/pandas/issues/15869
https://github.com/pandas-dev/pandas/issues/15855
https://github.com/pandas-dev/pandas/issues/15941
https://github.com/pandas-dev/pandas/issues/15903
https://github.com/pandas-dev/pandas/issues/15949
https://github.com/pandas-dev/pandas/issues/16071
https://github.com/pandas-dev/pandas/issues/15520
https://github.com/pandas-dev/pandas/issues/14973
https://github.com/pandas-dev/pandas/issues/14922
https://github.com/pandas-dev/pandas/issues/14992
https://github.com/pandas-dev/pandas/issues/14730
https://github.com/pandas-dev/pandas/issues/15424
https://github.com/pandas-dev/pandas/issues/15434
https://github.com/pandas-dev/pandas/issues/15713
https://github.com/pandas-dev/pandas/issues/15822
https://github.com/pandas-dev/pandas/issues/15414

pandas: powerful Python data analysis toolkit, Release 0.23.4

• Bug in Series.where() where TZ-aware data was converted to float representation (GH15701)

• Bug in .loc that would not return the correct dtype for scalar access for a DataFrame (GH11617)

• Bug in output formatting of a MultiIndex when names are integers (GH12223, GH15262)

• Bug in Categorical.searchsorted() where alphabetical instead of the provided categorical order was
used (GH14522)

• Bug in Series.iloc where a Categorical object for list-like indexes input was returned, where a
Series was expected. (GH14580)

• Bug in DataFrame.isin comparing datetimelike to empty frame (GH15473)

• Bug in .reset_index() when an all NaN level of a MultiIndex would fail (GH6322)

• Bug in .reset_index() when raising error for index name already present in MultiIndex columns
(GH16120)

• Bug in creating a MultiIndex with tuples and not passing a list of names; this will now raise ValueError
(GH15110)

• Bug in the HTML display with with a MultiIndex and truncation (GH14882)

• Bug in the display of .info() where a qualifier (+) would always be displayed with a MultiIndex that
contains only non-strings (GH15245)

• Bug in pd.concat() where the names of MultiIndex of resulting DataFrame are not handled correctly
when None is presented in the names of MultiIndex of input DataFrame (GH15787)

• Bug in DataFrame.sort_index() and Series.sort_index() where na_position doesn’t work
with a MultiIndex (GH14784, GH16604)

• Bug in in pd.concat() when combining objects with a CategoricalIndex (GH16111)

• Bug in indexing with a scalar and a CategoricalIndex (GH16123)

1.11.7.3 I/O

• Bug in pd.to_numeric() in which float and unsigned integer elements were being improperly casted
(GH14941, GH15005)

• Bug in pd.read_fwf() where the skiprows parameter was not being respected during column width infer-
ence (GH11256)

• Bug in pd.read_csv() in which the dialect parameter was not being verified before processing
(GH14898)

• Bug in pd.read_csv() in which missing data was being improperly handled with usecols (GH6710)

• Bug in pd.read_csv() in which a file containing a row with many columns followed by rows with fewer
columns would cause a crash (GH14125)

• Bug in pd.read_csv() for the C engine where usecols were being indexed incorrectly with
parse_dates (GH14792)

• Bug in pd.read_csv() with parse_dates when multiline headers are specified (GH15376)

• Bug in pd.read_csv() with float_precision='round_trip' which caused a segfault when a text
entry is parsed (GH15140)

• Bug in pd.read_csv() when an index was specified and no values were specified as null values (GH15835)

• Bug in pd.read_csv() in which certain invalid file objects caused the Python interpreter to crash (GH15337)

124 Chapter 1. What’s New

https://github.com/pandas-dev/pandas/issues/15701
https://github.com/pandas-dev/pandas/issues/11617
https://github.com/pandas-dev/pandas/issues/12223
https://github.com/pandas-dev/pandas/issues/15262
https://github.com/pandas-dev/pandas/issues/14522
https://github.com/pandas-dev/pandas/issues/14580
https://github.com/pandas-dev/pandas/issues/15473
https://github.com/pandas-dev/pandas/issues/6322
https://github.com/pandas-dev/pandas/issues/16120
https://github.com/pandas-dev/pandas/issues/15110
https://github.com/pandas-dev/pandas/issues/14882
https://github.com/pandas-dev/pandas/issues/15245
https://github.com/pandas-dev/pandas/issues/15787
https://github.com/pandas-dev/pandas/issues/14784
https://github.com/pandas-dev/pandas/issues/16604
https://github.com/pandas-dev/pandas/issues/16111
https://github.com/pandas-dev/pandas/issues/16123
https://github.com/pandas-dev/pandas/issues/14941
https://github.com/pandas-dev/pandas/issues/15005
https://github.com/pandas-dev/pandas/issues/11256
https://github.com/pandas-dev/pandas/issues/14898
https://github.com/pandas-dev/pandas/issues/6710
https://github.com/pandas-dev/pandas/issues/14125
https://github.com/pandas-dev/pandas/issues/14792
https://github.com/pandas-dev/pandas/issues/15376
https://github.com/pandas-dev/pandas/issues/15140
https://github.com/pandas-dev/pandas/issues/15835
https://github.com/pandas-dev/pandas/issues/15337

pandas: powerful Python data analysis toolkit, Release 0.23.4

• Bug in pd.read_csv() in which invalid values for nrows and chunksize were allowed (GH15767)

• Bug in pd.read_csv() for the Python engine in which unhelpful error messages were being raised when
parsing errors occurred (GH15910)

• Bug in pd.read_csv() in which the skipfooter parameter was not being properly validated (GH15925)

• Bug in pd.to_csv() in which there was numeric overflow when a timestamp index was being written
(GH15982)

• Bug in pd.util.hashing.hash_pandas_object() in which hashing of categoricals depended on the
ordering of categories, instead of just their values. (GH15143)

• Bug in .to_json() where lines=True and contents (keys or values) contain escaped characters
(GH15096)

• Bug in .to_json() causing single byte ascii characters to be expanded to four byte unicode (GH15344)

• Bug in .to_json() for the C engine where rollover was not correctly handled for case where frac is odd and
diff is exactly 0.5 (GH15716, GH15864)

• Bug in pd.read_json() for Python 2 where lines=True and contents contain non-ascii unicode charac-
ters (GH15132)

• Bug in pd.read_msgpack() in which Series categoricals were being improperly processed (GH14901)

• Bug in pd.read_msgpack() which did not allow loading of a dataframe with an index of type
CategoricalIndex (GH15487)

• Bug in pd.read_msgpack() when deserializing a CategoricalIndex (GH15487)

• Bug in DataFrame.to_records() with converting a DatetimeIndex with a timezone (GH13937)

• Bug in DataFrame.to_records() which failed with unicode characters in column names (GH11879)

• Bug in .to_sql() when writing a DataFrame with numeric index names (GH15404).

• Bug in DataFrame.to_html() with index=False and max_rows raising in IndexError
(GH14998)

• Bug in pd.read_hdf() passing a Timestamp to the where parameter with a non date column (GH15492)

• Bug in DataFrame.to_stata() and StataWriter which produces incorrectly formatted files to be
produced for some locales (GH13856)

• Bug in StataReader and StataWriter which allows invalid encodings (GH15723)

• Bug in the Series repr not showing the length when the output was truncated (GH15962).

1.11.7.4 Plotting

• Bug in DataFrame.histwhere plt.tight_layout caused an AttributeError (use matplotlib
>= 2.0.1) (GH9351)

• Bug in DataFrame.boxplot where fontsize was not applied to the tick labels on both axes (GH15108)

• Bug in the date and time converters pandas registers with matplotlib not handling multiple dimensions
(GH16026)

• Bug in pd.scatter_matrix() could accept either color or c, but not both (GH14855)

1.11. v0.20.1 (May 5, 2017) 125

https://github.com/pandas-dev/pandas/issues/15767
https://github.com/pandas-dev/pandas/issues/15910
https://github.com/pandas-dev/pandas/issues/15925
https://github.com/pandas-dev/pandas/issues/15982
https://github.com/pandas-dev/pandas/issues/15143
https://github.com/pandas-dev/pandas/issues/15096
https://github.com/pandas-dev/pandas/issues/15344
https://github.com/pandas-dev/pandas/issues/15716
https://github.com/pandas-dev/pandas/issues/15864
https://github.com/pandas-dev/pandas/issues/15132
https://github.com/pandas-dev/pandas/issues/14901
https://github.com/pandas-dev/pandas/issues/15487
https://github.com/pandas-dev/pandas/issues/15487
https://github.com/pandas-dev/pandas/issues/13937
https://github.com/pandas-dev/pandas/issues/11879
https://github.com/pandas-dev/pandas/issues/15404
https://github.com/pandas-dev/pandas/issues/14998
https://github.com/pandas-dev/pandas/issues/15492
https://github.com/pandas-dev/pandas/issues/13856
https://github.com/pandas-dev/pandas/issues/15723
https://github.com/pandas-dev/pandas/issues/15962
https://github.com/pandas-dev/pandas/issues/9351
https://github.com/pandas-dev/pandas/issues/15108
https://github.com/pandas-dev/pandas/issues/16026
https://github.com/pandas-dev/pandas/issues/14855

pandas: powerful Python data analysis toolkit, Release 0.23.4

1.11.7.5 Groupby/Resample/Rolling

• Bug in .groupby(..).resample() when passed the on= kwarg. (GH15021)

• Properly set __name__ and __qualname__ for Groupby.* functions (GH14620)

• Bug in GroupBy.get_group() failing with a categorical grouper (GH15155)

• Bug in .groupby(...).rolling(...) when on is specified and using a DatetimeIndex (GH15130,
GH13966)

• Bug in groupby operations with timedelta64 when passing numeric_only=False (GH5724)

• Bug in groupby.apply() coercing object dtypes to numeric types, when not all values were numeric
(GH14423, GH15421, GH15670)

• Bug in resample, where a non-string loffset argument would not be applied when resampling a timeseries
(GH13218)

• Bug in DataFrame.groupby().describe() when grouping on Index containing tuples (GH14848)

• Bug in groupby().nunique() with a datetimelike-grouper where bins counts were incorrect (GH13453)

• Bug in groupby.transform() that would coerce the resultant dtypes back to the original (GH10972,
GH11444)

• Bug in groupby.agg() incorrectly localizing timezone on datetime (GH15426, GH10668, GH13046)

• Bug in .rolling/expanding() functions where count() was not counting np.Inf, nor handling
object dtypes (GH12541)

• Bug in .rolling() where pd.Timedelta or datetime.timedelta was not accepted as a window
argument (GH15440)

• Bug in Rolling.quantile function that caused a segmentation fault when called with a quantile value
outside of the range [0, 1] (GH15463)

• Bug in DataFrame.resample().median() if duplicate column names are present (GH14233)

1.11.7.6 Sparse

• Bug in SparseSeries.reindex on single level with list of length 1 (GH15447)

• Bug in repr-formatting a SparseDataFrame after a value was set on (a copy of) one of its series (GH15488)

• Bug in SparseDataFrame construction with lists not coercing to dtype (GH15682)

• Bug in sparse array indexing in which indices were not being validated (GH15863)

1.11.7.7 Reshaping

• Bug in pd.merge_asof() where left_index or right_index caused a failure when multiple by was
specified (GH15676)

• Bug in pd.merge_asof() where left_index/right_index together caused a failure when
tolerance was specified (GH15135)

• Bug in DataFrame.pivot_table() where dropna=True would not drop all-NaN columns when the
columns was a category dtype (GH15193)

• Bug in pd.melt() where passing a tuple value for value_vars caused a TypeError (GH15348)

126 Chapter 1. What’s New

https://github.com/pandas-dev/pandas/issues/15021
https://github.com/pandas-dev/pandas/issues/14620
https://github.com/pandas-dev/pandas/issues/15155
https://github.com/pandas-dev/pandas/issues/15130
https://github.com/pandas-dev/pandas/issues/13966
https://github.com/pandas-dev/pandas/issues/5724
https://github.com/pandas-dev/pandas/issues/14423
https://github.com/pandas-dev/pandas/issues/15421
https://github.com/pandas-dev/pandas/issues/15670
https://github.com/pandas-dev/pandas/issues/13218
https://github.com/pandas-dev/pandas/issues/14848
https://github.com/pandas-dev/pandas/issues/13453
https://github.com/pandas-dev/pandas/issues/10972
https://github.com/pandas-dev/pandas/issues/11444
https://github.com/pandas-dev/pandas/issues/15426
https://github.com/pandas-dev/pandas/issues/10668
https://github.com/pandas-dev/pandas/issues/13046
https://github.com/pandas-dev/pandas/issues/12541
https://github.com/pandas-dev/pandas/issues/15440
https://github.com/pandas-dev/pandas/issues/15463
https://github.com/pandas-dev/pandas/issues/14233
https://github.com/pandas-dev/pandas/issues/15447
https://github.com/pandas-dev/pandas/issues/15488
https://github.com/pandas-dev/pandas/issues/15682
https://github.com/pandas-dev/pandas/issues/15863
https://github.com/pandas-dev/pandas/issues/15676
https://github.com/pandas-dev/pandas/issues/15135
https://github.com/pandas-dev/pandas/issues/15193
https://github.com/pandas-dev/pandas/issues/15348

pandas: powerful Python data analysis toolkit, Release 0.23.4

• Bug in pd.pivot_table() where no error was raised when values argument was not in the columns
(GH14938)

• Bug in pd.concat() in which concatenating with an empty dataframe with join='inner' was being
improperly handled (GH15328)

• Bug with sort=True in DataFrame.join and pd.merge when joining on indexes (GH15582)

• Bug in DataFrame.nsmallest and DataFrame.nlargest where identical values resulted in dupli-
cated rows (GH15297)

• Bug in pandas.pivot_table() incorrectly raising UnicodeError when passing unicode input for
margins keyword (GH13292)

1.11.7.8 Numeric

• Bug in .rank() which incorrectly ranks ordered categories (GH15420)

• Bug in .corr() and .cov() where the column and index were the same object (GH14617)

• Bug in .mode() where mode was not returned if was only a single value (GH15714)

• Bug in pd.cut() with a single bin on an all 0s array (GH15428)

• Bug in pd.qcut() with a single quantile and an array with identical values (GH15431)

• Bug in pandas.tools.utils.cartesian_product() with large input can cause overflow on win-
dows (GH15265)

• Bug in .eval() which caused multiline evals to fail with local variables not on the first line (GH15342)

1.11.7.9 Other

• Compat with SciPy 0.19.0 for testing on .interpolate() (GH15662)

• Compat for 32-bit platforms for .qcut/cut; bins will now be int64 dtype (GH14866)

• Bug in interactions with Qt when a QtApplication already exists (GH14372)

• Avoid use of np.finfo() during import pandas removed to mitigate deadlock on Python GIL misuse
(GH14641)

1.12 v0.19.2 (December 24, 2016)

This is a minor bug-fix release in the 0.19.x series and includes some small regression fixes, bug fixes and performance
improvements. We recommend that all users upgrade to this version.

Highlights include:

• Compatibility with Python 3.6

• Added a Pandas Cheat Sheet. (GH13202).

What’s new in v0.19.2

• Enhancements

• Performance Improvements

1.12. v0.19.2 (December 24, 2016) 127

https://github.com/pandas-dev/pandas/issues/14938
https://github.com/pandas-dev/pandas/issues/15328
https://github.com/pandas-dev/pandas/issues/15582
https://github.com/pandas-dev/pandas/issues/15297
https://github.com/pandas-dev/pandas/issues/13292
https://github.com/pandas-dev/pandas/issues/15420
https://github.com/pandas-dev/pandas/issues/14617
https://github.com/pandas-dev/pandas/issues/15714
https://github.com/pandas-dev/pandas/issues/15428
https://github.com/pandas-dev/pandas/issues/15431
https://github.com/pandas-dev/pandas/issues/15265
https://github.com/pandas-dev/pandas/issues/15342
https://github.com/pandas-dev/pandas/issues/15662
https://github.com/pandas-dev/pandas/issues/14866
https://github.com/pandas-dev/pandas/issues/14372
https://github.com/pandas-dev/pandas/issues/14641
https://github.com/pandas-dev/pandas/tree/master/doc/cheatsheet/Pandas_Cheat_Sheet.pdf
https://github.com/pandas-dev/pandas/issues/13202

pandas: powerful Python data analysis toolkit, Release 0.23.4

• Bug Fixes

1.12.1 Enhancements

The pd.merge_asof(), added in 0.19.0, gained some improvements:

• pd.merge_asof() gained left_index/right_index and left_by/right_by arguments
(GH14253)

• pd.merge_asof() can take multiple columns in by parameter and has specialized dtypes for better perfor-
mance (GH13936)

1.12.2 Performance Improvements

• Performance regression with PeriodIndex (GH14822)

• Performance regression in indexing with getitem (GH14930)

• Improved performance of .replace() (GH12745)

• Improved performance Series creation with a datetime index and dictionary data (GH14894)

1.12.3 Bug Fixes

• Compat with python 3.6 for pickling of some offsets (GH14685)

• Compat with python 3.6 for some indexing exception types (GH14684, GH14689)

• Compat with python 3.6 for deprecation warnings in the test suite (GH14681)

• Compat with python 3.6 for Timestamp pickles (GH14689)

• Compat with dateutil==2.6.0; segfault reported in the testing suite (GH14621)

• Allow nanoseconds in Timestamp.replace as a kwarg (GH14621)

• Bug in pd.read_csv in which aliasing was being done for na_values when passed in as a dictionary
(GH14203)

• Bug in pd.read_csv in which column indices for a dict-like na_values were not being respected
(GH14203)

• Bug in pd.read_csv where reading files fails, if the number of headers is equal to the number of lines in the
file (GH14515)

• Bug in pd.read_csv for the Python engine in which an unhelpful error message was being raised when
multi-char delimiters were not being respected with quotes (GH14582)

• Fix bugs (GH14734, GH13654) in pd.read_sas and pandas.io.sas.sas7bdat.SAS7BDATReader
that caused problems when reading a SAS file incrementally.

• Bug in pd.read_csv for the Python engine in which an unhelpful error message was being raised when
skipfooter was not being respected by Python’s CSV library (GH13879)

• Bug in .fillna() in which timezone aware datetime64 values were incorrectly rounded (GH14872)

• Bug in .groupby(..., sort=True) of a non-lexsorted MultiIndex when grouping with multiple levels
(GH14776)

• Bug in pd.cut with negative values and a single bin (GH14652)

128 Chapter 1. What’s New

https://github.com/pandas-dev/pandas/issues/14253
https://github.com/pandas-dev/pandas/issues/13936
https://github.com/pandas-dev/pandas/issues/14822
https://github.com/pandas-dev/pandas/issues/14930
https://github.com/pandas-dev/pandas/issues/12745
https://github.com/pandas-dev/pandas/issues/14894
https://github.com/pandas-dev/pandas/issues/14685
https://github.com/pandas-dev/pandas/issues/14684
https://github.com/pandas-dev/pandas/issues/14689
https://github.com/pandas-dev/pandas/issues/14681
https://github.com/pandas-dev/pandas/issues/14689
https://github.com/pandas-dev/pandas/issues/14621
https://github.com/pandas-dev/pandas/issues/14621
https://github.com/pandas-dev/pandas/issues/14203
https://github.com/pandas-dev/pandas/issues/14203
https://github.com/pandas-dev/pandas/issues/14515
https://github.com/pandas-dev/pandas/issues/14582
https://github.com/pandas-dev/pandas/issues/14734
https://github.com/pandas-dev/pandas/issues/13654
https://github.com/pandas-dev/pandas/issues/13879
https://github.com/pandas-dev/pandas/issues/14872
https://github.com/pandas-dev/pandas/issues/14776
https://github.com/pandas-dev/pandas/issues/14652

pandas: powerful Python data analysis toolkit, Release 0.23.4

• Bug in pd.to_numeric where a 0 was not unsigned on a downcast='unsigned' argument (GH14401)

• Bug in plotting regular and irregular timeseries using shared axes (sharex=True or ax.twinx())
(GH13341, GH14322).

• Bug in not propagating exceptions in parsing invalid datetimes, noted in python 3.6 (GH14561)

• Bug in resampling a DatetimeIndex in local TZ, covering a DST change, which would raise
AmbiguousTimeError (GH14682)

• Bug in indexing that transformed RecursionError into KeyError or IndexingError (GH14554)

• Bug in HDFStore when writing a MultiIndex when using data_columns=True (GH14435)

• Bug in HDFStore.append() when writing a Series and passing a min_itemsize argument containing
a value for the index (GH11412)

• Bug when writing to a HDFStore in table format with a min_itemsize value for the index and without
asking to append (GH10381)

• Bug in Series.groupby.nunique() raising an IndexError for an empty Series (GH12553)

• Bug in DataFrame.nlargest and DataFrame.nsmallest when the index had duplicate values
(GH13412)

• Bug in clipboard functions on linux with python2 with unicode and separators (GH13747)

• Bug in clipboard functions on Windows 10 and python 3 (GH14362, GH12807)

• Bug in .to_clipboard() and Excel compat (GH12529)

• Bug in DataFrame.combine_first() for integer columns (GH14687).

• Bug in pd.read_csv() in which the dtype parameter was not being respected for empty data (GH14712)

• Bug in pd.read_csv() in which the nrows parameter was not being respected for large input when using
the C engine for parsing (GH7626)

• Bug in pd.merge_asof() could not handle timezone-aware DatetimeIndex when a tolerance was specified
(GH14844)

• Explicit check in to_stata and StataWriter for out-of-range values when writing doubles (GH14618)

• Bug in .plot(kind='kde')which did not drop missing values to generate the KDE Plot, instead generating
an empty plot. (GH14821)

• Bug in unstack() if called with a list of column(s) as an argument, regardless of the dtypes of all columns,
they get coerced to object (GH11847)

1.13 v0.19.1 (November 3, 2016)

This is a minor bug-fix release from 0.19.0 and includes some small regression fixes, bug fixes and performance
improvements. We recommend that all users upgrade to this version.

What’s new in v0.19.1

• Performance Improvements

• Bug Fixes

1.13. v0.19.1 (November 3, 2016) 129

https://github.com/pandas-dev/pandas/issues/14401
https://github.com/pandas-dev/pandas/issues/13341
https://github.com/pandas-dev/pandas/issues/14322
https://github.com/pandas-dev/pandas/issues/14561
https://github.com/pandas-dev/pandas/issues/14682
https://github.com/pandas-dev/pandas/issues/14554
https://github.com/pandas-dev/pandas/issues/14435
https://github.com/pandas-dev/pandas/issues/11412
https://github.com/pandas-dev/pandas/issues/10381
https://github.com/pandas-dev/pandas/issues/12553
https://github.com/pandas-dev/pandas/issues/13412
https://github.com/pandas-dev/pandas/issues/13747
https://github.com/pandas-dev/pandas/issues/14362
https://github.com/pandas-dev/pandas/issues/12807
https://github.com/pandas-dev/pandas/issues/12529
https://github.com/pandas-dev/pandas/issues/14687
https://github.com/pandas-dev/pandas/issues/14712
https://github.com/pandas-dev/pandas/issues/7626
https://github.com/pandas-dev/pandas/issues/14844
https://github.com/pandas-dev/pandas/issues/14618
https://github.com/pandas-dev/pandas/issues/14821
https://github.com/pandas-dev/pandas/issues/11847

pandas: powerful Python data analysis toolkit, Release 0.23.4

1.13.1 Performance Improvements

• Fixed performance regression in factorization of Period data (GH14338)

• Fixed performance regression in Series.asof(where) when where is a scalar (GH14461)

• Improved performance in DataFrame.asof(where) when where is a scalar (GH14461)

• Improved performance in .to_json() when lines=True (GH14408)

• Improved performance in certain types of loc indexing with a MultiIndex (GH14551).

1.13.2 Bug Fixes

• Source installs from PyPI will now again work without cython installed, as in previous versions (GH14204)

• Compat with Cython 0.25 for building (GH14496)

• Fixed regression where user-provided file handles were closed in read_csv (c engine) (GH14418).

• Fixed regression in DataFrame.quantile when missing values where present in some columns
(GH14357).

• Fixed regression in Index.difference where the freq of a DatetimeIndex was incorrectly set
(GH14323)

• Added back pandas.core.common.array_equivalent with a deprecation warning (GH14555).

• Bug in pd.read_csv for the C engine in which quotation marks were improperly parsed in skipped rows
(GH14459)

• Bug in pd.read_csv for Python 2.x in which Unicode quote characters were no longer being respected
(GH14477)

• Fixed regression in Index.append when categorical indices were appended (GH14545).

• Fixed regression in pd.DataFrame where constructor fails when given dict with None value (GH14381)

• Fixed regression in DatetimeIndex._maybe_cast_slice_bound when index is empty (GH14354).

• Bug in localizing an ambiguous timezone when a boolean is passed (GH14402)

• Bug in TimedeltaIndex addition with a Datetime-like object where addition overflow in the negative direc-
tion was not being caught (GH14068, GH14453)

• Bug in string indexing against data with object Index may raise AttributeError (GH14424)

• Corrrecly raise ValueError on empty input to pd.eval() and df.query() (GH13139)

• Bug in RangeIndex.intersection when result is a empty set (GH14364).

• Bug in groupby-transform broadcasting that could cause incorrect dtype coercion (GH14457)

• Bug in Series.__setitem__ which allowed mutating read-only arrays (GH14359).

• Bug in DataFrame.insert where multiple calls with duplicate columns can fail (GH14291)

• pd.merge() will raise ValueError with non-boolean parameters in passed boolean type arguments
(GH14434)

• Bug in Timestamp where dates very near the minimum (1677-09) could underflow on creation (GH14415)

• Bug in pd.concat where names of the keys were not propagated to the resulting MultiIndex (GH14252)

• Bug in pd.concat where axis cannot take string parameters 'rows' or 'columns' (GH14369)

130 Chapter 1. What’s New

https://github.com/pandas-dev/pandas/issues/14338
https://github.com/pandas-dev/pandas/issues/14461
https://github.com/pandas-dev/pandas/issues/14461
https://github.com/pandas-dev/pandas/issues/14408
https://github.com/pandas-dev/pandas/issues/14551
https://github.com/pandas-dev/pandas/issues/14204
https://github.com/pandas-dev/pandas/issues/14496
https://github.com/pandas-dev/pandas/issues/14418
https://github.com/pandas-dev/pandas/issues/14357
https://github.com/pandas-dev/pandas/issues/14323
https://github.com/pandas-dev/pandas/issues/14555
https://github.com/pandas-dev/pandas/issues/14459
https://github.com/pandas-dev/pandas/issues/14477
https://github.com/pandas-dev/pandas/issues/14545
https://github.com/pandas-dev/pandas/issues/14381
https://github.com/pandas-dev/pandas/issues/14354
https://github.com/pandas-dev/pandas/issues/14402
https://github.com/pandas-dev/pandas/issues/14068
https://github.com/pandas-dev/pandas/issues/14453
https://github.com/pandas-dev/pandas/issues/14424
https://github.com/pandas-dev/pandas/issues/13139
https://github.com/pandas-dev/pandas/issues/14364
https://github.com/pandas-dev/pandas/issues/14457
https://github.com/pandas-dev/pandas/issues/14359
https://github.com/pandas-dev/pandas/issues/14291
https://github.com/pandas-dev/pandas/issues/14434
https://github.com/pandas-dev/pandas/issues/14415
https://github.com/pandas-dev/pandas/issues/14252
https://github.com/pandas-dev/pandas/issues/14369

pandas: powerful Python data analysis toolkit, Release 0.23.4

• Bug in pd.concat with dataframes heterogeneous in length and tuple keys (GH14438)

• Bug in MultiIndex.set_levels where illegal level values were still set after raising an error (GH13754)

• Bug in DataFrame.to_json where lines=True and a value contained a } character (GH14391)

• Bug in df.groupby causing an AttributeError when grouping a single index frame by a column and
the index level (GH14327)

• Bug in df.groupby where TypeError raised when pd.Grouper(key=...) is passed in a list
(GH14334)

• Bug in pd.pivot_table may raise TypeError or ValueError when index or columns is not scalar
and values is not specified (GH14380)

1.14 v0.19.0 (October 2, 2016)

This is a major release from 0.18.1 and includes number of API changes, several new features, enhancements, and
performance improvements along with a large number of bug fixes. We recommend that all users upgrade to this
version.

Highlights include:

• merge_asof() for asof-style time-series joining, see here

• .rolling() is now time-series aware, see here

• read_csv() now supports parsing Categorical data, see here

• A function union_categorical() has been added for combining categoricals, see here

• PeriodIndex now has its own period dtype, and changed to be more consistent with other Index classes.
See here

• Sparse data structures gained enhanced support of int and bool dtypes, see here

• Comparison operations with Series no longer ignores the index, see here for an overview of the API changes.

• Introduction of a pandas development API for utility functions, see here.

• Deprecation of Panel4D and PanelND. We recommend to represent these types of n-dimensional data with
the xarray package.

• Removal of the previously deprecated modules pandas.io.data, pandas.io.wb, pandas.tools.
rplot.

Warning: pandas >= 0.19.0 will no longer silence numpy ufunc warnings upon import, see here.

What’s new in v0.19.0

• New features

– merge_asof for asof-style time-series joining

– .rolling() is now time-series aware

– read_csv has improved support for duplicate column names

– read_csv supports parsing Categorical directly

1.14. v0.19.0 (October 2, 2016) 131

https://github.com/pandas-dev/pandas/issues/14438
https://github.com/pandas-dev/pandas/issues/13754
https://github.com/pandas-dev/pandas/issues/14391
https://github.com/pandas-dev/pandas/issues/14327
https://github.com/pandas-dev/pandas/issues/14334
https://github.com/pandas-dev/pandas/issues/14380
http://xarray.pydata.org/en/stable/

pandas: powerful Python data analysis toolkit, Release 0.23.4

– Categorical Concatenation

– Semi-Month Offsets

– New Index methods

– Google BigQuery Enhancements

– Fine-grained numpy errstate

– get_dummies now returns integer dtypes

– Downcast values to smallest possible dtype in to_numeric

– pandas development API

– Other enhancements

• API changes

– Series.tolist() will now return Python types

– Series operators for different indexes

* Arithmetic operators

* Comparison operators

* Logical operators

* Flexible comparison methods

– Series type promotion on assignment

– .to_datetime() changes

– Merging changes

– .describe() changes

– Period changes

* PeriodIndex now has period dtype

* Period('NaT') now returns pd.NaT

* PeriodIndex.values now returns array of Period object

– Index + / - no longer used for set operations

– Index.difference and .symmetric_difference changes

– Index.unique consistently returns Index

– MultiIndex constructors, groupby and set_index preserve categorical dtypes

– read_csv will progressively enumerate chunks

– Sparse Changes

* int64 and bool support enhancements

* Operators now preserve dtypes

* Other sparse fixes

– Indexer dtype changes

– Other API Changes

132 Chapter 1. What’s New

pandas: powerful Python data analysis toolkit, Release 0.23.4

• Deprecations

• Removal of prior version deprecations/changes

• Performance Improvements

• Bug Fixes

1.14.1 New features

1.14.1.1 merge_asof for asof-style time-series joining

A long-time requested feature has been added through the merge_asof() function, to support asof style joining of
time-series (GH1870, GH13695, GH13709, GH13902). Full documentation is here.

The merge_asof() performs an asof merge, which is similar to a left-join except that we match on nearest key
rather than equal keys.

In [1]: left = pd.DataFrame({'a': [1, 5, 10],
...: 'left_val': ['a', 'b', 'c']})
...:

In [2]: right = pd.DataFrame({'a': [1, 2, 3, 6, 7],
...: 'right_val': [1, 2, 3, 6, 7]})
...:

In [3]: left
Out[3]:

a left_val
0 1 a
1 5 b
2 10 c

In [4]: right
\\\Out[4]:

a right_val
0 1 1
1 2 2
2 3 3
3 6 6
4 7 7

We typically want to match exactly when possible, and use the most recent value otherwise.

In [5]: pd.merge_asof(left, right, on='a')
Out[5]:

a left_val right_val
0 1 a 1
1 5 b 3
2 10 c 7

We can also match rows ONLY with prior data, and not an exact match.

In [6]: pd.merge_asof(left, right, on='a', allow_exact_matches=False)
Out[6]:

a left_val right_val

(continues on next page)

1.14. v0.19.0 (October 2, 2016) 133

https://github.com/pandas-dev/pandas/issues/1870
https://github.com/pandas-dev/pandas/issues/13695
https://github.com/pandas-dev/pandas/issues/13709
https://github.com/pandas-dev/pandas/issues/13902

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

0 1 a NaN
1 5 b 3.0
2 10 c 7.0

In a typical time-series example, we have trades and quotes and we want to asof-join them. This also
illustrates using the by parameter to group data before merging.

In [7]: trades = pd.DataFrame({
...: 'time': pd.to_datetime(['20160525 13:30:00.023',
...: '20160525 13:30:00.038',
...: '20160525 13:30:00.048',
...: '20160525 13:30:00.048',
...: '20160525 13:30:00.048']),
...: 'ticker': ['MSFT', 'MSFT',
...: 'GOOG', 'GOOG', 'AAPL'],
...: 'price': [51.95, 51.95,
...: 720.77, 720.92, 98.00],
...: 'quantity': [75, 155,
...: 100, 100, 100]},
...: columns=['time', 'ticker', 'price', 'quantity'])
...:

In [8]: quotes = pd.DataFrame({
...: 'time': pd.to_datetime(['20160525 13:30:00.023',
...: '20160525 13:30:00.023',
...: '20160525 13:30:00.030',
...: '20160525 13:30:00.041',
...: '20160525 13:30:00.048',
...: '20160525 13:30:00.049',
...: '20160525 13:30:00.072',
...: '20160525 13:30:00.075']),
...: 'ticker': ['GOOG', 'MSFT', 'MSFT',
...: 'MSFT', 'GOOG', 'AAPL', 'GOOG',
...: 'MSFT'],
...: 'bid': [720.50, 51.95, 51.97, 51.99,
...: 720.50, 97.99, 720.50, 52.01],
...: 'ask': [720.93, 51.96, 51.98, 52.00,
...: 720.93, 98.01, 720.88, 52.03]},
...: columns=['time', 'ticker', 'bid', 'ask'])
...:

In [9]: trades
Out[9]:

time ticker price quantity
0 2016-05-25 13:30:00.023 MSFT 51.95 75
1 2016-05-25 13:30:00.038 MSFT 51.95 155
2 2016-05-25 13:30:00.048 GOOG 720.77 100
3 2016-05-25 13:30:00.048 GOOG 720.92 100
4 2016-05-25 13:30:00.048 AAPL 98.00 100

In [10]: quotes
\\\Out[10]:
→˓

time ticker bid ask
0 2016-05-25 13:30:00.023 GOOG 720.50 720.93
1 2016-05-25 13:30:00.023 MSFT 51.95 51.96

(continues on next page)

134 Chapter 1. What’s New

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

2 2016-05-25 13:30:00.030 MSFT 51.97 51.98
3 2016-05-25 13:30:00.041 MSFT 51.99 52.00
4 2016-05-25 13:30:00.048 GOOG 720.50 720.93
5 2016-05-25 13:30:00.049 AAPL 97.99 98.01
6 2016-05-25 13:30:00.072 GOOG 720.50 720.88
7 2016-05-25 13:30:00.075 MSFT 52.01 52.03

An asof merge joins on the on, typically a datetimelike field, which is ordered, and in this case we are using a grouper
in the by field. This is like a left-outer join, except that forward filling happens automatically taking the most recent
non-NaN value.

In [11]: pd.merge_asof(trades, quotes,
....: on='time',
....: by='ticker')
....:

Out[11]:
time ticker price quantity bid ask

0 2016-05-25 13:30:00.023 MSFT 51.95 75 51.95 51.96
1 2016-05-25 13:30:00.038 MSFT 51.95 155 51.97 51.98
2 2016-05-25 13:30:00.048 GOOG 720.77 100 720.50 720.93
3 2016-05-25 13:30:00.048 GOOG 720.92 100 720.50 720.93
4 2016-05-25 13:30:00.048 AAPL 98.00 100 NaN NaN

This returns a merged DataFrame with the entries in the same order as the original left passed DataFrame (trades
in this case), with the fields of the quotes merged.

1.14.1.2 .rolling() is now time-series aware

.rolling() objects are now time-series aware and can accept a time-series offset (or convertible) for the window
argument (GH13327, GH12995). See the full documentation here.

In [12]: dft = pd.DataFrame({'B': [0, 1, 2, np.nan, 4]},
....: index=pd.date_range('20130101 09:00:00', periods=5, freq=

→˓'s'))
....:

In [13]: dft
Out[13]:

B
2013-01-01 09:00:00 0.0
2013-01-01 09:00:01 1.0
2013-01-01 09:00:02 2.0
2013-01-01 09:00:03 NaN
2013-01-01 09:00:04 4.0

This is a regular frequency index. Using an integer window parameter works to roll along the window frequency.

In [14]: dft.rolling(2).sum()
Out[14]:

B
2013-01-01 09:00:00 NaN
2013-01-01 09:00:01 1.0
2013-01-01 09:00:02 3.0
2013-01-01 09:00:03 NaN
2013-01-01 09:00:04 NaN

(continues on next page)

1.14. v0.19.0 (October 2, 2016) 135

https://github.com/pandas-dev/pandas/issues/13327
https://github.com/pandas-dev/pandas/issues/12995

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

In [15]: dft.rolling(2, min_periods=1).sum()
\\Out[15]:
→˓

B
2013-01-01 09:00:00 0.0
2013-01-01 09:00:01 1.0
2013-01-01 09:00:02 3.0
2013-01-01 09:00:03 2.0
2013-01-01 09:00:04 4.0

Specifying an offset allows a more intuitive specification of the rolling frequency.

In [16]: dft.rolling('2s').sum()
Out[16]:

B
2013-01-01 09:00:00 0.0
2013-01-01 09:00:01 1.0
2013-01-01 09:00:02 3.0
2013-01-01 09:00:03 2.0
2013-01-01 09:00:04 4.0

Using a non-regular, but still monotonic index, rolling with an integer window does not impart any special calculation.

In [17]: dft = DataFrame({'B': [0, 1, 2, np.nan, 4]},
....: index = pd.Index([pd.Timestamp('20130101 09:00:00'),
....: pd.Timestamp('20130101 09:00:02'),
....: pd.Timestamp('20130101 09:00:03'),
....: pd.Timestamp('20130101 09:00:05'),
....: pd.Timestamp('20130101 09:00:06')],
....: name='foo'))
....:

In [18]: dft
Out[18]:

B
foo
2013-01-01 09:00:00 0.0
2013-01-01 09:00:02 1.0
2013-01-01 09:00:03 2.0
2013-01-01 09:00:05 NaN
2013-01-01 09:00:06 4.0

In [19]: dft.rolling(2).sum()
\\\Out[19]:
→˓

B
foo
2013-01-01 09:00:00 NaN
2013-01-01 09:00:02 1.0
2013-01-01 09:00:03 3.0
2013-01-01 09:00:05 NaN
2013-01-01 09:00:06 NaN

Using the time-specification generates variable windows for this sparse data.

136 Chapter 1. What’s New

pandas: powerful Python data analysis toolkit, Release 0.23.4

In [20]: dft.rolling('2s').sum()
Out[20]:

B
foo
2013-01-01 09:00:00 0.0
2013-01-01 09:00:02 1.0
2013-01-01 09:00:03 3.0
2013-01-01 09:00:05 NaN
2013-01-01 09:00:06 4.0

Furthermore, we now allow an optional on parameter to specify a column (rather than the default of the index) in a
DataFrame.

In [21]: dft = dft.reset_index()

In [22]: dft
Out[22]:

foo B
0 2013-01-01 09:00:00 0.0
1 2013-01-01 09:00:02 1.0
2 2013-01-01 09:00:03 2.0
3 2013-01-01 09:00:05 NaN
4 2013-01-01 09:00:06 4.0

In [23]: dft.rolling('2s', on='foo').sum()
\\Out[23]:
→˓

foo B
0 2013-01-01 09:00:00 0.0
1 2013-01-01 09:00:02 1.0
2 2013-01-01 09:00:03 3.0
3 2013-01-01 09:00:05 NaN
4 2013-01-01 09:00:06 4.0

1.14.1.3 read_csv has improved support for duplicate column names

Duplicate column names are now supported in read_csv() whether they are in the file or passed in as the names
parameter (GH7160, GH9424)

In [24]: data = '0,1,2\n3,4,5'

In [25]: names = ['a', 'b', 'a']

Previous behavior:

In [2]: pd.read_csv(StringIO(data), names=names)
Out[2]:

a b a
0 2 1 2
1 5 4 5

The first a column contained the same data as the second a column, when it should have contained the values [0,
3].

New behavior:

1.14. v0.19.0 (October 2, 2016) 137

https://github.com/pandas-dev/pandas/issues/7160
https://github.com/pandas-dev/pandas/issues/9424

pandas: powerful Python data analysis toolkit, Release 0.23.4

In [26]: pd.read_csv(StringIO(data), names=names)
Out[26]:

a b a.1
0 0 1 2
1 3 4 5

1.14.1.4 read_csv supports parsing Categorical directly

The read_csv() function now supports parsing a Categorical column when specified as a dtype (GH10153).
Depending on the structure of the data, this can result in a faster parse time and lower memory usage compared to
converting to Categorical after parsing. See the io docs here.

In [27]: data = 'col1,col2,col3\na,b,1\na,b,2\nc,d,3'

In [28]: pd.read_csv(StringIO(data))
Out[28]:

col1 col2 col3
0 a b 1
1 a b 2
2 c d 3

In [29]: pd.read_csv(StringIO(data)).dtypes
\\Out[29]:
→˓

col1 object
col2 object
col3 int64
dtype: object

In [30]: pd.read_csv(StringIO(data), dtype='category').dtypes
\\\Out[30]:
→˓

col1 category
col2 category
col3 category
dtype: object

Individual columns can be parsed as a Categorical using a dict specification

In [31]: pd.read_csv(StringIO(data), dtype={'col1': 'category'}).dtypes
Out[31]:
col1 category
col2 object
col3 int64
dtype: object

Note: The resulting categories will always be parsed as strings (object dtype). If the categories are numeric they can
be converted using the to_numeric() function, or as appropriate, another converter such as to_datetime().

In [32]: df = pd.read_csv(StringIO(data), dtype='category')

In [33]: df.dtypes
Out[33]:
col1 category

(continues on next page)

138 Chapter 1. What’s New

https://github.com/pandas-dev/pandas/issues/10153

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

col2 category
col3 category
dtype: object

In [34]: df['col3']
\\\Out[34]:
0 1
1 2
2 3
Name: col3, dtype: category
Categories (3, object): [1, 2, 3]

In [35]: df['col3'].cat.categories = pd.to_numeric(df['col3'].cat.categories)

In [36]: df['col3']
Out[36]:
0 1
1 2
2 3
Name: col3, dtype: category
Categories (3, int64): [1, 2, 3]

1.14.1.5 Categorical Concatenation

• A function union_categoricals() has been added for combining categoricals, see Unioning Categoricals
(GH13361, GH13763, GH13846, GH14173)

In [37]: from pandas.api.types import union_categoricals

In [38]: a = pd.Categorical(["b", "c"])

In [39]: b = pd.Categorical(["a", "b"])

In [40]: union_categoricals([a, b])
Out[40]:
[b, c, a, b]
Categories (3, object): [b, c, a]

• concat and append now can concat category dtypes with different categories as object dtype
(GH13524)

In [41]: s1 = pd.Series(['a', 'b'], dtype='category')

In [42]: s2 = pd.Series(['b', 'c'], dtype='category')

Previous behavior:

In [1]: pd.concat([s1, s2])
ValueError: incompatible categories in categorical concat

New behavior:

In [43]: pd.concat([s1, s2])
Out[43]:

(continues on next page)

1.14. v0.19.0 (October 2, 2016) 139

https://github.com/pandas-dev/pandas/issues/13361
https://github.com/pandas-dev/pandas/issues/13763
https://github.com/pandas-dev/pandas/issues/13846
https://github.com/pandas-dev/pandas/issues/14173
https://github.com/pandas-dev/pandas/issues/13524

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

0 a
1 b
0 b
1 c
dtype: object

1.14.1.6 Semi-Month Offsets

Pandas has gained new frequency offsets, SemiMonthEnd (‘SM’) and SemiMonthBegin (‘SMS’). These provide
date offsets anchored (by default) to the 15th and end of month, and 15th and 1st of month respectively. (GH1543)

In [44]: from pandas.tseries.offsets import SemiMonthEnd, SemiMonthBegin

SemiMonthEnd:

In [45]: Timestamp('2016-01-01') + SemiMonthEnd()
Out[45]: Timestamp('2016-01-15 00:00:00')

In [46]: pd.date_range('2015-01-01', freq='SM', periods=4)
\\Out[46]: DatetimeIndex(['2015-01-15', '2015-
→˓01-31', '2015-02-15', '2015-02-28'], dtype='datetime64[ns]', freq='SM-15')

SemiMonthBegin:

In [47]: Timestamp('2016-01-01') + SemiMonthBegin()
Out[47]: Timestamp('2016-01-15 00:00:00')

In [48]: pd.date_range('2015-01-01', freq='SMS', periods=4)
\\Out[48]: DatetimeIndex(['2015-01-01', '2015-
→˓01-15', '2015-02-01', '2015-02-15'], dtype='datetime64[ns]', freq='SMS-15')

Using the anchoring suffix, you can also specify the day of month to use instead of the 15th.

In [49]: pd.date_range('2015-01-01', freq='SMS-16', periods=4)
Out[49]: DatetimeIndex(['2015-01-01', '2015-01-16', '2015-02-01', '2015-02-16'],
→˓dtype='datetime64[ns]', freq='SMS-16')

In [50]: pd.date_range('2015-01-01', freq='SM-14', periods=4)
\\Out[50]:
→˓DatetimeIndex(['2015-01-14', '2015-01-31', '2015-02-14', '2015-02-28'], dtype=
→˓'datetime64[ns]', freq='SM-14')

1.14.1.7 New Index methods

The following methods and options are added to Index, to be more consistent with the Series and DataFrame
API.

Index now supports the .where() function for same shape indexing (GH13170)

In [51]: idx = pd.Index(['a', 'b', 'c'])

In [52]: idx.where([True, False, True])
Out[52]: Index(['a', nan, 'c'], dtype='object')

140 Chapter 1. What’s New

https://github.com/pandas-dev/pandas/issues/1543
https://github.com/pandas-dev/pandas/issues/13170

pandas: powerful Python data analysis toolkit, Release 0.23.4

Index now supports .dropna() to exclude missing values (GH6194)

In [53]: idx = pd.Index([1, 2, np.nan, 4])

In [54]: idx.dropna()
Out[54]: Float64Index([1.0, 2.0, 4.0], dtype='float64')

For MultiIndex, values are dropped if any level is missing by default. Specifying how='all' only drops values
where all levels are missing.

In [55]: midx = pd.MultiIndex.from_arrays([[1, 2, np.nan, 4],
....: [1, 2, np.nan, np.nan]])
....:

In [56]: midx
Out[56]:
MultiIndex(levels=[[1, 2, 4], [1, 2]],

labels=[[0, 1, -1, 2], [0, 1, -1, -1]])

In [57]: midx.dropna()
\\Out[57]:
→˓

MultiIndex(levels=[[1, 2, 4], [1, 2]],
labels=[[0, 1], [0, 1]])

In [58]: midx.dropna(how='all')
\\\Out[58]:
→˓

MultiIndex(levels=[[1, 2, 4], [1, 2]],
labels=[[0, 1, 2], [0, 1, -1]])

Index now supports .str.extractall()which returns a DataFrame, see the docs here (GH10008, GH13156)

In [59]: idx = pd.Index(["a1a2", "b1", "c1"])

In [60]: idx.str.extractall("[ab](?P<digit>\d)")
Out[60]:

digit
match

0 0 1
1 2

1 0 1

Index.astype() now accepts an optional boolean argument copy, which allows optional copying if the require-
ments on dtype are satisfied (GH13209)

1.14.1.8 Google BigQuery Enhancements

• The read_gbq() method has gained the dialect argument to allow users to specify whether to use Big-
Query’s legacy SQL or BigQuery’s standard SQL. See the docs for more details (GH13615).

• The to_gbq() method now allows the DataFrame column order to differ from the destination table schema
(GH11359).

1.14. v0.19.0 (October 2, 2016) 141

https://github.com/pandas-dev/pandas/issues/6194
https://github.com/pandas-dev/pandas/issues/10008
https://github.com/pandas-dev/pandas/issues/13156
https://github.com/pandas-dev/pandas/issues/13209
https://pandas-gbq.readthedocs.io/en/latest/reading.html
https://github.com/pandas-dev/pandas/issues/13615
https://github.com/pandas-dev/pandas/issues/11359

pandas: powerful Python data analysis toolkit, Release 0.23.4

1.14.1.9 Fine-grained numpy errstate

Previous versions of pandas would permanently silence numpy’s ufunc error handling when pandas was imported.
Pandas did this in order to silence the warnings that would arise from using numpy ufuncs on missing data, which are
usually represented as NaN s. Unfortunately, this silenced legitimate warnings arising in non-pandas code in the ap-
plication. Starting with 0.19.0, pandas will use the numpy.errstate context manager to silence these warnings in
a more fine-grained manner, only around where these operations are actually used in the pandas codebase. (GH13109,
GH13145)

After upgrading pandas, you may see new RuntimeWarnings being issued from your code. These are likely legiti-
mate, and the underlying cause likely existed in the code when using previous versions of pandas that simply silenced
the warning. Use numpy.errstate around the source of the RuntimeWarning to control how these conditions are
handled.

1.14.1.10 get_dummies now returns integer dtypes

The pd.get_dummies function now returns dummy-encoded columns as small integers, rather than floats
(GH8725). This should provide an improved memory footprint.

Previous behavior:

In [1]: pd.get_dummies(['a', 'b', 'a', 'c']).dtypes

Out[1]:
a float64
b float64
c float64
dtype: object

New behavior:

In [61]: pd.get_dummies(['a', 'b', 'a', 'c']).dtypes
Out[61]:
a uint8
b uint8
c uint8
dtype: object

1.14.1.11 Downcast values to smallest possible dtype in to_numeric

pd.to_numeric() now accepts a downcast parameter, which will downcast the data if possible to smallest
specified numerical dtype (GH13352)

In [62]: s = ['1', 2, 3]

In [63]: pd.to_numeric(s, downcast='unsigned')
Out[63]: array([1, 2, 3], dtype=uint8)

In [64]: pd.to_numeric(s, downcast='integer')
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\Out[64]: array([1, 2, 3], dtype=int8)

142 Chapter 1. What’s New

https://github.com/pandas-dev/pandas/issues/13109
https://github.com/pandas-dev/pandas/issues/13145
http://docs.scipy.org/doc/numpy/reference/generated/numpy.errstate.html
https://github.com/pandas-dev/pandas/issues/8725
https://github.com/pandas-dev/pandas/issues/13352

pandas: powerful Python data analysis toolkit, Release 0.23.4

1.14.1.12 pandas development API

As part of making pandas API more uniform and accessible in the future, we have created a standard sub-package of
pandas, pandas.api to hold public API’s. We are starting by exposing type introspection functions in pandas.
api.types. More sub-packages and officially sanctioned API’s will be published in future versions of pandas
(GH13147, GH13634)

The following are now part of this API:

In [65]: import pprint

In [66]: from pandas.api import types

In [67]: funcs = [f for f in dir(types) if not f.startswith('_')]

In [68]: pprint.pprint(funcs)
['CategoricalDtype',
'DatetimeTZDtype',
'IntervalDtype',
'PeriodDtype',
'infer_dtype',
'is_any_int_dtype',
'is_array_like',
'is_bool',
'is_bool_dtype',
'is_categorical',
'is_categorical_dtype',
'is_complex',
'is_complex_dtype',
'is_datetime64_any_dtype',
'is_datetime64_dtype',
'is_datetime64_ns_dtype',
'is_datetime64tz_dtype',
'is_datetimetz',
'is_dict_like',
'is_dtype_equal',
'is_extension_type',
'is_file_like',
'is_float',
'is_float_dtype',
'is_floating_dtype',
'is_hashable',
'is_int64_dtype',
'is_integer',
'is_integer_dtype',
'is_interval',
'is_interval_dtype',
'is_iterator',
'is_list_like',
'is_named_tuple',
'is_number',
'is_numeric_dtype',
'is_object_dtype',
'is_period',
'is_period_dtype',
'is_re',
'is_re_compilable',
'is_scalar',

(continues on next page)

1.14. v0.19.0 (October 2, 2016) 143

https://github.com/pandas-dev/pandas/issues/13147
https://github.com/pandas-dev/pandas/issues/13634

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

'is_sequence',
'is_signed_integer_dtype',
'is_sparse',
'is_string_dtype',
'is_timedelta64_dtype',
'is_timedelta64_ns_dtype',
'is_unsigned_integer_dtype',
'pandas_dtype',
'union_categoricals']

Note: Calling these functions from the internal module pandas.core.common will now show a
DeprecationWarning (GH13990)

1.14.1.13 Other enhancements

• Timestamp can now accept positional and keyword parameters similar to datetime.datetime()
(GH10758, GH11630)

In [69]: pd.Timestamp(2012, 1, 1)
Out[69]: Timestamp('2012-01-01 00:00:00')

In [70]: pd.Timestamp(year=2012, month=1, day=1, hour=8, minute=30)
\\Out[70]: Timestamp('2012-01-01 08:30:00
→˓')

• The .resample() function now accepts a on= or level= parameter for resampling on a datetimelike col-
umn or MultiIndex level (GH13500)

In [71]: df = pd.DataFrame({'date': pd.date_range('2015-01-01', freq='W',
→˓periods=5),

....: 'a': np.arange(5)},

....: index=pd.MultiIndex.from_arrays([

....: [1,2,3,4,5],

....: pd.date_range('2015-01-01', freq='W',
→˓periods=5)],

....: names=['v','d']))

....:

In [72]: df
Out[72]:

date a
v d
1 2015-01-04 2015-01-04 0
2 2015-01-11 2015-01-11 1
3 2015-01-18 2015-01-18 2
4 2015-01-25 2015-01-25 3
5 2015-02-01 2015-02-01 4

In [73]: df.resample('M', on='date').sum()
\\\Out[73]:
→˓

a
date

(continues on next page)

144 Chapter 1. What’s New

https://github.com/pandas-dev/pandas/issues/13990
https://github.com/pandas-dev/pandas/issues/10758
https://github.com/pandas-dev/pandas/issues/11630
https://github.com/pandas-dev/pandas/issues/13500

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

2015-01-31 6
2015-02-28 4

In [74]: df.resample('M', level='d').sum()
\\\Out[74]:
→˓

a
d
2015-01-31 6
2015-02-28 4

• The .get_credentials() method of GbqConnector can now first try to fetch the application default
credentials. See the docs for more details (GH13577).

• The .tz_localize() method of DatetimeIndex and Timestamp has gained the errors keyword,
so you can potentially coerce nonexistent timestamps to NaT. The default behavior remains to raising a
NonExistentTimeError (GH13057)

• .to_hdf/read_hdf() now accept path objects (e.g. pathlib.Path, py.path.local) for the file
path (GH11773)

• The pd.read_csv() with engine='python' has gained support for the decimal (GH12933),
na_filter (GH13321) and the memory_map option (GH13381).

• Consistent with the Python API, pd.read_csv() will now interpret +inf as positive infinity (GH13274)

• The pd.read_html() has gained support for the na_values, converters, keep_default_na op-
tions (GH13461)

• Categorical.astype() now accepts an optional boolean argument copy, effective when dtype is cate-
gorical (GH13209)

• DataFrame has gained the .asof() method to return the last non-NaN values according to the selected
subset (GH13358)

• The DataFrame constructor will now respect key ordering if a list of OrderedDict objects are passed in
(GH13304)

• pd.read_html() has gained support for the decimal option (GH12907)

• Series has gained the properties .is_monotonic, .is_monotonic_increasing, .
is_monotonic_decreasing, similar to Index (GH13336)

• DataFrame.to_sql() now allows a single value as the SQL type for all columns (GH11886).

• Series.append now supports the ignore_index option (GH13677)

• .to_stata() and StataWriter can now write variable labels to Stata dta files using a dictionary to make
column names to labels (GH13535, GH13536)

• .to_stata() and StataWriter will automatically convert datetime64[ns] columns to Stata format
%tc, rather than raising a ValueError (GH12259)

• read_stata() and StataReader raise with a more explicit error message when reading Stata files with
repeated value labels when convert_categoricals=True (GH13923)

• DataFrame.style will now render sparsified MultiIndexes (GH11655)

• DataFrame.style will now show column level names (e.g. DataFrame.columns.names) (GH13775)

• DataFrame has gained support to re-order the columns based on the values in a row using df.
sort_values(by='...', axis=1) (GH10806)

1.14. v0.19.0 (October 2, 2016) 145

https://developers.google.com/identity/protocols/application-default-credentials
https://developers.google.com/identity/protocols/application-default-credentials
https://github.com/pandas-dev/pandas/issues/13577
https://github.com/pandas-dev/pandas/issues/13057
https://github.com/pandas-dev/pandas/issues/11773
https://github.com/pandas-dev/pandas/issues/12933
https://github.com/pandas-dev/pandas/issues/13321
https://github.com/pandas-dev/pandas/issues/13381
https://github.com/pandas-dev/pandas/issues/13274
https://github.com/pandas-dev/pandas/issues/13461
https://github.com/pandas-dev/pandas/issues/13209
https://github.com/pandas-dev/pandas/issues/13358
https://github.com/pandas-dev/pandas/issues/13304
https://github.com/pandas-dev/pandas/issues/12907
https://github.com/pandas-dev/pandas/issues/13336
https://github.com/pandas-dev/pandas/issues/11886
https://github.com/pandas-dev/pandas/issues/13677
https://github.com/pandas-dev/pandas/issues/13535
https://github.com/pandas-dev/pandas/issues/13536
https://github.com/pandas-dev/pandas/issues/12259
https://github.com/pandas-dev/pandas/issues/13923
https://github.com/pandas-dev/pandas/issues/11655
https://github.com/pandas-dev/pandas/issues/13775
https://github.com/pandas-dev/pandas/issues/10806

pandas: powerful Python data analysis toolkit, Release 0.23.4

In [75]: df = pd.DataFrame({'A': [2, 7], 'B': [3, 5], 'C': [4, 8]},
....: index=['row1', 'row2'])
....:

In [76]: df
Out[76]:

A B C
row1 2 3 4
row2 7 5 8

In [77]: df.sort_values(by='row2', axis=1)
\\Out[77]:

B A C
row1 3 2 4
row2 5 7 8

• Added documentation to I/O regarding the perils of reading in columns with mixed dtypes and how to handle it
(GH13746)

• to_html() now has a border argument to control the value in the opening <table> tag. The default is the
value of the html.border option, which defaults to 1. This also affects the notebook HTML repr, but since
Jupyter’s CSS includes a border-width attribute, the visual effect is the same. (GH11563).

• Raise ImportError in the sql functions when sqlalchemy is not installed and a connection string is used
(GH11920).

• Compatibility with matplotlib 2.0. Older versions of pandas should also work with matplotlib 2.0 (GH13333)

• Timestamp, Period, DatetimeIndex, PeriodIndex and .dt accessor have gained a .
is_leap_year property to check whether the date belongs to a leap year. (GH13727)

• astype() will now accept a dict of column name to data types mapping as the dtype argument. (GH12086)

• The pd.read_json and DataFrame.to_json has gained support for reading and writing json lines with
lines option see Line delimited json (GH9180)

• read_excel() now supports the true_values and false_values keyword arguments (GH13347)

• groupby() will now accept a scalar and a single-element list for specifying level on a non-MultiIndex
grouper. (GH13907)

• Non-convertible dates in an excel date column will be returned without conversion and the column will be
object dtype, rather than raising an exception (GH10001).

• pd.Timedelta(None) is now accepted and will return NaT, mirroring pd.Timestamp (GH13687)

• pd.read_stata() can now handle some format 111 files, which are produced by SAS when generating
Stata dta files (GH11526)

• Series and Index now support divmod which will return a tuple of series or indices. This behaves like a
standard binary operator with regards to broadcasting rules (GH14208).

1.14.2 API changes

1.14.2.1 Series.tolist() will now return Python types

Series.tolist() will now return Python types in the output, mimicking NumPy .tolist() behavior
(GH10904)

146 Chapter 1. What’s New

https://github.com/pandas-dev/pandas/issues/13746
https://github.com/pandas-dev/pandas/issues/11563
https://github.com/pandas-dev/pandas/issues/11920
https://github.com/pandas-dev/pandas/issues/13333
https://github.com/pandas-dev/pandas/issues/13727
https://github.com/pandas-dev/pandas/issues/12086
https://github.com/pandas-dev/pandas/issues/9180
https://github.com/pandas-dev/pandas/issues/13347
https://github.com/pandas-dev/pandas/issues/13907
https://github.com/pandas-dev/pandas/issues/10001
https://github.com/pandas-dev/pandas/issues/13687
https://github.com/pandas-dev/pandas/issues/11526
https://github.com/pandas-dev/pandas/issues/14208
https://github.com/pandas-dev/pandas/issues/10904

pandas: powerful Python data analysis toolkit, Release 0.23.4

In [78]: s = pd.Series([1,2,3])

Previous behavior:

In [7]: type(s.tolist()[0])
Out[7]:
<class 'numpy.int64'>

New behavior:

In [79]: type(s.tolist()[0])
Out[79]: int

1.14.2.2 Series operators for different indexes

Following Series operators have been changed to make all operators consistent, including DataFrame (GH1134,
GH4581, GH13538)

• Series comparison operators now raise ValueError when index are different.

• Series logical operators align both index of left and right hand side.

Warning: Until 0.18.1, comparing Series with the same length, would succeed even if the .index are
different (the result ignores .index). As of 0.19.0, this will raises ValueError to be more strict. This section
also describes how to keep previous behavior or align different indexes, using the flexible comparison methods like
.eq.

As a result, Series and DataFrame operators behave as below:

Arithmetic operators

Arithmetic operators align both index (no changes).

In [80]: s1 = pd.Series([1, 2, 3], index=list('ABC'))

In [81]: s2 = pd.Series([2, 2, 2], index=list('ABD'))

In [82]: s1 + s2
Out[82]:
A 3.0
B 4.0
C NaN
D NaN
dtype: float64

In [83]: df1 = pd.DataFrame([1, 2, 3], index=list('ABC'))

In [84]: df2 = pd.DataFrame([2, 2, 2], index=list('ABD'))

In [85]: df1 + df2
Out[85]:

0
A 3.0

(continues on next page)

1.14. v0.19.0 (October 2, 2016) 147

https://github.com/pandas-dev/pandas/issues/1134
https://github.com/pandas-dev/pandas/issues/4581
https://github.com/pandas-dev/pandas/issues/13538

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

B 4.0
C NaN
D NaN

Comparison operators

Comparison operators raise ValueError when .index are different.

Previous Behavior (Series):

Series compared values ignoring the .index as long as both had the same length:

In [1]: s1 == s2
Out[1]:
A False
B True
C False
dtype: bool

New behavior (Series):

In [2]: s1 == s2
Out[2]:
ValueError: Can only compare identically-labeled Series objects

Note: To achieve the same result as previous versions (compare values based on locations ignoring .index),
compare both .values.

In [86]: s1.values == s2.values
Out[86]: array([False, True, False], dtype=bool)

If you want to compare Series aligning its .index, see flexible comparison methods section below:

In [87]: s1.eq(s2)
Out[87]:
A False
B True
C False
D False
dtype: bool

Current Behavior (DataFrame, no change):

In [3]: df1 == df2
Out[3]:
ValueError: Can only compare identically-labeled DataFrame objects

Logical operators

Logical operators align both .index of left and right hand side.

Previous behavior (Series), only left hand side index was kept:

148 Chapter 1. What’s New

pandas: powerful Python data analysis toolkit, Release 0.23.4

In [4]: s1 = pd.Series([True, False, True], index=list('ABC'))
In [5]: s2 = pd.Series([True, True, True], index=list('ABD'))
In [6]: s1 & s2
Out[6]:
A True
B False
C False
dtype: bool

New behavior (Series):

In [88]: s1 = pd.Series([True, False, True], index=list('ABC'))

In [89]: s2 = pd.Series([True, True, True], index=list('ABD'))

In [90]: s1 & s2
Out[90]:
A True
B False
C False
D False
dtype: bool

Note: Series logical operators fill a NaN result with False.

Note: To achieve the same result as previous versions (compare values based on only left hand side index), you can
use reindex_like:

In [91]: s1 & s2.reindex_like(s1)
Out[91]:
A True
B False
C False
dtype: bool

Current Behavior (DataFrame, no change):

In [92]: df1 = pd.DataFrame([True, False, True], index=list('ABC'))

In [93]: df2 = pd.DataFrame([True, True, True], index=list('ABD'))

In [94]: df1 & df2
Out[94]:

0
A True
B False
C NaN
D NaN

1.14. v0.19.0 (October 2, 2016) 149

pandas: powerful Python data analysis toolkit, Release 0.23.4

Flexible comparison methods

Series flexible comparison methods like eq, ne, le, lt, ge and gt now align both index. Use these operators
if you want to compare two Series which has the different index.

In [95]: s1 = pd.Series([1, 2, 3], index=['a', 'b', 'c'])

In [96]: s2 = pd.Series([2, 2, 2], index=['b', 'c', 'd'])

In [97]: s1.eq(s2)
Out[97]:
a False
b True
c False
d False
dtype: bool

In [98]: s1.ge(s2)
\\Out[98]:
a False
b True
c True
d False
dtype: bool

Previously, this worked the same as comparison operators (see above).

1.14.2.3 Series type promotion on assignment

A Series will now correctly promote its dtype for assignment with incompat values to the current dtype (GH13234)

In [99]: s = pd.Series()

Previous behavior:

In [2]: s["a"] = pd.Timestamp("2016-01-01")

In [3]: s["b"] = 3.0
TypeError: invalid type promotion

New behavior:

In [100]: s["a"] = pd.Timestamp("2016-01-01")

In [101]: s["b"] = 3.0

In [102]: s
Out[102]:
a 2016-01-01 00:00:00
b 3
dtype: object

In [103]: s.dtype
\\\Out[103]:
→˓dtype('O')

150 Chapter 1. What’s New

https://github.com/pandas-dev/pandas/issues/13234

pandas: powerful Python data analysis toolkit, Release 0.23.4

1.14.2.4 .to_datetime() changes

Previously if .to_datetime() encountered mixed integers/floats and strings, but no datetimes with
errors='coerce' it would convert all to NaT.

Previous behavior:

In [2]: pd.to_datetime([1, 'foo'], errors='coerce')
Out[2]: DatetimeIndex(['NaT', 'NaT'], dtype='datetime64[ns]', freq=None)

Current behavior:

This will now convert integers/floats with the default unit of ns.

In [104]: pd.to_datetime([1, 'foo'], errors='coerce')
Out[104]: DatetimeIndex(['1970-01-01 00:00:00.000000001', 'NaT'], dtype=
→˓'datetime64[ns]', freq=None)

Bug fixes related to .to_datetime():

• Bug in pd.to_datetime() when passing integers or floats, and no unit and errors='coerce'
(GH13180).

• Bug in pd.to_datetime() when passing invalid datatypes (e.g. bool); will now respect the errors key-
word (GH13176)

• Bug in pd.to_datetime() which overflowed on int8, and int16 dtypes (GH13451)

• Bug in pd.to_datetime() raise AttributeError with NaN and the other string is not valid when
errors='ignore' (GH12424)

• Bug in pd.to_datetime() did not cast floats correctly when unit was specified, resulting in truncated
datetime (GH13834)

1.14.2.5 Merging changes

Merging will now preserve the dtype of the join keys (GH8596)

In [105]: df1 = pd.DataFrame({'key': [1], 'v1': [10]})

In [106]: df1
Out[106]:

key v1
0 1 10

In [107]: df2 = pd.DataFrame({'key': [1, 2], 'v1': [20, 30]})

In [108]: df2
Out[108]:

key v1
0 1 20
1 2 30

Previous behavior:

In [5]: pd.merge(df1, df2, how='outer')
Out[5]:

key v1
0 1.0 10.0

(continues on next page)

1.14. v0.19.0 (October 2, 2016) 151

https://github.com/pandas-dev/pandas/issues/13180
https://github.com/pandas-dev/pandas/issues/13176
https://github.com/pandas-dev/pandas/issues/13451
https://github.com/pandas-dev/pandas/issues/12424
https://github.com/pandas-dev/pandas/issues/13834
https://github.com/pandas-dev/pandas/issues/8596

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

1 1.0 20.0
2 2.0 30.0

In [6]: pd.merge(df1, df2, how='outer').dtypes
Out[6]:
key float64
v1 float64
dtype: object

New behavior:

We are able to preserve the join keys

In [109]: pd.merge(df1, df2, how='outer')
Out[109]:

key v1
0 1 10
1 1 20
2 2 30

In [110]: pd.merge(df1, df2, how='outer').dtypes
\\\Out[110]:
key int64
v1 int64
dtype: object

Of course if you have missing values that are introduced, then the resulting dtype will be upcast, which is unchanged
from previous.

In [111]: pd.merge(df1, df2, how='outer', on='key')
Out[111]:

key v1_x v1_y
0 1 10.0 20
1 2 NaN 30

In [112]: pd.merge(df1, df2, how='outer', on='key').dtypes
\\Out[112]:
key int64
v1_x float64
v1_y int64
dtype: object

1.14.2.6 .describe() changes

Percentile identifiers in the index of a .describe() output will now be rounded to the least precision that keeps
them distinct (GH13104)

In [113]: s = pd.Series([0, 1, 2, 3, 4])

In [114]: df = pd.DataFrame([0, 1, 2, 3, 4])

Previous behavior:

The percentiles were rounded to at most one decimal place, which could raise ValueError for a data frame if the
percentiles were duplicated.

152 Chapter 1. What’s New

https://github.com/pandas-dev/pandas/issues/13104

pandas: powerful Python data analysis toolkit, Release 0.23.4

In [3]: s.describe(percentiles=[0.0001, 0.0005, 0.001, 0.999, 0.9995, 0.9999])
Out[3]:
count 5.000000
mean 2.000000
std 1.581139
min 0.000000
0.0% 0.000400
0.1% 0.002000
0.1% 0.004000
50% 2.000000
99.9% 3.996000
100.0% 3.998000
100.0% 3.999600
max 4.000000
dtype: float64

In [4]: df.describe(percentiles=[0.0001, 0.0005, 0.001, 0.999, 0.9995, 0.9999])
Out[4]:
...
ValueError: cannot reindex from a duplicate axis

New behavior:

In [115]: s.describe(percentiles=[0.0001, 0.0005, 0.001, 0.999, 0.9995, 0.9999])
Out[115]:
count 5.000000
mean 2.000000
std 1.581139
min 0.000000
0.01% 0.000400
0.05% 0.002000
0.1% 0.004000
50% 2.000000
99.9% 3.996000
99.95% 3.998000
99.99% 3.999600
max 4.000000
dtype: float64

In [116]: df.describe(percentiles=[0.0001, 0.0005, 0.001, 0.999, 0.9995, 0.9999])
\\Out[116]:
→˓

0
count 5.000000
mean 2.000000
std 1.581139
min 0.000000
0.01% 0.000400
0.05% 0.002000
0.1% 0.004000
50% 2.000000
99.9% 3.996000
99.95% 3.998000
99.99% 3.999600
max 4.000000

Furthermore:

1.14. v0.19.0 (October 2, 2016) 153

pandas: powerful Python data analysis toolkit, Release 0.23.4

• Passing duplicated percentiles will now raise a ValueError.

• Bug in .describe() on a DataFrame with a mixed-dtype column index, which would previously raise a
TypeError (GH13288)

1.14.2.7 Period changes

PeriodIndex now has period dtype

PeriodIndex now has its own period dtype. The period dtype is a pandas extension dtype like category or
the timezone aware dtype (datetime64[ns, tz]) (GH13941). As a consequence of this change, PeriodIndex
no longer has an integer dtype:

Previous behavior:

In [1]: pi = pd.PeriodIndex(['2016-08-01'], freq='D')

In [2]: pi
Out[2]: PeriodIndex(['2016-08-01'], dtype='int64', freq='D')

In [3]: pd.api.types.is_integer_dtype(pi)
Out[3]: True

In [4]: pi.dtype
Out[4]: dtype('int64')

New behavior:

In [117]: pi = pd.PeriodIndex(['2016-08-01'], freq='D')

In [118]: pi
Out[118]: PeriodIndex(['2016-08-01'], dtype='period[D]', freq='D')

In [119]: pd.api.types.is_integer_dtype(pi)
\\\Out[119]: False

In [120]: pd.api.types.is_period_dtype(pi)
\\\Out[120]:
→˓True

In [121]: pi.dtype
\\Out[121]:
→˓period[D]

In [122]: type(pi.dtype)
\\Out[122]:
→˓pandas.core.dtypes.dtypes.PeriodDtype

Period('NaT') now returns pd.NaT

Previously, Period has its own Period('NaT') representation different from pd.NaT. Now Period('NaT')
has been changed to return pd.NaT. (GH12759, GH13582)

Previous behavior:

154 Chapter 1. What’s New

https://github.com/pandas-dev/pandas/issues/13288
https://github.com/pandas-dev/pandas/issues/13941
https://github.com/pandas-dev/pandas/issues/12759
https://github.com/pandas-dev/pandas/issues/13582

pandas: powerful Python data analysis toolkit, Release 0.23.4

In [5]: pd.Period('NaT', freq='D')
Out[5]: Period('NaT', 'D')

New behavior:

These result in pd.NaT without providing freq option.

In [123]: pd.Period('NaT')
Out[123]: NaT

In [124]: pd.Period(None)
\\\\\\\\\\\\\\Out[124]: NaT

To be compatible with Period addition and subtraction, pd.NaT now supports addition and subtraction with int.
Previously it raised ValueError.

Previous behavior:

In [5]: pd.NaT + 1
...
ValueError: Cannot add integral value to Timestamp without freq.

New behavior:

In [125]: pd.NaT + 1
Out[125]: NaT

In [126]: pd.NaT - 1
\\\\\\\\\\\\\\Out[126]: NaT

PeriodIndex.values now returns array of Period object

.values is changed to return an array of Period objects, rather than an array of integers (GH13988).

Previous behavior:

In [6]: pi = pd.PeriodIndex(['2011-01', '2011-02'], freq='M')
In [7]: pi.values
array([492, 493])

New behavior:

In [127]: pi = pd.PeriodIndex(['2011-01', '2011-02'], freq='M')

In [128]: pi.values
Out[128]: array([Period('2011-01', 'M'), Period('2011-02', 'M')], dtype=object)

1.14.2.8 Index + / - no longer used for set operations

Addition and subtraction of the base Index type and of DatetimeIndex (not the numeric index types) previously per-
formed set operations (set union and difference). This behavior was already deprecated since 0.15.0 (in favor using
the specific .union() and .difference() methods), and is now disabled. When possible, + and - are now used
for element-wise operations, for example for concatenating strings or subtracting datetimes (GH8227, GH14127).

Previous behavior:

1.14. v0.19.0 (October 2, 2016) 155

https://github.com/pandas-dev/pandas/issues/13988
https://github.com/pandas-dev/pandas/issues/8227
https://github.com/pandas-dev/pandas/issues/14127

pandas: powerful Python data analysis toolkit, Release 0.23.4

In [1]: pd.Index(['a', 'b']) + pd.Index(['a', 'c'])
FutureWarning: using '+' to provide set union with Indexes is deprecated, use '|' or .
→˓union()
Out[1]: Index(['a', 'b', 'c'], dtype='object')

New behavior: the same operation will now perform element-wise addition:

In [129]: pd.Index(['a', 'b']) + pd.Index(['a', 'c'])
Out[129]: Index(['aa', 'bc'], dtype='object')

Note that numeric Index objects already performed element-wise operations. For example, the behavior of adding two
integer Indexes is unchanged. The base Index is now made consistent with this behavior.

In [130]: pd.Index([1, 2, 3]) + pd.Index([2, 3, 4])
Out[130]: Int64Index([3, 5, 7], dtype='int64')

Further, because of this change, it is now possible to subtract two DatetimeIndex objects resulting in a TimedeltaIndex:

Previous behavior:

In [1]: pd.DatetimeIndex(['2016-01-01', '2016-01-02']) - pd.DatetimeIndex(['2016-01-02
→˓', '2016-01-03'])
FutureWarning: using '-' to provide set differences with datetimelike Indexes is
→˓deprecated, use .difference()
Out[1]: DatetimeIndex(['2016-01-01'], dtype='datetime64[ns]', freq=None)

New behavior:

In [131]: pd.DatetimeIndex(['2016-01-01', '2016-01-02']) - pd.DatetimeIndex(['2016-01-
→˓02', '2016-01-03'])
Out[131]: TimedeltaIndex(['-1 days', '-1 days'], dtype='timedelta64[ns]', freq=None)

1.14.2.9 Index.difference and .symmetric_difference changes

Index.difference and Index.symmetric_difference will now, more consistently, treat NaN values as
any other values. (GH13514)

In [132]: idx1 = pd.Index([1, 2, 3, np.nan])

In [133]: idx2 = pd.Index([0, 1, np.nan])

Previous behavior:

In [3]: idx1.difference(idx2)
Out[3]: Float64Index([nan, 2.0, 3.0], dtype='float64')

In [4]: idx1.symmetric_difference(idx2)
Out[4]: Float64Index([0.0, nan, 2.0, 3.0], dtype='float64')

New behavior:

In [134]: idx1.difference(idx2)
Out[134]: Float64Index([2.0, 3.0], dtype='float64')

In [135]: idx1.symmetric_difference(idx2)
\\Out[135]: Float64Index([0.0, 2.0,
→˓3.0], dtype='float64') (continues on next page)

156 Chapter 1. What’s New

https://github.com/pandas-dev/pandas/issues/13514

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

1.14.2.10 Index.unique consistently returns Index

Index.unique() now returns unique values as an Index of the appropriate dtype. (GH13395). Previously, most
Index classes returned np.ndarray, and DatetimeIndex, TimedeltaIndex and PeriodIndex returned
Index to keep metadata like timezone.

Previous behavior:

In [1]: pd.Index([1, 2, 3]).unique()
Out[1]: array([1, 2, 3])

In [2]: pd.DatetimeIndex(['2011-01-01', '2011-01-02', '2011-01-03'], tz='Asia/Tokyo').
→˓unique()
Out[2]:
DatetimeIndex(['2011-01-01 00:00:00+09:00', '2011-01-02 00:00:00+09:00',

'2011-01-03 00:00:00+09:00'],
dtype='datetime64[ns, Asia/Tokyo]', freq=None)

New behavior:

In [136]: pd.Index([1, 2, 3]).unique()
Out[136]: Int64Index([1, 2, 3], dtype='int64')

In [137]: pd.DatetimeIndex(['2011-01-01', '2011-01-02', '2011-01-03'], tz='Asia/Tokyo
→˓').unique()
\\\Out[137]:
DatetimeIndex(['2011-01-01 00:00:00+09:00', '2011-01-02 00:00:00+09:00',

'2011-01-03 00:00:00+09:00'],
dtype='datetime64[ns, Asia/Tokyo]', freq=None)

1.14.2.11 MultiIndex constructors, groupby and set_index preserve categorical dtypes

MultiIndex.from_arrays and MultiIndex.from_product will now preserve categorical dtype in
MultiIndex levels (GH13743, GH13854).

In [138]: cat = pd.Categorical(['a', 'b'], categories=list("bac"))

In [139]: lvl1 = ['foo', 'bar']

In [140]: midx = pd.MultiIndex.from_arrays([cat, lvl1])

In [141]: midx
Out[141]:
MultiIndex(levels=[['b', 'a', 'c'], ['bar', 'foo']],

labels=[[1, 0], [1, 0]])

Previous behavior:

In [4]: midx.levels[0]
Out[4]: Index(['b', 'a', 'c'], dtype='object')

In [5]: midx.get_level_values[0]
Out[5]: Index(['a', 'b'], dtype='object')

1.14. v0.19.0 (October 2, 2016) 157

https://github.com/pandas-dev/pandas/issues/13395
https://github.com/pandas-dev/pandas/issues/13743
https://github.com/pandas-dev/pandas/issues/13854

pandas: powerful Python data analysis toolkit, Release 0.23.4

New behavior: the single level is now a CategoricalIndex:

In [142]: midx.levels[0]
Out[142]: CategoricalIndex(['b', 'a', 'c'], categories=['b', 'a', 'c'], ordered=False,
→˓ dtype='category')

In [143]: midx.get_level_values(0)
\\\Out[143]:
→˓CategoricalIndex(['a', 'b'], categories=['b', 'a', 'c'], ordered=False, dtype=
→˓'category')

An analogous change has been made to MultiIndex.from_product. As a consequence, groupby and
set_index also preserve categorical dtypes in indexes

In [144]: df = pd.DataFrame({'A': [0, 1], 'B': [10, 11], 'C': cat})

In [145]: df_grouped = df.groupby(by=['A', 'C']).first()

In [146]: df_set_idx = df.set_index(['A', 'C'])

Previous behavior:

In [11]: df_grouped.index.levels[1]
Out[11]: Index(['b', 'a', 'c'], dtype='object', name='C')
In [12]: df_grouped.reset_index().dtypes
Out[12]:
A int64
C object
B float64
dtype: object

In [13]: df_set_idx.index.levels[1]
Out[13]: Index(['b', 'a', 'c'], dtype='object', name='C')
In [14]: df_set_idx.reset_index().dtypes
Out[14]:
A int64
C object
B int64
dtype: object

New behavior:

In [147]: df_grouped.index.levels[1]
Out[147]: CategoricalIndex(['b', 'a', 'c'], categories=['b', 'a', 'c'], ordered=False,
→˓ name='C', dtype='category')

In [148]: df_grouped.reset_index().dtypes
\\\Out[148]:
→˓

A int64
C category
B float64
dtype: object

In [149]: df_set_idx.index.levels[1]
\\Out[149]:
→˓CategoricalIndex(['b', 'a', 'c'], categories=['b', 'a', 'c'], ordered=False, name='C
→˓', dtype='category')

(continues on next page)

158 Chapter 1. What’s New

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

In [150]: df_set_idx.reset_index().dtypes
\\\Out[150]:
→˓

A int64
C category
B int64
dtype: object

1.14.2.12 read_csv will progressively enumerate chunks

When read_csv() is called with chunksize=n and without specifying an index, each chunk used to have an
independently generated index from 0 to n-1. They are now given instead a progressive index, starting from 0 for
the first chunk, from n for the second, and so on, so that, when concatenated, they are identical to the result of calling
read_csv() without the chunksize= argument (GH12185).

In [151]: data = 'A,B\n0,1\n2,3\n4,5\n6,7'

Previous behavior:

In [2]: pd.concat(pd.read_csv(StringIO(data), chunksize=2))
Out[2]:

A B
0 0 1
1 2 3
0 4 5
1 6 7

New behavior:

In [152]: pd.concat(pd.read_csv(StringIO(data), chunksize=2))
Out[152]:

A B
0 0 1
1 2 3
2 4 5
3 6 7

1.14.2.13 Sparse Changes

These changes allow pandas to handle sparse data with more dtypes, and for work to make a smoother experience with
data handling.

int64 and bool support enhancements

Sparse data structures now gained enhanced support of int64 and bool dtype (GH667, GH13849).

Previously, sparse data were float64 dtype by default, even if all inputs were of int or bool dtype. You had to
specify dtype explicitly to create sparse data with int64 dtype. Also, fill_value had to be specified explicitly
because the default was np.nan which doesn’t appear in int64 or bool data.

1.14. v0.19.0 (October 2, 2016) 159

https://github.com/pandas-dev/pandas/issues/12185
https://github.com/pandas-dev/pandas/issues/667
https://github.com/pandas-dev/pandas/issues/13849

pandas: powerful Python data analysis toolkit, Release 0.23.4

In [1]: pd.SparseArray([1, 2, 0, 0])
Out[1]:
[1.0, 2.0, 0.0, 0.0]
Fill: nan
IntIndex
Indices: array([0, 1, 2, 3], dtype=int32)

specifying int64 dtype, but all values are stored in sp_values because
fill_value default is np.nan
In [2]: pd.SparseArray([1, 2, 0, 0], dtype=np.int64)
Out[2]:
[1, 2, 0, 0]
Fill: nan
IntIndex
Indices: array([0, 1, 2, 3], dtype=int32)

In [3]: pd.SparseArray([1, 2, 0, 0], dtype=np.int64, fill_value=0)
Out[3]:
[1, 2, 0, 0]
Fill: 0
IntIndex
Indices: array([0, 1], dtype=int32)

As of v0.19.0, sparse data keeps the input dtype, and uses more appropriate fill_value defaults (0 for int64
dtype, False for bool dtype).

In [153]: pd.SparseArray([1, 2, 0, 0], dtype=np.int64)
Out[153]:
[1, 2, 0, 0]
Fill: 0
IntIndex
Indices: array([0, 1], dtype=int32)

In [154]: pd.SparseArray([True, False, False, False])
\\\Out[154]:
→˓

[True, False, False, False]
Fill: False
IntIndex
Indices: array([0], dtype=int32)

See the docs for more details.

Operators now preserve dtypes

• Sparse data structure now can preserve dtype after arithmetic ops (GH13848)

In [155]: s = pd.SparseSeries([0, 2, 0, 1], fill_value=0, dtype=np.int64)

In [156]: s.dtype
Out[156]: dtype('int64')

In [157]: s + 1
\\\\\\\\\\\\\\\\\\\\\\\\\Out[157]:
0 1
1 3

(continues on next page)

160 Chapter 1. What’s New

https://github.com/pandas-dev/pandas/issues/13848

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

2 1
3 2
dtype: int64
BlockIndex
Block locations: array([1, 3], dtype=int32)
Block lengths: array([1, 1], dtype=int32)

• Sparse data structure now support astype to convert internal dtype (GH13900)

In [158]: s = pd.SparseSeries([1., 0., 2., 0.], fill_value=0)

In [159]: s
Out[159]:
0 1.0
1 0.0
2 2.0
3 0.0
dtype: float64
BlockIndex
Block locations: array([0, 2], dtype=int32)
Block lengths: array([1, 1], dtype=int32)

In [160]: s.astype(np.int64)
\\\Out[160]:
→˓

0 1
1 0
2 2
3 0
dtype: int64
BlockIndex
Block locations: array([0, 2], dtype=int32)
Block lengths: array([1, 1], dtype=int32)

astype fails if data contains values which cannot be converted to specified dtype. Note that the limitation is
applied to fill_value which default is np.nan.

In [7]: pd.SparseSeries([1., np.nan, 2., np.nan], fill_value=np.nan).astype(np.
→˓int64)
Out[7]:
ValueError: unable to coerce current fill_value nan to int64 dtype

Other sparse fixes

• Subclassed SparseDataFrame and SparseSeries now preserve class types when slicing or transposing.
(GH13787)

• SparseArray with bool dtype now supports logical (bool) operators (GH14000)

• Bug in SparseSeries with MultiIndex [] indexing may raise IndexError (GH13144)

• Bug in SparseSeries with MultiIndex [] indexing result may have normal Index (GH13144)

• Bug in SparseDataFrame in which axis=None did not default to axis=0 (GH13048)

• Bug in SparseSeries and SparseDataFrame creation with object dtype may raise TypeError
(GH11633)

1.14. v0.19.0 (October 2, 2016) 161

https://github.com/pandas-dev/pandas/issues/13900
https://github.com/pandas-dev/pandas/issues/13787
https://github.com/pandas-dev/pandas/issues/14000
https://github.com/pandas-dev/pandas/issues/13144
https://github.com/pandas-dev/pandas/issues/13144
https://github.com/pandas-dev/pandas/issues/13048
https://github.com/pandas-dev/pandas/issues/11633

pandas: powerful Python data analysis toolkit, Release 0.23.4

• Bug in SparseDataFrame doesn’t respect passed SparseArray or SparseSeries ‘s dtype and
fill_value (GH13866)

• Bug in SparseArray and SparseSeries don’t apply ufunc to fill_value (GH13853)

• Bug in SparseSeries.abs incorrectly keeps negative fill_value (GH13853)

• Bug in single row slicing on multi-type SparseDataFrame s, types were previously forced to float
(GH13917)

• Bug in SparseSeries slicing changes integer dtype to float (GH8292)

• Bug in SparseDataFarme comparison ops may raise TypeError (GH13001)

• Bug in SparseDataFarme.isnull raises ValueError (GH8276)

• Bug in SparseSeries representation with bool dtype may raise IndexError (GH13110)

• Bug in SparseSeries and SparseDataFrame of bool or int64 dtype may display its values like
float64 dtype (GH13110)

• Bug in sparse indexing using SparseArray with bool dtype may return incorrect result (GH13985)

• Bug in SparseArray created from SparseSeries may lose dtype (GH13999)

• Bug in SparseSeries comparison with dense returns normal Series rather than SparseSeries
(GH13999)

1.14.2.14 Indexer dtype changes

Note: This change only affects 64 bit python running on Windows, and only affects relatively advanced indexing
operations

Methods such as Index.get_indexer that return an indexer array, coerce that array to a “platform int”, so that
it can be directly used in 3rd party library operations like numpy.take. Previously, a platform int was defined as
np.int_ which corresponds to a C integer, but the correct type, and what is being used now, is np.intp, which
corresponds to the C integer size that can hold a pointer (GH3033, GH13972).

These types are the same on many platform, but for 64 bit python on Windows, np.int_ is 32 bits, and np.intp
is 64 bits. Changing this behavior improves performance for many operations on that platform.

Previous behavior:

In [1]: i = pd.Index(['a', 'b', 'c'])

In [2]: i.get_indexer(['b', 'b', 'c']).dtype
Out[2]: dtype('int32')

New behavior:

In [1]: i = pd.Index(['a', 'b', 'c'])

In [2]: i.get_indexer(['b', 'b', 'c']).dtype
Out[2]: dtype('int64')

162 Chapter 1. What’s New

https://github.com/pandas-dev/pandas/issues/13866
https://github.com/pandas-dev/pandas/issues/13853
https://github.com/pandas-dev/pandas/issues/13853
https://github.com/pandas-dev/pandas/issues/13917
https://github.com/pandas-dev/pandas/issues/8292
https://github.com/pandas-dev/pandas/issues/13001
https://github.com/pandas-dev/pandas/issues/8276
https://github.com/pandas-dev/pandas/issues/13110
https://github.com/pandas-dev/pandas/issues/13110
https://github.com/pandas-dev/pandas/issues/13985
https://github.com/pandas-dev/pandas/issues/13999
https://github.com/pandas-dev/pandas/issues/13999
https://github.com/pandas-dev/pandas/issues/3033
https://github.com/pandas-dev/pandas/issues/13972

pandas: powerful Python data analysis toolkit, Release 0.23.4

1.14.2.15 Other API Changes

• Timestamp.to_pydatetime will issue a UserWarning when warn=True, and the instance has a non-
zero number of nanoseconds, previously this would print a message to stdout (GH14101).

• Series.unique() with datetime and timezone now returns return array of Timestamp with timezone
(GH13565).

• Panel.to_sparse() will raise a NotImplementedError exception when called (GH13778).

• Index.reshape() will raise a NotImplementedError exception when called (GH12882).

• .filter() enforces mutual exclusion of the keyword arguments (GH12399).

• eval’s upcasting rules for float32 types have been updated to be more consistent with NumPy’s rules. New
behavior will not upcast to float64 if you multiply a pandas float32 object by a scalar float64 (GH12388).

• An UnsupportedFunctionCall error is now raised if NumPy ufuncs like np.mean are called on groupby
or resample objects (GH12811).

• __setitem__ will no longer apply a callable rhs as a function instead of storing it. Call where directly to
get the previous behavior (GH13299).

• Calls to .sample() will respect the random seed set via numpy.random.seed(n) (GH13161)

• Styler.apply is now more strict about the outputs your function must return. For axis=0 or axis=1, the
output shape must be identical. For axis=None, the output must be a DataFrame with identical columns and
index labels (GH13222).

• Float64Index.astype(int) will now raise ValueError if Float64Index contains NaN values
(GH13149)

• TimedeltaIndex.astype(int) and DatetimeIndex.astype(int) will now return
Int64Index instead of np.array (GH13209)

• Passing Period with multiple frequencies to normal Index now returns Index with object dtype
(GH13664)

• PeriodIndex.fillna with Period has different freq now coerces to object dtype (GH13664)

• Faceted boxplots from DataFrame.boxplot(by=col) now return a Series when return_type is
not None. Previously these returned an OrderedDict. Note that when return_type=None, the default,
these still return a 2-D NumPy array (GH12216, GH7096).

• pd.read_hdf will now raise a ValueError instead of KeyError, if a mode other than r, r+ and a is
supplied. (GH13623)

• pd.read_csv(), pd.read_table(), and pd.read_hdf() raise the builtin FileNotFoundError
exception for Python 3.x when called on a nonexistent file; this is back-ported as IOError in Python 2.x
(GH14086)

• More informative exceptions are passed through the csv parser. The exception type would now be the original
exception type instead of CParserError (GH13652).

• pd.read_csv() in the C engine will now issue a ParserWarning or raise a ValueError when sep
encoded is more than one character long (GH14065)

• DataFrame.values will now return float64 with a DataFrame of mixed int64 and uint64 dtypes,
conforming to np.find_common_type (GH10364, GH13917)

• .groupby.groups will now return a dictionary of Index objects, rather than a dictionary of np.ndarray
or lists (GH14293)

1.14. v0.19.0 (October 2, 2016) 163

https://github.com/pandas-dev/pandas/issues/14101
https://github.com/pandas-dev/pandas/issues/13565
https://github.com/pandas-dev/pandas/issues/13778
https://github.com/pandas-dev/pandas/issues/12882
https://github.com/pandas-dev/pandas/issues/12399
https://github.com/pandas-dev/pandas/issues/12388
https://github.com/pandas-dev/pandas/issues/12811
https://github.com/pandas-dev/pandas/issues/13299
https://github.com/pandas-dev/pandas/issues/13161
https://github.com/pandas-dev/pandas/issues/13222
https://github.com/pandas-dev/pandas/issues/13149
https://github.com/pandas-dev/pandas/issues/13209
https://github.com/pandas-dev/pandas/issues/13664
https://github.com/pandas-dev/pandas/issues/13664
https://github.com/pandas-dev/pandas/issues/12216
https://github.com/pandas-dev/pandas/issues/7096
https://github.com/pandas-dev/pandas/issues/13623
https://github.com/pandas-dev/pandas/issues/14086
https://github.com/pandas-dev/pandas/issues/13652
https://github.com/pandas-dev/pandas/issues/14065
https://github.com/pandas-dev/pandas/issues/10364
https://github.com/pandas-dev/pandas/issues/13917
https://github.com/pandas-dev/pandas/issues/14293

pandas: powerful Python data analysis toolkit, Release 0.23.4

1.14.3 Deprecations

• Series.reshape and Categorical.reshape have been deprecated and will be removed in a subse-
quent release (GH12882, GH12882)

• PeriodIndex.to_datetime has been deprecated in favor of PeriodIndex.to_timestamp
(GH8254)

• Timestamp.to_datetime has been deprecated in favor of Timestamp.to_pydatetime (GH8254)

• Index.to_datetime and DatetimeIndex.to_datetime have been deprecated in favor of pd.
to_datetime (GH8254)

• pandas.core.datetools module has been deprecated and will be removed in a subsequent release
(GH14094)

• SparseList has been deprecated and will be removed in a future version (GH13784)

• DataFrame.to_html() and DataFrame.to_latex() have dropped the colSpace parameter in fa-
vor of col_space (GH13857)

• DataFrame.to_sql() has deprecated the flavor parameter, as it is superfluous when SQLAlchemy is
not installed (GH13611)

• Deprecated read_csv keywords:

– compact_ints and use_unsigned have been deprecated and will be removed in a future version
(GH13320)

– buffer_lines has been deprecated and will be removed in a future version (GH13360)

– as_recarray has been deprecated and will be removed in a future version (GH13373)

– skip_footer has been deprecated in favor of skipfooter and will be removed in a future version
(GH13349)

• top-level pd.ordered_merge() has been renamed to pd.merge_ordered() and the original name will
be removed in a future version (GH13358)

• Timestamp.offset property (and named arg in the constructor), has been deprecated in favor of freq
(GH12160)

• pd.tseries.util.pivot_annual is deprecated. Use pivot_table as alternative, an example is here
(GH736)

• pd.tseries.util.isleapyear has been deprecated and will be removed in a subsequent release.
Datetime-likes now have a .is_leap_year property (GH13727)

• Panel4D and PanelND constructors are deprecated and will be removed in a future version. The recom-
mended way to represent these types of n-dimensional data are with the xarray package. Pandas provides a
to_xarray() method to automate this conversion (GH13564).

• pandas.tseries.frequencies.get_standard_freq is deprecated. Use pandas.tseries.
frequencies.to_offset(freq).rule_code instead (GH13874)

• pandas.tseries.frequencies.to_offset’s freqstr keyword is deprecated in favor of freq
(GH13874)

• Categorical.from_array has been deprecated and will be removed in a future version (GH13854)

1.14.4 Removal of prior version deprecations/changes

• The SparsePanel class has been removed (GH13778)

164 Chapter 1. What’s New

https://github.com/pandas-dev/pandas/issues/12882
https://github.com/pandas-dev/pandas/issues/12882
https://github.com/pandas-dev/pandas/issues/8254
https://github.com/pandas-dev/pandas/issues/8254
https://github.com/pandas-dev/pandas/issues/8254
https://github.com/pandas-dev/pandas/issues/14094
https://github.com/pandas-dev/pandas/issues/13784
https://github.com/pandas-dev/pandas/issues/13857
https://github.com/pandas-dev/pandas/issues/13611
https://github.com/pandas-dev/pandas/issues/13320
https://github.com/pandas-dev/pandas/issues/13360
https://github.com/pandas-dev/pandas/issues/13373
https://github.com/pandas-dev/pandas/issues/13349
https://github.com/pandas-dev/pandas/issues/13358
https://github.com/pandas-dev/pandas/issues/12160
https://github.com/pandas-dev/pandas/issues/736
https://github.com/pandas-dev/pandas/issues/13727
http://xarray.pydata.org/en/stable/
https://github.com/pandas-dev/pandas/issues/13564
https://github.com/pandas-dev/pandas/issues/13874
https://github.com/pandas-dev/pandas/issues/13874
https://github.com/pandas-dev/pandas/issues/13854
https://github.com/pandas-dev/pandas/issues/13778

pandas: powerful Python data analysis toolkit, Release 0.23.4

• The pd.sandbox module has been removed in favor of the external library pandas-qt (GH13670)

• The pandas.io.data and pandas.io.wbmodules are removed in favor of the pandas-datareader package
(GH13724).

• The pandas.tools.rplot module has been removed in favor of the seaborn package (GH13855)

• DataFrame.to_csv() has dropped the engine parameter, as was deprecated in 0.17.1 (GH11274,
GH13419)

• DataFrame.to_dict() has dropped the outtype parameter in favor of orient (GH13627, GH8486)

• pd.Categorical has dropped setting of the ordered attribute directly in favor of the set_ordered
method (GH13671)

• pd.Categorical has dropped the levels attribute in favor of categories (GH8376)

• DataFrame.to_sql() has dropped the mysql option for the flavor parameter (GH13611)

• Panel.shift() has dropped the lags parameter in favor of periods (GH14041)

• pd.Index has dropped the diff method in favor of difference (GH13669)

• pd.DataFrame has dropped the to_wide method in favor of to_panel (GH14039)

• Series.to_csv has dropped the nanRep parameter in favor of na_rep (GH13804)

• Series.xs, DataFrame.xs, Panel.xs, Panel.major_xs, and Panel.minor_xs have dropped
the copy parameter (GH13781)

• str.split has dropped the return_type parameter in favor of expand (GH13701)

• Removal of the legacy time rules (offset aliases), deprecated since 0.17.0 (this has been alias since 0.8.0)
(GH13590, GH13868). Now legacy time rules raises ValueError. For the list of currently supported off-
sets, see here.

• The default value for the return_type parameter for DataFrame.plot.box and DataFrame.
boxplot changed from None to "axes". These methods will now return a matplotlib axes by default instead
of a dictionary of artists. See here (GH6581).

• The tquery and uquery functions in the pandas.io.sql module are removed (GH5950).

1.14.5 Performance Improvements

• Improved performance of sparse IntIndex.intersect (GH13082)

• Improved performance of sparse arithmetic with BlockIndex when the number of blocks are large, though
recommended to use IntIndex in such cases (GH13082)

• Improved performance of DataFrame.quantile() as it now operates per-block (GH11623)

• Improved performance of float64 hash table operations, fixing some very slow indexing and groupby operations
in python 3 (GH13166, GH13334)

• Improved performance of DataFrameGroupBy.transform (GH12737)

• Improved performance of Index and Series .duplicated (GH10235)

• Improved performance of Index.difference (GH12044)

• Improved performance of RangeIndex.is_monotonic_increasing and
is_monotonic_decreasing (GH13749)

• Improved performance of datetime string parsing in DatetimeIndex (GH13692)

• Improved performance of hashing Period (GH12817)

1.14. v0.19.0 (October 2, 2016) 165

https://github.com/pandas-dev/pandas/issues/13670
https://github.com/pydata/pandas-datareader
https://github.com/pandas-dev/pandas/issues/13724
https://github.com/mwaskom/seaborn
https://github.com/pandas-dev/pandas/issues/13855
https://github.com/pandas-dev/pandas/issues/11274
https://github.com/pandas-dev/pandas/issues/13419
https://github.com/pandas-dev/pandas/issues/13627
https://github.com/pandas-dev/pandas/issues/8486
https://github.com/pandas-dev/pandas/issues/13671
https://github.com/pandas-dev/pandas/issues/8376
https://github.com/pandas-dev/pandas/issues/13611
https://github.com/pandas-dev/pandas/issues/14041
https://github.com/pandas-dev/pandas/issues/13669
https://github.com/pandas-dev/pandas/issues/14039
https://github.com/pandas-dev/pandas/issues/13804
https://github.com/pandas-dev/pandas/issues/13781
https://github.com/pandas-dev/pandas/issues/13701
https://github.com/pandas-dev/pandas/issues/13590
https://github.com/pandas-dev/pandas/issues/13868
https://github.com/pandas-dev/pandas/issues/6581
https://github.com/pandas-dev/pandas/issues/5950
https://github.com/pandas-dev/pandas/issues/13082
https://github.com/pandas-dev/pandas/issues/13082
https://github.com/pandas-dev/pandas/issues/11623
https://github.com/pandas-dev/pandas/issues/13166
https://github.com/pandas-dev/pandas/issues/13334
https://github.com/pandas-dev/pandas/issues/12737
https://github.com/pandas-dev/pandas/issues/10235
https://github.com/pandas-dev/pandas/issues/12044
https://github.com/pandas-dev/pandas/issues/13749
https://github.com/pandas-dev/pandas/issues/13692
https://github.com/pandas-dev/pandas/issues/12817

pandas: powerful Python data analysis toolkit, Release 0.23.4

• Improved performance of factorize of datetime with timezone (GH13750)

• Improved performance of by lazily creating indexing hashtables on larger Indexes (GH14266)

• Improved performance of groupby.groups (GH14293)

• Unnecessary materializing of a MultiIndex when introspecting for memory usage (GH14308)

1.14.6 Bug Fixes

• Bug in groupby().shift(), which could cause a segfault or corruption in rare circumstances when group-
ing by columns with missing values (GH13813)

• Bug in groupby().cumsum() calculating cumprod when axis=1. (GH13994)

• Bug in pd.to_timedelta() in which the errors parameter was not being respected (GH13613)

• Bug in io.json.json_normalize(), where non-ascii keys raised an exception (GH13213)

• Bug when passing a not-default-indexed Series as xerr or yerr in .plot() (GH11858)

• Bug in area plot draws legend incorrectly if subplot is enabled or legend is moved after plot (matplotlib 1.5.0 is
required to draw area plot legend properly) (GH9161, GH13544)

• Bug in DataFrame assignment with an object-dtyped Index where the resultant column is mutable to the
original object. (GH13522)

• Bug in matplotlib AutoDataFormatter; this restores the second scaled formatting and re-adds micro-second
scaled formatting (GH13131)

• Bug in selection from a HDFStore with a fixed format and start and/or stop specified will now return the
selected range (GH8287)

• Bug in Categorical.from_codes() where an unhelpful error was raised when an invalid ordered
parameter was passed in (GH14058)

• Bug in Series construction from a tuple of integers on windows not returning default dtype (int64) (GH13646)

• Bug in TimedeltaIndex addition with a Datetime-like object where addition overflow was not being caught
(GH14068)

• Bug in .groupby(..).resample(..) when the same object is called multiple times (GH13174)

• Bug in .to_records() when index name is a unicode string (GH13172)

• Bug in calling .memory_usage() on object which doesn’t implement (GH12924)

• Regression in Series.quantile with nans (also shows up in .median() and .describe()); further-
more now names the Series with the quantile (GH13098, GH13146)

• Bug in SeriesGroupBy.transform with datetime values and missing groups (GH13191)

• Bug where empty Series were incorrectly coerced in datetime-like numeric operations (GH13844)

• Bug in Categorical constructor when passed a Categorical containing datetimes with timezones
(GH14190)

• Bug in Series.str.extractall() with str index raises ValueError (GH13156)

• Bug in Series.str.extractall() with single group and quantifier (GH13382)

• Bug in DatetimeIndex and Period subtraction raises ValueError or AttributeError rather than
TypeError (GH13078)

• Bug in Index and Series created with NaN and NaT mixed data may not have datetime64 dtype
(GH13324)

166 Chapter 1. What’s New

https://github.com/pandas-dev/pandas/issues/13750
https://github.com/pandas-dev/pandas/issues/14266
https://github.com/pandas-dev/pandas/issues/14293
https://github.com/pandas-dev/pandas/issues/14308
https://github.com/pandas-dev/pandas/issues/13813
https://github.com/pandas-dev/pandas/issues/13994
https://github.com/pandas-dev/pandas/issues/13613
https://github.com/pandas-dev/pandas/issues/13213
https://github.com/pandas-dev/pandas/issues/11858
https://github.com/pandas-dev/pandas/issues/9161
https://github.com/pandas-dev/pandas/issues/13544
https://github.com/pandas-dev/pandas/issues/13522
https://github.com/pandas-dev/pandas/issues/13131
https://github.com/pandas-dev/pandas/issues/8287
https://github.com/pandas-dev/pandas/issues/14058
https://github.com/pandas-dev/pandas/issues/13646
https://github.com/pandas-dev/pandas/issues/14068
https://github.com/pandas-dev/pandas/issues/13174
https://github.com/pandas-dev/pandas/issues/13172
https://github.com/pandas-dev/pandas/issues/12924
https://github.com/pandas-dev/pandas/issues/13098
https://github.com/pandas-dev/pandas/issues/13146
https://github.com/pandas-dev/pandas/issues/13191
https://github.com/pandas-dev/pandas/issues/13844
https://github.com/pandas-dev/pandas/issues/14190
https://github.com/pandas-dev/pandas/issues/13156
https://github.com/pandas-dev/pandas/issues/13382
https://github.com/pandas-dev/pandas/issues/13078
https://github.com/pandas-dev/pandas/issues/13324

pandas: powerful Python data analysis toolkit, Release 0.23.4

• Bug in Index and Series may ignore np.datetime64('nat') and np.timdelta64('nat') to
infer dtype (GH13324)

• Bug in PeriodIndex and Period subtraction raises AttributeError (GH13071)

• Bug in PeriodIndex construction returning a float64 index in some circumstances (GH13067)

• Bug in .resample(..)with a PeriodIndex not changing its freq appropriately when empty (GH13067)

• Bug in .resample(..) with a PeriodIndex not retaining its type or name with an empty DataFrame
appropriately when empty (GH13212)

• Bug in groupby(..).apply(..) when the passed function returns scalar values per group (GH13468).

• Bug in groupby(..).resample(..) where passing some keywords would raise an exception (GH13235)

• Bug in .tz_convert on a tz-aware DateTimeIndex that relied on index being sorted for correct results
(GH13306)

• Bug in .tz_localize with dateutil.tz.tzlocal may return incorrect result (GH13583)

• Bug in DatetimeTZDtype dtype with dateutil.tz.tzlocal cannot be regarded as valid dtype
(GH13583)

• Bug in pd.read_hdf() where attempting to load an HDF file with a single dataset, that had one or more
categorical columns, failed unless the key argument was set to the name of the dataset. (GH13231)

• Bug in .rolling() that allowed a negative integer window in construction of the Rolling() object, but
would later fail on aggregation (GH13383)

• Bug in Series indexing with tuple-valued data and a numeric index (GH13509)

• Bug in printing pd.DataFrame where unusual elements with the object dtype were causing segfaults
(GH13717)

• Bug in ranking Series which could result in segfaults (GH13445)

• Bug in various index types, which did not propagate the name of passed index (GH12309)

• Bug in DatetimeIndex, which did not honour the copy=True (GH13205)

• Bug in DatetimeIndex.is_normalized returns incorrectly for normalized date_range in case of local
timezones (GH13459)

• Bug in pd.concat and .appendmay coerces datetime64 and timedelta to object dtype containing
python built-in datetime or timedelta rather than Timestamp or Timedelta (GH13626)

• Bug in PeriodIndex.append may raises AttributeError when the result is object dtype
(GH13221)

• Bug in CategoricalIndex.append may accept normal list (GH13626)

• Bug in pd.concat and .append with the same timezone get reset to UTC (GH7795)

• Bug in Series and DataFrame .append raises AmbiguousTimeError if data contains datetime near
DST boundary (GH13626)

• Bug in DataFrame.to_csv() in which float values were being quoted even though quotations were speci-
fied for non-numeric values only (GH12922, GH13259)

• Bug in DataFrame.describe() raising ValueError with only boolean columns (GH13898)

• Bug in MultiIndex slicing where extra elements were returned when level is non-unique (GH12896)

• Bug in .str.replace does not raise TypeError for invalid replacement (GH13438)

• Bug in MultiIndex.from_arrays which didn’t check for input array lengths matching (GH13599)

1.14. v0.19.0 (October 2, 2016) 167

https://github.com/pandas-dev/pandas/issues/13324
https://github.com/pandas-dev/pandas/issues/13071
https://github.com/pandas-dev/pandas/issues/13067
https://github.com/pandas-dev/pandas/issues/13067
https://github.com/pandas-dev/pandas/issues/13212
https://github.com/pandas-dev/pandas/issues/13468
https://github.com/pandas-dev/pandas/issues/13235
https://github.com/pandas-dev/pandas/issues/13306
https://github.com/pandas-dev/pandas/issues/13583
https://github.com/pandas-dev/pandas/issues/13583
https://github.com/pandas-dev/pandas/issues/13231
https://github.com/pandas-dev/pandas/issues/13383
https://github.com/pandas-dev/pandas/issues/13509
https://github.com/pandas-dev/pandas/issues/13717
https://github.com/pandas-dev/pandas/issues/13445
https://github.com/pandas-dev/pandas/issues/12309
https://github.com/pandas-dev/pandas/issues/13205
https://github.com/pandas-dev/pandas/issues/13459
https://github.com/pandas-dev/pandas/issues/13626
https://github.com/pandas-dev/pandas/issues/13221
https://github.com/pandas-dev/pandas/issues/13626
https://github.com/pandas-dev/pandas/issues/7795
https://github.com/pandas-dev/pandas/issues/13626
https://github.com/pandas-dev/pandas/issues/12922
https://github.com/pandas-dev/pandas/issues/13259
https://github.com/pandas-dev/pandas/issues/13898
https://github.com/pandas-dev/pandas/issues/12896
https://github.com/pandas-dev/pandas/issues/13438
https://github.com/pandas-dev/pandas/issues/13599

pandas: powerful Python data analysis toolkit, Release 0.23.4

• Bug in cartesian_product and MultiIndex.from_product which may raise with empty input ar-
rays (GH12258)

• Bug in pd.read_csv() which may cause a segfault or corruption when iterating in large chunks over a
stream/file under rare circumstances (GH13703)

• Bug in pd.read_csv() which caused errors to be raised when a dictionary containing scalars is passed in
for na_values (GH12224)

• Bug in pd.read_csv()which caused BOM files to be incorrectly parsed by not ignoring the BOM (GH4793)

• Bug in pd.read_csv() with engine='python' which raised errors when a numpy array was passed in
for usecols (GH12546)

• Bug in pd.read_csv() where the index columns were being incorrectly parsed when parsed as dates with a
thousands parameter (GH14066)

• Bug in pd.read_csv() with engine='python' in which NaN values weren’t being detected after data
was converted to numeric values (GH13314)

• Bug in pd.read_csv() in which the nrows argument was not properly validated for both engines
(GH10476)

• Bug in pd.read_csv() with engine='python' in which infinities of mixed-case forms were not being
interpreted properly (GH13274)

• Bug in pd.read_csv() with engine='python' in which trailing NaN values were not being parsed
(GH13320)

• Bug in pd.read_csv() with engine='python' when reading from a tempfile.TemporaryFile
on Windows with Python 3 (GH13398)

• Bug in pd.read_csv() that prevents usecols kwarg from accepting single-byte unicode strings
(GH13219)

• Bug in pd.read_csv() that prevents usecols from being an empty set (GH13402)

• Bug in pd.read_csv() in the C engine where the NULL character was not being parsed as NULL
(GH14012)

• Bug in pd.read_csv() with engine='c' in which NULL quotechar was not accepted even though
quoting was specified as None (GH13411)

• Bug in pd.read_csv() with engine='c' in which fields were not properly cast to float when quoting was
specified as non-numeric (GH13411)

• Bug in pd.read_csv() in Python 2.x with non-UTF8 encoded, multi-character separated data (GH3404)

• Bug in pd.read_csv(), where aliases for utf-xx (e.g. UTF-xx, UTF_xx, utf_xx) raised UnicodeDecodeError
(GH13549)

• Bug in pd.read_csv, pd.read_table, pd.read_fwf, pd.read_stata and pd.read_sas where
files were opened by parsers but not closed if both chunksize and iterator were None. (GH13940)

• Bug in StataReader, StataWriter, XportReader and SAS7BDATReader where a file was not prop-
erly closed when an error was raised. (GH13940)

• Bug in pd.pivot_table() where margins_name is ignored when aggfunc is a list (GH13354)

• Bug in pd.Series.str.zfill, center, ljust, rjust, and pad when passing non-integers, did not
raise TypeError (GH13598)

• Bug in checking for any null objects in a TimedeltaIndex, which always returned True (GH13603)

• Bug in Series arithmetic raises TypeError if it contains datetime-like as object dtype (GH13043)

168 Chapter 1. What’s New

https://github.com/pandas-dev/pandas/issues/12258
https://github.com/pandas-dev/pandas/issues/13703
https://github.com/pandas-dev/pandas/issues/12224
https://github.com/pandas-dev/pandas/issues/4793
https://github.com/pandas-dev/pandas/issues/12546
https://github.com/pandas-dev/pandas/issues/14066
https://github.com/pandas-dev/pandas/issues/13314
https://github.com/pandas-dev/pandas/issues/10476
https://github.com/pandas-dev/pandas/issues/13274
https://github.com/pandas-dev/pandas/issues/13320
https://github.com/pandas-dev/pandas/issues/13398
https://github.com/pandas-dev/pandas/issues/13219
https://github.com/pandas-dev/pandas/issues/13402
https://github.com/pandas-dev/pandas/issues/14012
https://github.com/pandas-dev/pandas/issues/13411
https://github.com/pandas-dev/pandas/issues/13411
https://github.com/pandas-dev/pandas/issues/3404
https://github.com/pandas-dev/pandas/issues/13549
https://github.com/pandas-dev/pandas/issues/13940
https://github.com/pandas-dev/pandas/issues/13940
https://github.com/pandas-dev/pandas/issues/13354
https://github.com/pandas-dev/pandas/issues/13598
https://github.com/pandas-dev/pandas/issues/13603
https://github.com/pandas-dev/pandas/issues/13043

pandas: powerful Python data analysis toolkit, Release 0.23.4

• Bug Series.isnull() and Series.notnull() ignore Period('NaT') (GH13737)

• Bug Series.fillna() and Series.dropna() don’t affect to Period('NaT') (GH13737

• Bug in .fillna(value=np.nan) incorrectly raises KeyError on a category dtyped Series
(GH14021)

• Bug in extension dtype creation where the created types were not is/identical (GH13285)

• Bug in .resample(..) where incorrect warnings were triggered by IPython introspection (GH13618)

• Bug in NaT - Period raises AttributeError (GH13071)

• Bug in Series comparison may output incorrect result if rhs contains NaT (GH9005)

• Bug in Series and Index comparison may output incorrect result if it contains NaT with object dtype
(GH13592)

• Bug in Period addition raises TypeError if Period is on right hand side (GH13069)

• Bug in Peirod and Series or Index comparison raises TypeError (GH13200)

• Bug in pd.set_eng_float_format() that would prevent NaN and Inf from formatting (GH11981)

• Bug in .unstack with Categorical dtype resets .ordered to True (GH13249)

• Clean some compile time warnings in datetime parsing (GH13607)

• Bug in factorize raises AmbiguousTimeError if data contains datetime near DST boundary (GH13750)

• Bug in .set_index raises AmbiguousTimeError if new index contains DST boundary and multi levels
(GH12920)

• Bug in .shift raises AmbiguousTimeError if data contains datetime near DST boundary (GH13926)

• Bug in pd.read_hdf() returns incorrect result when a DataFrame with a categorical column and a
query which doesn’t match any values (GH13792)

• Bug in .iloc when indexing with a non lex-sorted MultiIndex (GH13797)

• Bug in .loc when indexing with date strings in a reverse sorted DatetimeIndex (GH14316)

• Bug in Series comparison operators when dealing with zero dim NumPy arrays (GH13006)

• Bug in .combine_first may return incorrect dtype (GH7630, GH10567)

• Bug in groupby where apply returns different result depending on whether first result is None or not
(GH12824)

• Bug in groupby(..).nth() where the group key is included inconsistently if called after .head()/.
tail() (GH12839)

• Bug in .to_html, .to_latex and .to_string silently ignore custom datetime formatter passed through
the formatters key word (GH10690)

• Bug in DataFrame.iterrows(), not yielding a Series subclasse if defined (GH13977)

• Bug in pd.to_numeric when errors='coerce' and input contains non-hashable objects (GH13324)

• Bug in invalid Timedelta arithmetic and comparison may raise ValueError rather than TypeError
(GH13624)

• Bug in invalid datetime parsing in to_datetime and DatetimeIndex may raise TypeError rather than
ValueError (GH11169, GH11287)

• Bug in Index created with tz-aware Timestamp and mismatched tz option incorrectly coerces timezone
(GH13692)

1.14. v0.19.0 (October 2, 2016) 169

https://github.com/pandas-dev/pandas/issues/13737
https://github.com/pandas-dev/pandas/issues/13737
https://github.com/pandas-dev/pandas/issues/14021
https://github.com/pandas-dev/pandas/issues/13285
https://github.com/pandas-dev/pandas/issues/13618
https://github.com/pandas-dev/pandas/issues/13071
https://github.com/pandas-dev/pandas/issues/9005
https://github.com/pandas-dev/pandas/issues/13592
https://github.com/pandas-dev/pandas/issues/13069
https://github.com/pandas-dev/pandas/issues/13200
https://github.com/pandas-dev/pandas/issues/11981
https://github.com/pandas-dev/pandas/issues/13249
https://github.com/pandas-dev/pandas/issues/13607
https://github.com/pandas-dev/pandas/issues/13750
https://github.com/pandas-dev/pandas/issues/12920
https://github.com/pandas-dev/pandas/issues/13926
https://github.com/pandas-dev/pandas/issues/13792
https://github.com/pandas-dev/pandas/issues/13797
https://github.com/pandas-dev/pandas/issues/14316
https://github.com/pandas-dev/pandas/issues/13006
https://github.com/pandas-dev/pandas/issues/7630
https://github.com/pandas-dev/pandas/issues/10567
https://github.com/pandas-dev/pandas/issues/12824
https://github.com/pandas-dev/pandas/issues/12839
https://github.com/pandas-dev/pandas/issues/10690
https://github.com/pandas-dev/pandas/issues/13977
https://github.com/pandas-dev/pandas/issues/13324
https://github.com/pandas-dev/pandas/issues/13624
https://github.com/pandas-dev/pandas/issues/11169
https://github.com/pandas-dev/pandas/issues/11287
https://github.com/pandas-dev/pandas/issues/13692

pandas: powerful Python data analysis toolkit, Release 0.23.4

• Bug in DatetimeIndex with nanosecond frequency does not include timestamp specified with end
(GH13672)

• Bug in `Series when setting a slice with a np.timedelta64 (GH14155)

• Bug in Index raises OutOfBoundsDatetime if datetime exceeds datetime64[ns] bounds, rather
than coercing to object dtype (GH13663)

• Bug in Index may ignore specified datetime64 or timedelta64 passed as dtype (GH13981)

• Bug in RangeIndex can be created without no arguments rather than raises TypeError (GH13793)

• Bug in .value_counts() raises OutOfBoundsDatetime if data exceeds datetime64[ns] bounds
(GH13663)

• Bug in DatetimeIndex may raise OutOfBoundsDatetime if input np.datetime64 has other unit
than ns (GH9114)

• Bug in Series creation with np.datetime64 which has other unit than ns as object dtype results in
incorrect values (GH13876)

• Bug in resample with timedelta data where data was casted to float (GH13119).

• Bug in pd.isnull() pd.notnull() raise TypeError if input datetime-like has other unit than ns
(GH13389)

• Bug in pd.merge() may raise TypeError if input datetime-like has other unit than ns (GH13389)

• Bug in HDFStore/read_hdf() discarded DatetimeIndex.name if tz was set (GH13884)

• Bug in Categorical.remove_unused_categories() changes .codes dtype to platform int
(GH13261)

• Bug in groupby with as_index=False returns all NaN’s when grouping on multiple columns including a
categorical one (GH13204)

• Bug in df.groupby(...)[...] where getitem with Int64Index raised an error (GH13731)

• Bug in the CSS classes assigned to DataFrame.style for index names. Previously they were assigned
"col_heading level<n> col<c>" where n was the number of levels + 1. Now they are assigned
"index_name level<n>", where n is the correct level for that MultiIndex.

• Bug where pd.read_gbq() could throw ImportError: No module named discovery as a re-
sult of a naming conflict with another python package called apiclient (GH13454)

• Bug in Index.union returns an incorrect result with a named empty index (GH13432)

• Bugs in Index.difference and DataFrame.join raise in Python3 when using mixed-integer indexes
(GH13432, GH12814)

• Bug in subtract tz-aware datetime.datetime from tz-aware datetime64 series (GH14088)

• Bug in .to_excel() when DataFrame contains a MultiIndex which contains a label with a NaN value
(GH13511)

• Bug in invalid frequency offset string like “D1”, “-2-3H” may not raise ValueError (GH13930)

• Bug in concat and groupby for hierarchical frames with RangeIndex levels (GH13542).

• Bug in Series.str.contains() for Series containing only NaN values of object dtype (GH14171)

• Bug in agg() function on groupby dataframe changes dtype of datetime64[ns] column to float64
(GH12821)

170 Chapter 1. What’s New

https://github.com/pandas-dev/pandas/issues/13672
https://github.com/pandas-dev/pandas/issues/14155
https://github.com/pandas-dev/pandas/issues/13663
https://github.com/pandas-dev/pandas/issues/13981
https://github.com/pandas-dev/pandas/issues/13793
https://github.com/pandas-dev/pandas/issues/13663
https://github.com/pandas-dev/pandas/issues/9114
https://github.com/pandas-dev/pandas/issues/13876
https://github.com/pandas-dev/pandas/issues/13119
https://github.com/pandas-dev/pandas/issues/13389
https://github.com/pandas-dev/pandas/issues/13389
https://github.com/pandas-dev/pandas/issues/13884
https://github.com/pandas-dev/pandas/issues/13261
https://github.com/pandas-dev/pandas/issues/13204
https://github.com/pandas-dev/pandas/issues/13731
https://github.com/pandas-dev/pandas/issues/13454
https://github.com/pandas-dev/pandas/issues/13432
https://github.com/pandas-dev/pandas/issues/13432
https://github.com/pandas-dev/pandas/issues/12814
https://github.com/pandas-dev/pandas/issues/14088
https://github.com/pandas-dev/pandas/issues/13511
https://github.com/pandas-dev/pandas/issues/13930
https://github.com/pandas-dev/pandas/issues/13542
https://github.com/pandas-dev/pandas/issues/14171
https://github.com/pandas-dev/pandas/issues/12821

pandas: powerful Python data analysis toolkit, Release 0.23.4

• Bug in using NumPy ufunc with PeriodIndex to add or subtract integer raise
IncompatibleFrequency. Note that using standard operator like + or - is recommended, because
standard operators use more efficient path (GH13980)

• Bug in operations on NaT returning float instead of datetime64[ns] (GH12941)

• Bug in Series flexible arithmetic methods (like .add()) raises ValueError when axis=None
(GH13894)

• Bug in DataFrame.to_csv() with MultiIndex columns in which a stray empty line was added
(GH6618)

• Bug in DatetimeIndex, TimedeltaIndex and PeriodIndex.equals() may return True when
input isn’t Index but contains the same values (GH13107)

• Bug in assignment against datetime with timezone may not work if it contains datetime near DST boundary
(GH14146)

• Bug in pd.eval() and HDFStore query truncating long float literals with python 2 (GH14241)

• Bug in Index raises KeyError displaying incorrect column when column is not in the df and columns con-
tains duplicate values (GH13822)

• Bug in Period and PeriodIndex creating wrong dates when frequency has combined offset aliases
(GH13874)

• Bug in .to_string() when called with an integer line_width and index=False raises an Unbound-
LocalError exception because idx referenced before assignment.

• Bug in eval() where the resolvers argument would not accept a list (GH14095)

• Bugs in stack, get_dummies, make_axis_dummies which don’t preserve categorical dtypes in
(multi)indexes (GH13854)

• PeriodIndex can now accept list and array which contains pd.NaT (GH13430)

• Bug in df.groupby where .median() returns arbitrary values if grouped dataframe contains empty bins
(GH13629)

• Bug in Index.copy() where name parameter was ignored (GH14302)

1.15 v0.18.1 (May 3, 2016)

This is a minor bug-fix release from 0.18.0 and includes a large number of bug fixes along with several new features,
enhancements, and performance improvements. We recommend that all users upgrade to this version.

Highlights include:

• .groupby(...) has been enhanced to provide convenient syntax when working with .rolling(..),
.expanding(..) and .resample(..) per group, see here

• pd.to_datetime() has gained the ability to assemble dates from a DataFrame, see here

• Method chaining improvements, see here.

• Custom business hour offset, see here.

• Many bug fixes in the handling of sparse, see here

• Expanded the Tutorials section with a feature on modern pandas, courtesy of @TomAugsburger. (GH13045).

1.15. v0.18.1 (May 3, 2016) 171

https://github.com/pandas-dev/pandas/issues/13980
https://github.com/pandas-dev/pandas/issues/12941
https://github.com/pandas-dev/pandas/issues/13894
https://github.com/pandas-dev/pandas/issues/6618
https://github.com/pandas-dev/pandas/issues/13107
https://github.com/pandas-dev/pandas/issues/14146
https://github.com/pandas-dev/pandas/issues/14241
https://github.com/pandas-dev/pandas/issues/13822
https://github.com/pandas-dev/pandas/issues/13874
https://github.com/pandas-dev/pandas/issues/14095
https://github.com/pandas-dev/pandas/issues/13854
https://github.com/pandas-dev/pandas/issues/13430
https://github.com/pandas-dev/pandas/issues/13629
https://github.com/pandas-dev/pandas/issues/14302
https://twitter.com/TomAugspurger
https://github.com/pandas-dev/pandas/issues/13045

pandas: powerful Python data analysis toolkit, Release 0.23.4

What’s new in v0.18.1

• New features

– Custom Business Hour

– .groupby(..) syntax with window and resample operations

– Method chaininng improvements

* .where() and .mask()

* .loc[], .iloc[], .ix[]

* [] indexing

– Partial string indexing on DateTimeIndex when part of a MultiIndex

– Assembling Datetimes

– Other Enhancements

• Sparse changes

• API changes

– .groupby(..).nth() changes

– numpy function compatibility

– Using .apply on groupby resampling

– Changes in read_csv exceptions

– to_datetime error changes

– Other API changes

– Deprecations

• Performance Improvements

• Bug Fixes

1.15.1 New features

1.15.1.1 Custom Business Hour

The CustomBusinessHour is a mixture of BusinessHour and CustomBusinessDay which allows you to
specify arbitrary holidays. For details, see Custom Business Hour (GH11514)

In [1]: from pandas.tseries.offsets import CustomBusinessHour

In [2]: from pandas.tseries.holiday import USFederalHolidayCalendar

In [3]: bhour_us = CustomBusinessHour(calendar=USFederalHolidayCalendar())

Friday before MLK Day

In [4]: dt = datetime(2014, 1, 17, 15)

(continues on next page)

172 Chapter 1. What’s New

https://github.com/pandas-dev/pandas/issues/11514

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

In [5]: dt + bhour_us
Out[5]: Timestamp('2014-01-17 16:00:00')

Tuesday after MLK Day (Monday is skipped because it’s a holiday)

In [6]: dt + bhour_us * 2
Out[6]: Timestamp('2014-01-20 09:00:00')

1.15.1.2 .groupby(..) syntax with window and resample operations

.groupby(...) has been enhanced to provide convenient syntax when working with .rolling(..), .
expanding(..) and .resample(..) per group, see (GH12486, GH12738).

You can now use .rolling(..) and .expanding(..) as methods on groupbys. These return another deferred
object (similar to what .rolling() and .expanding() do on ungrouped pandas objects). You can then operate
on these RollingGroupby objects in a similar manner.

Previously you would have to do this to get a rolling window mean per-group:

In [7]: df = pd.DataFrame({'A': [1] * 20 + [2] * 12 + [3] * 8,
...: 'B': np.arange(40)})
...:

In [8]: df
Out[8]:

A B
0 1 0
1 1 1
2 1 2
3 1 3
4 1 4
5 1 5
6 1 6
..
33 3 33
34 3 34
35 3 35
36 3 36
37 3 37
38 3 38
39 3 39

[40 rows x 2 columns]

In [9]: df.groupby('A').apply(lambda x: x.rolling(4).B.mean())
Out[9]:
A
1 0 NaN

1 NaN
2 NaN
3 1.5
4 2.5
5 3.5
6 4.5

...

(continues on next page)

1.15. v0.18.1 (May 3, 2016) 173

https://github.com/pandas-dev/pandas/issues/12486
https://github.com/pandas-dev/pandas/issues/12738

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

3 33 NaN
34 NaN
35 33.5
36 34.5
37 35.5
38 36.5
39 37.5

Name: B, Length: 40, dtype: float64

Now you can do:

In [10]: df.groupby('A').rolling(4).B.mean()
Out[10]:
A
1 0 NaN

1 NaN
2 NaN
3 1.5
4 2.5
5 3.5
6 4.5

...
3 33 NaN

34 NaN
35 33.5
36 34.5
37 35.5
38 36.5
39 37.5

Name: B, Length: 40, dtype: float64

For .resample(..) type of operations, previously you would have to:

In [11]: df = pd.DataFrame({'date': pd.date_range(start='2016-01-01',
....: periods=4,
....: freq='W'),
....: 'group': [1, 1, 2, 2],
....: 'val': [5, 6, 7, 8]}).set_index('date')
....:

In [12]: df
Out[12]:

group val
date
2016-01-03 1 5
2016-01-10 1 6
2016-01-17 2 7
2016-01-24 2 8

In [13]: df.groupby('group').apply(lambda x: x.resample('1D').ffill())
Out[13]:

group val
group date
1 2016-01-03 1 5

2016-01-04 1 5
2016-01-05 1 5

(continues on next page)

174 Chapter 1. What’s New

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

2016-01-06 1 5
2016-01-07 1 5
2016-01-08 1 5
2016-01-09 1 5

...
2 2016-01-18 2 7

2016-01-19 2 7
2016-01-20 2 7
2016-01-21 2 7
2016-01-22 2 7
2016-01-23 2 7
2016-01-24 2 8

[16 rows x 2 columns]

Now you can do:

In [14]: df.groupby('group').resample('1D').ffill()
Out[14]:

group val
group date
1 2016-01-03 1 5

2016-01-04 1 5
2016-01-05 1 5
2016-01-06 1 5
2016-01-07 1 5
2016-01-08 1 5
2016-01-09 1 5

...
2 2016-01-18 2 7

2016-01-19 2 7
2016-01-20 2 7
2016-01-21 2 7
2016-01-22 2 7
2016-01-23 2 7
2016-01-24 2 8

[16 rows x 2 columns]

1.15.1.3 Method chaininng improvements

The following methods / indexers now accept a callable. It is intended to make these more useful in method chains,
see the documentation. (GH11485, GH12533)

• .where() and .mask()

• .loc[], iloc[] and .ix[]

• [] indexing

.where() and .mask()

These can accept a callable for the condition and other arguments.

1.15. v0.18.1 (May 3, 2016) 175

https://github.com/pandas-dev/pandas/issues/11485
https://github.com/pandas-dev/pandas/issues/12533

pandas: powerful Python data analysis toolkit, Release 0.23.4

In [15]: df = pd.DataFrame({'A': [1, 2, 3],
....: 'B': [4, 5, 6],
....: 'C': [7, 8, 9]})
....:

In [16]: df.where(lambda x: x > 4, lambda x: x + 10)
Out[16]:

A B C
0 11 14 7
1 12 5 8
2 13 6 9

.loc[], .iloc[], .ix[]

These can accept a callable, and a tuple of callable as a slicer. The callable can return a valid boolean indexer or
anything which is valid for these indexer’s input.

callable returns bool indexer
In [17]: df.loc[lambda x: x.A >= 2, lambda x: x.sum() > 10]
Out[17]:

B C
1 5 8
2 6 9

callable returns list of labels
In [18]: df.loc[lambda x: [1, 2], lambda x: ['A', 'B']]
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\Out[18]:

A B
1 2 5
2 3 6

[] indexing

Finally, you can use a callable in [] indexing of Series, DataFrame and Panel. The callable must return a valid input
for [] indexing depending on its class and index type.

In [19]: df[lambda x: 'A']
Out[19]:
0 1
1 2
2 3
Name: A, dtype: int64

Using these methods / indexers, you can chain data selection operations without using temporary variable.

In [20]: bb = pd.read_csv('data/baseball.csv', index_col='id')

In [21]: (bb.groupby(['year', 'team'])
....: .sum()
....: .loc[lambda df: df.r > 100]
....:)
....:

Out[21]:
(continues on next page)

176 Chapter 1. What’s New

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

stint g ab r h X2b X3b hr rbi sb cs bb so
→˓ibb hbp sh sf gidp
year team
→˓

2007 CIN 6 379 745 101 203 35 2 36 125.0 10.0 1.0 105 127.0 14.
→˓0 1.0 1.0 15.0 18.0

DET 5 301 1062 162 283 54 4 37 144.0 24.0 7.0 97 176.0 3.
→˓0 10.0 4.0 8.0 28.0

HOU 4 311 926 109 218 47 6 14 77.0 10.0 4.0 60 212.0 3.
→˓0 9.0 16.0 6.0 17.0

LAN 11 413 1021 153 293 61 3 36 154.0 7.0 5.0 114 141.0 8.
→˓0 9.0 3.0 8.0 29.0

NYN 13 622 1854 240 509 101 3 61 243.0 22.0 4.0 174 310.0 24.
→˓0 23.0 18.0 15.0 48.0

SFN 5 482 1305 198 337 67 6 40 171.0 26.0 7.0 235 188.0 51.
→˓0 8.0 16.0 6.0 41.0

TEX 2 198 729 115 200 40 4 28 115.0 21.0 4.0 73 140.0 4.
→˓0 5.0 2.0 8.0 16.0

TOR 4 459 1408 187 378 96 2 58 223.0 4.0 2.0 190 265.0 16.
→˓0 12.0 4.0 16.0 38.0

1.15.1.4 Partial string indexing on DateTimeIndex when part of a MultiIndex

Partial string indexing now matches on DateTimeIndex when part of a MultiIndex (GH10331)

In [22]: dft2 = pd.DataFrame(np.random.randn(20, 1),
....: columns=['A'],
....: index=pd.MultiIndex.from_product([pd.date_range('20130101

→˓',
....:

→˓periods=10,
....: freq='12H

→˓'),
....: ['a', 'b']]))
....:

In [23]: dft2
Out[23]:

A
2013-01-01 00:00:00 a 0.156998

b -0.571455
2013-01-01 12:00:00 a 1.057633

b -0.791489
2013-01-02 00:00:00 a -0.524627

b 0.071878
2013-01-02 12:00:00 a 1.910759
... ...
2013-01-04 00:00:00 b 1.015405
2013-01-04 12:00:00 a 0.749185

b -0.675521
2013-01-05 00:00:00 a 0.440266

b 0.688972
2013-01-05 12:00:00 a -0.276646

b 1.924533

(continues on next page)

1.15. v0.18.1 (May 3, 2016) 177

https://github.com/pandas-dev/pandas/issues/10331

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

[20 rows x 1 columns]

In [24]: dft2.loc['2013-01-05']
\\\Out[24]:
→˓

A
2013-01-05 00:00:00 a 0.440266

b 0.688972
2013-01-05 12:00:00 a -0.276646

b 1.924533

On other levels

In [25]: idx = pd.IndexSlice

In [26]: dft2 = dft2.swaplevel(0, 1).sort_index()

In [27]: dft2
Out[27]:

A
a 2013-01-01 00:00:00 0.156998

2013-01-01 12:00:00 1.057633
2013-01-02 00:00:00 -0.524627
2013-01-02 12:00:00 1.910759
2013-01-03 00:00:00 0.513082
2013-01-03 12:00:00 1.043945
2013-01-04 00:00:00 1.459927

... ...
b 2013-01-02 12:00:00 0.787965

2013-01-03 00:00:00 -0.546416
2013-01-03 12:00:00 2.107785
2013-01-04 00:00:00 1.015405
2013-01-04 12:00:00 -0.675521
2013-01-05 00:00:00 0.688972
2013-01-05 12:00:00 1.924533

[20 rows x 1 columns]

In [28]: dft2.loc[idx[:, '2013-01-05'], :]
\\\Out[28]:
→˓

A
a 2013-01-05 00:00:00 0.440266

2013-01-05 12:00:00 -0.276646
b 2013-01-05 00:00:00 0.688972

2013-01-05 12:00:00 1.924533

1.15.1.5 Assembling Datetimes

pd.to_datetime() has gained the ability to assemble datetimes from a passed in DataFrame or a dict.
(GH8158).

In [29]: df = pd.DataFrame({'year': [2015, 2016],
....: 'month': [2, 3],
....: 'day': [4, 5],

(continues on next page)

178 Chapter 1. What’s New

https://github.com/pandas-dev/pandas/issues/8158

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

....: 'hour': [2, 3]})

....:

In [30]: df
Out[30]:

year month day hour
0 2015 2 4 2
1 2016 3 5 3

Assembling using the passed frame.

In [31]: pd.to_datetime(df)
Out[31]:
0 2015-02-04 02:00:00
1 2016-03-05 03:00:00
dtype: datetime64[ns]

You can pass only the columns that you need to assemble.

In [32]: pd.to_datetime(df[['year', 'month', 'day']])
Out[32]:
0 2015-02-04
1 2016-03-05
dtype: datetime64[ns]

1.15.1.6 Other Enhancements

• pd.read_csv() now supports delim_whitespace=True for the Python engine (GH12958)

• pd.read_csv() now supports opening ZIP files that contains a single CSV, via extension inference or explicit
compression='zip' (GH12175)

• pd.read_csv() now supports opening files using xz compression, via extension inference or explicit
compression='xz' is specified; xz compressions is also supported by DataFrame.to_csv in the same
way (GH11852)

• pd.read_msgpack() now always gives writeable ndarrays even when compression is used (GH12359).

• pd.read_msgpack() now supports serializing and de-serializing categoricals with msgpack (GH12573)

• .to_json() now supports NDFrames that contain categorical and sparse data (GH10778)

• interpolate() now supports method='akima' (GH7588).

• pd.read_excel() now accepts path objects (e.g. pathlib.Path, py.path.local) for the file path,
in line with other read_* functions (GH12655)

• Added .weekday_name property as a component to DatetimeIndex and the .dt accessor. (GH11128)

• Index.take now handles allow_fill and fill_value consistently (GH12631)

In [33]: idx = pd.Index([1., 2., 3., 4.], dtype='float')

default, allow_fill=True, fill_value=None
In [34]: idx.take([2, -1])
Out[34]: Float64Index([3.0, 4.0], dtype='float64')

(continues on next page)

1.15. v0.18.1 (May 3, 2016) 179

https://github.com/pandas-dev/pandas/issues/12958
https://github.com/pandas-dev/pandas/issues/12175
https://github.com/pandas-dev/pandas/issues/11852
https://github.com/pandas-dev/pandas/issues/12359
https://github.com/pandas-dev/pandas/issues/12573
https://github.com/pandas-dev/pandas/issues/10778
https://github.com/pandas-dev/pandas/issues/7588
https://github.com/pandas-dev/pandas/issues/12655
https://github.com/pandas-dev/pandas/issues/11128
https://github.com/pandas-dev/pandas/issues/12631

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

In [35]: idx.take([2, -1], fill_value=True)
\\\Out[35]: Float64Index([3.0,
→˓nan], dtype='float64')

• Index now supports .str.get_dummies() which returns MultiIndex, see Creating Indicator Vari-
ables (GH10008, GH10103)

In [36]: idx = pd.Index(['a|b', 'a|c', 'b|c'])

In [37]: idx.str.get_dummies('|')
Out[37]:
MultiIndex(levels=[[0, 1], [0, 1], [0, 1]],

labels=[[1, 1, 0], [1, 0, 1], [0, 1, 1]],
names=['a', 'b', 'c'])

• pd.crosstab() has gained a normalize argument for normalizing frequency tables (GH12569). Exam-
ples in the updated docs here.

• .resample(..).interpolate() is now supported (GH12925)

• .isin() now accepts passed sets (GH12988)

1.15.2 Sparse changes

These changes conform sparse handling to return the correct types and work to make a smoother experience with
indexing.

SparseArray.take now returns a scalar for scalar input, SparseArray for others. Furthermore, it handles a
negative indexer with the same rule as Index (GH10560, GH12796)

In [38]: s = pd.SparseArray([np.nan, np.nan, 1, 2, 3, np.nan, 4, 5, np.nan, 6])

In [39]: s.take(0)
Out[39]: nan

In [40]: s.take([1, 2, 3])
\\\\\\\\\\\\\Out[40]:
[nan, 1.0, 2.0]
Fill: nan
IntIndex
Indices: array([1, 2], dtype=int32)

• Bug in SparseSeries[] indexing with Ellipsis raises KeyError (GH9467)

• Bug in SparseArray[] indexing with tuples are not handled properly (GH12966)

• Bug in SparseSeries.loc[] with list-like input raises TypeError (GH10560)

• Bug in SparseSeries.iloc[] with scalar input may raise IndexError (GH10560)

• Bug in SparseSeries.loc[], .iloc[] with slice returns SparseArray, rather than
SparseSeries (GH10560)

• Bug in SparseDataFrame.loc[], .iloc[] may results in dense Series, rather than SparseSeries
(GH12787)

• Bug in SparseArray addition ignores fill_value of right hand side (GH12910)

• Bug in SparseArray mod raises AttributeError (GH12910)

180 Chapter 1. What’s New

https://github.com/pandas-dev/pandas/issues/10008
https://github.com/pandas-dev/pandas/issues/10103
https://github.com/pandas-dev/pandas/issues/12569
https://github.com/pandas-dev/pandas/issues/12925
https://github.com/pandas-dev/pandas/issues/12988
https://github.com/pandas-dev/pandas/issues/10560
https://github.com/pandas-dev/pandas/issues/12796
https://github.com/pandas-dev/pandas/issues/9467
https://github.com/pandas-dev/pandas/issues/12966
https://github.com/pandas-dev/pandas/issues/10560
https://github.com/pandas-dev/pandas/issues/10560
https://github.com/pandas-dev/pandas/issues/10560
https://github.com/pandas-dev/pandas/issues/12787
https://github.com/pandas-dev/pandas/issues/12910
https://github.com/pandas-dev/pandas/issues/12910

pandas: powerful Python data analysis toolkit, Release 0.23.4

• Bug in SparseArray pow calculates 1 ** np.nan as np.nan which must be 1 (GH12910)

• Bug in SparseArray comparison output may incorrect result or raise ValueError (GH12971)

• Bug in SparseSeries.__repr__ raises TypeError when it is longer than max_rows (GH10560)

• Bug in SparseSeries.shape ignores fill_value (GH10452)

• Bug in SparseSeries and SparseArray may have different dtype from its dense values (GH12908)

• Bug in SparseSeries.reindex incorrectly handle fill_value (GH12797)

• Bug in SparseArray.to_frame() results in DataFrame, rather than SparseDataFrame (GH9850)

• Bug in SparseSeries.value_counts() does not count fill_value (GH6749)

• Bug in SparseArray.to_dense() does not preserve dtype (GH10648)

• Bug in SparseArray.to_dense() incorrectly handle fill_value (GH12797)

• Bug in pd.concat() of SparseSeries results in dense (GH10536)

• Bug in pd.concat() of SparseDataFrame incorrectly handle fill_value (GH9765)

• Bug in pd.concat() of SparseDataFrame may raise AttributeError (GH12174)

• Bug in SparseArray.shift() may raise NameError or TypeError (GH12908)

1.15.3 API changes

1.15.3.1 .groupby(..).nth() changes

The index in .groupby(..).nth() output is now more consistent when the as_index argument is passed
(GH11039):

In [41]: df = DataFrame({'A' : ['a', 'b', 'a'],
....: 'B' : [1, 2, 3]})
....:

In [42]: df
Out[42]:

A B
0 a 1
1 b 2
2 a 3

Previous Behavior:

In [3]: df.groupby('A', as_index=True)['B'].nth(0)
Out[3]:
0 1
1 2
Name: B, dtype: int64

In [4]: df.groupby('A', as_index=False)['B'].nth(0)
Out[4]:
0 1
1 2
Name: B, dtype: int64

New Behavior:

1.15. v0.18.1 (May 3, 2016) 181

https://github.com/pandas-dev/pandas/issues/12910
https://github.com/pandas-dev/pandas/issues/12971
https://github.com/pandas-dev/pandas/issues/10560
https://github.com/pandas-dev/pandas/issues/10452
https://github.com/pandas-dev/pandas/issues/12908
https://github.com/pandas-dev/pandas/issues/12797
https://github.com/pandas-dev/pandas/issues/9850
https://github.com/pandas-dev/pandas/issues/6749
https://github.com/pandas-dev/pandas/issues/10648
https://github.com/pandas-dev/pandas/issues/12797
https://github.com/pandas-dev/pandas/issues/10536
https://github.com/pandas-dev/pandas/issues/9765
https://github.com/pandas-dev/pandas/issues/12174
https://github.com/pandas-dev/pandas/issues/12908
https://github.com/pandas-dev/pandas/issues/11039

pandas: powerful Python data analysis toolkit, Release 0.23.4

In [43]: df.groupby('A', as_index=True)['B'].nth(0)
Out[43]:
A
a 1
b 2
Name: B, dtype: int64

In [44]: df.groupby('A', as_index=False)['B'].nth(0)
\\Out[44]:
0 1
1 2
Name: B, dtype: int64

Furthermore, previously, a .groupby would always sort, regardless if sort=False was passed with .nth().

In [45]: np.random.seed(1234)

In [46]: df = pd.DataFrame(np.random.randn(100, 2), columns=['a', 'b'])

In [47]: df['c'] = np.random.randint(0, 4, 100)

Previous Behavior:

In [4]: df.groupby('c', sort=True).nth(1)
Out[4]:

a b
c
0 -0.334077 0.002118
1 0.036142 -2.074978
2 -0.720589 0.887163
3 0.859588 -0.636524

In [5]: df.groupby('c', sort=False).nth(1)
Out[5]:

a b
c
0 -0.334077 0.002118
1 0.036142 -2.074978
2 -0.720589 0.887163
3 0.859588 -0.636524

New Behavior:

In [48]: df.groupby('c', sort=True).nth(1)
Out[48]:

a b
c
0 -0.334077 0.002118
1 0.036142 -2.074978
2 -0.720589 0.887163
3 0.859588 -0.636524

In [49]: df.groupby('c', sort=False).nth(1)
\\Out[49]:
→˓

a b
c

(continues on next page)

182 Chapter 1. What’s New

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

2 -0.720589 0.887163
3 0.859588 -0.636524
0 -0.334077 0.002118
1 0.036142 -2.074978

1.15.3.2 numpy function compatibility

Compatibility between pandas array-like methods (e.g. sum and take) and their numpy counterparts has been greatly
increased by augmenting the signatures of the pandas methods so as to accept arguments that can be passed in from
numpy, even if they are not necessarily used in the pandas implementation (GH12644, GH12638, GH12687)

• .searchsorted() for Index and TimedeltaIndex now accept a sorter argument to maintain com-
patibility with numpy’s searchsorted function (GH12238)

• Bug in numpy compatibility of np.round() on a Series (GH12600)

An example of this signature augmentation is illustrated below:

In [50]: sp = pd.SparseDataFrame([1, 2, 3])

In [51]: sp
Out[51]:

0
0 1
1 2
2 3

Previous behaviour:

In [2]: np.cumsum(sp, axis=0)
...
TypeError: cumsum() takes at most 2 arguments (4 given)

New behaviour:

In [52]: np.cumsum(sp, axis=0)
Out[52]:

0
0 1
1 3
2 6

1.15.3.3 Using .apply on groupby resampling

Using apply on resampling groupby operations (using a pd.TimeGrouper) now has the same output types as
similar apply calls on other groupby operations. (GH11742).

In [53]: df = pd.DataFrame({'date': pd.to_datetime(['10/10/2000', '11/10/2000']),
....: 'value': [10, 13]})
....:

In [54]: df
Out[54]:

date value

(continues on next page)

1.15. v0.18.1 (May 3, 2016) 183

https://github.com/pandas-dev/pandas/issues/12644
https://github.com/pandas-dev/pandas/issues/12638
https://github.com/pandas-dev/pandas/issues/12687
https://github.com/pandas-dev/pandas/issues/12238
https://github.com/pandas-dev/pandas/issues/12600
https://github.com/pandas-dev/pandas/issues/11742

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

0 2000-10-10 10
1 2000-11-10 13

Previous behavior:

In [1]: df.groupby(pd.TimeGrouper(key='date', freq='M')).apply(lambda x: x.value.
→˓sum())
Out[1]:
...
TypeError: cannot concatenate a non-NDFrame object

Output is a Series
In [2]: df.groupby(pd.TimeGrouper(key='date', freq='M')).apply(lambda x: x[['value']].
→˓sum())
Out[2]:
date
2000-10-31 value 10
2000-11-30 value 13
dtype: int64

New Behavior:

Output is a Series
In [55]: df.groupby(pd.TimeGrouper(key='date', freq='M')).apply(lambda x: x.value.
→˓sum())
Out[55]:
date
2000-10-31 10
2000-11-30 13
Freq: M, dtype: int64

Output is a DataFrame
In [56]: df.groupby(pd.TimeGrouper(key='date', freq='M')).apply(lambda x: x[['value
→˓']].sum())
Out[56]:

value
date
2000-10-31 10
2000-11-30 13

1.15.3.4 Changes in read_csv exceptions

In order to standardize the read_csv API for both the c and python engines, both will now raise an
EmptyDataError, a subclass of ValueError, in response to empty columns or header (GH12493, GH12506)

Previous behaviour:

In [1]: df = pd.read_csv(StringIO(''), engine='c')
...
ValueError: No columns to parse from file

In [2]: df = pd.read_csv(StringIO(''), engine='python')
...
StopIteration

New behaviour:

184 Chapter 1. What’s New

https://github.com/pandas-dev/pandas/issues/12493
https://github.com/pandas-dev/pandas/issues/12506

pandas: powerful Python data analysis toolkit, Release 0.23.4

In [1]: df = pd.read_csv(StringIO(''), engine='c')
...
pandas.io.common.EmptyDataError: No columns to parse from file

In [2]: df = pd.read_csv(StringIO(''), engine='python')
...
pandas.io.common.EmptyDataError: No columns to parse from file

In addition to this error change, several others have been made as well:

• CParserError now sub-classes ValueError instead of just a Exception (GH12551)

• A CParserError is now raised instead of a generic Exception in read_csv when the c engine cannot
parse a column (GH12506)

• A ValueError is now raised instead of a generic Exception in read_csv when the c engine encounters
a NaN value in an integer column (GH12506)

• A ValueError is now raised instead of a generic Exception in read_csv when true_values is
specified, and the c engine encounters an element in a column containing unencodable bytes (GH12506)

• pandas.parser.OverflowError exception has been removed and has been replaced with Python’s built-
in OverflowError exception (GH12506)

• pd.read_csv() no longer allows a combination of strings and integers for the usecols parameter
(GH12678)

1.15.3.5 to_datetime error changes

Bugs in pd.to_datetime() when passing a unit with convertible entries and errors='coerce' or non-
convertible with errors='ignore'. Furthermore, an OutOfBoundsDateime exception will be raised when an
out-of-range value is encountered for that unit when errors='raise'. (GH11758, GH13052, GH13059)

Previous behaviour:

In [27]: pd.to_datetime(1420043460, unit='s', errors='coerce')
Out[27]: NaT

In [28]: pd.to_datetime(11111111, unit='D', errors='ignore')
OverflowError: Python int too large to convert to C long

In [29]: pd.to_datetime(11111111, unit='D', errors='raise')
OverflowError: Python int too large to convert to C long

New behaviour:

In [2]: pd.to_datetime(1420043460, unit='s', errors='coerce')
Out[2]: Timestamp('2014-12-31 16:31:00')

In [3]: pd.to_datetime(11111111, unit='D', errors='ignore')
Out[3]: 11111111

In [4]: pd.to_datetime(11111111, unit='D', errors='raise')
OutOfBoundsDatetime: cannot convert input with unit 'D'

1.15. v0.18.1 (May 3, 2016) 185

https://github.com/pandas-dev/pandas/issues/12551
https://github.com/pandas-dev/pandas/issues/12506
https://github.com/pandas-dev/pandas/issues/12506
https://github.com/pandas-dev/pandas/issues/12506
https://github.com/pandas-dev/pandas/issues/12506
https://github.com/pandas-dev/pandas/issues/12678
https://github.com/pandas-dev/pandas/issues/11758
https://github.com/pandas-dev/pandas/issues/13052
https://github.com/pandas-dev/pandas/issues/13059

pandas: powerful Python data analysis toolkit, Release 0.23.4

1.15.3.6 Other API changes

• .swaplevel() for Series, DataFrame, Panel, and MultiIndex now features defaults for its first
two parameters i and j that swap the two innermost levels of the index. (GH12934)

• .searchsorted() for Index and TimedeltaIndex now accept a sorter argument to maintain com-
patibility with numpy’s searchsorted function (GH12238)

• Period and PeriodIndex now raises IncompatibleFrequency error which inherits ValueError
rather than raw ValueError (GH12615)

• Series.apply for category dtype now applies the passed function to each of the .categories (and not
the .codes), and returns a category dtype if possible (GH12473)

• read_csv will now raise a TypeError if parse_dates is neither a boolean, list, or dictionary (matches
the doc-string) (GH5636)

• The default for .query()/.eval() is now engine=None, which will use numexpr if it’s installed;
otherwise it will fallback to the python engine. This mimics the pre-0.18.1 behavior if numexpr is installed
(and which, previously, if numexpr was not installed, .query()/.eval() would raise). (GH12749)

• pd.show_versions() now includes pandas_datareader version (GH12740)

• Provide a proper __name__ and __qualname__ attributes for generic functions (GH12021)

• pd.concat(ignore_index=True) now uses RangeIndex as default (GH12695)

• pd.merge() and DataFrame.join() will show a UserWarning when merging/joining a single- with
a multi-leveled dataframe (GH9455, GH12219)

• Compat with scipy > 0.17 for deprecated piecewise_polynomial interpolation method; support for the
replacement from_derivatives method (GH12887)

1.15.3.7 Deprecations

• The method name Index.sym_diff() is deprecated and can be replaced by Index.
symmetric_difference() (GH12591)

• The method name Categorical.sort() is deprecated in favor of Categorical.sort_values()
(GH12882)

1.15.4 Performance Improvements

• Improved speed of SAS reader (GH12656, GH12961)

• Performance improvements in .groupby(..).cumcount() (GH11039)

• Improved memory usage in pd.read_csv() when using skiprows=an_integer (GH13005)

• Improved performance of DataFrame.to_sql when checking case sensitivity for tables. Now only checks
if table has been created correctly when table name is not lower case. (GH12876)

• Improved performance of Period construction and time series plotting (GH12903, GH11831).

• Improved performance of .str.encode() and .str.decode() methods (GH13008)

• Improved performance of to_numeric if input is numeric dtype (GH12777)

• Improved performance of sparse arithmetic with IntIndex (GH13036)

186 Chapter 1. What’s New

https://github.com/pandas-dev/pandas/issues/12934
https://github.com/pandas-dev/pandas/issues/12238
https://github.com/pandas-dev/pandas/issues/12615
https://github.com/pandas-dev/pandas/issues/12473
https://github.com/pandas-dev/pandas/issues/5636
https://github.com/pandas-dev/pandas/issues/12749
https://github.com/pandas-dev/pandas/issues/12740
https://github.com/pandas-dev/pandas/issues/12021
https://github.com/pandas-dev/pandas/issues/12695
https://github.com/pandas-dev/pandas/issues/9455
https://github.com/pandas-dev/pandas/issues/12219
https://github.com/pandas-dev/pandas/issues/12887
https://github.com/pandas-dev/pandas/issues/12591
https://github.com/pandas-dev/pandas/issues/12882
https://github.com/pandas-dev/pandas/issues/12656
https://github.com/pandas-dev/pandas/issues/12961
https://github.com/pandas-dev/pandas/issues/11039
https://github.com/pandas-dev/pandas/issues/13005
https://github.com/pandas-dev/pandas/issues/12876
https://github.com/pandas-dev/pandas/issues/12903
https://github.com/pandas-dev/pandas/issues/11831
https://github.com/pandas-dev/pandas/issues/13008
https://github.com/pandas-dev/pandas/issues/12777
https://github.com/pandas-dev/pandas/issues/13036

pandas: powerful Python data analysis toolkit, Release 0.23.4

1.15.5 Bug Fixes

• usecols parameter in pd.read_csv is now respected even when the lines of a CSV file are not even
(GH12203)

• Bug in groupby.transform(..) when axis=1 is specified with a non-monotonic ordered index
(GH12713)

• Bug in Period and PeriodIndex creation raises KeyError if freq="Minute" is specified. Note that
“Minute” freq is deprecated in v0.17.0, and recommended to use freq="T" instead (GH11854)

• Bug in .resample(...).count() with a PeriodIndex always raising a TypeError (GH12774)

• Bug in .resample(...) with a PeriodIndex casting to a DatetimeIndex when empty (GH12868)

• Bug in .resample(...) with a PeriodIndex when resampling to an existing frequency (GH12770)

• Bug in printing data which contains Period with different freq raises ValueError (GH12615)

• Bug in Series construction with Categorical and dtype='category' is specified (GH12574)

• Bugs in concatenation with a coercable dtype was too aggressive, resulting in different dtypes in outputfor-
matting when an object was longer than display.max_rows (GH12411, GH12045, GH11594, GH10571,
GH12211)

• Bug in float_format option with option not being validated as a callable. (GH12706)

• Bug in GroupBy.filter when dropna=False and no groups fulfilled the criteria (GH12768)

• Bug in __name__ of .cum* functions (GH12021)

• Bug in .astype() of a Float64Inde/Int64Index to an Int64Index (GH12881)

• Bug in roundtripping an integer based index in .to_json()/.read_json() when orient='index'
(the default) (GH12866)

• Bug in plotting Categorical dtypes cause error when attempting stacked bar plot (GH13019)

• Compat with >= numpy 1.11 for NaT comparions (GH12969)

• Bug in .drop() with a non-unique MultiIndex. (GH12701)

• Bug in .concat of datetime tz-aware and naive DataFrames (GH12467)

• Bug in correctly raising a ValueError in .resample(..).fillna(..) when passing a non-string
(GH12952)

• Bug fixes in various encoding and header processing issues in pd.read_sas() (GH12659, GH12654,
GH12647, GH12809)

• Bug in pd.crosstab() where would silently ignore aggfunc if values=None (GH12569).

• Potential segfault in DataFrame.to_json when serialising datetime.time (GH11473).

• Potential segfault in DataFrame.to_json when attempting to serialise 0d array (GH11299).

• Segfault in to_json when attempting to serialise a DataFrame or Series with non-ndarray values; now
supports serialization of category, sparse, and datetime64[ns, tz] dtypes (GH10778).

• Bug in DataFrame.to_json with unsupported dtype not passed to default handler (GH12554).

• Bug in .align not returning the sub-class (GH12983)

• Bug in aligning a Series with a DataFrame (GH13037)

• Bug in ABCPanel in which Panel4D was not being considered as a valid instance of this generic type
(GH12810)

1.15. v0.18.1 (May 3, 2016) 187

https://github.com/pandas-dev/pandas/issues/12203
https://github.com/pandas-dev/pandas/issues/12713
https://github.com/pandas-dev/pandas/issues/11854
https://github.com/pandas-dev/pandas/issues/12774
https://github.com/pandas-dev/pandas/issues/12868
https://github.com/pandas-dev/pandas/issues/12770
https://github.com/pandas-dev/pandas/issues/12615
https://github.com/pandas-dev/pandas/issues/12574
https://github.com/pandas-dev/pandas/issues/12411
https://github.com/pandas-dev/pandas/issues/12045
https://github.com/pandas-dev/pandas/issues/11594
https://github.com/pandas-dev/pandas/issues/10571
https://github.com/pandas-dev/pandas/issues/12211
https://github.com/pandas-dev/pandas/issues/12706
https://github.com/pandas-dev/pandas/issues/12768
https://github.com/pandas-dev/pandas/issues/12021
https://github.com/pandas-dev/pandas/issues/12881
https://github.com/pandas-dev/pandas/issues/12866
https://github.com/pandas-dev/pandas/issues/13019
https://github.com/pandas-dev/pandas/issues/12969
https://github.com/pandas-dev/pandas/issues/12701
https://github.com/pandas-dev/pandas/issues/12467
https://github.com/pandas-dev/pandas/issues/12952
https://github.com/pandas-dev/pandas/issues/12659
https://github.com/pandas-dev/pandas/issues/12654
https://github.com/pandas-dev/pandas/issues/12647
https://github.com/pandas-dev/pandas/issues/12809
https://github.com/pandas-dev/pandas/issues/12569
https://github.com/pandas-dev/pandas/issues/11473
https://github.com/pandas-dev/pandas/issues/11299
https://github.com/pandas-dev/pandas/issues/10778
https://github.com/pandas-dev/pandas/issues/12554
https://github.com/pandas-dev/pandas/issues/12983
https://github.com/pandas-dev/pandas/issues/13037
https://github.com/pandas-dev/pandas/issues/12810

pandas: powerful Python data analysis toolkit, Release 0.23.4

• Bug in consistency of .name on .groupby(..).apply(..) cases (GH12363)

• Bug in Timestamp.__repr__ that caused pprint to fail in nested structures (GH12622)

• Bug in Timedelta.min and Timedelta.max, the properties now report the true minimum/maximum
timedeltas as recognized by pandas. See the documentation. (GH12727)

• Bug in .quantile() with interpolation may coerce to float unexpectedly (GH12772)

• Bug in .quantile() with empty Series may return scalar rather than empty Series (GH12772)

• Bug in .loc with out-of-bounds in a large indexer would raise IndexError rather than KeyError
(GH12527)

• Bug in resampling when using a TimedeltaIndex and .asfreq(), would previously not include the final
fencepost (GH12926)

• Bug in equality testing with a Categorical in a DataFrame (GH12564)

• Bug in GroupBy.first(), .last() returns incorrect row when TimeGrouper is used (GH7453)

• Bug in pd.read_csv() with the c engine when specifying skiprows with newlines in quoted items
(GH10911, GH12775)

• Bug in DataFrame timezone lost when assigning tz-aware datetime Series with alignment (GH12981)

• Bug in .value_counts() when normalize=True and dropna=True where nulls still contributed to
the normalized count (GH12558)

• Bug in Series.value_counts() loses name if its dtype is category (GH12835)

• Bug in Series.value_counts() loses timezone info (GH12835)

• Bug in Series.value_counts(normalize=True) with Categorical raises
UnboundLocalError (GH12835)

• Bug in Panel.fillna() ignoring inplace=True (GH12633)

• Bug in pd.read_csv() when specifying names, usecols, and parse_dates simultaneously with the
c engine (GH9755)

• Bug in pd.read_csv() when specifying delim_whitespace=True and lineterminator simulta-
neously with the c engine (GH12912)

• Bug in Series.rename, DataFrame.rename and DataFrame.rename_axis not treating Series
as mappings to relabel (GH12623).

• Clean in .rolling.min and .rolling.max to enhance dtype handling (GH12373)

• Bug in groupby where complex types are coerced to float (GH12902)

• Bug in Series.map raises TypeError if its dtype is category or tz-aware datetime (GH12473)

• Bugs on 32bit platforms for some test comparisons (GH12972)

• Bug in index coercion when falling back from RangeIndex construction (GH12893)

• Better error message in window functions when invalid argument (e.g. a float window) is passed (GH12669)

• Bug in slicing subclassed DataFrame defined to return subclassed Series may return normal Series
(GH11559)

• Bug in .str accessor methods may raise ValueError if input has name and the result is DataFrame or
MultiIndex (GH12617)

• Bug in DataFrame.last_valid_index() and DataFrame.first_valid_index() on empty
frames (GH12800)

188 Chapter 1. What’s New

https://github.com/pandas-dev/pandas/issues/12363
https://github.com/pandas-dev/pandas/issues/12622
https://github.com/pandas-dev/pandas/issues/12727
https://github.com/pandas-dev/pandas/issues/12772
https://github.com/pandas-dev/pandas/issues/12772
https://github.com/pandas-dev/pandas/issues/12527
https://github.com/pandas-dev/pandas/issues/12926
https://github.com/pandas-dev/pandas/issues/12564
https://github.com/pandas-dev/pandas/issues/7453
https://github.com/pandas-dev/pandas/issues/10911
https://github.com/pandas-dev/pandas/issues/12775
https://github.com/pandas-dev/pandas/issues/12981
https://github.com/pandas-dev/pandas/issues/12558
https://github.com/pandas-dev/pandas/issues/12835
https://github.com/pandas-dev/pandas/issues/12835
https://github.com/pandas-dev/pandas/issues/12835
https://github.com/pandas-dev/pandas/issues/12633
https://github.com/pandas-dev/pandas/issues/9755
https://github.com/pandas-dev/pandas/issues/12912
https://github.com/pandas-dev/pandas/issues/12623
https://github.com/pandas-dev/pandas/issues/12373
https://github.com/pandas-dev/pandas/issues/12902
https://github.com/pandas-dev/pandas/issues/12473
https://github.com/pandas-dev/pandas/issues/12972
https://github.com/pandas-dev/pandas/issues/12893
https://github.com/pandas-dev/pandas/issues/12669
https://github.com/pandas-dev/pandas/issues/11559
https://github.com/pandas-dev/pandas/issues/12617
https://github.com/pandas-dev/pandas/issues/12800

pandas: powerful Python data analysis toolkit, Release 0.23.4

• Bug in CategoricalIndex.get_loc returns different result from regular Index (GH12531)

• Bug in PeriodIndex.resample where name not propagated (GH12769)

• Bug in date_range closed keyword and timezones (GH12684).

• Bug in pd.concat raises AttributeError when input data contains tz-aware datetime and timedelta
(GH12620)

• Bug in pd.concat did not handle empty Series properly (GH11082)

• Bug in .plot.bar alginment when width is specified with int (GH12979)

• Bug in fill_value is ignored if the argument to a binary operator is a constant (GH12723)

• Bug in pd.read_html() when using bs4 flavor and parsing table with a header and only one column
(GH9178)

• Bug in .pivot_table when margins=True and dropna=True where nulls still contributed to margin
count (GH12577)

• Bug in .pivot_table when dropna=False where table index/column names disappear (GH12133)

• Bug in pd.crosstab() when margins=True and dropna=False which raised (GH12642)

• Bug in Series.name when name attribute can be a hashable type (GH12610)

• Bug in .describe() resets categorical columns information (GH11558)

• Bug where loffset argument was not applied when calling resample().count() on a timeseries
(GH12725)

• pd.read_excel() now accepts column names associated with keyword argument names (GH12870)

• Bug in pd.to_numeric() with Index returns np.ndarray, rather than Index (GH12777)

• Bug in pd.to_numeric() with datetime-like may raise TypeError (GH12777)

• Bug in pd.to_numeric() with scalar raises ValueError (GH12777)

1.16 v0.18.0 (March 13, 2016)

This is a major release from 0.17.1 and includes a small number of API changes, several new features, enhancements,
and performance improvements along with a large number of bug fixes. We recommend that all users upgrade to this
version.

Warning: pandas >= 0.18.0 no longer supports compatibility with Python version 2.6 and 3.3 (GH7718,
GH11273)

Warning: numexpr version 2.4.4 will now show a warning and not be used as a computation back-end for
pandas because of some buggy behavior. This does not affect other versions (>= 2.1 and >= 2.4.6). (GH12489)

Highlights include:

• Moving and expanding window functions are now methods on Series and DataFrame, similar to .groupby,
see here.

• Adding support for a RangeIndex as a specialized form of the Int64Index for memory savings, see here.

1.16. v0.18.0 (March 13, 2016) 189

https://github.com/pandas-dev/pandas/issues/12531
https://github.com/pandas-dev/pandas/issues/12769
https://github.com/pandas-dev/pandas/issues/12684
https://github.com/pandas-dev/pandas/issues/12620
https://github.com/pandas-dev/pandas/issues/11082
https://github.com/pandas-dev/pandas/issues/12979
https://github.com/pandas-dev/pandas/issues/12723
https://github.com/pandas-dev/pandas/issues/9178
https://github.com/pandas-dev/pandas/issues/12577
https://github.com/pandas-dev/pandas/issues/12133
https://github.com/pandas-dev/pandas/issues/12642
https://github.com/pandas-dev/pandas/issues/12610
https://github.com/pandas-dev/pandas/issues/11558
https://github.com/pandas-dev/pandas/issues/12725
https://github.com/pandas-dev/pandas/issues/12870
https://github.com/pandas-dev/pandas/issues/12777
https://github.com/pandas-dev/pandas/issues/12777
https://github.com/pandas-dev/pandas/issues/12777
https://github.com/pandas-dev/pandas/issues/7718
https://github.com/pandas-dev/pandas/issues/11273
https://github.com/pandas-dev/pandas/issues/12489

pandas: powerful Python data analysis toolkit, Release 0.23.4

• API breaking change to the .resample method to make it more .groupby like, see here.

• Removal of support for positional indexing with floats, which was deprecated since 0.14.0. This will now raise
a TypeError, see here.

• The .to_xarray() function has been added for compatibility with the xarray package, see here.

• The read_sas function has been enhanced to read sas7bdat files, see here.

• Addition of the .str.extractall() method, and API changes to the .str.extract() method and .str.cat() method.

• pd.test() top-level nose test runner is available (GH4327).

Check the API Changes and deprecations before updating.

What’s new in v0.18.0

• New features

– Window functions are now methods

– Changes to rename

– Range Index

– Changes to str.extract

– Addition of str.extractall

– Changes to str.cat

– Datetimelike rounding

– Formatting of Integers in FloatIndex

– Changes to dtype assignment behaviors

– to_xarray

– Latex Representation

– pd.read_sas() changes

– Other enhancements

• Backwards incompatible API changes

– NaT and Timedelta operations

– Changes to msgpack

– Signature change for .rank

– Bug in QuarterBegin with n=0

– Resample API

* Downsampling

* Upsampling

* Previous API will work but with deprecations

– Changes to eval

– Other API Changes

– Deprecations

190 Chapter 1. What’s New

http://xarray.pydata.org/en/stable/
https://github.com/pandas-dev/pandas/issues/4327

pandas: powerful Python data analysis toolkit, Release 0.23.4

– Removal of deprecated float indexers

– Removal of prior version deprecations/changes

• Performance Improvements

• Bug Fixes

1.16.1 New features

1.16.1.1 Window functions are now methods

Window functions have been refactored to be methods on Series/DataFrame objects, rather than top-level func-
tions, which are now deprecated. This allows these window-type functions, to have a similar API to that of .groupby.
See the full documentation here (GH11603, GH12373)

In [1]: np.random.seed(1234)

In [2]: df = pd.DataFrame({'A' : range(10), 'B' : np.random.randn(10)})

In [3]: df
Out[3]:

A B
0 0 0.471435
1 1 -1.190976
2 2 1.432707
3 3 -0.312652
4 4 -0.720589
5 5 0.887163
6 6 0.859588
7 7 -0.636524
8 8 0.015696
9 9 -2.242685

Previous Behavior:

In [8]: pd.rolling_mean(df,window=3)
FutureWarning: pd.rolling_mean is deprecated for DataFrame and will be

→˓removed in a future version, replace with
DataFrame.rolling(window=3,center=False).mean()

Out[8]:
A B

0 NaN NaN
1 NaN NaN
2 1 0.237722
3 2 -0.023640
4 3 0.133155
5 4 -0.048693
6 5 0.342054
7 6 0.370076
8 7 0.079587
9 8 -0.954504

New Behavior:

In [4]: r = df.rolling(window=3)

1.16. v0.18.0 (March 13, 2016) 191

https://github.com/pandas-dev/pandas/issues/11603
https://github.com/pandas-dev/pandas/issues/12373

pandas: powerful Python data analysis toolkit, Release 0.23.4

These show a descriptive repr

In [5]: r
Out[5]: Rolling [window=3,center=False,axis=0]

with tab-completion of available methods and properties.

In [9]: r.
r.A r.agg r.apply r.count r.exclusions r.max r.
→˓median r.name r.skew r.sum
r.B r.aggregate r.corr r.cov r.kurt r.mean r.
→˓min r.quantile r.std r.var

The methods operate on the Rolling object itself

In [6]: r.mean()
Out[6]:

A B
0 NaN NaN
1 NaN NaN
2 1.0 0.237722
3 2.0 -0.023640
4 3.0 0.133155
5 4.0 -0.048693
6 5.0 0.342054
7 6.0 0.370076
8 7.0 0.079587
9 8.0 -0.954504

They provide getitem accessors

In [7]: r['A'].mean()
Out[7]:
0 NaN
1 NaN
2 1.0
3 2.0
4 3.0
5 4.0
6 5.0
7 6.0
8 7.0
9 8.0
Name: A, dtype: float64

And multiple aggregations

In [8]: r.agg({'A' : ['mean','std'],
...: 'B' : ['mean','std']})
...:

Out[8]:
A B

mean std mean std
0 NaN NaN NaN NaN
1 NaN NaN NaN NaN
2 1.0 1.0 0.237722 1.327364
3 2.0 1.0 -0.023640 1.335505
4 3.0 1.0 0.133155 1.143778

(continues on next page)

192 Chapter 1. What’s New

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

5 4.0 1.0 -0.048693 0.835747
6 5.0 1.0 0.342054 0.920379
7 6.0 1.0 0.370076 0.871850
8 7.0 1.0 0.079587 0.750099
9 8.0 1.0 -0.954504 1.162285

1.16.1.2 Changes to rename

Series.rename and NDFrame.rename_axis can now take a scalar or list-like argument for altering the Series
or axis name, in addition to their old behaviors of altering labels. (GH9494, GH11965)

In [9]: s = pd.Series(np.random.randn(5))

In [10]: s.rename('newname')
Out[10]:
0 1.150036
1 0.991946
2 0.953324
3 -2.021255
4 -0.334077
Name: newname, dtype: float64

In [11]: df = pd.DataFrame(np.random.randn(5, 2))

In [12]: (df.rename_axis("indexname")
....: .rename_axis("columns_name", axis="columns"))
....:

Out[12]:
columns_name 0 1
indexname
0 0.002118 0.405453
1 0.289092 1.321158
2 -1.546906 -0.202646
3 -0.655969 0.193421
4 0.553439 1.318152

The new functionality works well in method chains. Previously these methods only accepted functions or dicts map-
ping a label to a new label. This continues to work as before for function or dict-like values.

1.16.1.3 Range Index

A RangeIndex has been added to the Int64Index sub-classes to support a memory saving alternative for common
use cases. This has a similar implementation to the python range object (xrange in python 2), in that it only
stores the start, stop, and step values for the index. It will transparently interact with the user API, converting to
Int64Index if needed.

This will now be the default constructed index for NDFrame objects, rather than previous an Int64Index. (GH939,
GH12070, GH12071, GH12109, GH12888)

Previous Behavior:

In [3]: s = pd.Series(range(1000))

In [4]: s.index

(continues on next page)

1.16. v0.18.0 (March 13, 2016) 193

https://github.com/pandas-dev/pandas/issues/9494
https://github.com/pandas-dev/pandas/issues/11965
https://github.com/pandas-dev/pandas/issues/939
https://github.com/pandas-dev/pandas/issues/12070
https://github.com/pandas-dev/pandas/issues/12071
https://github.com/pandas-dev/pandas/issues/12109
https://github.com/pandas-dev/pandas/issues/12888

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

Out[4]:
Int64Index([0, 1, 2, 3, 4, 5, 6, 7, 8, 9,

...
990, 991, 992, 993, 994, 995, 996, 997, 998, 999], dtype='int64',

→˓length=1000)

In [6]: s.index.nbytes
Out[6]: 8000

New Behavior:

In [13]: s = pd.Series(range(1000))

In [14]: s.index
Out[14]: RangeIndex(start=0, stop=1000, step=1)

In [15]: s.index.nbytes
\\Out[15]: 80

1.16.1.4 Changes to str.extract

The .str.extract method takes a regular expression with capture groups, finds the first match in each subject string, and
returns the contents of the capture groups (GH11386).

In v0.18.0, the expand argument was added to extract.

• expand=False: it returns a Series, Index, or DataFrame, depending on the subject and regular expres-
sion pattern (same behavior as pre-0.18.0).

• expand=True: it always returns a DataFrame, which is more consistent and less confusing from the per-
spective of a user.

Currently the default is expand=None which gives a FutureWarning and uses expand=False. To avoid this
warning, please explicitly specify expand.

In [1]: pd.Series(['a1', 'b2', 'c3']).str.extract('[ab](\d)', expand=None)
FutureWarning: currently extract(expand=None) means expand=False (return Index/Series/
→˓DataFrame)
but in a future version of pandas this will be changed to expand=True (return
→˓DataFrame)

Out[1]:
0 1
1 2
2 NaN
dtype: object

Extracting a regular expression with one group returns a Series if expand=False.

In [16]: pd.Series(['a1', 'b2', 'c3']).str.extract('[ab](\d)', expand=False)
Out[16]:
0 1
1 2
2 NaN
dtype: object

It returns a DataFrame with one column if expand=True.

194 Chapter 1. What’s New

https://github.com/pandas-dev/pandas/issues/11386

pandas: powerful Python data analysis toolkit, Release 0.23.4

In [17]: pd.Series(['a1', 'b2', 'c3']).str.extract('[ab](\d)', expand=True)
Out[17]:

0
0 1
1 2
2 NaN

Calling on an Index with a regex with exactly one capture group returns an Index if expand=False.

In [18]: s = pd.Series(["a1", "b2", "c3"], ["A11", "B22", "C33"])

In [19]: s.index
Out[19]: Index(['A11', 'B22', 'C33'], dtype='object')

In [20]: s.index.str.extract("(?P<letter>[a-zA-Z])", expand=False)
\\Out[20]: Index(['A', 'B', 'C'],
→˓dtype='object', name='letter')

It returns a DataFrame with one column if expand=True.

In [21]: s.index.str.extract("(?P<letter>[a-zA-Z])", expand=True)
Out[21]:

letter
0 A
1 B
2 C

Calling on an Index with a regex with more than one capture group raises ValueError if expand=False.

>>> s.index.str.extract("(?P<letter>[a-zA-Z])([0-9]+)", expand=False)
ValueError: only one regex group is supported with Index

It returns a DataFrame if expand=True.

In [22]: s.index.str.extract("(?P<letter>[a-zA-Z])([0-9]+)", expand=True)
Out[22]:

letter 1
0 A 11
1 B 22
2 C 33

In summary, extract(expand=True) always returns a DataFrame with a row for every subject string, and a
column for every capture group.

1.16.1.5 Addition of str.extractall

The .str.extractall method was added (GH11386). Unlike extract, which returns only the first match.

In [23]: s = pd.Series(["a1a2", "b1", "c1"], ["A", "B", "C"])

In [24]: s
Out[24]:
A a1a2
B b1
C c1
dtype: object

(continues on next page)

1.16. v0.18.0 (March 13, 2016) 195

https://github.com/pandas-dev/pandas/issues/11386

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

In [25]: s.str.extract("(?P<letter>[ab])(?P<digit>\d)", expand=False)
\\Out[25]:

letter digit
A a 1
B b 1
C NaN NaN

The extractall method returns all matches.

In [26]: s.str.extractall("(?P<letter>[ab])(?P<digit>\d)")
Out[26]:

letter digit
match

A 0 a 1
1 a 2

B 0 b 1

1.16.1.6 Changes to str.cat

The method .str.cat() concatenates the members of a Series. Before, if NaN values were present in the Series,
calling .str.cat() on it would return NaN, unlike the rest of the Series.str.* API. This behavior has been
amended to ignore NaN values by default. (GH11435).

A new, friendlier ValueError is added to protect against the mistake of supplying the sep as an arg, rather than as
a kwarg. (GH11334).

In [27]: pd.Series(['a','b',np.nan,'c']).str.cat(sep=' ')
Out[27]: 'a b c'

In [28]: pd.Series(['a','b',np.nan,'c']).str.cat(sep=' ', na_rep='?')
\\\\\\\\\\\\\\\\\Out[28]: 'a b ? c'

In [2]: pd.Series(['a','b',np.nan,'c']).str.cat(' ')
ValueError: Did you mean to supply a `sep` keyword?

1.16.1.7 Datetimelike rounding

DatetimeIndex, Timestamp, TimedeltaIndex, Timedelta have gained the .round(), .floor() and
.ceil() method for datetimelike rounding, flooring and ceiling. (GH4314, GH11963)

Naive datetimes

In [29]: dr = pd.date_range('20130101 09:12:56.1234', periods=3)

In [30]: dr
Out[30]:
DatetimeIndex(['2013-01-01 09:12:56.123400', '2013-01-02 09:12:56.123400',

'2013-01-03 09:12:56.123400'],
dtype='datetime64[ns]', freq='D')

In [31]: dr.round('s')
\\\Out[31]:
→˓

(continues on next page)

196 Chapter 1. What’s New

https://github.com/pandas-dev/pandas/issues/11435
https://github.com/pandas-dev/pandas/issues/11334
https://github.com/pandas-dev/pandas/issues/4314
https://github.com/pandas-dev/pandas/issues/11963

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

DatetimeIndex(['2013-01-01 09:12:56', '2013-01-02 09:12:56',
'2013-01-03 09:12:56'],

dtype='datetime64[ns]', freq=None)

Timestamp scalar
In [32]: dr[0]
\\Out[32]:
→˓Timestamp('2013-01-01 09:12:56.123400', freq='D')

In [33]: dr[0].round('10s')
\\\Out[33]:
→˓Timestamp('2013-01-01 09:13:00')

Tz-aware are rounded, floored and ceiled in local times

In [34]: dr = dr.tz_localize('US/Eastern')

In [35]: dr
Out[35]:
DatetimeIndex(['2013-01-01 09:12:56.123400-05:00',

'2013-01-02 09:12:56.123400-05:00',
'2013-01-03 09:12:56.123400-05:00'],

dtype='datetime64[ns, US/Eastern]', freq='D')

In [36]: dr.round('s')
\\Out[36]:
→˓

DatetimeIndex(['2013-01-01 09:12:56-05:00', '2013-01-02 09:12:56-05:00',
'2013-01-03 09:12:56-05:00'],

dtype='datetime64[ns, US/Eastern]', freq=None)

Timedeltas

In [37]: t = timedelta_range('1 days 2 hr 13 min 45 us',periods=3,freq='d')

In [38]: t
Out[38]:
TimedeltaIndex(['1 days 02:13:00.000045', '2 days 02:13:00.000045',

'3 days 02:13:00.000045'],
dtype='timedelta64[ns]', freq='D')

In [39]: t.round('10min')
\\\Out[39]:
→˓TimedeltaIndex(['1 days 02:10:00', '2 days 02:10:00', '3 days 02:10:00'], dtype=
→˓'timedelta64[ns]', freq=None)

Timedelta scalar
In [40]: t[0]
\\Out[40]:
→˓Timedelta('1 days 02:13:00.000045')

In [41]: t[0].round('2h')
\\\Out[41]:
→˓Timedelta('1 days 02:00:00')

In addition, .round(), .floor() and .ceil() will be available thru the .dt accessor of Series.

1.16. v0.18.0 (March 13, 2016) 197

pandas: powerful Python data analysis toolkit, Release 0.23.4

In [42]: s = pd.Series(dr)

In [43]: s
Out[43]:
0 2013-01-01 09:12:56.123400-05:00
1 2013-01-02 09:12:56.123400-05:00
2 2013-01-03 09:12:56.123400-05:00
dtype: datetime64[ns, US/Eastern]

In [44]: s.dt.round('D')
\\\Out[44]:
→˓

0 2013-01-01 00:00:00-05:00
1 2013-01-02 00:00:00-05:00
2 2013-01-03 00:00:00-05:00
dtype: datetime64[ns, US/Eastern]

1.16.1.8 Formatting of Integers in FloatIndex

Integers in FloatIndex, e.g. 1., are now formatted with a decimal point and a 0 digit, e.g. 1.0 (GH11713) This
change not only affects the display to the console, but also the output of IO methods like .to_csv or .to_html.

Previous Behavior:

In [2]: s = pd.Series([1,2,3], index=np.arange(3.))

In [3]: s
Out[3]:
0 1
1 2
2 3
dtype: int64

In [4]: s.index
Out[4]: Float64Index([0.0, 1.0, 2.0], dtype='float64')

In [5]: print(s.to_csv(path=None))
0,1
1,2
2,3

New Behavior:

In [45]: s = pd.Series([1,2,3], index=np.arange(3.))

In [46]: s
Out[46]:
0.0 1
1.0 2
2.0 3
dtype: int64

In [47]: s.index
\\Out[47]: Float64Index([0.0, 1.0, 2.
→˓0], dtype='float64')

(continues on next page)

198 Chapter 1. What’s New

https://github.com/pandas-dev/pandas/issues/11713

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

In [48]: print(s.to_csv(path=None))
\\0.
→˓0,1
1.0,2
2.0,3

1.16.1.9 Changes to dtype assignment behaviors

When a DataFrame’s slice is updated with a new slice of the same dtype, the dtype of the DataFrame will now remain
the same. (GH10503)

Previous Behavior:

In [5]: df = pd.DataFrame({'a': [0, 1, 1],
'b': pd.Series([100, 200, 300], dtype='uint32')})

In [7]: df.dtypes
Out[7]:
a int64
b uint32
dtype: object

In [8]: ix = df['a'] == 1

In [9]: df.loc[ix, 'b'] = df.loc[ix, 'b']

In [11]: df.dtypes
Out[11]:
a int64
b int64
dtype: object

New Behavior:

In [49]: df = pd.DataFrame({'a': [0, 1, 1],
....: 'b': pd.Series([100, 200, 300], dtype='uint32')})
....:

In [50]: df.dtypes
Out[50]:
a int64
b uint32
dtype: object

In [51]: ix = df['a'] == 1

In [52]: df.loc[ix, 'b'] = df.loc[ix, 'b']

In [53]: df.dtypes
Out[53]:
a int64
b uint32
dtype: object

When a DataFrame’s integer slice is partially updated with a new slice of floats that could potentially be downcasted
to integer without losing precision, the dtype of the slice will be set to float instead of integer.

1.16. v0.18.0 (March 13, 2016) 199

https://github.com/pandas-dev/pandas/issues/10503

pandas: powerful Python data analysis toolkit, Release 0.23.4

Previous Behavior:

In [4]: df = pd.DataFrame(np.array(range(1,10)).reshape(3,3),
columns=list('abc'),
index=[[4,4,8], [8,10,12]])

In [5]: df
Out[5]:

a b c
4 8 1 2 3

10 4 5 6
8 12 7 8 9

In [7]: df.ix[4, 'c'] = np.array([0., 1.])

In [8]: df
Out[8]:

a b c
4 8 1 2 0

10 4 5 1
8 12 7 8 9

New Behavior:

In [54]: df = pd.DataFrame(np.array(range(1,10)).reshape(3,3),
....: columns=list('abc'),
....: index=[[4,4,8], [8,10,12]])
....:

In [55]: df
Out[55]:

a b c
4 8 1 2 3

10 4 5 6
8 12 7 8 9

In [56]: df.loc[4, 'c'] = np.array([0., 1.])

In [57]: df
Out[57]:

a b c
4 8 1 2 0.0

10 4 5 1.0
8 12 7 8 9.0

1.16.1.10 to_xarray

In a future version of pandas, we will be deprecating Panel and other > 2 ndim objects. In order to provide for
continuity, all NDFrame objects have gained the .to_xarray() method in order to convert to xarray objects,
which has a pandas-like interface for > 2 ndim. (GH11972)

See the xarray full-documentation here.

In [1]: p = Panel(np.arange(2*3*4).reshape(2,3,4))

In [2]: p.to_xarray()
Out[2]:

(continues on next page)

200 Chapter 1. What’s New

https://github.com/pandas-dev/pandas/issues/11972
http://xarray.pydata.org/en/stable/

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

<xarray.DataArray (items: 2, major_axis: 3, minor_axis: 4)>
array([[[0, 1, 2, 3],

[4, 5, 6, 7],
[8, 9, 10, 11]],

[[12, 13, 14, 15],
[16, 17, 18, 19],
[20, 21, 22, 23]]])

Coordinates:

* items (items) int64 0 1

* major_axis (major_axis) int64 0 1 2

* minor_axis (minor_axis) int64 0 1 2 3

1.16.1.11 Latex Representation

DataFrame has gained a ._repr_latex_() method in order to allow for conversion to latex in a ipython/jupyter
notebook using nbconvert. (GH11778)

Note that this must be activated by setting the option pd.display.latex.repr=True (GH12182)

For example, if you have a jupyter notebook you plan to convert to latex using nbconvert, place the statement pd.
display.latex.repr=True in the first cell to have the contained DataFrame output also stored as latex.

The options display.latex.escape and display.latex.longtable have also been added to the config-
uration and are used automatically by the to_latex method. See the available options docs for more info.

1.16.1.12 pd.read_sas() changes

read_sas has gained the ability to read SAS7BDAT files, including compressed files. The files can be read in
entirety, or incrementally. For full details see here. (GH4052)

1.16.1.13 Other enhancements

• Handle truncated floats in SAS xport files (GH11713)

• Added option to hide index in Series.to_string (GH11729)

• read_excel now supports s3 urls of the format s3://bucketname/filename (GH11447)

• add support for AWS_S3_HOST env variable when reading from s3 (GH12198)

• A simple version of Panel.round() is now implemented (GH11763)

• For Python 3.x, round(DataFrame), round(Series), round(Panel) will work (GH11763)

• sys.getsizeof(obj) returns the memory usage of a pandas object, including the values it contains
(GH11597)

• Series gained an is_unique attribute (GH11946)

• DataFrame.quantile and Series.quantile now accept interpolation keyword (GH10174).

• Added DataFrame.style.format for more flexible formatting of cell values (GH11692)

• DataFrame.select_dtypes now allows the np.float16 typecode (GH11990)

• pivot_table() now accepts most iterables for the values parameter (GH12017)

1.16. v0.18.0 (March 13, 2016) 201

https://github.com/pandas-dev/pandas/issues/11778
https://github.com/pandas-dev/pandas/issues/12182
https://github.com/pandas-dev/pandas/issues/4052
https://github.com/pandas-dev/pandas/issues/11713
https://github.com/pandas-dev/pandas/issues/11729
https://github.com/pandas-dev/pandas/issues/11447
https://github.com/pandas-dev/pandas/issues/12198
https://github.com/pandas-dev/pandas/issues/11763
https://github.com/pandas-dev/pandas/issues/11763
https://github.com/pandas-dev/pandas/issues/11597
https://github.com/pandas-dev/pandas/issues/11946
https://github.com/pandas-dev/pandas/issues/10174
https://github.com/pandas-dev/pandas/issues/11692
https://github.com/pandas-dev/pandas/issues/11990
https://github.com/pandas-dev/pandas/issues/12017

pandas: powerful Python data analysis toolkit, Release 0.23.4

• Added Google BigQuery service account authentication support, which enables authentication on remote
servers. (GH11881, GH12572). For further details see here

• HDFStore is now iterable: for k in store is equivalent to for k in store.keys() (GH12221).

• Add missing methods/fields to .dt for Period (GH8848)

• The entire codebase has been PEP-ified (GH12096)

1.16.2 Backwards incompatible API changes

• the leading whitespaces have been removed from the output of .to_string(index=False) method
(GH11833)

• the out parameter has been removed from the Series.round() method. (GH11763)

• DataFrame.round() leaves non-numeric columns unchanged in its return, rather than raises. (GH11885)

• DataFrame.head(0) and DataFrame.tail(0) return empty frames, rather than self. (GH11937)

• Series.head(0) and Series.tail(0) return empty series, rather than self. (GH11937)

• to_msgpack and read_msgpack encoding now defaults to 'utf-8'. (GH12170)

• the order of keyword arguments to text file parsing functions (.read_csv(), .read_table(), .
read_fwf()) changed to group related arguments. (GH11555)

• NaTType.isoformat now returns the string 'NaT to allow the result to be passed to the constructor of
Timestamp. (GH12300)

1.16.2.1 NaT and Timedelta operations

NaT and Timedelta have expanded arithmetic operations, which are extended to Series arithmetic where applica-
ble. Operations defined for datetime64[ns] or timedelta64[ns] are now also defined for NaT (GH11564).

NaT now supports arithmetic operations with integers and floats.

In [58]: pd.NaT * 1
Out[58]: NaT

In [59]: pd.NaT * 1.5
\\\\\\\\\\\\\Out[59]: NaT

In [60]: pd.NaT / 2
\\\\\\\\\\\\\\\\\\\\\\\\\\Out[60]: NaT

In [61]: pd.NaT * np.nan
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\Out[61]: NaT

NaT defines more arithmetic operations with datetime64[ns] and timedelta64[ns].

In [62]: pd.NaT / pd.NaT
Out[62]: nan

In [63]: pd.Timedelta('1s') / pd.NaT
\\\\\\\\\\\\\Out[63]: nan

NaT may represent either a datetime64[ns] null or a timedelta64[ns] null. Given the ambiguity, it is
treated as a timedelta64[ns], which allows more operations to succeed.

202 Chapter 1. What’s New

https://github.com/pandas-dev/pandas/issues/11881
https://github.com/pandas-dev/pandas/issues/12572
https://pandas-gbq.readthedocs.io/en/latest/intro.html
https://github.com/pandas-dev/pandas/issues/12221
https://github.com/pandas-dev/pandas/issues/8848
https://github.com/pandas-dev/pandas/issues/12096
https://github.com/pandas-dev/pandas/issues/11833
https://github.com/pandas-dev/pandas/issues/11763
https://github.com/pandas-dev/pandas/issues/11885
https://github.com/pandas-dev/pandas/issues/11937
https://github.com/pandas-dev/pandas/issues/11937
https://github.com/pandas-dev/pandas/issues/12170
https://github.com/pandas-dev/pandas/issues/11555
https://github.com/pandas-dev/pandas/issues/12300
https://github.com/pandas-dev/pandas/issues/11564

pandas: powerful Python data analysis toolkit, Release 0.23.4

In [64]: pd.NaT + pd.NaT
Out[64]: NaT

same as
In [65]: pd.Timedelta('1s') + pd.Timedelta('1s')
\\\\\\\\\\\\\Out[65]: Timedelta('0 days 00:00:02')

as opposed to

In [3]: pd.Timestamp('19900315') + pd.Timestamp('19900315')
TypeError: unsupported operand type(s) for +: 'Timestamp' and 'Timestamp'

However, when wrapped in a Series whose dtype is datetime64[ns] or timedelta64[ns], the dtype
information is respected.

In [1]: pd.Series([pd.NaT], dtype='<M8[ns]') + pd.Series([pd.NaT], dtype='<M8[ns]')
TypeError: can only operate on a datetimes for subtraction,

but the operator [__add__] was passed

In [66]: pd.Series([pd.NaT], dtype='<m8[ns]') + pd.Series([pd.NaT], dtype='<m8[ns]')
Out[66]:
0 NaT
dtype: timedelta64[ns]

Timedelta division by floats now works.

In [67]: pd.Timedelta('1s') / 2.0
Out[67]: Timedelta('0 days 00:00:00.500000')

Subtraction by Timedelta in a Series by a Timestamp works (GH11925)

In [68]: ser = pd.Series(pd.timedelta_range('1 day', periods=3))

In [69]: ser
Out[69]:
0 1 days
1 2 days
2 3 days
dtype: timedelta64[ns]

In [70]: pd.Timestamp('2012-01-01') - ser
\\Out[70]:
0 2011-12-31
1 2011-12-30
2 2011-12-29
dtype: datetime64[ns]

NaT.isoformat() now returns 'NaT'. This change allows allows pd.Timestamp to rehydrate any timestamp
like object from its isoformat (GH12300).

1.16.2.2 Changes to msgpack

Forward incompatible changes in msgpack writing format were made over 0.17.0 and 0.18.0; older versions of
pandas cannot read files packed by newer versions (GH12129, GH10527)

Bugs in to_msgpack and read_msgpack introduced in 0.17.0 and fixed in 0.18.0, caused files packed in Python
2 unreadable by Python 3 (GH12142). The following table describes the backward and forward compat of msgpacks.

1.16. v0.18.0 (March 13, 2016) 203

https://github.com/pandas-dev/pandas/issues/11925
https://github.com/pandas-dev/pandas/issues/12300
https://github.com/pandas-dev/pandas/issues/12129
https://github.com/pandas-dev/pandas/issues/10527
https://github.com/pandas-dev/pandas/issues/12142

pandas: powerful Python data analysis toolkit, Release 0.23.4

Warning:

Packed with Can be unpacked with
pre-0.17 / Python 2 any
pre-0.17 / Python 3 any
0.17 / Python 2

• ==0.17 / Python 2
• >=0.18 / any Python

0.17 / Python 3 >=0.18 / any Python
0.18 >= 0.18

0.18.0 is backward-compatible for reading files packed by older versions, except for files packed with 0.17 in
Python 2, in which case only they can only be unpacked in Python 2.

1.16.2.3 Signature change for .rank

Series.rank and DataFrame.rank now have the same signature (GH11759)

Previous signature

In [3]: pd.Series([0,1]).rank(method='average', na_option='keep',
ascending=True, pct=False)

Out[3]:
0 1
1 2
dtype: float64

In [4]: pd.DataFrame([0,1]).rank(axis=0, numeric_only=None,
method='average', na_option='keep',
ascending=True, pct=False)

Out[4]:
0

0 1
1 2

New signature

In [71]: pd.Series([0,1]).rank(axis=0, method='average', numeric_only=None,
....: na_option='keep', ascending=True, pct=False)
....:

Out[71]:
0 1.0
1 2.0
dtype: float64

In [72]: pd.DataFrame([0,1]).rank(axis=0, method='average', numeric_only=None,
....: na_option='keep', ascending=True, pct=False)
....:

\\\Out[72]:
0

0 1.0
1 2.0

204 Chapter 1. What’s New

https://github.com/pandas-dev/pandas/issues/11759

pandas: powerful Python data analysis toolkit, Release 0.23.4

1.16.2.4 Bug in QuarterBegin with n=0

In previous versions, the behavior of the QuarterBegin offset was inconsistent depending on the date when the n
parameter was 0. (GH11406)

The general semantics of anchored offsets for n=0 is to not move the date when it is an anchor point (e.g., a quarter
start date), and otherwise roll forward to the next anchor point.

In [73]: d = pd.Timestamp('2014-02-01')

In [74]: d
Out[74]: Timestamp('2014-02-01 00:00:00')

In [75]: d + pd.offsets.QuarterBegin(n=0, startingMonth=2)
\\Out[75]: Timestamp('2014-02-01 00:00:00')

In [76]: d + pd.offsets.QuarterBegin(n=0, startingMonth=1)
\\Out[76]:
→˓Timestamp('2014-04-01 00:00:00')

For the QuarterBegin offset in previous versions, the date would be rolled backwards if date was in the same
month as the quarter start date.

In [3]: d = pd.Timestamp('2014-02-15')

In [4]: d + pd.offsets.QuarterBegin(n=0, startingMonth=2)
Out[4]: Timestamp('2014-02-01 00:00:00')

This behavior has been corrected in version 0.18.0, which is consistent with other anchored offsets like MonthBegin
and YearBegin.

In [77]: d = pd.Timestamp('2014-02-15')

In [78]: d + pd.offsets.QuarterBegin(n=0, startingMonth=2)
Out[78]: Timestamp('2014-05-01 00:00:00')

1.16.2.5 Resample API

Like the change in the window functions API above, .resample(...) is changing to have a more groupby-like
API. (GH11732, GH12702, GH12202, GH12332, GH12334, GH12348, GH12448).

In [79]: np.random.seed(1234)

In [80]: df = pd.DataFrame(np.random.rand(10,4),
....: columns=list('ABCD'),
....: index=pd.date_range('2010-01-01 09:00:00', periods=10,

→˓freq='s'))
....:

In [81]: df
Out[81]:

A B C D
2010-01-01 09:00:00 0.191519 0.622109 0.437728 0.785359
2010-01-01 09:00:01 0.779976 0.272593 0.276464 0.801872
2010-01-01 09:00:02 0.958139 0.875933 0.357817 0.500995
2010-01-01 09:00:03 0.683463 0.712702 0.370251 0.561196

(continues on next page)

1.16. v0.18.0 (March 13, 2016) 205

https://github.com/pandas-dev/pandas/issues/11406
https://github.com/pandas-dev/pandas/issues/11732
https://github.com/pandas-dev/pandas/issues/12702
https://github.com/pandas-dev/pandas/issues/12202
https://github.com/pandas-dev/pandas/issues/12332
https://github.com/pandas-dev/pandas/issues/12334
https://github.com/pandas-dev/pandas/issues/12348
https://github.com/pandas-dev/pandas/issues/12448

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

2010-01-01 09:00:04 0.503083 0.013768 0.772827 0.882641
2010-01-01 09:00:05 0.364886 0.615396 0.075381 0.368824
2010-01-01 09:00:06 0.933140 0.651378 0.397203 0.788730
2010-01-01 09:00:07 0.316836 0.568099 0.869127 0.436173
2010-01-01 09:00:08 0.802148 0.143767 0.704261 0.704581
2010-01-01 09:00:09 0.218792 0.924868 0.442141 0.909316

Previous API:

You would write a resampling operation that immediately evaluates. If a how parameter was not provided, it would
default to how='mean'.

In [6]: df.resample('2s')
Out[6]:

A B C D
2010-01-01 09:00:00 0.485748 0.447351 0.357096 0.793615
2010-01-01 09:00:02 0.820801 0.794317 0.364034 0.531096
2010-01-01 09:00:04 0.433985 0.314582 0.424104 0.625733
2010-01-01 09:00:06 0.624988 0.609738 0.633165 0.612452
2010-01-01 09:00:08 0.510470 0.534317 0.573201 0.806949

You could also specify a how directly

In [7]: df.resample('2s', how='sum')
Out[7]:

A B C D
2010-01-01 09:00:00 0.971495 0.894701 0.714192 1.587231
2010-01-01 09:00:02 1.641602 1.588635 0.728068 1.062191
2010-01-01 09:00:04 0.867969 0.629165 0.848208 1.251465
2010-01-01 09:00:06 1.249976 1.219477 1.266330 1.224904
2010-01-01 09:00:08 1.020940 1.068634 1.146402 1.613897

New API:

Now, you can write .resample(..) as a 2-stage operation like .groupby(...), which yields a Resampler.

In [82]: r = df.resample('2s')

In [83]: r
Out[83]: DatetimeIndexResampler [freq=<2 * Seconds>, axis=0, closed=left, label=left,
→˓convention=start, base=0]

Downsampling

You can then use this object to perform operations. These are downsampling operations (going from a higher frequency
to a lower one).

In [84]: r.mean()
Out[84]:

A B C D
2010-01-01 09:00:00 0.485748 0.447351 0.357096 0.793615
2010-01-01 09:00:02 0.820801 0.794317 0.364034 0.531096
2010-01-01 09:00:04 0.433985 0.314582 0.424104 0.625733
2010-01-01 09:00:06 0.624988 0.609738 0.633165 0.612452
2010-01-01 09:00:08 0.510470 0.534317 0.573201 0.806949

206 Chapter 1. What’s New

pandas: powerful Python data analysis toolkit, Release 0.23.4

In [85]: r.sum()
Out[85]:

A B C D
2010-01-01 09:00:00 0.971495 0.894701 0.714192 1.587231
2010-01-01 09:00:02 1.641602 1.588635 0.728068 1.062191
2010-01-01 09:00:04 0.867969 0.629165 0.848208 1.251465
2010-01-01 09:00:06 1.249976 1.219477 1.266330 1.224904
2010-01-01 09:00:08 1.020940 1.068634 1.146402 1.613897

Furthermore, resample now supports getitem operations to perform the resample on specific columns.

In [86]: r[['A','C']].mean()
Out[86]:

A C
2010-01-01 09:00:00 0.485748 0.357096
2010-01-01 09:00:02 0.820801 0.364034
2010-01-01 09:00:04 0.433985 0.424104
2010-01-01 09:00:06 0.624988 0.633165
2010-01-01 09:00:08 0.510470 0.573201

and .aggregate type operations.

In [87]: r.agg({'A' : 'mean', 'B' : 'sum'})
Out[87]:

A B
2010-01-01 09:00:00 0.485748 0.894701
2010-01-01 09:00:02 0.820801 1.588635
2010-01-01 09:00:04 0.433985 0.629165
2010-01-01 09:00:06 0.624988 1.219477
2010-01-01 09:00:08 0.510470 1.068634

These accessors can of course, be combined

In [88]: r[['A','B']].agg(['mean','sum'])
Out[88]:

A B
mean sum mean sum

2010-01-01 09:00:00 0.485748 0.971495 0.447351 0.894701
2010-01-01 09:00:02 0.820801 1.641602 0.794317 1.588635
2010-01-01 09:00:04 0.433985 0.867969 0.314582 0.629165
2010-01-01 09:00:06 0.624988 1.249976 0.609738 1.219477
2010-01-01 09:00:08 0.510470 1.020940 0.534317 1.068634

Upsampling

Upsampling operations take you from a lower frequency to a higher frequency. These are now performed with the
Resampler objects with backfill(), ffill(), fillna() and asfreq() methods.

In [89]: s = pd.Series(np.arange(5,dtype='int64'),
....: index=date_range('2010-01-01', periods=5, freq='Q'))
....:

In [90]: s
Out[90]:
2010-03-31 0

(continues on next page)

1.16. v0.18.0 (March 13, 2016) 207

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

2010-06-30 1
2010-09-30 2
2010-12-31 3
2011-03-31 4
Freq: Q-DEC, dtype: int64

Previously

In [6]: s.resample('M', fill_method='ffill')
Out[6]:
2010-03-31 0
2010-04-30 0
2010-05-31 0
2010-06-30 1
2010-07-31 1
2010-08-31 1
2010-09-30 2
2010-10-31 2
2010-11-30 2
2010-12-31 3
2011-01-31 3
2011-02-28 3
2011-03-31 4
Freq: M, dtype: int64

New API

In [91]: s.resample('M').ffill()
Out[91]:
2010-03-31 0
2010-04-30 0
2010-05-31 0
2010-06-30 1
2010-07-31 1
2010-08-31 1
2010-09-30 2
2010-10-31 2
2010-11-30 2
2010-12-31 3
2011-01-31 3
2011-02-28 3
2011-03-31 4
Freq: M, dtype: int64

Note: In the new API, you can either downsample OR upsample. The prior implementation would allow you to pass
an aggregator function (like mean) even though you were upsampling, providing a bit of confusion.

Previous API will work but with deprecations

Warning: This new API for resample includes some internal changes for the prior-to-0.18.0 API, to work with a
deprecation warning in most cases, as the resample operation returns a deferred object. We can intercept operations

208 Chapter 1. What’s New

pandas: powerful Python data analysis toolkit, Release 0.23.4

and just do what the (pre 0.18.0) API did (with a warning). Here is a typical use case:

In [4]: r = df.resample('2s')

In [6]: r*10
pandas/tseries/resample.py:80: FutureWarning: .resample() is now a deferred
→˓operation
use .resample(...).mean() instead of .resample(...)

Out[6]:
A B C D

2010-01-01 09:00:00 4.857476 4.473507 3.570960 7.936154
2010-01-01 09:00:02 8.208011 7.943173 3.640340 5.310957
2010-01-01 09:00:04 4.339846 3.145823 4.241039 6.257326
2010-01-01 09:00:06 6.249881 6.097384 6.331650 6.124518
2010-01-01 09:00:08 5.104699 5.343172 5.732009 8.069486

However, getting and assignment operations directly on a Resampler will raise a ValueError:

In [7]: r.iloc[0] = 5
ValueError: .resample() is now a deferred operation
use .resample(...).mean() instead of .resample(...)

There is a situation where the new API can not perform all the operations when using original code. This code is
intending to resample every 2s, take the mean AND then take the min of those results.

In [4]: df.resample('2s').min()
Out[4]:
A 0.433985
B 0.314582
C 0.357096
D 0.531096
dtype: float64

The new API will:

In [92]: df.resample('2s').min()
Out[92]:

A B C D
2010-01-01 09:00:00 0.191519 0.272593 0.276464 0.785359
2010-01-01 09:00:02 0.683463 0.712702 0.357817 0.500995
2010-01-01 09:00:04 0.364886 0.013768 0.075381 0.368824
2010-01-01 09:00:06 0.316836 0.568099 0.397203 0.436173
2010-01-01 09:00:08 0.218792 0.143767 0.442141 0.704581

The good news is the return dimensions will differ between the new API and the old API, so this should loudly
raise an exception.

To replicate the original operation

In [93]: df.resample('2s').mean().min()
Out[93]:
A 0.433985
B 0.314582
C 0.357096
D 0.531096
dtype: float64

1.16. v0.18.0 (March 13, 2016) 209

pandas: powerful Python data analysis toolkit, Release 0.23.4

1.16.2.6 Changes to eval

In prior versions, new columns assignments in an eval expression resulted in an inplace change to the DataFrame.
(GH9297, GH8664, GH10486)

In [94]: df = pd.DataFrame({'a': np.linspace(0, 10, 5), 'b': range(5)})

In [95]: df
Out[95]:

a b
0 0.0 0
1 2.5 1
2 5.0 2
3 7.5 3
4 10.0 4

In [12]: df.eval('c = a + b')
FutureWarning: eval expressions containing an assignment currentlydefault to
→˓operating inplace.
This will change in a future version of pandas, use inplace=True to avoid this
→˓warning.

In [13]: df
Out[13]:

a b c
0 0.0 0 0.0
1 2.5 1 3.5
2 5.0 2 7.0
3 7.5 3 10.5
4 10.0 4 14.0

In version 0.18.0, a new inplace keyword was added to choose whether the assignment should be done inplace or
return a copy.

In [96]: df
Out[96]:

a b c
0 0.0 0 0.0
1 2.5 1 3.5
2 5.0 2 7.0
3 7.5 3 10.5
4 10.0 4 14.0

In [97]: df.eval('d = c - b', inplace=False)
\\Out[97]:
→˓

a b c d
0 0.0 0 0.0 0.0
1 2.5 1 3.5 2.5
2 5.0 2 7.0 5.0
3 7.5 3 10.5 7.5
4 10.0 4 14.0 10.0

In [98]: df
\\Out[98]:
→˓

a b c

(continues on next page)

210 Chapter 1. What’s New

https://github.com/pandas-dev/pandas/issues/9297
https://github.com/pandas-dev/pandas/issues/8664
https://github.com/pandas-dev/pandas/issues/10486

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

0 0.0 0 0.0
1 2.5 1 3.5
2 5.0 2 7.0
3 7.5 3 10.5
4 10.0 4 14.0

In [99]: df.eval('d = c - b', inplace=True)

In [100]: df
Out[100]:

a b c d
0 0.0 0 0.0 0.0
1 2.5 1 3.5 2.5
2 5.0 2 7.0 5.0
3 7.5 3 10.5 7.5
4 10.0 4 14.0 10.0

Warning: For backwards compatibility, inplace defaults to True if not specified. This will change in a
future version of pandas. If your code depends on an inplace assignment you should update to explicitly set
inplace=True

The inplace keyword parameter was also added the query method.

In [101]: df.query('a > 5')
Out[101]:

a b c d
3 7.5 3 10.5 7.5
4 10.0 4 14.0 10.0

In [102]: df.query('a > 5', inplace=True)

In [103]: df
Out[103]:

a b c d
3 7.5 3 10.5 7.5
4 10.0 4 14.0 10.0

Warning: Note that the default value for inplace in a query is False, which is consistent with prior versions.

eval has also been updated to allow multi-line expressions for multiple assignments. These expressions will be
evaluated one at a time in order. Only assignments are valid for multi-line expressions.

In [104]: df
Out[104]:

a b c d
3 7.5 3 10.5 7.5
4 10.0 4 14.0 10.0

In [105]: df.eval("""
.....: e = d + a
.....: f = e - 22
.....: g = f / 2.0""", inplace=True)

(continues on next page)

1.16. v0.18.0 (March 13, 2016) 211

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

.....:

In [106]: df
Out[106]:

a b c d e f g
3 7.5 3 10.5 7.5 15.0 -7.0 -3.5
4 10.0 4 14.0 10.0 20.0 -2.0 -1.0

1.16.2.7 Other API Changes

• DataFrame.between_time and Series.between_time now only parse a fixed set of time strings.
Parsing of date strings is no longer supported and raises a ValueError. (GH11818)

In [107]: s = pd.Series(range(10), pd.date_range('2015-01-01', freq='H',
→˓periods=10))

In [108]: s.between_time("7:00am", "9:00am")
Out[108]:
2015-01-01 07:00:00 7
2015-01-01 08:00:00 8
2015-01-01 09:00:00 9
Freq: H, dtype: int64

This will now raise.

In [2]: s.between_time('20150101 07:00:00','20150101 09:00:00')
ValueError: Cannot convert arg ['20150101 07:00:00'] to a time.

• .memory_usage() now includes values in the index, as does memory_usage in .info() (GH11597)

• DataFrame.to_latex() now supports non-ascii encodings (eg utf-8) in Python 2 with the parameter
encoding (GH7061)

• pandas.merge() and DataFrame.merge() will show a specific error message when trying to merge
with an object that is not of type DataFrame or a subclass (GH12081)

• DataFrame.unstack and Series.unstack now take fill_value keyword to allow direct replace-
ment of missing values when an unstack results in missing values in the resulting DataFrame. As an added
benefit, specifying fill_value will preserve the data type of the original stacked data. (GH9746)

• As part of the new API for window functions and resampling, aggregation functions have been clarified, raising
more informative error messages on invalid aggregations. (GH9052). A full set of examples are presented in
groupby.

• Statistical functions for NDFrame objects (like sum(), mean(), min()) will now raise if non-numpy-
compatible arguments are passed in for **kwargs (GH12301)

• .to_latex and .to_html gain a decimal parameter like .to_csv; the default is '.' (GH12031)

• More helpful error message when constructing a DataFrame with empty data but with indices (GH8020)

• .describe() will now properly handle bool dtype as a categorical (GH6625)

• More helpful error message with an invalid .transform with user defined input (GH10165)

• Exponentially weighted functions now allow specifying alpha directly (GH10789) and raise ValueError if
parameters violate 0 < alpha <= 1 (GH12492)

212 Chapter 1. What’s New

https://github.com/pandas-dev/pandas/issues/11818
https://github.com/pandas-dev/pandas/issues/11597
https://github.com/pandas-dev/pandas/issues/7061
https://github.com/pandas-dev/pandas/issues/12081
https://github.com/pandas-dev/pandas/issues/9746
https://github.com/pandas-dev/pandas/issues/9052
https://github.com/pandas-dev/pandas/issues/12301
https://github.com/pandas-dev/pandas/issues/12031
https://github.com/pandas-dev/pandas/issues/8020
https://github.com/pandas-dev/pandas/issues/6625
https://github.com/pandas-dev/pandas/issues/10165
https://github.com/pandas-dev/pandas/issues/10789
https://github.com/pandas-dev/pandas/issues/12492

pandas: powerful Python data analysis toolkit, Release 0.23.4

1.16.2.8 Deprecations

• The functions pd.rolling_*, pd.expanding_*, and pd.ewm* are deprecated and replaced by the cor-
responding method call. Note that the new suggested syntax includes all of the arguments (even if default)
(GH11603)

In [1]: s = pd.Series(range(3))

In [2]: pd.rolling_mean(s,window=2,min_periods=1)
FutureWarning: pd.rolling_mean is deprecated for Series and

will be removed in a future version, replace with
Series.rolling(min_periods=1,window=2,center=False).mean()

Out[2]:
0 0.0
1 0.5
2 1.5
dtype: float64

In [3]: pd.rolling_cov(s, s, window=2)
FutureWarning: pd.rolling_cov is deprecated for Series and

will be removed in a future version, replace with
Series.rolling(window=2).cov(other=<Series>)

Out[3]:
0 NaN
1 0.5
2 0.5
dtype: float64

• The freq and how arguments to the .rolling, .expanding, and .ewm (new) functions are deprecated,
and will be removed in a future version. You can simply resample the input prior to creating a window function.
(GH11603).

For example, instead of s.rolling(window=5,freq='D').max() to get the max value on a rolling
5 Day window, one could use s.resample('D').mean().rolling(window=5).max(), which first
resamples the data to daily data, then provides a rolling 5 day window.

• pd.tseries.frequencies.get_offset_name function is deprecated. Use offset’s .freqstr prop-
erty as alternative (GH11192)

• pandas.stats.fama_macbeth routines are deprecated and will be removed in a future version (GH6077)

• pandas.stats.ols, pandas.stats.plm and pandas.stats.var routines are deprecated and will
be removed in a future version (GH6077)

• show a FutureWarning rather than a DeprecationWarning on using long-time deprecated syntax in
HDFStore.select, where the where clause is not a string-like (GH12027)

• The pandas.options.display.mpl_style configuration has been deprecated and will be removed in
a future version of pandas. This functionality is better handled by matplotlib’s style sheets (GH11783).

1.16.2.9 Removal of deprecated float indexers

In GH4892 indexing with floating point numbers on a non-Float64Index was deprecated (in version 0.14.0). In
0.18.0, this deprecation warning is removed and these will now raise a TypeError. (GH12165, GH12333)

In [109]: s = pd.Series([1, 2, 3], index=[4, 5, 6])

In [110]: s

(continues on next page)

1.16. v0.18.0 (March 13, 2016) 213

https://github.com/pandas-dev/pandas/issues/11603
https://github.com/pandas-dev/pandas/issues/11603
https://github.com/pandas-dev/pandas/issues/11192
https://github.com/pandas-dev/pandas/issues/6077
https://github.com/pandas-dev/pandas/issues/6077
https://github.com/pandas-dev/pandas/issues/12027
http://matplotlib.org/users/style_sheets.html
https://github.com/pandas-dev/pandas/issues/11783
https://github.com/pandas-dev/pandas/issues/4892
https://github.com/pandas-dev/pandas/issues/12165
https://github.com/pandas-dev/pandas/issues/12333

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

Out[110]:
4 1
5 2
6 3
dtype: int64

In [111]: s2 = pd.Series([1, 2, 3], index=list('abc'))

In [112]: s2
Out[112]:
a 1
b 2
c 3
dtype: int64

Previous Behavior:

this is label indexing
In [2]: s[5.0]
FutureWarning: scalar indexers for index type Int64Index should be integers and not
→˓floating point
Out[2]: 2

this is positional indexing
In [3]: s.iloc[1.0]
FutureWarning: scalar indexers for index type Int64Index should be integers and not
→˓floating point
Out[3]: 2

this is label indexing
In [4]: s.loc[5.0]
FutureWarning: scalar indexers for index type Int64Index should be integers and not
→˓floating point
Out[4]: 2

.ix would coerce 1.0 to the positional 1, and index
In [5]: s2.ix[1.0] = 10
FutureWarning: scalar indexers for index type Index should be integers and not
→˓floating point

In [6]: s2
Out[6]:
a 1
b 10
c 3
dtype: int64

New Behavior:

For iloc, getting & setting via a float scalar will always raise.

In [3]: s.iloc[2.0]
TypeError: cannot do label indexing on <class 'pandas.indexes.numeric.Int64Index'>
→˓with these indexers [2.0] of <type 'float'>

Other indexers will coerce to a like integer for both getting and setting. The FutureWarning has been dropped for
.loc, .ix and [].

214 Chapter 1. What’s New

pandas: powerful Python data analysis toolkit, Release 0.23.4

In [113]: s[5.0]
Out[113]: 2

In [114]: s.loc[5.0]
\\\\\\\\\\\\Out[114]: 2

and setting

In [115]: s_copy = s.copy()

In [116]: s_copy[5.0] = 10

In [117]: s_copy
Out[117]:
4 1
5 10
6 3
dtype: int64

In [118]: s_copy = s.copy()

In [119]: s_copy.loc[5.0] = 10

In [120]: s_copy
Out[120]:
4 1
5 10
6 3
dtype: int64

Positional setting with .ix and a float indexer will ADD this value to the index, rather than previously setting the
value by position.

In [3]: s2.ix[1.0] = 10
In [4]: s2
Out[4]:
a 1
b 2
c 3
1.0 10
dtype: int64

Slicing will also coerce integer-like floats to integers for a non-Float64Index.

In [121]: s.loc[5.0:6]
Out[121]:
5 2
6 3
dtype: int64

Note that for floats that are NOT coercible to ints, the label based bounds will be excluded

In [122]: s.loc[5.1:6]
Out[122]:
6 3
dtype: int64

Float indexing on a Float64Index is unchanged.

1.16. v0.18.0 (March 13, 2016) 215

pandas: powerful Python data analysis toolkit, Release 0.23.4

In [123]: s = pd.Series([1, 2, 3], index=np.arange(3.))

In [124]: s[1.0]
Out[124]: 2

In [125]: s[1.0:2.5]
\\\\\\\\\\\\Out[125]:
1.0 2
2.0 3
dtype: int64

1.16.2.10 Removal of prior version deprecations/changes

• Removal of rolling_corr_pairwise in favor of .rolling().corr(pairwise=True) (GH4950)

• Removal of expanding_corr_pairwise in favor of .expanding().corr(pairwise=True)
(GH4950)

• Removal of DataMatrix module. This was not imported into the pandas namespace in any event (GH12111)

• Removal of cols keyword in favor of subset in DataFrame.duplicated() and DataFrame.
drop_duplicates() (GH6680)

• Removal of the read_frame and frame_query (both aliases for pd.read_sql) and write_frame
(alias of to_sql) functions in the pd.io.sql namespace, deprecated since 0.14.0 (GH6292).

• Removal of the order keyword from .factorize() (GH6930)

1.16.3 Performance Improvements

• Improved performance of andrews_curves (GH11534)

• Improved huge DatetimeIndex, PeriodIndex and TimedeltaIndex’s ops performance including
NaT (GH10277)

• Improved performance of pandas.concat (GH11958)

• Improved performance of StataReader (GH11591)

• Improved performance in construction of Categoricals with Series of datetimes containing NaT
(GH12077)

• Improved performance of ISO 8601 date parsing for dates without separators (GH11899), leading zeros
(GH11871) and with whitespace preceding the time zone (GH9714)

1.16.4 Bug Fixes

• Bug in GroupBy.size when data-frame is empty. (GH11699)

• Bug in Period.end_time when a multiple of time period is requested (GH11738)

• Regression in .clip with tz-aware datetimes (GH11838)

• Bug in date_range when the boundaries fell on the frequency (GH11804, GH12409)

• Bug in consistency of passing nested dicts to .groupby(...).agg(...) (GH9052)

• Accept unicode in Timedelta constructor (GH11995)

216 Chapter 1. What’s New

https://github.com/pandas-dev/pandas/issues/4950
https://github.com/pandas-dev/pandas/issues/4950
https://github.com/pandas-dev/pandas/issues/12111
https://github.com/pandas-dev/pandas/issues/6680
https://github.com/pandas-dev/pandas/issues/6292
https://github.com/pandas-dev/pandas/issues/6930
https://github.com/pandas-dev/pandas/issues/11534
https://github.com/pandas-dev/pandas/issues/10277
https://github.com/pandas-dev/pandas/issues/11958
https://github.com/pandas-dev/pandas/issues/11591
https://github.com/pandas-dev/pandas/issues/12077
https://github.com/pandas-dev/pandas/issues/11899
https://github.com/pandas-dev/pandas/issues/11871
https://github.com/pandas-dev/pandas/issues/9714
https://github.com/pandas-dev/pandas/issues/11699
https://github.com/pandas-dev/pandas/issues/11738
https://github.com/pandas-dev/pandas/issues/11838
https://github.com/pandas-dev/pandas/issues/11804
https://github.com/pandas-dev/pandas/issues/12409
https://github.com/pandas-dev/pandas/issues/9052
https://github.com/pandas-dev/pandas/issues/11995

pandas: powerful Python data analysis toolkit, Release 0.23.4

• Bug in value label reading for StataReader when reading incrementally (GH12014)

• Bug in vectorized DateOffset when n parameter is 0 (GH11370)

• Compat for numpy 1.11 w.r.t. NaT comparison changes (GH12049)

• Bug in read_csv when reading from a StringIO in threads (GH11790)

• Bug in not treating NaT as a missing value in datetimelikes when factorizing & with Categoricals
(GH12077)

• Bug in getitem when the values of a Series were tz-aware (GH12089)

• Bug in Series.str.get_dummies when one of the variables was ‘name’ (GH12180)

• Bug in pd.concat while concatenating tz-aware NaT series. (GH11693, GH11755, GH12217)

• Bug in pd.read_stata with version <= 108 files (GH12232)

• Bug in Series.resample using a frequency of Nano when the index is a DatetimeIndex and contains
non-zero nanosecond parts (GH12037)

• Bug in resampling with .nunique and a sparse index (GH12352)

• Removed some compiler warnings (GH12471)

• Work around compat issues with boto in python 3.5 (GH11915)

• Bug in NaT subtraction from Timestamp or DatetimeIndex with timezones (GH11718)

• Bug in subtraction of Series of a single tz-aware Timestamp (GH12290)

• Use compat iterators in PY2 to support .next() (GH12299)

• Bug in Timedelta.round with negative values (GH11690)

• Bug in .loc against CategoricalIndex may result in normal Index (GH11586)

• Bug in DataFrame.info when duplicated column names exist (GH11761)

• Bug in .copy of datetime tz-aware objects (GH11794)

• Bug in Series.apply and Series.map where timedelta64 was not boxed (GH11349)

• Bug in DataFrame.set_index() with tz-aware Series (GH12358)

• Bug in subclasses of DataFrame where AttributeError did not propagate (GH11808)

• Bug groupby on tz-aware data where selection not returning Timestamp (GH11616)

• Bug in pd.read_clipboard and pd.to_clipboard functions not supporting Unicode; upgrade in-
cluded pyperclip to v1.5.15 (GH9263)

• Bug in DataFrame.query containing an assignment (GH8664)

• Bug in from_msgpack where __contains__() fails for columns of the unpacked DataFrame, if the
DataFrame has object columns. (GH11880)

• Bug in .resample on categorical data with TimedeltaIndex (GH12169)

• Bug in timezone info lost when broadcasting scalar datetime to DataFrame (GH11682)

• Bug in Index creation from Timestamp with mixed tz coerces to UTC (GH11488)

• Bug in to_numeric where it does not raise if input is more than one dimension (GH11776)

• Bug in parsing timezone offset strings with non-zero minutes (GH11708)

• Bug in df.plot using incorrect colors for bar plots under matplotlib 1.5+ (GH11614)

1.16. v0.18.0 (March 13, 2016) 217

https://github.com/pandas-dev/pandas/issues/12014
https://github.com/pandas-dev/pandas/issues/11370
https://github.com/pandas-dev/pandas/issues/12049
https://github.com/pandas-dev/pandas/issues/11790
https://github.com/pandas-dev/pandas/issues/12077
https://github.com/pandas-dev/pandas/issues/12089
https://github.com/pandas-dev/pandas/issues/12180
https://github.com/pandas-dev/pandas/issues/11693
https://github.com/pandas-dev/pandas/issues/11755
https://github.com/pandas-dev/pandas/issues/12217
https://github.com/pandas-dev/pandas/issues/12232
https://github.com/pandas-dev/pandas/issues/12037
https://github.com/pandas-dev/pandas/issues/12352
https://github.com/pandas-dev/pandas/issues/12471
https://github.com/pandas-dev/pandas/issues/11915
https://github.com/pandas-dev/pandas/issues/11718
https://github.com/pandas-dev/pandas/issues/12290
https://github.com/pandas-dev/pandas/issues/12299
https://github.com/pandas-dev/pandas/issues/11690
https://github.com/pandas-dev/pandas/issues/11586
https://github.com/pandas-dev/pandas/issues/11761
https://github.com/pandas-dev/pandas/issues/11794
https://github.com/pandas-dev/pandas/issues/11349
https://github.com/pandas-dev/pandas/issues/12358
https://github.com/pandas-dev/pandas/issues/11808
https://github.com/pandas-dev/pandas/issues/11616
https://github.com/pandas-dev/pandas/issues/9263
https://github.com/pandas-dev/pandas/issues/8664
https://github.com/pandas-dev/pandas/issues/11880
https://github.com/pandas-dev/pandas/issues/12169
https://github.com/pandas-dev/pandas/issues/11682
https://github.com/pandas-dev/pandas/issues/11488
https://github.com/pandas-dev/pandas/issues/11776
https://github.com/pandas-dev/pandas/issues/11708
https://github.com/pandas-dev/pandas/issues/11614

pandas: powerful Python data analysis toolkit, Release 0.23.4

• Bug in the groupby plot method when using keyword arguments (GH11805).

• Bug in DataFrame.duplicated and drop_duplicates causing spurious matches when setting
keep=False (GH11864)

• Bug in .loc result with duplicated key may have Index with incorrect dtype (GH11497)

• Bug in pd.rolling_median where memory allocation failed even with sufficient memory (GH11696)

• Bug in DataFrame.style with spurious zeros (GH12134)

• Bug in DataFrame.style with integer columns not starting at 0 (GH12125)

• Bug in .style.bar may not rendered properly using specific browser (GH11678)

• Bug in rich comparison of Timedelta with a numpy.array of Timedelta that caused an infinite recur-
sion (GH11835)

• Bug in DataFrame.round dropping column index name (GH11986)

• Bug in df.replace while replacing value in mixed dtype Dataframe (GH11698)

• Bug in Index prevents copying name of passed Index, when a new name is not provided (GH11193)

• Bug in read_excel failing to read any non-empty sheets when empty sheets exist and sheetname=None
(GH11711)

• Bug in read_excel failing to raise NotImplemented error when keywords parse_dates and
date_parser are provided (GH11544)

• Bug in read_sql with pymysql connections failing to return chunked data (GH11522)

• Bug in .to_csv ignoring formatting parameters decimal, na_rep, float_format for float indexes
(GH11553)

• Bug in Int64Index and Float64Index preventing the use of the modulo operator (GH9244)

• Bug in MultiIndex.drop for not lexsorted multi-indexes (GH12078)

• Bug in DataFrame when masking an empty DataFrame (GH11859)

• Bug in .plot potentially modifying the colors input when the number of columns didn’t match the number
of series provided (GH12039).

• Bug in Series.plot failing when index has a CustomBusinessDay frequency (GH7222).

• Bug in .to_sql for datetime.time values with sqlite fallback (GH8341)

• Bug in read_excel failing to read data with one column when squeeze=True (GH12157)

• Bug in read_excel failing to read one empty column (GH12292, GH9002)

• Bug in .groupby where a KeyError was not raised for a wrong column if there was only one row in the
dataframe (GH11741)

• Bug in .read_csv with dtype specified on empty data producing an error (GH12048)

• Bug in .read_csv where strings like '2E' are treated as valid floats (GH12237)

• Bug in building pandas with debugging symbols (GH12123)

• Removed millisecond property of DatetimeIndex. This would always raise a ValueError
(GH12019).

• Bug in Series constructor with read-only data (GH11502)

• Removed pandas.util.testing.choice(). Should use np.random.choice(), instead.
(GH12386)

218 Chapter 1. What’s New

https://github.com/pandas-dev/pandas/issues/11805
https://github.com/pandas-dev/pandas/issues/11864
https://github.com/pandas-dev/pandas/issues/11497
https://github.com/pandas-dev/pandas/issues/11696
https://github.com/pandas-dev/pandas/issues/12134
https://github.com/pandas-dev/pandas/issues/12125
https://github.com/pandas-dev/pandas/issues/11678
https://github.com/pandas-dev/pandas/issues/11835
https://github.com/pandas-dev/pandas/issues/11986
https://github.com/pandas-dev/pandas/issues/11698
https://github.com/pandas-dev/pandas/issues/11193
https://github.com/pandas-dev/pandas/issues/11711
https://github.com/pandas-dev/pandas/issues/11544
https://github.com/pandas-dev/pandas/issues/11522
https://github.com/pandas-dev/pandas/issues/11553
https://github.com/pandas-dev/pandas/issues/9244
https://github.com/pandas-dev/pandas/issues/12078
https://github.com/pandas-dev/pandas/issues/11859
https://github.com/pandas-dev/pandas/issues/12039
https://github.com/pandas-dev/pandas/issues/7222
https://github.com/pandas-dev/pandas/issues/8341
https://github.com/pandas-dev/pandas/issues/12157
https://github.com/pandas-dev/pandas/issues/12292
https://github.com/pandas-dev/pandas/issues/9002
https://github.com/pandas-dev/pandas/issues/11741
https://github.com/pandas-dev/pandas/issues/12048
https://github.com/pandas-dev/pandas/issues/12237
https://github.com/pandas-dev/pandas/issues/12123
https://github.com/pandas-dev/pandas/issues/12019
https://github.com/pandas-dev/pandas/issues/11502
https://github.com/pandas-dev/pandas/issues/12386

pandas: powerful Python data analysis toolkit, Release 0.23.4

• Bug in .loc setitem indexer preventing the use of a TZ-aware DatetimeIndex (GH12050)

• Bug in .style indexes and multi-indexes not appearing (GH11655)

• Bug in to_msgpack and from_msgpack which did not correctly serialize or deserialize NaT (GH12307).

• Bug in .skew and .kurt due to roundoff error for highly similar values (GH11974)

• Bug in Timestamp constructor where microsecond resolution was lost if HHMMSS were not separated with
‘:’ (GH10041)

• Bug in buffer_rd_bytes src->buffer could be freed more than once if reading failed, causing a segfault
(GH12098)

• Bug in crosstab where arguments with non-overlapping indexes would return a KeyError (GH10291)

• Bug in DataFrame.apply in which reduction was not being prevented for cases in which dtype was not a
numpy dtype (GH12244)

• Bug when initializing categorical series with a scalar value. (GH12336)

• Bug when specifying a UTC DatetimeIndex by setting utc=True in .to_datetime (GH11934)

• Bug when increasing the buffer size of CSV reader in read_csv (GH12494)

• Bug when setting columns of a DataFrame with duplicate column names (GH12344)

1.17 v0.17.1 (November 21, 2015)

Note: We are proud to announce that pandas has become a sponsored project of the (NumFOCUS organization).
This will help ensure the success of development of pandas as a world-class open-source project.

This is a minor bug-fix release from 0.17.0 and includes a large number of bug fixes along several new features,
enhancements, and performance improvements. We recommend that all users upgrade to this version.

Highlights include:

• Support for Conditional HTML Formatting, see here

• Releasing the GIL on the csv reader & other ops, see here

• Fixed regression in DataFrame.drop_duplicates from 0.16.2, causing incorrect results on integer values
(GH11376)

What’s new in v0.17.1

• New features

– Conditional HTML Formatting

• Enhancements

• API changes

– Deprecations

• Performance Improvements

• Bug Fixes

1.17. v0.17.1 (November 21, 2015) 219

https://github.com/pandas-dev/pandas/issues/12050
https://github.com/pandas-dev/pandas/issues/11655
https://github.com/pandas-dev/pandas/issues/12307
https://github.com/pandas-dev/pandas/issues/11974
https://github.com/pandas-dev/pandas/issues/10041
https://github.com/pandas-dev/pandas/issues/12098
https://github.com/pandas-dev/pandas/issues/10291
https://github.com/pandas-dev/pandas/issues/12244
https://github.com/pandas-dev/pandas/issues/12336
https://github.com/pandas-dev/pandas/issues/11934
https://github.com/pandas-dev/pandas/issues/12494
https://github.com/pandas-dev/pandas/issues/12344
http://www.numfocus.org/blog/numfocus-announces-new-fiscally-sponsored-project-pandas
https://github.com/pandas-dev/pandas/issues/11376

pandas: powerful Python data analysis toolkit, Release 0.23.4

1.17.1 New features

1.17.1.1 Conditional HTML Formatting

Warning: This is a new feature and is under active development. We’ll be adding features an possibly making
breaking changes in future releases. Feedback is welcome.

We’ve added experimental support for conditional HTML formatting: the visual styling of a DataFrame based on the
data. The styling is accomplished with HTML and CSS. Acesses the styler class with the pandas.DataFrame.
style, attribute, an instance of Styler with your data attached.

Here’s a quick example:

In [1]: np.random.seed(123)

In [2]: df = DataFrame(np.random.randn(10, 5), columns=list('abcde'))

In [3]: html = df.style.background_gradient(cmap='viridis', low=.5)

We can render the HTML to get the following table.

Styler interacts nicely with the Jupyter Notebook. See the documentation for more.

1.17.2 Enhancements

• DatetimeIndex now supports conversion to strings with astype(str) (GH10442)

• Support for compression (gzip/bz2) in pandas.DataFrame.to_csv() (GH7615)

• pd.read_* functions can now also accept pathlib.Path, or py._path.local.LocalPath ob-
jects for the filepath_or_buffer argument. (GH11033) - The DataFrame and Series functions
.to_csv(), .to_html() and .to_latex() can now handle paths beginning with tildes (e.g. ~/
Documents/) (GH11438)

• DataFrame now uses the fields of a namedtuple as columns, if columns are not supplied (GH11181)

• DataFrame.itertuples() now returns namedtuple objects, when possible. (GH11269, GH11625)

• Added axvlines_kwds to parallel coordinates plot (GH10709)

• Option to .info() and .memory_usage() to provide for deep introspection of memory consumption. Note
that this can be expensive to compute and therefore is an optional parameter. (GH11595)

In [4]: df = DataFrame({'A' : ['foo']*1000})

In [5]: df['B'] = df['A'].astype('category')

shows the '+' as we have object dtypes
In [6]: df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1000 entries, 0 to 999
Data columns (total 2 columns):
A 1000 non-null object
B 1000 non-null category
dtypes: category(1), object(1)
memory usage: 9.0+ KB

(continues on next page)

220 Chapter 1. What’s New

https://github.com/pandas-dev/pandas/issues/11610
https://github.com/pandas-dev/pandas/issues/10442
https://github.com/pandas-dev/pandas/issues/7615
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://github.com/pandas-dev/pandas/issues/11033
https://github.com/pandas-dev/pandas/issues/11438
https://github.com/pandas-dev/pandas/issues/11181
https://github.com/pandas-dev/pandas/issues/11269
https://github.com/pandas-dev/pandas/issues/11625
https://github.com/pandas-dev/pandas/issues/10709
https://github.com/pandas-dev/pandas/issues/11595

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

we have an accurate memory assessment (but can be expensive to compute this)
In [7]: df.info(memory_usage='deep')
\\
→˓<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1000 entries, 0 to 999
Data columns (total 2 columns):
A 1000 non-null object
B 1000 non-null category
dtypes: category(1), object(1)
memory usage: 75.4 KB

• Index now has a fillna method (GH10089)

In [8]: pd.Index([1, np.nan, 3]).fillna(2)
Out[8]: Float64Index([1.0, 2.0, 3.0], dtype='float64')

• Series of type category now make .str.<...> and .dt.<...> accessor methods / properties available,
if the categories are of that type. (GH10661)

In [9]: s = pd.Series(list('aabb')).astype('category')

In [10]: s
Out[10]:
0 a
1 a
2 b
3 b
dtype: category
Categories (2, object): [a, b]

In [11]: s.str.contains("a")
\\\Out[11]:
→˓

0 True
1 True
2 False
3 False
dtype: bool

In [12]: date = pd.Series(pd.date_range('1/1/2015', periods=5)).astype('category')

In [13]: date
Out[13]:
0 2015-01-01
1 2015-01-02
2 2015-01-03
3 2015-01-04
4 2015-01-05
dtype: category
Categories (5, datetime64[ns]): [2015-01-01, 2015-01-02, 2015-01-03, 2015-01-04,
→˓2015-01-05]

In [14]: date.dt.day
\\Out[14]:
→˓

(continues on next page)

1.17. v0.17.1 (November 21, 2015) 221

https://github.com/pandas-dev/pandas/issues/10089
https://github.com/pandas-dev/pandas/issues/10661

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

0 1
1 2
2 3
3 4
4 5
dtype: int64

• pivot_table now has a margins_name argument so you can use something other than the default of ‘All’
(GH3335)

• Implement export of datetime64[ns, tz] dtypes with a fixed HDF5 store (GH11411)

• Pretty printing sets (e.g. in DataFrame cells) now uses set literal syntax ({x, y}) instead of Legacy Python
syntax (set([x, y])) (GH11215)

• Improve the error message in pandas.io.gbq.to_gbq() when a streaming insert fails (GH11285) and
when the DataFrame does not match the schema of the destination table (GH11359)

1.17.3 API changes

• raise NotImplementedError in Index.shift for non-supported index types (GH8038)

• min and max reductions on datetime64 and timedelta64 dtyped series now result in NaT and not nan
(GH11245).

• Indexing with a null key will raise a TypeError, instead of a ValueError (GH11356)

• Series.ptp will now ignore missing values by default (GH11163)

1.17.3.1 Deprecations

• The pandas.io.ga module which implements google-analytics support is deprecated and will be
removed in a future version (GH11308)

• Deprecate the engine keyword in .to_csv(), which will be removed in a future version (GH11274)

1.17.4 Performance Improvements

• Checking monotonic-ness before sorting on an index (GH11080)

• Series.dropna performance improvement when its dtype can’t contain NaN (GH11159)

• Release the GIL on most datetime field operations (e.g. DatetimeIndex.year, Series.dt.year),
normalization, and conversion to and from Period, DatetimeIndex.to_period and PeriodIndex.
to_timestamp (GH11263)

• Release the GIL on some rolling algos: rolling_median, rolling_mean, rolling_max,
rolling_min, rolling_var, rolling_kurt, rolling_skew (GH11450)

• Release the GIL when reading and parsing text files in read_csv, read_table (GH11272)

• Improved performance of rolling_median (GH11450)

• Improved performance of to_excel (GH11352)

• Performance bug in repr of Categorical categories, which was rendering the strings before chopping them
for display (GH11305)

222 Chapter 1. What’s New

https://github.com/pandas-dev/pandas/issues/3335
https://github.com/pandas-dev/pandas/issues/11411
https://github.com/pandas-dev/pandas/issues/11215
https://github.com/pandas-dev/pandas/issues/11285
https://github.com/pandas-dev/pandas/issues/11359
https://github.com/pandas-dev/pandas/issues/8038
https://github.com/pandas-dev/pandas/issues/11245
https://github.com/pandas-dev/pandas/issues/11356
https://github.com/pandas-dev/pandas/issues/11163
https://github.com/pandas-dev/pandas/issues/11308
https://github.com/pandas-dev/pandas/issues/11274
https://github.com/pandas-dev/pandas/issues/11080
https://github.com/pandas-dev/pandas/issues/11159
https://github.com/pandas-dev/pandas/issues/11263
https://github.com/pandas-dev/pandas/issues/11450
https://github.com/pandas-dev/pandas/issues/11272
https://github.com/pandas-dev/pandas/issues/11450
https://github.com/pandas-dev/pandas/issues/11352
https://github.com/pandas-dev/pandas/issues/11305

pandas: powerful Python data analysis toolkit, Release 0.23.4

• Performance improvement in Categorical.remove_unused_categories, (GH11643).

• Improved performance of Series constructor with no data and DatetimeIndex (GH11433)

• Improved performance of shift, cumprod, and cumsum with groupby (GH4095)

1.17.5 Bug Fixes

• SparseArray.__iter__() now does not cause PendingDeprecationWarning in Python 3.5
(GH11622)

• Regression from 0.16.2 for output formatting of long floats/nan, restored in (GH11302)

• Series.sort_index() now correctly handles the inplace option (GH11402)

• Incorrectly distributed .c file in the build on PyPi when reading a csv of floats and passing na_values=<a
scalar> would show an exception (GH11374)

• Bug in .to_latex() output broken when the index has a name (GH10660)

• Bug in HDFStore.append with strings whose encoded length exceeded the max unencoded length
(GH11234)

• Bug in merging datetime64[ns, tz] dtypes (GH11405)

• Bug in HDFStore.select when comparing with a numpy scalar in a where clause (GH11283)

• Bug in using DataFrame.ix with a multi-index indexer (GH11372)

• Bug in date_range with ambiguous endpoints (GH11626)

• Prevent adding new attributes to the accessors .str, .dt and .cat. Retrieving such a value was not possible,
so error out on setting it. (GH10673)

• Bug in tz-conversions with an ambiguous time and .dt accessors (GH11295)

• Bug in output formatting when using an index of ambiguous times (GH11619)

• Bug in comparisons of Series vs list-likes (GH11339)

• Bug in DataFrame.replace with a datetime64[ns, tz] and a non-compat to_replace (GH11326,
GH11153)

• Bug in isnull where numpy.datetime64('NaT') in a numpy.array was not determined to be
null(GH11206)

• Bug in list-like indexing with a mixed-integer Index (GH11320)

• Bug in pivot_table with margins=True when indexes are of Categorical dtype (GH10993)

• Bug in DataFrame.plot cannot use hex strings colors (GH10299)

• Regression in DataFrame.drop_duplicates from 0.16.2, causing incorrect results on integer values
(GH11376)

• Bug in pd.eval where unary ops in a list error (GH11235)

• Bug in squeeze() with zero length arrays (GH11230, GH8999)

• Bug in describe() dropping column names for hierarchical indexes (GH11517)

• Bug in DataFrame.pct_change() not propagating axis keyword on .fillna method (GH11150)

• Bug in .to_csv() when a mix of integer and string column names are passed as the columns parameter
(GH11637)

• Bug in indexing with a range, (GH11652)

1.17. v0.17.1 (November 21, 2015) 223

https://github.com/pandas-dev/pandas/issues/11643
https://github.com/pandas-dev/pandas/issues/11433
https://github.com/pandas-dev/pandas/issues/4095
https://github.com/pandas-dev/pandas/issues/11622
https://github.com/pandas-dev/pandas/issues/11302
https://github.com/pandas-dev/pandas/issues/11402
https://github.com/pandas-dev/pandas/issues/11374
https://github.com/pandas-dev/pandas/issues/10660
https://github.com/pandas-dev/pandas/issues/11234
https://github.com/pandas-dev/pandas/issues/11405
https://github.com/pandas-dev/pandas/issues/11283
https://github.com/pandas-dev/pandas/issues/11372
https://github.com/pandas-dev/pandas/issues/11626
https://github.com/pandas-dev/pandas/issues/10673
https://github.com/pandas-dev/pandas/issues/11295
https://github.com/pandas-dev/pandas/issues/11619
https://github.com/pandas-dev/pandas/issues/11339
https://github.com/pandas-dev/pandas/issues/11326
https://github.com/pandas-dev/pandas/issues/11153
https://github.com/pandas-dev/pandas/issues/11206
https://github.com/pandas-dev/pandas/issues/11320
https://github.com/pandas-dev/pandas/issues/10993
https://github.com/pandas-dev/pandas/issues/10299
https://github.com/pandas-dev/pandas/issues/11376
https://github.com/pandas-dev/pandas/issues/11235
https://github.com/pandas-dev/pandas/issues/11230
https://github.com/pandas-dev/pandas/issues/8999
https://github.com/pandas-dev/pandas/issues/11517
https://github.com/pandas-dev/pandas/issues/11150
https://github.com/pandas-dev/pandas/issues/11637
https://github.com/pandas-dev/pandas/issues/11652

pandas: powerful Python data analysis toolkit, Release 0.23.4

• Bug in inference of numpy scalars and preserving dtype when setting columns (GH11638)

• Bug in to_sql using unicode column names giving UnicodeEncodeError with (GH11431).

• Fix regression in setting of xticks in plot (GH11529).

• Bug in holiday.dates where observance rules could not be applied to holiday and doc enhancement
(GH11477, GH11533)

• Fix plotting issues when having plain Axes instances instead of SubplotAxes (GH11520, GH11556).

• Bug in DataFrame.to_latex() produces an extra rule when header=False (GH7124)

• Bug in df.groupby(...).apply(func) when a func returns a Series containing a new datetimelike
column (GH11324)

• Bug in pandas.json when file to load is big (GH11344)

• Bugs in to_excel with duplicate columns (GH11007, GH10982, GH10970)

• Fixed a bug that prevented the construction of an empty series of dtype datetime64[ns, tz] (GH11245).

• Bug in read_excel with multi-index containing integers (GH11317)

• Bug in to_excel with openpyxl 2.2+ and merging (GH11408)

• Bug in DataFrame.to_dict() produces a np.datetime64 object instead of Timestamp when only
datetime is present in data (GH11327)

• Bug in DataFrame.corr() raises exception when computes Kendall correlation for DataFrames with
boolean and not boolean columns (GH11560)

• Bug in the link-time error caused by C inline functions on FreeBSD 10+ (with clang) (GH10510)

• Bug in DataFrame.to_csv in passing through arguments for formatting MultiIndexes, including
date_format (GH7791)

• Bug in DataFrame.join() with how='right' producing a TypeError (GH11519)

• Bug in Series.quantile with empty list results has Index with object dtype (GH11588)

• Bug in pd.merge results in empty Int64Index rather than Index(dtype=object) when the merge
result is empty (GH11588)

• Bug in Categorical.remove_unused_categories when having NaN values (GH11599)

• Bug in DataFrame.to_sparse() loses column names for MultiIndexes (GH11600)

• Bug in DataFrame.round() with non-unique column index producing a Fatal Python error (GH11611)

• Bug in DataFrame.round() with decimals being a non-unique indexed Series producing extra columns
(GH11618)

1.18 v0.17.0 (October 9, 2015)

This is a major release from 0.16.2 and includes a small number of API changes, several new features, enhancements,
and performance improvements along with a large number of bug fixes. We recommend that all users upgrade to this
version.

Warning: pandas >= 0.17.0 will no longer support compatibility with Python version 3.2 (GH9118)

224 Chapter 1. What’s New

https://github.com/pandas-dev/pandas/issues/11638
https://github.com/pandas-dev/pandas/issues/11431
https://github.com/pandas-dev/pandas/issues/11529
https://github.com/pandas-dev/pandas/issues/11477
https://github.com/pandas-dev/pandas/issues/11533
https://github.com/pandas-dev/pandas/issues/11520
https://github.com/pandas-dev/pandas/issues/11556
https://github.com/pandas-dev/pandas/issues/7124
https://github.com/pandas-dev/pandas/issues/11324
https://github.com/pandas-dev/pandas/issues/11344
https://github.com/pandas-dev/pandas/issues/11007
https://github.com/pandas-dev/pandas/issues/10982
https://github.com/pandas-dev/pandas/issues/10970
https://github.com/pandas-dev/pandas/issues/11245
https://github.com/pandas-dev/pandas/issues/11317
https://github.com/pandas-dev/pandas/issues/11408
https://github.com/pandas-dev/pandas/issues/11327
https://github.com/pandas-dev/pandas/issues/11560
https://github.com/pandas-dev/pandas/issues/10510
https://github.com/pandas-dev/pandas/issues/7791
https://github.com/pandas-dev/pandas/issues/11519
https://github.com/pandas-dev/pandas/issues/11588
https://github.com/pandas-dev/pandas/issues/11588
https://github.com/pandas-dev/pandas/issues/11599
https://github.com/pandas-dev/pandas/issues/11600
https://github.com/pandas-dev/pandas/issues/11611
https://github.com/pandas-dev/pandas/issues/11618
https://github.com/pandas-dev/pandas/issues/9118

pandas: powerful Python data analysis toolkit, Release 0.23.4

Warning: The pandas.io.data package is deprecated and will be replaced by the pandas-datareader pack-
age. This will allow the data modules to be independently updated to your pandas installation. The API for
pandas-datareader v0.1.1 is exactly the same as in pandas v0.17.0 (GH8961, GH10861).

After installing pandas-datareader, you can easily change your imports:

from pandas.io import data, wb

becomes
from pandas_datareader import data, wb

Highlights include:

• Release the Global Interpreter Lock (GIL) on some cython operations, see here

• Plotting methods are now available as attributes of the .plot accessor, see here

• The sorting API has been revamped to remove some long-time inconsistencies, see here

• Support for a datetime64[ns] with timezones as a first-class dtype, see here

• The default for to_datetime will now be to raise when presented with unparseable formats, previously
this would return the original input. Also, date parse functions now return consistent results. See here

• The default for dropna in HDFStore has changed to False, to store by default all rows even if they are all
NaN, see here

• Datetime accessor (dt) now supports Series.dt.strftime to generate formatted strings for datetime-
likes, and Series.dt.total_seconds to generate each duration of the timedelta in seconds. See here

• Period and PeriodIndex can handle multiplied freq like 3D, which corresponding to 3 days span. See here

• Development installed versions of pandas will now have PEP440 compliant version strings (GH9518)

• Development support for benchmarking with the Air Speed Velocity library (GH8361)

• Support for reading SAS xport files, see here

• Documentation comparing SAS to pandas, see here

• Removal of the automatic TimeSeries broadcasting, deprecated since 0.8.0, see here

• Display format with plain text can optionally align with Unicode East Asian Width, see here

• Compatibility with Python 3.5 (GH11097)

• Compatibility with matplotlib 1.5.0 (GH11111)

Check the API Changes and deprecations before updating.

What’s new in v0.17.0

• New features

– Datetime with TZ

– Releasing the GIL

– Plot submethods

– Additional methods for dt accessor

* strftime

1.18. v0.17.0 (October 9, 2015) 225

https://github.com/pydata/pandas-datareader
https://github.com/pydata/pandas-datareader
https://github.com/pandas-dev/pandas/issues/8961
https://github.com/pandas-dev/pandas/issues/10861
https://github.com/pandas-dev/pandas/issues/9518
https://github.com/spacetelescope/asv/
https://github.com/pandas-dev/pandas/issues/8361
https://github.com/pandas-dev/pandas/issues/11097
https://github.com/pandas-dev/pandas/issues/11111

pandas: powerful Python data analysis toolkit, Release 0.23.4

* total_seconds

– Period Frequency Enhancement

– Support for SAS XPORT files

– Support for Math Functions in .eval()

– Changes to Excel with MultiIndex

– Google BigQuery Enhancements

– Display Alignment with Unicode East Asian Width

– Other enhancements

• Backwards incompatible API changes

– Changes to sorting API

– Changes to to_datetime and to_timedelta

* Error handling

* Consistent Parsing

– Changes to Index Comparisons

– Changes to Boolean Comparisons vs. None

– HDFStore dropna behavior

– Changes to display.precision option

– Changes to Categorical.unique

– Changes to bool passed as header in Parsers

– Other API Changes

– Deprecations

– Removal of prior version deprecations/changes

• Performance Improvements

• Bug Fixes

1.18.1 New features

1.18.1.1 Datetime with TZ

We are adding an implementation that natively supports datetime with timezones. A Series or a DataFrame
column previously could be assigned a datetime with timezones, and would work as an object dtype. This had
performance issues with a large number rows. See the docs for more details. (GH8260, GH10763, GH11034).

The new implementation allows for having a single-timezone across all rows, with operations in a performant manner.

In [1]: df = DataFrame({'A' : date_range('20130101',periods=3),
...: 'B' : date_range('20130101',periods=3,tz='US/Eastern'),
...: 'C' : date_range('20130101',periods=3,tz='CET')})
...:

In [2]: df
(continues on next page)

226 Chapter 1. What’s New

https://github.com/pandas-dev/pandas/issues/8260
https://github.com/pandas-dev/pandas/issues/10763
https://github.com/pandas-dev/pandas/issues/11034

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

Out[2]:
A B C

0 2013-01-01 2013-01-01 00:00:00-05:00 2013-01-01 00:00:00+01:00
1 2013-01-02 2013-01-02 00:00:00-05:00 2013-01-02 00:00:00+01:00
2 2013-01-03 2013-01-03 00:00:00-05:00 2013-01-03 00:00:00+01:00

In [3]: df.dtypes
\\\Out[3]:
→˓

A datetime64[ns]
B datetime64[ns, US/Eastern]
C datetime64[ns, CET]
dtype: object

In [4]: df.B
Out[4]:
0 2013-01-01 00:00:00-05:00
1 2013-01-02 00:00:00-05:00
2 2013-01-03 00:00:00-05:00
Name: B, dtype: datetime64[ns, US/Eastern]

In [5]: df.B.dt.tz_localize(None)
\\Out[5]:
→˓

0 2013-01-01
1 2013-01-02
2 2013-01-03
Name: B, dtype: datetime64[ns]

This uses a new-dtype representation as well, that is very similar in look-and-feel to its numpy cousin
datetime64[ns]

In [6]: df['B'].dtype
Out[6]: datetime64[ns, US/Eastern]

In [7]: type(df['B'].dtype)
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\Out[7]: pandas.core.dtypes.dtypes.DatetimeTZDtype

Note: There is a slightly different string repr for the underlying DatetimeIndex as a result of the dtype changes,
but functionally these are the same.

Previous Behavior:

In [1]: pd.date_range('20130101',periods=3,tz='US/Eastern')
Out[1]: DatetimeIndex(['2013-01-01 00:00:00-05:00', '2013-01-02 00:00:00-05:00',

'2013-01-03 00:00:00-05:00'],
dtype='datetime64[ns]', freq='D', tz='US/Eastern')

In [2]: pd.date_range('20130101',periods=3,tz='US/Eastern').dtype
Out[2]: dtype('<M8[ns]')

New Behavior:

In [8]: pd.date_range('20130101',periods=3,tz='US/Eastern')
Out[8]:

(continues on next page)

1.18. v0.17.0 (October 9, 2015) 227

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

DatetimeIndex(['2013-01-01 00:00:00-05:00', '2013-01-02 00:00:00-05:00',
'2013-01-03 00:00:00-05:00'],

dtype='datetime64[ns, US/Eastern]', freq='D')

In [9]: pd.date_range('20130101',periods=3,tz='US/Eastern').dtype
\\\Out[9]:
→˓datetime64[ns, US/Eastern]

1.18.1.2 Releasing the GIL

We are releasing the global-interpreter-lock (GIL) on some cython operations. This will allow other threads to run
simultaneously during computation, potentially allowing performance improvements from multi-threading. Notably
groupby, nsmallest, value_counts and some indexing operations benefit from this. (GH8882)

For example the groupby expression in the following code will have the GIL released during the factorization step,
e.g. df.groupby('key') as well as the .sum() operation.

N = 1000000
ngroups = 10
df = DataFrame({'key' : np.random.randint(0,ngroups,size=N),

'data' : np.random.randn(N) })
df.groupby('key')['data'].sum()

Releasing of the GIL could benefit an application that uses threads for user interactions (e.g. QT), or performing
multi-threaded computations. A nice example of a library that can handle these types of computation-in-parallel is the
dask library.

1.18.1.3 Plot submethods

The Series and DataFrame .plot() method allows for customizing plot types by supplying the kind keyword
arguments. Unfortunately, many of these kinds of plots use different required and optional keyword arguments, which
makes it difficult to discover what any given plot kind uses out of the dozens of possible arguments.

To alleviate this issue, we have added a new, optional plotting interface, which exposes each kind of plot as a method of
the .plot attribute. Instead of writing series.plot(kind=<kind>, ...), you can now also use series.
plot.<kind>(...):

In [10]: df = pd.DataFrame(np.random.rand(10, 2), columns=['a', 'b'])

In [11]: df.plot.bar()

228 Chapter 1. What’s New

https://github.com/pandas-dev/pandas/issues/8882
https://wiki.python.org/moin/PyQt
https://dask.readthedocs.io/en/latest/

pandas: powerful Python data analysis toolkit, Release 0.23.4

As a result of this change, these methods are now all discoverable via tab-completion:

In [12]: df.plot.<TAB>
df.plot.area df.plot.barh df.plot.density df.plot.hist df.plot.line
→˓df.plot.scatter
df.plot.bar df.plot.box df.plot.hexbin df.plot.kde df.plot.pie

Each method signature only includes relevant arguments. Currently, these are limited to required arguments, but in the
future these will include optional arguments, as well. For an overview, see the new Plotting API documentation.

1.18.1.4 Additional methods for dt accessor

strftime

We are now supporting a Series.dt.strftime method for datetime-likes to generate a formatted string
(GH10110). Examples:

DatetimeIndex
In [13]: s = pd.Series(pd.date_range('20130101', periods=4))

In [14]: s
Out[14]:
0 2013-01-01
1 2013-01-02
2 2013-01-03
3 2013-01-04
dtype: datetime64[ns]

In [15]: s.dt.strftime('%Y/%m/%d')
\\Out[15]:
→˓

0 2013/01/01

(continues on next page)

1.18. v0.17.0 (October 9, 2015) 229

https://github.com/pandas-dev/pandas/issues/10110

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

1 2013/01/02
2 2013/01/03
3 2013/01/04
dtype: object

PeriodIndex
In [16]: s = pd.Series(pd.period_range('20130101', periods=4))

In [17]: s
Out[17]:
0 2013-01-01
1 2013-01-02
2 2013-01-03
3 2013-01-04
dtype: object

In [18]: s.dt.strftime('%Y/%m/%d')
\\Out[18]:
→˓

0 2013/01/01
1 2013/01/02
2 2013/01/03
3 2013/01/04
dtype: object

The string format is as the python standard library and details can be found here

total_seconds

pd.Series of type timedelta64 has new method .dt.total_seconds() returning the duration of the
timedelta in seconds (GH10817)

TimedeltaIndex
In [19]: s = pd.Series(pd.timedelta_range('1 minutes', periods=4))

In [20]: s
Out[20]:
0 0 days 00:01:00
1 1 days 00:01:00
2 2 days 00:01:00
3 3 days 00:01:00
dtype: timedelta64[ns]

In [21]: s.dt.total_seconds()
\\\Out[21]:
→˓

0 60.0
1 86460.0
2 172860.0
3 259260.0
dtype: float64

230 Chapter 1. What’s New

https://docs.python.org/2/library/datetime.html#strftime-and-strptime-behavior
https://github.com/pandas-dev/pandas/issues/10817

pandas: powerful Python data analysis toolkit, Release 0.23.4

1.18.1.5 Period Frequency Enhancement

Period, PeriodIndex and period_range can now accept multiplied freq. Also, Period.freq and
PeriodIndex.freq are now stored as a DateOffset instance like DatetimeIndex, and not as str
(GH7811)

A multiplied freq represents a span of corresponding length. The example below creates a period of 3 days. Addition
and subtraction will shift the period by its span.

In [22]: p = pd.Period('2015-08-01', freq='3D')

In [23]: p
Out[23]: Period('2015-08-01', '3D')

In [24]: p + 1
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\Out[24]: Period('2015-08-04', '3D')

In [25]: p - 2
\\Out[25]:
→˓Period('2015-07-26', '3D')

In [26]: p.to_timestamp()
\\Out[26]:
→˓Timestamp('2015-08-01 00:00:00')

In [27]: p.to_timestamp(how='E')
\\Out[27]:
→˓Timestamp('2015-08-03 00:00:00')

You can use the multiplied freq in PeriodIndex and period_range.

In [28]: idx = pd.period_range('2015-08-01', periods=4, freq='2D')

In [29]: idx
Out[29]: PeriodIndex(['2015-08-01', '2015-08-03', '2015-08-05', '2015-08-07'], dtype=
→˓'period[2D]', freq='2D')

In [30]: idx + 1
\\Out[30]:
→˓PeriodIndex(['2015-08-03', '2015-08-05', '2015-08-07', '2015-08-09'], dtype=
→˓'period[2D]', freq='2D')

1.18.1.6 Support for SAS XPORT files

read_sas() provides support for reading SAS XPORT format files. (GH4052).

df = pd.read_sas('sas_xport.xpt')

It is also possible to obtain an iterator and read an XPORT file incrementally.

for df in pd.read_sas('sas_xport.xpt', chunksize=10000)
do_something(df)

See the docs for more details.

1.18. v0.17.0 (October 9, 2015) 231

https://github.com/pandas-dev/pandas/issues/7811
https://github.com/pandas-dev/pandas/issues/4052

pandas: powerful Python data analysis toolkit, Release 0.23.4

1.18.1.7 Support for Math Functions in .eval()

eval() now supports calling math functions (GH4893)

df = pd.DataFrame({'a': np.random.randn(10)})
df.eval("b = sin(a)")

The support math functions are sin, cos, exp, log, expm1, log1p, sqrt, sinh, cosh, tanh, arcsin, arccos, arctan, arccosh,
arcsinh, arctanh, abs and arctan2.

These functions map to the intrinsics for the NumExpr engine. For the Python engine, they are mapped to NumPy
calls.

1.18.1.8 Changes to Excel with MultiIndex

In version 0.16.2 a DataFrame with MultiIndex columns could not be written to Excel via to_excel. That
functionality has been added (GH10564), along with updating read_excel so that the data can be read back with, no
loss of information, by specifying which columns/rows make up the MultiIndex in the header and index_col
parameters (GH4679)

See the documentation for more details.

In [31]: df = pd.DataFrame([[1,2,3,4], [5,6,7,8]],
....: columns = pd.MultiIndex.from_product([['foo','bar'],['a','b

→˓']],
....: names = ['col1', 'col2

→˓']),
....: index = pd.MultiIndex.from_product([['j'], ['l', 'k']],
....: names = ['i1', 'i2']))
....:

In [32]: df
Out[32]:
col1 foo bar
col2 a b a b
i1 i2
j l 1 2 3 4

k 5 6 7 8

In [33]: df.to_excel('test.xlsx')

In [34]: df = pd.read_excel('test.xlsx', header=[0,1], index_col=[0,1])

In [35]: df
Out[35]:
col1 foo bar
col2 a b a b
i1 i2
j l 1 2 3 4

k 5 6 7 8

Previously, it was necessary to specify the has_index_names argument in read_excel, if the serialized data
had index names. For version 0.17.0 the ouptput format of to_excel has been changed to make this keyword
unnecessary - the change is shown below.

Old

232 Chapter 1. What’s New

https://github.com/pandas-dev/pandas/issues/4893
https://github.com/pandas-dev/pandas/issues/10564
https://github.com/pandas-dev/pandas/issues/4679

pandas: powerful Python data analysis toolkit, Release 0.23.4

New

Warning: Excel files saved in version 0.16.2 or prior that had index names will still able to be read in, but the
has_index_names argument must specified to True.

1.18.1.9 Google BigQuery Enhancements

• Added ability to automatically create a table/dataset using the pandas.io.gbq.to_gbq() function if the
destination table/dataset does not exist. (GH8325, GH11121).

• Added ability to replace an existing table and schema when calling the pandas.io.gbq.to_gbq() func-
tion via the if_exists argument. See the docs for more details (GH8325).

• InvalidColumnOrder and InvalidPageToken in the gbq module will raise ValueError instead of
IOError.

• The generate_bq_schema() function is now deprecated and will be removed in a future version
(GH11121)

• The gbq module will now support Python 3 (GH11094).

1.18. v0.17.0 (October 9, 2015) 233

https://github.com/pandas-dev/pandas/issues/8325
https://github.com/pandas-dev/pandas/issues/11121
https://pandas-gbq.readthedocs.io/en/latest/writing.html
https://github.com/pandas-dev/pandas/issues/8325
https://github.com/pandas-dev/pandas/issues/11121
https://github.com/pandas-dev/pandas/issues/11094

pandas: powerful Python data analysis toolkit, Release 0.23.4

1.18.1.10 Display Alignment with Unicode East Asian Width

Warning: Enabling this option will affect the performance for printing of DataFrame and Series (about 2
times slower). Use only when it is actually required.

Some East Asian countries use Unicode characters its width is corresponding to 2 alphabets. If a DataFrame or
Series contains these characters, the default output cannot be aligned properly. The following options are added to
enable precise handling for these characters.

• display.unicode.east_asian_width: Whether to use the Unicode East Asian Width to calculate the
display text width. (GH2612)

• display.unicode.ambiguous_as_wide: Whether to handle Unicode characters belong to Ambiguous
as Wide. (GH11102)

In [36]: df = pd.DataFrame({u'': ['UK', u''], u'': ['Alice', u'']})

In [37]: df;

In [38]: pd.set_option('display.unicode.east_asian_width', True)

In [39]: df;

For further details, see here

1.18.1.11 Other enhancements

• Support for openpyxl >= 2.2. The API for style support is now stable (GH10125)

• merge now accepts the argument indicator which adds a Categorical-type column (by default called
_merge) to the output object that takes on the values (GH8790)

Observation Origin _merge value
Merge key only in 'left' frame left_only
Merge key only in 'right' frame right_only
Merge key in both frames both

In [40]: df1 = pd.DataFrame({'col1':[0,1], 'col_left':['a','b']})

(continues on next page)

234 Chapter 1. What’s New

https://github.com/pandas-dev/pandas/issues/2612
https://github.com/pandas-dev/pandas/issues/11102
https://github.com/pandas-dev/pandas/issues/10125
https://github.com/pandas-dev/pandas/issues/8790

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

In [41]: df2 = pd.DataFrame({'col1':[1,2,2],'col_right':[2,2,2]})

In [42]: pd.merge(df1, df2, on='col1', how='outer', indicator=True)
Out[42]:

col1 col_left col_right _merge
0 0 a NaN left_only
1 1 b 2.0 both
2 2 NaN 2.0 right_only
3 2 NaN 2.0 right_only

For more, see the updated docs

• pd.to_numeric is a new function to coerce strings to numbers (possibly with coercion) (GH11133)

• pd.merge will now allow duplicate column names if they are not merged upon (GH10639).

• pd.pivot will now allow passing index as None (GH3962).

• pd.concat will now use existing Series names if provided (GH10698).

In [43]: foo = pd.Series([1,2], name='foo')

In [44]: bar = pd.Series([1,2])

In [45]: baz = pd.Series([4,5])

Previous Behavior:

In [1] pd.concat([foo, bar, baz], 1)
Out[1]:

0 1 2
0 1 1 4
1 2 2 5

New Behavior:

In [46]: pd.concat([foo, bar, baz], 1)
Out[46]:

foo 0 1
0 1 1 4
1 2 2 5

• DataFrame has gained the nlargest and nsmallest methods (GH10393)

• Add a limit_direction keyword argument that works with limit to enable interpolate to fill NaN
values forward, backward, or both (GH9218, GH10420, GH11115)

In [47]: ser = pd.Series([np.nan, np.nan, 5, np.nan, np.nan, np.nan, 13])

In [48]: ser.interpolate(limit=1, limit_direction='both')
Out[48]:
0 NaN
1 5.0
2 5.0
3 7.0
4 NaN
5 11.0
6 13.0
dtype: float64

1.18. v0.17.0 (October 9, 2015) 235

https://github.com/pandas-dev/pandas/issues/11133
https://github.com/pandas-dev/pandas/issues/10639
https://github.com/pandas-dev/pandas/issues/3962
https://github.com/pandas-dev/pandas/issues/10698
https://github.com/pandas-dev/pandas/issues/10393
https://github.com/pandas-dev/pandas/issues/9218
https://github.com/pandas-dev/pandas/issues/10420
https://github.com/pandas-dev/pandas/issues/11115

pandas: powerful Python data analysis toolkit, Release 0.23.4

• Added a DataFrame.round method to round the values to a variable number of decimal places (GH10568).

In [49]: df = pd.DataFrame(np.random.random([3, 3]), columns=['A', 'B', 'C'],
....: index=['first', 'second', 'third'])
....:

In [50]: df
Out[50]:

A B C
first 0.342764 0.304121 0.417022
second 0.681301 0.875457 0.510422
third 0.669314 0.585937 0.624904

In [51]: df.round(2)
\\Out[51]:
→˓

A B C
first 0.34 0.30 0.42
second 0.68 0.88 0.51
third 0.67 0.59 0.62

In [52]: df.round({'A': 0, 'C': 2})
\\Out[52]:
→˓

A B C
first 0.0 0.304121 0.42
second 1.0 0.875457 0.51
third 1.0 0.585937 0.62

• drop_duplicates and duplicated now accept a keep keyword to target first, last, and all duplicates.
The take_last keyword is deprecated, see here (GH6511, GH8505)

In [53]: s = pd.Series(['A', 'B', 'C', 'A', 'B', 'D'])

In [54]: s.drop_duplicates()
Out[54]:
0 A
1 B
2 C
5 D
dtype: object

In [55]: s.drop_duplicates(keep='last')
\\Out[55]:
2 C
3 A
4 B
5 D
dtype: object

In [56]: s.drop_duplicates(keep=False)
\\Out[56]:
→˓

2 C
5 D
dtype: object

• Reindex now has a tolerance argument that allows for finer control of Limits on filling while reindexing
(GH10411):

236 Chapter 1. What’s New

https://github.com/pandas-dev/pandas/issues/10568
https://github.com/pandas-dev/pandas/issues/6511
https://github.com/pandas-dev/pandas/issues/8505
https://github.com/pandas-dev/pandas/issues/10411

pandas: powerful Python data analysis toolkit, Release 0.23.4

In [57]: df = pd.DataFrame({'x': range(5),
....: 't': pd.date_range('2000-01-01', periods=5)})
....:

In [58]: df.reindex([0.1, 1.9, 3.5],
....: method='nearest',
....: tolerance=0.2)
....:

Out[58]:
x t

0.1 0.0 2000-01-01
1.9 2.0 2000-01-03
3.5 NaN NaT

When used on a DatetimeIndex, TimedeltaIndex or PeriodIndex, tolerance will coerced into
a Timedelta if possible. This allows you to specify tolerance with a string:

In [59]: df = df.set_index('t')

In [60]: df.reindex(pd.to_datetime(['1999-12-31']),
....: method='nearest',
....: tolerance='1 day')
....:

Out[60]:
x

1999-12-31 0

tolerance is also exposed by the lower level Index.get_indexer and Index.get_loc methods.

• Added functionality to use the base argument when resampling a TimeDeltaIndex (GH10530)

• DatetimeIndex can be instantiated using strings contains NaT (GH7599)

• to_datetime can now accept the yearfirst keyword (GH7599)

• pandas.tseries.offsets larger than the Day offset can now be used with a Series for addi-
tion/subtraction (GH10699). See the docs for more details.

• pd.Timedelta.total_seconds() now returns Timedelta duration to ns precision (previously microsec-
ond precision) (GH10939)

• PeriodIndex now supports arithmetic with np.ndarray (GH10638)

• Support pickling of Period objects (GH10439)

• .as_blocks will now take a copy optional argument to return a copy of the data, default is to copy (no
change in behavior from prior versions), (GH9607)

• regex argument to DataFrame.filter now handles numeric column names instead of raising
ValueError (GH10384).

• Enable reading gzip compressed files via URL, either by explicitly setting the compression parameter or by
inferring from the presence of the HTTP Content-Encoding header in the response (GH8685)

• Enable writing Excel files in memory using StringIO/BytesIO (GH7074)

• Enable serialization of lists and dicts to strings in ExcelWriter (GH8188)

• SQL io functions now accept a SQLAlchemy connectable. (GH7877)

• pd.read_sql and to_sql can accept database URI as con parameter (GH10214)

• read_sql_table will now allow reading from views (GH10750).

1.18. v0.17.0 (October 9, 2015) 237

https://github.com/pandas-dev/pandas/issues/10530
https://github.com/pandas-dev/pandas/issues/7599
https://github.com/pandas-dev/pandas/issues/7599
https://github.com/pandas-dev/pandas/issues/10699
https://github.com/pandas-dev/pandas/issues/10939
https://github.com/pandas-dev/pandas/issues/10638
https://github.com/pandas-dev/pandas/issues/10439
https://github.com/pandas-dev/pandas/issues/9607
https://github.com/pandas-dev/pandas/issues/10384
https://github.com/pandas-dev/pandas/issues/8685
https://github.com/pandas-dev/pandas/issues/7074
https://github.com/pandas-dev/pandas/issues/8188
https://github.com/pandas-dev/pandas/issues/7877
https://github.com/pandas-dev/pandas/issues/10214
https://github.com/pandas-dev/pandas/issues/10750

pandas: powerful Python data analysis toolkit, Release 0.23.4

• Enable writing complex values to HDFStores when using the table format (GH10447)

• Enable pd.read_hdf to be used without specifying a key when the HDF file contains a single dataset
(GH10443)

• pd.read_stata will now read Stata 118 type files. (GH9882)

• msgpack submodule has been updated to 0.4.6 with backward compatibility (GH10581)

• DataFrame.to_dict now accepts orient='index' keyword argument (GH10844).

• DataFrame.apply will return a Series of dicts if the passed function returns a dict and reduce=True
(GH8735).

• Allow passing kwargs to the interpolation methods (GH10378).

• Improved error message when concatenating an empty iterable of Dataframe objects (GH9157)

• pd.read_csv can now read bz2-compressed files incrementally, and the C parser can read bz2-compressed
files from AWS S3 (GH11070, GH11072).

• In pd.read_csv, recognize s3n:// and s3a:// URLs as designating S3 file storage (GH11070,
GH11071).

• Read CSV files from AWS S3 incrementally, instead of first downloading the entire file. (Full file download still
required for compressed files in Python 2.) (GH11070, GH11073)

• pd.read_csv is now able to infer compression type for files read from AWS S3 storage (GH11070,
GH11074).

1.18.2 Backwards incompatible API changes

1.18.2.1 Changes to sorting API

The sorting API has had some longtime inconsistencies. (GH9816, GH8239).

Here is a summary of the API PRIOR to 0.17.0:

• Series.sort is INPLACE while DataFrame.sort returns a new object.

• Series.order returns a new object

• It was possible to use Series/DataFrame.sort_index to sort by values by passing the by keyword.

• Series/DataFrame.sortlevel worked only on a MultiIndex for sorting by index.

To address these issues, we have revamped the API:

• We have introduced a new method, DataFrame.sort_values(), which is the merger of DataFrame.
sort(), Series.sort(), and Series.order(), to handle sorting of values.

• The existing methods Series.sort(), Series.order(), and DataFrame.sort() have been depre-
cated and will be removed in a future version.

• The by argument of DataFrame.sort_index() has been deprecated and will be removed in a future
version.

• The existing method .sort_index() will gain the level keyword to enable level sorting.

We now have two distinct and non-overlapping methods of sorting. A * marks items that will show a
FutureWarning.

To sort by the values:

238 Chapter 1. What’s New

https://github.com/pandas-dev/pandas/issues/10447
https://github.com/pandas-dev/pandas/issues/10443
https://github.com/pandas-dev/pandas/issues/9882
https://github.com/pandas-dev/pandas/issues/10581
https://github.com/pandas-dev/pandas/issues/10844
https://github.com/pandas-dev/pandas/issues/8735
https://github.com/pandas-dev/pandas/issues/10378
https://github.com/pandas-dev/pandas/issues/9157
https://github.com/pandas-dev/pandas/issues/11070
https://github.com/pandas-dev/pandas/issues/11072
https://github.com/pandas-dev/pandas/issues/11070
https://github.com/pandas-dev/pandas/issues/11071
https://github.com/pandas-dev/pandas/issues/11070
https://github.com/pandas-dev/pandas/issues/11073
https://github.com/pandas-dev/pandas/issues/11070
https://github.com/pandas-dev/pandas/issues/11074
https://github.com/pandas-dev/pandas/issues/9816
https://github.com/pandas-dev/pandas/issues/8239

pandas: powerful Python data analysis toolkit, Release 0.23.4

Previous Replacement
* Series.order() Series.sort_values()
* Series.sort() Series.sort_values(inplace=True)
* DataFrame.sort(columns=...) DataFrame.sort_values(by=...)

To sort by the index:

Previous Replacement
Series.sort_index() Series.sort_index()
Series.sortlevel(level=...) Series.sort_index(level=...)
DataFrame.sort_index() DataFrame.sort_index()
DataFrame.sortlevel(level=...) DataFrame.sort_index(level=...)
* DataFrame.sort() DataFrame.sort_index()

We have also deprecated and changed similar methods in two Series-like classes, Index and Categorical.

Previous Replacement
* Index.order() Index.sort_values()
* Categorical.order() Categorical.sort_values()

1.18.2.2 Changes to to_datetime and to_timedelta

Error handling

The default for pd.to_datetime error handling has changed to errors='raise'. In prior versions it was
errors='ignore'. Furthermore, the coerce argument has been deprecated in favor of errors='coerce'.
This means that invalid parsing will raise rather that return the original input as in previous versions. (GH10636)

Previous Behavior:

In [2]: pd.to_datetime(['2009-07-31', 'asd'])
Out[2]: array(['2009-07-31', 'asd'], dtype=object)

New Behavior:

In [3]: pd.to_datetime(['2009-07-31', 'asd'])
ValueError: Unknown string format

Of course you can coerce this as well.

In [61]: to_datetime(['2009-07-31', 'asd'], errors='coerce')
Out[61]: DatetimeIndex(['2009-07-31', 'NaT'], dtype='datetime64[ns]', freq=None)

To keep the previous behavior, you can use errors='ignore':

In [62]: to_datetime(['2009-07-31', 'asd'], errors='ignore')
Out[62]: array(['2009-07-31', 'asd'], dtype=object)

Furthermore, pd.to_timedelta has gained a similar API, of errors='raise'|'ignore'|'coerce', and
the coerce keyword has been deprecated in favor of errors='coerce'.

1.18. v0.17.0 (October 9, 2015) 239

https://github.com/pandas-dev/pandas/issues/10636

pandas: powerful Python data analysis toolkit, Release 0.23.4

Consistent Parsing

The string parsing of to_datetime, Timestamp and DatetimeIndex has been made consistent. (GH7599)

Prior to v0.17.0, Timestamp and to_datetime may parse year-only datetime-string incorrectly using today’s
date, otherwise DatetimeIndex uses the beginning of the year. Timestamp and to_datetime may raise
ValueError in some types of datetime-string which DatetimeIndex can parse, such as a quarterly string.

Previous Behavior:

In [1]: Timestamp('2012Q2')
Traceback

...
ValueError: Unable to parse 2012Q2

Results in today's date.
In [2]: Timestamp('2014')
Out [2]: 2014-08-12 00:00:00

v0.17.0 can parse them as below. It works on DatetimeIndex also.

New Behavior:

In [63]: Timestamp('2012Q2')
Out[63]: Timestamp('2012-04-01 00:00:00')

In [64]: Timestamp('2014')
\\Out[64]: Timestamp('2014-01-01 00:00:00')

In [65]: DatetimeIndex(['2012Q2', '2014'])
\\Out[65]:
→˓DatetimeIndex(['2012-04-01', '2014-01-01'], dtype='datetime64[ns]', freq=None)

Note: If you want to perform calculations based on today’s date, use Timestamp.now() and pandas.
tseries.offsets.

In [66]: import pandas.tseries.offsets as offsets

In [67]: Timestamp.now()
Out[67]: Timestamp('2018-08-05 12:02:13.064182')

In [68]: Timestamp.now() + offsets.DateOffset(years=1)
\\\Out[68]: Timestamp('2019-08-05
→˓12:02:13.065247')

1.18.2.3 Changes to Index Comparisons

Operator equal on Index should behavior similarly to Series (GH9947, GH10637)

Starting in v0.17.0, comparing Index objects of different lengths will raise a ValueError. This is to be consistent
with the behavior of Series.

Previous Behavior:

240 Chapter 1. What’s New

https://github.com/pandas-dev/pandas/issues/7599
https://github.com/pandas-dev/pandas/issues/9947
https://github.com/pandas-dev/pandas/issues/10637

pandas: powerful Python data analysis toolkit, Release 0.23.4

In [2]: pd.Index([1, 2, 3]) == pd.Index([1, 4, 5])
Out[2]: array([True, False, False], dtype=bool)

In [3]: pd.Index([1, 2, 3]) == pd.Index([2])
Out[3]: array([False, True, False], dtype=bool)

In [4]: pd.Index([1, 2, 3]) == pd.Index([1, 2])
Out[4]: False

New Behavior:

In [8]: pd.Index([1, 2, 3]) == pd.Index([1, 4, 5])
Out[8]: array([True, False, False], dtype=bool)

In [9]: pd.Index([1, 2, 3]) == pd.Index([2])
ValueError: Lengths must match to compare

In [10]: pd.Index([1, 2, 3]) == pd.Index([1, 2])
ValueError: Lengths must match to compare

Note that this is different from the numpy behavior where a comparison can be broadcast:

In [69]: np.array([1, 2, 3]) == np.array([1])
Out[69]: array([True, False, False], dtype=bool)

or it can return False if broadcasting can not be done:

In [70]: np.array([1, 2, 3]) == np.array([1, 2])
Out[70]: False

1.18.2.4 Changes to Boolean Comparisons vs. None

Boolean comparisons of a Series vs None will now be equivalent to comparing with np.nan, rather than raise
TypeError. (GH1079).

In [71]: s = Series(range(3))

In [72]: s.iloc[1] = None

In [73]: s
Out[73]:
0 0.0
1 NaN
2 2.0
dtype: float64

Previous Behavior:

In [5]: s==None
TypeError: Could not compare <type 'NoneType'> type with Series

New Behavior:

In [74]: s==None
Out[74]:

(continues on next page)

1.18. v0.17.0 (October 9, 2015) 241

https://github.com/pandas-dev/pandas/issues/1079

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

0 False
1 False
2 False
dtype: bool

Usually you simply want to know which values are null.

In [75]: s.isnull()
Out[75]:
0 False
1 True
2 False
dtype: bool

Warning: You generally will want to use isnull/notnull for these types of comparisons, as isnull/
notnull tells you which elements are null. One has to be mindful that nan's don’t compare equal, but None's
do. Note that Pandas/numpy uses the fact that np.nan != np.nan, and treats None like np.nan.

In [76]: None == None
Out[76]: True

In [77]: np.nan == np.nan
\\\\\\\\\\\\\\Out[77]: False

1.18.2.5 HDFStore dropna behavior

The default behavior for HDFStore write functions with format='table' is now to keep rows that are all missing.
Previously, the behavior was to drop rows that were all missing save the index. The previous behavior can be replicated
using the dropna=True option. (GH9382)

Previous Behavior:

In [78]: df_with_missing = pd.DataFrame({'col1':[0, np.nan, 2],
....: 'col2':[1, np.nan, np.nan]})
....:

In [79]: df_with_missing
Out[79]:

col1 col2
0 0.0 1.0
1 NaN NaN
2 2.0 NaN

In [27]:
df_with_missing.to_hdf('file.h5',

'df_with_missing',
format='table',
mode='w')

In [28]: pd.read_hdf('file.h5', 'df_with_missing')

Out [28]:
col1 col2

(continues on next page)

242 Chapter 1. What’s New

https://github.com/pandas-dev/pandas/issues/9382

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

0 0 1
2 2 NaN

New Behavior:

In [80]: df_with_missing.to_hdf('file.h5',
....: 'df_with_missing',
....: format='table',
....: mode='w')
....:

In [81]: pd.read_hdf('file.h5', 'df_with_missing')
Out[81]:

col1 col2
0 0.0 1.0
1 NaN NaN
2 2.0 NaN

See the docs for more details.

1.18.2.6 Changes to display.precision option

The display.precision option has been clarified to refer to decimal places (GH10451).

Earlier versions of pandas would format floating point numbers to have one less decimal place than the value in
display.precision.

In [1]: pd.set_option('display.precision', 2)

In [2]: pd.DataFrame({'x': [123.456789]})
Out[2]:

x
0 123.5

If interpreting precision as “significant figures” this did work for scientific notation but that same interpretation did not
work for values with standard formatting. It was also out of step with how numpy handles formatting.

Going forward the value of display.precision will directly control the number of places after the decimal, for
regular formatting as well as scientific notation, similar to how numpy’s precision print option works.

In [82]: pd.set_option('display.precision', 2)

In [83]: pd.DataFrame({'x': [123.456789]})
Out[83]:

x
0 123.46

To preserve output behavior with prior versions the default value of display.precision has been reduced to 6
from 7.

1.18.2.7 Changes to Categorical.unique

Categorical.unique now returns new Categoricals with categories and codes that are unique, rather
than returning np.array (GH10508)

• unordered category: values and categories are sorted by appearance order.

1.18. v0.17.0 (October 9, 2015) 243

https://github.com/pandas-dev/pandas/issues/10451
https://github.com/pandas-dev/pandas/issues/10508

pandas: powerful Python data analysis toolkit, Release 0.23.4

• ordered category: values are sorted by appearance order, categories keep existing order.

In [84]: cat = pd.Categorical(['C', 'A', 'B', 'C'],
....: categories=['A', 'B', 'C'],
....: ordered=True)
....:

In [85]: cat
Out[85]:
[C, A, B, C]
Categories (3, object): [A < B < C]

In [86]: cat.unique()
\\\Out[86]:
[C, A, B]
Categories (3, object): [A < B < C]

In [87]: cat = pd.Categorical(['C', 'A', 'B', 'C'],
....: categories=['A', 'B', 'C'])
....:

In [88]: cat
Out[88]:
[C, A, B, C]
Categories (3, object): [A, B, C]

In [89]: cat.unique()
\\\Out[89]:
[C, A, B]
Categories (3, object): [C, A, B]

1.18.2.8 Changes to bool passed as header in Parsers

In earlier versions of pandas, if a bool was passed the header argument of read_csv, read_excel, or
read_html it was implicitly converted to an integer, resulting in header=0 for False and header=1 for True
(GH6113)

A bool input to header will now raise a TypeError

In [29]: df = pd.read_csv('data.csv', header=False)
TypeError: Passing a bool to header is invalid. Use header=None for no header or
header=int or list-like of ints to specify the row(s) making up the column names

1.18.2.9 Other API Changes

• Line and kde plot with subplots=True now uses default colors, not all black. Specify color='k' to draw
all lines in black (GH9894)

• Calling the .value_counts() method on a Series with a categorical dtype now returns a Series with a
CategoricalIndex (GH10704)

• The metadata properties of subclasses of pandas objects will now be serialized (GH10553).

• groupby using Categorical follows the same rule as Categorical.unique described above
(GH10508)

244 Chapter 1. What’s New

https://github.com/pandas-dev/pandas/issues/6113
https://github.com/pandas-dev/pandas/issues/9894
https://github.com/pandas-dev/pandas/issues/10704
https://github.com/pandas-dev/pandas/issues/10553
https://github.com/pandas-dev/pandas/issues/10508

pandas: powerful Python data analysis toolkit, Release 0.23.4

• When constructing DataFrame with an array of complex64 dtype previously meant the corresponding col-
umn was automatically promoted to the complex128 dtype. Pandas will now preserve the itemsize of the
input for complex data (GH10952)

• some numeric reduction operators would return ValueError, rather than TypeError on object types that
includes strings and numbers (GH11131)

• Passing currently unsupported chunksize argument to read_excel or ExcelFile.parse will now
raise NotImplementedError (GH8011)

• Allow an ExcelFile object to be passed into read_excel (GH11198)

• DatetimeIndex.union does not infer freq if self and the input have None as freq (GH11086)

• NaT’s methods now either raise ValueError, or return np.nan or NaT (GH9513)

Behavior Methods
return np.nan weekday, isoweekday
return NaT date, now, replace, to_datetime, today
return np.datetime64('NaT') to_datetime64 (unchanged)
raise ValueError All other public methods (names not beginning with underscores)

1.18.2.10 Deprecations

• For Series the following indexing functions are deprecated (GH10177).

Deprecated Function Replacement
.irow(i) .iloc[i] or .iat[i]
.iget(i) .iloc[i] or .iat[i]
.iget_value(i) .iloc[i] or .iat[i]

• For DataFrame the following indexing functions are deprecated (GH10177).

Deprecated Function Replacement
.irow(i) .iloc[i]
.iget_value(i, j) .iloc[i, j] or .iat[i, j]
.icol(j) .iloc[:, j]

Note: These indexing function have been deprecated in the documentation since 0.11.0.

• Categorical.name was deprecated to make Categorical more numpy.ndarray like. Use
Series(cat, name="whatever") instead (GH10482).

• Setting missing values (NaN) in a Categorical’s categories will issue a warning (GH10748). You can
still have missing values in the values.

• drop_duplicates and duplicated’s take_last keyword was deprecated in favor of keep. (GH6511,
GH8505)

• Series.nsmallest and nlargest’s take_last keyword was deprecated in favor of keep. (GH10792)

• DataFrame.combineAdd and DataFrame.combineMult are deprecated. They can easily be replaced
by using the add and mul methods: DataFrame.add(other, fill_value=0) and DataFrame.
mul(other, fill_value=1.) (GH10735).

1.18. v0.17.0 (October 9, 2015) 245

https://github.com/pandas-dev/pandas/issues/10952
https://github.com/pandas-dev/pandas/issues/11131
https://github.com/pandas-dev/pandas/issues/8011
https://github.com/pandas-dev/pandas/issues/11198
https://github.com/pandas-dev/pandas/issues/11086
https://github.com/pandas-dev/pandas/issues/9513
https://github.com/pandas-dev/pandas/issues/10177
https://github.com/pandas-dev/pandas/issues/10177
https://github.com/pandas-dev/pandas/issues/10482
https://github.com/pandas-dev/pandas/issues/10748
https://github.com/pandas-dev/pandas/issues/6511
https://github.com/pandas-dev/pandas/issues/8505
https://github.com/pandas-dev/pandas/issues/10792
https://github.com/pandas-dev/pandas/issues/10735

pandas: powerful Python data analysis toolkit, Release 0.23.4

• TimeSeries deprecated in favor of Series (note that this has been an alias since 0.13.0), (GH10890)

• SparsePanel deprecated and will be removed in a future version (GH11157).

• Series.is_time_series deprecated in favor of Series.index.is_all_dates (GH11135)

• Legacy offsets (like 'A@JAN') are deprecated (note that this has been alias since 0.8.0) (GH10878)

• WidePanel deprecated in favor of Panel, LongPanel in favor of DataFrame (note these have been
aliases since < 0.11.0), (GH10892)

• DataFrame.convert_objects has been deprecated in favor of type-specific functions pd.
to_datetime, pd.to_timestamp and pd.to_numeric (new in 0.17.0) (GH11133).

1.18.2.11 Removal of prior version deprecations/changes

• Removal of na_last parameters from Series.order() and Series.sort(), in favor of
na_position. (GH5231)

• Remove of percentile_width from .describe(), in favor of percentiles. (GH7088)

• Removal of colSpace parameter from DataFrame.to_string(), in favor of col_space, circa 0.8.0
version.

• Removal of automatic time-series broadcasting (GH2304)

In [90]: np.random.seed(1234)

In [91]: df = DataFrame(np.random.randn(5,2),columns=list('AB'),index=date_range(
→˓'20130101',periods=5))

In [92]: df
Out[92]:

A B
2013-01-01 0.471435 -1.190976
2013-01-02 1.432707 -0.312652
2013-01-03 -0.720589 0.887163
2013-01-04 0.859588 -0.636524
2013-01-05 0.015696 -2.242685

Previously

In [3]: df + df.A
FutureWarning: TimeSeries broadcasting along DataFrame index by default is
→˓deprecated.
Please use DataFrame.<op> to explicitly broadcast arithmetic operations along the
→˓index

Out[3]:
A B

2013-01-01 0.942870 -0.719541
2013-01-02 2.865414 1.120055
2013-01-03 -1.441177 0.166574
2013-01-04 1.719177 0.223065
2013-01-05 0.031393 -2.226989

Current

246 Chapter 1. What’s New

https://github.com/pandas-dev/pandas/issues/10890
https://github.com/pandas-dev/pandas/issues/11157
https://github.com/pandas-dev/pandas/issues/11135
https://github.com/pandas-dev/pandas/issues/10878
https://github.com/pandas-dev/pandas/issues/10892
https://github.com/pandas-dev/pandas/issues/11133
https://github.com/pandas-dev/pandas/issues/5231
https://github.com/pandas-dev/pandas/issues/7088
https://github.com/pandas-dev/pandas/issues/2304

pandas: powerful Python data analysis toolkit, Release 0.23.4

In [93]: df.add(df.A,axis='index')
Out[93]:

A B
2013-01-01 0.942870 -0.719541
2013-01-02 2.865414 1.120055
2013-01-03 -1.441177 0.166574
2013-01-04 1.719177 0.223065
2013-01-05 0.031393 -2.226989

• Remove table keyword in HDFStore.put/append, in favor of using format= (GH4645)

• Remove kind in read_excel/ExcelFile as its unused (GH4712)

• Remove infer_type keyword from pd.read_html as its unused (GH4770, GH7032)

• Remove offset and timeRule keywords from Series.tshift/shift, in favor of freq (GH4853,
GH4864)

• Remove pd.load/pd.save aliases in favor of pd.to_pickle/pd.read_pickle (GH3787)

1.18.3 Performance Improvements

• Development support for benchmarking with the Air Speed Velocity library (GH8361)

• Added vbench benchmarks for alternative ExcelWriter engines and reading Excel files (GH7171)

• Performance improvements in Categorical.value_counts (GH10804)

• Performance improvements in SeriesGroupBy.nunique and SeriesGroupBy.value_counts and
SeriesGroupby.transform (GH10820, GH11077)

• Performance improvements in DataFrame.drop_duplicates with integer dtypes (GH10917)

• Performance improvements in DataFrame.duplicated with wide frames. (GH10161, GH11180)

• 4x improvement in timedelta string parsing (GH6755, GH10426)

• 8x improvement in timedelta64 and datetime64 ops (GH6755)

• Significantly improved performance of indexing MultiIndex with slicers (GH10287)

• 8x improvement in iloc using list-like input (GH10791)

• Improved performance of Series.isin for datetimelike/integer Series (GH10287)

• 20x improvement in concat of Categoricals when categories are identical (GH10587)

• Improved performance of to_datetime when specified format string is ISO8601 (GH10178)

• 2x improvement of Series.value_counts for float dtype (GH10821)

• Enable infer_datetime_format in to_datetime when date components do not have 0 padding
(GH11142)

• Regression from 0.16.1 in constructing DataFrame from nested dictionary (GH11084)

• Performance improvements in addition/subtraction operations for DateOffset with Series or
DatetimeIndex (GH10744, GH11205)

1.18. v0.17.0 (October 9, 2015) 247

https://github.com/pandas-dev/pandas/issues/4645
https://github.com/pandas-dev/pandas/issues/4712
https://github.com/pandas-dev/pandas/issues/4770
https://github.com/pandas-dev/pandas/issues/7032
https://github.com/pandas-dev/pandas/issues/4853
https://github.com/pandas-dev/pandas/issues/4864
https://github.com/pandas-dev/pandas/issues/3787
https://github.com/spacetelescope/asv/
https://github.com/pandas-dev/pandas/issues/8361
https://github.com/pandas-dev/pandas/issues/7171
https://github.com/pandas-dev/pandas/issues/10804
https://github.com/pandas-dev/pandas/issues/10820
https://github.com/pandas-dev/pandas/issues/11077
https://github.com/pandas-dev/pandas/issues/10917
https://github.com/pandas-dev/pandas/issues/10161
https://github.com/pandas-dev/pandas/issues/11180
https://github.com/pandas-dev/pandas/issues/6755
https://github.com/pandas-dev/pandas/issues/10426
https://github.com/pandas-dev/pandas/issues/6755
https://github.com/pandas-dev/pandas/issues/10287
https://github.com/pandas-dev/pandas/issues/10791
https://github.com/pandas-dev/pandas/issues/10287
https://github.com/pandas-dev/pandas/issues/10587
https://github.com/pandas-dev/pandas/issues/10178
https://github.com/pandas-dev/pandas/issues/10821
https://github.com/pandas-dev/pandas/issues/11142
https://github.com/pandas-dev/pandas/issues/11084
https://github.com/pandas-dev/pandas/issues/10744
https://github.com/pandas-dev/pandas/issues/11205

pandas: powerful Python data analysis toolkit, Release 0.23.4

1.18.4 Bug Fixes

• Bug in incorrection computation of .mean() on timedelta64[ns] because of overflow (GH9442)

• Bug in .isin on older numpies (GH11232)

• Bug in DataFrame.to_html(index=False) renders unnecessary name row (GH10344)

• Bug in DataFrame.to_latex() the column_format argument could not be passed (GH9402)

• Bug in DatetimeIndex when localizing with NaT (GH10477)

• Bug in Series.dt ops in preserving meta-data (GH10477)

• Bug in preserving NaT when passed in an otherwise invalid to_datetime construction (GH10477)

• Bug in DataFrame.apply when function returns categorical series. (GH9573)

• Bug in to_datetime with invalid dates and formats supplied (GH10154)

• Bug in Index.drop_duplicates dropping name(s) (GH10115)

• Bug in Series.quantile dropping name (GH10881)

• Bug in pd.Series when setting a value on an empty Series whose index has a frequency. (GH10193)

• Bug in pd.Series.interpolate with invalid order keyword values. (GH10633)

• Bug in DataFrame.plot raises ValueError when color name is specified by multiple characters
(GH10387)

• Bug in Index construction with a mixed list of tuples (GH10697)

• Bug in DataFrame.reset_index when index contains NaT. (GH10388)

• Bug in ExcelReader when worksheet is empty (GH6403)

• Bug in BinGrouper.group_info where returned values are not compatible with base class (GH10914)

• Bug in clearing the cache on DataFrame.pop and a subsequent inplace op (GH10912)

• Bug in indexing with a mixed-integer Index causing an ImportError (GH10610)

• Bug in Series.count when index has nulls (GH10946)

• Bug in pickling of a non-regular freq DatetimeIndex (GH11002)

• Bug causing DataFrame.where to not respect the axis parameter when the frame has a symmetric shape.
(GH9736)

• Bug in Table.select_column where name is not preserved (GH10392)

• Bug in offsets.generate_range where start and end have finer precision than offset (GH9907)

• Bug in pd.rolling_* where Series.name would be lost in the output (GH10565)

• Bug in stack when index or columns are not unique. (GH10417)

• Bug in setting a Panel when an axis has a multi-index (GH10360)

• Bug in USFederalHolidayCalendar where USMemorialDay and USMartinLutherKingJr were
incorrect (GH10278 and GH9760)

• Bug in .sample() where returned object, if set, gives unnecessary SettingWithCopyWarning
(GH10738)

• Bug in .sample() where weights passed as Series were not aligned along axis before being treated posi-
tionally, potentially causing problems if weight indices were not aligned with sampled object. (GH10738)

248 Chapter 1. What’s New

https://github.com/pandas-dev/pandas/issues/9442
https://github.com/pandas-dev/pandas/issues/11232
https://github.com/pandas-dev/pandas/issues/10344
https://github.com/pandas-dev/pandas/issues/9402
https://github.com/pandas-dev/pandas/issues/10477
https://github.com/pandas-dev/pandas/issues/10477
https://github.com/pandas-dev/pandas/issues/10477
https://github.com/pandas-dev/pandas/issues/9573
https://github.com/pandas-dev/pandas/issues/10154
https://github.com/pandas-dev/pandas/issues/10115
https://github.com/pandas-dev/pandas/issues/10881
https://github.com/pandas-dev/pandas/issues/10193
https://github.com/pandas-dev/pandas/issues/10633
https://github.com/pandas-dev/pandas/issues/10387
https://github.com/pandas-dev/pandas/issues/10697
https://github.com/pandas-dev/pandas/issues/10388
https://github.com/pandas-dev/pandas/issues/6403
https://github.com/pandas-dev/pandas/issues/10914
https://github.com/pandas-dev/pandas/issues/10912
https://github.com/pandas-dev/pandas/issues/10610
https://github.com/pandas-dev/pandas/issues/10946
https://github.com/pandas-dev/pandas/issues/11002
https://github.com/pandas-dev/pandas/issues/9736
https://github.com/pandas-dev/pandas/issues/10392
https://github.com/pandas-dev/pandas/issues/9907
https://github.com/pandas-dev/pandas/issues/10565
https://github.com/pandas-dev/pandas/issues/10417
https://github.com/pandas-dev/pandas/issues/10360
https://github.com/pandas-dev/pandas/issues/10278
https://github.com/pandas-dev/pandas/issues/9760
https://github.com/pandas-dev/pandas/issues/10738
https://github.com/pandas-dev/pandas/issues/10738

pandas: powerful Python data analysis toolkit, Release 0.23.4

• Regression fixed in (GH9311, GH6620, GH9345), where groupby with a datetime-like converting to float with
certain aggregators (GH10979)

• Bug in DataFrame.interpolate with axis=1 and inplace=True (GH10395)

• Bug in io.sql.get_schema when specifying multiple columns as primary key (GH10385).

• Bug in groupby(sort=False) with datetime-like Categorical raises ValueError (GH10505)

• Bug in groupby(axis=1) with filter() throws IndexError (GH11041)

• Bug in test_categorical on big-endian builds (GH10425)

• Bug in Series.shift and DataFrame.shift not supporting categorical data (GH9416)

• Bug in Series.map using categorical Series raises AttributeError (GH10324)

• Bug in MultiIndex.get_level_values including Categorical raises AttributeError
(GH10460)

• Bug in pd.get_dummies with sparse=True not returning SparseDataFrame (GH10531)

• Bug in Index subtypes (such as PeriodIndex) not returning their own type for .drop and .insert
methods (GH10620)

• Bug in algos.outer_join_indexer when right array is empty (GH10618)

• Bug in filter (regression from 0.16.0) and transform when grouping on multiple keys, one of which is
datetime-like (GH10114)

• Bug in to_datetime and to_timedelta causing Index name to be lost (GH10875)

• Bug in len(DataFrame.groupby) causing IndexError when there’s a column containing only NaNs
(GH11016)

• Bug that caused segfault when resampling an empty Series (GH10228)

• Bug in DatetimeIndex and PeriodIndex.value_counts resets name from its result, but retains in
result’s Index. (GH10150)

• Bug in pd.eval using numexpr engine coerces 1 element numpy array to scalar (GH10546)

• Bug in pd.concat with axis=0 when column is of dtype category (GH10177)

• Bug in read_msgpack where input type is not always checked (GH10369, GH10630)

• Bug in pd.read_csv with kwargs index_col=False, index_col=['a', 'b'] or dtype
(GH10413, GH10467, GH10577)

• Bug in Series.from_csv with header kwarg not setting the Series.name or the Series.index.
name (GH10483)

• Bug in groupby.var which caused variance to be inaccurate for small float values (GH10448)

• Bug in Series.plot(kind='hist') Y Label not informative (GH10485)

• Bug in read_csv when using a converter which generates a uint8 type (GH9266)

• Bug causes memory leak in time-series line and area plot (GH9003)

• Bug when setting a Panel sliced along the major or minor axes when the right-hand side is a DataFrame
(GH11014)

• Bug that returns None and does not raise NotImplementedError when operator functions (e.g. .add) of
Panel are not implemented (GH7692)

• Bug in line and kde plot cannot accept multiple colors when subplots=True (GH9894)

1.18. v0.17.0 (October 9, 2015) 249

https://github.com/pandas-dev/pandas/issues/9311
https://github.com/pandas-dev/pandas/issues/6620
https://github.com/pandas-dev/pandas/issues/9345
https://github.com/pandas-dev/pandas/issues/10979
https://github.com/pandas-dev/pandas/issues/10395
https://github.com/pandas-dev/pandas/issues/10385
https://github.com/pandas-dev/pandas/issues/10505
https://github.com/pandas-dev/pandas/issues/11041
https://github.com/pandas-dev/pandas/issues/10425
https://github.com/pandas-dev/pandas/issues/9416
https://github.com/pandas-dev/pandas/issues/10324
https://github.com/pandas-dev/pandas/issues/10460
https://github.com/pandas-dev/pandas/issues/10531
https://github.com/pandas-dev/pandas/issues/10620
https://github.com/pandas-dev/pandas/issues/10618
https://github.com/pandas-dev/pandas/issues/10114
https://github.com/pandas-dev/pandas/issues/10875
https://github.com/pandas-dev/pandas/issues/11016
https://github.com/pandas-dev/pandas/issues/10228
https://github.com/pandas-dev/pandas/issues/10150
https://github.com/pandas-dev/pandas/issues/10546
https://github.com/pandas-dev/pandas/issues/10177
https://github.com/pandas-dev/pandas/issues/10369
https://github.com/pandas-dev/pandas/issues/10630
https://github.com/pandas-dev/pandas/issues/10413
https://github.com/pandas-dev/pandas/issues/10467
https://github.com/pandas-dev/pandas/issues/10577
https://github.com/pandas-dev/pandas/issues/10483
https://github.com/pandas-dev/pandas/issues/10448
https://github.com/pandas-dev/pandas/issues/10485
https://github.com/pandas-dev/pandas/issues/9266
https://github.com/pandas-dev/pandas/issues/9003
https://github.com/pandas-dev/pandas/issues/11014
https://github.com/pandas-dev/pandas/issues/7692
https://github.com/pandas-dev/pandas/issues/9894

pandas: powerful Python data analysis toolkit, Release 0.23.4

• Bug in DataFrame.plot raises ValueError when color name is specified by multiple characters
(GH10387)

• Bug in left and right align of Series with MultiIndex may be inverted (GH10665)

• Bug in left and right join of with MultiIndex may be inverted (GH10741)

• Bug in read_stata when reading a file with a different order set in columns (GH10757)

• Bug in Categorical may not representing properly when category contains tz or Period (GH10713)

• Bug in Categorical.__iter__ may not returning correct datetime and Period (GH10713)

• Bug in indexing with a PeriodIndex on an object with a PeriodIndex (GH4125)

• Bug in read_csvwith engine='c': EOF preceded by a comment, blank line, etc. was not handled correctly
(GH10728, GH10548)

• Reading “famafrench” data via DataReader results in HTTP 404 error because of the website url is changed
(GH10591).

• Bug in read_msgpack where DataFrame to decode has duplicate column names (GH9618)

• Bug in io.common.get_filepath_or_buffer which caused reading of valid S3 files to fail if the
bucket also contained keys for which the user does not have read permission (GH10604)

• Bug in vectorised setting of timestamp columns with python datetime.date and numpy datetime64
(GH10408, GH10412)

• Bug in Index.take may add unnecessary freq attribute (GH10791)

• Bug in merge with empty DataFrame may raise IndexError (GH10824)

• Bug in to_latex where unexpected keyword argument for some documented arguments (GH10888)

• Bug in indexing of large DataFrame where IndexError is uncaught (GH10645 and GH10692)

• Bug in read_csv when using the nrows or chunksize parameters if file contains only a header line
(GH9535)

• Bug in serialization of category types in HDF5 in presence of alternate encodings. (GH10366)

• Bug in pd.DataFrame when constructing an empty DataFrame with a string dtype (GH9428)

• Bug in pd.DataFrame.diff when DataFrame is not consolidated (GH10907)

• Bug in pd.unique for arrays with the datetime64 or timedelta64 dtype that meant an array with object
dtype was returned instead the original dtype (GH9431)

• Bug in Timedelta raising error when slicing from 0s (GH10583)

• Bug in DatetimeIndex.take and TimedeltaIndex.takemay not raise IndexError against invalid
index (GH10295)

• Bug in Series([np.nan]).astype('M8[ms]'), which now returns Series([pd.NaT])
(GH10747)

• Bug in PeriodIndex.order reset freq (GH10295)

• Bug in date_range when freq divides end as nanos (GH10885)

• Bug in iloc allowing memory outside bounds of a Series to be accessed with negative integers (GH10779)

• Bug in read_msgpack where encoding is not respected (GH10581)

• Bug preventing access to the first index when using iloc with a list containing the appropriate negative integer
(GH10547, GH10779)

250 Chapter 1. What’s New

https://github.com/pandas-dev/pandas/issues/10387
https://github.com/pandas-dev/pandas/issues/10665
https://github.com/pandas-dev/pandas/issues/10741
https://github.com/pandas-dev/pandas/issues/10757
https://github.com/pandas-dev/pandas/issues/10713
https://github.com/pandas-dev/pandas/issues/10713
https://github.com/pandas-dev/pandas/issues/4125
https://github.com/pandas-dev/pandas/issues/10728
https://github.com/pandas-dev/pandas/issues/10548
https://github.com/pandas-dev/pandas/issues/10591
https://github.com/pandas-dev/pandas/issues/9618
https://github.com/pandas-dev/pandas/issues/10604
https://github.com/pandas-dev/pandas/issues/10408
https://github.com/pandas-dev/pandas/issues/10412
https://github.com/pandas-dev/pandas/issues/10791
https://github.com/pandas-dev/pandas/issues/10824
https://github.com/pandas-dev/pandas/issues/10888
https://github.com/pandas-dev/pandas/issues/10645
https://github.com/pandas-dev/pandas/issues/10692
https://github.com/pandas-dev/pandas/issues/9535
https://github.com/pandas-dev/pandas/issues/10366
https://github.com/pandas-dev/pandas/issues/9428
https://github.com/pandas-dev/pandas/issues/10907
https://github.com/pandas-dev/pandas/issues/9431
https://github.com/pandas-dev/pandas/issues/10583
https://github.com/pandas-dev/pandas/issues/10295
https://github.com/pandas-dev/pandas/issues/10747
https://github.com/pandas-dev/pandas/issues/10295
https://github.com/pandas-dev/pandas/issues/10885
https://github.com/pandas-dev/pandas/issues/10779
https://github.com/pandas-dev/pandas/issues/10581
https://github.com/pandas-dev/pandas/issues/10547
https://github.com/pandas-dev/pandas/issues/10779

pandas: powerful Python data analysis toolkit, Release 0.23.4

• Bug in TimedeltaIndex formatter causing error while trying to save DataFrame with
TimedeltaIndex using to_csv (GH10833)

• Bug in DataFrame.where when handling Series slicing (GH10218, GH9558)

• Bug where pd.read_gbq throws ValueError when Bigquery returns zero rows (GH10273)

• Bug in to_json which was causing segmentation fault when serializing 0-rank ndarray (GH9576)

• Bug in plotting functions may raise IndexError when plotted on GridSpec (GH10819)

• Bug in plot result may show unnecessary minor ticklabels (GH10657)

• Bug in groupby incorrect computation for aggregation on DataFrame with NaT (E.g first, last, min).
(GH10590, GH11010)

• Bug when constructing DataFramewhere passing a dictionary with only scalar values and specifying columns
did not raise an error (GH10856)

• Bug in .var() causing roundoff errors for highly similar values (GH10242)

• Bug in DataFrame.plot(subplots=True) with duplicated columns outputs incorrect result (GH10962)

• Bug in Index arithmetic may result in incorrect class (GH10638)

• Bug in date_range results in empty if freq is negative annually, quarterly and monthly (GH11018)

• Bug in DatetimeIndex cannot infer negative freq (GH11018)

• Remove use of some deprecated numpy comparison operations, mainly in tests. (GH10569)

• Bug in Index dtype may not applied properly (GH11017)

• Bug in io.gbq when testing for minimum google api client version (GH10652)

• Bug in DataFrame construction from nested dict with timedelta keys (GH11129)

• Bug in .fillna against may raise TypeError when data contains datetime dtype (GH7095, GH11153)

• Bug in .groupby when number of keys to group by is same as length of index (GH11185)

• Bug in convert_objects where converted values might not be returned if all null and coerce (GH9589)

• Bug in convert_objects where copy keyword was not respected (GH9589)

1.19 v0.16.2 (June 12, 2015)

This is a minor bug-fix release from 0.16.1 and includes a a large number of bug fixes along some new features
(pipe() method), enhancements, and performance improvements.

We recommend that all users upgrade to this version.

Highlights include:

• A new pipe method, see here

• Documentation on how to use numba with pandas, see here

What’s new in v0.16.2

• New features

– Pipe

1.19. v0.16.2 (June 12, 2015) 251

https://github.com/pandas-dev/pandas/issues/10833
https://github.com/pandas-dev/pandas/issues/10218
https://github.com/pandas-dev/pandas/issues/9558
https://github.com/pandas-dev/pandas/issues/10273
https://github.com/pandas-dev/pandas/issues/9576
https://github.com/pandas-dev/pandas/issues/10819
https://github.com/pandas-dev/pandas/issues/10657
https://github.com/pandas-dev/pandas/issues/10590
https://github.com/pandas-dev/pandas/issues/11010
https://github.com/pandas-dev/pandas/issues/10856
https://github.com/pandas-dev/pandas/issues/10242
https://github.com/pandas-dev/pandas/issues/10962
https://github.com/pandas-dev/pandas/issues/10638
https://github.com/pandas-dev/pandas/issues/11018
https://github.com/pandas-dev/pandas/issues/11018
https://github.com/pandas-dev/pandas/issues/10569
https://github.com/pandas-dev/pandas/issues/11017
https://github.com/pandas-dev/pandas/issues/10652
https://github.com/pandas-dev/pandas/issues/11129
https://github.com/pandas-dev/pandas/issues/7095
https://github.com/pandas-dev/pandas/issues/11153
https://github.com/pandas-dev/pandas/issues/11185
https://github.com/pandas-dev/pandas/issues/9589
https://github.com/pandas-dev/pandas/issues/9589
http://numba.pydata.org

pandas: powerful Python data analysis toolkit, Release 0.23.4

– Other Enhancements

• API Changes

• Performance Improvements

• Bug Fixes

1.19.1 New features

1.19.1.1 Pipe

We’ve introduced a new method DataFrame.pipe(). As suggested by the name, pipe should be used to pipe
data through a chain of function calls. The goal is to avoid confusing nested function calls like

df is a DataFrame
f, g, and h are functions that take and return DataFrames
f(g(h(df), arg1=1), arg2=2, arg3=3)

The logic flows from inside out, and function names are separated from their keyword arguments. This can be rewritten
as

(df.pipe(h)
.pipe(g, arg1=1)
.pipe(f, arg2=2, arg3=3)

)

Now both the code and the logic flow from top to bottom. Keyword arguments are next to their functions. Overall the
code is much more readable.

In the example above, the functions f, g, and h each expected the DataFrame as the first positional argument. When
the function you wish to apply takes its data anywhere other than the first argument, pass a tuple of (function,
keyword) indicating where the DataFrame should flow. For example:

In [1]: import statsmodels.formula.api as sm

In [2]: bb = pd.read_csv('data/baseball.csv', index_col='id')

sm.ols takes (formula, data)
In [3]: (bb.query('h > 0')

...: .assign(ln_h = lambda df: np.log(df.h))

...: .pipe((sm.ols, 'data'), 'hr ~ ln_h + year + g + C(lg)')

...: .fit()

...: .summary()

...:)

...:
Out[3]:
<class 'statsmodels.iolib.summary.Summary'>
"""

OLS Regression Results
==
Dep. Variable: hr R-squared: 0.685
Model: OLS Adj. R-squared: 0.665
Method: Least Squares F-statistic: 34.28
Date: Sun, 05 Aug 2018 Prob (F-statistic): 3.48e-15
Time: 12:02:13 Log-Likelihood: -205.92

(continues on next page)

252 Chapter 1. What’s New

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

No. Observations: 68 AIC: 421.8
Df Residuals: 63 BIC: 432.9
Df Model: 4
Covariance Type: nonrobust
===

coef std err t P>|t| [0.025 0.975]

Intercept -8484.7720 4664.146 -1.819 0.074 -1.78e+04 835.780
C(lg)[T.NL] -2.2736 1.325 -1.716 0.091 -4.922 0.375
ln_h -1.3542 0.875 -1.547 0.127 -3.103 0.395
year 4.2277 2.324 1.819 0.074 -0.417 8.872
g 0.1841 0.029 6.258 0.000 0.125 0.243
==
Omnibus: 10.875 Durbin-Watson: 1.999
Prob(Omnibus): 0.004 Jarque-Bera (JB): 17.298
Skew: 0.537 Prob(JB): 0.000175
Kurtosis: 5.225 Cond. No. 1.49e+07
==

Warnings:
[1] Standard Errors assume that the covariance matrix of the errors is correctly
→˓specified.
[2] The condition number is large, 1.49e+07. This might indicate that there are
strong multicollinearity or other numerical problems.
"""

The pipe method is inspired by unix pipes, which stream text through processes. More recently dplyr and magrittr
have introduced the popular (%>%) pipe operator for R.

See the documentation for more. (GH10129)

1.19.1.2 Other Enhancements

• Added rsplit to Index/Series StringMethods (GH10303)

• Removed the hard-coded size limits on the DataFrame HTML representation in the IPython notebook, and
leave this to IPython itself (only for IPython v3.0 or greater). This eliminates the duplicate scroll bars that
appeared in the notebook with large frames (GH10231).

Note that the notebook has a toggle output scrolling feature to limit the display of very large frames
(by clicking left of the output). You can also configure the way DataFrames are displayed using the pandas
options, see here here.

• axis parameter of DataFrame.quantile now accepts also index and column. (GH9543)

1.19.2 API Changes

• Holiday now raises NotImplementedError if both offset and observance are used in the construc-
tor instead of returning an incorrect result (GH10217).

1.19.3 Performance Improvements

• Improved Series.resample performance with dtype=datetime64[ns] (GH7754)

• Increase performance of str.split when expand=True (GH10081)

1.19. v0.16.2 (June 12, 2015) 253

https://github.com/hadley/dplyr
https://github.com/smbache/magrittr
http://www.r-project.org
https://github.com/pandas-dev/pandas/issues/10129
https://github.com/pandas-dev/pandas/issues/10303
https://github.com/pandas-dev/pandas/issues/10231
https://github.com/pandas-dev/pandas/issues/9543
https://github.com/pandas-dev/pandas/issues/10217
https://github.com/pandas-dev/pandas/issues/7754
https://github.com/pandas-dev/pandas/issues/10081

pandas: powerful Python data analysis toolkit, Release 0.23.4

1.19.4 Bug Fixes

• Bug in Series.hist raises an error when a one row Series was given (GH10214)

• Bug where HDFStore.select modifies the passed columns list (GH7212)

• Bug in Categorical repr with display.width of None in Python 3 (GH10087)

• Bug in to_json with certain orients and a CategoricalIndex would segfault (GH10317)

• Bug where some of the nan funcs do not have consistent return dtypes (GH10251)

• Bug in DataFrame.quantile on checking that a valid axis was passed (GH9543)

• Bug in groupby.apply aggregation for Categorical not preserving categories (GH10138)

• Bug in to_csv where date_format is ignored if the datetime is fractional (GH10209)

• Bug in DataFrame.to_json with mixed data types (GH10289)

• Bug in cache updating when consolidating (GH10264)

• Bug in mean() where integer dtypes can overflow (GH10172)

• Bug where Panel.from_dict does not set dtype when specified (GH10058)

• Bug in Index.union raises AttributeError when passing array-likes. (GH10149)

• Bug in Timestamp’s‘ microsecond, quarter, dayofyear, week and daysinmonth properties re-
turn np.int type, not built-in int. (GH10050)

• Bug in NaT raises AttributeError when accessing to daysinmonth, dayofweek properties.
(GH10096)

• Bug in Index repr when using the max_seq_items=None setting (GH10182).

• Bug in getting timezone data with dateutil on various platforms (GH9059, GH8639, GH9663, GH10121)

• Bug in displaying datetimes with mixed frequencies; display ‘ms’ datetimes to the proper precision. (GH10170)

• Bug in setitem where type promotion is applied to the entire block (GH10280)

• Bug in Series arithmetic methods may incorrectly hold names (GH10068)

• Bug in GroupBy.get_group when grouping on multiple keys, one of which is categorical. (GH10132)

• Bug in DatetimeIndex and TimedeltaIndex names are lost after timedelta arithmetics (GH9926)

• Bug in DataFrame construction from nested dict with datetime64 (GH10160)

• Bug in Series construction from dict with datetime64 keys (GH9456)

• Bug in Series.plot(label="LABEL") not correctly setting the label (GH10119)

• Bug in plot not defaulting to matplotlib axes.grid setting (GH9792)

• Bug causing strings containing an exponent, but no decimal to be parsed as int instead of float in
engine='python' for the read_csv parser (GH9565)

• Bug in Series.align resets name when fill_value is specified (GH10067)

• Bug in read_csv causing index name not to be set on an empty DataFrame (GH10184)

• Bug in SparseSeries.abs resets name (GH10241)

• Bug in TimedeltaIndex slicing may reset freq (GH10292)

• Bug in GroupBy.get_group raises ValueError when group key contains NaT (GH6992)

• Bug in SparseSeries constructor ignores input data name (GH10258)

254 Chapter 1. What’s New

https://github.com/pandas-dev/pandas/issues/10214
https://github.com/pandas-dev/pandas/issues/7212
https://github.com/pandas-dev/pandas/issues/10087
https://github.com/pandas-dev/pandas/issues/10317
https://github.com/pandas-dev/pandas/issues/10251
https://github.com/pandas-dev/pandas/issues/9543
https://github.com/pandas-dev/pandas/issues/10138
https://github.com/pandas-dev/pandas/issues/10209
https://github.com/pandas-dev/pandas/issues/10289
https://github.com/pandas-dev/pandas/issues/10264
https://github.com/pandas-dev/pandas/issues/10172
https://github.com/pandas-dev/pandas/issues/10058
https://github.com/pandas-dev/pandas/issues/10149
https://github.com/pandas-dev/pandas/issues/10050
https://github.com/pandas-dev/pandas/issues/10096
https://github.com/pandas-dev/pandas/issues/10182
https://github.com/pandas-dev/pandas/issues/9059
https://github.com/pandas-dev/pandas/issues/8639
https://github.com/pandas-dev/pandas/issues/9663
https://github.com/pandas-dev/pandas/issues/10121
https://github.com/pandas-dev/pandas/issues/10170
https://github.com/pandas-dev/pandas/issues/10280
https://github.com/pandas-dev/pandas/issues/10068
https://github.com/pandas-dev/pandas/issues/10132
https://github.com/pandas-dev/pandas/issues/9926
https://github.com/pandas-dev/pandas/issues/10160
https://github.com/pandas-dev/pandas/issues/9456
https://github.com/pandas-dev/pandas/issues/10119
https://github.com/pandas-dev/pandas/issues/9792
https://github.com/pandas-dev/pandas/issues/9565
https://github.com/pandas-dev/pandas/issues/10067
https://github.com/pandas-dev/pandas/issues/10184
https://github.com/pandas-dev/pandas/issues/10241
https://github.com/pandas-dev/pandas/issues/10292
https://github.com/pandas-dev/pandas/issues/6992
https://github.com/pandas-dev/pandas/issues/10258

pandas: powerful Python data analysis toolkit, Release 0.23.4

• Bug in Categorical.remove_categories causing a ValueError when removing the NaN category
if underlying dtype is floating-point (GH10156)

• Bug where infer_freq infers timerule (WOM-5XXX) unsupported by to_offset (GH9425)

• Bug in DataFrame.to_hdf() where table format would raise a seemingly unrelated error for invalid (non-
string) column names. This is now explicitly forbidden. (GH9057)

• Bug to handle masking empty DataFrame (GH10126).

• Bug where MySQL interface could not handle numeric table/column names (GH10255)

• Bug in read_csv with a date_parser that returned a datetime64 array of other time resolution than
[ns] (GH10245)

• Bug in Panel.apply when the result has ndim=0 (GH10332)

• Bug in read_hdf where auto_close could not be passed (GH9327).

• Bug in read_hdf where open stores could not be used (GH10330).

• Bug in adding empty DataFrames, now results in a DataFrame that .equals an empty DataFrame
(GH10181).

• Bug in to_hdf and HDFStore which did not check that complib choices were valid (GH4582, GH8874).

1.20 v0.16.1 (May 11, 2015)

This is a minor bug-fix release from 0.16.0 and includes a a large number of bug fixes along several new features,
enhancements, and performance improvements. We recommend that all users upgrade to this version.

Highlights include:

• Support for a CategoricalIndex, a category based index, see here

• New section on how-to-contribute to pandas, see here

• Revised “Merge, join, and concatenate” documentation, including graphical examples to make it easier to un-
derstand each operations, see here

• New method sample for drawing random samples from Series, DataFrames and Panels. See here

• The default Index printing has changed to a more uniform format, see here

• BusinessHour datetime-offset is now supported, see here

• Further enhancement to the .str accessor to make string operations easier, see here

What’s new in v0.16.1

• Enhancements

– CategoricalIndex

– Sample

– String Methods Enhancements

– Other Enhancements

• API changes

– Deprecations

1.20. v0.16.1 (May 11, 2015) 255

https://github.com/pandas-dev/pandas/issues/10156
https://github.com/pandas-dev/pandas/issues/9425
https://github.com/pandas-dev/pandas/issues/9057
https://github.com/pandas-dev/pandas/issues/10126
https://github.com/pandas-dev/pandas/issues/10255
https://github.com/pandas-dev/pandas/issues/10245
https://github.com/pandas-dev/pandas/issues/10332
https://github.com/pandas-dev/pandas/issues/9327
https://github.com/pandas-dev/pandas/issues/10330
https://github.com/pandas-dev/pandas/issues/10181
https://github.com/pandas-dev/pandas/issues/4582
https://github.com/pandas-dev/pandas/issues/8874

pandas: powerful Python data analysis toolkit, Release 0.23.4

• Index Representation

• Performance Improvements

• Bug Fixes

Warning: In pandas 0.17.0, the sub-package pandas.io.data will be removed in favor of a separately
installable package (GH8961).

1.20.1 Enhancements

1.20.1.1 CategoricalIndex

We introduce a CategoricalIndex, a new type of index object that is useful for supporting indexing with dupli-
cates. This is a container around a Categorical (introduced in v0.15.0) and allows efficient indexing and storage
of an index with a large number of duplicated elements. Prior to 0.16.1, setting the index of a DataFrame/Series
with a category dtype would convert this to regular object-based Index.

In [1]: df = DataFrame({'A' : np.arange(6),
...: 'B' : Series(list('aabbca')).astype('category',
...: categories=list('cab'))
...: })
...:

In [2]: df
Out[2]:

A B
0 0 a
1 1 a
2 2 b
3 3 b
4 4 c
5 5 a

In [3]: df.dtypes
Out[3]:
A int64
B category
dtype: object

In [4]: df.B.cat.categories
Out[4]: Index(['c', 'a', 'b'], dtype='object')

setting the index, will create create a CategoricalIndex

In [5]: df2 = df.set_index('B')

In [6]: df2.index
Out[6]: CategoricalIndex(['a', 'a', 'b', 'b', 'c', 'a'], categories=['c', 'a', 'b'],
→˓ordered=False, name='B', dtype='category')

indexing with __getitem__/.iloc/.loc/.ix works similarly to an Index with duplicates. The indexers
MUST be in the category or the operation will raise.

256 Chapter 1. What’s New

https://github.com/pandas-dev/pandas/issues/8961

pandas: powerful Python data analysis toolkit, Release 0.23.4

In [7]: df2.loc['a']
Out[7]:

A
B
a 0
a 1
a 5

and preserves the CategoricalIndex

In [8]: df2.loc['a'].index
Out[8]: CategoricalIndex(['a', 'a', 'a'], categories=['c', 'a', 'b'], ordered=False,
→˓name='B', dtype='category')

sorting will order by the order of the categories

In [9]: df2.sort_index()
Out[9]:

A
B
c 4
a 0
a 1
a 5
b 2
b 3

groupby operations on the index will preserve the index nature as well

In [10]: df2.groupby(level=0).sum()
Out[10]:

A
B
c 4
a 6
b 5

In [11]: df2.groupby(level=0).sum().index
Out[11]: CategoricalIndex(['c', 'a', 'b'], categories=['c', 'a', 'b'], ordered=False,
→˓name='B', dtype='category')

reindexing operations, will return a resulting index based on the type of the passed indexer, meaning that passing a
list will return a plain-old-Index; indexing with a Categorical will return a CategoricalIndex, indexed
according to the categories of the PASSED Categorical dtype. This allows one to arbitrarly index these even with
values NOT in the categories, similarly to how you can reindex ANY pandas index.

In [12]: df2.reindex(['a','e'])
Out[12]:

A
B
a 0.0
a 1.0
a 5.0
e NaN

In [13]: df2.reindex(['a','e']).index
Out[13]: Index(['a', 'a', 'a', 'e'], dtype='object', name='B')

(continues on next page)

1.20. v0.16.1 (May 11, 2015) 257

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

In [14]: df2.reindex(pd.Categorical(['a','e'],categories=list('abcde')))
Out[14]:

A
B
a 0.0
a 1.0
a 5.0
e NaN

In [15]: df2.reindex(pd.Categorical(['a','e'],categories=list('abcde'))).index
Out[15]: CategoricalIndex(['a', 'a', 'a', 'e'], categories=['a', 'b', 'c', 'd', 'e'],
→˓ordered=False, name='B', dtype='category')

See the documentation for more. (GH7629, GH10038, GH10039)

1.20.1.2 Sample

Series, DataFrames, and Panels now have a new method: sample(). The method accepts a specific number of rows
or columns to return, or a fraction of the total number or rows or columns. It also has options for sampling with or
without replacement, for passing in a column for weights for non-uniform sampling, and for setting seed values to
facilitate replication. (GH2419)

In [1]: example_series = Series([0,1,2,3,4,5])

When no arguments are passed, returns 1
In [2]: example_series.sample()
Out[2]:
3 3
dtype: int64

One may specify either a number of rows:
In [3]: example_series.sample(n=3)
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\Out[3]:
5 5
1 1
4 4
dtype: int64

Or a fraction of the rows:
In [4]: example_series.sample(frac=0.5)
\\Out[4]:
4 4
1 1
0 0
dtype: int64

weights are accepted.
In [5]: example_weights = [0, 0, 0.2, 0.2, 0.2, 0.4]

In [6]: example_series.sample(n=3, weights=example_weights)
Out[6]:
2 2
3 3
5 5

(continues on next page)

258 Chapter 1. What’s New

https://github.com/pandas-dev/pandas/issues/7629
https://github.com/pandas-dev/pandas/issues/10038
https://github.com/pandas-dev/pandas/issues/10039
https://github.com/pandas-dev/pandas/issues/2419

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

dtype: int64

weights will also be normalized if they do not sum to one,
and missing values will be treated as zeros.
In [7]: example_weights2 = [0.5, 0, 0, 0, None, np.nan]

In [8]: example_series.sample(n=1, weights=example_weights2)
Out[8]:
0 0
dtype: int64

When applied to a DataFrame, one may pass the name of a column to specify sampling weights when sampling from
rows.

In [9]: df = DataFrame({'col1':[9,8,7,6], 'weight_column':[0.5, 0.4, 0.1, 0]})

In [10]: df.sample(n=3, weights='weight_column')
Out[10]:

col1 weight_column
0 9 0.5
1 8 0.4
2 7 0.1

1.20.1.3 String Methods Enhancements

Continuing from v0.16.0, the following enhancements make string operations easier and more consistent with standard
python string operations.

• Added StringMethods (.str accessor) to Index (GH9068)

The .str accessor is now available for both Series and Index.

In [11]: idx = Index([' jack', 'jill ', ' jesse ', 'frank'])

In [12]: idx.str.strip()
Out[12]: Index(['jack', 'jill', 'jesse', 'frank'], dtype='object')

One special case for the .str accessor on Index is that if a string method returns bool, the .str accessor
will return a np.array instead of a boolean Index (GH8875). This enables the following expression to work
naturally:

In [13]: idx = Index(['a1', 'a2', 'b1', 'b2'])

In [14]: s = Series(range(4), index=idx)

In [15]: s
Out[15]:
a1 0
a2 1
b1 2
b2 3
dtype: int64

In [16]: idx.str.startswith('a')
\\\Out[16]: array([True,
→˓True, False, False], dtype=bool)

(continues on next page)

1.20. v0.16.1 (May 11, 2015) 259

https://github.com/pandas-dev/pandas/issues/9068
https://github.com/pandas-dev/pandas/issues/8875

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

In [17]: s[s.index.str.startswith('a')]
\\Out[17]:
→˓

a1 0
a2 1
dtype: int64

• The following new methods are accesible via .str accessor to apply the function to each values. (GH9766,
GH9773, GH10031, GH10045, GH10052)

Methods
capitalize() swapcase() normalize() partition() rpartition()
index() rindex() translate()

• split now takes expand keyword to specify whether to expand dimensionality. return_type is depre-
cated. (GH9847)

In [18]: s = Series(['a,b', 'a,c', 'b,c'])

return Series
In [19]: s.str.split(',')
Out[19]:
0 [a, b]
1 [a, c]
2 [b, c]
dtype: object

return DataFrame
In [20]: s.str.split(',', expand=True)
\\Out[20]:

0 1
0 a b
1 a c
2 b c

In [21]: idx = Index(['a,b', 'a,c', 'b,c'])

return Index
In [22]: idx.str.split(',')
Out[22]: Index([['a', 'b'], ['a', 'c'], ['b', 'c']], dtype='object')

return MultiIndex
In [23]: idx.str.split(',', expand=True)
\\\Out[23]:
MultiIndex(levels=[['a', 'b'], ['b', 'c']],

labels=[[0, 0, 1], [0, 1, 1]])

• Improved extract and get_dummies methods for Index.str (GH9980)

1.20.1.4 Other Enhancements

• BusinessHour offset is now supported, which represents business hours starting from 09:00 - 17:00 on
BusinessDay by default. See Here for details. (GH7905)

260 Chapter 1. What’s New

https://github.com/pandas-dev/pandas/issues/9766
https://github.com/pandas-dev/pandas/issues/9773
https://github.com/pandas-dev/pandas/issues/10031
https://github.com/pandas-dev/pandas/issues/10045
https://github.com/pandas-dev/pandas/issues/10052
https://github.com/pandas-dev/pandas/issues/9847
https://github.com/pandas-dev/pandas/issues/9980
https://github.com/pandas-dev/pandas/issues/7905

pandas: powerful Python data analysis toolkit, Release 0.23.4

In [24]: from pandas.tseries.offsets import BusinessHour

In [25]: Timestamp('2014-08-01 09:00') + BusinessHour()
Out[25]: Timestamp('2014-08-01 10:00:00')

In [26]: Timestamp('2014-08-01 07:00') + BusinessHour()
\\Out[26]: Timestamp('2014-08-01 10:00:00
→˓')

In [27]: Timestamp('2014-08-01 16:30') + BusinessHour()
\\Out[27]:
→˓Timestamp('2014-08-04 09:30:00')

• DataFrame.diff now takes an axis parameter that determines the direction of differencing (GH9727)

• Allow clip, clip_lower, and clip_upper to accept array-like arguments as thresholds (This is a regres-
sion from 0.11.0). These methods now have an axis parameter which determines how the Series or DataFrame
will be aligned with the threshold(s). (GH6966)

• DataFrame.mask() and Series.mask() now support same keywords as where (GH8801)

• drop function can now accept errors keyword to suppress ValueError raised when any of label does not
exist in the target data. (GH6736)

In [28]: df = DataFrame(np.random.randn(3, 3), columns=['A', 'B', 'C'])

In [29]: df.drop(['A', 'X'], axis=1, errors='ignore')
Out[29]:

B C
0 1.058969 -0.397840
1 1.047579 1.045938
2 -0.122092 0.124713

• Add support for separating years and quarters using dashes, for example 2014-Q1. (GH9688)

• Allow conversion of values with dtype datetime64 or timedelta64 to strings using astype(str)
(GH9757)

• get_dummies function now accepts sparse keyword. If set to True, the return DataFrame is sparse, e.g.
SparseDataFrame. (GH8823)

• Period now accepts datetime64 as value input. (GH9054)

• Allow timedelta string conversion when leading zero is missing from time definition, ie 0:00:00 vs 00:00:00.
(GH9570)

• Allow Panel.shift with axis='items' (GH9890)

• Trying to write an excel file now raises NotImplementedError if the DataFrame has a MultiIndex
instead of writing a broken Excel file. (GH9794)

• Allow Categorical.add_categories to accept Series or np.array. (GH9927)

• Add/delete str/dt/cat accessors dynamically from __dir__. (GH9910)

• Add normalize as a dt accessor method. (GH10047)

• DataFrame and Series now have _constructor_expanddim property as overridable constructor for
one higher dimensionality data. This should be used only when it is really needed, see here

• pd.lib.infer_dtype now returns 'bytes' in Python 3 where appropriate. (GH10032)

1.20. v0.16.1 (May 11, 2015) 261

https://github.com/pandas-dev/pandas/issues/9727
https://github.com/pandas-dev/pandas/issues/6966
https://github.com/pandas-dev/pandas/issues/8801
https://github.com/pandas-dev/pandas/issues/6736
https://github.com/pandas-dev/pandas/issues/9688
https://github.com/pandas-dev/pandas/issues/9757
https://github.com/pandas-dev/pandas/issues/8823
https://github.com/pandas-dev/pandas/issues/9054
https://github.com/pandas-dev/pandas/issues/9570
https://github.com/pandas-dev/pandas/issues/9890
https://github.com/pandas-dev/pandas/issues/9794
https://github.com/pandas-dev/pandas/issues/9927
https://github.com/pandas-dev/pandas/issues/9910
https://github.com/pandas-dev/pandas/issues/10047
https://github.com/pandas-dev/pandas/issues/10032

pandas: powerful Python data analysis toolkit, Release 0.23.4

1.20.2 API changes

• When passing in an ax to df.plot(..., ax=ax), the sharex kwarg will now default to False. The result
is that the visibility of xlabels and xticklabels will not anymore be changed. You have to do that by yourself
for the right axes in your figure or set sharex=True explicitly (but this changes the visible for all axes in the
figure, not only the one which is passed in!). If pandas creates the subplots itself (e.g. no passed in ax kwarg),
then the default is still sharex=True and the visibility changes are applied.

• assign() now inserts new columns in alphabetical order. Previously the order was arbitrary. (GH9777)

• By default, read_csv and read_table will now try to infer the compression type based on the file exten-
sion. Set compression=None to restore the previous behavior (no decompression). (GH9770)

1.20.2.1 Deprecations

• Series.str.split’s return_type keyword was removed in favor of expand (GH9847)

1.20.3 Index Representation

The string representation of Index and its sub-classes have now been unified. These will show a single-line display
if there are few values; a wrapped multi-line display for a lot of values (but less than display.max_seq_items;
if lots of items (> display.max_seq_items) will show a truncated display (the head and tail of the data). The
formatting for MultiIndex is unchanges (a multi-line wrapped display). The display width responds to the option
display.max_seq_items, which is defaulted to 100. (GH6482)

Previous Behavior

In [2]: pd.Index(range(4),name='foo')
Out[2]: Int64Index([0, 1, 2, 3], dtype='int64')

In [3]: pd.Index(range(104),name='foo')
Out[3]: Int64Index([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,
→˓19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39,
→˓40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60,
→˓61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81,
→˓82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, ...], dtype=
→˓'int64')

In [4]: pd.date_range('20130101',periods=4,name='foo',tz='US/Eastern')
Out[4]:
<class 'pandas.tseries.index.DatetimeIndex'>
[2013-01-01 00:00:00-05:00, ..., 2013-01-04 00:00:00-05:00]
Length: 4, Freq: D, Timezone: US/Eastern

In [5]: pd.date_range('20130101',periods=104,name='foo',tz='US/Eastern')
Out[5]:
<class 'pandas.tseries.index.DatetimeIndex'>
[2013-01-01 00:00:00-05:00, ..., 2013-04-14 00:00:00-04:00]
Length: 104, Freq: D, Timezone: US/Eastern

New Behavior

In [30]: pd.set_option('display.width', 80)

In [31]: pd.Index(range(4), name='foo')
Out[31]: RangeIndex(start=0, stop=4, step=1, name='foo')

(continues on next page)

262 Chapter 1. What’s New

https://github.com/pandas-dev/pandas/issues/9777
https://github.com/pandas-dev/pandas/issues/9770
https://github.com/pandas-dev/pandas/issues/9847
https://github.com/pandas-dev/pandas/issues/6482

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

In [32]: pd.Index(range(30), name='foo')
\\\Out[32]: RangeIndex(start=0,
→˓stop=30, step=1, name='foo')

In [33]: pd.Index(range(104), name='foo')
\\\Out[33]:
→˓RangeIndex(start=0, stop=104, step=1, name='foo')

In [34]: pd.CategoricalIndex(['a','bb','ccc','dddd'], ordered=True, name='foobar')
\\Out[34]:
→˓CategoricalIndex(['a', 'bb', 'ccc', 'dddd'], categories=['a', 'bb', 'ccc', 'dddd'],
→˓ordered=True, name='foobar', dtype='category')

In [35]: pd.CategoricalIndex(['a','bb','ccc','dddd']*10, ordered=True, name='foobar')
\\Out[35]:
→˓

CategoricalIndex(['a', 'bb', 'ccc', 'dddd', 'a', 'bb', 'ccc', 'dddd', 'a',
'bb', 'ccc', 'dddd', 'a', 'bb', 'ccc', 'dddd', 'a', 'bb',
'ccc', 'dddd', 'a', 'bb', 'ccc', 'dddd', 'a', 'bb', 'ccc',
'dddd', 'a', 'bb', 'ccc', 'dddd', 'a', 'bb', 'ccc', 'dddd',
'a', 'bb', 'ccc', 'dddd'],

categories=['a', 'bb', 'ccc', 'dddd'], ordered=True, name='foobar',
→˓dtype='category')

In [36]: pd.CategoricalIndex(['a','bb','ccc','dddd']*100, ordered=True, name='foobar')
\\Out[36]:
→˓

CategoricalIndex(['a', 'bb', 'ccc', 'dddd', 'a', 'bb', 'ccc', 'dddd', 'a',
'bb',
...
'ccc', 'dddd', 'a', 'bb', 'ccc', 'dddd', 'a', 'bb', 'ccc',
'dddd'],

categories=['a', 'bb', 'ccc', 'dddd'], ordered=True, name='foobar',
→˓dtype='category', length=400)

In [37]: pd.date_range('20130101',periods=4, name='foo', tz='US/Eastern')
\\Out[37]:
→˓

DatetimeIndex(['2013-01-01 00:00:00-05:00', '2013-01-02 00:00:00-05:00',
'2013-01-03 00:00:00-05:00', '2013-01-04 00:00:00-05:00'],

dtype='datetime64[ns, US/Eastern]', name='foo', freq='D')

In [38]: pd.date_range('20130101',periods=25, freq='D')
\\\Out[38]:
→˓

DatetimeIndex(['2013-01-01', '2013-01-02', '2013-01-03', '2013-01-04',
'2013-01-05', '2013-01-06', '2013-01-07', '2013-01-08',
'2013-01-09', '2013-01-10', '2013-01-11', '2013-01-12',
'2013-01-13', '2013-01-14', '2013-01-15', '2013-01-16',
'2013-01-17', '2013-01-18', '2013-01-19', '2013-01-20',
'2013-01-21', '2013-01-22', '2013-01-23', '2013-01-24',
'2013-01-25'],

dtype='datetime64[ns]', freq='D')

In [39]: pd.date_range('20130101',periods=104, name='foo', tz='US/Eastern')
\\\Out[39]:
→˓ (continues on next page)

1.20. v0.16.1 (May 11, 2015) 263

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

DatetimeIndex(['2013-01-01 00:00:00-05:00', '2013-01-02 00:00:00-05:00',
'2013-01-03 00:00:00-05:00', '2013-01-04 00:00:00-05:00',
'2013-01-05 00:00:00-05:00', '2013-01-06 00:00:00-05:00',
'2013-01-07 00:00:00-05:00', '2013-01-08 00:00:00-05:00',
'2013-01-09 00:00:00-05:00', '2013-01-10 00:00:00-05:00',
...
'2013-04-05 00:00:00-04:00', '2013-04-06 00:00:00-04:00',
'2013-04-07 00:00:00-04:00', '2013-04-08 00:00:00-04:00',
'2013-04-09 00:00:00-04:00', '2013-04-10 00:00:00-04:00',
'2013-04-11 00:00:00-04:00', '2013-04-12 00:00:00-04:00',
'2013-04-13 00:00:00-04:00', '2013-04-14 00:00:00-04:00'],

dtype='datetime64[ns, US/Eastern]', name='foo', length=104, freq='D')

1.20.4 Performance Improvements

• Improved csv write performance with mixed dtypes, including datetimes by up to 5x (GH9940)

• Improved csv write performance generally by 2x (GH9940)

• Improved the performance of pd.lib.max_len_string_array by 5-7x (GH10024)

1.20.5 Bug Fixes

• Bug where labels did not appear properly in the legend of DataFrame.plot(), passing label= arguments
works, and Series indices are no longer mutated. (GH9542)

• Bug in json serialization causing a segfault when a frame had zero length. (GH9805)

• Bug in read_csv where missing trailing delimiters would cause segfault. (GH5664)

• Bug in retaining index name on appending (GH9862)

• Bug in scatter_matrix draws unexpected axis ticklabels (GH5662)

• Fixed bug in StataWriter resulting in changes to input DataFrame upon save (GH9795).

• Bug in transform causing length mismatch when null entries were present and a fast aggregator was being
used (GH9697)

• Bug in equals causing false negatives when block order differed (GH9330)

• Bug in grouping with multiple pd.Grouper where one is non-time based (GH10063)

• Bug in read_sql_table error when reading postgres table with timezone (GH7139)

• Bug in DataFrame slicing may not retain metadata (GH9776)

• Bug where TimdeltaIndex were not properly serialized in fixed HDFStore (GH9635)

• Bug with TimedeltaIndex constructor ignoring name when given another TimedeltaIndex as data
(GH10025).

• Bug in DataFrameFormatter._get_formatted_index with not applying max_colwidth to the
DataFrame index (GH7856)

• Bug in .loc with a read-only ndarray data source (GH10043)

• Bug in groupby.apply() that would raise if a passed user defined function either returned only None (for
all input). (GH9685)

264 Chapter 1. What’s New

https://github.com/pandas-dev/pandas/issues/9940
https://github.com/pandas-dev/pandas/issues/9940
https://github.com/pandas-dev/pandas/issues/10024
https://github.com/pandas-dev/pandas/issues/9542
https://github.com/pandas-dev/pandas/issues/9805
https://github.com/pandas-dev/pandas/issues/5664
https://github.com/pandas-dev/pandas/issues/9862
https://github.com/pandas-dev/pandas/issues/5662
https://github.com/pandas-dev/pandas/issues/9795
https://github.com/pandas-dev/pandas/issues/9697
https://github.com/pandas-dev/pandas/issues/9330
https://github.com/pandas-dev/pandas/issues/10063
https://github.com/pandas-dev/pandas/issues/7139
https://github.com/pandas-dev/pandas/issues/9776
https://github.com/pandas-dev/pandas/issues/9635
https://github.com/pandas-dev/pandas/issues/10025
https://github.com/pandas-dev/pandas/issues/7856
https://github.com/pandas-dev/pandas/issues/10043
https://github.com/pandas-dev/pandas/issues/9685

pandas: powerful Python data analysis toolkit, Release 0.23.4

• Always use temporary files in pytables tests (GH9992)

• Bug in plotting continuously using secondary_y may not show legend properly. (GH9610, GH9779)

• Bug in DataFrame.plot(kind="hist") results in TypeError when DataFrame contains non-
numeric columns (GH9853)

• Bug where repeated plotting of DataFrame with a DatetimeIndex may raise TypeError (GH9852)

• Bug in setup.py that would allow an incompat cython version to build (GH9827)

• Bug in plotting secondary_y incorrectly attaches right_ax property to secondary axes specifying itself
recursively. (GH9861)

• Bug in Series.quantile on empty Series of type Datetime or Timedelta (GH9675)

• Bug in where causing incorrect results when upcasting was required (GH9731)

• Bug in FloatArrayFormatter where decision boundary for displaying “small” floats in decimal format is
off by one order of magnitude for a given display.precision (GH9764)

• Fixed bug where DataFrame.plot() raised an error when both color and style keywords were passed
and there was no color symbol in the style strings (GH9671)

• Not showing a DeprecationWarning on combining list-likes with an Index (GH10083)

• Bug in read_csv and read_tablewhen using skip_rows parameter if blank lines are present. (GH9832)

• Bug in read_csv() interprets index_col=True as 1 (GH9798)

• Bug in index equality comparisons using == failing on Index/MultiIndex type incompatibility (GH9785)

• Bug in which SparseDataFrame could not take nan as a column name (GH8822)

• Bug in to_msgpack and read_msgpack zlib and blosc compression support (GH9783)

• Bug GroupBy.size doesn’t attach index name properly if grouped by TimeGrouper (GH9925)

• Bug causing an exception in slice assignments because length_of_indexer returns wrong results
(GH9995)

• Bug in csv parser causing lines with initial whitespace plus one non-space character to be skipped. (GH9710)

• Bug in C csv parser causing spurious NaNs when data started with newline followed by whitespace. (GH10022)

• Bug causing elements with a null group to spill into the final group when grouping by a Categorical
(GH9603)

• Bug where .iloc and .loc behavior is not consistent on empty dataframes (GH9964)

• Bug in invalid attribute access on a TimedeltaIndex incorrectly raised ValueError instead of
AttributeError (GH9680)

• Bug in unequal comparisons between categorical data and a scalar, which was not in the categories (e.g.
Series(Categorical(list("abc"), ordered=True)) > "d". This returned False for all el-
ements, but now raises a TypeError. Equality comparisons also now return False for == and True for !=.
(GH9848)

• Bug in DataFrame __setitem__ when right hand side is a dictionary (GH9874)

• Bug in where when dtype is datetime64/timedelta64, but dtype of other is not (GH9804)

• Bug in MultiIndex.sortlevel() results in unicode level name breaks (GH9856)

• Bug in which groupby.transform incorrectly enforced output dtypes to match input dtypes. (GH9807)

• Bug in DataFrame constructor when columns parameter is set, and data is an empty list (GH9939)

1.20. v0.16.1 (May 11, 2015) 265

https://github.com/pandas-dev/pandas/issues/9992
https://github.com/pandas-dev/pandas/issues/9610
https://github.com/pandas-dev/pandas/issues/9779
https://github.com/pandas-dev/pandas/issues/9853
https://github.com/pandas-dev/pandas/issues/9852
https://github.com/pandas-dev/pandas/issues/9827
https://github.com/pandas-dev/pandas/issues/9861
https://github.com/pandas-dev/pandas/issues/9675
https://github.com/pandas-dev/pandas/issues/9731
https://github.com/pandas-dev/pandas/issues/9764
https://github.com/pandas-dev/pandas/issues/9671
https://github.com/pandas-dev/pandas/issues/10083
https://github.com/pandas-dev/pandas/issues/9832
https://github.com/pandas-dev/pandas/issues/9798
https://github.com/pandas-dev/pandas/issues/9785
https://github.com/pandas-dev/pandas/issues/8822
https://github.com/pandas-dev/pandas/issues/9783
https://github.com/pandas-dev/pandas/issues/9925
https://github.com/pandas-dev/pandas/issues/9995
https://github.com/pandas-dev/pandas/issues/9710
https://github.com/pandas-dev/pandas/issues/10022
https://github.com/pandas-dev/pandas/issues/9603
https://github.com/pandas-dev/pandas/issues/9964
https://github.com/pandas-dev/pandas/issues/9680
https://github.com/pandas-dev/pandas/issues/9848
https://github.com/pandas-dev/pandas/issues/9874
https://github.com/pandas-dev/pandas/issues/9804
https://github.com/pandas-dev/pandas/issues/9856
https://github.com/pandas-dev/pandas/issues/9807
https://github.com/pandas-dev/pandas/issues/9939

pandas: powerful Python data analysis toolkit, Release 0.23.4

• Bug in bar plot with log=True raises TypeError if all values are less than 1 (GH9905)

• Bug in horizontal bar plot ignores log=True (GH9905)

• Bug in PyTables queries that did not return proper results using the index (GH8265, GH9676)

• Bug where dividing a dataframe containing values of type Decimal by another Decimal would raise.
(GH9787)

• Bug where using DataFrames asfreq would remove the name of the index. (GH9885)

• Bug causing extra index point when resample BM/BQ (GH9756)

• Changed caching in AbstractHolidayCalendar to be at the instance level rather than at the class level as
the latter can result in unexpected behaviour. (GH9552)

• Fixed latex output for multi-indexed dataframes (GH9778)

• Bug causing an exception when setting an empty range using DataFrame.loc (GH9596)

• Bug in hiding ticklabels with subplots and shared axes when adding a new plot to an existing grid of axes
(GH9158)

• Bug in transform and filter when grouping on a categorical variable (GH9921)

• Bug in transform when groups are equal in number and dtype to the input index (GH9700)

• Google BigQuery connector now imports dependencies on a per-method basis.(GH9713)

• Updated BigQuery connector to no longer use deprecated oauth2client.tools.run() (GH8327)

• Bug in subclassed DataFrame. It may not return the correct class, when slicing or subsetting it. (GH9632)

• Bug in .median() where non-float null values are not handled correctly (GH10040)

• Bug in Series.fillna() where it raises if a numerically convertible string is given (GH10092)

1.21 v0.16.0 (March 22, 2015)

This is a major release from 0.15.2 and includes a small number of API changes, several new features, enhancements,
and performance improvements along with a large number of bug fixes. We recommend that all users upgrade to this
version.

Highlights include:

• DataFrame.assign method, see here

• Series.to_coo/from_coo methods to interact with scipy.sparse, see here

• Backwards incompatible change to Timedelta to conform the .seconds attribute with datetime.
timedelta, see here

• Changes to the .loc slicing API to conform with the behavior of .ix see here

• Changes to the default for ordering in the Categorical constructor, see here

• Enhancement to the .str accessor to make string operations easier, see here

• The pandas.tools.rplot, pandas.sandbox.qtpandas and pandas.rpymodules are deprecated.
We refer users to external packages like seaborn, pandas-qt and rpy2 for similar or equivalent functionality, see
here

Check the API Changes and deprecations before updating.

266 Chapter 1. What’s New

https://github.com/pandas-dev/pandas/issues/9905
https://github.com/pandas-dev/pandas/issues/9905
https://github.com/pandas-dev/pandas/issues/8265
https://github.com/pandas-dev/pandas/issues/9676
https://github.com/pandas-dev/pandas/issues/9787
https://github.com/pandas-dev/pandas/issues/9885
https://github.com/pandas-dev/pandas/issues/9756
https://github.com/pandas-dev/pandas/issues/9552
https://github.com/pandas-dev/pandas/issues/9778
https://github.com/pandas-dev/pandas/issues/9596
https://github.com/pandas-dev/pandas/issues/9158
https://github.com/pandas-dev/pandas/issues/9921
https://github.com/pandas-dev/pandas/issues/9700
https://github.com/pandas-dev/pandas/issues/9713
https://github.com/pandas-dev/pandas/issues/8327
https://github.com/pandas-dev/pandas/issues/9632
https://github.com/pandas-dev/pandas/issues/10040
https://github.com/pandas-dev/pandas/issues/10092
http://stanford.edu/~mwaskom/software/seaborn/
https://github.com/datalyze-solutions/pandas-qt
http://rpy2.bitbucket.org/

pandas: powerful Python data analysis toolkit, Release 0.23.4

What’s new in v0.16.0

• New features

– DataFrame Assign

– Interaction with scipy.sparse

– String Methods Enhancements

– Other enhancements

• Backwards incompatible API changes

– Changes in Timedelta

– Indexing Changes

– Categorical Changes

– Other API Changes

– Deprecations

– Removal of prior version deprecations/changes

• Performance Improvements

• Bug Fixes

1.21.1 New features

1.21.1.1 DataFrame Assign

Inspired by dplyr’s mutate verb, DataFrame has a new assign() method. The function signature for assign is
simply **kwargs. The keys are the column names for the new fields, and the values are either a value to be inserted
(for example, a Series or NumPy array), or a function of one argument to be called on the DataFrame. The new
values are inserted, and the entire DataFrame (with all original and new columns) is returned.

In [1]: iris = read_csv('data/iris.data')

In [2]: iris.head()
Out[2]:

SepalLength SepalWidth PetalLength PetalWidth Name
0 5.1 3.5 1.4 0.2 Iris-setosa
1 4.9 3.0 1.4 0.2 Iris-setosa
2 4.7 3.2 1.3 0.2 Iris-setosa
3 4.6 3.1 1.5 0.2 Iris-setosa
4 5.0 3.6 1.4 0.2 Iris-setosa

In [3]: iris.assign(sepal_ratio=iris['SepalWidth'] / iris['SepalLength']).head()
\\\Out[3]:
→˓

SepalLength SepalWidth PetalLength PetalWidth Name sepal_ratio
0 5.1 3.5 1.4 0.2 Iris-setosa 0.686275
1 4.9 3.0 1.4 0.2 Iris-setosa 0.612245
2 4.7 3.2 1.3 0.2 Iris-setosa 0.680851
3 4.6 3.1 1.5 0.2 Iris-setosa 0.673913
4 5.0 3.6 1.4 0.2 Iris-setosa 0.720000

1.21. v0.16.0 (March 22, 2015) 267

http://cran.rstudio.com/web/packages/dplyr/vignettes/introduction.html#mutate

pandas: powerful Python data analysis toolkit, Release 0.23.4

Above was an example of inserting a precomputed value. We can also pass in a function to be evaluated.

In [4]: iris.assign(sepal_ratio = lambda x: (x['SepalWidth'] /
...: x['SepalLength'])).head()
...:

Out[4]:
SepalLength SepalWidth PetalLength PetalWidth Name sepal_ratio

0 5.1 3.5 1.4 0.2 Iris-setosa 0.686275
1 4.9 3.0 1.4 0.2 Iris-setosa 0.612245
2 4.7 3.2 1.3 0.2 Iris-setosa 0.680851
3 4.6 3.1 1.5 0.2 Iris-setosa 0.673913
4 5.0 3.6 1.4 0.2 Iris-setosa 0.720000

The power of assign comes when used in chains of operations. For example, we can limit the DataFrame to just
those with a Sepal Length greater than 5, calculate the ratio, and plot

In [5]: (iris.query('SepalLength > 5')
...: .assign(SepalRatio = lambda x: x.SepalWidth / x.SepalLength,
...: PetalRatio = lambda x: x.PetalWidth / x.PetalLength)
...: .plot(kind='scatter', x='SepalRatio', y='PetalRatio'))
...:

Out[5]: <matplotlib.axes._subplots.AxesSubplot at 0x7f20b9c060b8>

See the documentation for more. (GH9229)

1.21.1.2 Interaction with scipy.sparse

Added SparseSeries.to_coo() and SparseSeries.from_coo() methods (GH8048) for converting to
and from scipy.sparse.coo_matrix instances (see here). For example, given a SparseSeries with MultiIndex
we can convert to a scipy.sparse.coo_matrix by specifying the row and column labels as index levels:

In [6]: from numpy import nan

In [7]: s = Series([3.0, nan, 1.0, 3.0, nan, nan])

In [8]: s.index = MultiIndex.from_tuples([(1, 2, 'a', 0),
...: (1, 2, 'a', 1),
...: (1, 1, 'b', 0),
...: (1, 1, 'b', 1),
...: (2, 1, 'b', 0),

(continues on next page)

268 Chapter 1. What’s New

https://github.com/pandas-dev/pandas/issues/9229
https://github.com/pandas-dev/pandas/issues/8048

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

...: (2, 1, 'b', 1)],

...: names=['A', 'B', 'C', 'D'])

...:

In [9]: s
Out[9]:
A B C D
1 2 a 0 3.0

1 NaN
1 b 0 1.0

1 3.0
2 1 b 0 NaN

1 NaN
dtype: float64

SparseSeries
In [10]: ss = s.to_sparse()

In [11]: ss
Out[11]:
A B C D
1 2 a 0 3.0

1 NaN
1 b 0 1.0

1 3.0
2 1 b 0 NaN

1 NaN
dtype: float64
BlockIndex
Block locations: array([0, 2], dtype=int32)
Block lengths: array([1, 2], dtype=int32)

In [12]: A, rows, columns = ss.to_coo(row_levels=['A', 'B'],
....: column_levels=['C', 'D'],
....: sort_labels=False)
....:

In [13]: A
Out[13]:
<3x4 sparse matrix of type '<class 'numpy.float64'>'

with 3 stored elements in COOrdinate format>

In [14]: A.todense()
\\\Out[14]:
→˓

matrix([[3., 0., 0., 0.],
[0., 0., 1., 3.],
[0., 0., 0., 0.]])

In [15]: rows
\\Out[15]:
→˓[(1, 2), (1, 1), (2, 1)]

In [16]: columns
\\Out[16]:
→˓[('a', 0), ('a', 1), ('b', 0), ('b', 1)]

1.21. v0.16.0 (March 22, 2015) 269

pandas: powerful Python data analysis toolkit, Release 0.23.4

The from_coo method is a convenience method for creating a SparseSeries from a scipy.sparse.
coo_matrix:

In [17]: from scipy import sparse

In [18]: A = sparse.coo_matrix(([3.0, 1.0, 2.0], ([1, 0, 0], [0, 2, 3])),
....: shape=(3, 4))
....:

In [19]: A
Out[19]:
<3x4 sparse matrix of type '<class 'numpy.float64'>'

with 3 stored elements in COOrdinate format>

In [20]: A.todense()
\\\Out[20]:
→˓

matrix([[0., 0., 1., 2.],
[3., 0., 0., 0.],
[0., 0., 0., 0.]])

In [21]: ss = SparseSeries.from_coo(A)

In [22]: ss
Out[22]:
0 2 1.0

3 2.0
1 0 3.0
dtype: float64
BlockIndex
Block locations: array([0], dtype=int32)
Block lengths: array([3], dtype=int32)

1.21.1.3 String Methods Enhancements

• Following new methods are accesible via .str accessor to apply the function to each values. This is intended
to make it more consistent with standard methods on strings. (GH9282, GH9352, GH9386, GH9387, GH9439)

Methods
isalnum() isalpha() isdigit() isdigit() isspace()
islower() isupper() istitle() isnumeric() isdecimal()
find() rfind() ljust() rjust() zfill()

In [23]: s = Series(['abcd', '3456', 'EFGH'])

In [24]: s.str.isalpha()
Out[24]:
0 True
1 False
2 True
dtype: bool

In [25]: s.str.find('ab')
\\\Out[25]:
0 0

(continues on next page)

270 Chapter 1. What’s New

https://github.com/pandas-dev/pandas/issues/9282
https://github.com/pandas-dev/pandas/issues/9352
https://github.com/pandas-dev/pandas/issues/9386
https://github.com/pandas-dev/pandas/issues/9387
https://github.com/pandas-dev/pandas/issues/9439

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

1 -1
2 -1
dtype: int64

• Series.str.pad() and Series.str.center() now accept fillchar option to specify filling char-
acter (GH9352)

In [26]: s = Series(['12', '300', '25'])

In [27]: s.str.pad(5, fillchar='_')
Out[27]:
0 ___12
1 __300
2 ___25
dtype: object

• Added Series.str.slice_replace(), which previously raised NotImplementedError (GH8888)

In [28]: s = Series(['ABCD', 'EFGH', 'IJK'])

In [29]: s.str.slice_replace(1, 3, 'X')
Out[29]:
0 AXD
1 EXH
2 IX
dtype: object

replaced with empty char
In [30]: s.str.slice_replace(0, 1)
\\\Out[30]:
0 BCD
1 FGH
2 JK
dtype: object

1.21.1.4 Other enhancements

• Reindex now supports method='nearest' for frames or series with a monotonic increasing or decreasing
index (GH9258):

In [31]: df = pd.DataFrame({'x': range(5)})

In [32]: df.reindex([0.2, 1.8, 3.5], method='nearest')
Out[32]:

x
0.2 0
1.8 2
3.5 4

This method is also exposed by the lower level Index.get_indexer and Index.get_loc methods.

• The read_excel() function’s sheetname argument now accepts a list and None, to get multiple or all sheets
respectively. If more than one sheet is specified, a dictionary is returned. (GH9450)

Returns the 1st and 4th sheet, as a dictionary of DataFrames.
pd.read_excel('path_to_file.xls',sheetname=['Sheet1',3])

1.21. v0.16.0 (March 22, 2015) 271

https://github.com/pandas-dev/pandas/issues/9352
https://github.com/pandas-dev/pandas/issues/8888
https://github.com/pandas-dev/pandas/issues/9258
https://github.com/pandas-dev/pandas/issues/9450

pandas: powerful Python data analysis toolkit, Release 0.23.4

• Allow Stata files to be read incrementally with an iterator; support for long strings in Stata files. See the docs
here (GH9493:).

• Paths beginning with ~ will now be expanded to begin with the user’s home directory (GH9066)

• Added time interval selection in get_data_yahoo (GH9071)

• Added Timestamp.to_datetime64() to complement Timedelta.to_timedelta64() (GH9255)

• tseries.frequencies.to_offset() now accepts Timedelta as input (GH9064)

• Lag parameter was added to the autocorrelation method of Series, defaults to lag-1 autocorrelation (GH9192)

• Timedelta will now accept nanoseconds keyword in constructor (GH9273)

• SQL code now safely escapes table and column names (GH8986)

• Added auto-complete for Series.str.<tab>, Series.dt.<tab> and Series.cat.<tab>
(GH9322)

• Index.get_indexer now supports method='pad' and method='backfill' even for any target ar-
ray, not just monotonic targets. These methods also work for monotonic decreasing as well as monotonic
increasing indexes (GH9258).

• Index.asof now works on all index types (GH9258).

• A verbose argument has been augmented in io.read_excel(), defaults to False. Set to True to print
sheet names as they are parsed. (GH9450)

• Added days_in_month (compatibility alias daysinmonth) property to Timestamp, DatetimeIndex,
Period, PeriodIndex, and Series.dt (GH9572)

• Added decimal option in to_csv to provide formatting for non-‘.’ decimal separators (GH781)

• Added normalize option for Timestamp to normalized to midnight (GH8794)

• Added example for DataFrame import to R using HDF5 file and rhdf5 library. See the documentation for
more (GH9636).

1.21.2 Backwards incompatible API changes

1.21.2.1 Changes in Timedelta

In v0.15.0 a new scalar type Timedeltawas introduced, that is a sub-class of datetime.timedelta. Mentioned
here was a notice of an API change w.r.t. the .seconds accessor. The intent was to provide a user-friendly set of
accessors that give the ‘natural’ value for that unit, e.g. if you had a Timedelta('1 day, 10:11:12'), then
.seconds would return 12. However, this is at odds with the definition of datetime.timedelta, which defines
.seconds as 10 * 3600 + 11 * 60 + 12 == 36672.

So in v0.16.0, we are restoring the API to match that of datetime.timedelta. Further, the component values are
still available through the .components accessor. This affects the .seconds and .microseconds accessors,
and removes the .hours, .minutes, .milliseconds accessors. These changes affect TimedeltaIndex and
the Series .dt accessor as well. (GH9185, GH9139)

Previous Behavior

In [2]: t = pd.Timedelta('1 day, 10:11:12.100123')

In [3]: t.days
Out[3]: 1

(continues on next page)

272 Chapter 1. What’s New

https://github.com/pandas-dev/pandas/issues/9493
https://github.com/pandas-dev/pandas/issues/9066
https://github.com/pandas-dev/pandas/issues/9071
https://github.com/pandas-dev/pandas/issues/9255
https://github.com/pandas-dev/pandas/issues/9064
https://github.com/pandas-dev/pandas/issues/9192
https://github.com/pandas-dev/pandas/issues/9273
https://github.com/pandas-dev/pandas/issues/8986
https://github.com/pandas-dev/pandas/issues/9322
https://github.com/pandas-dev/pandas/issues/9258
https://github.com/pandas-dev/pandas/issues/9258
https://github.com/pandas-dev/pandas/issues/9450
https://github.com/pandas-dev/pandas/issues/9572
https://github.com/pandas-dev/pandas/issues/781
https://github.com/pandas-dev/pandas/issues/8794
https://github.com/pandas-dev/pandas/issues/9636
https://github.com/pandas-dev/pandas/issues/9185
https://github.com/pandas-dev/pandas/issues/9139

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

In [4]: t.seconds
Out[4]: 12

In [5]: t.microseconds
Out[5]: 123

New Behavior

In [33]: t = pd.Timedelta('1 day, 10:11:12.100123')

In [34]: t.days
Out[34]: 1

In [35]: t.seconds
\\\\\\\\\\\Out[35]: 36672

In [36]: t.microseconds
\\\\\\\\\\\\\\\\\\\\\\\\\\Out[36]: 100123

Using .components allows the full component access

In [37]: t.components
Out[37]: Components(days=1, hours=10, minutes=11, seconds=12, milliseconds=100,
→˓microseconds=123, nanoseconds=0)

In [38]: t.components.seconds
\\\Out[38]:
→˓12

1.21.2.2 Indexing Changes

The behavior of a small sub-set of edge cases for using .loc have changed (GH8613). Furthermore we have improved
the content of the error messages that are raised:

• Slicing with .loc where the start and/or stop bound is not found in the index is now allowed; this previously
would raise a KeyError. This makes the behavior the same as .ix in this case. This change is only for
slicing, not when indexing with a single label.

In [39]: df = DataFrame(np.random.randn(5,4),
....: columns=list('ABCD'),
....: index=date_range('20130101',periods=5))
....:

In [40]: df
Out[40]:

A B C D
2013-01-01 -0.322795 0.841675 2.390961 0.076200
2013-01-02 -0.566446 0.036142 -2.074978 0.247792
2013-01-03 -0.897157 -0.136795 0.018289 0.755414
2013-01-04 0.215269 0.841009 -1.445810 -1.401973
2013-01-05 -0.100918 -0.548242 -0.144620 0.354020

In [41]: s = Series(range(5),[-2,-1,1,2,3])

In [42]: s

(continues on next page)

1.21. v0.16.0 (March 22, 2015) 273

https://github.com/pandas-dev/pandas/issues/8613

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

Out[42]:
-2 0
-1 1
1 2
2 3
3 4
dtype: int64

Previous Behavior

In [4]: df.loc['2013-01-02':'2013-01-10']
KeyError: 'stop bound [2013-01-10] is not in the [index]'

In [6]: s.loc[-10:3]
KeyError: 'start bound [-10] is not the [index]'

New Behavior

In [43]: df.loc['2013-01-02':'2013-01-10']
Out[43]:

A B C D
2013-01-02 -0.566446 0.036142 -2.074978 0.247792
2013-01-03 -0.897157 -0.136795 0.018289 0.755414
2013-01-04 0.215269 0.841009 -1.445810 -1.401973
2013-01-05 -0.100918 -0.548242 -0.144620 0.354020

In [44]: s.loc[-10:3]
\\\Out[44]:
→˓

-2 0
-1 1
1 2
2 3
3 4
dtype: int64

• Allow slicing with float-like values on an integer index for .ix. Previously this was only enabled for .loc:

Previous Behavior

In [8]: s.ix[-1.0:2]
TypeError: the slice start value [-1.0] is not a proper indexer for this index
→˓type (Int64Index)

New Behavior

In [2]: s.ix[-1.0:2]
Out[2]:
-1 1
1 2
2 3
dtype: int64

• Provide a useful exception for indexing with an invalid type for that index when using .loc. For example
trying to use .loc on an index of type DatetimeIndex or PeriodIndex or TimedeltaIndex, with an
integer (or a float).

Previous Behavior

274 Chapter 1. What’s New

pandas: powerful Python data analysis toolkit, Release 0.23.4

In [4]: df.loc[2:3]
KeyError: 'start bound [2] is not the [index]'

New Behavior

In [4]: df.loc[2:3]
TypeError: Cannot do slice indexing on <class 'pandas.tseries.index.DatetimeIndex
→˓'> with <type 'int'> keys

1.21.2.3 Categorical Changes

In prior versions, Categoricals that had an unspecified ordering (meaning no ordered keyword was passed)
were defaulted as ordered Categoricals. Going forward, the ordered keyword in the Categorical constructor
will default to False. Ordering must now be explicit.

Furthermore, previously you could change the ordered attribute of a Categorical by just setting the attribute,
e.g. cat.ordered=True; This is now deprecated and you should use cat.as_ordered() or cat.
as_unordered(). These will by default return a new object and not modify the existing object. (GH9347,
GH9190)

Previous Behavior

In [3]: s = Series([0,1,2], dtype='category')

In [4]: s
Out[4]:
0 0
1 1
2 2
dtype: category
Categories (3, int64): [0 < 1 < 2]

In [5]: s.cat.ordered
Out[5]: True

In [6]: s.cat.ordered = False

In [7]: s
Out[7]:
0 0
1 1
2 2
dtype: category
Categories (3, int64): [0, 1, 2]

New Behavior

In [45]: s = Series([0,1,2], dtype='category')

In [46]: s
Out[46]:
0 0
1 1
2 2
dtype: category
Categories (3, int64): [0, 1, 2]

(continues on next page)

1.21. v0.16.0 (March 22, 2015) 275

https://github.com/pandas-dev/pandas/issues/9347
https://github.com/pandas-dev/pandas/issues/9190

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

In [47]: s.cat.ordered
\\Out[47]:
→˓False

In [48]: s = s.cat.as_ordered()

In [49]: s
Out[49]:
0 0
1 1
2 2
dtype: category
Categories (3, int64): [0 < 1 < 2]

In [50]: s.cat.ordered
\\Out[50]:
→˓True

you can set in the constructor of the Categorical
In [51]: s = Series(Categorical([0,1,2],ordered=True))

In [52]: s
Out[52]:
0 0
1 1
2 2
dtype: category
Categories (3, int64): [0 < 1 < 2]

In [53]: s.cat.ordered
\\Out[53]:
→˓True

For ease of creation of series of categorical data, we have added the ability to pass keywords when calling .
astype(). These are passed directly to the constructor.

In [54]: s = Series(["a","b","c","a"]).astype('category',ordered=True)

In [55]: s
Out[55]:
0 a
1 b
2 c
3 a
dtype: category
Categories (3, object): [a < b < c]

In [56]: s = Series(["a","b","c","a"]).astype('category',categories=list('abcdef'),
→˓ordered=False)

In [57]: s
Out[57]:
0 a
1 b
2 c

(continues on next page)

276 Chapter 1. What’s New

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

3 a
dtype: category
Categories (6, object): [a, b, c, d, e, f]

1.21.2.4 Other API Changes

• Index.duplicated now returns np.array(dtype=bool) rather than Index(dtype=object)
containing bool values. (GH8875)

• DataFrame.to_json now returns accurate type serialisation for each column for frames of mixed dtype
(GH9037)

Previously data was coerced to a common dtype before serialisation, which for example resulted in integers
being serialised to floats:

In [2]: pd.DataFrame({'i': [1,2], 'f': [3.0, 4.2]}).to_json()
Out[2]: '{"f":{"0":3.0,"1":4.2},"i":{"0":1.0,"1":2.0}}'

Now each column is serialised using its correct dtype:

In [2]: pd.DataFrame({'i': [1,2], 'f': [3.0, 4.2]}).to_json()
Out[2]: '{"f":{"0":3.0,"1":4.2},"i":{"0":1,"1":2}}'

• DatetimeIndex, PeriodIndex and TimedeltaIndex.summary now output the same format.
(GH9116)

• TimedeltaIndex.freqstr now output the same string format as DatetimeIndex. (GH9116)

• Bar and horizontal bar plots no longer add a dashed line along the info axis. The prior style can be achieved
with matplotlib’s axhline or axvline methods (GH9088).

• Series accessors .dt, .cat and .str now raise AttributeError instead of TypeError if the series
does not contain the appropriate type of data (GH9617). This follows Python’s built-in exception hierarchy
more closely and ensures that tests like hasattr(s, 'cat') are consistent on both Python 2 and 3.

• Series now supports bitwise operation for integral types (GH9016). Previously even if the input dtypes were
integral, the output dtype was coerced to bool.

Previous Behavior

In [2]: pd.Series([0,1,2,3], list('abcd')) | pd.Series([4,4,4,4], list('abcd'))
Out[2]:
a True
b True
c True
d True
dtype: bool

New Behavior. If the input dtypes are integral, the output dtype is also integral and the output values are the
result of the bitwise operation.

In [2]: pd.Series([0,1,2,3], list('abcd')) | pd.Series([4,4,4,4], list('abcd'))
Out[2]:
a 4
b 5
c 6

(continues on next page)

1.21. v0.16.0 (March 22, 2015) 277

https://github.com/pandas-dev/pandas/issues/8875
https://github.com/pandas-dev/pandas/issues/9037
https://github.com/pandas-dev/pandas/issues/9116
https://github.com/pandas-dev/pandas/issues/9116
https://github.com/pandas-dev/pandas/issues/9088
https://github.com/pandas-dev/pandas/issues/9617
https://github.com/pandas-dev/pandas/issues/9016

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

d 7
dtype: int64

• During division involving a Series or DataFrame, 0/0 and 0//0 now give np.nan instead of np.inf.
(GH9144, GH8445)

Previous Behavior

In [2]: p = pd.Series([0, 1])

In [3]: p / 0
Out[3]:
0 inf
1 inf
dtype: float64

In [4]: p // 0
Out[4]:
0 inf
1 inf
dtype: float64

New Behavior

In [54]: p = pd.Series([0, 1])

In [55]: p / 0
Out[55]:
0 NaN
1 inf
dtype: float64

In [56]: p // 0
\\\Out[56]:
0 NaN
1 inf
dtype: float64

• Series.values_counts and Series.describe for categorical data will now put NaN entries at the
end. (GH9443)

• Series.describe for categorical data will now give counts and frequencies of 0, not NaN, for unused
categories (GH9443)

• Due to a bug fix, looking up a partial string label with DatetimeIndex.asof now includes values that
match the string, even if they are after the start of the partial string label (GH9258).

Old behavior:

In [4]: pd.to_datetime(['2000-01-31', '2000-02-28']).asof('2000-02')
Out[4]: Timestamp('2000-01-31 00:00:00')

Fixed behavior:

In [57]: pd.to_datetime(['2000-01-31', '2000-02-28']).asof('2000-02')
Out[57]: Timestamp('2000-02-28 00:00:00')

278 Chapter 1. What’s New

https://github.com/pandas-dev/pandas/issues/9144
https://github.com/pandas-dev/pandas/issues/8445
https://github.com/pandas-dev/pandas/issues/9443
https://github.com/pandas-dev/pandas/issues/9443
https://github.com/pandas-dev/pandas/issues/9258

pandas: powerful Python data analysis toolkit, Release 0.23.4

To reproduce the old behavior, simply add more precision to the label (e.g., use 2000-02-01 instead of
2000-02).

1.21.2.5 Deprecations

• The rplot trellis plotting interface is deprecated and will be removed in a future version. We refer to external
packages like seaborn for similar but more refined functionality (GH3445). The documentation includes some
examples how to convert your existing code using rplot to seaborn: rplot docs.

• The pandas.sandbox.qtpandas interface is deprecated and will be removed in a future version. We refer
users to the external package pandas-qt. (GH9615)

• The pandas.rpy interface is deprecated and will be removed in a future version. Similar functionaility can
be accessed thru the rpy2 project (GH9602)

• Adding DatetimeIndex/PeriodIndex to another DatetimeIndex/PeriodIndex is being depre-
cated as a set-operation. This will be changed to a TypeError in a future version. .union() should be used
for the union set operation. (GH9094)

• Subtracting DatetimeIndex/PeriodIndex from another DatetimeIndex/PeriodIndex is be-
ing deprecated as a set-operation. This will be changed to an actual numeric subtraction yielding a
TimeDeltaIndex in a future version. .difference() should be used for the differencing set operation.
(GH9094)

1.21.2.6 Removal of prior version deprecations/changes

• DataFrame.pivot_table and crosstab’s rows and cols keyword arguments were removed in favor
of index and columns (GH6581)

• DataFrame.to_excel and DataFrame.to_csv cols keyword argument was removed in favor of
columns (GH6581)

• Removed convert_dummies in favor of get_dummies (GH6581)

• Removed value_range in favor of describe (GH6581)

1.21.3 Performance Improvements

• Fixed a performance regression for .loc indexing with an array or list-like (GH9126:).

• DataFrame.to_json 30x performance improvement for mixed dtype frames. (GH9037)

• Performance improvements in MultiIndex.duplicated by working with labels instead of values
(GH9125)

• Improved the speed of nunique by calling unique instead of value_counts (GH9129, GH7771)

• Performance improvement of up to 10x in DataFrame.count and DataFrame.dropna by taking advan-
tage of homogeneous/heterogeneous dtypes appropriately (GH9136)

• Performance improvement of up to 20x in DataFrame.count when using a MultiIndex and the level
keyword argument (GH9163)

• Performance and memory usage improvements in merge when key space exceeds int64 bounds (GH9151)

• Performance improvements in multi-key groupby (GH9429)

• Performance improvements in MultiIndex.sortlevel (GH9445)

• Performance and memory usage improvements in DataFrame.duplicated (GH9398)

1.21. v0.16.0 (March 22, 2015) 279

http://stanford.edu/~mwaskom/software/seaborn/
https://github.com/pandas-dev/pandas/issues/3445
https://github.com/datalyze-solutions/pandas-qt
https://github.com/pandas-dev/pandas/issues/9615
http://rpy2.bitbucket.org/
https://github.com/pandas-dev/pandas/issues/9602
https://github.com/pandas-dev/pandas/issues/9094
https://github.com/pandas-dev/pandas/issues/9094
https://github.com/pandas-dev/pandas/issues/6581
https://github.com/pandas-dev/pandas/issues/6581
https://github.com/pandas-dev/pandas/issues/6581
https://github.com/pandas-dev/pandas/issues/6581
https://github.com/pandas-dev/pandas/issues/9126
https://github.com/pandas-dev/pandas/issues/9037
https://github.com/pandas-dev/pandas/issues/9125
https://github.com/pandas-dev/pandas/issues/9129
https://github.com/pandas-dev/pandas/issues/7771
https://github.com/pandas-dev/pandas/issues/9136
https://github.com/pandas-dev/pandas/issues/9163
https://github.com/pandas-dev/pandas/issues/9151
https://github.com/pandas-dev/pandas/issues/9429
https://github.com/pandas-dev/pandas/issues/9445
https://github.com/pandas-dev/pandas/issues/9398

pandas: powerful Python data analysis toolkit, Release 0.23.4

• Cythonized Period (GH9440)

• Decreased memory usage on to_hdf (GH9648)

1.21.4 Bug Fixes

• Changed .to_html to remove leading/trailing spaces in table body (GH4987)

• Fixed issue using read_csv on s3 with Python 3 (GH9452)

• Fixed compatibility issue in DatetimeIndex affecting architectures where numpy.int_ defaults to
numpy.int32 (GH8943)

• Bug in Panel indexing with an object-like (GH9140)

• Bug in the returned Series.dt.components index was reset to the default index (GH9247)

• Bug in Categorical.__getitem__/__setitem__ with listlike input getting incorrect results from
indexer coercion (GH9469)

• Bug in partial setting with a DatetimeIndex (GH9478)

• Bug in groupby for integer and datetime64 columns when applying an aggregator that caused the value to be
changed when the number was sufficiently large (GH9311, GH6620)

• Fixed bug in to_sql when mapping a Timestamp object column (datetime column with timezone info) to
the appropriate sqlalchemy type (GH9085).

• Fixed bug in to_sql dtype argument not accepting an instantiated SQLAlchemy type (GH9083).

• Bug in .loc partial setting with a np.datetime64 (GH9516)

• Incorrect dtypes inferred on datetimelike looking Series & on .xs slices (GH9477)

• Items in Categorical.unique() (and s.unique() if s is of dtype category) now appear in the order
in which they are originally found, not in sorted order (GH9331). This is now consistent with the behavior for
other dtypes in pandas.

• Fixed bug on big endian platforms which produced incorrect results in StataReader (GH8688).

• Bug in MultiIndex.has_duplicates when having many levels causes an indexer overflow (GH9075,
GH5873)

• Bug in pivot and unstack where nan values would break index alignment (GH4862, GH7401, GH7403,
GH7405, GH7466, GH9497)

• Bug in left join on multi-index with sort=True or null values (GH9210).

• Bug in MultiIndex where inserting new keys would fail (GH9250).

• Bug in groupby when key space exceeds int64 bounds (GH9096).

• Bug in unstack with TimedeltaIndex or DatetimeIndex and nulls (GH9491).

• Bug in rank where comparing floats with tolerance will cause inconsistent behaviour (GH8365).

• Fixed character encoding bug in read_stata and StataReader when loading data from a URL (GH9231).

• Bug in adding offsets.Nano to other offsets raises TypeError (GH9284)

• Bug in DatetimeIndex iteration, related to (GH8890), fixed in (GH9100)

• Bugs in resample around DST transitions. This required fixing offset classes so they behave correctly on
DST transitions. (GH5172, GH8744, GH8653, GH9173, GH9468).

• Bug in binary operator method (eg .mul()) alignment with integer levels (GH9463).

280 Chapter 1. What’s New

https://github.com/pandas-dev/pandas/issues/9440
https://github.com/pandas-dev/pandas/issues/9648
https://github.com/pandas-dev/pandas/issues/4987
https://github.com/pandas-dev/pandas/issues/9452
https://github.com/pandas-dev/pandas/issues/8943
https://github.com/pandas-dev/pandas/issues/9140
https://github.com/pandas-dev/pandas/issues/9247
https://github.com/pandas-dev/pandas/issues/9469
https://github.com/pandas-dev/pandas/issues/9478
https://github.com/pandas-dev/pandas/issues/9311
https://github.com/pandas-dev/pandas/issues/6620
https://github.com/pandas-dev/pandas/issues/9085
https://github.com/pandas-dev/pandas/issues/9083
https://github.com/pandas-dev/pandas/issues/9516
https://github.com/pandas-dev/pandas/issues/9477
https://github.com/pandas-dev/pandas/issues/9331
https://github.com/pandas-dev/pandas/issues/8688
https://github.com/pandas-dev/pandas/issues/9075
https://github.com/pandas-dev/pandas/issues/5873
https://github.com/pandas-dev/pandas/issues/4862
https://github.com/pandas-dev/pandas/issues/7401
https://github.com/pandas-dev/pandas/issues/7403
https://github.com/pandas-dev/pandas/issues/7405
https://github.com/pandas-dev/pandas/issues/7466
https://github.com/pandas-dev/pandas/issues/9497
https://github.com/pandas-dev/pandas/issues/9210
https://github.com/pandas-dev/pandas/issues/9250
https://github.com/pandas-dev/pandas/issues/9096
https://github.com/pandas-dev/pandas/issues/9491
https://github.com/pandas-dev/pandas/issues/8365
https://github.com/pandas-dev/pandas/issues/9231
https://github.com/pandas-dev/pandas/issues/9284
https://github.com/pandas-dev/pandas/issues/8890
https://github.com/pandas-dev/pandas/issues/9100
https://github.com/pandas-dev/pandas/issues/5172
https://github.com/pandas-dev/pandas/issues/8744
https://github.com/pandas-dev/pandas/issues/8653
https://github.com/pandas-dev/pandas/issues/9173
https://github.com/pandas-dev/pandas/issues/9468
https://github.com/pandas-dev/pandas/issues/9463

pandas: powerful Python data analysis toolkit, Release 0.23.4

• Bug in boxplot, scatter and hexbin plot may show an unnecessary warning (GH8877)

• Bug in subplot with layout kw may show unnecessary warning (GH9464)

• Bug in using grouper functions that need passed thru arguments (e.g. axis), when using wrapped function (e.g.
fillna), (GH9221)

• DataFrame now properly supports simultaneous copy and dtype arguments in constructor (GH9099)

• Bug in read_csv when using skiprows on a file with CR line endings with the c engine. (GH9079)

• isnull now detects NaT in PeriodIndex (GH9129)

• Bug in groupby .nth() with a multiple column groupby (GH8979)

• Bug in DataFrame.where and Series.where coerce numerics to string incorrectly (GH9280)

• Bug in DataFrame.where and Series.where raise ValueError when string list-like is passed.
(GH9280)

• Accessing Series.str methods on with non-string values now raises TypeError instead of producing
incorrect results (GH9184)

• Bug in DatetimeIndex.__contains__ when index has duplicates and is not monotonic increasing
(GH9512)

• Fixed division by zero error for Series.kurt() when all values are equal (GH9197)

• Fixed issue in the xlsxwriter engine where it added a default ‘General’ format to cells if no other format
was applied. This prevented other row or column formatting being applied. (GH9167)

• Fixes issue with index_col=False when usecols is also specified in read_csv. (GH9082)

• Bug where wide_to_long would modify the input stubnames list (GH9204)

• Bug in to_sql not storing float64 values using double precision. (GH9009)

• SparseSeries and SparsePanel now accept zero argument constructors (same as their non-sparse coun-
terparts) (GH9272).

• Regression in merging Categorical and object dtypes (GH9426)

• Bug in read_csv with buffer overflows with certain malformed input files (GH9205)

• Bug in groupby MultiIndex with missing pair (GH9049, GH9344)

• Fixed bug in Series.groupby where grouping on MultiIndex levels would ignore the sort argument
(GH9444)

• Fix bug in DataFrame.Groupby where sort=False is ignored in the case of Categorical columns.
(GH8868)

• Fixed bug with reading CSV files from Amazon S3 on python 3 raising a TypeError (GH9452)

• Bug in the Google BigQuery reader where the ‘jobComplete’ key may be present but False in the query results
(GH8728)

• Bug in Series.values_counts with excluding NaN for categorical type Series with dropna=True
(GH9443)

• Fixed mising numeric_only option for DataFrame.std/var/sem (GH9201)

• Support constructing Panel or Panel4D with scalar data (GH8285)

• Series text representation disconnected from max_rows/max_columns (GH7508).

1.21. v0.16.0 (March 22, 2015) 281

https://github.com/pandas-dev/pandas/issues/8877
https://github.com/pandas-dev/pandas/issues/9464
https://github.com/pandas-dev/pandas/issues/9221
https://github.com/pandas-dev/pandas/issues/9099
https://github.com/pandas-dev/pandas/issues/9079
https://github.com/pandas-dev/pandas/issues/9129
https://github.com/pandas-dev/pandas/issues/8979
https://github.com/pandas-dev/pandas/issues/9280
https://github.com/pandas-dev/pandas/issues/9280
https://github.com/pandas-dev/pandas/issues/9184
https://github.com/pandas-dev/pandas/issues/9512
https://github.com/pandas-dev/pandas/issues/9197
https://github.com/pandas-dev/pandas/issues/9167
https://github.com/pandas-dev/pandas/issues/9082
https://github.com/pandas-dev/pandas/issues/9204
https://github.com/pandas-dev/pandas/issues/9009
https://github.com/pandas-dev/pandas/issues/9272
https://github.com/pandas-dev/pandas/issues/9426
https://github.com/pandas-dev/pandas/issues/9205
https://github.com/pandas-dev/pandas/issues/9049
https://github.com/pandas-dev/pandas/issues/9344
https://github.com/pandas-dev/pandas/issues/9444
https://github.com/pandas-dev/pandas/issues/8868
https://github.com/pandas-dev/pandas/issues/9452
https://github.com/pandas-dev/pandas/issues/8728
https://github.com/pandas-dev/pandas/issues/9443
https://github.com/pandas-dev/pandas/issues/9201
https://github.com/pandas-dev/pandas/issues/8285
https://github.com/pandas-dev/pandas/issues/7508

pandas: powerful Python data analysis toolkit, Release 0.23.4

• Series number formatting inconsistent when truncated (GH8532).

Previous Behavior

In [2]: pd.options.display.max_rows = 10
In [3]: s = pd.Series([1,1,1,1,1,1,1,1,1,1,0.9999,1,1]*10)
In [4]: s
Out[4]:
0 1
1 1
2 1
...
127 0.9999
128 1.0000
129 1.0000
Length: 130, dtype: float64

New Behavior

0 1.0000
1 1.0000
2 1.0000
3 1.0000
4 1.0000
...
125 1.0000
126 1.0000
127 0.9999
128 1.0000
129 1.0000
dtype: float64

• A Spurious SettingWithCopy Warning was generated when setting a new item in a frame in some cases
(GH8730)

The following would previously report a SettingWithCopy Warning.

In [1]: df1 = DataFrame({'x': Series(['a','b','c']), 'y': Series(['d','e','f'])})

In [2]: df2 = df1[['x']]

In [3]: df2['y'] = ['g', 'h', 'i']

1.22 v0.15.2 (December 12, 2014)

This is a minor release from 0.15.1 and includes a large number of bug fixes along with several new features, enhance-
ments, and performance improvements. A small number of API changes were necessary to fix existing bugs. We
recommend that all users upgrade to this version.

• Enhancements

• API Changes

• Performance Improvements

• Bug Fixes

282 Chapter 1. What’s New

https://github.com/pandas-dev/pandas/issues/8532
https://github.com/pandas-dev/pandas/issues/8730

pandas: powerful Python data analysis toolkit, Release 0.23.4

1.22.1 API changes

• Indexing in MultiIndex beyond lex-sort depth is now supported, though a lexically sorted index will have a
better performance. (GH2646)

In [1]: df = pd.DataFrame({'jim':[0, 0, 1, 1],
...: 'joe':['x', 'x', 'z', 'y'],
...: 'jolie':np.random.rand(4)}).set_index(['jim', 'joe'])
...:

In [2]: df
Out[2]:

jolie
jim joe
0 x 0.123943

x 0.119381
1 z 0.738523

y 0.587304

In [3]: df.index.lexsort_depth
\\\Out[3]:
→˓1

in prior versions this would raise a KeyError
will now show a PerformanceWarning
In [4]: df.loc[(1, 'z')]
\\\Out[4]:
→˓

jolie
jim joe
1 z 0.738523

lexically sorting
In [5]: df2 = df.sort_index()

In [6]: df2
Out[6]:

jolie
jim joe
0 x 0.123943

x 0.119381
1 y 0.587304

z 0.738523

In [7]: df2.index.lexsort_depth
\\\Out[7]:
→˓2

In [8]: df2.loc[(1,'z')]
\\\Out[8]:
→˓

jolie
jim joe
1 z 0.738523

• Bug in unique of Series with category dtype, which returned all categories regardless whether they were
“used” or not (see GH8559 for the discussion). Previous behaviour was to return all categories:

1.22. v0.15.2 (December 12, 2014) 283

https://github.com/pandas-dev/pandas/issues/2646
https://github.com/pandas-dev/pandas/issues/8559

pandas: powerful Python data analysis toolkit, Release 0.23.4

In [3]: cat = pd.Categorical(['a', 'b', 'a'], categories=['a', 'b', 'c'])

In [4]: cat
Out[4]:
[a, b, a]
Categories (3, object): [a < b < c]

In [5]: cat.unique()
Out[5]: array(['a', 'b', 'c'], dtype=object)

Now, only the categories that do effectively occur in the array are returned:

In [9]: cat = pd.Categorical(['a', 'b', 'a'], categories=['a', 'b', 'c'])

In [10]: cat.unique()
Out[10]:
[a, b]
Categories (2, object): [a, b]

• Series.all and Series.any now support the level and skipna parameters. Series.all,
Series.any, Index.all, and Index.any no longer support the out and keepdims parameters, which
existed for compatibility with ndarray. Various index types no longer support the all and any aggregation
functions and will now raise TypeError. (GH8302).

• Allow equality comparisons of Series with a categorical dtype and object dtype; previously these would raise
TypeError (GH8938)

• Bug in NDFrame: conflicting attribute/column names now behave consistently between getting and setting.
Previously, when both a column and attribute named y existed, data.y would return the attribute, while
data.y = z would update the column (GH8994)

In [11]: data = pd.DataFrame({'x':[1, 2, 3]})

In [12]: data.y = 2

In [13]: data['y'] = [2, 4, 6]

In [14]: data
Out[14]:

x y
0 1 2
1 2 4
2 3 6

this assignment was inconsistent
In [15]: data.y = 5

Old behavior:

In [6]: data.y
Out[6]: 2

In [7]: data['y'].values
Out[7]: array([5, 5, 5])

New behavior:

284 Chapter 1. What’s New

https://github.com/pandas-dev/pandas/issues/8302
https://github.com/pandas-dev/pandas/issues/8938
https://github.com/pandas-dev/pandas/issues/8994

pandas: powerful Python data analysis toolkit, Release 0.23.4

In [16]: data.y
Out[16]: 5

In [17]: data['y'].values
\\\\\\\\\\\Out[17]: array([2, 4, 6])

• Timestamp('now') is now equivalent to Timestamp.now() in that it returns the local time rather than
UTC. Also, Timestamp('today') is now equivalent to Timestamp.today() and both have tz as a
possible argument. (GH9000)

• Fix negative step support for label-based slices (GH8753)

Old behavior:

In [1]: s = pd.Series(np.arange(3), ['a', 'b', 'c'])
Out[1]:
a 0
b 1
c 2
dtype: int64

In [2]: s.loc['c':'a':-1]
Out[2]:
c 2
dtype: int64

New behavior:

In [18]: s = pd.Series(np.arange(3), ['a', 'b', 'c'])

In [19]: s.loc['c':'a':-1]
Out[19]:
c 2
b 1
a 0
dtype: int64

1.22.2 Enhancements

Categorical enhancements:

• Added ability to export Categorical data to Stata (GH8633). See here for limitations of categorical variables
exported to Stata data files.

• Added flag order_categoricals to StataReader and read_stata to select whether to order im-
ported categorical data (GH8836). See here for more information on importing categorical variables from Stata
data files.

• Added ability to export Categorical data to to/from HDF5 (GH7621). Queries work the same as if it was an
object array. However, the category dtyped data is stored in a more efficient manner. See here for an
example and caveats w.r.t. prior versions of pandas.

• Added support for searchsorted() on Categorical class (GH8420).

Other enhancements:

• Added the ability to specify the SQL type of columns when writing a DataFrame to a database (GH8778). For
example, specifying to use the sqlalchemy String type instead of the default Text type for string columns:

1.22. v0.15.2 (December 12, 2014) 285

https://github.com/pandas-dev/pandas/issues/9000
https://github.com/pandas-dev/pandas/issues/8753
https://github.com/pandas-dev/pandas/issues/8633
https://github.com/pandas-dev/pandas/issues/8836
https://github.com/pandas-dev/pandas/issues/7621
https://github.com/pandas-dev/pandas/issues/8420
https://github.com/pandas-dev/pandas/issues/8778

pandas: powerful Python data analysis toolkit, Release 0.23.4

from sqlalchemy.types import String
data.to_sql('data_dtype', engine, dtype={'Col_1': String})

• Series.all and Series.any now support the level and skipna parameters (GH8302):

In [20]: s = pd.Series([False, True, False], index=[0, 0, 1])

In [21]: s.any(level=0)
Out[21]:
0 True
1 False
dtype: bool

• Panel now supports the all and any aggregation functions. (GH8302):

In [22]: p = pd.Panel(np.random.rand(2, 5, 4) > 0.1)

In [23]: p.all()
Out[23]:

0 1 2 3
0 True True True True
1 True True False True
2 True True True True
3 True True False True
4 True True True True

• Added support for utcfromtimestamp(), fromtimestamp(), and combine() on Timestamp class
(GH5351).

• Added Google Analytics (pandas.io.ga) basic documentation (GH8835). See here.

• Timedelta arithmetic returns NotImplemented in unknown cases, allowing extensions by custom classes
(GH8813).

• Timedelta now supports arithemtic with numpy.ndarray objects of the appropriate dtype (numpy 1.8 or
newer only) (GH8884).

• Added Timedelta.to_timedelta64() method to the public API (GH8884).

• Added gbq.generate_bq_schema() function to the gbq module (GH8325).

• Series now works with map objects the same way as generators (GH8909).

• Added context manager to HDFStore for automatic closing (GH8791).

• to_datetime gains an exact keyword to allow for a format to not require an exact match for a provided for-
mat string (if its False). exact defaults to True (meaning that exact matching is still the default) (GH8904)

• Added axvlines boolean option to parallel_coordinates plot function, determines whether vertical lines will
be printed, default is True

• Added ability to read table footers to read_html (GH8552)

• to_sql now infers datatypes of non-NA values for columns that contain NA values and have dtype object
(GH8778).

1.22.3 Performance

• Reduce memory usage when skiprows is an integer in read_csv (GH8681)

286 Chapter 1. What’s New

https://github.com/pandas-dev/pandas/issues/8302
https://github.com/pandas-dev/pandas/issues/8302
https://github.com/pandas-dev/pandas/issues/5351
https://github.com/pandas-dev/pandas/issues/8835
http://pandas.pydata.org/pandas-docs/version/0.15.2/remote_data.html#remote-data-ga
https://github.com/pandas-dev/pandas/issues/8813
https://github.com/pandas-dev/pandas/issues/8884
https://github.com/pandas-dev/pandas/issues/8884
https://github.com/pandas-dev/pandas/issues/8325
https://github.com/pandas-dev/pandas/issues/8909
https://github.com/pandas-dev/pandas/issues/8791
https://github.com/pandas-dev/pandas/issues/8904
https://github.com/pandas-dev/pandas/issues/8552
https://github.com/pandas-dev/pandas/issues/8778
https://github.com/pandas-dev/pandas/issues/8681

pandas: powerful Python data analysis toolkit, Release 0.23.4

• Performance boost for to_datetime conversions with a passed format=, and the exact=False
(GH8904)

1.22.4 Bug Fixes

• Bug in concat of Series with category dtype which were coercing to object. (GH8641)

• Bug in Timestamp-Timestamp not returning a Timedelta type and datelike-datelike ops with timezones
(GH8865)

• Made consistent a timezone mismatch exception (either tz operated with None or incompatible timezone), will
now return TypeError rather than ValueError (a couple of edge cases only), (GH8865)

• Bug in using a pd.Grouper(key=...) with no level/axis or level only (GH8795, GH8866)

• Report a TypeError when invalid/no parameters are passed in a groupby (GH8015)

• Bug in packaging pandas with py2app/cx_Freeze (GH8602, GH8831)

• Bug in groupby signatures that didn’t include *args or **kwargs (GH8733).

• io.data.Options now raises RemoteDataError when no expiry dates are available from Yahoo and
when it receives no data from Yahoo (GH8761), (GH8783).

• Unclear error message in csv parsing when passing dtype and names and the parsed data is a different data type
(GH8833)

• Bug in slicing a multi-index with an empty list and at least one boolean indexer (GH8781)

• io.data.Options now raises RemoteDataError when no expiry dates are available from Yahoo
(GH8761).

• Timedelta kwargs may now be numpy ints and floats (GH8757).

• Fixed several outstanding bugs for Timedelta arithmetic and comparisons (GH8813, GH5963, GH5436).

• sql_schema now generates dialect appropriate CREATE TABLE statements (GH8697)

• slice string method now takes step into account (GH8754)

• Bug in BlockManager where setting values with different type would break block integrity (GH8850)

• Bug in DatetimeIndex when using time object as key (GH8667)

• Bug in merge where how='left' and sort=False would not preserve left frame order (GH7331)

• Bug in MultiIndex.reindex where reindexing at level would not reorder labels (GH4088)

• Bug in certain operations with dateutil timezones, manifesting with dateutil 2.3 (GH8639)

• Regression in DatetimeIndex iteration with a Fixed/Local offset timezone (GH8890)

• Bug in to_datetime when parsing a nanoseconds using the %f format (GH8989)

• io.data.Options now raises RemoteDataError when no expiry dates are available from Yahoo and
when it receives no data from Yahoo (GH8761), (GH8783).

• Fix: The font size was only set on x axis if vertical or the y axis if horizontal. (GH8765)

• Fixed division by 0 when reading big csv files in python 3 (GH8621)

• Bug in outputting a Multindex with to_html,index=False which would add an extra column (GH8452)

• Imported categorical variables from Stata files retain the ordinal information in the underlying data (GH8836).

• Defined .size attribute across NDFrame objects to provide compat with numpy >= 1.9.1; buggy with np.
array_split (GH8846)

1.22. v0.15.2 (December 12, 2014) 287

https://github.com/pandas-dev/pandas/issues/8904
https://github.com/pandas-dev/pandas/issues/8641
https://github.com/pandas-dev/pandas/issues/8865
https://github.com/pandas-dev/pandas/issues/8865
https://github.com/pandas-dev/pandas/issues/8795
https://github.com/pandas-dev/pandas/issues/8866
https://github.com/pandas-dev/pandas/issues/8015
https://github.com/pandas-dev/pandas/issues/8602
https://github.com/pandas-dev/pandas/issues/8831
https://github.com/pandas-dev/pandas/issues/8733
https://github.com/pandas-dev/pandas/issues/8761
https://github.com/pandas-dev/pandas/issues/8783
https://github.com/pandas-dev/pandas/issues/8833
https://github.com/pandas-dev/pandas/issues/8781
https://github.com/pandas-dev/pandas/issues/8761
https://github.com/pandas-dev/pandas/issues/8757
https://github.com/pandas-dev/pandas/issues/8813
https://github.com/pandas-dev/pandas/issues/5963
https://github.com/pandas-dev/pandas/issues/5436
https://github.com/pandas-dev/pandas/issues/8697
https://github.com/pandas-dev/pandas/issues/8754
https://github.com/pandas-dev/pandas/issues/8850
https://github.com/pandas-dev/pandas/issues/8667
https://github.com/pandas-dev/pandas/issues/7331
https://github.com/pandas-dev/pandas/issues/4088
https://github.com/pandas-dev/pandas/issues/8639
https://github.com/pandas-dev/pandas/issues/8890
https://github.com/pandas-dev/pandas/issues/8989
https://github.com/pandas-dev/pandas/issues/8761
https://github.com/pandas-dev/pandas/issues/8783
https://github.com/pandas-dev/pandas/issues/8765
https://github.com/pandas-dev/pandas/issues/8621
https://github.com/pandas-dev/pandas/issues/8452
https://github.com/pandas-dev/pandas/issues/8836
https://github.com/pandas-dev/pandas/issues/8846

pandas: powerful Python data analysis toolkit, Release 0.23.4

• Skip testing of histogram plots for matplotlib <= 1.2 (GH8648).

• Bug where get_data_google returned object dtypes (GH3995)

• Bug in DataFrame.stack(..., dropna=False)when the DataFrame’s columns is a MultiIndex
whose labels do not reference all its levels. (GH8844)

• Bug in that Option context applied on __enter__ (GH8514)

• Bug in resample that causes a ValueError when resampling across multiple days and the last offset is not calcu-
lated from the start of the range (GH8683)

• Bug where DataFrame.plot(kind='scatter') fails when checking if an np.array is in the DataFrame
(GH8852)

• Bug in pd.infer_freq/DataFrame.inferred_freq that prevented proper sub-daily frequency infer-
ence when the index contained DST days (GH8772).

• Bug where index name was still used when plotting a series with use_index=False (GH8558).

• Bugs when trying to stack multiple columns, when some (or all) of the level names are numbers (GH8584).

• Bug in MultiIndex where __contains__ returns wrong result if index is not lexically sorted or unique
(GH7724)

• BUG CSV: fix problem with trailing whitespace in skipped rows, (GH8679), (GH8661), (GH8983)

• Regression in Timestamp does not parse ‘Z’ zone designator for UTC (GH8771)

• Bug in StataWriter the produces writes strings with 244 characters irrespective of actual size (GH8969)

• Fixed ValueError raised by cummin/cummax when datetime64 Series contains NaT. (GH8965)

• Bug in Datareader returns object dtype if there are missing values (GH8980)

• Bug in plotting if sharex was enabled and index was a timeseries, would show labels on multiple axes (GH3964).

• Bug where passing a unit to the TimedeltaIndex constructor applied the to nano-second conversion twice.
(GH9011).

• Bug in plotting of a period-like array (GH9012)

1.23 v0.15.1 (November 9, 2014)

This is a minor bug-fix release from 0.15.0 and includes a small number of API changes, several new features, en-
hancements, and performance improvements along with a large number of bug fixes. We recommend that all users
upgrade to this version.

• Enhancements

• API Changes

• Bug Fixes

1.23.1 API changes

• s.dt.hour and other .dt accessors will now return np.nan for missing values (rather than previously -1),
(GH8689)

288 Chapter 1. What’s New

https://github.com/pandas-dev/pandas/issues/8648
https://github.com/pandas-dev/pandas/issues/3995
https://github.com/pandas-dev/pandas/issues/8844
https://github.com/pandas-dev/pandas/issues/8514
https://github.com/pandas-dev/pandas/issues/8683
https://github.com/pandas-dev/pandas/issues/8852
https://github.com/pandas-dev/pandas/issues/8772
https://github.com/pandas-dev/pandas/issues/8558
https://github.com/pandas-dev/pandas/issues/8584
https://github.com/pandas-dev/pandas/issues/7724
https://github.com/pandas-dev/pandas/issues/8679
https://github.com/pandas-dev/pandas/issues/8661
https://github.com/pandas-dev/pandas/issues/8983
https://github.com/pandas-dev/pandas/issues/8771
https://github.com/pandas-dev/pandas/issues/8969
https://github.com/pandas-dev/pandas/issues/8965
https://github.com/pandas-dev/pandas/issues/8980
https://github.com/pandas-dev/pandas/issues/3964
https://github.com/pandas-dev/pandas/issues/9011
https://github.com/pandas-dev/pandas/issues/9012
https://github.com/pandas-dev/pandas/issues/8689

pandas: powerful Python data analysis toolkit, Release 0.23.4

In [1]: s = Series(date_range('20130101',periods=5,freq='D'))

In [2]: s.iloc[2] = np.nan

In [3]: s
Out[3]:
0 2013-01-01
1 2013-01-02
2 NaT
3 2013-01-04
4 2013-01-05
dtype: datetime64[ns]

previous behavior:

In [6]: s.dt.hour
Out[6]:
0 0
1 0
2 -1
3 0
4 0
dtype: int64

current behavior:

In [4]: s.dt.hour
Out[4]:
0 0.0
1 0.0
2 NaN
3 0.0
4 0.0
dtype: float64

• groupby with as_index=False will not add erroneous extra columns to result (GH8582):

In [5]: np.random.seed(2718281)

In [6]: df = pd.DataFrame(np.random.randint(0, 100, (10, 2)),
...: columns=['jim', 'joe'])
...:

In [7]: df.head()
Out[7]:

jim joe
0 61 81
1 96 49
2 55 65
3 72 51
4 77 12

In [8]: ts = pd.Series(5 * np.random.randint(0, 3, 10))

previous behavior:

1.23. v0.15.1 (November 9, 2014) 289

https://github.com/pandas-dev/pandas/issues/8582

pandas: powerful Python data analysis toolkit, Release 0.23.4

In [4]: df.groupby(ts, as_index=False).max()
Out[4]:

NaN jim joe
0 0 72 83
1 5 77 84
2 10 96 65

current behavior:

In [9]: df.groupby(ts, as_index=False).max()
Out[9]:

jim joe
0 72 83
1 77 84
2 96 65

• groupby will not erroneously exclude columns if the column name conflics with the grouper name (GH8112):

In [10]: df = pd.DataFrame({'jim': range(5), 'joe': range(5, 10)})

In [11]: df
Out[11]:

jim joe
0 0 5
1 1 6
2 2 7
3 3 8
4 4 9

In [12]: gr = df.groupby(df['jim'] < 2)

previous behavior (excludes 1st column from output):

In [4]: gr.apply(sum)
Out[4]:

joe
jim
False 24
True 11

current behavior:

In [13]: gr.apply(sum)
Out[13]:

jim joe
jim
False 9 24
True 1 11

• Support for slicing with monotonic decreasing indexes, even if start or stop is not found in the index
(GH7860):

In [14]: s = pd.Series(['a', 'b', 'c', 'd'], [4, 3, 2, 1])

In [15]: s
Out[15]:
4 a

(continues on next page)

290 Chapter 1. What’s New

https://github.com/pandas-dev/pandas/issues/8112
https://github.com/pandas-dev/pandas/issues/7860

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

3 b
2 c
1 d
dtype: object

previous behavior:

In [8]: s.loc[3.5:1.5]
KeyError: 3.5

current behavior:

In [16]: s.loc[3.5:1.5]
Out[16]:
3 b
2 c
dtype: object

• io.data.Options has been fixed for a change in the format of the Yahoo Options page (GH8612),
(GH8741)

Note: As a result of a change in Yahoo’s option page layout, when an expiry date is given, Options methods
now return data for a single expiry date. Previously, methods returned all data for the selected month.

The month and year parameters have been undeprecated and can be used to get all options data for a given
month.

If an expiry date that is not valid is given, data for the next expiry after the given date is returned.

Option data frames are now saved on the instance as callsYYMMDD or putsYYMMDD. Previously they were
saved as callsMMYY and putsMMYY. The next expiry is saved as calls and puts.

New features:

– The expiry parameter can now be a single date or a list-like object containing dates.

– A new property expiry_dates was added, which returns all available expiry dates.

Current behavior:

In [17]: from pandas.io.data import Options

In [18]: aapl = Options('aapl','yahoo')

In [19]: aapl.get_call_data().iloc[0:5,0:1]
Out[19]:

Last
Strike Expiry Type Symbol
80 2014-11-14 call AAPL141114C00080000 29.05
84 2014-11-14 call AAPL141114C00084000 24.80
85 2014-11-14 call AAPL141114C00085000 24.05
86 2014-11-14 call AAPL141114C00086000 22.76
87 2014-11-14 call AAPL141114C00087000 21.74

In [20]: aapl.expiry_dates
Out[20]:
[datetime.date(2014, 11, 14),

(continues on next page)

1.23. v0.15.1 (November 9, 2014) 291

https://github.com/pandas-dev/pandas/issues/8612
https://github.com/pandas-dev/pandas/issues/8741

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

datetime.date(2014, 11, 22),
datetime.date(2014, 11, 28),
datetime.date(2014, 12, 5),
datetime.date(2014, 12, 12),
datetime.date(2014, 12, 20),
datetime.date(2015, 1, 17),
datetime.date(2015, 2, 20),
datetime.date(2015, 4, 17),
datetime.date(2015, 7, 17),
datetime.date(2016, 1, 15),
datetime.date(2017, 1, 20)]

In [21]: aapl.get_near_stock_price(expiry=aapl.expiry_dates[0:3]).iloc[0:5,0:1]
Out[21]:

Last
Strike Expiry Type Symbol
109 2014-11-22 call AAPL141122C00109000 1.48

2014-11-28 call AAPL141128C00109000 1.79
110 2014-11-14 call AAPL141114C00110000 0.55

2014-11-22 call AAPL141122C00110000 1.02
2014-11-28 call AAPL141128C00110000 1.32

• pandas now also registers the datetime64 dtype in matplotlib’s units registry to plot such values as datetimes.
This is activated once pandas is imported. In previous versions, plotting an array of datetime64 values will
have resulted in plotted integer values. To keep the previous behaviour, you can do del matplotlib.
units.registry[np.datetime64] (GH8614).

1.23.2 Enhancements

• concat permits a wider variety of iterables of pandas objects to be passed as the first parameter (GH8645):

In [17]: from collections import deque

In [18]: df1 = pd.DataFrame([1, 2, 3])

In [19]: df2 = pd.DataFrame([4, 5, 6])

previous behavior:

In [7]: pd.concat(deque((df1, df2)))
TypeError: first argument must be a list-like of pandas objects, you passed an
→˓object of type "deque"

current behavior:

In [20]: pd.concat(deque((df1, df2)))
Out[20]:

0
0 1
1 2
2 3
0 4
1 5
2 6

292 Chapter 1. What’s New

https://github.com/pandas-dev/pandas/issues/8614
https://github.com/pandas-dev/pandas/issues/8645

pandas: powerful Python data analysis toolkit, Release 0.23.4

• Represent MultiIndex labels with a dtype that utilizes memory based on the level size. In prior versions,
the memory usage was a constant 8 bytes per element in each level. In addition, in prior versions, the reported
memory usage was incorrect as it didn’t show the usage for the memory occupied by the underling data array.
(GH8456)

In [21]: dfi = DataFrame(1,index=pd.MultiIndex.from_product([['a'],range(1000)]),
→˓columns=['A'])

previous behavior:

this was underreported in prior versions
In [1]: dfi.memory_usage(index=True)
Out[1]:
Index 8000 # took about 24008 bytes in < 0.15.1
A 8000
dtype: int64

current behavior:

In [22]: dfi.memory_usage(index=True)
Out[22]:
Index 52080
A 8000
dtype: int64

• Added Index properties is_monotonic_increasing and is_monotonic_decreasing (GH8680).

• Added option to select columns when importing Stata files (GH7935)

• Qualify memory usage in DataFrame.info() by adding + if it is a lower bound (GH8578)

• Raise errors in certain aggregation cases where an argument such as numeric_only is not handled (GH8592).

• Added support for 3-character ISO and non-standard country codes in io.wb.download() (GH8482)

• World Bank data requests now will warn/raise based on an errors argument, as well as a list of hard-coded
country codes and the World Bank’s JSON response. In prior versions, the error messages didn’t look at the
World Bank’s JSON response. Problem-inducing input were simply dropped prior to the request. The issue was
that many good countries were cropped in the hard-coded approach. All countries will work now, but some bad
countries will raise exceptions because some edge cases break the entire response. (GH8482)

• Added option to Series.str.split() to return a DataFrame rather than a Series (GH8428)

• Added option to df.info(null_counts=None|True|False) to override the default display options
and force showing of the null-counts (GH8701)

1.23.3 Bug Fixes

• Bug in unpickling of a CustomBusinessDay object (GH8591)

• Bug in coercing Categorical to a records array, e.g. df.to_records() (GH8626)

• Bug in Categorical not created properly with Series.to_frame() (GH8626)

• Bug in coercing in astype of a Categorical of a passed pd.Categorical (this now raises TypeError
correctly), (GH8626)

• Bug in cut/qcut when using Series and retbins=True (GH8589)

• Bug in writing Categorical columns to an SQL database with to_sql (GH8624).

1.23. v0.15.1 (November 9, 2014) 293

https://github.com/pandas-dev/pandas/issues/8456
https://github.com/pandas-dev/pandas/issues/8680
https://github.com/pandas-dev/pandas/issues/7935
https://github.com/pandas-dev/pandas/issues/8578
https://github.com/pandas-dev/pandas/issues/8592
https://github.com/pandas-dev/pandas/issues/8482
https://github.com/pandas-dev/pandas/issues/8482
https://github.com/pandas-dev/pandas/issues/8428
https://github.com/pandas-dev/pandas/issues/8701
https://github.com/pandas-dev/pandas/issues/8591
https://github.com/pandas-dev/pandas/issues/8626
https://github.com/pandas-dev/pandas/issues/8626
https://github.com/pandas-dev/pandas/issues/8626
https://github.com/pandas-dev/pandas/issues/8589
https://github.com/pandas-dev/pandas/issues/8624

pandas: powerful Python data analysis toolkit, Release 0.23.4

• Bug in comparing Categorical of datetime raising when being compared to a scalar datetime (GH8687)

• Bug in selecting from a Categorical with .iloc (GH8623)

• Bug in groupby-transform with a Categorical (GH8623)

• Bug in duplicated/drop_duplicates with a Categorical (GH8623)

• Bug in Categorical reflected comparison operator raising if the first argument was a numpy array scalar
(e.g. np.int64) (GH8658)

• Bug in Panel indexing with a list-like (GH8710)

• Compat issue is DataFrame.dtypes when options.mode.use_inf_as_null is True (GH8722)

• Bug in read_csv, dialect parameter would not take a string (GH8703)

• Bug in slicing a multi-index level with an empty-list (GH8737)

• Bug in numeric index operations of add/sub with Float/Index Index with numpy arrays (GH8608)

• Bug in setitem with empty indexer and unwanted coercion of dtypes (GH8669)

• Bug in ix/loc block splitting on setitem (manifests with integer-like dtypes, e.g. datetime64) (GH8607)

• Bug when doing label based indexing with integers not found in the index for non-unique but monotonic indexes
(GH8680).

• Bug when indexing a Float64Index with np.nan on numpy 1.7 (GH8980).

• Fix shape attribute for MultiIndex (GH8609)

• Bug in GroupBy where a name conflict between the grouper and columns would break groupby operations
(GH7115, GH8112)

• Fixed a bug where plotting a column y and specifying a label would mutate the index name of the original
DataFrame (GH8494)

• Fix regression in plotting of a DatetimeIndex directly with matplotlib (GH8614).

• Bug in date_range where partially-specified dates would incorporate current date (GH6961)

• Bug in Setting by indexer to a scalar value with a mixed-dtype Panel4d was failing (GH8702)

• Bug where DataReader’s would fail if one of the symbols passed was invalid. Now returns data for valid
symbols and np.nan for invalid (GH8494)

• Bug in get_quote_yahoo that wouldn’t allow non-float return values (GH5229).

1.24 v0.15.0 (October 18, 2014)

This is a major release from 0.14.1 and includes a small number of API changes, several new features, enhancements,
and performance improvements along with a large number of bug fixes. We recommend that all users upgrade to this
version.

Warning: pandas >= 0.15.0 will no longer support compatibility with NumPy versions < 1.7.0. If you want to
use the latest versions of pandas, please upgrade to NumPy >= 1.7.0 (GH7711)

• Highlights include:

– The Categorical type was integrated as a first-class pandas type, see here

– New scalar type Timedelta, and a new index type TimedeltaIndex, see here

294 Chapter 1. What’s New

https://github.com/pandas-dev/pandas/issues/8687
https://github.com/pandas-dev/pandas/issues/8623
https://github.com/pandas-dev/pandas/issues/8623
https://github.com/pandas-dev/pandas/issues/8623
https://github.com/pandas-dev/pandas/issues/8658
https://github.com/pandas-dev/pandas/issues/8710
https://github.com/pandas-dev/pandas/issues/8722
https://github.com/pandas-dev/pandas/issues/8703
https://github.com/pandas-dev/pandas/issues/8737
https://github.com/pandas-dev/pandas/issues/8608
https://github.com/pandas-dev/pandas/issues/8669
https://github.com/pandas-dev/pandas/issues/8607
https://github.com/pandas-dev/pandas/issues/8680
https://github.com/pandas-dev/pandas/issues/8980
https://github.com/pandas-dev/pandas/issues/8609
https://github.com/pandas-dev/pandas/issues/7115
https://github.com/pandas-dev/pandas/issues/8112
https://github.com/pandas-dev/pandas/issues/8494
https://github.com/pandas-dev/pandas/issues/8614
https://github.com/pandas-dev/pandas/issues/6961
https://github.com/pandas-dev/pandas/issues/8702
https://github.com/pandas-dev/pandas/issues/8494
https://github.com/pandas-dev/pandas/issues/5229
https://github.com/pandas-dev/pandas/issues/7711

pandas: powerful Python data analysis toolkit, Release 0.23.4

– New datetimelike properties accessor .dt for Series, see Datetimelike Properties

– New DataFrame default display for df.info() to include memory usage, see Memory Usage

– read_csv will now by default ignore blank lines when parsing, see here

– API change in using Indexes in set operations, see here

– Enhancements in the handling of timezones, see here

– A lot of improvements to the rolling and expanding moment functions, see here

– Internal refactoring of the Index class to no longer sub-class ndarray, see Internal Refactoring

– dropping support for PyTables less than version 3.0.0, and numexpr less than version 2.1 (GH7990)

– Split indexing documentation into Indexing and Selecting Data and MultiIndex / Advanced Indexing

– Split out string methods documentation into Working with Text Data

• Check the API Changes and deprecations before updating

• Other Enhancements

• Performance Improvements

• Bug Fixes

Warning: In 0.15.0 Index has internally been refactored to no longer sub-class ndarray but instead subclass
PandasObject, similarly to the rest of the pandas objects. This change allows very easy sub-classing and
creation of new index types. This should be a transparent change with only very limited API implications (See the
Internal Refactoring)

Warning: The refactorings in Categorical changed the two argument constructor from “codes/labels and
levels” to “values and levels (now called ‘categories’)”. This can lead to subtle bugs. If you use Categorical
directly, please audit your code before updating to this pandas version and change it to use the from_codes()
constructor. See more on Categorical here

1.24.1 New features

1.24.1.1 Categoricals in Series/DataFrame

Categorical can now be included in Series and DataFrames and gained new methods to manipulate. Thanks to Jan
Schulz for much of this API/implementation. (GH3943, GH5313, GH5314, GH7444, GH7839, GH7848, GH7864,
GH7914, GH7768, GH8006, GH3678, GH8075, GH8076, GH8143, GH8453, GH8518).

For full docs, see the categorical introduction and the API documentation.

In [1]: df = DataFrame({"id":[1,2,3,4,5,6], "raw_grade":['a', 'b', 'b', 'a', 'a', 'e
→˓']})

In [2]: df["grade"] = df["raw_grade"].astype("category")

In [3]: df["grade"]
Out[3]:
0 a
1 b

(continues on next page)

1.24. v0.15.0 (October 18, 2014) 295

https://github.com/pandas-dev/pandas/issues/7990
https://github.com/pandas-dev/pandas/issues/3943
https://github.com/pandas-dev/pandas/issues/5313
https://github.com/pandas-dev/pandas/issues/5314
https://github.com/pandas-dev/pandas/issues/7444
https://github.com/pandas-dev/pandas/issues/7839
https://github.com/pandas-dev/pandas/issues/7848
https://github.com/pandas-dev/pandas/issues/7864
https://github.com/pandas-dev/pandas/issues/7914
https://github.com/pandas-dev/pandas/issues/7768
https://github.com/pandas-dev/pandas/issues/8006
https://github.com/pandas-dev/pandas/issues/3678
https://github.com/pandas-dev/pandas/issues/8075
https://github.com/pandas-dev/pandas/issues/8076
https://github.com/pandas-dev/pandas/issues/8143
https://github.com/pandas-dev/pandas/issues/8453
https://github.com/pandas-dev/pandas/issues/8518

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

2 b
3 a
4 a
5 e
Name: grade, dtype: category
Categories (3, object): [a, b, e]

Rename the categories
In [4]: df["grade"].cat.categories = ["very good", "good", "very bad"]

Reorder the categories and simultaneously add the missing categories
In [5]: df["grade"] = df["grade"].cat.set_categories(["very bad", "bad", "medium",
→˓"good", "very good"])

In [6]: df["grade"]
Out[6]:
0 very good
1 good
2 good
3 very good
4 very good
5 very bad
Name: grade, dtype: category
Categories (5, object): [very bad, bad, medium, good, very good]

In [7]: df.sort_values("grade")
\\\Out[7]:
→˓

id raw_grade grade
5 6 e very bad
1 2 b good
2 3 b good
0 1 a very good
3 4 a very good
4 5 a very good

In [8]: df.groupby("grade").size()
\\\Out[8]:
→˓

grade
very bad 1
bad 0
medium 0
good 2
very good 3
dtype: int64

• pandas.core.group_agg and pandas.core.factor_agg were removed. As an alternative, con-
struct a dataframe and use df.groupby(<group>).agg(<func>).

• Supplying “codes/labels and levels” to the Categorical constructor is not supported anymore. Supplying
two arguments to the constructor is now interpreted as “values and levels (now called ‘categories’)”. Please
change your code to use the from_codes() constructor.

• The Categorical.labels attribute was renamed to Categorical.codes and is read only. If you want
to manipulate codes, please use one of the API methods on Categoricals.

• The Categorical.levels attribute is renamed to Categorical.categories.

296 Chapter 1. What’s New

pandas: powerful Python data analysis toolkit, Release 0.23.4

1.24.1.2 TimedeltaIndex/Scalar

We introduce a new scalar type Timedelta, which is a subclass of datetime.timedelta, and behaves in a
similar manner, but allows compatibility with np.timedelta64 types as well as a host of custom representation,
parsing, and attributes. This type is very similar to how Timestamp works for datetimes. It is a nice-API box for
the type. See the docs. (GH3009, GH4533, GH8209, GH8187, GH8190, GH7869, GH7661, GH8345, GH8471)

Warning: Timedelta scalars (and TimedeltaIndex) component fields are not the same as the component
fields on a datetime.timedelta object. For example, .seconds on a datetime.timedelta object
returns the total number of seconds combined between hours, minutes and seconds. In contrast, the pandas
Timedelta breaks out hours, minutes, microseconds and nanoseconds separately.

Timedelta accessor
In [9]: tds = Timedelta('31 days 5 min 3 sec')

In [10]: tds.minutes
Out[10]: 5L

In [11]: tds.seconds
Out[11]: 3L

datetime.timedelta accessor
this is 5 minutes * 60 + 3 seconds
In [12]: tds.to_pytimedelta().seconds
Out[12]: 303

Note: this is no longer true starting from v0.16.0, where full compatibility with datetime.timedelta is
introduced. See the 0.16.0 whatsnew entry

Warning: Prior to 0.15.0 pd.to_timedelta would return a Series for list-like/Series input, and a np.
timedelta64 for scalar input. It will now return a TimedeltaIndex for list-like input, Series for Series
input, and Timedelta for scalar input.

The arguments to pd.to_timedelta are now (arg,unit='ns',box=True,coerce=False), previ-
ously were (arg,box=True,unit='ns') as these are more logical.

Consruct a scalar

In [9]: Timedelta('1 days 06:05:01.00003')
Out[9]: Timedelta('1 days 06:05:01.000030')

In [10]: Timedelta('15.5us')
\\Out[10]: Timedelta('0 days 00:00:00.000015
→˓')

In [11]: Timedelta('1 hour 15.5us')
\\\Out[11]:
→˓Timedelta('0 days 01:00:00.000015')

negative Timedeltas have this string repr
to be more consistent with datetime.timedelta conventions
In [12]: Timedelta('-1us')
\\Out[12]:
→˓Timedelta('-1 days +23:59:59.999999')

(continues on next page)

1.24. v0.15.0 (October 18, 2014) 297

https://github.com/pandas-dev/pandas/issues/3009
https://github.com/pandas-dev/pandas/issues/4533
https://github.com/pandas-dev/pandas/issues/8209
https://github.com/pandas-dev/pandas/issues/8187
https://github.com/pandas-dev/pandas/issues/8190
https://github.com/pandas-dev/pandas/issues/7869
https://github.com/pandas-dev/pandas/issues/7661
https://github.com/pandas-dev/pandas/issues/8345
https://github.com/pandas-dev/pandas/issues/8471

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

a NaT
In [13]: Timedelta('nan')
\\\Out[13]:
→˓NaT

Access fields for a Timedelta

In [14]: td = Timedelta('1 hour 3m 15.5us')

In [15]: td.seconds
Out[15]: 3780

In [16]: td.microseconds
\\\\\\\\\\\\\\Out[16]: 16

In [17]: td.nanoseconds
\\\\\\\\\\\\\\\\\\\\\\\\\\Out[17]: 500

Construct a TimedeltaIndex

In [18]: TimedeltaIndex(['1 days','1 days, 00:00:05',
....: np.timedelta64(2,'D'),timedelta(days=2,seconds=2)])
....:

Out[18]:
TimedeltaIndex(['1 days 00:00:00', '1 days 00:00:05', '2 days 00:00:00',

'2 days 00:00:02'],
dtype='timedelta64[ns]', freq=None)

Constructing a TimedeltaIndex with a regular range

In [19]: timedelta_range('1 days',periods=5,freq='D')
Out[19]: TimedeltaIndex(['1 days', '2 days', '3 days', '4 days', '5 days'], dtype=
→˓'timedelta64[ns]', freq='D')

In [20]: timedelta_range(start='1 days',end='2 days',freq='30T')
\\\Out[20]:
→˓

TimedeltaIndex(['1 days 00:00:00', '1 days 00:30:00', '1 days 01:00:00',
'1 days 01:30:00', '1 days 02:00:00', '1 days 02:30:00',
'1 days 03:00:00', '1 days 03:30:00', '1 days 04:00:00',
'1 days 04:30:00', '1 days 05:00:00', '1 days 05:30:00',
'1 days 06:00:00', '1 days 06:30:00', '1 days 07:00:00',
'1 days 07:30:00', '1 days 08:00:00', '1 days 08:30:00',
'1 days 09:00:00', '1 days 09:30:00', '1 days 10:00:00',
'1 days 10:30:00', '1 days 11:00:00', '1 days 11:30:00',
'1 days 12:00:00', '1 days 12:30:00', '1 days 13:00:00',
'1 days 13:30:00', '1 days 14:00:00', '1 days 14:30:00',
'1 days 15:00:00', '1 days 15:30:00', '1 days 16:00:00',
'1 days 16:30:00', '1 days 17:00:00', '1 days 17:30:00',
'1 days 18:00:00', '1 days 18:30:00', '1 days 19:00:00',
'1 days 19:30:00', '1 days 20:00:00', '1 days 20:30:00',
'1 days 21:00:00', '1 days 21:30:00', '1 days 22:00:00',
'1 days 22:30:00', '1 days 23:00:00', '1 days 23:30:00',
'2 days 00:00:00'],

dtype='timedelta64[ns]', freq='30T')

298 Chapter 1. What’s New

pandas: powerful Python data analysis toolkit, Release 0.23.4

You can now use a TimedeltaIndex as the index of a pandas object

In [21]: s = Series(np.arange(5),
....: index=timedelta_range('1 days',periods=5,freq='s'))
....:

In [22]: s
Out[22]:
1 days 00:00:00 0
1 days 00:00:01 1
1 days 00:00:02 2
1 days 00:00:03 3
1 days 00:00:04 4
Freq: S, dtype: int64

You can select with partial string selections

In [23]: s['1 day 00:00:02']
Out[23]: 2

In [24]: s['1 day':'1 day 00:00:02']
\\\\\\\\\\\Out[24]:
1 days 00:00:00 0
1 days 00:00:01 1
1 days 00:00:02 2
Freq: S, dtype: int64

Finally, the combination of TimedeltaIndex with DatetimeIndex allow certain combination operations that
are NaT preserving:

In [25]: tdi = TimedeltaIndex(['1 days',pd.NaT,'2 days'])

In [26]: tdi.tolist()
Out[26]: [Timedelta('1 days 00:00:00'), NaT, Timedelta('2 days 00:00:00')]

In [27]: dti = date_range('20130101',periods=3)

In [28]: dti.tolist()
Out[28]:
[Timestamp('2013-01-01 00:00:00', freq='D'),
Timestamp('2013-01-02 00:00:00', freq='D'),
Timestamp('2013-01-03 00:00:00', freq='D')]

In [29]: (dti + tdi).tolist()
\\\Out[29]:
→˓[Timestamp('2013-01-02 00:00:00'), NaT, Timestamp('2013-01-05 00:00:00')]

In [30]: (dti - tdi).tolist()
\\Out[30]:
→˓[Timestamp('2012-12-31 00:00:00'), NaT, Timestamp('2013-01-01 00:00:00')]

• iteration of a Series e.g. list(Series(...)) of timedelta64[ns] would prior to v0.15.0 return
np.timedelta64 for each element. These will now be wrapped in Timedelta.

1.24.1.3 Memory Usage

Implemented methods to find memory usage of a DataFrame. See the FAQ for more. (GH6852).

1.24. v0.15.0 (October 18, 2014) 299

https://github.com/pandas-dev/pandas/issues/6852

pandas: powerful Python data analysis toolkit, Release 0.23.4

A new display option display.memory_usage (see Options and Settings) sets the default behavior of the
memory_usage argument in the df.info() method. By default display.memory_usage is True.

In [31]: dtypes = ['int64', 'float64', 'datetime64[ns]', 'timedelta64[ns]',
....: 'complex128', 'object', 'bool']
....:

In [32]: n = 5000

In [33]: data = dict([(t, np.random.randint(100, size=n).astype(t))
....: for t in dtypes])
....:

In [34]: df = DataFrame(data)

In [35]: df['categorical'] = df['object'].astype('category')

In [36]: df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 5000 entries, 0 to 4999
Data columns (total 8 columns):
int64 5000 non-null int64
float64 5000 non-null float64
datetime64[ns] 5000 non-null datetime64[ns]
timedelta64[ns] 5000 non-null timedelta64[ns]
complex128 5000 non-null complex128
object 5000 non-null object
bool 5000 non-null bool
categorical 5000 non-null category
dtypes: bool(1), category(1), complex128(1), datetime64[ns](1), float64(1), int64(1),
→˓object(1), timedelta64[ns](1)
memory usage: 289.1+ KB

Additionally memory_usage() is an available method for a dataframe object which returns the memory usage of
each column.

In [37]: df.memory_usage(index=True)
Out[37]:
Index 80
int64 40000
float64 40000
datetime64[ns] 40000
timedelta64[ns] 40000
complex128 80000
object 40000
bool 5000
categorical 10920
dtype: int64

1.24.1.4 .dt accessor

Series has gained an accessor to succinctly return datetime like properties for the values of the Series, if its a
datetime/period like Series. (GH7207) This will return a Series, indexed like the existing Series. See the docs

datetime
In [38]: s = Series(date_range('20130101 09:10:12',periods=4))

(continues on next page)

300 Chapter 1. What’s New

https://github.com/pandas-dev/pandas/issues/7207

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

In [39]: s
Out[39]:
0 2013-01-01 09:10:12
1 2013-01-02 09:10:12
2 2013-01-03 09:10:12
3 2013-01-04 09:10:12
dtype: datetime64[ns]

In [40]: s.dt.hour
\\Out[40]:
→˓

0 9
1 9
2 9
3 9
dtype: int64

In [41]: s.dt.second
\\\Out[41]:
→˓

0 12
1 12
2 12
3 12
dtype: int64

In [42]: s.dt.day
\\Out[42]:
→˓

0 1
1 2
2 3
3 4
dtype: int64

In [43]: s.dt.freq
\\\Out[43]:
→˓'D'

This enables nice expressions like this:

In [44]: s[s.dt.day==2]
Out[44]:
1 2013-01-02 09:10:12
dtype: datetime64[ns]

You can easily produce tz aware transformations:

In [45]: stz = s.dt.tz_localize('US/Eastern')

In [46]: stz
Out[46]:
0 2013-01-01 09:10:12-05:00
1 2013-01-02 09:10:12-05:00
2 2013-01-03 09:10:12-05:00
3 2013-01-04 09:10:12-05:00

(continues on next page)

1.24. v0.15.0 (October 18, 2014) 301

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

dtype: datetime64[ns, US/Eastern]

In [47]: stz.dt.tz
\\Out[47]:
→˓<DstTzInfo 'US/Eastern' LMT-1 day, 19:04:00 STD>

You can also chain these types of operations:

In [48]: s.dt.tz_localize('UTC').dt.tz_convert('US/Eastern')
Out[48]:
0 2013-01-01 04:10:12-05:00
1 2013-01-02 04:10:12-05:00
2 2013-01-03 04:10:12-05:00
3 2013-01-04 04:10:12-05:00
dtype: datetime64[ns, US/Eastern]

The .dt accessor works for period and timedelta dtypes.

period
In [49]: s = Series(period_range('20130101',periods=4,freq='D'))

In [50]: s
Out[50]:
0 2013-01-01
1 2013-01-02
2 2013-01-03
3 2013-01-04
dtype: object

In [51]: s.dt.year
\\Out[51]:
→˓

0 2013
1 2013
2 2013
3 2013
dtype: int64

In [52]: s.dt.day
\\\Out[52]:
→˓

0 1
1 2
2 3
3 4
dtype: int64

timedelta
In [53]: s = Series(timedelta_range('1 day 00:00:05',periods=4,freq='s'))

In [54]: s
Out[54]:
0 1 days 00:00:05
1 1 days 00:00:06
2 1 days 00:00:07
3 1 days 00:00:08

(continues on next page)

302 Chapter 1. What’s New

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

dtype: timedelta64[ns]

In [55]: s.dt.days
\\\Out[55]:
→˓

0 1
1 1
2 1
3 1
dtype: int64

In [56]: s.dt.seconds
\\Out[56]:
→˓

0 5
1 6
2 7
3 8
dtype: int64

In [57]: s.dt.components
\\\Out[57]:
→˓

days hours minutes seconds milliseconds microseconds nanoseconds
0 1 0 0 5 0 0 0
1 1 0 0 6 0 0 0
2 1 0 0 7 0 0 0
3 1 0 0 8 0 0 0

1.24.1.5 Timezone handling improvements

• tz_localize(None) for tz-aware Timestamp and DatetimeIndex now removes timezone holding
local time, previously this resulted in Exception or TypeError (GH7812)

In [58]: ts = Timestamp('2014-08-01 09:00', tz='US/Eastern')

In [59]: ts
Out[59]: Timestamp('2014-08-01 09:00:00-0400', tz='US/Eastern')

In [60]: ts.tz_localize(None)
\\Out[60]:
→˓Timestamp('2014-08-01 09:00:00')

In [61]: didx = DatetimeIndex(start='2014-08-01 09:00', freq='H', periods=10, tz=
→˓'US/Eastern')

In [62]: didx
Out[62]:
DatetimeIndex(['2014-08-01 09:00:00-04:00', '2014-08-01 10:00:00-04:00',

'2014-08-01 11:00:00-04:00', '2014-08-01 12:00:00-04:00',
'2014-08-01 13:00:00-04:00', '2014-08-01 14:00:00-04:00',
'2014-08-01 15:00:00-04:00', '2014-08-01 16:00:00-04:00',
'2014-08-01 17:00:00-04:00', '2014-08-01 18:00:00-04:00'],

dtype='datetime64[ns, US/Eastern]', freq='H')

(continues on next page)

1.24. v0.15.0 (October 18, 2014) 303

https://github.com/pandas-dev/pandas/issues/7812

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

In [63]: didx.tz_localize(None)
\\Out[63]:
→˓

DatetimeIndex(['2014-08-01 09:00:00', '2014-08-01 10:00:00',
'2014-08-01 11:00:00', '2014-08-01 12:00:00',
'2014-08-01 13:00:00', '2014-08-01 14:00:00',
'2014-08-01 15:00:00', '2014-08-01 16:00:00',
'2014-08-01 17:00:00', '2014-08-01 18:00:00'],

dtype='datetime64[ns]', freq='H')

• tz_localize now accepts the ambiguous keyword which allows for passing an array of bools indicating
whether the date belongs in DST or not, ‘NaT’ for setting transition times to NaT, ‘infer’ for inferring DST/non-
DST, and ‘raise’ (default) for an AmbiguousTimeError to be raised. See the docs for more details (GH7943)

• DataFrame.tz_localize and DataFrame.tz_convert now accepts an optional level argument
for localizing a specific level of a MultiIndex (GH7846)

• Timestamp.tz_localize and Timestamp.tz_convert now raise TypeError in error cases, rather
than Exception (GH8025)

• a timeseries/index localized to UTC when inserted into a Series/DataFrame will preserve the UTC timezone
(rather than being a naive datetime64[ns]) as object dtype (GH8411)

• Timestamp.__repr__ displays dateutil.tz.tzoffset info (GH7907)

1.24.1.6 Rolling/Expanding Moments improvements

• rolling_min(), rolling_max(), rolling_cov(), and rolling_corr() now return objects with
all NaN when len(arg) < min_periods <= window rather than raising. (This makes all rolling func-
tions consistent in this behavior). (GH7766)

Prior to 0.15.0

In [64]: s = Series([10, 11, 12, 13])

In [15]: rolling_min(s, window=10, min_periods=5)
ValueError: min_periods (5) must be <= window (4)

New behavior

In [4]: pd.rolling_min(s, window=10, min_periods=5)
Out[4]:
0 NaN
1 NaN
2 NaN
3 NaN
dtype: float64

• rolling_max(), rolling_min(), rolling_sum(), rolling_mean(), rolling_median(),
rolling_std(), rolling_var(), rolling_skew(), rolling_kurt(),
rolling_quantile(), rolling_cov(), rolling_corr(), rolling_corr_pairwise(),
rolling_window(), and rolling_apply() with center=True previously would return a result of
the same structure as the input arg with NaN in the final (window-1)/2 entries.

Now the final (window-1)/2 entries of the result are calculated as if the input arg were followed by
(window-1)/2 NaN values (or with shrinking windows, in the case of rolling_apply()). (GH7925,
GH8269)

304 Chapter 1. What’s New

https://github.com/pandas-dev/pandas/issues/7943
https://github.com/pandas-dev/pandas/issues/7846
https://github.com/pandas-dev/pandas/issues/8025
https://github.com/pandas-dev/pandas/issues/8411
https://github.com/pandas-dev/pandas/issues/7907
https://github.com/pandas-dev/pandas/issues/7766
https://github.com/pandas-dev/pandas/issues/7925
https://github.com/pandas-dev/pandas/issues/8269

pandas: powerful Python data analysis toolkit, Release 0.23.4

Prior behavior (note final value is NaN):

In [7]: rolling_sum(Series(range(4)), window=3, min_periods=0, center=True)
Out[7]:
0 1
1 3
2 6
3 NaN
dtype: float64

New behavior (note final value is 5 = sum([2, 3, NaN])):

In [7]: rolling_sum(Series(range(4)), window=3, min_periods=0, center=True)
Out[7]:
0 1
1 3
2 6
3 5
dtype: float64

• rolling_window() now normalizes the weights properly in rolling mean mode (mean=True) so that the
calculated weighted means (e.g. ‘triang’, ‘gaussian’) are distributed about the same means as those calculated
without weighting (i.e. ‘boxcar’). See the note on normalization for further details. (GH7618)

In [65]: s = Series([10.5, 8.8, 11.4, 9.7, 9.3])

Behavior prior to 0.15.0:

In [39]: rolling_window(s, window=3, win_type='triang', center=True)
Out[39]:
0 NaN
1 6.583333
2 6.883333
3 6.683333
4 NaN
dtype: float64

New behavior

In [10]: pd.rolling_window(s, window=3, win_type='triang', center=True)
Out[10]:
0 NaN
1 9.875
2 10.325
3 10.025
4 NaN
dtype: float64

• Removed center argument from all expanding_ functions (see list), as the results produced when
center=True did not make much sense. (GH7925)

• Added optional ddof argument to expanding_cov() and rolling_cov(). The default value of 1 is
backwards-compatible. (GH8279)

• Documented the ddof argument to expanding_var(), expanding_std(), rolling_var(), and
rolling_std(). These functions’ support of a ddof argument (with a default value of 1) was previously
undocumented. (GH8064)

1.24. v0.15.0 (October 18, 2014) 305

https://github.com/pandas-dev/pandas/issues/7618
https://github.com/pandas-dev/pandas/issues/7925
https://github.com/pandas-dev/pandas/issues/8279
https://github.com/pandas-dev/pandas/issues/8064

pandas: powerful Python data analysis toolkit, Release 0.23.4

• ewma(), ewmstd(), ewmvol(), ewmvar(), ewmcov(), and ewmcorr() now interpret min_periods
in the same manner that the rolling_*() and expanding_*() functions do: a given result entry will be
NaN if the (expanding, in this case) window does not contain at least min_periods values. The previous
behavior was to set to NaN the min_periods entries starting with the first non- NaN value. (GH7977)

Prior behavior (note values start at index 2, which is min_periods after index 0 (the index of the first non-
empty value)):

In [66]: s = Series([1, None, None, None, 2, 3])

In [51]: ewma(s, com=3., min_periods=2)
Out[51]:
0 NaN
1 NaN
2 1.000000
3 1.000000
4 1.571429
5 2.189189
dtype: float64

New behavior (note values start at index 4, the location of the 2nd (since min_periods=2) non-empty value):

In [2]: pd.ewma(s, com=3., min_periods=2)
Out[2]:
0 NaN
1 NaN
2 NaN
3 NaN
4 1.759644
5 2.383784
dtype: float64

• ewmstd(), ewmvol(), ewmvar(), ewmcov(), and ewmcorr() now have an optional adjust argu-
ment, just like ewma() does, affecting how the weights are calculated. The default value of adjust is True,
which is backwards-compatible. See Exponentially weighted moment functions for details. (GH7911)

• ewma(), ewmstd(), ewmvol(), ewmvar(), ewmcov(), and ewmcorr() now have an optional
ignore_na argument. When ignore_na=False (the default), missing values are taken into account in
the weights calculation. When ignore_na=True (which reproduces the pre-0.15.0 behavior), missing values
are ignored in the weights calculation. (GH7543)

In [7]: pd.ewma(Series([None, 1., 8.]), com=2.)
Out[7]:
0 NaN
1 1.0
2 5.2
dtype: float64

In [8]: pd.ewma(Series([1., None, 8.]), com=2., ignore_na=True) # pre-0.15.0
→˓behavior
Out[8]:
0 1.0
1 1.0
2 5.2
dtype: float64

In [9]: pd.ewma(Series([1., None, 8.]), com=2., ignore_na=False) # new default

(continues on next page)

306 Chapter 1. What’s New

https://github.com/pandas-dev/pandas/issues/7977
https://github.com/pandas-dev/pandas/issues/7911
https://github.com/pandas-dev/pandas/issues/7543

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

Out[9]:
0 1.000000
1 1.000000
2 5.846154
dtype: float64

Warning: By default (ignore_na=False) the ewm*() functions’ weights calculation in the presence
of missing values is different than in pre-0.15.0 versions. To reproduce the pre-0.15.0 calculation of weights
in the presence of missing values one must specify explicitly ignore_na=True.

• Bug in expanding_cov(), expanding_corr(), rolling_cov(), rolling_cor(), ewmcov(),
and ewmcorr() returning results with columns sorted by name and producing an error for non-unique
columns; now handles non-unique columns and returns columns in original order (except for the case of two
DataFrames with pairwise=False, where behavior is unchanged) (GH7542)

• Bug in rolling_count() and expanding_*() functions unnecessarily producing error message for
zero-length data (GH8056)

• Bug in rolling_apply() and expanding_apply() interpreting min_periods=0 as
min_periods=1 (GH8080)

• Bug in expanding_std() and expanding_var() for a single value producing a confusing error message
(GH7900)

• Bug in rolling_std() and rolling_var() for a single value producing 0 rather than NaN (GH7900)

• Bug in ewmstd(), ewmvol(), ewmvar(), and ewmcov() calculation of de-biasing factors when
bias=False (the default). Previously an incorrect constant factor was used, based on adjust=True,
ignore_na=True, and an infinite number of observations. Now a different factor is used for each entry,
based on the actual weights (analogous to the usual N/(N-1) factor). In particular, for a single point a value of
NaN is returned when bias=False, whereas previously a value of (approximately) 0 was returned.

For example, consider the following pre-0.15.0 results for ewmvar(..., bias=False), and the corre-
sponding debiasing factors:

In [67]: s = Series([1., 2., 0., 4.])

In [89]: ewmvar(s, com=2., bias=False)
Out[89]:
0 -2.775558e-16
1 3.000000e-01
2 9.556787e-01
3 3.585799e+00
dtype: float64

In [90]: ewmvar(s, com=2., bias=False) / ewmvar(s, com=2., bias=True)
Out[90]:
0 1.25
1 1.25
2 1.25
3 1.25
dtype: float64

Note that entry 0 is approximately 0, and the debiasing factors are a constant 1.25. By comparison, the following
0.15.0 results have a NaN for entry 0, and the debiasing factors are decreasing (towards 1.25):

1.24. v0.15.0 (October 18, 2014) 307

https://github.com/pandas-dev/pandas/issues/7542
https://github.com/pandas-dev/pandas/issues/8056
https://github.com/pandas-dev/pandas/issues/8080
https://github.com/pandas-dev/pandas/issues/7900
https://github.com/pandas-dev/pandas/issues/7900

pandas: powerful Python data analysis toolkit, Release 0.23.4

In [14]: pd.ewmvar(s, com=2., bias=False)
Out[14]:
0 NaN
1 0.500000
2 1.210526
3 4.089069
dtype: float64

In [15]: pd.ewmvar(s, com=2., bias=False) / pd.ewmvar(s, com=2., bias=True)
Out[15]:
0 NaN
1 2.083333
2 1.583333
3 1.425439
dtype: float64

See Exponentially weighted moment functions for details. (GH7912)

1.24.1.7 Improvements in the sql io module

• Added support for a chunksize parameter to to_sql function. This allows DataFrame to be written in
chunks and avoid packet-size overflow errors (GH8062).

• Added support for a chunksize parameter to read_sql function. Specifying this argument will return an
iterator through chunks of the query result (GH2908).

• Added support for writing datetime.date and datetime.time object columns with to_sql (GH6932).

• Added support for specifying a schema to read from/write to with read_sql_table and to_sql
(GH7441, GH7952). For example:

df.to_sql('table', engine, schema='other_schema')
pd.read_sql_table('table', engine, schema='other_schema')

• Added support for writing NaN values with to_sql (GH2754).

• Added support for writing datetime64 columns with to_sql for all database flavors (GH7103).

1.24.2 Backwards incompatible API changes

1.24.2.1 Breaking changes

API changes related to Categorical (see here for more details):

• The Categorical constructor with two arguments changed from “codes/labels and levels” to “values and
levels (now called ‘categories’)”. This can lead to subtle bugs. If you use Categorical directly, please audit
your code by changing it to use the from_codes() constructor.

An old function call like (prior to 0.15.0):

pd.Categorical([0,1,0,2,1], levels=['a', 'b', 'c'])

will have to adapted to the following to keep the same behaviour:

308 Chapter 1. What’s New

https://github.com/pandas-dev/pandas/issues/7912
https://github.com/pandas-dev/pandas/issues/8062
https://github.com/pandas-dev/pandas/issues/2908
https://github.com/pandas-dev/pandas/issues/6932
https://github.com/pandas-dev/pandas/issues/7441
https://github.com/pandas-dev/pandas/issues/7952
https://github.com/pandas-dev/pandas/issues/2754
https://github.com/pandas-dev/pandas/issues/7103

pandas: powerful Python data analysis toolkit, Release 0.23.4

In [2]: pd.Categorical.from_codes([0,1,0,2,1], categories=['a', 'b', 'c'])
Out[2]:
[a, b, a, c, b]
Categories (3, object): [a, b, c]

API changes related to the introduction of the Timedelta scalar (see above for more details):

• Prior to 0.15.0 to_timedelta() would return a Series for list-like/Series input, and a np.
timedelta64 for scalar input. It will now return a TimedeltaIndex for list-like input, Series for
Series input, and Timedelta for scalar input.

For API changes related to the rolling and expanding functions, see detailed overview above.

Other notable API changes:

• Consistency when indexing with .loc and a list-like indexer when no values are found.

In [68]: df = DataFrame([['a'],['b']],index=[1,2])

In [69]: df
Out[69]:

0
1 a
2 b

In prior versions there was a difference in these two constructs:

– df.loc[[3]] would return a frame reindexed by 3 (with all np.nan values)

– df.loc[[3],:] would raise KeyError.

Both will now raise a KeyError. The rule is that at least 1 indexer must be found when using a list-like and
.loc (GH7999)

Furthermore in prior versions these were also different:

– df.loc[[1,3]] would return a frame reindexed by [1,3]

– df.loc[[1,3],:] would raise KeyError.

Both will now return a frame reindex by [1,3]. E.g.

In [3]: df.loc[[1,3]]
Out[3]:

0
1 a
3 NaN

In [4]: df.loc[[1,3],:]
Out[4]:

0
1 a
3 NaN

This can also be seen in multi-axis indexing with a Panel.

In [70]: p = Panel(np.arange(2*3*4).reshape(2,3,4),
....: items=['ItemA','ItemB'],
....: major_axis=[1,2,3],
....: minor_axis=['A','B','C','D'])
....:

(continues on next page)

1.24. v0.15.0 (October 18, 2014) 309

https://github.com/pandas-dev/pandas/issues/7999

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

In [71]: p
Out[71]:
<class 'pandas.core.panel.Panel'>
Dimensions: 2 (items) x 3 (major_axis) x 4 (minor_axis)
Items axis: ItemA to ItemB
Major_axis axis: 1 to 3
Minor_axis axis: A to D

The following would raise KeyError prior to 0.15.0:

In [5]:
Out[5]:

ItemA ItemD
1 3 NaN
2 7 NaN
3 11 NaN

Furthermore, .loc will raise If no values are found in a multi-index with a list-like indexer:

In [72]: s = Series(np.arange(3,dtype='int64'),
....: index=MultiIndex.from_product([['A'],['foo','bar','baz']],
....: names=['one','two'])
....:).sort_index()
....:

In [73]: s
Out[73]:
one two
A bar 1

baz 2
foo 0

dtype: int64

In [74]: try:
....: s.loc[['D']]
....: except KeyError as e:
....: print("KeyError: " + str(e))
....:

\\KeyError:
→˓"['D'] not in index"

• Assigning values to None now considers the dtype when choosing an ‘empty’ value (GH7941).

Previously, assigning to None in numeric containers changed the dtype to object (or errored, depending on the
call). It now uses NaN:

In [75]: s = Series([1, 2, 3])

In [76]: s.loc[0] = None

In [77]: s
Out[77]:
0 NaN
1 2.0
2 3.0
dtype: float64

310 Chapter 1. What’s New

https://github.com/pandas-dev/pandas/issues/7941

pandas: powerful Python data analysis toolkit, Release 0.23.4

NaT is now used similarly for datetime containers.

For object containers, we now preserve None values (previously these were converted to NaN values).

In [78]: s = Series(["a", "b", "c"])

In [79]: s.loc[0] = None

In [80]: s
Out[80]:
0 None
1 b
2 c
dtype: object

To insert a NaN, you must explicitly use np.nan. See the docs.

• In prior versions, updating a pandas object inplace would not reflect in other python references to this object.
(GH8511, GH5104)

In [81]: s = Series([1, 2, 3])

In [82]: s2 = s

In [83]: s += 1.5

Behavior prior to v0.15.0

the original object
In [5]: s
Out[5]:
0 2.5
1 3.5
2 4.5
dtype: float64

a reference to the original object
In [7]: s2
Out[7]:
0 1
1 2
2 3
dtype: int64

This is now the correct behavior

the original object
In [84]: s
Out[84]:
0 2.5
1 3.5
2 4.5
dtype: float64

a reference to the original object
In [85]: s2
\\Out[85]:
0 2.5

(continues on next page)

1.24. v0.15.0 (October 18, 2014) 311

https://github.com/pandas-dev/pandas/issues/8511
https://github.com/pandas-dev/pandas/issues/5104

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

1 3.5
2 4.5
dtype: float64

• Made both the C-based and Python engines for read_csv and read_table ignore empty lines in input as well as
whitespace-filled lines, as long as sep is not whitespace. This is an API change that can be controlled by the
keyword parameter skip_blank_lines. See the docs (GH4466)

• A timeseries/index localized to UTC when inserted into a Series/DataFrame will preserve the UTC timezone
and inserted as object dtype rather than being converted to a naive datetime64[ns] (GH8411).

• Bug in passing a DatetimeIndex with a timezone that was not being retained in DataFrame construction
from a dict (GH7822)

In prior versions this would drop the timezone, now it retains the timezone, but gives a column of object
dtype:

In [86]: i = date_range('1/1/2011', periods=3, freq='10s', tz = 'US/Eastern')

In [87]: i
Out[87]:
DatetimeIndex(['2011-01-01 00:00:00-05:00', '2011-01-01 00:00:10-05:00',

'2011-01-01 00:00:20-05:00'],
dtype='datetime64[ns, US/Eastern]', freq='10S')

In [88]: df = DataFrame({'a' : i })

In [89]: df
Out[89]:

a
0 2011-01-01 00:00:00-05:00
1 2011-01-01 00:00:10-05:00
2 2011-01-01 00:00:20-05:00

In [90]: df.dtypes
\\Out[90]:
→˓

a datetime64[ns, US/Eastern]
dtype: object

Previously this would have yielded a column of datetime64 dtype, but without timezone info.

The behaviour of assigning a column to an existing dataframe as df[‘a’] = i remains unchanged (this already
returned an object column with a timezone).

• When passing multiple levels to stack(), it will now raise a ValueError when the levels aren’t all level
names or all level numbers (GH7660). See Reshaping by stacking and unstacking.

• Raise a ValueError in df.to_hdf with ‘fixed’ format, if df has non-unique columns as the resulting file
will be broken (GH7761)

• SettingWithCopy raise/warnings (according to the option mode.chained_assignment) will now be
issued when setting a value on a sliced mixed-dtype DataFrame using chained-assignment. (GH7845, GH7950)

In [1]: df = DataFrame(np.arange(0,9), columns=['count'])

In [2]: df['group'] = 'b'

(continues on next page)

312 Chapter 1. What’s New

https://github.com/pandas-dev/pandas/issues/4466
https://github.com/pandas-dev/pandas/issues/8411
https://github.com/pandas-dev/pandas/issues/7822
https://github.com/pandas-dev/pandas/issues/7660
https://github.com/pandas-dev/pandas/issues/7761
https://github.com/pandas-dev/pandas/issues/7845
https://github.com/pandas-dev/pandas/issues/7950

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

In [3]: df.iloc[0:5]['group'] = 'a'
/usr/local/bin/ipython:1: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/
→˓indexing.html#indexing-view-versus-copy

• merge, DataFrame.merge, and ordered_merge now return the same type as the left argument
(GH7737).

• Previously an enlargement with a mixed-dtype frame would act unlike .append which will preserve dtypes
(related GH2578, GH8176):

In [91]: df = DataFrame([[True, 1],[False, 2]],
....: columns=["female","fitness"])
....:

In [92]: df
Out[92]:

female fitness
0 True 1
1 False 2

In [93]: df.dtypes
\\\Out[93]:
female bool
fitness int64
dtype: object

dtypes are now preserved
In [94]: df.loc[2] = df.loc[1]

In [95]: df
Out[95]:

female fitness
0 True 1
1 False 2
2 False 2

In [96]: df.dtypes
\\Out[96]:
→˓

female bool
fitness int64
dtype: object

• Series.to_csv() now returns a string when path=None, matching the behaviour of DataFrame.
to_csv() (GH8215).

• read_hdf now raises IOError when a file that doesn’t exist is passed in. Previously, a new, empty file was
created, and a KeyError raised (GH7715).

• DataFrame.info() now ends its output with a newline character (GH8114)

• Concatenating no objects will now raise a ValueError rather than a bare Exception.

• Merge errors will now be sub-classes of ValueError rather than raw Exception (GH8501)

1.24. v0.15.0 (October 18, 2014) 313

https://github.com/pandas-dev/pandas/issues/7737
https://github.com/pandas-dev/pandas/issues/2578
https://github.com/pandas-dev/pandas/issues/8176
https://github.com/pandas-dev/pandas/issues/8215
https://github.com/pandas-dev/pandas/issues/7715
https://github.com/pandas-dev/pandas/issues/8114
https://github.com/pandas-dev/pandas/issues/8501

pandas: powerful Python data analysis toolkit, Release 0.23.4

• DataFrame.plot and Series.plot keywords are now have consistent orders (GH8037)

1.24.2.2 Internal Refactoring

In 0.15.0 Index has internally been refactored to no longer sub-class ndarray but instead subclass
PandasObject, similarly to the rest of the pandas objects. This change allows very easy sub-classing and cre-
ation of new index types. This should be a transparent change with only very limited API implications (GH5080,
GH7439, GH7796, GH8024, GH8367, GH7997, GH8522):

• you may need to unpickle pandas version < 0.15.0 pickles using pd.read_pickle rather than pickle.
load. See pickle docs

• when plotting with a PeriodIndex, the matplotlib internal axes will now be arrays of Period rather than a
PeriodIndex (this is similar to how a DatetimeIndex passes arrays of datetimes now)

• MultiIndexes will now raise similarly to other pandas objects w.r.t. truth testing, see here (GH7897).

• When plotting a DatetimeIndex directly with matplotlib’s plot function, the axis labels will no longer be format-
ted as dates but as integers (the internal representation of a datetime64). UPDATE This is fixed in 0.15.1,
see here.

1.24.2.3 Deprecations

• The attributes Categorical labels and levels attributes are deprecated and renamed to codes and
categories.

• The outtype argument to pd.DataFrame.to_dict has been deprecated in favor of orient. (GH7840)

• The convert_dummies method has been deprecated in favor of get_dummies (GH8140)

• The infer_dst argument in tz_localize will be deprecated in favor of ambiguous to allow for more
flexibility in dealing with DST transitions. Replace infer_dst=True with ambiguous='infer' for the
same behavior (GH7943). See the docs for more details.

• The top-level pd.value_range has been deprecated and can be replaced by .describe() (GH8481)

• The Index set operations + and - were deprecated in order to provide these for numeric type operations on
certain index types. + can be replaced by .union() or |, and - by .difference(). Further the method
name Index.diff() is deprecated and can be replaced by Index.difference() (GH8226)

+
Index(['a','b','c']) + Index(['b','c','d'])

should be replaced by
Index(['a','b','c']).union(Index(['b','c','d']))

-
Index(['a','b','c']) - Index(['b','c','d'])

should be replaced by
Index(['a','b','c']).difference(Index(['b','c','d']))

• The infer_types argument to read_html() now has no effect and is deprecated (GH7762, GH7032).

1.24.2.4 Removal of prior version deprecations/changes

• Remove DataFrame.delevel method in favor of DataFrame.reset_index

314 Chapter 1. What’s New

https://github.com/pandas-dev/pandas/issues/8037
https://github.com/pandas-dev/pandas/issues/5080
https://github.com/pandas-dev/pandas/issues/7439
https://github.com/pandas-dev/pandas/issues/7796
https://github.com/pandas-dev/pandas/issues/8024
https://github.com/pandas-dev/pandas/issues/8367
https://github.com/pandas-dev/pandas/issues/7997
https://github.com/pandas-dev/pandas/issues/8522
https://github.com/pandas-dev/pandas/issues/7897
https://github.com/pandas-dev/pandas/issues/7840
https://github.com/pandas-dev/pandas/issues/8140
https://github.com/pandas-dev/pandas/issues/7943
https://github.com/pandas-dev/pandas/issues/8481
https://github.com/pandas-dev/pandas/issues/8226
https://github.com/pandas-dev/pandas/issues/7762
https://github.com/pandas-dev/pandas/issues/7032

pandas: powerful Python data analysis toolkit, Release 0.23.4

1.24.3 Enhancements

Enhancements in the importing/exporting of Stata files:

• Added support for bool, uint8, uint16 and uint32 datatypes in to_stata (GH7097, GH7365)

• Added conversion option when importing Stata files (GH8527)

• DataFrame.to_stata and StataWriter check string length for compatibility with limitations imposed
in dta files where fixed-width strings must contain 244 or fewer characters. Attempting to write Stata dta files
with strings longer than 244 characters raises a ValueError. (GH7858)

• read_stata and StataReader can import missing data information into a DataFrame by setting
the argument convert_missing to True. When using this options, missing values are returned as
StataMissingValue objects and columns containing missing values have object data type. (GH8045)

Enhancements in the plotting functions:

• Added layout keyword to DataFrame.plot. You can pass a tuple of (rows, columns), one of which
can be -1 to automatically infer (GH6667, GH8071).

• Allow to pass multiple axes to DataFrame.plot, hist and boxplot (GH5353, GH6970, GH7069)

• Added support for c, colormap and colorbar arguments for DataFrame.plot with
kind='scatter' (GH7780)

• Histogram from DataFrame.plot with kind='hist' (GH7809), See the docs.

• Boxplot from DataFrame.plot with kind='box' (GH7998), See the docs.

Other:

• read_csv now has a keyword parameter float_precisionwhich specifies which floating-point converter
the C engine should use during parsing, see here (GH8002, GH8044)

• Added searchsorted method to Series objects (GH7447)

• describe() on mixed-types DataFrames is more flexible. Type-based column filtering is now possible via
the include/exclude arguments. See the docs (GH8164).

In [97]: df = DataFrame({'catA': ['foo', 'foo', 'bar'] * 8,
....: 'catB': ['a', 'b', 'c', 'd'] * 6,
....: 'numC': np.arange(24),
....: 'numD': np.arange(24.) + .5})
....:

In [98]: df.describe(include=["object"])
Out[98]:

catA catB
count 24 24
unique 2 4
top foo d
freq 16 6

In [99]: df.describe(include=["number", "object"], exclude=["float"])
\\\Out[99]:
→˓

catA catB numC
count 24 24 24.000000
unique 2 4 NaN
top foo d NaN
freq 16 6 NaN

(continues on next page)

1.24. v0.15.0 (October 18, 2014) 315

https://github.com/pandas-dev/pandas/issues/7097
https://github.com/pandas-dev/pandas/issues/7365
https://github.com/pandas-dev/pandas/issues/8527
https://github.com/pandas-dev/pandas/issues/7858
https://github.com/pandas-dev/pandas/issues/8045
https://github.com/pandas-dev/pandas/issues/6667
https://github.com/pandas-dev/pandas/issues/8071
https://github.com/pandas-dev/pandas/issues/5353
https://github.com/pandas-dev/pandas/issues/6970
https://github.com/pandas-dev/pandas/issues/7069
https://github.com/pandas-dev/pandas/issues/7780
https://github.com/pandas-dev/pandas/issues/7809
https://github.com/pandas-dev/pandas/issues/7998
https://github.com/pandas-dev/pandas/issues/8002
https://github.com/pandas-dev/pandas/issues/8044
https://github.com/pandas-dev/pandas/issues/7447
https://github.com/pandas-dev/pandas/issues/8164

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

mean NaN NaN 11.500000
std NaN NaN 7.071068
min NaN NaN 0.000000
25% NaN NaN 5.750000
50% NaN NaN 11.500000
75% NaN NaN 17.250000
max NaN NaN 23.000000

Requesting all columns is possible with the shorthand ‘all’

In [100]: df.describe(include='all')
Out[100]:

catA catB numC numD
count 24 24 24.000000 24.000000
unique 2 4 NaN NaN
top foo d NaN NaN
freq 16 6 NaN NaN
mean NaN NaN 11.500000 12.000000
std NaN NaN 7.071068 7.071068
min NaN NaN 0.000000 0.500000
25% NaN NaN 5.750000 6.250000
50% NaN NaN 11.500000 12.000000
75% NaN NaN 17.250000 17.750000
max NaN NaN 23.000000 23.500000

Without those arguments, describe will behave as before, including only numerical columns or, if none are,
only categorical columns. See also the docs

• Added split as an option to the orient argument in pd.DataFrame.to_dict. (GH7840)

• The get_dummies method can now be used on DataFrames. By default only catagorical columns are encoded
as 0’s and 1’s, while other columns are left untouched.

In [101]: df = DataFrame({'A': ['a', 'b', 'a'], 'B': ['c', 'c', 'b'],
.....: 'C': [1, 2, 3]})
.....:

In [102]: pd.get_dummies(df)
Out[102]:

C A_a A_b B_b B_c
0 1 1 0 0 1
1 2 0 1 0 1
2 3 1 0 1 0

• PeriodIndex supports resolution as the same as DatetimeIndex (GH7708)

• pandas.tseries.holiday has added support for additional holidays and ways to observe holidays
(GH7070)

• pandas.tseries.holiday.Holiday now supports a list of offsets in Python3 (GH7070)

• pandas.tseries.holiday.Holiday now supports a days_of_week parameter (GH7070)

• GroupBy.nth() now supports selecting multiple nth values (GH7910)

In [103]: business_dates = date_range(start='4/1/2014', end='6/30/2014', freq='B')

In [104]: df = DataFrame(1, index=business_dates, columns=['a', 'b'])

(continues on next page)

316 Chapter 1. What’s New

https://github.com/pandas-dev/pandas/issues/7840
https://github.com/pandas-dev/pandas/issues/7708
https://github.com/pandas-dev/pandas/issues/7070
https://github.com/pandas-dev/pandas/issues/7070
https://github.com/pandas-dev/pandas/issues/7070
https://github.com/pandas-dev/pandas/issues/7910

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

get the first, 4th, and last date index for each month
In [105]: df.groupby((df.index.year, df.index.month)).nth([0, 3, -1])
Out[105]:

a b
2014 4 1 1

4 1 1
4 1 1
5 1 1
5 1 1
5 1 1
6 1 1
6 1 1
6 1 1

• Period and PeriodIndex supports addition/subtraction with timedelta-likes (GH7966)

If Period freq is D, H, T, S, L, U, N, Timedelta-like can be added if the result can have same freq. Otherwise,
only the same offsets can be added.

In [106]: idx = pd.period_range('2014-07-01 09:00', periods=5, freq='H')

In [107]: idx
Out[107]:
PeriodIndex(['2014-07-01 09:00', '2014-07-01 10:00', '2014-07-01 11:00',

'2014-07-01 12:00', '2014-07-01 13:00'],
dtype='period[H]', freq='H')

In [108]: idx + pd.offsets.Hour(2)
\\\Out[108]:
→˓

PeriodIndex(['2014-07-01 11:00', '2014-07-01 12:00', '2014-07-01 13:00',
'2014-07-01 14:00', '2014-07-01 15:00'],

dtype='period[H]', freq='H')

In [109]: idx + Timedelta('120m')
\\Out[109]:
→˓

PeriodIndex(['2014-07-01 11:00', '2014-07-01 12:00', '2014-07-01 13:00',
'2014-07-01 14:00', '2014-07-01 15:00'],

dtype='period[H]', freq='H')

In [110]: idx = pd.period_range('2014-07', periods=5, freq='M')

In [111]: idx
Out[111]: PeriodIndex(['2014-07', '2014-08', '2014-09', '2014-10', '2014-11'],
→˓dtype='period[M]', freq='M')

In [112]: idx + pd.offsets.MonthEnd(3)
\\Out[112]:
→˓PeriodIndex(['2014-10', '2014-11', '2014-12', '2015-01', '2015-02'], dtype=
→˓'period[M]', freq='M')

• Added experimental compatibility with openpyxl for versions >= 2.0. The DataFrame.to_excelmethod
engine keyword now recognizes openpyxl1 and openpyxl2 which will explicitly require openpyxl v1
and v2 respectively, failing if the requested version is not available. The openpyxl engine is a now a meta-
engine that automatically uses whichever version of openpyxl is installed. (GH7177)

1.24. v0.15.0 (October 18, 2014) 317

https://github.com/pandas-dev/pandas/issues/7966
https://github.com/pandas-dev/pandas/issues/7177

pandas: powerful Python data analysis toolkit, Release 0.23.4

• DataFrame.fillna can now accept a DataFrame as a fill value (GH8377)

• Passing multiple levels to stack() will now work when multiple level numbers are passed (GH7660). See
Reshaping by stacking and unstacking.

• set_names(), set_labels(), and set_levels() methods now take an optional level keyword ar-
gument to all modification of specific level(s) of a MultiIndex. Additionally set_names() now accepts a
scalar string value when operating on an Index or on a specific level of a MultiIndex (GH7792)

In [113]: idx = MultiIndex.from_product([['a'], range(3), list("pqr")], names=[
→˓'foo', 'bar', 'baz'])

In [114]: idx.set_names('qux', level=0)
Out[114]:
MultiIndex(levels=[['a'], [0, 1, 2], ['p', 'q', 'r']],

labels=[[0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 1, 1, 1, 2, 2, 2], [0,
→˓1, 2, 0, 1, 2, 0, 1, 2]],

names=['qux', 'bar', 'baz'])

In [115]: idx.set_names(['qux','corge'], level=[0,1])
\\\Out[115]:
→˓

MultiIndex(levels=[['a'], [0, 1, 2], ['p', 'q', 'r']],
labels=[[0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 1, 1, 1, 2, 2, 2], [0,

→˓1, 2, 0, 1, 2, 0, 1, 2]],
names=['qux', 'corge', 'baz'])

In [116]: idx.set_levels(['a','b','c'], level='bar')
\\Out[116]:
→˓

MultiIndex(levels=[['a'], ['a', 'b', 'c'], ['p', 'q', 'r']],
labels=[[0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 1, 1, 1, 2, 2, 2], [0,

→˓1, 2, 0, 1, 2, 0, 1, 2]],
names=['foo', 'bar', 'baz'])

In [117]: idx.set_levels([['a','b','c'],[1,2,3]], level=[1,2])
\\\Out[117]:
→˓

MultiIndex(levels=[['a'], ['a', 'b', 'c'], [1, 2, 3]],
labels=[[0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 1, 1, 1, 2, 2, 2], [0,

→˓1, 2, 0, 1, 2, 0, 1, 2]],
names=['foo', 'bar', 'baz'])

• Index.isin now supports a level argument to specify which index level to use for membership tests
(GH7892, GH7890)

In [1]: idx = MultiIndex.from_product([[0, 1], ['a', 'b', 'c']])

In [2]: idx.values
Out[2]: array([(0, 'a'), (0, 'b'), (0, 'c'), (1, 'a'), (1, 'b'), (1, 'c')],
→˓dtype=object)

In [3]: idx.isin(['a', 'c', 'e'], level=1)
Out[3]: array([True, False, True, True, False, True], dtype=bool)

• Index now supports duplicated and drop_duplicates. (GH4060)

In [118]: idx = Index([1, 2, 3, 4, 1, 2])

(continues on next page)

318 Chapter 1. What’s New

https://github.com/pandas-dev/pandas/issues/8377
https://github.com/pandas-dev/pandas/issues/7660
https://github.com/pandas-dev/pandas/issues/7792
https://github.com/pandas-dev/pandas/issues/7892
https://github.com/pandas-dev/pandas/issues/7890
https://github.com/pandas-dev/pandas/issues/4060

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

In [119]: idx
Out[119]: Int64Index([1, 2, 3, 4, 1, 2], dtype='int64')

In [120]: idx.duplicated()
\\Out[120]: array([False,
→˓False, False, False, True, True], dtype=bool)

In [121]: idx.drop_duplicates()
\\Out[121]:
→˓Int64Index([1, 2, 3, 4], dtype='int64')

• add copy=True argument to pd.concat to enable pass thru of complete blocks (GH8252)

• Added support for numpy 1.8+ data types (bool_, int_, float_, string_) for conversion to R dataframe
(GH8400)

1.24.4 Performance

• Performance improvements in DatetimeIndex.__iter__ to allow faster iteration (GH7683)

• Performance improvements in Period creation (and PeriodIndex setitem) (GH5155)

• Improvements in Series.transform for significant performance gains (revised) (GH6496)

• Performance improvements in StataReader when reading large files (GH8040, GH8073)

• Performance improvements in StataWriter when writing large files (GH8079)

• Performance and memory usage improvements in multi-key groupby (GH8128)

• Performance improvements in groupby .agg and .apply where builtins max/min were not mapped to
numpy/cythonized versions (GH7722)

• Performance improvement in writing to sql (to_sql) of up to 50% (GH8208).

• Performance benchmarking of groupby for large value of ngroups (GH6787)

• Performance improvement in CustomBusinessDay, CustomBusinessMonth (GH8236)

• Performance improvement for MultiIndex.values for multi-level indexes containing datetimes (GH8543)

1.24.5 Bug Fixes

• Bug in pivot_table, when using margins and a dict aggfunc (GH8349)

• Bug in read_csv where squeeze=True would return a view (GH8217)

• Bug in checking of table name in read_sql in certain cases (GH7826).

• Bug in DataFrame.groupby where Grouper does not recognize level when frequency is specified
(GH7885)

• Bug in multiindexes dtypes getting mixed up when DataFrame is saved to SQL table (GH8021)

• Bug in Series 0-division with a float and integer operand dtypes (GH7785)

• Bug in Series.astype("unicode") not calling unicode on the values correctly (GH7758)

• Bug in DataFrame.as_matrix() with mixed datetime64[ns] and timedelta64[ns] dtypes
(GH7778)

1.24. v0.15.0 (October 18, 2014) 319

https://github.com/pandas-dev/pandas/issues/8252
https://github.com/pandas-dev/pandas/issues/8400
https://github.com/pandas-dev/pandas/issues/7683
https://github.com/pandas-dev/pandas/issues/5155
https://github.com/pandas-dev/pandas/issues/6496
https://github.com/pandas-dev/pandas/issues/8040
https://github.com/pandas-dev/pandas/issues/8073
https://github.com/pandas-dev/pandas/issues/8079
https://github.com/pandas-dev/pandas/issues/8128
https://github.com/pandas-dev/pandas/issues/7722
https://github.com/pandas-dev/pandas/issues/8208
https://github.com/pandas-dev/pandas/issues/6787
https://github.com/pandas-dev/pandas/issues/8236
https://github.com/pandas-dev/pandas/issues/8543
https://github.com/pandas-dev/pandas/issues/8349
https://github.com/pandas-dev/pandas/issues/8217
https://github.com/pandas-dev/pandas/issues/7826
https://github.com/pandas-dev/pandas/issues/7885
https://github.com/pandas-dev/pandas/issues/8021
https://github.com/pandas-dev/pandas/issues/7785
https://github.com/pandas-dev/pandas/issues/7758
https://github.com/pandas-dev/pandas/issues/7778

pandas: powerful Python data analysis toolkit, Release 0.23.4

• Bug in HDFStore.select_column() not preserving UTC timezone info when selecting a
DatetimeIndex (GH7777)

• Bug in to_datetime when format='%Y%m%d' and coerce=True are specified, where previously an
object array was returned (rather than a coerced time-series with NaT), (GH7930)

• Bug in DatetimeIndex and PeriodIndex in-place addition and subtraction cause different result from
normal one (GH6527)

• Bug in adding and subtracting PeriodIndex with PeriodIndex raise TypeError (GH7741)

• Bug in combine_first with PeriodIndex data raises TypeError (GH3367)

• Bug in multi-index slicing with missing indexers (GH7866)

• Bug in multi-index slicing with various edge cases (GH8132)

• Regression in multi-index indexing with a non-scalar type object (GH7914)

• Bug in Timestamp comparisons with == and int64 dtype (GH8058)

• Bug in pickles contains DateOffset may raise AttributeError when normalize attribute is referred
internally (GH7748)

• Bug in Panel when using major_xs and copy=False is passed (deprecation warning fails because of
missing warnings) (GH8152).

• Bug in pickle deserialization that failed for pre-0.14.1 containers with dup items trying to avoid ambiguity when
matching block and manager items, when there’s only one block there’s no ambiguity (GH7794)

• Bug in putting a PeriodIndex into a Series would convert to int64 dtype, rather than object of
Periods (GH7932)

• Bug in HDFStore iteration when passing a where (GH8014)

• Bug in DataFrameGroupby.transform when transforming with a passed non-sorted key (GH8046,
GH8430)

• Bug in repeated timeseries line and area plot may result in ValueError or incorrect kind (GH7733)

• Bug in inference in a MultiIndex with datetime.date inputs (GH7888)

• Bug in get where an IndexError would not cause the default value to be returned (GH7725)

• Bug in offsets.apply, rollforward and rollback may reset nanosecond (GH7697)

• Bug in offsets.apply, rollforward and rollback may raise AttributeError if Timestamp
has dateutil tzinfo (GH7697)

• Bug in sorting a multi-index frame with a Float64Index (GH8017)

• Bug in inconsistent panel setitem with a rhs of a DataFrame for alignment (GH7763)

• Bug in is_superperiod and is_subperiod cannot handle higher frequencies than S (GH7760, GH7772,
GH7803)

• Bug in 32-bit platforms with Series.shift (GH8129)

• Bug in PeriodIndex.unique returns int64 np.ndarray (GH7540)

• Bug in groupby.apply with a non-affecting mutation in the function (GH8467)

• Bug in DataFrame.reset_index which has MultiIndex contains PeriodIndex or
DatetimeIndex with tz raises ValueError (GH7746, GH7793)

• Bug in DataFrame.plot with subplots=True may draw unnecessary minor xticks and yticks (GH7801)

320 Chapter 1. What’s New

https://github.com/pandas-dev/pandas/issues/7777
https://github.com/pandas-dev/pandas/issues/7930
https://github.com/pandas-dev/pandas/issues/6527
https://github.com/pandas-dev/pandas/issues/7741
https://github.com/pandas-dev/pandas/issues/3367
https://github.com/pandas-dev/pandas/issues/7866
https://github.com/pandas-dev/pandas/issues/8132
https://github.com/pandas-dev/pandas/issues/7914
https://github.com/pandas-dev/pandas/issues/8058
https://github.com/pandas-dev/pandas/issues/7748
https://github.com/pandas-dev/pandas/issues/8152
https://github.com/pandas-dev/pandas/issues/7794
https://github.com/pandas-dev/pandas/issues/7932
https://github.com/pandas-dev/pandas/issues/8014
https://github.com/pandas-dev/pandas/issues/8046
https://github.com/pandas-dev/pandas/issues/8430
https://github.com/pandas-dev/pandas/issues/7733
https://github.com/pandas-dev/pandas/issues/7888
https://github.com/pandas-dev/pandas/issues/7725
https://github.com/pandas-dev/pandas/issues/7697
https://github.com/pandas-dev/pandas/issues/7697
https://github.com/pandas-dev/pandas/issues/8017
https://github.com/pandas-dev/pandas/issues/7763
https://github.com/pandas-dev/pandas/issues/7760
https://github.com/pandas-dev/pandas/issues/7772
https://github.com/pandas-dev/pandas/issues/7803
https://github.com/pandas-dev/pandas/issues/8129
https://github.com/pandas-dev/pandas/issues/7540
https://github.com/pandas-dev/pandas/issues/8467
https://github.com/pandas-dev/pandas/issues/7746
https://github.com/pandas-dev/pandas/issues/7793
https://github.com/pandas-dev/pandas/issues/7801

pandas: powerful Python data analysis toolkit, Release 0.23.4

• Bug in StataReader which did not read variable labels in 117 files due to difference between Stata docu-
mentation and implementation (GH7816)

• Bug in StataReader where strings were always converted to 244 characters-fixed width irrespective of un-
derlying string size (GH7858)

• Bug in DataFrame.plot and Series.plot may ignore rot and fontsize keywords (GH7844)

• Bug in DatetimeIndex.value_counts doesn’t preserve tz (GH7735)

• Bug in PeriodIndex.value_counts results in Int64Index (GH7735)

• Bug in DataFrame.join when doing left join on index and there are multiple matches (GH5391)

• Bug in GroupBy.transform() where int groups with a transform that didn’t preserve the index were in-
correctly truncated (GH7972).

• Bug in groupby where callable objects without name attributes would take the wrong path, and produce a
DataFrame instead of a Series (GH7929)

• Bug in groupby error message when a DataFrame grouping column is duplicated (GH7511)

• Bug in read_html where the infer_types argument forced coercion of date-likes incorrectly (GH7762,
GH7032).

• Bug in Series.str.cat with an index which was filtered as to not include the first item (GH7857)

• Bug in Timestamp cannot parse nanosecond from string (GH7878)

• Bug in Timestamp with string offset and tz results incorrect (GH7833)

• Bug in tslib.tz_convert and tslib.tz_convert_single may return different results (GH7798)

• Bug in DatetimeIndex.intersection of non-overlapping timestamps with tz raises IndexError
(GH7880)

• Bug in alignment with TimeOps and non-unique indexes (GH8363)

• Bug in GroupBy.filter() where fast path vs. slow path made the filter return a non scalar value that
appeared valid but wasn’t (GH7870).

• Bug in date_range()/DatetimeIndex() when the timezone was inferred from input dates yet incorrect
times were returned when crossing DST boundaries (GH7835, GH7901).

• Bug in to_excel()where a negative sign was being prepended to positive infinity and was absent for negative
infinity (GH7949)

• Bug in area plot draws legend with incorrect alpha when stacked=True (GH8027)

• Period and PeriodIndex addition/subtraction with np.timedelta64 results in incorrect internal rep-
resentations (GH7740)

• Bug in Holiday with no offset or observance (GH7987)

• Bug in DataFrame.to_latex formatting when columns or index is a MultiIndex (GH7982).

• Bug in DateOffset around Daylight Savings Time produces unexpected results (GH5175).

• Bug in DataFrame.shift where empty columns would throw ZeroDivisionError on numpy 1.7
(GH8019)

• Bug in installation where html_encoding/*.html wasn’t installed and therefore some tests were not run-
ning correctly (GH7927).

• Bug in read_html where bytes objects were not tested for in _read (GH7927).

• Bug in DataFrame.stack() when one of the column levels was a datelike (GH8039)

1.24. v0.15.0 (October 18, 2014) 321

https://github.com/pandas-dev/pandas/issues/7816
https://github.com/pandas-dev/pandas/issues/7858
https://github.com/pandas-dev/pandas/issues/7844
https://github.com/pandas-dev/pandas/issues/7735
https://github.com/pandas-dev/pandas/issues/7735
https://github.com/pandas-dev/pandas/issues/5391
https://github.com/pandas-dev/pandas/issues/7972
https://github.com/pandas-dev/pandas/issues/7929
https://github.com/pandas-dev/pandas/issues/7511
https://github.com/pandas-dev/pandas/issues/7762
https://github.com/pandas-dev/pandas/issues/7032
https://github.com/pandas-dev/pandas/issues/7857
https://github.com/pandas-dev/pandas/issues/7878
https://github.com/pandas-dev/pandas/issues/7833
https://github.com/pandas-dev/pandas/issues/7798
https://github.com/pandas-dev/pandas/issues/7880
https://github.com/pandas-dev/pandas/issues/8363
https://github.com/pandas-dev/pandas/issues/7870
https://github.com/pandas-dev/pandas/issues/7835
https://github.com/pandas-dev/pandas/issues/7901
https://github.com/pandas-dev/pandas/issues/7949
https://github.com/pandas-dev/pandas/issues/8027
https://github.com/pandas-dev/pandas/issues/7740
https://github.com/pandas-dev/pandas/issues/7987
https://github.com/pandas-dev/pandas/issues/7982
https://github.com/pandas-dev/pandas/issues/5175
https://github.com/pandas-dev/pandas/issues/8019
https://github.com/pandas-dev/pandas/issues/7927
https://github.com/pandas-dev/pandas/issues/7927
https://github.com/pandas-dev/pandas/issues/8039

pandas: powerful Python data analysis toolkit, Release 0.23.4

• Bug in broadcasting numpy scalars with DataFrame (GH8116)

• Bug in pivot_table performed with nameless index and columns raises KeyError (GH8103)

• Bug in DataFrame.plot(kind='scatter') draws points and errorbars with different colors when the
color is specified by c keyword (GH8081)

• Bug in Float64Index where iat and at were not testing and were failing (GH8092).

• Bug in DataFrame.boxplot() where y-limits were not set correctly when producing multiple axes
(GH7528, GH5517).

• Bug in read_csv where line comments were not handled correctly given a custom line terminator or
delim_whitespace=True (GH8122).

• Bug in read_html where empty tables caused a StopIteration (GH7575)

• Bug in casting when setting a column in a same-dtype block (GH7704)

• Bug in accessing groups from a GroupBy when the original grouper was a tuple (GH8121).

• Bug in .at that would accept integer indexers on a non-integer index and do fallback (GH7814)

• Bug with kde plot and NaNs (GH8182)

• Bug in GroupBy.count with float32 data type were nan values were not excluded (GH8169).

• Bug with stacked barplots and NaNs (GH8175).

• Bug in resample with non evenly divisible offsets (e.g. ‘7s’) (GH8371)

• Bug in interpolation methods with the limit keyword when no values needed interpolating (GH7173).

• Bug where col_space was ignored in DataFrame.to_string() when header=False (GH8230).

• Bug with DatetimeIndex.asof incorrectly matching partial strings and returning the wrong date
(GH8245).

• Bug in plotting methods modifying the global matplotlib rcParams (GH8242).

• Bug in DataFrame.__setitem__ that caused errors when setting a dataframe column to a sparse array
(GH8131)

• Bug where Dataframe.boxplot() failed when entire column was empty (GH8181).

• Bug with messed variables in radviz visualization (GH8199).

• Bug in interpolation methods with the limit keyword when no values needed interpolating (GH7173).

• Bug where col_space was ignored in DataFrame.to_string() when header=False (GH8230).

• Bug in to_clipboard that would clip long column data (GH8305)

• Bug in DataFrame terminal display: Setting max_column/max_rows to zero did not trigger auto-resizing of
dfs to fit terminal width/height (GH7180).

• Bug in OLS where running with “cluster” and “nw_lags” parameters did not work correctly, but also did not
throw an error (GH5884).

• Bug in DataFrame.dropna that interpreted non-existent columns in the subset argument as the ‘last column’
(GH8303)

• Bug in Index.intersection on non-monotonic non-unique indexes (GH8362).

• Bug in masked series assignment where mismatching types would break alignment (GH8387)

• Bug in NDFrame.equals gives false negatives with dtype=object (GH8437)

• Bug in assignment with indexer where type diversity would break alignment (GH8258)

322 Chapter 1. What’s New

https://github.com/pandas-dev/pandas/issues/8116
https://github.com/pandas-dev/pandas/issues/8103
https://github.com/pandas-dev/pandas/issues/8081
https://github.com/pandas-dev/pandas/issues/8092
https://github.com/pandas-dev/pandas/issues/7528
https://github.com/pandas-dev/pandas/issues/5517
https://github.com/pandas-dev/pandas/issues/8122
https://github.com/pandas-dev/pandas/issues/7575
https://github.com/pandas-dev/pandas/issues/7704
https://github.com/pandas-dev/pandas/issues/8121
https://github.com/pandas-dev/pandas/issues/7814
https://github.com/pandas-dev/pandas/issues/8182
https://github.com/pandas-dev/pandas/issues/8169
https://github.com/pandas-dev/pandas/issues/8175
https://github.com/pandas-dev/pandas/issues/8371
https://github.com/pandas-dev/pandas/issues/7173
https://github.com/pandas-dev/pandas/issues/8230
https://github.com/pandas-dev/pandas/issues/8245
https://github.com/pandas-dev/pandas/issues/8242
https://github.com/pandas-dev/pandas/issues/8131
https://github.com/pandas-dev/pandas/issues/8181
https://github.com/pandas-dev/pandas/issues/8199
https://github.com/pandas-dev/pandas/issues/7173
https://github.com/pandas-dev/pandas/issues/8230
https://github.com/pandas-dev/pandas/issues/8305
https://github.com/pandas-dev/pandas/issues/7180
https://github.com/pandas-dev/pandas/issues/5884
https://github.com/pandas-dev/pandas/issues/8303
https://github.com/pandas-dev/pandas/issues/8362
https://github.com/pandas-dev/pandas/issues/8387
https://github.com/pandas-dev/pandas/issues/8437
https://github.com/pandas-dev/pandas/issues/8258

pandas: powerful Python data analysis toolkit, Release 0.23.4

• Bug in NDFrame.loc indexing when row/column names were lost when target was a list/ndarray (GH6552)

• Regression in NDFrame.loc indexing when rows/columns were converted to Float64Index if target was an
empty list/ndarray (GH7774)

• Bug in Series that allows it to be indexed by a DataFrame which has unexpected results. Such indexing is
no longer permitted (GH8444)

• Bug in item assignment of a DataFrame with multi-index columns where right-hand-side columns were not
aligned (GH7655)

• Suppress FutureWarning generated by NumPy when comparing object arrays containing NaN for equality
(GH7065)

• Bug in DataFrame.eval() where the dtype of the not operator (~) was not correctly inferred as bool.

1.25 v0.14.1 (July 11, 2014)

This is a minor release from 0.14.0 and includes a small number of API changes, several new features, enhancements,
and performance improvements along with a large number of bug fixes. We recommend that all users upgrade to this
version.

• Highlights include:

– New methods select_dtypes() to select columns based on the dtype and sem() to calculate the
standard error of the mean.

– Support for dateutil timezones (see docs).

– Support for ignoring full line comments in the read_csv() text parser.

– New documentation section on Options and Settings.

– Lots of bug fixes.

• Enhancements

• API Changes

• Performance Improvements

• Experimental Changes

• Bug Fixes

1.25.1 API changes

• Openpyxl now raises a ValueError on construction of the openpyxl writer instead of warning on pandas import
(GH7284).

• For StringMethods.extract, when no match is found, the result - only containing NaN values - now also
has dtype=object instead of float (GH7242)

• Period objects no longer raise a TypeError when compared using == with another object that isn’t a
Period. Instead when comparing a Period with another object using == if the other object isn’t a Period
False is returned. (GH7376)

1.25. v0.14.1 (July 11, 2014) 323

https://github.com/pandas-dev/pandas/issues/6552
https://github.com/pandas-dev/pandas/issues/7774
https://github.com/pandas-dev/pandas/issues/8444
https://github.com/pandas-dev/pandas/issues/7655
https://github.com/pandas-dev/pandas/issues/7065
https://github.com/pandas-dev/pandas/issues/7284
https://github.com/pandas-dev/pandas/issues/7242
https://github.com/pandas-dev/pandas/issues/7376

pandas: powerful Python data analysis toolkit, Release 0.23.4

• Previously, the behaviour on resetting the time or not in offsets.apply, rollforward and rollback
operations differed between offsets. With the support of the normalize keyword for all offsets(see be-
low) with a default value of False (preserve time), the behaviour changed for certain offsets (BusinessMon-
thBegin, MonthEnd, BusinessMonthEnd, CustomBusinessMonthEnd, BusinessYearBegin, LastWeekOfMonth,
FY5253Quarter, LastWeekOfMonth, Easter):

In [6]: from pandas.tseries import offsets

In [7]: d = pd.Timestamp('2014-01-01 09:00')

old behaviour < 0.14.1
In [8]: d + offsets.MonthEnd()
Out[8]: Timestamp('2014-01-31 00:00:00')

Starting from 0.14.1 all offsets preserve time by default. The old behaviour can be obtained with
normalize=True

new behaviour
In [1]: d + offsets.MonthEnd()
Out[1]: Timestamp('2014-01-31 09:00:00')

In [2]: d + offsets.MonthEnd(normalize=True)
\\\Out[2]: Timestamp('2014-01-31 00:00:00')

Note that for the other offsets the default behaviour did not change.

• Add back #N/A N/A as a default NA value in text parsing, (regression from 0.12) (GH5521)

• Raise a TypeError on inplace-setting with a .where and a non np.nan value as this is inconsistent with a
set-item expression like df[mask] = None (GH7656)

1.25.2 Enhancements

• Add dropna argument to value_counts and nunique (GH5569).

• Add select_dtypes() method to allow selection of columns based on dtype (GH7316). See the docs.

• All offsets supports the normalize keyword to specify whether offsets.apply, rollforward and
rollback resets the time (hour, minute, etc) or not (default False, preserves time) (GH7156):

In [3]: import pandas.tseries.offsets as offsets

In [4]: day = offsets.Day()

In [5]: day.apply(Timestamp('2014-01-01 09:00'))
Out[5]: Timestamp('2014-01-02 09:00:00')

In [6]: day = offsets.Day(normalize=True)

In [7]: day.apply(Timestamp('2014-01-01 09:00'))
Out[7]: Timestamp('2014-01-02 00:00:00')

• PeriodIndex is represented as the same format as DatetimeIndex (GH7601)

• StringMethods now work on empty Series (GH7242)

• The file parsers read_csv and read_table now ignore line comments provided by the parameter comment,
which accepts only a single character for the C reader. In particular, they allow for comments before file data
begins (GH2685)

324 Chapter 1. What’s New

https://github.com/pandas-dev/pandas/issues/5521
https://github.com/pandas-dev/pandas/issues/7656
https://github.com/pandas-dev/pandas/issues/5569
https://github.com/pandas-dev/pandas/issues/7316
https://github.com/pandas-dev/pandas/issues/7156
https://github.com/pandas-dev/pandas/issues/7601
https://github.com/pandas-dev/pandas/issues/7242
https://github.com/pandas-dev/pandas/issues/2685

pandas: powerful Python data analysis toolkit, Release 0.23.4

• Add NotImplementedError for simultaneous use of chunksize and nrows for read_csv() (GH6774).

• Tests for basic reading of public S3 buckets now exist (GH7281).

• read_html now sports an encoding argument that is passed to the underlying parser library. You can use
this to read non-ascii encoded web pages (GH7323).

• read_excel now supports reading from URLs in the same way that read_csv does. (GH6809)

• Support for dateutil timezones, which can now be used in the same way as pytz timezones across pandas.
(GH4688)

In [8]: rng = date_range('3/6/2012 00:00', periods=10, freq='D',
...: tz='dateutil/Europe/London')
...:

In [9]: rng.tz
Out[9]: tzfile('/usr/share/zoneinfo/Europe/London')

See the docs.

• Implemented sem (standard error of the mean) operation for Series, DataFrame, Panel, and Groupby
(GH6897)

• Add nlargest and nsmallest to the Series groupby whitelist, which means you can now use these
methods on a SeriesGroupBy object (GH7053).

• All offsets apply, rollforward and rollback can now handle np.datetime64, previously results in
ApplyTypeError (GH7452)

• Period and PeriodIndex can contain NaT in its values (GH7485)

• Support pickling Series, DataFrame and Panel objects with non-unique labels along item axis (index,
columns and items respectively) (GH7370).

• Improved inference of datetime/timedelta with mixed null objects. Regression from 0.13.1 in interpretation of
an object Index with all null elements (GH7431)

1.25.3 Performance

• Improvements in dtype inference for numeric operations involving yielding performance gains for dtypes:
int64, timedelta64, datetime64 (GH7223)

• Improvements in Series.transform for significant performance gains (GH6496)

• Improvements in DataFrame.transform with ufuncs and built-in grouper functions for significant performance
gains (GH7383)

• Regression in groupby aggregation of datetime64 dtypes (GH7555)

• Improvements in MultiIndex.from_product for large iterables (GH7627)

1.25.4 Experimental

• pandas.io.data.Options has a new method, get_all_data method, and now consistently returns a
multi-indexed DataFrame (GH5602)

• io.gbq.read_gbq and io.gbq.to_gbq were refactored to remove the dependency on the Google
bq.py command line client. This submodule now uses httplib2 and the Google apiclient and
oauth2client API client libraries which should be more stable and, therefore, reliable than bq.py. See the
docs. (GH6937).

1.25. v0.14.1 (July 11, 2014) 325

https://github.com/pandas-dev/pandas/issues/6774
https://github.com/pandas-dev/pandas/issues/7281
https://github.com/pandas-dev/pandas/issues/7323
https://github.com/pandas-dev/pandas/issues/6809
https://github.com/pandas-dev/pandas/issues/4688
https://github.com/pandas-dev/pandas/issues/6897
https://github.com/pandas-dev/pandas/issues/7053
https://github.com/pandas-dev/pandas/issues/7452
https://github.com/pandas-dev/pandas/issues/7485
https://github.com/pandas-dev/pandas/issues/7370
https://github.com/pandas-dev/pandas/issues/7431
https://github.com/pandas-dev/pandas/issues/7223
https://github.com/pandas-dev/pandas/issues/6496
https://github.com/pandas-dev/pandas/issues/7383
https://github.com/pandas-dev/pandas/issues/7555
https://github.com/pandas-dev/pandas/issues/7627
https://github.com/pandas-dev/pandas/issues/5602
https://github.com/pandas-dev/pandas/issues/6937

pandas: powerful Python data analysis toolkit, Release 0.23.4

1.25.5 Bug Fixes

• Bug in DataFrame.where with a symmetric shaped frame and a passed other of a DataFrame (GH7506)

• Bug in Panel indexing with a multi-index axis (GH7516)

• Regression in datetimelike slice indexing with a duplicated index and non-exact end-points (GH7523)

• Bug in setitem with list-of-lists and single vs mixed types (GH7551:)

• Bug in timeops with non-aligned Series (GH7500)

• Bug in timedelta inference when assigning an incomplete Series (GH7592)

• Bug in groupby .nth with a Series and integer-like column name (GH7559)

• Bug in Series.get with a boolean accessor (GH7407)

• Bug in value_counts where NaT did not qualify as missing (NaN) (GH7423)

• Bug in to_timedelta that accepted invalid units and misinterpreted ‘m/h’ (GH7611, GH6423)

• Bug in line plot doesn’t set correct xlim if secondary_y=True (GH7459)

• Bug in grouped hist and scatter plots use old figsize default (GH7394)

• Bug in plotting subplots with DataFrame.plot, hist clears passed ax even if the number of subplots is
one (GH7391).

• Bug in plotting subplots with DataFrame.boxplot with by kw raises ValueError if the number of
subplots exceeds 1 (GH7391).

• Bug in subplots displays ticklabels and labels in different rule (GH5897)

• Bug in Panel.apply with a multi-index as an axis (GH7469)

• Bug in DatetimeIndex.insert doesn’t preserve name and tz (GH7299)

• Bug in DatetimeIndex.asobject doesn’t preserve name (GH7299)

• Bug in multi-index slicing with datetimelike ranges (strings and Timestamps), (GH7429)

• Bug in Index.min and max doesn’t handle nan and NaT properly (GH7261)

• Bug in PeriodIndex.min/max results in int (GH7609)

• Bug in resample where fill_method was ignored if you passed how (GH2073)

• Bug in TimeGrouper doesn’t exclude column specified by key (GH7227)

• Bug in DataFrame and Series bar and barh plot raises TypeError when bottom and left keyword is
specified (GH7226)

• Bug in DataFrame.hist raises TypeError when it contains non numeric column (GH7277)

• Bug in Index.delete does not preserve name and freq attributes (GH7302)

• Bug in DataFrame.query()/eval where local string variables with the @ sign were being treated as
temporaries attempting to be deleted (GH7300).

• Bug in Float64Index which didn’t allow duplicates (GH7149).

• Bug in DataFrame.replace() where truthy values were being replaced (GH7140).

• Bug in StringMethods.extract() where a single match group Series would use the matcher’s name
instead of the group name (GH7313).

• Bug in isnull() when mode.use_inf_as_null == True where isnull wouldn’t test True when it
encountered an inf/-inf (GH7315).

326 Chapter 1. What’s New

https://github.com/pandas-dev/pandas/issues/7506
https://github.com/pandas-dev/pandas/issues/7516
https://github.com/pandas-dev/pandas/issues/7523
https://github.com/pandas-dev/pandas/issues/7551
https://github.com/pandas-dev/pandas/issues/7500
https://github.com/pandas-dev/pandas/issues/7592
https://github.com/pandas-dev/pandas/issues/7559
https://github.com/pandas-dev/pandas/issues/7407
https://github.com/pandas-dev/pandas/issues/7423
https://github.com/pandas-dev/pandas/issues/7611
https://github.com/pandas-dev/pandas/issues/6423
https://github.com/pandas-dev/pandas/issues/7459
https://github.com/pandas-dev/pandas/issues/7394
https://github.com/pandas-dev/pandas/issues/7391
https://github.com/pandas-dev/pandas/issues/7391
https://github.com/pandas-dev/pandas/issues/5897
https://github.com/pandas-dev/pandas/issues/7469
https://github.com/pandas-dev/pandas/issues/7299
https://github.com/pandas-dev/pandas/issues/7299
https://github.com/pandas-dev/pandas/issues/7429
https://github.com/pandas-dev/pandas/issues/7261
https://github.com/pandas-dev/pandas/issues/7609
https://github.com/pandas-dev/pandas/issues/2073
https://github.com/pandas-dev/pandas/issues/7227
https://github.com/pandas-dev/pandas/issues/7226
https://github.com/pandas-dev/pandas/issues/7277
https://github.com/pandas-dev/pandas/issues/7302
https://github.com/pandas-dev/pandas/issues/7300
https://github.com/pandas-dev/pandas/issues/7149
https://github.com/pandas-dev/pandas/issues/7140
https://github.com/pandas-dev/pandas/issues/7313
https://github.com/pandas-dev/pandas/issues/7315

pandas: powerful Python data analysis toolkit, Release 0.23.4

• Bug in inferred_freq results in None for eastern hemisphere timezones (GH7310)

• Bug in Easter returns incorrect date when offset is negative (GH7195)

• Bug in broadcasting with .div, integer dtypes and divide-by-zero (GH7325)

• Bug in CustomBusinessDay.apply raiases NameError when np.datetime64 object is passed
(GH7196)

• Bug in MultiIndex.append, concat and pivot_table don’t preserve timezone (GH6606)

• Bug in .loc with a list of indexers on a single-multi index level (that is not nested) (GH7349)

• Bug in Series.map when mapping a dict with tuple keys of different lengths (GH7333)

• Bug all StringMethods now work on empty Series (GH7242)

• Fix delegation of read_sql to read_sql_query when query does not contain ‘select’ (GH7324).

• Bug where a string column name assignment to a DataFrame with a Float64Index raised a TypeError
during a call to np.isnan (GH7366).

• Bug where NDFrame.replace() didn’t correctly replace objects with Period values (GH7379).

• Bug in .ix getitem should always return a Series (GH7150)

• Bug in multi-index slicing with incomplete indexers (GH7399)

• Bug in multi-index slicing with a step in a sliced level (GH7400)

• Bug where negative indexers in DatetimeIndex were not correctly sliced (GH7408)

• Bug where NaT wasn’t repr’d correctly in a MultiIndex (GH7406, GH7409).

• Bug where bool objects were converted to nan in convert_objects (GH7416).

• Bug in quantile ignoring the axis keyword argument (GH7306)

• Bug where nanops._maybe_null_out doesn’t work with complex numbers (GH7353)

• Bug in several nanops functions when axis==0 for 1-dimensional nan arrays (GH7354)

• Bug where nanops.nanmedian doesn’t work when axis==None (GH7352)

• Bug where nanops._has_infs doesn’t work with many dtypes (GH7357)

• Bug in StataReader.data where reading a 0-observation dta failed (GH7369)

• Bug in StataReader when reading Stata 13 (117) files containing fixed width strings (GH7360)

• Bug in StataWriter where encoding was ignored (GH7286)

• Bug in DatetimeIndex comparison doesn’t handle NaT properly (GH7529)

• Bug in passing input with tzinfo to some offsets apply, rollforward or rollback resets tzinfo or
raises ValueError (GH7465)

• Bug in DatetimeIndex.to_period, PeriodIndex.asobject, PeriodIndex.to_timestamp
doesn’t preserve name (GH7485)

• Bug in DatetimeIndex.to_period and PeriodIndex.to_timestanp handle NaT incorrectly
(GH7228)

• Bug in offsets.apply, rollforward and rollback may return normal datetime (GH7502)

• Bug in resample raises ValueError when target contains NaT (GH7227)

• Bug in Timestamp.tz_localize resets nanosecond info (GH7534)

• Bug in DatetimeIndex.asobject raises ValueError when it contains NaT (GH7539)

1.25. v0.14.1 (July 11, 2014) 327

https://github.com/pandas-dev/pandas/issues/7310
https://github.com/pandas-dev/pandas/issues/7195
https://github.com/pandas-dev/pandas/issues/7325
https://github.com/pandas-dev/pandas/issues/7196
https://github.com/pandas-dev/pandas/issues/6606
https://github.com/pandas-dev/pandas/issues/7349
https://github.com/pandas-dev/pandas/issues/7333
https://github.com/pandas-dev/pandas/issues/7242
https://github.com/pandas-dev/pandas/issues/7324
https://github.com/pandas-dev/pandas/issues/7366
https://github.com/pandas-dev/pandas/issues/7379
https://github.com/pandas-dev/pandas/issues/7150
https://github.com/pandas-dev/pandas/issues/7399
https://github.com/pandas-dev/pandas/issues/7400
https://github.com/pandas-dev/pandas/issues/7408
https://github.com/pandas-dev/pandas/issues/7406
https://github.com/pandas-dev/pandas/issues/7409
https://github.com/pandas-dev/pandas/issues/7416
https://github.com/pandas-dev/pandas/issues/7306
https://github.com/pandas-dev/pandas/issues/7353
https://github.com/pandas-dev/pandas/issues/7354
https://github.com/pandas-dev/pandas/issues/7352
https://github.com/pandas-dev/pandas/issues/7357
https://github.com/pandas-dev/pandas/issues/7369
https://github.com/pandas-dev/pandas/issues/7360
https://github.com/pandas-dev/pandas/issues/7286
https://github.com/pandas-dev/pandas/issues/7529
https://github.com/pandas-dev/pandas/issues/7465
https://github.com/pandas-dev/pandas/issues/7485
https://github.com/pandas-dev/pandas/issues/7228
https://github.com/pandas-dev/pandas/issues/7502
https://github.com/pandas-dev/pandas/issues/7227
https://github.com/pandas-dev/pandas/issues/7534
https://github.com/pandas-dev/pandas/issues/7539

pandas: powerful Python data analysis toolkit, Release 0.23.4

• Bug in Timestamp.__new__ doesn’t preserve nanosecond properly (GH7610)

• Bug in Index.astype(float) where it would return an object dtype Index (GH7464).

• Bug in DataFrame.reset_index loses tz (GH3950)

• Bug in DatetimeIndex.freqstr raises AttributeError when freq is None (GH7606)

• Bug in GroupBy.size created by TimeGrouper raises AttributeError (GH7453)

• Bug in single column bar plot is misaligned (GH7498).

• Bug in area plot with tz-aware time series raises ValueError (GH7471)

• Bug in non-monotonic Index.union may preserve name incorrectly (GH7458)

• Bug in DatetimeIndex.intersection doesn’t preserve timezone (GH4690)

• Bug in rolling_var where a window larger than the array would raise an error(GH7297)

• Bug with last plotted timeseries dictating xlim (GH2960)

• Bug with secondary_y axis not being considered for timeseries xlim (GH3490)

• Bug in Float64Index assignment with a non scalar indexer (GH7586)

• Bug in pandas.core.strings.str_contains does not properly match in a case insensitive fashion
when regex=False and case=False (GH7505)

• Bug in expanding_cov, expanding_corr, rolling_cov, and rolling_corr for two arguments
with mismatched index (GH7512)

• Bug in to_sql taking the boolean column as text column (GH7678)

• Bug in grouped hist doesn’t handle rot kw and sharex kw properly (GH7234)

• Bug in .loc performing fallback integer indexing with object dtype indices (GH7496)

• Bug (regression) in PeriodIndex constructor when passed Series objects (GH7701).

1.26 v0.14.0 (May 31 , 2014)

This is a major release from 0.13.1 and includes a small number of API changes, several new features, enhancements,
and performance improvements along with a large number of bug fixes. We recommend that all users upgrade to this
version.

• Highlights include:

– Officially support Python 3.4

– SQL interfaces updated to use sqlalchemy, See Here.

– Display interface changes, See Here

– MultiIndexing Using Slicers, See Here.

– Ability to join a singly-indexed DataFrame with a multi-indexed DataFrame, see Here

– More consistency in groupby results and more flexible groupby specifications, See Here

– Holiday calendars are now supported in CustomBusinessDay, see Here

– Several improvements in plotting functions, including: hexbin, area and pie plots, see Here.

– Performance doc section on I/O operations, See Here

• Other Enhancements

328 Chapter 1. What’s New

https://github.com/pandas-dev/pandas/issues/7610
https://github.com/pandas-dev/pandas/issues/7464
https://github.com/pandas-dev/pandas/issues/3950
https://github.com/pandas-dev/pandas/issues/7606
https://github.com/pandas-dev/pandas/issues/7453
https://github.com/pandas-dev/pandas/issues/7498
https://github.com/pandas-dev/pandas/issues/7471
https://github.com/pandas-dev/pandas/issues/7458
https://github.com/pandas-dev/pandas/issues/4690
https://github.com/pandas-dev/pandas/issues/7297
https://github.com/pandas-dev/pandas/issues/2960
https://github.com/pandas-dev/pandas/issues/3490
https://github.com/pandas-dev/pandas/issues/7586
https://github.com/pandas-dev/pandas/issues/7505
https://github.com/pandas-dev/pandas/issues/7512
https://github.com/pandas-dev/pandas/issues/7678
https://github.com/pandas-dev/pandas/issues/7234
https://github.com/pandas-dev/pandas/issues/7496
https://github.com/pandas-dev/pandas/issues/7701

pandas: powerful Python data analysis toolkit, Release 0.23.4

• API Changes

• Text Parsing API Changes

• Groupby API Changes

• Performance Improvements

• Prior Deprecations

• Deprecations

• Known Issues

• Bug Fixes

Warning: In 0.14.0 all NDFrame based containers have undergone significant internal refactoring. Before that
each block of homogeneous data had its own labels and extra care was necessary to keep those in sync with the
parent container’s labels. This should not have any visible user/API behavior changes (GH6745)

1.26.1 API changes

• read_excel uses 0 as the default sheet (GH6573)

• iloc will now accept out-of-bounds indexers for slices, e.g. a value that exceeds the length of the object
being indexed. These will be excluded. This will make pandas conform more with python/numpy indexing of
out-of-bounds values. A single indexer that is out-of-bounds and drops the dimensions of the object will still
raise IndexError (GH6296, GH6299). This could result in an empty axis (e.g. an empty DataFrame being
returned)

In [1]: dfl = DataFrame(np.random.randn(5,2),columns=list('AB'))

In [2]: dfl
Out[2]:

A B
0 1.583584 -0.438313
1 -0.402537 -0.780572
2 -0.141685 0.542241
3 0.370966 -0.251642
4 0.787484 1.666563

In [3]: dfl.iloc[:,2:3]
\\\Out[3]:
→˓

Empty DataFrame
Columns: []
Index: [0, 1, 2, 3, 4]

In [4]: dfl.iloc[:,1:3]
\\\Out[4]:
→˓

B
0 -0.438313
1 -0.780572
2 0.542241
3 -0.251642
4 1.666563

(continues on next page)

1.26. v0.14.0 (May 31 , 2014) 329

https://github.com/pandas-dev/pandas/issues/6745
https://github.com/pandas-dev/pandas/issues/6573
https://github.com/pandas-dev/pandas/issues/6296
https://github.com/pandas-dev/pandas/issues/6299

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

In [5]: dfl.iloc[4:6]
\\Out[5]:
→˓

A B
4 0.787484 1.666563

These are out-of-bounds selections

dfl.iloc[[4,5,6]]
IndexError: positional indexers are out-of-bounds

dfl.iloc[:,4]
IndexError: single positional indexer is out-of-bounds

• Slicing with negative start, stop & step values handles corner cases better (GH6531):

– df.iloc[:-len(df)] is now empty

– df.iloc[len(df)::-1] now enumerates all elements in reverse

• The DataFrame.interpolate() keyword downcast default has been changed from infer to None.
This is to preseve the original dtype unless explicitly requested otherwise (GH6290).

• When converting a dataframe to HTML it used to return Empty DataFrame. This special case has been removed,
instead a header with the column names is returned (GH6062).

• Series and Index now internall share more common operations, e.g. factorize(),nunique(),
value_counts() are now supported on Index types as well. The Series.weekday property from
is removed from Series for API consistency. Using a DatetimeIndex/PeriodIndex method on a Series
will now raise a TypeError. (GH4551, GH4056, GH5519, GH6380, GH7206).

• Add is_month_start, is_month_end, is_quarter_start, is_quarter_end,
is_year_start, is_year_end accessors for DateTimeIndex / Timestamp which return a
boolean array of whether the timestamp(s) are at the start/end of the month/quarter/year defined by the
frequency of the DateTimeIndex / Timestamp (GH4565, GH6998)

• Local variable usage has changed in pandas.eval()/DataFrame.eval()/DataFrame.query()
(GH5987). For the DataFrame methods, two things have changed

– Column names are now given precedence over locals

– Local variables must be referred to explicitly. This means that even if you have a local variable that is not
a column you must still refer to it with the '@' prefix.

– You can have an expression like df.query('@a < a') with no complaints from pandas about am-
biguity of the name a.

– The top-level pandas.eval() function does not allow you use the '@' prefix and provides you with
an error message telling you so.

– NameResolutionError was removed because it isn’t necessary anymore.

• Define and document the order of column vs index names in query/eval (GH6676)

• concat will now concatenate mixed Series and DataFrames using the Series name or numbering columns as
needed (GH2385). See the docs

• Slicing and advanced/boolean indexing operations on Index classes as well as Index.delete() and
Index.drop() methods will no longer change the type of the resulting index (GH6440, GH7040)

330 Chapter 1. What’s New

https://github.com/pandas-dev/pandas/issues/6531
https://github.com/pandas-dev/pandas/issues/6290
https://github.com/pandas-dev/pandas/issues/6062
https://github.com/pandas-dev/pandas/issues/4551
https://github.com/pandas-dev/pandas/issues/4056
https://github.com/pandas-dev/pandas/issues/5519
https://github.com/pandas-dev/pandas/issues/6380
https://github.com/pandas-dev/pandas/issues/7206
https://github.com/pandas-dev/pandas/issues/4565
https://github.com/pandas-dev/pandas/issues/6998
https://github.com/pandas-dev/pandas/issues/5987
https://github.com/pandas-dev/pandas/issues/6676
https://github.com/pandas-dev/pandas/issues/2385
https://github.com/pandas-dev/pandas/issues/6440
https://github.com/pandas-dev/pandas/issues/7040

pandas: powerful Python data analysis toolkit, Release 0.23.4

In [6]: i = pd.Index([1, 2, 3, 'a' , 'b', 'c'])

In [7]: i[[0,1,2]]
Out[7]: Index([1, 2, 3], dtype='object')

In [8]: i.drop(['a', 'b', 'c'])
\\\Out[8]: Index([1, 2, 3], dtype='object')

Previously, the above operation would return Int64Index. If you’d like to do this manually, use Index.
astype()

In [9]: i[[0,1,2]].astype(np.int_)
Out[9]: Int64Index([1, 2, 3], dtype='int64')

• set_index no longer converts MultiIndexes to an Index of tuples. For example, the old behavior returned an
Index in this case (GH6459):

Old behavior, casted MultiIndex to an Index
In [10]: tuple_ind
Out[10]: Index([('a', 'c'), ('a', 'd'), ('b', 'c'), ('b', 'd')], dtype='object')

In [11]: df_multi.set_index(tuple_ind)
\\\Out[11]:
→˓

0 1
(a, c) 0.471435 -1.190976
(a, d) 1.432707 -0.312652
(b, c) -0.720589 0.887163
(b, d) 0.859588 -0.636524

New behavior
In [12]: mi
\\Out[12]:
→˓

MultiIndex(levels=[['a', 'b'], ['c', 'd']],
labels=[[0, 0, 1, 1], [0, 1, 0, 1]])

In [13]: df_multi.set_index(mi)
\\Out[13]:
→˓

0 1
a c 0.471435 -1.190976
d 1.432707 -0.312652

b c -0.720589 0.887163
d 0.859588 -0.636524

This also applies when passing multiple indices to set_index:

Old output, 2-level MultiIndex of tuples
In [14]: df_multi.set_index([df_multi.index, df_multi.index])
Out[14]:

0 1
(a, c) (a, c) 0.471435 -1.190976
(a, d) (a, d) 1.432707 -0.312652
(b, c) (b, c) -0.720589 0.887163
(b, d) (b, d) 0.859588 -0.636524

(continues on next page)

1.26. v0.14.0 (May 31 , 2014) 331

https://github.com/pandas-dev/pandas/issues/6459

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

New output, 4-level MultiIndex
In [15]: df_multi.set_index([df_multi.index, df_multi.index])
Out[15]:

0 1
a c a c 0.471435 -1.190976
d a d 1.432707 -0.312652

b c b c -0.720589 0.887163
d b d 0.859588 -0.636524

• pairwise keyword was added to the statistical moment functions rolling_cov, rolling_corr,
ewmcov, ewmcorr, expanding_cov, expanding_corr to allow the calculation of moving window
covariance and correlation matrices (GH4950). See Computing rolling pairwise covariances and correlations
in the docs.

In [1]: df = DataFrame(np.random.randn(10,4),columns=list('ABCD'))

In [4]: covs = pd.rolling_cov(df[['A','B','C']], df[['B','C','D']], 5,
→˓pairwise=True)

In [5]: covs[df.index[-1]]
Out[5]:

B C D
A 0.035310 0.326593 -0.505430
B 0.137748 -0.006888 -0.005383
C -0.006888 0.861040 0.020762

• Series.iteritems() is now lazy (returns an iterator rather than a list). This was the documented behavior
prior to 0.14. (GH6760)

• Added nunique and value_counts functions to Index for counting unique elements. (GH6734)

• stack and unstack now raise a ValueError when the level keyword refers to a non-unique item in the
Index (previously raised a KeyError). (GH6738)

• drop unused order argument from Series.sort; args now are in the same order as Series.order; add
na_position arg to conform to Series.order (GH6847)

• default sorting algorithm for Series.order is now quicksort, to conform with Series.sort (and
numpy defaults)

• add inplace keyword to Series.order/sort to make them inverses (GH6859)

• DataFrame.sort now places NaNs at the beginning or end of the sort according to the na_position
parameter. (GH3917)

• accept TextFileReader in concat, which was affecting a common user idiom (GH6583), this was a
regression from 0.13.1

• Added factorize functions to Index and Series to get indexer and unique values (GH7090)

• describe on a DataFrame with a mix of Timestamp and string like objects returns a different Index (GH7088).
Previously the index was unintentionally sorted.

• Arithmetic operations with only bool dtypes now give a warning indicating that they are evaluated in Python
space for +, -, and * operations and raise for all others (GH7011, GH6762, GH7015, GH7210)

x = pd.Series(np.random.rand(10) > 0.5)
y = True
x + y # warning generated: should do x | y instead

(continues on next page)

332 Chapter 1. What’s New

https://github.com/pandas-dev/pandas/issues/4950
https://github.com/pandas-dev/pandas/issues/6760
https://github.com/pandas-dev/pandas/issues/6734
https://github.com/pandas-dev/pandas/issues/6738
https://github.com/pandas-dev/pandas/issues/6847
https://github.com/pandas-dev/pandas/issues/6859
https://github.com/pandas-dev/pandas/issues/3917
https://github.com/pandas-dev/pandas/issues/6583
https://github.com/pandas-dev/pandas/issues/7090
https://github.com/pandas-dev/pandas/issues/7088
https://github.com/pandas-dev/pandas/issues/7011
https://github.com/pandas-dev/pandas/issues/6762
https://github.com/pandas-dev/pandas/issues/7015
https://github.com/pandas-dev/pandas/issues/7210

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

x / y # this raises because it doesn't make sense

NotImplementedError: operator '/' not implemented for bool dtypes

• In HDFStore, select_as_multiple will always raise a KeyError, when a key or the selector is not
found (GH6177)

• df['col'] = value and df.loc[:,'col'] = value are now completely equivalent; previously the
.loc would not necessarily coerce the dtype of the resultant series (GH6149)

• dtypes and ftypes now return a series with dtype=object on empty containers (GH5740)

• df.to_csv will now return a string of the CSV data if neither a target path nor a buffer is provided (GH6061)

• pd.infer_freq() will now raise a TypeError if given an invalid Series/Index type (GH6407,
GH6463)

• A tuple passed to DataFame.sort_index will be interpreted as the levels of the index, rather than requiring
a list of tuple (GH4370)

• all offset operations now return Timestamp types (rather than datetime), Business/Week frequencies were
incorrect (GH4069)

• to_excel now converts np.inf into a string representation, customizable by the inf_rep keyword argu-
ment (Excel has no native inf representation) (GH6782)

• Replace pandas.compat.scipy.scoreatpercentile with numpy.percentile (GH6810)

• .quantile on a datetime[ns] series now returns Timestamp instead of np.datetime64 objects
(GH6810)

• change AssertionError to TypeError for invalid types passed to concat (GH6583)

• Raise a TypeError when DataFrame is passed an iterator as the data argument (GH5357)

1.26.2 Display Changes

• The default way of printing large DataFrames has changed. DataFrames exceeding max_rows and/or
max_columns are now displayed in a centrally truncated view, consistent with the printing of a pandas.
Series (GH5603).

In previous versions, a DataFrame was truncated once the dimension constraints were reached and an ellipse
(. . .) signaled that part of the data was cut off.

1.26. v0.14.0 (May 31 , 2014) 333

https://github.com/pandas-dev/pandas/issues/6177
https://github.com/pandas-dev/pandas/issues/6149
https://github.com/pandas-dev/pandas/issues/5740
https://github.com/pandas-dev/pandas/issues/6061
https://github.com/pandas-dev/pandas/issues/6407
https://github.com/pandas-dev/pandas/issues/6463
https://github.com/pandas-dev/pandas/issues/4370
https://github.com/pandas-dev/pandas/issues/4069
https://github.com/pandas-dev/pandas/issues/6782
https://github.com/pandas-dev/pandas/issues/6810
https://github.com/pandas-dev/pandas/issues/6810
https://github.com/pandas-dev/pandas/issues/6583
https://github.com/pandas-dev/pandas/issues/5357
https://github.com/pandas-dev/pandas/issues/5603

pandas: powerful Python data analysis toolkit, Release 0.23.4

In the current version, large DataFrames are centrally truncated, showing a preview of head and tail in both
dimensions.

• allow option 'truncate' for display.show_dimensions to only show the dimensions if the frame is
truncated (GH6547).

The default for display.show_dimensions will now be truncate. This is consistent with how Series
display length.

In [16]: dfd = pd.DataFrame(np.arange(25).reshape(-1,5), index=[0,1,2,3,4],
→˓columns=[0,1,2,3,4])

show dimensions since this is truncated
In [17]: with pd.option_context('display.max_rows', 2, 'display.max_columns', 2,

....: 'display.show_dimensions', 'truncate'):

....: print(dfd)

....:
(continues on next page)

334 Chapter 1. What’s New

https://github.com/pandas-dev/pandas/issues/6547

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

0 ... 4
0 0 ... 4
..
4 20 ... 24

[5 rows x 5 columns]

will not show dimensions since it is not truncated
In [18]: with pd.option_context('display.max_rows', 10, 'display.max_columns', 40,

....: 'display.show_dimensions', 'truncate'):

....: print(dfd)

....:
\\
→˓ 0 1 2 3 4
0 0 1 2 3 4
1 5 6 7 8 9
2 10 11 12 13 14
3 15 16 17 18 19
4 20 21 22 23 24

• Regression in the display of a MultiIndexed Series with display.max_rows is less than the length of the
series (GH7101)

• Fixed a bug in the HTML repr of a truncated Series or DataFrame not showing the class name with the large_repr
set to ‘info’ (GH7105)

• The verbose keyword in DataFrame.info(), which controls whether to shorten the info representation,
is now None by default. This will follow the global setting in display.max_info_columns. The global
setting can be overridden with verbose=True or verbose=False.

• Fixed a bug with the info repr not honoring the display.max_info_columns setting (GH6939)

• Offset/freq info now in Timestamp __repr__ (GH4553)

1.26.3 Text Parsing API Changes

read_csv()/read_table() will now be noiser w.r.t invalid options rather than falling back to the
PythonParser.

• Raise ValueError when sep specified with delim_whitespace=True in
read_csv()/read_table() (GH6607)

• Raise ValueError when engine='c' specified with unsupported options in
read_csv()/read_table() (GH6607)

• Raise ValueError when fallback to python parser causes options to be ignored (GH6607)

• Produce ParserWarning on fallback to python parser when no options are ignored (GH6607)

• Translate sep='\s+' to delim_whitespace=True in read_csv()/read_table() if no other C-
unsupported options specified (GH6607)

1.26.4 Groupby API Changes

More consistent behaviour for some groupby methods:

• groupby head and tail now act more like filter rather than an aggregation:

1.26. v0.14.0 (May 31 , 2014) 335

https://github.com/pandas-dev/pandas/issues/7101
https://github.com/pandas-dev/pandas/issues/7105
https://github.com/pandas-dev/pandas/issues/6939
https://github.com/pandas-dev/pandas/issues/4553
https://github.com/pandas-dev/pandas/issues/6607
https://github.com/pandas-dev/pandas/issues/6607
https://github.com/pandas-dev/pandas/issues/6607
https://github.com/pandas-dev/pandas/issues/6607
https://github.com/pandas-dev/pandas/issues/6607

pandas: powerful Python data analysis toolkit, Release 0.23.4

In [19]: df = pd.DataFrame([[1, 2], [1, 4], [5, 6]], columns=['A', 'B'])

In [20]: g = df.groupby('A')

In [21]: g.head(1) # filters DataFrame
Out[21]:

A B
0 1 2
2 5 6

In [22]: g.apply(lambda x: x.head(1)) # used to simply fall-through
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\Out[22]:

A B
A
1 0 1 2
5 2 5 6

• groupby head and tail respect column selection:

In [23]: g[['B']].head(1)
Out[23]:

B
0 2
2 6

• groupby nth now reduces by default; filtering can be achieved by passing as_index=False. With an
optional dropna argument to ignore NaN. See the docs.

Reducing

In [24]: df = DataFrame([[1, np.nan], [1, 4], [5, 6]], columns=['A', 'B'])

In [25]: g = df.groupby('A')

In [26]: g.nth(0)
Out[26]:

B
A
1 NaN
5 6.0

this is equivalent to g.first()
In [27]: g.nth(0, dropna='any')
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\Out[27]:

B
A
1 4.0
5 6.0

this is equivalent to g.last()
In [28]: g.nth(-1, dropna='any')
\\Out[28]:
→˓

B
A
1 4.0
5 6.0

336 Chapter 1. What’s New

pandas: powerful Python data analysis toolkit, Release 0.23.4

Filtering

In [29]: gf = df.groupby('A',as_index=False)

In [30]: gf.nth(0)
Out[30]:

A B
0 1 NaN
2 5 6.0

In [31]: gf.nth(0, dropna='any')
\\Out[31]:

A B
A
1 1 4.0
5 5 6.0

• groupby will now not return the grouped column for non-cython functions (GH5610, GH5614, GH6732), as its
already the index

In [32]: df = DataFrame([[1, np.nan], [1, 4], [5, 6], [5, 8]], columns=['A', 'B'])

In [33]: g = df.groupby('A')

In [34]: g.count()
Out[34]:

B
A
1 1
5 2

In [35]: g.describe()
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\Out[35]:

B
count mean std min 25% 50% 75% max

A
1 1.0 4.0 NaN 4.0 4.0 4.0 4.0 4.0
5 2.0 7.0 1.414214 6.0 6.5 7.0 7.5 8.0

• passing as_index will leave the grouped column in-place (this is not change in 0.14.0)

In [36]: df = DataFrame([[1, np.nan], [1, 4], [5, 6], [5, 8]], columns=['A', 'B'])

In [37]: g = df.groupby('A',as_index=False)

In [38]: g.count()
Out[38]:

A B
0 1 1
1 5 2

In [39]: g.describe()
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\Out[39]:

A B
→˓

count mean std min 25% 50% 75% max count mean std min 25% 50% 75
→˓% max
0 2.0 1.0 0.0 1.0 1.0 1.0 1.0 1.0 1.0 4.0 NaN 4.0 4.0 4.0 4.
→˓0 4.0 (continues on next page)

1.26. v0.14.0 (May 31 , 2014) 337

https://github.com/pandas-dev/pandas/issues/5610
https://github.com/pandas-dev/pandas/issues/5614
https://github.com/pandas-dev/pandas/issues/6732

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

1 2.0 5.0 0.0 5.0 5.0 5.0 5.0 5.0 2.0 7.0 1.414214 6.0 6.5 7.0 7.
→˓5 8.0

• Allow specification of a more complex groupby via pd.Grouper, such as grouping by a Time and a string
field simultaneously. See the docs. (GH3794)

• Better propagation/preservation of Series names when performing groupby operations:

– SeriesGroupBy.agg will ensure that the name attribute of the original series is propagated to the
result (GH6265).

– If the function provided to GroupBy.apply returns a named series, the name of the series will be kept as
the name of the column index of the DataFrame returned by GroupBy.apply (GH6124). This facilitates
DataFrame.stack operations where the name of the column index is used as the name of the inserted
column containing the pivoted data.

1.26.5 SQL

The SQL reading and writing functions now support more database flavors through SQLAlchemy (GH2717, GH4163,
GH5950, GH6292). All databases supported by SQLAlchemy can be used, such as PostgreSQL, MySQL, Oracle,
Microsoft SQL server (see documentation of SQLAlchemy on included dialects).

The functionality of providing DBAPI connection objects will only be supported for sqlite3 in the future. The
'mysql' flavor is deprecated.

The new functions read_sql_query() and read_sql_table() are introduced. The function read_sql()
is kept as a convenience wrapper around the other two and will delegate to specific function depending on the provided
input (database table name or sql query).

In practice, you have to provide a SQLAlchemy engine to the sql functions. To connect with SQLAlchemy you use
the create_engine() function to create an engine object from database URI. You only need to create the engine
once per database you are connecting to. For an in-memory sqlite database:

In [40]: from sqlalchemy import create_engine

Create your connection.
In [41]: engine = create_engine('sqlite:///:memory:')

This engine can then be used to write or read data to/from this database:

In [42]: df = pd.DataFrame({'A': [1,2,3], 'B': ['a', 'b', 'c']})

In [43]: df.to_sql('db_table', engine, index=False)

You can read data from a database by specifying the table name:

In [44]: pd.read_sql_table('db_table', engine)
Out[44]:

A B
0 1 a
1 2 b
2 3 c

or by specifying a sql query:

338 Chapter 1. What’s New

https://github.com/pandas-dev/pandas/issues/3794
https://github.com/pandas-dev/pandas/issues/6265
https://github.com/pandas-dev/pandas/issues/6124
https://github.com/pandas-dev/pandas/issues/2717
https://github.com/pandas-dev/pandas/issues/4163
https://github.com/pandas-dev/pandas/issues/5950
https://github.com/pandas-dev/pandas/issues/6292
https://sqlalchemy.readthedocs.io/en/latest/dialects/index.html

pandas: powerful Python data analysis toolkit, Release 0.23.4

In [45]: pd.read_sql_query('SELECT * FROM db_table', engine)
Out[45]:

A B
0 1 a
1 2 b
2 3 c

Some other enhancements to the sql functions include:

• support for writing the index. This can be controlled with the index keyword (default is True).

• specify the column label to use when writing the index with index_label.

• specify string columns to parse as datetimes with the parse_dates keyword in read_sql_query() and
read_sql_table().

Warning: Some of the existing functions or function aliases have been deprecated and will be removed in future
versions. This includes: tquery, uquery, read_frame, frame_query, write_frame.

Warning: The support for the ‘mysql’ flavor when using DBAPI connection objects has been deprecated. MySQL
will be further supported with SQLAlchemy engines (GH6900).

1.26.6 MultiIndexing Using Slicers

In 0.14.0 we added a new way to slice multi-indexed objects. You can slice a multi-index by providing multiple
indexers.

You can provide any of the selectors as if you are indexing by label, see Selection by Label, including slices, lists of
labels, labels, and boolean indexers.

You can use slice(None) to select all the contents of that level. You do not need to specify all the deeper levels,
they will be implied as slice(None).

As usual, both sides of the slicers are included as this is label indexing.

See the docs See also issues (GH6134, GH4036, GH3057, GH2598, GH5641, GH7106)

Warning: You should specify all axes in the .loc specifier, meaning the indexer for the index and for the
columns. Their are some ambiguous cases where the passed indexer could be mis-interpreted as indexing both
axes, rather than into say the MuliIndex for the rows.

You should do this:
df.loc[(slice('A1','A3'),.....),:]

rather than this:
df.loc[(slice('A1','A3'),.....)]

Warning: You will need to make sure that the selection axes are fully lexsorted!

1.26. v0.14.0 (May 31 , 2014) 339

https://github.com/pandas-dev/pandas/issues/6900
https://github.com/pandas-dev/pandas/issues/6134
https://github.com/pandas-dev/pandas/issues/4036
https://github.com/pandas-dev/pandas/issues/3057
https://github.com/pandas-dev/pandas/issues/2598
https://github.com/pandas-dev/pandas/issues/5641
https://github.com/pandas-dev/pandas/issues/7106

pandas: powerful Python data analysis toolkit, Release 0.23.4

In [46]: def mklbl(prefix,n):
....: return ["%s%s" % (prefix,i) for i in range(n)]
....:

In [47]: index = MultiIndex.from_product([mklbl('A',4),
....: mklbl('B',2),
....: mklbl('C',4),
....: mklbl('D',2)])
....:

In [48]: columns = MultiIndex.from_tuples([('a','foo'),('a','bar'),
....: ('b','foo'),('b','bah')],
....: names=['lvl0', 'lvl1'])
....:

In [49]: df = DataFrame(np.arange(len(index)*len(columns)).reshape((len(index),
→˓len(columns))),

....: index=index,

....: columns=columns).sort_index().sort_index(axis=1)

....:

In [50]: df
Out[50]:
lvl0 a b
lvl1 bar foo bah foo
A0 B0 C0 D0 1 0 3 2

D1 5 4 7 6
C1 D0 9 8 11 10

D1 13 12 15 14
C2 D0 17 16 19 18

D1 21 20 23 22
C3 D0 25 24 27 26

...
A3 B1 C0 D1 229 228 231 230

C1 D0 233 232 235 234
D1 237 236 239 238

C2 D0 241 240 243 242
D1 245 244 247 246

C3 D0 249 248 251 250
D1 253 252 255 254

[64 rows x 4 columns]

Basic multi-index slicing using slices, lists, and labels.

In [51]: df.loc[(slice('A1','A3'),slice(None), ['C1','C3']),:]
Out[51]:
lvl0 a b
lvl1 bar foo bah foo
A1 B0 C1 D0 73 72 75 74

D1 77 76 79 78
C3 D0 89 88 91 90

D1 93 92 95 94
B1 C1 D0 105 104 107 106

D1 109 108 111 110
C3 D0 121 120 123 122

...

(continues on next page)

340 Chapter 1. What’s New

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

A3 B0 C1 D1 205 204 207 206
C3 D0 217 216 219 218

D1 221 220 223 222
B1 C1 D0 233 232 235 234

D1 237 236 239 238
C3 D0 249 248 251 250

D1 253 252 255 254

[24 rows x 4 columns]

You can use a pd.IndexSlice to shortcut the creation of these slices

In [52]: idx = pd.IndexSlice

In [53]: df.loc[idx[:,:,['C1','C3']],idx[:,'foo']]
Out[53]:
lvl0 a b
lvl1 foo foo
A0 B0 C1 D0 8 10

D1 12 14
C3 D0 24 26

D1 28 30
B1 C1 D0 40 42

D1 44 46
C3 D0 56 58

...
A3 B0 C1 D1 204 206

C3 D0 216 218
D1 220 222

B1 C1 D0 232 234
D1 236 238

C3 D0 248 250
D1 252 254

[32 rows x 2 columns]

It is possible to perform quite complicated selections using this method on multiple axes at the same time.

In [54]: df.loc['A1',(slice(None),'foo')]
Out[54]:
lvl0 a b
lvl1 foo foo
B0 C0 D0 64 66

D1 68 70
C1 D0 72 74

D1 76 78
C2 D0 80 82

D1 84 86
C3 D0 88 90

...
B1 C0 D1 100 102

C1 D0 104 106
D1 108 110

C2 D0 112 114
D1 116 118

C3 D0 120 122
D1 124 126

(continues on next page)

1.26. v0.14.0 (May 31 , 2014) 341

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

[16 rows x 2 columns]

In [55]: df.loc[idx[:,:,['C1','C3']],idx[:,'foo']]
\\Out[55]:
→˓

lvl0 a b
lvl1 foo foo
A0 B0 C1 D0 8 10

D1 12 14
C3 D0 24 26

D1 28 30
B1 C1 D0 40 42

D1 44 46
C3 D0 56 58

...
A3 B0 C1 D1 204 206

C3 D0 216 218
D1 220 222

B1 C1 D0 232 234
D1 236 238

C3 D0 248 250
D1 252 254

[32 rows x 2 columns]

Using a boolean indexer you can provide selection related to the values.

In [56]: mask = df[('a','foo')]>200

In [57]: df.loc[idx[mask,:,['C1','C3']],idx[:,'foo']]
Out[57]:
lvl0 a b
lvl1 foo foo
A3 B0 C1 D1 204 206

C3 D0 216 218
D1 220 222

B1 C1 D0 232 234
D1 236 238

C3 D0 248 250
D1 252 254

You can also specify the axis argument to .loc to interpret the passed slicers on a single axis.

In [58]: df.loc(axis=0)[:,:,['C1','C3']]
Out[58]:
lvl0 a b
lvl1 bar foo bah foo
A0 B0 C1 D0 9 8 11 10

D1 13 12 15 14
C3 D0 25 24 27 26

D1 29 28 31 30
B1 C1 D0 41 40 43 42

D1 45 44 47 46
C3 D0 57 56 59 58

...
A3 B0 C1 D1 205 204 207 206

(continues on next page)

342 Chapter 1. What’s New

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

C3 D0 217 216 219 218
D1 221 220 223 222

B1 C1 D0 233 232 235 234
D1 237 236 239 238

C3 D0 249 248 251 250
D1 253 252 255 254

[32 rows x 4 columns]

Furthermore you can set the values using these methods

In [59]: df2 = df.copy()

In [60]: df2.loc(axis=0)[:,:,['C1','C3']] = -10

In [61]: df2
Out[61]:
lvl0 a b
lvl1 bar foo bah foo
A0 B0 C0 D0 1 0 3 2

D1 5 4 7 6
C1 D0 -10 -10 -10 -10

D1 -10 -10 -10 -10
C2 D0 17 16 19 18

D1 21 20 23 22
C3 D0 -10 -10 -10 -10

...
A3 B1 C0 D1 229 228 231 230

C1 D0 -10 -10 -10 -10
D1 -10 -10 -10 -10

C2 D0 241 240 243 242
D1 245 244 247 246

C3 D0 -10 -10 -10 -10
D1 -10 -10 -10 -10

[64 rows x 4 columns]

You can use a right-hand-side of an alignable object as well.

In [62]: df2 = df.copy()

In [63]: df2.loc[idx[:,:,['C1','C3']],:] = df2*1000

In [64]: df2
Out[64]:
lvl0 a b
lvl1 bar foo bah foo
A0 B0 C0 D0 1 0 3 2

D1 5 4 7 6
C1 D0 9000 8000 11000 10000

D1 13000 12000 15000 14000
C2 D0 17 16 19 18

D1 21 20 23 22
C3 D0 25000 24000 27000 26000

...
A3 B1 C0 D1 229 228 231 230

C1 D0 233000 232000 235000 234000
(continues on next page)

1.26. v0.14.0 (May 31 , 2014) 343

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

D1 237000 236000 239000 238000
C2 D0 241 240 243 242

D1 245 244 247 246
C3 D0 249000 248000 251000 250000

D1 253000 252000 255000 254000

[64 rows x 4 columns]

1.26.7 Plotting

• Hexagonal bin plots from DataFrame.plot with kind='hexbin' (GH5478), See the docs.

• DataFrame.plot and Series.plot now supports area plot with specifying kind='area' (GH6656),
See the docs

• Pie plots from Series.plot and DataFrame.plot with kind='pie' (GH6976), See the docs.

• Plotting with Error Bars is now supported in the .plotmethod of DataFrame and Series objects (GH3796,
GH6834), See the docs.

• DataFrame.plot and Series.plot now support a table keyword for plotting matplotlib.Table,
See the docs. The table keyword can receive the following values.

– False: Do nothing (default).

– True: Draw a table using the DataFrame or Series called plot method. Data will be transposed to
meet matplotlib’s default layout.

– DataFrame or Series: Draw matplotlib.table using the passed data. The data will be drawn as
displayed in print method (not transposed automatically). Also, helper function pandas.tools.
plotting.table is added to create a table from DataFrame and Series, and add it to an
matplotlib.Axes.

• plot(legend='reverse') will now reverse the order of legend labels for most plot kinds. (GH6014)

• Line plot and area plot can be stacked by stacked=True (GH6656)

• Following keywords are now acceptable for DataFrame.plot() with kind='bar' and kind='barh':

– width: Specify the bar width. In previous versions, static value 0.5 was passed to matplotlib and it cannot
be overwritten. (GH6604)

– align: Specify the bar alignment. Default is center (different from matplotlib). In previous versions,
pandas passes align=’edge’ to matplotlib and adjust the location to center by itself, and it results align
keyword is not applied as expected. (GH4525)

– position: Specify relative alignments for bar plot layout. From 0 (left/bottom-end) to 1(right/top-end).
Default is 0.5 (center). (GH6604)

Because of the default align value changes, coordinates of bar plots are now located on integer values (0.0, 1.0,
2.0 . . .). This is intended to make bar plot be located on the same coordinates as line plot. However, bar plot
may differs unexpectedly when you manually adjust the bar location or drawing area, such as using set_xlim,
set_ylim, etc. In this cases, please modify your script to meet with new coordinates.

• The parallel_coordinates() function now takes argument color instead of colors. A
FutureWarning is raised to alert that the old colors argument will not be supported in a future release.
(GH6956)

• The parallel_coordinates() and andrews_curves() functions now take positional argument
frame instead of data. A FutureWarning is raised if the old data argument is used by name. (GH6956)

344 Chapter 1. What’s New

https://github.com/pandas-dev/pandas/issues/5478
https://github.com/pandas-dev/pandas/issues/6656
https://github.com/pandas-dev/pandas/issues/6976
https://github.com/pandas-dev/pandas/issues/3796
https://github.com/pandas-dev/pandas/issues/6834
https://github.com/pandas-dev/pandas/issues/6014
https://github.com/pandas-dev/pandas/issues/6656
https://github.com/pandas-dev/pandas/issues/6604
https://github.com/pandas-dev/pandas/issues/4525
https://github.com/pandas-dev/pandas/issues/6604
https://github.com/pandas-dev/pandas/issues/6956
https://github.com/pandas-dev/pandas/issues/6956

pandas: powerful Python data analysis toolkit, Release 0.23.4

• DataFrame.boxplot() now supports layout keyword (GH6769)

• DataFrame.boxplot() has a new keyword argument, return_type. It accepts 'dict', 'axes', or
'both', in which case a namedtuple with the matplotlib axes and a dict of matplotlib Lines is returned.

1.26.8 Prior Version Deprecations/Changes

There are prior version deprecations that are taking effect as of 0.14.0.

• Remove DateRange in favor of DatetimeIndex (GH6816)

• Remove column keyword from DataFrame.sort (GH4370)

• Remove precision keyword from set_eng_float_format() (GH395)

• Remove force_unicode keyword from DataFrame.to_string(), DataFrame.to_latex(), and
DataFrame.to_html(); these function encode in unicode by default (GH2224, GH2225)

• Remove nanRep keyword from DataFrame.to_csv() and DataFrame.to_string() (GH275)

• Remove unique keyword from HDFStore.select_column() (GH3256)

• Remove inferTimeRule keyword from Timestamp.offset() (GH391)

• Remove name keyword from get_data_yahoo() and get_data_google() (commit b921d1a)

• Remove offset keyword from DatetimeIndex constructor (commit 3136390)

• Remove time_rule from several rolling-moment statistical functions, such as rolling_sum() (GH1042)

• Removed neg - boolean operations on numpy arrays in favor of inv ~, as this is going to be deprecated in numpy
1.9 (GH6960)

1.26.9 Deprecations

• The pivot_table()/DataFrame.pivot_table() and crosstab() functions now take arguments
index and columns instead of rows and cols. A FutureWarning is raised to alert that the old rows
and cols arguments will not be supported in a future release (GH5505)

• The DataFrame.drop_duplicates() and DataFrame.duplicated() methods now take argument
subset instead of cols to better align with DataFrame.dropna(). A FutureWarning is raised to
alert that the old cols arguments will not be supported in a future release (GH6680)

• The DataFrame.to_csv() and DataFrame.to_excel() functions now takes argument columns in-
stead of cols. A FutureWarning is raised to alert that the old cols arguments will not be supported in a
future release (GH6645)

• Indexers will warn FutureWarningwhen used with a scalar indexer and a non-floating point Index (GH4892,
GH6960)

non-floating point indexes can only be indexed by integers / labels
In [1]: Series(1,np.arange(5))[3.0]

pandas/core/index.py:469: FutureWarning: scalar indexers for index type
→˓Int64Index should be integers and not floating point
Out[1]: 1

In [2]: Series(1,np.arange(5)).iloc[3.0]
pandas/core/index.py:469: FutureWarning: scalar indexers for index type

→˓Int64Index should be integers and not floating point
Out[2]: 1

(continues on next page)

1.26. v0.14.0 (May 31 , 2014) 345

https://github.com/pandas-dev/pandas/issues/6769
https://github.com/pandas-dev/pandas/issues/6816
https://github.com/pandas-dev/pandas/issues/4370
https://github.com/pandas-dev/pandas/issues/395
https://github.com/pandas-dev/pandas/issues/2224
https://github.com/pandas-dev/pandas/issues/2225
https://github.com/pandas-dev/pandas/issues/275
https://github.com/pandas-dev/pandas/issues/3256
https://github.com/pandas-dev/pandas/issues/391
https://github.com/pandas-dev/pandas/commit/b921d1a2
https://github.com/pandas-dev/pandas/commit/3136390
https://github.com/pandas-dev/pandas/issues/1042
https://github.com/pandas-dev/pandas/issues/6960
https://github.com/pandas-dev/pandas/issues/5505
https://github.com/pandas-dev/pandas/issues/6680
https://github.com/pandas-dev/pandas/issues/6645
https://github.com/pandas-dev/pandas/issues/4892
https://github.com/pandas-dev/pandas/issues/6960

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

In [3]: Series(1,np.arange(5)).iloc[3.0:4]
pandas/core/index.py:527: FutureWarning: slice indexers when using iloc

→˓should be integers and not floating point
Out[3]:

3 1
dtype: int64

these are Float64Indexes, so integer or floating point is acceptable
In [4]: Series(1,np.arange(5.))[3]
Out[4]: 1

In [5]: Series(1,np.arange(5.))[3.0]
Out[6]: 1

• Numpy 1.9 compat w.r.t. deprecation warnings (GH6960)

• Panel.shift() now has a function signature that matches DataFrame.shift(). The old posi-
tional argument lags has been changed to a keyword argument periods with a default value of 1. A
FutureWarning is raised if the old argument lags is used by name. (GH6910)

• The order keyword argument of factorize() will be removed. (GH6926).

• Remove the copy keyword from DataFrame.xs(), Panel.major_xs(), Panel.minor_xs(). A
view will be returned if possible, otherwise a copy will be made. Previously the user could think that
copy=False would ALWAYS return a view. (GH6894)

• The parallel_coordinates() function now takes argument color instead of colors. A
FutureWarning is raised to alert that the old colors argument will not be supported in a future release.
(GH6956)

• The parallel_coordinates() and andrews_curves() functions now take positional argument
frame instead of data. A FutureWarning is raised if the old data argument is used by name. (GH6956)

• The support for the ‘mysql’ flavor when using DBAPI connection objects has been deprecated. MySQL will be
further supported with SQLAlchemy engines (GH6900).

• The following io.sql functions have been deprecated: tquery, uquery, read_frame, frame_query,
write_frame.

• The percentile_width keyword argument in describe() has been deprecated. Use the percentiles keyword
instead, which takes a list of percentiles to display. The default output is unchanged.

• The default return type of boxplot() will change from a dict to a matpltolib Axes in a future release. You
can use the future behavior now by passing return_type='axes' to boxplot.

1.26.10 Known Issues

• OpenPyXL 2.0.0 breaks backwards compatibility (GH7169)

1.26.11 Enhancements

• DataFrame and Series will create a MultiIndex object if passed a tuples dict, See the docs (GH3323)

346 Chapter 1. What’s New

https://github.com/pandas-dev/pandas/issues/6960
https://github.com/pandas-dev/pandas/issues/6910
https://github.com/pandas-dev/pandas/issues/6926
https://github.com/pandas-dev/pandas/issues/6894
https://github.com/pandas-dev/pandas/issues/6956
https://github.com/pandas-dev/pandas/issues/6956
https://github.com/pandas-dev/pandas/issues/6900
https://github.com/pandas-dev/pandas/issues/7169
https://github.com/pandas-dev/pandas/issues/3323

pandas: powerful Python data analysis toolkit, Release 0.23.4

In [65]: Series({('a', 'b'): 1, ('a', 'a'): 0,
....: ('a', 'c'): 2, ('b', 'a'): 3, ('b', 'b'): 4})
....:

Out[65]:
a b 1

a 0
c 2

b a 3
b 4

dtype: int64

In [66]: DataFrame({('a', 'b'): {('A', 'B'): 1, ('A', 'C'): 2},
....: ('a', 'a'): {('A', 'C'): 3, ('A', 'B'): 4},
....: ('a', 'c'): {('A', 'B'): 5, ('A', 'C'): 6},
....: ('b', 'a'): {('A', 'C'): 7, ('A', 'B'): 8},
....: ('b', 'b'): {('A', 'D'): 9, ('A', 'B'): 10}})
....:

\\\Out[66]:
a b
b a c a b

A B 1.0 4.0 5.0 8.0 10.0
C 2.0 3.0 6.0 7.0 NaN
D NaN NaN NaN NaN 9.0

• Added the sym_diff method to Index (GH5543)

• DataFrame.to_latex now takes a longtable keyword, which if True will return a table in a longtable
environment. (GH6617)

• Add option to turn off escaping in DataFrame.to_latex (GH6472)

• pd.read_clipboard will, if the keyword sep is unspecified, try to detect data copied from a spreadsheet
and parse accordingly. (GH6223)

• Joining a singly-indexed DataFrame with a multi-indexed DataFrame (GH3662)

See the docs. Joining multi-index DataFrames on both the left and right is not yet supported ATM.

In [67]: household = DataFrame(dict(household_id = [1,2,3],
....: male = [0,1,0],
....: wealth = [196087.3,316478.7,294750]),
....: columns = ['household_id','male','wealth']
....:).set_index('household_id')
....:

In [68]: household
Out[68]:

male wealth
household_id
1 0 196087.3
2 1 316478.7
3 0 294750.0

In [69]: portfolio = DataFrame(dict(household_id = [1,2,2,3,3,3,4],
....: asset_id = ["nl0000301109","nl0000289783",

→˓"gb00b03mlx29",
....: "gb00b03mlx29","lu0197800237",

→˓"nl0000289965",np.nan],
....: name = ["ABN Amro","Robeco","Royal Dutch Shell

→˓","Royal Dutch Shell", (continues on next page)

1.26. v0.14.0 (May 31 , 2014) 347

https://github.com/pandas-dev/pandas/issues/5543
https://github.com/pandas-dev/pandas/issues/6617
https://github.com/pandas-dev/pandas/issues/6472
https://github.com/pandas-dev/pandas/issues/6223
https://github.com/pandas-dev/pandas/issues/3662

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

....: "AAB Eastern Europe Equity Fund",
→˓"Postbank BioTech Fonds",np.nan],

....: share = [1.0,0.4,0.6,0.15,0.6,0.25,1.0]),

....: columns = ['household_id','asset_id','name','share
→˓']

....:).set_index(['household_id','asset_id'])

....:

In [70]: portfolio
Out[70]:

name share
household_id asset_id
1 nl0000301109 ABN Amro 1.00
2 nl0000289783 Robeco 0.40

gb00b03mlx29 Royal Dutch Shell 0.60
3 gb00b03mlx29 Royal Dutch Shell 0.15

lu0197800237 AAB Eastern Europe Equity Fund 0.60
nl0000289965 Postbank BioTech Fonds 0.25

4 NaN NaN 1.00

In [71]: household.join(portfolio, how='inner')
\\\Out[71]:
→˓

male wealth name share
household_id asset_id
1 nl0000301109 0 196087.3 ABN Amro 1.00
2 nl0000289783 1 316478.7 Robeco 0.40

gb00b03mlx29 1 316478.7 Royal Dutch Shell 0.60
3 gb00b03mlx29 0 294750.0 Royal Dutch Shell 0.15

lu0197800237 0 294750.0 AAB Eastern Europe Equity Fund 0.60
nl0000289965 0 294750.0 Postbank BioTech Fonds 0.25

• quotechar, doublequote, and escapechar can now be specified when using DataFrame.to_csv
(GH5414, GH4528)

• Partially sort by only the specified levels of a MultiIndex with the sort_remaining boolean kwarg.
(GH3984)

• Added to_julian_date to TimeStamp and DatetimeIndex. The Julian Date is used primarily in
astronomy and represents the number of days from noon, January 1, 4713 BC. Because nanoseconds are used
to define the time in pandas the actual range of dates that you can use is 1678 AD to 2262 AD. (GH4041)

• DataFrame.to_stata will now check data for compatibility with Stata data types and will upcast when
needed. When it is not possible to losslessly upcast, a warning is issued (GH6327)

• DataFrame.to_stata and StataWriter will accept keyword arguments time_stamp and data_label
which allow the time stamp and dataset label to be set when creating a file. (GH6545)

• pandas.io.gbq now handles reading unicode strings properly. (GH5940)

• Holidays Calendars are now available and can be used with the CustomBusinessDay offset (GH6719)

• Float64Index is now backed by a float64 dtype ndarray instead of an object dtype array (GH6471).

• Implemented Panel.pct_change (GH6904)

• Added how option to rolling-moment functions to dictate how to handle resampling; rolling_max() de-
faults to max, rolling_min() defaults to min, and all others default to mean (GH6297)

• CustomBuisnessMonthBegin and CustomBusinessMonthEnd are now available (GH6866)

348 Chapter 1. What’s New

https://github.com/pandas-dev/pandas/issues/5414
https://github.com/pandas-dev/pandas/issues/4528
https://github.com/pandas-dev/pandas/issues/3984
https://github.com/pandas-dev/pandas/issues/4041
https://github.com/pandas-dev/pandas/issues/6327
https://github.com/pandas-dev/pandas/issues/6545
https://github.com/pandas-dev/pandas/issues/5940
https://github.com/pandas-dev/pandas/issues/6719
https://github.com/pandas-dev/pandas/issues/6471
https://github.com/pandas-dev/pandas/issues/6904
https://github.com/pandas-dev/pandas/issues/6297
https://github.com/pandas-dev/pandas/issues/6866

pandas: powerful Python data analysis toolkit, Release 0.23.4

• Series.quantile() and DataFrame.quantile() now accept an array of quantiles.

• describe() now accepts an array of percentiles to include in the summary statistics (GH4196)

• pivot_table can now accept Grouper by index and columns keywords (GH6913)

In [72]: import datetime

In [73]: df = DataFrame({
....: 'Branch' : 'A A A A A B'.split(),
....: 'Buyer': 'Carl Mark Carl Carl Joe Joe'.split(),
....: 'Quantity': [1, 3, 5, 1, 8, 1],
....: 'Date' : [datetime.datetime(2013,11,1,13,0), datetime.datetime(2013,9,

→˓1,13,5),
....: datetime.datetime(2013,10,1,20,0), datetime.datetime(2013,10,

→˓2,10,0),
....: datetime.datetime(2013,11,1,20,0), datetime.datetime(2013,10,

→˓2,10,0)],
....: 'PayDay' : [datetime.datetime(2013,10,4,0,0), datetime.datetime(2013,

→˓10,15,13,5),
....: datetime.datetime(2013,9,5,20,0), datetime.datetime(2013,

→˓11,2,10,0),
....: datetime.datetime(2013,10,7,20,0), datetime.datetime(2013,

→˓9,5,10,0)]})
....:

In [74]: df
Out[74]:
Branch Buyer Quantity Date PayDay

0 A Carl 1 2013-11-01 13:00:00 2013-10-04 00:00:00
1 A Mark 3 2013-09-01 13:05:00 2013-10-15 13:05:00
2 A Carl 5 2013-10-01 20:00:00 2013-09-05 20:00:00
3 A Carl 1 2013-10-02 10:00:00 2013-11-02 10:00:00
4 A Joe 8 2013-11-01 20:00:00 2013-10-07 20:00:00
5 B Joe 1 2013-10-02 10:00:00 2013-09-05 10:00:00

In [75]: pivot_table(df, index=Grouper(freq='M', key='Date'),
....: columns=Grouper(freq='M', key='PayDay'),
....: values='Quantity', aggfunc=np.sum)
....:

\\\Out[75]:
→˓

PayDay 2013-09-30 2013-10-31 2013-11-30
Date
2013-09-30 NaN 3.0 NaN
2013-10-31 6.0 NaN 1.0
2013-11-30 NaN 9.0 NaN

• Arrays of strings can be wrapped to a specified width (str.wrap) (GH6999)

• Add nsmallest() and Series.nlargest() methods to Series, See the docs (GH3960)

• PeriodIndex fully supports partial string indexing like DatetimeIndex (GH7043)

In [76]: prng = period_range('2013-01-01 09:00', periods=100, freq='H')

In [77]: ps = Series(np.random.randn(len(prng)), index=prng)

In [78]: ps

(continues on next page)

1.26. v0.14.0 (May 31 , 2014) 349

https://github.com/pandas-dev/pandas/issues/4196
https://github.com/pandas-dev/pandas/issues/6913
https://github.com/pandas-dev/pandas/issues/6999
https://github.com/pandas-dev/pandas/issues/3960
https://github.com/pandas-dev/pandas/issues/7043

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

Out[78]:
2013-01-01 09:00 0.015696
2013-01-01 10:00 -2.242685
2013-01-01 11:00 1.150036
2013-01-01 12:00 0.991946
2013-01-01 13:00 0.953324
2013-01-01 14:00 -2.021255
2013-01-01 15:00 -0.334077

...
2013-01-05 06:00 0.566534
2013-01-05 07:00 0.503592
2013-01-05 08:00 0.285296
2013-01-05 09:00 0.484288
2013-01-05 10:00 1.363482
2013-01-05 11:00 -0.781105
2013-01-05 12:00 -0.468018
Freq: H, Length: 100, dtype: float64

In [79]: ps['2013-01-02']
\\Out[79]:
→˓

2013-01-02 00:00 0.553439
2013-01-02 01:00 1.318152
2013-01-02 02:00 -0.469305
2013-01-02 03:00 0.675554
2013-01-02 04:00 -1.817027
2013-01-02 05:00 -0.183109
2013-01-02 06:00 1.058969

...
2013-01-02 17:00 0.076200
2013-01-02 18:00 -0.566446
2013-01-02 19:00 0.036142
2013-01-02 20:00 -2.074978
2013-01-02 21:00 0.247792
2013-01-02 22:00 -0.897157
2013-01-02 23:00 -0.136795
Freq: H, Length: 24, dtype: float64

• read_excel can now read milliseconds in Excel dates and times with xlrd >= 0.9.3. (GH5945)

• pd.stats.moments.rolling_var now uses Welford’s method for increased numerical stability
(GH6817)

• pd.expanding_apply and pd.rolling_apply now take args and kwargs that are passed on to the func (GH6289)

• DataFrame.rank() now has a percentage rank option (GH5971)

• Series.rank() now has a percentage rank option (GH5971)

• Series.rank() and DataFrame.rank() now accept method='dense' for ranks without gaps
(GH6514)

• Support passing encoding with xlwt (GH3710)

• Refactor Block classes removing Block.items attributes to avoid duplication in item handling (GH6745,
GH6988).

• Testing statements updated to use specialized asserts (GH6175)

350 Chapter 1. What’s New

https://github.com/pandas-dev/pandas/issues/5945
https://github.com/pandas-dev/pandas/issues/6817
https://github.com/pandas-dev/pandas/issues/6289
https://github.com/pandas-dev/pandas/issues/5971
https://github.com/pandas-dev/pandas/issues/5971
https://github.com/pandas-dev/pandas/issues/6514
https://github.com/pandas-dev/pandas/issues/3710
https://github.com/pandas-dev/pandas/issues/6745
https://github.com/pandas-dev/pandas/issues/6988
https://github.com/pandas-dev/pandas/issues/6175

pandas: powerful Python data analysis toolkit, Release 0.23.4

1.26.12 Performance

• Performance improvement when converting DatetimeIndex to floating ordinals using
DatetimeConverter (GH6636)

• Performance improvement for DataFrame.shift (GH5609)

• Performance improvement in indexing into a multi-indexed Series (GH5567)

• Performance improvements in single-dtyped indexing (GH6484)

• Improve performance of DataFrame construction with certain offsets, by removing faulty caching (e.g. Mon-
thEnd,BusinessMonthEnd), (GH6479)

• Improve performance of CustomBusinessDay (GH6584)

• improve performance of slice indexing on Series with string keys (GH6341, GH6372)

• Performance improvement for DataFrame.from_records when reading a specified number of rows from
an iterable (GH6700)

• Performance improvements in timedelta conversions for integer dtypes (GH6754)

• Improved performance of compatible pickles (GH6899)

• Improve performance in certain reindexing operations by optimizing take_2d (GH6749)

• GroupBy.count() is now implemented in Cython and is much faster for large numbers of groups (GH7016).

1.26.13 Experimental

There are no experimental changes in 0.14.0

1.26.14 Bug Fixes

• Bug in Series ValueError when index doesn’t match data (GH6532)

• Prevent segfault due to MultiIndex not being supported in HDFStore table format (GH1848)

• Bug in pd.DataFrame.sort_index where mergesort wasn’t stable when ascending=False
(GH6399)

• Bug in pd.tseries.frequencies.to_offset when argument has leading zeroes (GH6391)

• Bug in version string gen. for dev versions with shallow clones / install from tarball (GH6127)

• Inconsistent tz parsing Timestamp / to_datetime for current year (GH5958)

• Indexing bugs with reordered indexes (GH6252, GH6254)

• Bug in .xs with a Series multiindex (GH6258, GH5684)

• Bug in conversion of a string types to a DatetimeIndex with a specified frequency (GH6273, GH6274)

• Bug in eval where type-promotion failed for large expressions (GH6205)

• Bug in interpolate with inplace=True (GH6281)

• HDFStore.remove now handles start and stop (GH6177)

• HDFStore.select_as_multiple handles start and stop the same way as select (GH6177)

• HDFStore.select_as_coordinates and select_column works with a where clause that results in
filters (GH6177)

1.26. v0.14.0 (May 31 , 2014) 351

https://github.com/pandas-dev/pandas/issues/6636
https://github.com/pandas-dev/pandas/issues/5609
https://github.com/pandas-dev/pandas/issues/5567
https://github.com/pandas-dev/pandas/issues/6484
https://github.com/pandas-dev/pandas/issues/6479
https://github.com/pandas-dev/pandas/issues/6584
https://github.com/pandas-dev/pandas/issues/6341
https://github.com/pandas-dev/pandas/issues/6372
https://github.com/pandas-dev/pandas/issues/6700
https://github.com/pandas-dev/pandas/issues/6754
https://github.com/pandas-dev/pandas/issues/6899
https://github.com/pandas-dev/pandas/issues/6749
https://github.com/pandas-dev/pandas/issues/7016
https://github.com/pandas-dev/pandas/issues/6532
https://github.com/pandas-dev/pandas/issues/1848
https://github.com/pandas-dev/pandas/issues/6399
https://github.com/pandas-dev/pandas/issues/6391
https://github.com/pandas-dev/pandas/issues/6127
https://github.com/pandas-dev/pandas/issues/5958
https://github.com/pandas-dev/pandas/issues/6252
https://github.com/pandas-dev/pandas/issues/6254
https://github.com/pandas-dev/pandas/issues/6258
https://github.com/pandas-dev/pandas/issues/5684
https://github.com/pandas-dev/pandas/issues/6273
https://github.com/pandas-dev/pandas/issues/6274
https://github.com/pandas-dev/pandas/issues/6205
https://github.com/pandas-dev/pandas/issues/6281
https://github.com/pandas-dev/pandas/issues/6177
https://github.com/pandas-dev/pandas/issues/6177
https://github.com/pandas-dev/pandas/issues/6177

pandas: powerful Python data analysis toolkit, Release 0.23.4

• Regression in join of non_unique_indexes (GH6329)

• Issue with groupby agg with a single function and a a mixed-type frame (GH6337)

• Bug in DataFrame.replace() when passing a non- bool to_replace argument (GH6332)

• Raise when trying to align on different levels of a multi-index assignment (GH3738)

• Bug in setting complex dtypes via boolean indexing (GH6345)

• Bug in TimeGrouper/resample when presented with a non-monotonic DatetimeIndex that would return invalid
results. (GH4161)

• Bug in index name propagation in TimeGrouper/resample (GH4161)

• TimeGrouper has a more compatible API to the rest of the groupers (e.g. groups was missing) (GH3881)

• Bug in multiple grouping with a TimeGrouper depending on target column order (GH6764)

• Bug in pd.eval when parsing strings with possible tokens like '&' (GH6351)

• Bug correctly handle placements of -inf in Panels when dividing by integer 0 (GH6178)

• DataFrame.shift with axis=1 was raising (GH6371)

• Disabled clipboard tests until release time (run locally with nosetests -A disabled) (GH6048).

• Bug in DataFrame.replace() when passing a nested dict that contained keys not in the values to be
replaced (GH6342)

• str.match ignored the na flag (GH6609).

• Bug in take with duplicate columns that were not consolidated (GH6240)

• Bug in interpolate changing dtypes (GH6290)

• Bug in Series.get, was using a buggy access method (GH6383)

• Bug in hdfstore queries of the form where=[('date', '>=', datetime(2013,1,1)),
('date', '<=', datetime(2014,1,1))] (GH6313)

• Bug in DataFrame.dropna with duplicate indices (GH6355)

• Regression in chained getitem indexing with embedded list-like from 0.12 (GH6394)

• Float64Index with nans not comparing correctly (GH6401)

• eval/query expressions with strings containing the @ character will now work (GH6366).

• Bug in Series.reindex when specifying a method with some nan values was inconsistent (noted on a
resample) (GH6418)

• Bug in DataFrame.replace() where nested dicts were erroneously depending on the order of dictionary
keys and values (GH5338).

• Perf issue in concatting with empty objects (GH3259)

• Clarify sorting of sym_diff on Index objects with NaN values (GH6444)

• Regression in MultiIndex.from_product with a DatetimeIndex as input (GH6439)

• Bug in str.extract when passed a non-default index (GH6348)

• Bug in str.split when passed pat=None and n=1 (GH6466)

• Bug in io.data.DataReader when passed "F-F_Momentum_Factor" and
data_source="famafrench" (GH6460)

• Bug in sum of a timedelta64[ns] series (GH6462)

352 Chapter 1. What’s New

https://github.com/pandas-dev/pandas/issues/6329
https://github.com/pandas-dev/pandas/issues/6337
https://github.com/pandas-dev/pandas/issues/6332
https://github.com/pandas-dev/pandas/issues/3738
https://github.com/pandas-dev/pandas/issues/6345
https://github.com/pandas-dev/pandas/issues/4161
https://github.com/pandas-dev/pandas/issues/4161
https://github.com/pandas-dev/pandas/issues/3881
https://github.com/pandas-dev/pandas/issues/6764
https://github.com/pandas-dev/pandas/issues/6351
https://github.com/pandas-dev/pandas/issues/6178
https://github.com/pandas-dev/pandas/issues/6371
https://github.com/pandas-dev/pandas/issues/6048
https://github.com/pandas-dev/pandas/issues/6342
https://github.com/pandas-dev/pandas/issues/6609
https://github.com/pandas-dev/pandas/issues/6240
https://github.com/pandas-dev/pandas/issues/6290
https://github.com/pandas-dev/pandas/issues/6383
https://github.com/pandas-dev/pandas/issues/6313
https://github.com/pandas-dev/pandas/issues/6355
https://github.com/pandas-dev/pandas/issues/6394
https://github.com/pandas-dev/pandas/issues/6401
https://github.com/pandas-dev/pandas/issues/6366
https://github.com/pandas-dev/pandas/issues/6418
https://github.com/pandas-dev/pandas/issues/5338
https://github.com/pandas-dev/pandas/issues/3259
https://github.com/pandas-dev/pandas/issues/6444
https://github.com/pandas-dev/pandas/issues/6439
https://github.com/pandas-dev/pandas/issues/6348
https://github.com/pandas-dev/pandas/issues/6466
https://github.com/pandas-dev/pandas/issues/6460
https://github.com/pandas-dev/pandas/issues/6462

pandas: powerful Python data analysis toolkit, Release 0.23.4

• Bug in resample with a timezone and certain offsets (GH6397)

• Bug in iat/iloc with duplicate indices on a Series (GH6493)

• Bug in read_html where nan’s were incorrectly being used to indicate missing values in text. Should use the
empty string for consistency with the rest of pandas (GH5129).

• Bug in read_html tests where redirected invalid URLs would make one test fail (GH6445).

• Bug in multi-axis indexing using .loc on non-unique indices (GH6504)

• Bug that caused _ref_locs corruption when slice indexing across columns axis of a DataFrame (GH6525)

• Regression from 0.13 in the treatment of numpy datetime64 non-ns dtypes in Series creation (GH6529)

• .names attribute of MultiIndexes passed to set_index are now preserved (GH6459).

• Bug in setitem with a duplicate index and an alignable rhs (GH6541)

• Bug in setitem with .loc on mixed integer Indexes (GH6546)

• Bug in pd.read_stata which would use the wrong data types and missing values (GH6327)

• Bug in DataFrame.to_stata that lead to data loss in certain cases, and could be exported using the wrong
data types and missing values (GH6335)

• StataWriter replaces missing values in string columns by empty string (GH6802)

• Inconsistent types in Timestamp addition/subtraction (GH6543)

• Bug in preserving frequency across Timestamp addition/subtraction (GH4547)

• Bug in empty list lookup caused IndexError exceptions (GH6536, GH6551)

• Series.quantile raising on an object dtype (GH6555)

• Bug in .xs with a nan in level when dropped (GH6574)

• Bug in fillna with method='bfill/ffill' and datetime64[ns] dtype (GH6587)

• Bug in sql writing with mixed dtypes possibly leading to data loss (GH6509)

• Bug in Series.pop (GH6600)

• Bug in iloc indexing when positional indexer matched Int64Index of the corresponding axis and no re-
ordering happened (GH6612)

• Bug in fillna with limit and value specified

• Bug in DataFrame.to_stata when columns have non-string names (GH4558)

• Bug in compat with np.compress, surfaced in (GH6658)

• Bug in binary operations with a rhs of a Series not aligning (GH6681)

• Bug in DataFrame.to_stata which incorrectly handles nan values and ignores with_index keyword
argument (GH6685)

• Bug in resample with extra bins when using an evenly divisible frequency (GH4076)

• Bug in consistency of groupby aggregation when passing a custom function (GH6715)

• Bug in resample when how=None resample freq is the same as the axis frequency (GH5955)

• Bug in downcasting inference with empty arrays (GH6733)

• Bug in obj.blocks on sparse containers dropping all but the last items of same for dtype (GH6748)

• Bug in unpickling NaT (NaTType) (GH4606)

1.26. v0.14.0 (May 31 , 2014) 353

https://github.com/pandas-dev/pandas/issues/6397
https://github.com/pandas-dev/pandas/issues/6493
https://github.com/pandas-dev/pandas/issues/5129
https://github.com/pandas-dev/pandas/issues/6445
https://github.com/pandas-dev/pandas/issues/6504
https://github.com/pandas-dev/pandas/issues/6525
https://github.com/pandas-dev/pandas/issues/6529
https://github.com/pandas-dev/pandas/issues/6459
https://github.com/pandas-dev/pandas/issues/6541
https://github.com/pandas-dev/pandas/issues/6546
https://github.com/pandas-dev/pandas/issues/6327
https://github.com/pandas-dev/pandas/issues/6335
https://github.com/pandas-dev/pandas/issues/6802
https://github.com/pandas-dev/pandas/issues/6543
https://github.com/pandas-dev/pandas/issues/4547
https://github.com/pandas-dev/pandas/issues/6536
https://github.com/pandas-dev/pandas/issues/6551
https://github.com/pandas-dev/pandas/issues/6555
https://github.com/pandas-dev/pandas/issues/6574
https://github.com/pandas-dev/pandas/issues/6587
https://github.com/pandas-dev/pandas/issues/6509
https://github.com/pandas-dev/pandas/issues/6600
https://github.com/pandas-dev/pandas/issues/6612
https://github.com/pandas-dev/pandas/issues/4558
https://github.com/pandas-dev/pandas/issues/6658
https://github.com/pandas-dev/pandas/issues/6681
https://github.com/pandas-dev/pandas/issues/6685
https://github.com/pandas-dev/pandas/issues/4076
https://github.com/pandas-dev/pandas/issues/6715
https://github.com/pandas-dev/pandas/issues/5955
https://github.com/pandas-dev/pandas/issues/6733
https://github.com/pandas-dev/pandas/issues/6748
https://github.com/pandas-dev/pandas/issues/4606

pandas: powerful Python data analysis toolkit, Release 0.23.4

• Bug in DataFrame.replace() where regex metacharacters were being treated as regexs even when
regex=False (GH6777).

• Bug in timedelta ops on 32-bit platforms (GH6808)

• Bug in setting a tz-aware index directly via .index (GH6785)

• Bug in expressions.py where numexpr would try to evaluate arithmetic ops (GH6762).

• Bug in Makefile where it didn’t remove Cython generated C files with make clean (GH6768)

• Bug with numpy < 1.7.2 when reading long strings from HDFStore (GH6166)

• Bug in DataFrame._reduce where non bool-like (0/1) integers were being converted into bools. (GH6806)

• Regression from 0.13 with fillna and a Series on datetime-like (GH6344)

• Bug in adding np.timedelta64 to DatetimeIndex with timezone outputs incorrect results (GH6818)

• Bug in DataFrame.replace() where changing a dtype through replacement would only replace the first
occurrence of a value (GH6689)

• Better error message when passing a frequency of ‘MS’ in Period construction (GH5332)

• Bug in Series.__unicode__when max_rows=None and the Series has more than 1000 rows. (GH6863)

• Bug in groupby.get_group where a datetlike wasn’t always accepted (GH5267)

• Bug in groupBy.get_group created by TimeGrouper raises AttributeError (GH6914)

• Bug in DatetimeIndex.tz_localize and DatetimeIndex.tz_convert converting NaT incor-
rectly (GH5546)

• Bug in arithmetic operations affecting NaT (GH6873)

• Bug in Series.str.extract where the resulting Series from a single group match wasn’t renamed to
the group name

• Bug in DataFrame.to_csv where setting index=False ignored the header kwarg (GH6186)

• Bug in DataFrame.plot and Series.plot, where the legend behave inconsistently when plotting to the
same axes repeatedly (GH6678)

• Internal tests for patching __finalize__ / bug in merge not finalizing (GH6923, GH6927)

• accept TextFileReader in concat, which was affecting a common user idiom (GH6583)

• Bug in C parser with leading whitespace (GH3374)

• Bug in C parser with delim_whitespace=True and \r-delimited lines

• Bug in python parser with explicit multi-index in row following column header (GH6893)

• Bug in Series.rank and DataFrame.rank that caused small floats (<1e-13) to all receive the same rank
(GH6886)

• Bug in DataFrame.apply with functions that used *args or **kwargs and returned an empty result
(GH6952)

• Bug in sum/mean on 32-bit platforms on overflows (GH6915)

• Moved Panel.shift to NDFrame.slice_shift and fixed to respect multiple dtypes. (GH6959)

• Bug in enabling subplots=True in DataFrame.plot only has single column raises TypeError, and
Series.plot raises AttributeError (GH6951)

• Bug in DataFrame.plot draws unnecessary axes when enabling subplots and kind=scatter
(GH6951)

354 Chapter 1. What’s New

https://github.com/pandas-dev/pandas/issues/6777
https://github.com/pandas-dev/pandas/issues/6808
https://github.com/pandas-dev/pandas/issues/6785
https://github.com/pandas-dev/pandas/issues/6762
https://github.com/pandas-dev/pandas/issues/6768
https://github.com/pandas-dev/pandas/issues/6166
https://github.com/pandas-dev/pandas/issues/6806
https://github.com/pandas-dev/pandas/issues/6344
https://github.com/pandas-dev/pandas/issues/6818
https://github.com/pandas-dev/pandas/issues/6689
https://github.com/pandas-dev/pandas/issues/6863
https://github.com/pandas-dev/pandas/issues/5267
https://github.com/pandas-dev/pandas/issues/6914
https://github.com/pandas-dev/pandas/issues/5546
https://github.com/pandas-dev/pandas/issues/6873
https://github.com/pandas-dev/pandas/issues/6186
https://github.com/pandas-dev/pandas/issues/6678
https://github.com/pandas-dev/pandas/issues/6923
https://github.com/pandas-dev/pandas/issues/6927
https://github.com/pandas-dev/pandas/issues/6583
https://github.com/pandas-dev/pandas/issues/3374
https://github.com/pandas-dev/pandas/issues/6893
https://github.com/pandas-dev/pandas/issues/6886
https://github.com/pandas-dev/pandas/issues/6952
https://github.com/pandas-dev/pandas/issues/6915
https://github.com/pandas-dev/pandas/issues/6959
https://github.com/pandas-dev/pandas/issues/6951
https://github.com/pandas-dev/pandas/issues/6951

pandas: powerful Python data analysis toolkit, Release 0.23.4

• Bug in read_csv from a filesystem with non-utf-8 encoding (GH6807)

• Bug in iloc when setting / aligning (GH6766)

• Bug causing UnicodeEncodeError when get_dummies called with unicode values and a prefix (GH6885)

• Bug in timeseries-with-frequency plot cursor display (GH5453)

• Bug surfaced in groupby.plot when using a Float64Index (GH7025)

• Stopped tests from failing if options data isn’t able to be downloaded from Yahoo (GH7034)

• Bug in parallel_coordinates and radvizwhere reordering of class column caused possible color/class
mismatch (GH6956)

• Bug in radviz and andrews_curveswhere multiple values of ‘color’ were being passed to plotting method
(GH6956)

• Bug in Float64Index.isin() where containing nan s would make indices claim that they contained all
the things (GH7066).

• Bug in DataFrame.boxplot where it failed to use the axis passed as the ax argument (GH3578)

• Bug in the XlsxWriter and XlwtWriter implementations that resulted in datetime columns being format-
ted without the time (GH7075) were being passed to plotting method

• read_fwf() treats None in colspec like regular python slices. It now reads from the beginning or until the
end of the line when colspec contains a None (previously raised a TypeError)

• Bug in cache coherence with chained indexing and slicing; add _is_view property to NDFrame to correctly
predict views; mark is_copy on xs only if its an actual copy (and not a view) (GH7084)

• Bug in DatetimeIndex creation from string ndarray with dayfirst=True (GH5917)

• Bug in MultiIndex.from_arrays created from DatetimeIndex doesn’t preserve freq and tz
(GH7090)

• Bug in unstack raises ValueError when MultiIndex contains PeriodIndex (GH4342)

• Bug in boxplot and hist draws unnecessary axes (GH6769)

• Regression in groupby.nth() for out-of-bounds indexers (GH6621)

• Bug in quantile with datetime values (GH6965)

• Bug in Dataframe.set_index, reindex and pivot don’t preserve DatetimeIndex and
PeriodIndex attributes (GH3950, GH5878, GH6631)

• Bug in MultiIndex.get_level_values doesn’t preserve DatetimeIndex and PeriodIndex at-
tributes (GH7092)

• Bug in Groupby doesn’t preserve tz (GH3950)

• Bug in PeriodIndex partial string slicing (GH6716)

• Bug in the HTML repr of a truncated Series or DataFrame not showing the class name with the large_repr set
to ‘info’ (GH7105)

• Bug in DatetimeIndex specifying freq raises ValueError when passed value is too short (GH7098)

• Fixed a bug with the info repr not honoring the display.max_info_columns setting (GH6939)

• Bug PeriodIndex string slicing with out of bounds values (GH5407)

• Fixed a memory error in the hashtable implementation/factorizer on resizing of large tables (GH7157)

• Bug in isnull when applied to 0-dimensional object arrays (GH7176)

1.26. v0.14.0 (May 31 , 2014) 355

https://github.com/pandas-dev/pandas/issues/6807
https://github.com/pandas-dev/pandas/issues/6766
https://github.com/pandas-dev/pandas/issues/6885
https://github.com/pandas-dev/pandas/issues/5453
https://github.com/pandas-dev/pandas/issues/7025
https://github.com/pandas-dev/pandas/issues/7034
https://github.com/pandas-dev/pandas/issues/6956
https://github.com/pandas-dev/pandas/issues/6956
https://github.com/pandas-dev/pandas/issues/7066
https://github.com/pandas-dev/pandas/issues/3578
https://github.com/pandas-dev/pandas/issues/7075
https://github.com/pandas-dev/pandas/issues/7084
https://github.com/pandas-dev/pandas/issues/5917
https://github.com/pandas-dev/pandas/issues/7090
https://github.com/pandas-dev/pandas/issues/4342
https://github.com/pandas-dev/pandas/issues/6769
https://github.com/pandas-dev/pandas/issues/6621
https://github.com/pandas-dev/pandas/issues/6965
https://github.com/pandas-dev/pandas/issues/3950
https://github.com/pandas-dev/pandas/issues/5878
https://github.com/pandas-dev/pandas/issues/6631
https://github.com/pandas-dev/pandas/issues/7092
https://github.com/pandas-dev/pandas/issues/3950
https://github.com/pandas-dev/pandas/issues/6716
https://github.com/pandas-dev/pandas/issues/7105
https://github.com/pandas-dev/pandas/issues/7098
https://github.com/pandas-dev/pandas/issues/6939
https://github.com/pandas-dev/pandas/issues/5407
https://github.com/pandas-dev/pandas/issues/7157
https://github.com/pandas-dev/pandas/issues/7176

pandas: powerful Python data analysis toolkit, Release 0.23.4

• Bug in query/eval where global constants were not looked up correctly (GH7178)

• Bug in recognizing out-of-bounds positional list indexers with iloc and a multi-axis tuple indexer (GH7189)

• Bug in setitem with a single value, multi-index and integer indices (GH7190, GH7218)

• Bug in expressions evaluation with reversed ops, showing in series-dataframe ops (GH7198, GH7192)

• Bug in multi-axis indexing with > 2 ndim and a multi-index (GH7199)

• Fix a bug where invalid eval/query operations would blow the stack (GH5198)

1.27 v0.13.1 (February 3, 2014)

This is a minor release from 0.13.0 and includes a small number of API changes, several new features, enhancements,
and performance improvements along with a large number of bug fixes. We recommend that all users upgrade to this
version.

Highlights include:

• Added infer_datetime_format keyword to read_csv/to_datetime to allow speedups for homo-
geneously formatted datetimes.

• Will intelligently limit display precision for datetime/timedelta formats.

• Enhanced Panel apply() method.

• Suggested tutorials in new Tutorials section.

• Our pandas ecosystem is growing, We now feature related projects in a new Pandas Ecosystem section.

• Much work has been taking place on improving the docs, and a new Contributing section has been added.

• Even though it may only be of interest to devs, we <3 our new CI status page: ScatterCI.

Warning: 0.13.1 fixes a bug that was caused by a combination of having numpy < 1.8, and doing chained
assignment on a string-like array. Please review the docs, chained indexing can have unexpected results and should
generally be avoided.

This would previously segfault:

In [1]: df = DataFrame(dict(A = np.array(['foo','bar','bah','foo','bar'])))

In [2]: df['A'].iloc[0] = np.nan

In [3]: df
Out[3]:

A
0 NaN
1 bar
2 bah
3 foo
4 bar

The recommended way to do this type of assignment is:

356 Chapter 1. What’s New

https://github.com/pandas-dev/pandas/issues/7178
https://github.com/pandas-dev/pandas/issues/7189
https://github.com/pandas-dev/pandas/issues/7190
https://github.com/pandas-dev/pandas/issues/7218
https://github.com/pandas-dev/pandas/issues/7198
https://github.com/pandas-dev/pandas/issues/7192
https://github.com/pandas-dev/pandas/issues/7199
https://github.com/pandas-dev/pandas/issues/5198
http://scatterci.github.io/pydata/pandas

pandas: powerful Python data analysis toolkit, Release 0.23.4

In [4]: df = DataFrame(dict(A = np.array(['foo','bar','bah','foo','bar'])))

In [5]: df.loc[0,'A'] = np.nan

In [6]: df
Out[6]:

A
0 NaN
1 bar
2 bah
3 foo
4 bar

1.27.1 Output Formatting Enhancements

• df.info() view now display dtype info per column (GH5682)

• df.info() now honors the option max_info_rows, to disable null counts for large frames (GH5974)

In [7]: max_info_rows = pd.get_option('max_info_rows')

In [8]: df = DataFrame(dict(A = np.random.randn(10),
...: B = np.random.randn(10),
...: C = date_range('20130101',periods=10)))
...:

In [9]: df.iloc[3:6,[0,2]] = np.nan

set to not display the null counts
In [10]: pd.set_option('max_info_rows',0)

In [11]: df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 10 entries, 0 to 9
Data columns (total 3 columns):
A float64
B float64
C datetime64[ns]
dtypes: datetime64[ns](1), float64(2)
memory usage: 320.0 bytes

this is the default (same as in 0.13.0)
In [12]: pd.set_option('max_info_rows',max_info_rows)

In [13]: df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 10 entries, 0 to 9
Data columns (total 3 columns):
A 7 non-null float64
B 10 non-null float64
C 7 non-null datetime64[ns]
dtypes: datetime64[ns](1), float64(2)
memory usage: 320.0 bytes

• Add show_dimensions display option for the new DataFrame repr to control whether the dimensions print.

1.27. v0.13.1 (February 3, 2014) 357

https://github.com/pandas-dev/pandas/issues/5682
https://github.com/pandas-dev/pandas/issues/5974

pandas: powerful Python data analysis toolkit, Release 0.23.4

In [14]: df = DataFrame([[1, 2], [3, 4]])

In [15]: pd.set_option('show_dimensions', False)

In [16]: df
Out[16]:

0 1
0 1 2
1 3 4

In [17]: pd.set_option('show_dimensions', True)

In [18]: df
Out[18]:

0 1
0 1 2
1 3 4

[2 rows x 2 columns]

• The ArrayFormatter for datetime and timedelta64 now intelligently limit precision based on the
values in the array (GH3401)

Previously output might look like:

age today diff
0 2001-01-01 00:00:00 2013-04-19 00:00:00 4491 days, 00:00:00
1 2004-06-01 00:00:00 2013-04-19 00:00:00 3244 days, 00:00:00

Now the output looks like:

In [19]: df = DataFrame([Timestamp('20010101'),
....: Timestamp('20040601')], columns=['age'])
....:

In [20]: df['today'] = Timestamp('20130419')

In [21]: df['diff'] = df['today']-df['age']

In [22]: df
Out[22]:

age today diff
0 2001-01-01 2013-04-19 4491 days
1 2004-06-01 2013-04-19 3244 days

[2 rows x 3 columns]

1.27.2 API changes

• Add -NaN and -nan to the default set of NA values (GH5952). See NA Values.

• Added Series.str.get_dummies vectorized string method (GH6021), to extract dummy/indicator vari-
ables for separated string columns:

In [23]: s = Series(['a', 'a|b', np.nan, 'a|c'])

(continues on next page)

358 Chapter 1. What’s New

https://github.com/pandas-dev/pandas/issues/3401
https://github.com/pandas-dev/pandas/issues/5952
https://github.com/pandas-dev/pandas/issues/6021

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

In [24]: s.str.get_dummies(sep='|')
Out[24]:

a b c
0 1 0 0
1 1 1 0
2 0 0 0
3 1 0 1

[4 rows x 3 columns]

• Added the NDFrame.equals() method to compare if two NDFrames are equal have equal axes, dtypes, and
values. Added the array_equivalent function to compare if two ndarrays are equal. NaNs in identical
locations are treated as equal. (GH5283) See also the docs for a motivating example.

In [25]: df = DataFrame({'col':['foo', 0, np.nan]})

In [26]: df2 = DataFrame({'col':[np.nan, 0, 'foo']}, index=[2,1,0])

In [27]: df.equals(df2)
Out[27]: False

In [28]: df.equals(df2.sort_index())
\\\\\\\\\\\\\\\Out[28]: True

In [29]: import pandas.core.common as com

In [30]: com.array_equivalent(np.array([0, np.nan]), np.array([0, np.nan]))

AttributeError Traceback (most recent call last)
<ipython-input-30-18a036193b45> in <module>()
----> 1 com.array_equivalent(np.array([0, np.nan]), np.array([0, np.nan]))

AttributeError: module 'pandas.core.common' has no attribute 'array_equivalent'

In [31]: np.array_equal(np.array([0, np.nan]), np.array([0, np.nan]))
\\Out[31]:
→˓False

• DataFrame.apply will use the reduce argument to determine whether a Series or a DataFrame
should be returned when the DataFrame is empty (GH6007).

Previously, calling DataFrame.apply an empty DataFrame would return either a DataFrame if there
were no columns, or the function being applied would be called with an empty Series to guess whether a
Series or DataFrame should be returned:

In [32]: def applied_func(col):
....: print("Apply function being called with: ", col)
....: return col.sum()
....:

In [33]: empty = DataFrame(columns=['a', 'b'])

In [34]: empty.apply(applied_func)
Apply function being called with: Series([], Length: 0, dtype: float64)
Out[34]:
a NaN

(continues on next page)

1.27. v0.13.1 (February 3, 2014) 359

https://github.com/pandas-dev/pandas/issues/5283
https://github.com/pandas-dev/pandas/issues/6007

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

b NaN
Length: 2, dtype: float64

Now, when apply is called on an empty DataFrame: if the reduce argument is True a Series will
returned, if it is False a DataFrame will be returned, and if it is None (the default) the function being
applied will be called with an empty series to try and guess the return type.

In [35]: empty.apply(applied_func, reduce=True)
Out[35]:
a NaN
b NaN
Length: 2, dtype: float64

In [36]: empty.apply(applied_func, reduce=False)
Out[36]:
Empty DataFrame
Columns: [a, b]
Index: []

[0 rows x 2 columns]

1.27.3 Prior Version Deprecations/Changes

There are no announced changes in 0.13 or prior that are taking effect as of 0.13.1

1.27.4 Deprecations

There are no deprecations of prior behavior in 0.13.1

1.27.5 Enhancements

• pd.read_csv and pd.to_datetime learned a new infer_datetime_format keyword which greatly
improves parsing perf in many cases. Thanks to @lexual for suggesting and @danbirken for rapidly implement-
ing. (GH5490, GH6021)

If parse_dates is enabled and this flag is set, pandas will attempt to infer the format of the datetime strings
in the columns, and if it can be inferred, switch to a faster method of parsing them. In some cases this can
increase the parsing speed by ~5-10x.

Try to infer the format for the index column
df = pd.read_csv('foo.csv', index_col=0, parse_dates=True,

infer_datetime_format=True)

• date_format and datetime_format keywords can now be specified when writing to excel files
(GH4133)

• MultiIndex.from_product convenience function for creating a MultiIndex from the cartesian product of
a set of iterables (GH6055):

In [32]: shades = ['light', 'dark']

In [33]: colors = ['red', 'green', 'blue']

(continues on next page)

360 Chapter 1. What’s New

https://github.com/pandas-dev/pandas/issues/5490
https://github.com/pandas-dev/pandas/issues/6021
https://github.com/pandas-dev/pandas/issues/4133
https://github.com/pandas-dev/pandas/issues/6055

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

In [34]: MultiIndex.from_product([shades, colors], names=['shade', 'color'])
Out[34]:
MultiIndex(levels=[['dark', 'light'], ['blue', 'green', 'red']],

labels=[[1, 1, 1, 0, 0, 0], [2, 1, 0, 2, 1, 0]],
names=['shade', 'color'])

• Panel apply() will work on non-ufuncs. See the docs.

In [35]: import pandas.util.testing as tm

In [36]: panel = tm.makePanel(5)

In [37]: panel
Out[37]:
<class 'pandas.core.panel.Panel'>
Dimensions: 3 (items) x 5 (major_axis) x 4 (minor_axis)
Items axis: ItemA to ItemC
Major_axis axis: 2000-01-03 00:00:00 to 2000-01-07 00:00:00
Minor_axis axis: A to D

In [38]: panel['ItemA']
\\\Out[38]:
→˓

A B C D
2000-01-03 0.694103 1.893534 -1.735349 -0.850346
2000-01-04 0.678630 0.639633 1.210384 1.176812
2000-01-05 0.239556 -0.962029 0.797435 -0.524336
2000-01-06 0.151227 -2.085266 -0.379811 0.700908
2000-01-07 0.816127 1.930247 0.702562 0.984188

[5 rows x 4 columns]

Specifying an apply that operates on a Series (to return a single element)

In [39]: panel.apply(lambda x: x.dtype, axis='items')
Out[39]:

A B C D
2000-01-03 float64 float64 float64 float64
2000-01-04 float64 float64 float64 float64
2000-01-05 float64 float64 float64 float64
2000-01-06 float64 float64 float64 float64
2000-01-07 float64 float64 float64 float64

[5 rows x 4 columns]

A similar reduction type operation

In [40]: panel.apply(lambda x: x.sum(), axis='major_axis')
Out[40]:

ItemA ItemB ItemC
A 2.579643 3.062757 0.379252
B 1.416120 -1.960855 0.923558
C 0.595222 -1.079772 -3.118269
D 1.487226 -0.734611 -1.979310

[4 rows x 3 columns]

1.27. v0.13.1 (February 3, 2014) 361

pandas: powerful Python data analysis toolkit, Release 0.23.4

This is equivalent to

In [41]: panel.sum('major_axis')
Out[41]:

ItemA ItemB ItemC
A 2.579643 3.062757 0.379252
B 1.416120 -1.960855 0.923558
C 0.595222 -1.079772 -3.118269
D 1.487226 -0.734611 -1.979310

[4 rows x 3 columns]

A transformation operation that returns a Panel, but is computing the z-score across the major_axis

In [42]: result = panel.apply(
....: lambda x: (x-x.mean())/x.std(),
....: axis='major_axis')
....:

In [43]: result
Out[43]:
<class 'pandas.core.panel.Panel'>
Dimensions: 3 (items) x 5 (major_axis) x 4 (minor_axis)
Items axis: ItemA to ItemC
Major_axis axis: 2000-01-03 00:00:00 to 2000-01-07 00:00:00
Minor_axis axis: A to D

In [44]: result['ItemA']
\\\Out[44]:
→˓

A B C D
2000-01-03 0.595800 0.907552 -1.556260 -1.244875
2000-01-04 0.544058 0.200868 0.915883 0.953747
2000-01-05 -0.924165 -0.701810 0.569325 -0.891290
2000-01-06 -1.219530 -1.334852 -0.418654 0.437589
2000-01-07 1.003837 0.928242 0.489705 0.744830

[5 rows x 4 columns]

• Panel apply() operating on cross-sectional slabs. (GH1148)

In [45]: f = lambda x: ((x.T-x.mean(1))/x.std(1)).T

In [46]: result = panel.apply(f, axis = ['items','major_axis'])

In [47]: result
Out[47]:
<class 'pandas.core.panel.Panel'>
Dimensions: 4 (items) x 5 (major_axis) x 3 (minor_axis)
Items axis: A to D
Major_axis axis: 2000-01-03 00:00:00 to 2000-01-07 00:00:00
Minor_axis axis: ItemA to ItemC

In [48]: result.loc[:,:,'ItemA']
\\\Out[48]:
→˓

A B C D
2000-01-03 0.331409 1.071034 -0.914540 -0.510587

(continues on next page)

362 Chapter 1. What’s New

https://github.com/pandas-dev/pandas/issues/1148

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

2000-01-04 -0.741017 -0.118794 0.383277 0.537212
2000-01-05 0.065042 -0.767353 0.655436 0.069467
2000-01-06 0.027932 -0.569477 0.908202 0.610585
2000-01-07 1.116434 1.133591 0.871287 1.004064

[5 rows x 4 columns]

This is equivalent to the following

In [49]: result = Panel(dict([(ax,f(panel.loc[:,:,ax]))
....: for ax in panel.minor_axis]))
....:

In [50]: result
Out[50]:
<class 'pandas.core.panel.Panel'>
Dimensions: 4 (items) x 5 (major_axis) x 3 (minor_axis)
Items axis: A to D
Major_axis axis: 2000-01-03 00:00:00 to 2000-01-07 00:00:00
Minor_axis axis: ItemA to ItemC

In [51]: result.loc[:,:,'ItemA']
\\\Out[51]:
→˓

A B C D
2000-01-03 0.331409 1.071034 -0.914540 -0.510587
2000-01-04 -0.741017 -0.118794 0.383277 0.537212
2000-01-05 0.065042 -0.767353 0.655436 0.069467
2000-01-06 0.027932 -0.569477 0.908202 0.610585
2000-01-07 1.116434 1.133591 0.871287 1.004064

[5 rows x 4 columns]

1.27.6 Performance

Performance improvements for 0.13.1

• Series datetime/timedelta binary operations (GH5801)

• DataFrame count/dropna for axis=1

• Series.str.contains now has a regex=False keyword which can be faster for plain (non-regex) string patterns.
(GH5879)

• Series.str.extract (GH5944)

• dtypes/ftypes methods (GH5968)

• indexing with object dtypes (GH5968)

• DataFrame.apply (GH6013)

• Regression in JSON IO (GH5765)

• Index construction from Series (GH6150)

1.27. v0.13.1 (February 3, 2014) 363

https://github.com/pandas-dev/pandas/issues/5801
https://github.com/pandas-dev/pandas/issues/5879
https://github.com/pandas-dev/pandas/issues/5944
https://github.com/pandas-dev/pandas/issues/5968
https://github.com/pandas-dev/pandas/issues/5968
https://github.com/pandas-dev/pandas/issues/6013
https://github.com/pandas-dev/pandas/issues/5765
https://github.com/pandas-dev/pandas/issues/6150

pandas: powerful Python data analysis toolkit, Release 0.23.4

1.27.7 Experimental

There are no experimental changes in 0.13.1

1.27.8 Bug Fixes

See V0.13.1 Bug Fixes for an extensive list of bugs that have been fixed in 0.13.1.

See the full release notes or issue tracker on GitHub for a complete list of all API changes, Enhancements and Bug
Fixes.

1.28 v0.13.0 (January 3, 2014)

This is a major release from 0.12.0 and includes a number of API changes, several new features and enhancements
along with a large number of bug fixes.

Highlights include:

• support for a new index type Float64Index, and other Indexing enhancements

• HDFStore has a new string based syntax for query specification

• support for new methods of interpolation

• updated timedelta operations

• a new string manipulation method extract

• Nanosecond support for Offsets

• isin for DataFrames

Several experimental features are added, including:

• new eval/query methods for expression evaluation

• support for msgpack serialization

• an i/o interface to Google’s BigQuery

Their are several new or updated docs sections including:

• Comparison with SQL, which should be useful for those familiar with SQL but still learning pandas.

• Comparison with R, idiom translations from R to pandas.

• Enhancing Performance, ways to enhance pandas performance with eval/query.

Warning: In 0.13.0 Series has internally been refactored to no longer sub-class ndarray but instead subclass
NDFrame, similar to the rest of the pandas containers. This should be a transparent change with only very limited
API implications. See Internal Refactoring

1.28.1 API changes

• read_excel now supports an integer in its sheetname argument giving the index of the sheet to read in
(GH4301).

364 Chapter 1. What’s New

https://github.com/pandas-dev/pandas/issues/4301

pandas: powerful Python data analysis toolkit, Release 0.23.4

• Text parser now treats anything that reads like inf (“inf”, “Inf”, “-Inf”, “iNf”, etc.) as infinity. (GH4220,
GH4219), affecting read_table, read_csv, etc.

• pandas now is Python 2/3 compatible without the need for 2to3 thanks to @jtratner. As a result, pandas now
uses iterators more extensively. This also led to the introduction of substantive parts of the Benjamin Peterson’s
six library into compat. (GH4384, GH4375, GH4372)

• pandas.util.compat and pandas.util.py3compat have been merged into pandas.compat.
pandas.compat now includes many functions allowing 2/3 compatibility. It contains both list and itera-
tor versions of range, filter, map and zip, plus other necessary elements for Python 3 compatibility. lmap,
lzip, lrange and lfilter all produce lists instead of iterators, for compatibility with numpy, subscripting
and pandas constructors.(GH4384, GH4375, GH4372)

• Series.get with negative indexers now returns the same as [] (GH4390)

• Changes to how Index and MultiIndex handle metadata (levels, labels, and names) (GH4039):

previously, you would have set levels or labels directly
index.levels = [[1, 2, 3, 4], [1, 2, 4, 4]]

now, you use the set_levels or set_labels methods
index = index.set_levels([[1, 2, 3, 4], [1, 2, 4, 4]])

similarly, for names, you can rename the object
but setting names is not deprecated
index = index.set_names(["bob", "cranberry"])

and all methods take an inplace kwarg - but return None
index.set_names(["bob", "cranberry"], inplace=True)

• All division with NDFrame objects is now truedivision, regardless of the future import. This means that operat-
ing on pandas objects will by default use floating point division, and return a floating point dtype. You can use
// and floordiv to do integer division.

Integer division

In [3]: arr = np.array([1, 2, 3, 4])

In [4]: arr2 = np.array([5, 3, 2, 1])

In [5]: arr / arr2
Out[5]: array([0, 0, 1, 4])

In [6]: Series(arr) // Series(arr2)
Out[6]:
0 0
1 0
2 1
3 4
dtype: int64

True Division

In [7]: pd.Series(arr) / pd.Series(arr2) # no future import required
Out[7]:
0 0.200000
1 0.666667
2 1.500000

(continues on next page)

1.28. v0.13.0 (January 3, 2014) 365

https://github.com/pandas-dev/pandas/issues/4220
https://github.com/pandas-dev/pandas/issues/4219
https://github.com/pandas-dev/pandas/issues/4384
https://github.com/pandas-dev/pandas/issues/4375
https://github.com/pandas-dev/pandas/issues/4372
https://github.com/pandas-dev/pandas/issues/4384
https://github.com/pandas-dev/pandas/issues/4375
https://github.com/pandas-dev/pandas/issues/4372
https://github.com/pandas-dev/pandas/issues/4390
https://github.com/pandas-dev/pandas/issues/4039

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

3 4.000000
dtype: float64

• Infer and downcast dtype if downcast='infer' is passed to fillna/ffill/bfill (GH4604)

• __nonzero__ for all NDFrame objects, will now raise a ValueError, this reverts back to (GH1073,
GH4633) behavior. See gotchas for a more detailed discussion.

This prevents doing boolean comparison on entire pandas objects, which is inherently ambiguous. These all
will raise a ValueError.

if df:
....

df1 and df2
s1 and s2

Added the .bool() method to NDFrame objects to facilitate evaluating of single-element boolean Series:

In [1]: Series([True]).bool()
Out[1]: True

In [2]: Series([False]).bool()
\\\\\\\\\\\\\Out[2]: False

In [3]: DataFrame([[True]]).bool()
\\\\\\\\\\\\\\\\\\\\\\\\\\\Out[3]: True

In [4]: DataFrame([[False]]).bool()
\\Out[4]: False

• All non-Index NDFrames (Series, DataFrame, Panel, Panel4D, SparsePanel, etc.), now support the
entire set of arithmetic operators and arithmetic flex methods (add, sub, mul, etc.). SparsePanel does not
support pow or mod with non-scalars. (GH3765)

• Series and DataFrame now have a mode() method to calculate the statistical mode(s) by axis/Series.
(GH5367)

• Chained assignment will now by default warn if the user is assigning to a copy. This can be changed with the
option mode.chained_assignment, allowed options are raise/warn/None. See the docs.

In [5]: dfc = DataFrame({'A':['aaa','bbb','ccc'],'B':[1,2,3]})

In [6]: pd.set_option('chained_assignment','warn')

The following warning / exception will show if this is attempted.

In [7]: dfc.loc[0]['A'] = 1111

Traceback (most recent call last)
...

SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_index,col_indexer] = value instead

Here is the correct method of assignment.

366 Chapter 1. What’s New

https://github.com/pandas-dev/pandas/issues/4604
https://github.com/pandas-dev/pandas/issues/1073
https://github.com/pandas-dev/pandas/issues/4633
https://github.com/pandas-dev/pandas/issues/3765
https://github.com/pandas-dev/pandas/issues/5367

pandas: powerful Python data analysis toolkit, Release 0.23.4

In [8]: dfc.loc[0,'A'] = 11

In [9]: dfc
Out[9]:

A B
0 11 1
1 bbb 2
2 ccc 3

[3 rows x 2 columns]

• Panel.reindex has the following call signature Panel.reindex(items=None, major_axis=None, minor_axis=None, **kwargs)
to conform with other NDFrame objects. See Internal Refactoring for more information.

• Series.argmin and Series.argmax are now aliased to Series.idxmin and Series.idxmax. These return the index of the
min or max element respectively. Prior to 0.13.0 these would return the position of the min / max element.
(GH6214)

1.28.2 Prior Version Deprecations/Changes

These were announced changes in 0.12 or prior that are taking effect as of 0.13.0

• Remove deprecated Factor (GH3650)

• Remove deprecated set_printoptions/reset_printoptions (GH3046)

• Remove deprecated _verbose_info (GH3215)

• Remove deprecated read_clipboard/to_clipboard/ExcelFile/ExcelWriter from pandas.
io.parsers (GH3717) These are available as functions in the main pandas namespace (e.g. pd.
read_clipboard)

• default for tupleize_cols is now False for both to_csv and read_csv. Fair warning in 0.12
(GH3604)

• default for display.max_seq_len is now 100 rather then None. This activates truncated display (“. . . ”) of long
sequences in various places. (GH3391)

1.28.3 Deprecations

Deprecated in 0.13.0

• deprecated iterkv, which will be removed in a future release (this was an alias of iteritems used to bypass
2to3’s changes). (GH4384, GH4375, GH4372)

• deprecated the string method match, whose role is now performed more idiomatically by extract. In a
future release, the default behavior of match will change to become analogous to contains, which returns
a boolean indexer. (Their distinction is strictness: match relies on re.match while contains relies on
re.search.) In this release, the deprecated behavior is the default, but the new behavior is available through
the keyword argument as_indexer=True.

1.28.4 Indexing API Changes

Prior to 0.13, it was impossible to use a label indexer (.loc/.ix) to set a value that was not contained in the index
of a particular axis. (GH2578). See the docs

In the Series case this is effectively an appending operation

1.28. v0.13.0 (January 3, 2014) 367

https://github.com/pandas-dev/pandas/issues/6214
https://github.com/pandas-dev/pandas/issues/3650
https://github.com/pandas-dev/pandas/issues/3046
https://github.com/pandas-dev/pandas/issues/3215
https://github.com/pandas-dev/pandas/issues/3717
https://github.com/pandas-dev/pandas/issues/3604
https://github.com/pandas-dev/pandas/issues/3391
https://github.com/pandas-dev/pandas/issues/4384
https://github.com/pandas-dev/pandas/issues/4375
https://github.com/pandas-dev/pandas/issues/4372
https://github.com/pandas-dev/pandas/issues/2578

pandas: powerful Python data analysis toolkit, Release 0.23.4

In [10]: s = Series([1,2,3])

In [11]: s
Out[11]:
0 1
1 2
2 3
Length: 3, dtype: int64

In [12]: s[5] = 5.

In [13]: s
Out[13]:
0 1.0
1 2.0
2 3.0
5 5.0
Length: 4, dtype: float64

In [14]: dfi = DataFrame(np.arange(6).reshape(3,2),
....: columns=['A','B'])
....:

In [15]: dfi
Out[15]:

A B
0 0 1
1 2 3
2 4 5

[3 rows x 2 columns]

This would previously KeyError

In [16]: dfi.loc[:,'C'] = dfi.loc[:,'A']

In [17]: dfi
Out[17]:

A B C
0 0 1 0
1 2 3 2
2 4 5 4

[3 rows x 3 columns]

This is like an append operation.

In [18]: dfi.loc[3] = 5

In [19]: dfi
Out[19]:

A B C
0 0 1 0
1 2 3 2
2 4 5 4
3 5 5 5

(continues on next page)

368 Chapter 1. What’s New

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

[4 rows x 3 columns]

A Panel setting operation on an arbitrary axis aligns the input to the Panel

In [20]: p = pd.Panel(np.arange(16).reshape(2,4,2),
....: items=['Item1','Item2'],
....: major_axis=pd.date_range('2001/1/12',periods=4),
....: minor_axis=['A','B'],dtype='float64')
....:

In [21]: p
Out[21]:
<class 'pandas.core.panel.Panel'>
Dimensions: 2 (items) x 4 (major_axis) x 2 (minor_axis)
Items axis: Item1 to Item2
Major_axis axis: 2001-01-12 00:00:00 to 2001-01-15 00:00:00
Minor_axis axis: A to B

In [22]: p.loc[:,:,'C'] = Series([30,32],index=p.items)

In [23]: p
Out[23]:
<class 'pandas.core.panel.Panel'>
Dimensions: 2 (items) x 4 (major_axis) x 3 (minor_axis)
Items axis: Item1 to Item2
Major_axis axis: 2001-01-12 00:00:00 to 2001-01-15 00:00:00
Minor_axis axis: A to C

In [24]: p.loc[:,:,'C']
\\\Out[24]:
→˓

Item1 Item2
2001-01-12 30.0 32.0
2001-01-13 30.0 32.0
2001-01-14 30.0 32.0
2001-01-15 30.0 32.0

[4 rows x 2 columns]

1.28.5 Float64Index API Change

• Added a new index type, Float64Index. This will be automatically created when passing floating values in
index creation. This enables a pure label-based slicing paradigm that makes [],ix,loc for scalar indexing
and slicing work exactly the same. See the docs, (GH263)

Construction is by default for floating type values.

In [25]: index = Index([1.5, 2, 3, 4.5, 5])

In [26]: index
Out[26]: Float64Index([1.5, 2.0, 3.0, 4.5, 5.0], dtype='float64')

In [27]: s = Series(range(5),index=index)

In [28]: s

(continues on next page)

1.28. v0.13.0 (January 3, 2014) 369

https://github.com/pandas-dev/pandas/issues/263

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

Out[28]:
1.5 0
2.0 1
3.0 2
4.5 3
5.0 4
Length: 5, dtype: int64

Scalar selection for [],.ix,.loc will always be label based. An integer will match an equal float index (e.g.
3 is equivalent to 3.0)

In [29]: s[3]
Out[29]: 2

In [30]: s.loc[3]
\\\\\\\\\\\Out[30]: 2

The only positional indexing is via iloc

In [31]: s.iloc[3]
Out[31]: 3

A scalar index that is not found will raise KeyError

Slicing is ALWAYS on the values of the index, for [],ix,loc and ALWAYS positional with iloc

In [32]: s[2:4]
Out[32]:
2.0 1
3.0 2
Length: 2, dtype: int64

In [33]: s.loc[2:4]
\\Out[33]:
2.0 1
3.0 2
Length: 2, dtype: int64

In [34]: s.iloc[2:4]
\\Out[34]:
→˓

3.0 2
4.5 3
Length: 2, dtype: int64

In float indexes, slicing using floats are allowed

In [35]: s[2.1:4.6]
Out[35]:
3.0 2
4.5 3
Length: 2, dtype: int64

In [36]: s.loc[2.1:4.6]
\\Out[36]:
3.0 2

(continues on next page)

370 Chapter 1. What’s New

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

4.5 3
Length: 2, dtype: int64

• Indexing on other index types are preserved (and positional fallback for [],ix), with the exception, that floating
point slicing on indexes on non Float64Index will now raise a TypeError.

In [1]: Series(range(5))[3.5]
TypeError: the label [3.5] is not a proper indexer for this index type
→˓(Int64Index)

In [1]: Series(range(5))[3.5:4.5]
TypeError: the slice start [3.5] is not a proper indexer for this index type
→˓(Int64Index)

Using a scalar float indexer will be deprecated in a future version, but is allowed for now.

In [3]: Series(range(5))[3.0]
Out[3]: 3

1.28.6 HDFStore API Changes

• Query Format Changes. A much more string-like query format is now supported. See the docs.

In [37]: path = 'test.h5'

In [38]: dfq = DataFrame(randn(10,4),
....: columns=list('ABCD'),
....: index=date_range('20130101',periods=10))
....:

In [39]: dfq.to_hdf(path,'dfq',format='table',data_columns=True)

Use boolean expressions, with in-line function evaluation.

In [40]: read_hdf(path,'dfq',
....: where="index>Timestamp('20130104') & columns=['A', 'B']")
....:

Out[40]:
A B

2013-01-05 1.057633 -0.791489
2013-01-06 1.910759 0.787965
2013-01-07 1.043945 2.107785
2013-01-08 0.749185 -0.675521
2013-01-09 -0.276646 1.924533
2013-01-10 0.226363 -2.078618

[6 rows x 2 columns]

Use an inline column reference

In [41]: read_hdf(path,'dfq',
....: where="A>0 or C>0")
....:

Out[41]:
A B C D

(continues on next page)

1.28. v0.13.0 (January 3, 2014) 371

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

2013-01-01 -0.414505 -1.425795 0.209395 -0.592886
2013-01-02 -1.473116 -0.896581 1.104352 -0.431550
2013-01-03 -0.161137 0.889157 0.288377 -1.051539
2013-01-04 -0.319561 -0.619993 0.156998 -0.571455
2013-01-05 1.057633 -0.791489 -0.524627 0.071878
2013-01-06 1.910759 0.787965 0.513082 -0.546416
2013-01-07 1.043945 2.107785 1.459927 1.015405
2013-01-08 0.749185 -0.675521 0.440266 0.688972
2013-01-09 -0.276646 1.924533 0.411204 0.890765
2013-01-10 0.226363 -2.078618 -0.387886 -0.087107

[10 rows x 4 columns]

• the format keyword now replaces the table keyword; allowed values are fixed(f) or table(t) the
same defaults as prior < 0.13.0 remain, e.g. put implies fixed format and append implies table format.
This default format can be set as an option by setting io.hdf.default_format.

In [42]: path = 'test.h5'

In [43]: df = pd.DataFrame(np.random.randn(10,2))

In [44]: df.to_hdf(path,'df_table',format='table')

In [45]: df.to_hdf(path,'df_table2',append=True)

In [46]: df.to_hdf(path,'df_fixed')

In [47]: with pd.HDFStore(path) as store:
....: print(store)
....:

<class 'pandas.io.pytables.HDFStore'>
File path: test.h5

• Significant table writing performance improvements

• handle a passed Series in table format (GH4330)

• can now serialize a timedelta64[ns] dtype in a table (GH3577), See the docs.

• added an is_open property to indicate if the underlying file handle is_open; a closed store will now report
‘CLOSED’ when viewing the store (rather than raising an error) (GH4409)

• a close of a HDFStore now will close that instance of the HDFStore but will only close the actual file if
the ref count (by PyTables) w.r.t. all of the open handles are 0. Essentially you have a local instance of
HDFStore referenced by a variable. Once you close it, it will report closed. Other references (to the same
file) will continue to operate until they themselves are closed. Performing an action on a closed file will raise
ClosedFileError

In [48]: path = 'test.h5'

In [49]: df = DataFrame(randn(10,2))

In [50]: store1 = HDFStore(path)

In [51]: store2 = HDFStore(path)

In [52]: store1.append('df',df)

(continues on next page)

372 Chapter 1. What’s New

https://github.com/pandas-dev/pandas/issues/4330
https://github.com/pandas-dev/pandas/issues/3577
https://github.com/pandas-dev/pandas/issues/4409

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

In [53]: store2.append('df2',df)

In [54]: store1
Out[54]:
<class 'pandas.io.pytables.HDFStore'>
File path: test.h5

In [55]: store2
\\\Out[55]:
<class 'pandas.io.pytables.HDFStore'>
File path: test.h5

In [56]: store1.close()

In [57]: store2
Out[57]:
<class 'pandas.io.pytables.HDFStore'>
File path: test.h5

In [58]: store2.close()

In [59]: store2
Out[59]:
<class 'pandas.io.pytables.HDFStore'>
File path: test.h5

• removed the _quiet attribute, replace by a DuplicateWarning if retrieving duplicate rows from a table
(GH4367)

• removed the warn argument from open. Instead a PossibleDataLossError exception will be raised if
you try to use mode='w' with an OPEN file handle (GH4367)

• allow a passed locations array or mask as a where condition (GH4467). See the docs for an example.

• add the keyword dropna=True to append to change whether ALL nan rows are not written to the store
(default is True, ALL nan rows are NOT written), also settable via the option io.hdf.dropna_table
(GH4625)

• pass thru store creation arguments; can be used to support in-memory stores

1.28.7 DataFrame repr Changes

The HTML and plain text representations of DataFrame now show a truncated view of the table once it exceeds
a certain size, rather than switching to the short info view (GH4886, GH5550). This makes the representation more
consistent as small DataFrames get larger.

1.28. v0.13.0 (January 3, 2014) 373

https://github.com/pandas-dev/pandas/issues/4367
https://github.com/pandas-dev/pandas/issues/4367
https://github.com/pandas-dev/pandas/issues/4467
https://github.com/pandas-dev/pandas/issues/4625
https://github.com/pandas-dev/pandas/issues/4886
https://github.com/pandas-dev/pandas/issues/5550

pandas: powerful Python data analysis toolkit, Release 0.23.4

To get the info view, call DataFrame.info(). If you prefer the info view as the repr for large DataFrames, you
can set this by running set_option('display.large_repr', 'info').

1.28.8 Enhancements

• df.to_clipboard() learned a new excel keyword that let’s you paste df data directly into excel (enabled
by default). (GH5070).

• read_html now raises a URLError instead of catching and raising a ValueError (GH4303, GH4305)

• Added a test for read_clipboard() and to_clipboard() (GH4282)

• Clipboard functionality now works with PySide (GH4282)

• Added a more informative error message when plot arguments contain overlapping color and style arguments
(GH4402)

• to_dict now takes records as a possible outtype. Returns an array of column-keyed dictionaries. (GH4936)

• NaN handing in get_dummies (GH4446) with dummy_na

previously, nan was erroneously counted as 2 here
now it is not counted at all
In [60]: get_dummies([1, 2, np.nan])
Out[60]:

1.0 2.0
0 1 0
1 0 1
2 0 0

[3 rows x 2 columns]

unless requested
In [61]: get_dummies([1, 2, np.nan], dummy_na=True)
\\Out[61]:
→˓

1.0 2.0 NaN
0 1 0 0
1 0 1 0
2 0 0 1

[3 rows x 3 columns]

• timedelta64[ns] operations. See the docs.

374 Chapter 1. What’s New

https://github.com/pandas-dev/pandas/issues/5070
https://github.com/pandas-dev/pandas/issues/4303
https://github.com/pandas-dev/pandas/issues/4305
https://github.com/pandas-dev/pandas/issues/4282
https://github.com/pandas-dev/pandas/issues/4282
https://github.com/pandas-dev/pandas/issues/4402
https://github.com/pandas-dev/pandas/issues/4936
https://github.com/pandas-dev/pandas/issues/4446

pandas: powerful Python data analysis toolkit, Release 0.23.4

Warning: Most of these operations require numpy >= 1.7

Using the new top-level to_timedelta, you can convert a scalar or array from the standard timedelta format
(produced by to_csv) into a timedelta type (np.timedelta64 in nanoseconds).

In [62]: to_timedelta('1 days 06:05:01.00003')
Out[62]: Timedelta('1 days 06:05:01.000030')

In [63]: to_timedelta('15.5us')
\\\Out[63]: Timedelta('0 days 00:00:00.
→˓000015')

In [64]: to_timedelta(['1 days 06:05:01.00003','15.5us','nan'])
\\Out[64]:
→˓TimedeltaIndex(['1 days 06:05:01.000030', '0 days 00:00:00.000015', NaT], dtype=
→˓'timedelta64[ns]', freq=None)

In [65]: to_timedelta(np.arange(5),unit='s')
\\\Out[65]:
→˓TimedeltaIndex(['00:00:00', '00:00:01', '00:00:02', '00:00:03', '00:00:04'],
→˓dtype='timedelta64[ns]', freq=None)

In [66]: to_timedelta(np.arange(5),unit='d')
\\\Out[66]:
→˓TimedeltaIndex(['0 days', '1 days', '2 days', '3 days', '4 days'], dtype=
→˓'timedelta64[ns]', freq=None)

A Series of dtype timedelta64[ns] can now be divided by another timedelta64[ns] object, or
astyped to yield a float64 dtyped Series. This is frequency conversion. See the docs for the docs.

In [67]: from datetime import timedelta

In [68]: td = Series(date_range('20130101',periods=4))-Series(date_range('20121201
→˓',periods=4))

In [69]: td[2] += np.timedelta64(timedelta(minutes=5,seconds=3))

In [70]: td[3] = np.nan

In [71]: td
Out[71]:
0 31 days 00:00:00
1 31 days 00:00:00
2 31 days 00:05:03
3 NaT
Length: 4, dtype: timedelta64[ns]

to days
In [72]: td / np.timedelta64(1,'D')
\\Out[72]:
→˓

0 31.000000
1 31.000000
2 31.003507
3 NaN
Length: 4, dtype: float64

(continues on next page)

1.28. v0.13.0 (January 3, 2014) 375

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

In [73]: td.astype('timedelta64[D]')
\\Out[73]:
→˓

0 31.0
1 31.0
2 31.0
3 NaN
Length: 4, dtype: float64

to seconds
In [74]: td / np.timedelta64(1,'s')
\\Out[74]:
→˓

0 2678400.0
1 2678400.0
2 2678703.0
3 NaN
Length: 4, dtype: float64

In [75]: td.astype('timedelta64[s]')
\\Out[75]:
→˓

0 2678400.0
1 2678400.0
2 2678703.0
3 NaN
Length: 4, dtype: float64

Dividing or multiplying a timedelta64[ns] Series by an integer or integer Series

In [76]: td * -1
Out[76]:
0 -31 days +00:00:00
1 -31 days +00:00:00
2 -32 days +23:54:57
3 NaT
Length: 4, dtype: timedelta64[ns]

In [77]: td * Series([1,2,3,4])
\\Out[77]:
→˓

0 31 days 00:00:00
1 62 days 00:00:00
2 93 days 00:15:09
3 NaT
Length: 4, dtype: timedelta64[ns]

Absolute DateOffset objects can act equivalently to timedeltas

In [78]: from pandas import offsets

In [79]: td + offsets.Minute(5) + offsets.Milli(5)
Out[79]:
0 31 days 00:05:00.005000
1 31 days 00:05:00.005000
2 31 days 00:10:03.005000

(continues on next page)

376 Chapter 1. What’s New

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

3 NaT
Length: 4, dtype: timedelta64[ns]

Fillna is now supported for timedeltas

In [80]: td.fillna(0)
Out[80]:
0 31 days 00:00:00
1 31 days 00:00:00
2 31 days 00:05:03
3 0 days 00:00:00
Length: 4, dtype: timedelta64[ns]

In [81]: td.fillna(timedelta(days=1,seconds=5))
\\Out[81]:
→˓

0 31 days 00:00:00
1 31 days 00:00:00
2 31 days 00:05:03
3 1 days 00:00:05
Length: 4, dtype: timedelta64[ns]

You can do numeric reduction operations on timedeltas.

In [82]: td.mean()
Out[82]: Timedelta('31 days 00:01:41')

In [83]: td.quantile(.1)
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\Out[83]: Timedelta('31 days 00:00:00')

• plot(kind='kde') now accepts the optional parameters bw_method and ind, passed to
scipy.stats.gaussian_kde() (for scipy >= 0.11.0) to set the bandwidth, and to gkde.evaluate() to specify the in-
dices at which it is evaluated, respectively. See scipy docs. (GH4298)

• DataFrame constructor now accepts a numpy masked record array (GH3478)

• The new vectorized string method extract return regular expression matches more conveniently.

In [84]: Series(['a1', 'b2', 'c3']).str.extract('[ab](\d)')
Out[84]:

0
0 1
1 2
2 NaN

[3 rows x 1 columns]

Elements that do not match return NaN. Extracting a regular expression with more than one group returns a
DataFrame with one column per group.

In [85]: Series(['a1', 'b2', 'c3']).str.extract('([ab])(\d)')
Out[85]:

0 1
0 a 1
1 b 2
2 NaN NaN

(continues on next page)

1.28. v0.13.0 (January 3, 2014) 377

https://github.com/pandas-dev/pandas/issues/4298
https://github.com/pandas-dev/pandas/issues/3478

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

[3 rows x 2 columns]

Elements that do not match return a row of NaN. Thus, a Series of messy strings can be converted into a like-
indexed Series or DataFrame of cleaned-up or more useful strings, without necessitating get() to access tuples
or re.match objects.

Named groups like

In [86]: Series(['a1', 'b2', 'c3']).str.extract(
....: '(?P<letter>[ab])(?P<digit>\d)')
....:

Out[86]:
letter digit

0 a 1
1 b 2
2 NaN NaN

[3 rows x 2 columns]

and optional groups can also be used.

In [87]: Series(['a1', 'b2', '3']).str.extract(
....: '(?P<letter>[ab])?(?P<digit>\d)')
....:

Out[87]:
letter digit

0 a 1
1 b 2
2 NaN 3

[3 rows x 2 columns]

• read_stata now accepts Stata 13 format (GH4291)

• read_fwf now infers the column specifications from the first 100 rows of the file if the data has correctly
separated and properly aligned columns using the delimiter provided to the function (GH4488).

• support for nanosecond times as an offset

Warning: These operations require numpy >= 1.7

Period conversions in the range of seconds and below were reworked and extended up to nanoseconds. Periods
in the nanosecond range are now available.

In [88]: date_range('2013-01-01', periods=5, freq='5N')
Out[88]:
DatetimeIndex(['2013-01-01 00:00:00',

'2013-01-01 00:00:00.000000005',
'2013-01-01 00:00:00.000000010',
'2013-01-01 00:00:00.000000015',
'2013-01-01 00:00:00.000000020'],

dtype='datetime64[ns]', freq='5N')

or with frequency as offset

378 Chapter 1. What’s New

https://github.com/pandas-dev/pandas/issues/4291
https://github.com/pandas-dev/pandas/issues/4488

pandas: powerful Python data analysis toolkit, Release 0.23.4

In [89]: date_range('2013-01-01', periods=5, freq=pd.offsets.Nano(5))
Out[89]:
DatetimeIndex(['2013-01-01 00:00:00',

'2013-01-01 00:00:00.000000005',
'2013-01-01 00:00:00.000000010',
'2013-01-01 00:00:00.000000015',
'2013-01-01 00:00:00.000000020'],

dtype='datetime64[ns]', freq='5N')

Timestamps can be modified in the nanosecond range

In [90]: t = Timestamp('20130101 09:01:02')

In [91]: t + pd.tseries.offsets.Nano(123)
Out[91]: Timestamp('2013-01-01 09:01:02.000000123')

• A new method, isin for DataFrames, which plays nicely with boolean indexing. The argument to isin, what
we’re comparing the DataFrame to, can be a DataFrame, Series, dict, or array of values. See the docs for more.

To get the rows where any of the conditions are met:

In [92]: dfi = DataFrame({'A': [1, 2, 3, 4], 'B': ['a', 'b', 'f', 'n']})

In [93]: dfi
Out[93]:

A B
0 1 a
1 2 b
2 3 f
3 4 n

[4 rows x 2 columns]

In [94]: other = DataFrame({'A': [1, 3, 3, 7], 'B': ['e', 'f', 'f', 'e']})

In [95]: mask = dfi.isin(other)

In [96]: mask
Out[96]:

A B
0 True False
1 False False
2 True True
3 False False

[4 rows x 2 columns]

In [97]: dfi[mask.any(1)]
\\Out[97]:
→˓

A B
0 1 a
2 3 f

[2 rows x 2 columns]

• Series now supports a to_frame method to convert it to a single-column DataFrame (GH5164)

• All R datasets listed here http://stat.ethz.ch/R-manual/R-devel/library/datasets/html/00Index.html can now be

1.28. v0.13.0 (January 3, 2014) 379

https://github.com/pandas-dev/pandas/issues/5164
http://stat.ethz.ch/R-manual/R-devel/library/datasets/html/00Index.html

pandas: powerful Python data analysis toolkit, Release 0.23.4

loaded into Pandas objects

note that pandas.rpy was deprecated in v0.16.0
import pandas.rpy.common as com
com.load_data('Titanic')

• tz_localize can infer a fall daylight savings transition based on the structure of the unlocalized data
(GH4230), see the docs

• DatetimeIndex is now in the API documentation, see the docs

• json_normalize() is a new method to allow you to create a flat table from semi-structured JSON data. See
the docs (GH1067)

• Added PySide support for the qtpandas DataFrameModel and DataFrameWidget.

• Python csv parser now supports usecols (GH4335)

• Frequencies gained several new offsets:

– LastWeekOfMonth (GH4637)

– FY5253, and FY5253Quarter (GH4511)

• DataFrame has a new interpolate method, similar to Series (GH4434, GH1892)

In [98]: df = DataFrame({'A': [1, 2.1, np.nan, 4.7, 5.6, 6.8],
....: 'B': [.25, np.nan, np.nan, 4, 12.2, 14.4]})
....:

In [99]: df.interpolate()
Out[99]:

A B
0 1.0 0.25
1 2.1 1.50
2 3.4 2.75
3 4.7 4.00
4 5.6 12.20
5 6.8 14.40

[6 rows x 2 columns]

Additionally, the method argument to interpolate has been expanded to include 'nearest',
'zero', 'slinear', 'quadratic', 'cubic', 'barycentric', 'krogh',
'piecewise_polynomial', 'pchip', 'polynomial', 'spline' The new methods re-
quire scipy. Consult the Scipy reference guide and documentation for more information about when the various
methods are appropriate. See the docs.

Interpolate now also accepts a limit keyword argument. This works similar to fillna’s limit:

In [100]: ser = Series([1, 3, np.nan, np.nan, np.nan, 11])

In [101]: ser.interpolate(limit=2)
Out[101]:
0 1.0
1 3.0
2 5.0
3 7.0
4 NaN
5 11.0
Length: 6, dtype: float64

380 Chapter 1. What’s New

https://github.com/pandas-dev/pandas/issues/4230
https://github.com/pandas-dev/pandas/issues/1067
https://github.com/pandas-dev/pandas/issues/4335
https://github.com/pandas-dev/pandas/issues/4637
https://github.com/pandas-dev/pandas/issues/4511
https://github.com/pandas-dev/pandas/issues/4434
https://github.com/pandas-dev/pandas/issues/1892
http://www.scipy.org
http://docs.scipy.org/doc/scipy/reference/tutorial/interpolate.html
http://docs.scipy.org/doc/scipy/reference/interpolate.html#univariate-interpolation

pandas: powerful Python data analysis toolkit, Release 0.23.4

• Added wide_to_long panel data convenience function. See the docs.

In [102]: np.random.seed(123)

In [103]: df = pd.DataFrame({"A1970" : {0 : "a", 1 : "b", 2 : "c"},
.....: "A1980" : {0 : "d", 1 : "e", 2 : "f"},
.....: "B1970" : {0 : 2.5, 1 : 1.2, 2 : .7},
.....: "B1980" : {0 : 3.2, 1 : 1.3, 2 : .1},
.....: "X" : dict(zip(range(3), np.random.randn(3)))
.....: })
.....:

In [104]: df["id"] = df.index

In [105]: df
Out[105]:
A1970 A1980 B1970 B1980 X id

0 a d 2.5 3.2 -1.085631 0
1 b e 1.2 1.3 0.997345 1
2 c f 0.7 0.1 0.282978 2

[3 rows x 6 columns]

In [106]: wide_to_long(df, ["A", "B"], i="id", j="year")
\\\Out[106]:
→˓

X A B
id year
0 1970 -1.085631 a 2.5
1 1970 0.997345 b 1.2
2 1970 0.282978 c 0.7
0 1980 -1.085631 d 3.2
1 1980 0.997345 e 1.3
2 1980 0.282978 f 0.1

[6 rows x 3 columns]

• to_csv now takes a date_format keyword argument that specifies how output datetime objects should
be formatted. Datetimes encountered in the index, columns, and values will all have this formatting applied.
(GH4313)

• DataFrame.plot will scatter plot x versus y by passing kind='scatter' (GH2215)

• Added support for Google Analytics v3 API segment IDs that also supports v2 IDs. (GH5271)

1.28.9 Experimental

• The new eval() function implements expression evaluation using numexpr behind the scenes. This results
in large speedups for complicated expressions involving large DataFrames/Series. For example,

In [107]: nrows, ncols = 20000, 100

In [108]: df1, df2, df3, df4 = [DataFrame(randn(nrows, ncols))
.....: for _ in range(4)]
.....:

1.28. v0.13.0 (January 3, 2014) 381

https://github.com/pandas-dev/pandas/issues/4313
https://github.com/pandas-dev/pandas/issues/2215
https://github.com/pandas-dev/pandas/issues/5271

pandas: powerful Python data analysis toolkit, Release 0.23.4

eval with NumExpr backend
In [109]: %timeit pd.eval('df1 + df2 + df3 + df4')
6.14 ms +- 85.5 us per loop (mean +- std. dev. of 7 runs, 100 loops each)

pure Python evaluation
In [110]: %timeit df1 + df2 + df3 + df4
5.9 ms +- 412 us per loop (mean +- std. dev. of 7 runs, 100 loops each)

For more details, see the the docs

• Similar to pandas.eval, DataFrame has a new DataFrame.eval method that evaluates an expression
in the context of the DataFrame. For example,

In [111]: df = DataFrame(randn(10, 2), columns=['a', 'b'])

In [112]: df.eval('a + b')
Out[112]:
0 -0.685204
1 1.589745
2 0.325441
3 -1.784153
4 -0.432893
5 0.171850
6 1.895919
7 3.065587
8 -0.092759
9 1.391365
Length: 10, dtype: float64

• query() method has been added that allows you to select elements of a DataFrame using a natural query
syntax nearly identical to Python syntax. For example,

In [113]: n = 20

In [114]: df = DataFrame(np.random.randint(n, size=(n, 3)), columns=['a', 'b', 'c
→˓'])

In [115]: df.query('a < b < c')
Out[115]:

a b c
11 1 5 8
15 8 16 19

[2 rows x 3 columns]

selects all the rows of df where a < b < c evaluates to True. For more details see the the docs.

• pd.read_msgpack() and pd.to_msgpack() are now a supported method of serialization of arbitrary
pandas (and python objects) in a lightweight portable binary format. See the docs

Warning: Since this is an EXPERIMENTAL LIBRARY, the storage format may not be stable until a future
release.

In [116]: df = DataFrame(np.random.rand(5,2),columns=list('AB'))

(continues on next page)

382 Chapter 1. What’s New

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

In [117]: df.to_msgpack('foo.msg')

In [118]: pd.read_msgpack('foo.msg')
Out[118]:

A B
0 0.251082 0.017357
1 0.347915 0.929879
2 0.546233 0.203368
3 0.064942 0.031722
4 0.355309 0.524575

[5 rows x 2 columns]

In [119]: s = Series(np.random.rand(5),index=date_range('20130101',periods=5))

In [120]: pd.to_msgpack('foo.msg', df, s)

In [121]: pd.read_msgpack('foo.msg')
Out[121]:
[A B
0 0.251082 0.017357
1 0.347915 0.929879
2 0.546233 0.203368
3 0.064942 0.031722
4 0.355309 0.524575

[5 rows x 2 columns], 2013-01-01 0.022321
2013-01-02 0.227025
2013-01-03 0.383282
2013-01-04 0.193225
2013-01-05 0.110977
Freq: D, Length: 5, dtype: float64]

You can pass iterator=True to iterator over the unpacked results

In [122]: for o in pd.read_msgpack('foo.msg',iterator=True):
.....: print(o)
.....:

A B
0 0.251082 0.017357
1 0.347915 0.929879
2 0.546233 0.203368
3 0.064942 0.031722
4 0.355309 0.524575

[5 rows x 2 columns]
2013-01-01 0.022321
2013-01-02 0.227025
2013-01-03 0.383282
2013-01-04 0.193225
2013-01-05 0.110977
Freq: D, Length: 5, dtype: float64

• pandas.io.gbq provides a simple way to extract from, and load data into, Google’s BigQuery Data Sets by
way of pandas DataFrames. BigQuery is a high performance SQL-like database service, useful for performing
ad-hoc queries against extremely large datasets. See the docs

1.28. v0.13.0 (January 3, 2014) 383

pandas: powerful Python data analysis toolkit, Release 0.23.4

from pandas.io import gbq

A query to select the average monthly temperatures in the
in the year 2000 across the USA. The dataset,
publicata:samples.gsod, is available on all BigQuery accounts,
and is based on NOAA gsod data.

query = """SELECT station_number as STATION,
month as MONTH, AVG(mean_temp) as MEAN_TEMP
FROM publicdata:samples.gsod
WHERE YEAR = 2000
GROUP BY STATION, MONTH
ORDER BY STATION, MONTH ASC"""

Fetch the result set for this query

Your Google BigQuery Project ID
To find this, see your dashboard:
https://console.developers.google.com/iam-admin/projects?authuser=0
projectid = xxxxxxxxx;

df = gbq.read_gbq(query, project_id = projectid)

Use pandas to process and reshape the dataset

df2 = df.pivot(index='STATION', columns='MONTH', values='MEAN_TEMP')
df3 = pandas.concat([df2.min(), df2.mean(), df2.max()],

axis=1,keys=["Min Tem", "Mean Temp", "Max Temp"])

The resulting DataFrame is:

> df3
Min Tem Mean Temp Max Temp

MONTH
1 -53.336667 39.827892 89.770968
2 -49.837500 43.685219 93.437932
3 -77.926087 48.708355 96.099998
4 -82.892858 55.070087 97.317240
5 -92.378261 61.428117 102.042856
6 -77.703334 65.858888 102.900000
7 -87.821428 68.169663 106.510714
8 -89.431999 68.614215 105.500000
9 -86.611112 63.436935 107.142856
10 -78.209677 56.880838 92.103333
11 -50.125000 48.861228 94.996428
12 -50.332258 42.286879 94.396774

Warning: To use this module, you will need a BigQuery account. See <https://cloud.google.com/products/
big-query> for details.

As of 10/10/13, there is a bug in Google’s API preventing result sets from being larger than 100,000 rows.
A patch is scheduled for the week of 10/14/13.

384 Chapter 1. What’s New

https://cloud.google.com/products/big-query
https://cloud.google.com/products/big-query

pandas: powerful Python data analysis toolkit, Release 0.23.4

1.28.10 Internal Refactoring

In 0.13.0 there is a major refactor primarily to subclass Series from NDFrame, which is the base class currently
for DataFrame and Panel, to unify methods and behaviors. Series formerly subclassed directly from ndarray.
(GH4080, GH3862, GH816)

Warning: There are two potential incompatibilities from < 0.13.0

• Using certain numpy functions would previously return a Series if passed a Series as an argument.
This seems only to affect np.ones_like, np.empty_like, np.diff and np.where. These now
return ndarrays.

In [123]: s = Series([1,2,3,4])

Numpy Usage

In [124]: np.ones_like(s)
Out[124]: array([1, 1, 1, 1])

In [125]: np.diff(s)
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\Out[125]: array([1, 1, 1])

In [126]: np.where(s>1,s,np.nan)
\\\Out[126]: array([nan,
→˓ 2., 3., 4.])

Pandonic Usage

In [127]: Series(1,index=s.index)
Out[127]:
0 1
1 1
2 1
3 1
Length: 4, dtype: int64

In [128]: s.diff()
\\\Out[128]:
0 NaN
1 1.0
2 1.0
3 1.0
Length: 4, dtype: float64

In [129]: s.where(s>1)
\\Out[129]:
→˓

0 NaN
1 2.0
2 3.0
3 4.0
Length: 4, dtype: float64

• Passing a Series directly to a cython function expecting an ndarray type will no long work directly, you
must pass Series.values, See Enhancing Performance

• Series(0.5) would previously return the scalar 0.5, instead this will return a 1-element Series

• This change breaks rpy2<=2.3.8. an Issue has been opened against rpy2 and a workaround is detailed in
GH5698. Thanks @JanSchulz.

1.28. v0.13.0 (January 3, 2014) 385

https://github.com/pandas-dev/pandas/issues/4080
https://github.com/pandas-dev/pandas/issues/3862
https://github.com/pandas-dev/pandas/issues/816
https://github.com/pandas-dev/pandas/issues/5698

pandas: powerful Python data analysis toolkit, Release 0.23.4

• Pickle compatibility is preserved for pickles created prior to 0.13. These must be unpickled with pd.
read_pickle, see Pickling.

• Refactor of series.py/frame.py/panel.py to move common code to generic.py

– added _setup_axes to created generic NDFrame structures

– moved methods

* from_axes,_wrap_array,axes,ix,loc,iloc,shape,empty,swapaxes,
transpose,pop

* __iter__,keys,__contains__,__len__,__neg__,__invert__

* convert_objects,as_blocks,as_matrix,values

* __getstate__,__setstate__ (compat remains in frame/panel)

* __getattr__,__setattr__

* _indexed_same,reindex_like,align,where,mask

* fillna,replace (Series replace is now consistent with DataFrame)

* filter (also added axis argument to selectively filter on a different axis)

* reindex,reindex_axis,take

* truncate (moved to become part of NDFrame)

• These are API changes which make Panel more consistent with DataFrame

– swapaxes on a Panel with the same axes specified now return a copy

– support attribute access for setting

– filter supports the same API as the original DataFrame filter

• Reindex called with no arguments will now return a copy of the input object

• TimeSeries is now an alias for Series. the property is_time_series can be used to distinguish (if
desired)

• Refactor of Sparse objects to use BlockManager

– Created a new block type in internals, SparseBlock, which can hold multi-dtypes and is non-
consolidatable. SparseSeries and SparseDataFrame now inherit more methods from there hi-
erarchy (Series/DataFrame), and no longer inherit from SparseArray (which instead is the object of
the SparseBlock)

– Sparse suite now supports integration with non-sparse data. Non-float sparse data is supportable (partially
implemented)

– Operations on sparse structures within DataFrames should preserve sparseness, merging type operations
will convert to dense (and back to sparse), so might be somewhat inefficient

– enable setitem on SparseSeries for boolean/integer/slices

– SparsePanels implementation is unchanged (e.g. not using BlockManager, needs work)

• added ftypes method to Series/DataFrame, similar to dtypes, but indicates if the underlying is sparse/dense
(as well as the dtype)

• All NDFrame objects can now use __finalize__() to specify various values to propagate to new objects
from an existing one (e.g. name in Series will follow more automatically now)

• Internal type checking is now done via a suite of generated classes, allowing isinstance(value, klass)
without having to directly import the klass, courtesy of @jtratner

386 Chapter 1. What’s New

pandas: powerful Python data analysis toolkit, Release 0.23.4

• Bug in Series update where the parent frame is not updating its cache based on changes (GH4080) or types
(GH3217), fillna (GH3386)

• Indexing with dtype conversions fixed (GH4463, GH4204)

• Refactor Series.reindex to core/generic.py (GH4604, GH4618), allow method= in reindexing on a Se-
ries to work

• Series.copy no longer accepts the order parameter and is now consistent with NDFrame copy

• Refactor rename methods to core/generic.py; fixes Series.rename for (GH4605), and adds rename with
the same signature for Panel

• Refactor clip methods to core/generic.py (GH4798)

• Refactor of _get_numeric_data/_get_bool_data to core/generic.py, allowing Series/Panel function-
ality

• Series (for index) / Panel (for items) now allow attribute access to its elements (GH1903)

In [130]: s = Series([1,2,3],index=list('abc'))

In [131]: s.b
Out[131]: 2

In [132]: s.a = 5

In [133]: s
Out[133]:
a 5
b 2
c 3
Length: 3, dtype: int64

1.28.11 Bug Fixes

See V0.13.0 Bug Fixes for an extensive list of bugs that have been fixed in 0.13.0.

See the full release notes or issue tracker on GitHub for a complete list of all API changes, Enhancements and Bug
Fixes.

1.29 v0.12.0 (July 24, 2013)

This is a major release from 0.11.0 and includes several new features and enhancements along with a large number of
bug fixes.

Highlights include a consistent I/O API naming scheme, routines to read html, write multi-indexes to csv files, read
& write STATA data files, read & write JSON format files, Python 3 support for HDFStore, filtering of groupby
expressions via filter, and a revamped replace routine that accepts regular expressions.

1.29.1 API changes

• The I/O API is now much more consistent with a set of top level reader functions accessed like pd.
read_csv() that generally return a pandas object.

– read_csv

1.29. v0.12.0 (July 24, 2013) 387

https://github.com/pandas-dev/pandas/issues/4080
https://github.com/pandas-dev/pandas/issues/3217
https://github.com/pandas-dev/pandas/issues/3386
https://github.com/pandas-dev/pandas/issues/4463
https://github.com/pandas-dev/pandas/issues/4204
https://github.com/pandas-dev/pandas/issues/4604
https://github.com/pandas-dev/pandas/issues/4618
https://github.com/pandas-dev/pandas/issues/4605
https://github.com/pandas-dev/pandas/issues/4798
https://github.com/pandas-dev/pandas/issues/1903

pandas: powerful Python data analysis toolkit, Release 0.23.4

– read_excel

– read_hdf

– read_sql

– read_json

– read_html

– read_stata

– read_clipboard

The corresponding writer functions are object methods that are accessed like df.to_csv()

– to_csv

– to_excel

– to_hdf

– to_sql

– to_json

– to_html

– to_stata

– to_clipboard

• Fix modulo and integer division on Series,DataFrames to act similarly to float dtypes to return np.nan
or np.inf as appropriate (GH3590). This correct a numpy bug that treats integer and float dtypes
differently.

In [1]: p = DataFrame({ 'first' : [4,5,8], 'second' : [0,0,3] })

In [2]: p % 0
Out[2]:

first second
0 NaN NaN
1 NaN NaN
2 NaN NaN

[3 rows x 2 columns]

In [3]: p % p
\\\Out[3]:
→˓

first second
0 0.0 NaN
1 0.0 NaN
2 0.0 0.0

[3 rows x 2 columns]

In [4]: p / p
\\Out[4]:
→˓

first second
0 1.0 NaN
1 1.0 NaN
2 1.0 1.0

(continues on next page)

388 Chapter 1. What’s New

https://github.com/pandas-dev/pandas/issues/3590

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

[3 rows x 2 columns]

In [5]: p / 0
\\\Out[5]:
→˓

first second
0 inf NaN
1 inf NaN
2 inf inf

[3 rows x 2 columns]

• Add squeeze keyword to groupby to allow reduction from DataFrame -> Series if groups are unique. This
is a Regression from 0.10.1. We are reverting back to the prior behavior. This means groupby will return the
same shaped objects whether the groups are unique or not. Revert this issue (GH2893) with (GH3596).

In [6]: df2 = DataFrame([{"val1": 1, "val2" : 20}, {"val1":1, "val2": 19},
...: {"val1":1, "val2": 27}, {"val1":1, "val2": 12}])
...:

In [7]: def func(dataf):
...: return dataf["val2"] - dataf["val2"].mean()
...:

squeezing the result frame to a series (because we have unique groups)
In [8]: df2.groupby("val1", squeeze=True).apply(func)
Out[8]:
0 0.5
1 -0.5
2 7.5
3 -7.5
Name: 1, Length: 4, dtype: float64

no squeezing (the default, and behavior in 0.10.1)
In [9]: df2.groupby("val1").apply(func)
\\Out[9]:
→˓

val2 0 1 2 3
val1
1 0.5 -0.5 7.5 -7.5

[1 rows x 4 columns]

• Raise on iloc when boolean indexing with a label based indexer mask e.g. a boolean Series, even with integer
labels, will raise. Since iloc is purely positional based, the labels on the Series are not alignable (GH3631)

This case is rarely used, and there are plently of alternatives. This preserves the ilocAPI to be purely positional
based.

In [10]: df = DataFrame(lrange(5), list('ABCDE'), columns=['a'])

In [11]: mask = (df.a%2 == 0)

In [12]: mask
Out[12]:
A True

(continues on next page)

1.29. v0.12.0 (July 24, 2013) 389

https://github.com/pandas-dev/pandas/issues/2893
https://github.com/pandas-dev/pandas/issues/3596
https://github.com/pandas-dev/pandas/issues/3631

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

B False
C True
D False
E True
Name: a, Length: 5, dtype: bool

this is what you should use
In [13]: df.loc[mask]
\\\Out[13]:
→˓

a
A 0
C 2
E 4

[3 rows x 1 columns]

this will work as well
In [14]: df.iloc[mask.values]
\\\Out[14]:
→˓

a
A 0
C 2
E 4

[3 rows x 1 columns]

df.iloc[mask] will raise a ValueError

• The raise_on_error argument to plotting functions is removed. Instead, plotting functions raise a
TypeError when the dtype of the object is object to remind you to avoid object arrays whenever
possible and thus you should cast to an appropriate numeric dtype if you need to plot something.

• Add colormap keyword to DataFrame plotting methods. Accepts either a matplotlib colormap object (ie,
matplotlib.cm.jet) or a string name of such an object (ie, ‘jet’). The colormap is sampled to select the color for
each column. Please see Colormaps for more information. (GH3860)

• DataFrame.interpolate() is now deprecated. Please use DataFrame.fillna() and
DataFrame.replace() instead. (GH3582, GH3675, GH3676)

• the method and axis arguments of DataFrame.replace() are deprecated

• DataFrame.replace ‘s infer_types parameter is removed and now performs conversion by default.
(GH3907)

• Add the keyword allow_duplicates to DataFrame.insert to allow a duplicate column to be inserted
if True, default is False (same as prior to 0.12) (GH3679)

• Implement __nonzero__ for NDFrame objects (GH3691, GH3696)

• IO api

– added top-level function read_excel to replace the following, The original API is deprecated and will
be removed in a future version

from pandas.io.parsers import ExcelFile
xls = ExcelFile('path_to_file.xls')
xls.parse('Sheet1', index_col=None, na_values=['NA'])

390 Chapter 1. What’s New

https://github.com/pandas-dev/pandas/issues/3860
https://github.com/pandas-dev/pandas/issues/3582
https://github.com/pandas-dev/pandas/issues/3675
https://github.com/pandas-dev/pandas/issues/3676
https://github.com/pandas-dev/pandas/issues/3907
https://github.com/pandas-dev/pandas/issues/3679
https://github.com/pandas-dev/pandas/issues/3691
https://github.com/pandas-dev/pandas/issues/3696

pandas: powerful Python data analysis toolkit, Release 0.23.4

With

import pandas as pd
pd.read_excel('path_to_file.xls', 'Sheet1', index_col=None, na_values=['NA'])

– added top-level function read_sql that is equivalent to the following

from pandas.io.sql import read_frame
read_frame(....)

• DataFrame.to_html and DataFrame.to_latex now accept a path for their first argument (GH3702)

• Do not allow astypes on datetime64[ns] except to object, and timedelta64[ns] to object/int
(GH3425)

• The behavior of datetime64 dtypes has changed with respect to certain so-called reduction operations
(GH3726). The following operations now raise a TypeError when performed on a Series and return
an empty Series when performed on a DataFrame similar to performing these operations on, for example,
a DataFrame of slice objects:

– sum, prod, mean, std, var, skew, kurt, corr, and cov

• read_html now defaults to None when reading, and falls back on bs4 + html5lib when lxml fails to
parse. a list of parsers to try until success is also valid

• The internal pandas class hierarchy has changed (slightly). The previous PandasObject now is called
PandasContainer and a new PandasObject has become the baseclass for PandasContainer as well
as Index, Categorical, GroupBy, SparseList, and SparseArray (+ their base classes). Currently,
PandasObject provides string methods (from StringMixin). (GH4090, GH4092)

• New StringMixin that, given a __unicode__ method, gets python 2 and python 3 compatible string
methods (__str__, __bytes__, and __repr__). Plus string safety throughout. Now employed in many
places throughout the pandas library. (GH4090, GH4092)

1.29.2 I/O Enhancements

• pd.read_html() can now parse HTML strings, files or urls and return DataFrames, courtesy of @cpcloud.
(GH3477, GH3605, GH3606, GH3616). It works with a single parser backend: BeautifulSoup4 + html5lib See
the docs

You can use pd.read_html() to read the output from DataFrame.to_html() like so

In [15]: df = DataFrame({'a': range(3), 'b': list('abc')})

In [16]: print(df)
a b

0 0 a
1 1 b
2 2 c

[3 rows x 2 columns]

In [17]: html = df.to_html()

In [18]: alist = pd.read_html(html, index_col=0)

In [19]: print(df == alist[0])
a b

(continues on next page)

1.29. v0.12.0 (July 24, 2013) 391

https://github.com/pandas-dev/pandas/issues/3702
https://github.com/pandas-dev/pandas/issues/3425
https://github.com/pandas-dev/pandas/issues/3726
https://github.com/pandas-dev/pandas/issues/4090
https://github.com/pandas-dev/pandas/issues/4092
https://github.com/pandas-dev/pandas/issues/4090
https://github.com/pandas-dev/pandas/issues/4092
https://github.com/pandas-dev/pandas/issues/3477
https://github.com/pandas-dev/pandas/issues/3605
https://github.com/pandas-dev/pandas/issues/3606
https://github.com/pandas-dev/pandas/issues/3616

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

0 True True
1 True True
2 True True

[3 rows x 2 columns]

Note that alist here is a Python list so pd.read_html() and DataFrame.to_html() are not in-
verses.

– pd.read_html() no longer performs hard conversion of date strings (GH3656).

Warning: You may have to install an older version of BeautifulSoup4, See the installation docs

• Added module for reading and writing Stata files: pandas.io.stata (GH1512) accessible via
read_stata top-level function for reading, and to_stata DataFrame method for writing, See the docs

• Added module for reading and writing json format files: pandas.io.json accessible via read_json top-
level function for reading, and to_json DataFrame method for writing, See the docs various issues (GH1226,
GH3804, GH3876, GH3867, GH1305)

• MultiIndex column support for reading and writing csv format files

– The header option in read_csv now accepts a list of the rows from which to read the index.

– The option, tupleize_cols can now be specified in both to_csv and read_csv, to provide com-
patibility for the pre 0.12 behavior of writing and reading MultIndex columns via a list of tuples. The
default in 0.12 is to write lists of tuples and not interpret list of tuples as a MultiIndex column.

Note: The default behavior in 0.12 remains unchanged from prior versions, but starting with 0.13, the
default to write and read MultiIndex columns will be in the new format. (GH3571, GH1651, GH3141)

– If an index_col is not specified (e.g. you don’t have an index, or wrote it with df.to_csv(...,
index=False), then any names on the columns index will be lost.

In [20]: from pandas.util.testing import makeCustomDataframe as mkdf

In [21]: df = mkdf(5, 3, r_idx_nlevels=2, c_idx_nlevels=4)

In [22]: df.to_csv('mi.csv')

In [23]: print(open('mi.csv').read())
C0,,C_l0_g0,C_l0_g1,C_l0_g2
C1,,C_l1_g0,C_l1_g1,C_l1_g2
C2,,C_l2_g0,C_l2_g1,C_l2_g2
C3,,C_l3_g0,C_l3_g1,C_l3_g2
R0,R1,,,
R_l0_g0,R_l1_g0,R0C0,R0C1,R0C2
R_l0_g1,R_l1_g1,R1C0,R1C1,R1C2
R_l0_g2,R_l1_g2,R2C0,R2C1,R2C2
R_l0_g3,R_l1_g3,R3C0,R3C1,R3C2
R_l0_g4,R_l1_g4,R4C0,R4C1,R4C2

In [24]: pd.read_csv('mi.csv', header=[0,1,2,3], index_col=[0,1])
\\\Out[24]:
→˓

C0 C_l0_g0 C_l0_g1 C_l0_g2
(continues on next page)

392 Chapter 1. What’s New

https://github.com/pandas-dev/pandas/issues/3656
https://github.com/pandas-dev/pandas/issues/1512
https://github.com/pandas-dev/pandas/issues/1226
https://github.com/pandas-dev/pandas/issues/3804
https://github.com/pandas-dev/pandas/issues/3876
https://github.com/pandas-dev/pandas/issues/3867
https://github.com/pandas-dev/pandas/issues/1305
https://github.com/pandas-dev/pandas/issues/3571
https://github.com/pandas-dev/pandas/issues/1651
https://github.com/pandas-dev/pandas/issues/3141

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

C1 C_l1_g0 C_l1_g1 C_l1_g2
C2 C_l2_g0 C_l2_g1 C_l2_g2
C3 C_l3_g0 C_l3_g1 C_l3_g2
R0 R1
R_l0_g0 R_l1_g0 R0C0 R0C1 R0C2
R_l0_g1 R_l1_g1 R1C0 R1C1 R1C2
R_l0_g2 R_l1_g2 R2C0 R2C1 R2C2
R_l0_g3 R_l1_g3 R3C0 R3C1 R3C2
R_l0_g4 R_l1_g4 R4C0 R4C1 R4C2

[5 rows x 3 columns]

• Support for HDFStore (via PyTables 3.0.0) on Python3

• Iterator support via read_hdf that automatically opens and closes the store when iteration is finished. This is
only for tables

In [25]: path = 'store_iterator.h5'

In [26]: DataFrame(randn(10,2)).to_hdf(path,'df',table=True)

In [27]: for df in read_hdf(path,'df', chunksize=3):
....: print df
....:

0 1
0 0.713216 -0.778461
1 -0.661062 0.862877
2 0.344342 0.149565

0 1
3 -0.626968 -0.875772
4 -0.930687 -0.218983
5 0.949965 -0.442354

0 1
6 -0.402985 1.111358
7 -0.241527 -0.670477
8 0.049355 0.632633

0 1
9 -1.502767 -1.225492

• read_csv will now throw a more informative error message when a file contains no columns, e.g., all newline
characters

1.29.3 Other Enhancements

• DataFrame.replace() now allows regular expressions on contained Series with object dtype. See the
examples section in the regular docs Replacing via String Expression

For example you can do

In [25]: df = DataFrame({'a': list('ab..'), 'b': [1, 2, 3, 4]})

In [26]: df.replace(regex=r'\s*\.\s*', value=np.nan)
Out[26]:

a b
0 a 1
1 b 2

(continues on next page)

1.29. v0.12.0 (July 24, 2013) 393

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

2 NaN 3
3 NaN 4

[4 rows x 2 columns]

to replace all occurrences of the string '.' with zero or more instances of surrounding whitespace with NaN.

Regular string replacement still works as expected. For example, you can do

In [27]: df.replace('.', np.nan)
Out[27]:

a b
0 a 1
1 b 2
2 NaN 3
3 NaN 4

[4 rows x 2 columns]

to replace all occurrences of the string '.' with NaN.

• pd.melt() now accepts the optional parameters var_name and value_name to specify custom column
names of the returned DataFrame.

• pd.set_option() now allows N option, value pairs (GH3667).

Let’s say that we had an option 'a.b' and another option 'b.c'. We can set them at the same
time:

In [28]: pd.get_option('a.b')
Out[28]: 2

In [29]: pd.get_option('b.c')
\\\\\\\\\\\Out[29]: 3

In [30]: pd.set_option('a.b', 1, 'b.c', 4)

In [31]: pd.get_option('a.b')
Out[31]: 1

In [32]: pd.get_option('b.c')
\\\\\\\\\\\Out[32]: 4

• The filter method for group objects returns a subset of the original object. Suppose we want to take only
elements that belong to groups with a group sum greater than 2.

In [33]: sf = Series([1, 1, 2, 3, 3, 3])

In [34]: sf.groupby(sf).filter(lambda x: x.sum() > 2)
Out[34]:
3 3
4 3
5 3
Length: 3, dtype: int64

The argument of filter must a function that, applied to the group as a whole, returns True or False.

Another useful operation is filtering out elements that belong to groups with only a couple members.

394 Chapter 1. What’s New

https://github.com/pandas-dev/pandas/issues/3667

pandas: powerful Python data analysis toolkit, Release 0.23.4

In [35]: dff = DataFrame({'A': np.arange(8), 'B': list('aabbbbcc')})

In [36]: dff.groupby('B').filter(lambda x: len(x) > 2)
Out[36]:

A B
2 2 b
3 3 b
4 4 b
5 5 b

[4 rows x 2 columns]

Alternatively, instead of dropping the offending groups, we can return a like-indexed objects where the groups
that do not pass the filter are filled with NaNs.

In [37]: dff.groupby('B').filter(lambda x: len(x) > 2, dropna=False)
Out[37]:

A B
0 NaN NaN
1 NaN NaN
2 2.0 b
3 3.0 b
4 4.0 b
5 5.0 b
6 NaN NaN
7 NaN NaN

[8 rows x 2 columns]

• Series and DataFrame hist methods now take a figsize argument (GH3834)

• DatetimeIndexes no longer try to convert mixed-integer indexes during join operations (GH3877)

• Timestamp.min and Timestamp.max now represent valid Timestamp instances instead of the default date-
time.min and datetime.max (respectively), thanks @SleepingPills

• read_html now raises when no tables are found and BeautifulSoup==4.2.0 is detected (GH4214)

1.29.4 Experimental Features

• Added experimental CustomBusinessDay class to support DateOffsets with custom holiday calendars
and custom weekmasks. (GH2301)

Note: This uses the numpy.busdaycalendar API introduced in Numpy 1.7 and therefore requires Numpy
1.7.0 or newer.

In [38]: from pandas.tseries.offsets import CustomBusinessDay

In [39]: from datetime import datetime

As an interesting example, let's look at Egypt where
a Friday-Saturday weekend is observed.
In [40]: weekmask_egypt = 'Sun Mon Tue Wed Thu'

They also observe International Workers' Day so let's

(continues on next page)

1.29. v0.12.0 (July 24, 2013) 395

https://github.com/pandas-dev/pandas/issues/3834
https://github.com/pandas-dev/pandas/issues/3877
https://github.com/pandas-dev/pandas/issues/4214
https://github.com/pandas-dev/pandas/issues/2301

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

add that for a couple of years
In [41]: holidays = ['2012-05-01', datetime(2013, 5, 1), np.datetime64('2014-05-01
→˓')]

In [42]: bday_egypt = CustomBusinessDay(holidays=holidays, weekmask=weekmask_
→˓egypt)

In [43]: dt = datetime(2013, 4, 30)

In [44]: print(dt + 2 * bday_egypt)
2013-05-05 00:00:00

In [45]: dts = date_range(dt, periods=5, freq=bday_egypt)

In [46]: print(Series(dts.weekday, dts).map(Series('Mon Tue Wed Thu Fri Sat Sun'.
→˓split())))
2013-04-30 Tue
2013-05-02 Thu
2013-05-05 Sun
2013-05-06 Mon
2013-05-07 Tue
Freq: C, Length: 5, dtype: object

1.29.5 Bug Fixes

• Plotting functions now raise a TypeError before trying to plot anything if the associated objects have have a
dtype of object (GH1818, GH3572, GH3911, GH3912), but they will try to convert object arrays to numeric
arrays if possible so that you can still plot, for example, an object array with floats. This happens before any
drawing takes place which elimnates any spurious plots from showing up.

• fillna methods now raise a TypeError if the value parameter is a list or tuple.

• Series.str now supports iteration (GH3638). You can iterate over the individual elements of each string in
the Series. Each iteration yields yields a Series with either a single character at each index of the original
Series or NaN. For example,

In [47]: strs = 'go', 'bow', 'joe', 'slow'

In [48]: ds = Series(strs)

In [49]: for s in ds.str:
....: print(s)
....:

0 g
1 b
2 j
3 s
Length: 4, dtype: object
0 o
1 o
2 o
3 l
Length: 4, dtype: object
0 NaN
1 w

(continues on next page)

396 Chapter 1. What’s New

https://github.com/pandas-dev/pandas/issues/1818
https://github.com/pandas-dev/pandas/issues/3572
https://github.com/pandas-dev/pandas/issues/3911
https://github.com/pandas-dev/pandas/issues/3912
https://github.com/pandas-dev/pandas/issues/3638

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

2 e
3 o
Length: 4, dtype: object
0 NaN
1 NaN
2 NaN
3 w
Length: 4, dtype: object

In [50]: s
\\Out[50]:
→˓

0 NaN
1 NaN
2 NaN
3 w
Length: 4, dtype: object

In [51]: s.dropna().values.item() == 'w'
\\\Out[51]:
→˓True

The last element yielded by the iterator will be a Series containing the last element of the longest string in
the Series with all other elements being NaN. Here since 'slow' is the longest string and there are no other
strings with the same length 'w' is the only non-null string in the yielded Series.

• HDFStore

– will retain index attributes (freq,tz,name) on recreation (GH3499)

– will warn with a AttributeConflictWarning if you are attempting to append an index with a
different frequency than the existing, or attempting to append an index with a different name than the
existing

– support datelike columns with a timezone as data_columns (GH2852)

• Non-unique index support clarified (GH3468).

– Fix assigning a new index to a duplicate index in a DataFrame would fail (GH3468)

– Fix construction of a DataFrame with a duplicate index

– ref_locs support to allow duplicative indices across dtypes, allows iget support to always find the index
(even across dtypes) (GH2194)

– applymap on a DataFrame with a non-unique index now works (removed warning) (GH2786), and fix
(GH3230)

– Fix to_csv to handle non-unique columns (GH3495)

– Duplicate indexes with getitem will return items in the correct order (GH3455, GH3457) and handle miss-
ing elements like unique indices (GH3561)

– Duplicate indexes with and empty DataFrame.from_records will return a correct frame (GH3562)

– Concat to produce a non-unique columns when duplicates are across dtypes is fixed (GH3602)

– Allow insert/delete to non-unique columns (GH3679)

– Non-unique indexing with a slice via loc and friends fixed (GH3659)

– Allow insert/delete to non-unique columns (GH3679)

1.29. v0.12.0 (July 24, 2013) 397

https://github.com/pandas-dev/pandas/issues/3499
https://github.com/pandas-dev/pandas/issues/2852
https://github.com/pandas-dev/pandas/issues/3468
https://github.com/pandas-dev/pandas/issues/3468
https://github.com/pandas-dev/pandas/issues/2194
https://github.com/pandas-dev/pandas/issues/2786
https://github.com/pandas-dev/pandas/issues/3230
https://github.com/pandas-dev/pandas/issues/3495
https://github.com/pandas-dev/pandas/issues/3455
https://github.com/pandas-dev/pandas/issues/3457
https://github.com/pandas-dev/pandas/issues/3561
https://github.com/pandas-dev/pandas/issues/3562
https://github.com/pandas-dev/pandas/issues/3602
https://github.com/pandas-dev/pandas/issues/3679
https://github.com/pandas-dev/pandas/issues/3659
https://github.com/pandas-dev/pandas/issues/3679

pandas: powerful Python data analysis toolkit, Release 0.23.4

– Extend reindex to correctly deal with non-unique indices (GH3679)

– DataFrame.itertuples() now works with frames with duplicate column names (GH3873)

– Bug in non-unique indexing via iloc (GH4017); added takeable argument to reindex for location-
based taking

– Allow non-unique indexing in series via .ix/.loc and __getitem__ (GH4246)

– Fixed non-unique indexing memory allocation issue with .ix/.loc (GH4280)

• DataFrame.from_records did not accept empty recarrays (GH3682)

• read_html now correctly skips tests (GH3741)

• Fixed a bug where DataFrame.replace with a compiled regular expression in the to_replace argument
wasn’t working (GH3907)

• Improved network test decorator to catch IOError (and therefore URLError as well). Added
with_connectivity_check decorator to allow explicitly checking a website as a proxy for seeing if there
is network connectivity. Plus, new optional_args decorator factory for decorators. (GH3910, GH3914)

• Fixed testing issue where too many sockets where open thus leading to a connection reset issue (GH3982,
GH3985, GH4028, GH4054)

• Fixed failing tests in test_yahoo, test_google where symbols were not retrieved but were being accessed
(GH3982, GH3985, GH4028, GH4054)

• Series.hist will now take the figure from the current environment if one is not passed

• Fixed bug where a 1xN DataFrame would barf on a 1xN mask (GH4071)

• Fixed running of tox under python3 where the pickle import was getting rewritten in an incompatible way
(GH4062, GH4063)

• Fixed bug where sharex and sharey were not being passed to grouped_hist (GH4089)

• Fixed bug in DataFrame.replace where a nested dict wasn’t being iterated over when regex=False
(GH4115)

• Fixed bug in the parsing of microseconds when using the format argument in to_datetime (GH4152)

• Fixed bug in PandasAutoDateLocator where invert_xaxis triggered incorrectly
MilliSecondLocator (GH3990)

• Fixed bug in plotting that wasn’t raising on invalid colormap for matplotlib 1.1.1 (GH4215)

• Fixed the legend displaying in DataFrame.plot(kind='kde') (GH4216)

• Fixed bug where Index slices weren’t carrying the name attribute (GH4226)

• Fixed bug in initializing DatetimeIndex with an array of strings in a certain time zone (GH4229)

• Fixed bug where html5lib wasn’t being properly skipped (GH4265)

• Fixed bug where get_data_famafrench wasn’t using the correct file edges (GH4281)

See the full release notes or issue tracker on GitHub for a complete list.

1.30 v0.11.0 (April 22, 2013)

This is a major release from 0.10.1 and includes many new features and enhancements along with a large number of
bug fixes. The methods of Selecting Data have had quite a number of additions, and Dtype support is now full-fledged.
There are also a number of important API changes that long-time pandas users should pay close attention to.

398 Chapter 1. What’s New

https://github.com/pandas-dev/pandas/issues/3679
https://github.com/pandas-dev/pandas/issues/3873
https://github.com/pandas-dev/pandas/issues/4017
https://github.com/pandas-dev/pandas/issues/4246
https://github.com/pandas-dev/pandas/issues/4280
https://github.com/pandas-dev/pandas/issues/3682
https://github.com/pandas-dev/pandas/issues/3741
https://github.com/pandas-dev/pandas/issues/3907
https://github.com/pandas-dev/pandas/issues/3910
https://github.com/pandas-dev/pandas/issues/3914
https://github.com/pandas-dev/pandas/issues/3982
https://github.com/pandas-dev/pandas/issues/3985
https://github.com/pandas-dev/pandas/issues/4028
https://github.com/pandas-dev/pandas/issues/4054
https://github.com/pandas-dev/pandas/issues/3982
https://github.com/pandas-dev/pandas/issues/3985
https://github.com/pandas-dev/pandas/issues/4028
https://github.com/pandas-dev/pandas/issues/4054
https://github.com/pandas-dev/pandas/issues/4071
https://github.com/pandas-dev/pandas/issues/4062
https://github.com/pandas-dev/pandas/issues/4063
https://github.com/pandas-dev/pandas/issues/4089
https://github.com/pandas-dev/pandas/issues/4115
https://github.com/pandas-dev/pandas/issues/4152
https://github.com/pandas-dev/pandas/issues/3990
https://github.com/pandas-dev/pandas/issues/4215
https://github.com/pandas-dev/pandas/issues/4216
https://github.com/pandas-dev/pandas/issues/4226
https://github.com/pandas-dev/pandas/issues/4229
https://github.com/pandas-dev/pandas/issues/4265
https://github.com/pandas-dev/pandas/issues/4281

pandas: powerful Python data analysis toolkit, Release 0.23.4

There is a new section in the documentation, 10 Minutes to Pandas, primarily geared to new users.

There is a new section in the documentation, Cookbook, a collection of useful recipes in pandas (and that we want
contributions!).

There are several libraries that are now Recommended Dependencies

1.30.1 Selection Choices

Starting in 0.11.0, object selection has had a number of user-requested additions in order to support more explicit
location based indexing. Pandas now supports three types of multi-axis indexing.

• .loc is strictly label based, will raise KeyError when the items are not found, allowed inputs are:

– A single label, e.g. 5 or 'a', (note that 5 is interpreted as a label of the index. This use is not an integer
position along the index)

– A list or array of labels ['a', 'b', 'c']

– A slice object with labels 'a':'f', (note that contrary to usual python slices, both the start and the stop
are included!)

– A boolean array

See more at Selection by Label

• .iloc is strictly integer position based (from 0 to length-1 of the axis), will raise IndexError when the
requested indicies are out of bounds. Allowed inputs are:

– An integer e.g. 5

– A list or array of integers [4, 3, 0]

– A slice object with ints 1:7

– A boolean array

See more at Selection by Position

• .ix supports mixed integer and label based access. It is primarily label based, but will fallback to integer
positional access. .ix is the most general and will support any of the inputs to .loc and .iloc, as well as
support for floating point label schemes. .ix is especially useful when dealing with mixed positional and label
based hierarchial indexes.

As using integer slices with .ix have different behavior depending on whether the slice is interpreted as position
based or label based, it’s usually better to be explicit and use .iloc or .loc.

See more at Advanced Indexing and Advanced Hierarchical.

1.30.2 Selection Deprecations

Starting in version 0.11.0, these methods may be deprecated in future versions.

• irow

• icol

• iget_value

See the section Selection by Position for substitutes.

1.30. v0.11.0 (April 22, 2013) 399

pandas: powerful Python data analysis toolkit, Release 0.23.4

1.30.3 Dtypes

Numeric dtypes will propagate and can coexist in DataFrames. If a dtype is passed (either directly via the dtype
keyword, a passed ndarray, or a passed Series, then it will be preserved in DataFrame operations. Furthermore,
different numeric dtypes will NOT be combined. The following example will give you a taste.

In [1]: df1 = DataFrame(randn(8, 1), columns = ['A'], dtype = 'float32')

In [2]: df1
Out[2]:

A
0 1.392665
1 -0.123497
2 -0.402761
3 -0.246604
4 -0.288433
5 -0.763434
6 2.069526
7 -1.203569

[8 rows x 1 columns]

In [3]: df1.dtypes
\\\Out[3]:
→˓

A float32
Length: 1, dtype: object

In [4]: df2 = DataFrame(dict(A = Series(randn(8),dtype='float16'),
...: B = Series(randn(8)),
...: C = Series(randn(8),dtype='uint8')))
...:

In [5]: df2
Out[5]:

A B C
0 0.591797 -0.038605 0
1 0.841309 -0.460478 1
2 -0.500977 -0.310458 0
3 -0.816406 0.866493 254
4 -0.207031 0.245972 0
5 -0.664062 0.319442 1
6 0.580566 1.378512 1
7 -0.965820 0.292502 255

[8 rows x 3 columns]

In [6]: df2.dtypes
\\Out[6]:
→˓

A float16
B float64
C uint8
Length: 3, dtype: object

here you get some upcasting
In [7]: df3 = df1.reindex_like(df2).fillna(value=0.0) + df2

(continues on next page)

400 Chapter 1. What’s New

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

In [8]: df3
Out[8]:

A B C
0 1.984462 -0.038605 0.0
1 0.717812 -0.460478 1.0
2 -0.903737 -0.310458 0.0
3 -1.063011 0.866493 254.0
4 -0.495465 0.245972 0.0
5 -1.427497 0.319442 1.0
6 2.650092 1.378512 1.0
7 -2.169390 0.292502 255.0

[8 rows x 3 columns]

In [9]: df3.dtypes
\\Out[9]:
→˓

A float32
B float64
C float64
Length: 3, dtype: object

1.30.4 Dtype Conversion

This is lower-common-denominator upcasting, meaning you get the dtype which can accommodate all of the types

In [10]: df3.values.dtype
Out[10]: dtype('float64')

Conversion

In [11]: df3.astype('float32').dtypes
Out[11]:
A float32
B float32
C float32
Length: 3, dtype: object

Mixed Conversion

In [12]: df3['D'] = '1.'

In [13]: df3['E'] = '1'

In [14]: df3.convert_objects(convert_numeric=True).dtypes
Out[14]:
A float32
B float64
C float64
D float64
E int64
Length: 5, dtype: object

same, but specific dtype conversion
In [15]: df3['D'] = df3['D'].astype('float16')

(continues on next page)

1.30. v0.11.0 (April 22, 2013) 401

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

In [16]: df3['E'] = df3['E'].astype('int32')

In [17]: df3.dtypes
Out[17]:
A float32
B float64
C float64
D float16
E int32
Length: 5, dtype: object

Forcing Date coercion (and setting NaT when not datelike)

In [18]: from datetime import datetime

In [19]: s = Series([datetime(2001,1,1,0,0), 'foo', 1.0, 1,
....: Timestamp('20010104'), '20010105'],dtype='O')
....:

In [20]: s.convert_objects(convert_dates='coerce')
Out[20]:
0 2001-01-01
1 NaT
2 NaT
3 NaT
4 2001-01-04
5 2001-01-05
Length: 6, dtype: datetime64[ns]

1.30.5 Dtype Gotchas

Platform Gotchas

Starting in 0.11.0, construction of DataFrame/Series will use default dtypes of int64 and float64, regardless
of platform. This is not an apparent change from earlier versions of pandas. If you specify dtypes, they WILL be
respected, however (GH2837)

The following will all result in int64 dtypes

In [21]: DataFrame([1,2],columns=['a']).dtypes
Out[21]:
a int64
Length: 1, dtype: object

In [22]: DataFrame({'a' : [1,2] }).dtypes
\\Out[22]:
a int64
Length: 1, dtype: object

In [23]: DataFrame({'a' : 1 }, index=range(2)).dtypes
\\Out[23]:
→˓

a int64
Length: 1, dtype: object

402 Chapter 1. What’s New

https://github.com/pandas-dev/pandas/issues/2837

pandas: powerful Python data analysis toolkit, Release 0.23.4

Keep in mind that DataFrame(np.array([1,2])) WILL result in int32 on 32-bit platforms!

Upcasting Gotchas

Performing indexing operations on integer type data can easily upcast the data. The dtype of the input data will be
preserved in cases where nans are not introduced.

In [24]: dfi = df3.astype('int32')

In [25]: dfi['D'] = dfi['D'].astype('int64')

In [26]: dfi
Out[26]:

A B C D E
0 1 0 0 1 1
1 0 0 1 1 1
2 0 0 0 1 1
3 -1 0 254 1 1
4 0 0 0 1 1
5 -1 0 1 1 1
6 2 1 1 1 1
7 -2 0 255 1 1

[8 rows x 5 columns]

In [27]: dfi.dtypes
\\\Out[27]:
→˓

A int32
B int32
C int32
D int64
E int32
Length: 5, dtype: object

In [28]: casted = dfi[dfi>0]

In [29]: casted
Out[29]:

A B C D E
0 1.0 NaN NaN 1 1
1 NaN NaN 1.0 1 1
2 NaN NaN NaN 1 1
3 NaN NaN 254.0 1 1
4 NaN NaN NaN 1 1
5 NaN NaN 1.0 1 1
6 2.0 1.0 1.0 1 1
7 NaN NaN 255.0 1 1

[8 rows x 5 columns]

In [30]: casted.dtypes
\\\Out[30]:
→˓

A float64
B float64
C float64
D int64
E int32

(continues on next page)

1.30. v0.11.0 (April 22, 2013) 403

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

Length: 5, dtype: object

While float dtypes are unchanged.

In [31]: df4 = df3.copy()

In [32]: df4['A'] = df4['A'].astype('float32')

In [33]: df4.dtypes
Out[33]:
A float32
B float64
C float64
D float16
E int32
Length: 5, dtype: object

In [34]: casted = df4[df4>0]

In [35]: casted
Out[35]:

A B C D E
0 1.984462 NaN NaN 1.0 1
1 0.717812 NaN 1.0 1.0 1
2 NaN NaN NaN 1.0 1
3 NaN 0.866493 254.0 1.0 1
4 NaN 0.245972 NaN 1.0 1
5 NaN 0.319442 1.0 1.0 1
6 2.650092 1.378512 1.0 1.0 1
7 NaN 0.292502 255.0 1.0 1

[8 rows x 5 columns]

In [36]: casted.dtypes
\\\Out[36]:
→˓

A float32
B float64
C float64
D float16
E int32
Length: 5, dtype: object

1.30.6 Datetimes Conversion

Datetime64[ns] columns in a DataFrame (or a Series) allow the use of np.nan to indicate a nan value, in ad-
dition to the traditional NaT, or not-a-time. This allows convenient nan setting in a generic way. Furthermore
datetime64[ns] columns are created by default, when passed datetimelike objects (this change was introduced in
0.10.1) (GH2809, GH2810)

In [37]: df = DataFrame(randn(6,2),date_range('20010102',periods=6),columns=['A','B'])

In [38]: df['timestamp'] = Timestamp('20010103')

In [39]: df
(continues on next page)

404 Chapter 1. What’s New

https://github.com/pandas-dev/pandas/issues/2809
https://github.com/pandas-dev/pandas/issues/2810

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

Out[39]:
A B timestamp

2001-01-02 1.023958 0.660103 2001-01-03
2001-01-03 1.236475 -2.170629 2001-01-03
2001-01-04 -0.270630 -1.685677 2001-01-03
2001-01-05 -0.440747 -0.115070 2001-01-03
2001-01-06 -0.632102 -0.585977 2001-01-03
2001-01-07 -1.444787 -0.201135 2001-01-03

[6 rows x 3 columns]

datetime64[ns] out of the box
In [40]: df.get_dtype_counts()
\\Out[40]:
→˓

float64 2
datetime64[ns] 1
Length: 2, dtype: int64

use the traditional nan, which is mapped to NaT internally
In [41]: df.loc[df.index[2:4], ['A','timestamp']] = np.nan

In [42]: df
Out[42]:

A B timestamp
2001-01-02 1.023958 0.660103 2001-01-03
2001-01-03 1.236475 -2.170629 2001-01-03
2001-01-04 NaN -1.685677 NaT
2001-01-05 NaN -0.115070 NaT
2001-01-06 -0.632102 -0.585977 2001-01-03
2001-01-07 -1.444787 -0.201135 2001-01-03

[6 rows x 3 columns]

Astype conversion on datetime64[ns] to object, implicitly converts NaT to np.nan

In [43]: import datetime

In [44]: s = Series([datetime.datetime(2001, 1, 2, 0, 0) for i in range(3)])

In [45]: s.dtype
Out[45]: dtype('<M8[ns]')

In [46]: s[1] = np.nan

In [47]: s
Out[47]:
0 2001-01-02
1 NaT
2 2001-01-02
Length: 3, dtype: datetime64[ns]

In [48]: s.dtype
\\Out[48]:
→˓dtype('<M8[ns]')

In [49]: s = s.astype('O')
(continues on next page)

1.30. v0.11.0 (April 22, 2013) 405

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

In [50]: s
Out[50]:
0 2001-01-02 00:00:00
1 NaT
2 2001-01-02 00:00:00
Length: 3, dtype: object

In [51]: s.dtype
\\Out[51]:
→˓dtype('O')

1.30.7 API changes

• Added to_series() method to indicies, to facilitate the creation of indexers (GH3275)

• HDFStore

– added the method select_column to select a single column from a table as a Series.

– deprecated the unique method, can be replicated by select_column(key,column).unique()

– min_itemsize parameter to append will now automatically create data_columns for passed keys

1.30.8 Enhancements

• Improved performance of df.to_csv() by up to 10x in some cases. (GH3059)

• Numexpr is now a Recommended Dependencies, to accelerate certain types of numerical and boolean operations

• Bottleneck is now a Recommended Dependencies, to accelerate certain types of nan operations

• HDFStore

– support read_hdf/to_hdf API similar to read_csv/to_csv

In [52]: df = DataFrame(dict(A=lrange(5), B=lrange(5)))

In [53]: df.to_hdf('store.h5','table',append=True)

In [54]: read_hdf('store.h5', 'table', where = ['index>2'])
Out[54]:

A B
3 3 3
4 4 4

[2 rows x 2 columns]

– provide dotted attribute access to get from stores, e.g. store.df == store['df']

– new keywords iterator=boolean, and chunksize=number_in_a_chunk are provided to sup-
port iteration on select and select_as_multiple (GH3076)

• You can now select timestamps from an unordered timeseries similarly to an ordered timeseries (GH2437)

• You can now select with a string from a DataFrame with a datelike index, in a similar way to a Series (GH3070)

406 Chapter 1. What’s New

https://github.com/pandas-dev/pandas/issues/3275
https://github.com/pandas-dev/pandas/issues/3059
https://github.com/pandas-dev/pandas/issues/3076
https://github.com/pandas-dev/pandas/issues/2437
https://github.com/pandas-dev/pandas/issues/3070

pandas: powerful Python data analysis toolkit, Release 0.23.4

In [55]: idx = date_range("2001-10-1", periods=5, freq='M')

In [56]: ts = Series(np.random.rand(len(idx)),index=idx)

In [57]: ts['2001']
Out[57]:
2001-10-31 0.663256
2001-11-30 0.079126
2001-12-31 0.587699
Freq: M, Length: 3, dtype: float64

In [58]: df = DataFrame(dict(A = ts))

In [59]: df['2001']
Out[59]:

A
2001-10-31 0.663256
2001-11-30 0.079126
2001-12-31 0.587699

[3 rows x 1 columns]

• Squeeze to possibly remove length 1 dimensions from an object.

In [60]: p = Panel(randn(3,4,4),items=['ItemA','ItemB','ItemC'],
....: major_axis=date_range('20010102',periods=4),
....: minor_axis=['A','B','C','D'])
....:

In [61]: p
Out[61]:
<class 'pandas.core.panel.Panel'>
Dimensions: 3 (items) x 4 (major_axis) x 4 (minor_axis)
Items axis: ItemA to ItemC
Major_axis axis: 2001-01-02 00:00:00 to 2001-01-05 00:00:00
Minor_axis axis: A to D

In [62]: p.reindex(items=['ItemA']).squeeze()
\\\Out[62]:
→˓

A B C D
2001-01-02 -1.203403 0.425882 -0.436045 -0.982462
2001-01-03 0.348090 -0.969649 0.121731 0.202798
2001-01-04 1.215695 -0.218549 -0.631381 -0.337116
2001-01-05 0.404238 0.907213 -0.865657 0.483186

[4 rows x 4 columns]

In [63]: p.reindex(items=['ItemA'],minor=['B']).squeeze()
\\Out[63]:
→˓

2001-01-02 0.425882
2001-01-03 -0.969649
2001-01-04 -0.218549
2001-01-05 0.907213
Freq: D, Name: B, Length: 4, dtype: float64

• In pd.io.data.Options,

1.30. v0.11.0 (April 22, 2013) 407

pandas: powerful Python data analysis toolkit, Release 0.23.4

– Fix bug when trying to fetch data for the current month when already past expiry.

– Now using lxml to scrape html instead of BeautifulSoup (lxml was faster).

– New instance variables for calls and puts are automatically created when a method that creates them is
called. This works for current month where the instance variables are simply calls and puts. Also
works for future expiry months and save the instance variable as callsMMYY or putsMMYY, where
MMYY are, respectively, the month and year of the option’s expiry.

– Options.get_near_stock_price now allows the user to specify the month for which to get rele-
vant options data.

– Options.get_forward_data now has optional kwargs near and above_below. This allows the
user to specify if they would like to only return forward looking data for options near the current stock
price. This just obtains the data from Options.get_near_stock_price instead of Options.get_xxx_data()
(GH2758).

• Cursor coordinate information is now displayed in time-series plots.

• added option display.max_seq_items to control the number of elements printed per sequence pprinting it.
(GH2979)

• added option display.chop_threshold to control display of small numerical values. (GH2739)

• added option display.max_info_rows to prevent verbose_info from being calculated for frames above 1M rows
(configurable). (GH2807, GH2918)

• value_counts() now accepts a “normalize” argument, for normalized histograms. (GH2710).

• DataFrame.from_records now accepts not only dicts but any instance of the collections.Mapping ABC.

• added option display.mpl_style providing a sleeker visual style for plots. Based on https://gist.github.com/
huyng/816622 (GH3075).

• Treat boolean values as integers (values 1 and 0) for numeric operations. (GH2641)

• to_html() now accepts an optional “escape” argument to control reserved HTML character escaping (enabled
by default) and escapes &, in addition to < and >. (GH2919)

See the full release notes or issue tracker on GitHub for a complete list.

1.31 v0.10.1 (January 22, 2013)

This is a minor release from 0.10.0 and includes new features, enhancements, and bug fixes. In particular, there is
substantial new HDFStore functionality contributed by Jeff Reback.

An undesired API breakage with functions taking the inplace option has been reverted and deprecation warnings
added.

1.31.1 API changes

• Functions taking an inplace option return the calling object as before. A deprecation message has been added

• Groupby aggregations Max/Min no longer exclude non-numeric data (GH2700)

• Resampling an empty DataFrame now returns an empty DataFrame instead of raising an exception (GH2640)

• The file reader will now raise an exception when NA values are found in an explicitly specified integer column
instead of converting the column to float (GH2631)

• DatetimeIndex.unique now returns a DatetimeIndex with the same name and

408 Chapter 1. What’s New

https://github.com/pandas-dev/pandas/issues/2758
https://github.com/pandas-dev/pandas/issues/2979
https://github.com/pandas-dev/pandas/issues/2739
https://github.com/pandas-dev/pandas/issues/2807
https://github.com/pandas-dev/pandas/issues/2918
https://github.com/pandas-dev/pandas/issues/2710
https://gist.github.com/huyng/816622
https://gist.github.com/huyng/816622
https://github.com/pandas-dev/pandas/issues/3075
https://github.com/pandas-dev/pandas/issues/2641
https://github.com/pandas-dev/pandas/issues/2919
https://github.com/pandas-dev/pandas/issues/2700
https://github.com/pandas-dev/pandas/issues/2640
https://github.com/pandas-dev/pandas/issues/2631

pandas: powerful Python data analysis toolkit, Release 0.23.4

• timezone instead of an array (GH2563)

1.31.2 New features

• MySQL support for database (contribution from Dan Allan)

1.31.3 HDFStore

You may need to upgrade your existing data files. Please visit the compatibility section in the main docs.

You can designate (and index) certain columns that you want to be able to perform queries on a table, by passing a list
to data_columns

In [1]: store = HDFStore('store.h5')

In [2]: df = DataFrame(randn(8, 3), index=date_range('1/1/2000', periods=8),
...: columns=['A', 'B', 'C'])
...:

In [3]: df['string'] = 'foo'

In [4]: df.loc[df.index[4:6], 'string'] = np.nan

In [5]: df.loc[df.index[7:9], 'string'] = 'bar'

In [6]: df['string2'] = 'cool'

In [7]: df
Out[7]:

A B C string string2
2000-01-01 1.885136 -0.183873 2.550850 foo cool
2000-01-02 0.180759 -1.117089 0.061462 foo cool
2000-01-03 -0.294467 -0.591411 -0.876691 foo cool
2000-01-04 3.127110 1.451130 0.045152 foo cool
2000-01-05 -0.242846 1.195819 1.533294 NaN cool
2000-01-06 0.820521 -0.281201 1.651561 NaN cool
2000-01-07 -0.034086 0.252394 -0.498772 foo cool
2000-01-08 -2.290958 -1.601262 -0.256718 bar cool

[8 rows x 5 columns]

on-disk operations
In [8]: store.append('df', df, data_columns = ['B','C','string','string2'])

In [9]: store.select('df', "B>0 and string=='foo'")
Out[9]:

A B C string string2
2000-01-04 3.127110 1.451130 0.045152 foo cool
2000-01-07 -0.034086 0.252394 -0.498772 foo cool

[2 rows x 5 columns]

this is in-memory version of this type of selection
In [10]: df[(df.B > 0) & (df.string == 'foo')]
\\\Out[10]:
→˓

(continues on next page)

1.31. v0.10.1 (January 22, 2013) 409

https://github.com/pandas-dev/pandas/issues/2563

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

A B C string string2
2000-01-04 3.127110 1.451130 0.045152 foo cool
2000-01-07 -0.034086 0.252394 -0.498772 foo cool

[2 rows x 5 columns]

Retrieving unique values in an indexable or data column.

note that this is deprecated as of 0.14.0
can be replicated by: store.select_column('df','index').unique()
store.unique('df','index')
store.unique('df','string')

You can now store datetime64 in data columns

In [11]: df_mixed = df.copy()

In [12]: df_mixed['datetime64'] = Timestamp('20010102')

In [13]: df_mixed.loc[df_mixed.index[3:4], ['A','B']] = np.nan

In [14]: store.append('df_mixed', df_mixed)

In [15]: df_mixed1 = store.select('df_mixed')

In [16]: df_mixed1
Out[16]:

A B C string string2 datetime64
2000-01-01 1.885136 -0.183873 2.550850 foo cool 2001-01-02
2000-01-02 0.180759 -1.117089 0.061462 foo cool 2001-01-02
2000-01-03 -0.294467 -0.591411 -0.876691 foo cool 2001-01-02
2000-01-04 NaN NaN 0.045152 foo cool 2001-01-02
2000-01-05 -0.242846 1.195819 1.533294 NaN cool 2001-01-02
2000-01-06 0.820521 -0.281201 1.651561 NaN cool 2001-01-02
2000-01-07 -0.034086 0.252394 -0.498772 foo cool 2001-01-02
2000-01-08 -2.290958 -1.601262 -0.256718 bar cool 2001-01-02

[8 rows x 6 columns]

In [17]: df_mixed1.get_dtype_counts()
\\\Out[17]:
→˓

float64 3
object 2
datetime64[ns] 1
Length: 3, dtype: int64

You can pass columns keyword to select to filter a list of the return columns, this is equivalent to passing a
Term('columns',list_of_columns_to_filter)

In [18]: store.select('df',columns = ['A','B'])
Out[18]:

A B
2000-01-01 1.885136 -0.183873
2000-01-02 0.180759 -1.117089
2000-01-03 -0.294467 -0.591411

(continues on next page)

410 Chapter 1. What’s New

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

2000-01-04 3.127110 1.451130
2000-01-05 -0.242846 1.195819
2000-01-06 0.820521 -0.281201
2000-01-07 -0.034086 0.252394
2000-01-08 -2.290958 -1.601262

[8 rows x 2 columns]

HDFStore now serializes multi-index dataframes when appending tables.

In [19]: index = MultiIndex(levels=[['foo', 'bar', 'baz', 'qux'],
....: ['one', 'two', 'three']],
....: labels=[[0, 0, 0, 1, 1, 2, 2, 3, 3, 3],
....: [0, 1, 2, 0, 1, 1, 2, 0, 1, 2]],
....: names=['foo', 'bar'])
....:

In [20]: df = DataFrame(np.random.randn(10, 3), index=index,
....: columns=['A', 'B', 'C'])
....:

In [21]: df
Out[21]:

A B C
foo bar
foo one 0.239369 0.174122 -1.131794

two -1.948006 0.980347 -0.674429
three -0.361633 -0.761218 1.768215

bar one 0.152288 -0.862613 -0.210968
two -0.859278 1.498195 0.462413

baz two -0.647604 1.511487 -0.727189
three -0.342928 -0.007364 1.427674

qux one 0.104020 2.052171 -1.230963
two -0.019240 -1.713238 0.838912
three -0.637855 0.215109 -1.515362

[10 rows x 3 columns]

In [22]: store.append('mi',df)

In [23]: store.select('mi')
Out[23]:

A B C
foo bar
foo one 0.239369 0.174122 -1.131794

two -1.948006 0.980347 -0.674429
three -0.361633 -0.761218 1.768215

bar one 0.152288 -0.862613 -0.210968
two -0.859278 1.498195 0.462413

baz two -0.647604 1.511487 -0.727189
three -0.342928 -0.007364 1.427674

qux one 0.104020 2.052171 -1.230963
two -0.019240 -1.713238 0.838912
three -0.637855 0.215109 -1.515362

[10 rows x 3 columns]

(continues on next page)

1.31. v0.10.1 (January 22, 2013) 411

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

the levels are automatically included as data columns
In [24]: store.select('mi', "foo='bar'")
\\\Out[24]:
→˓

A B C
foo bar
bar one 0.152288 -0.862613 -0.210968

two -0.859278 1.498195 0.462413

[2 rows x 3 columns]

Multi-table creation via append_to_multiple and selection via select_as_multiple can create/select from
multiple tables and return a combined result, by using where on a selector table.

In [25]: df_mt = DataFrame(randn(8, 6), index=date_range('1/1/2000', periods=8),
....: columns=['A', 'B', 'C', 'D', 'E', 'F'])
....:

In [26]: df_mt['foo'] = 'bar'

you can also create the tables individually
In [27]: store.append_to_multiple({ 'df1_mt' : ['A','B'], 'df2_mt' : None }, df_mt,
→˓selector = 'df1_mt')

In [28]: store
Out[28]:
<class 'pandas.io.pytables.HDFStore'>
File path: store.h5

indiviual tables were created
In [29]: store.select('df1_mt')
\\Out[29]:

A B
2000-01-01 1.586924 -0.447974
2000-01-02 -0.102206 0.870302
2000-01-03 1.249874 1.458210
2000-01-04 -0.616293 0.150468
2000-01-05 -0.431163 0.016640
2000-01-06 0.800353 -0.451572
2000-01-07 1.239198 0.185437
2000-01-08 -0.040863 0.290110

[8 rows x 2 columns]

In [30]: store.select('df2_mt')
\\\Out[30]:
→˓

C D E F foo
2000-01-01 -1.573998 0.630925 -0.071659 -1.277640 bar
2000-01-02 1.275280 -1.199212 1.060780 1.673018 bar
2000-01-03 -0.710542 0.825392 1.557329 1.993441 bar
2000-01-04 0.132104 0.580923 -0.128750 1.445964 bar
2000-01-05 0.904578 -1.645852 -0.688741 0.228006 bar
2000-01-06 0.831767 0.228760 0.932498 -2.200069 bar
2000-01-07 -0.540770 -0.370038 1.298390 1.662964 bar
2000-01-08 -0.096145 1.717830 -0.462446 -0.112019 bar

(continues on next page)

412 Chapter 1. What’s New

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

[8 rows x 5 columns]

as a multiple
In [31]: store.select_as_multiple(['df1_mt','df2_mt'], where = ['A>0','B>0'],
→˓selector = 'df1_mt')
\\\Out[31]:
→˓

A B C D E F foo
2000-01-03 1.249874 1.458210 -0.710542 0.825392 1.557329 1.993441 bar
2000-01-07 1.239198 0.185437 -0.540770 -0.370038 1.298390 1.662964 bar

[2 rows x 7 columns]

Enhancements

• HDFStore now can read native PyTables table format tables

• You can pass nan_rep = 'my_nan_rep' to append, to change the default nan representation on disk
(which converts to/from np.nan), this defaults to nan.

• You can pass index to append. This defaults to True. This will automagically create indicies on the
indexables and data columns of the table

• You can pass chunksize=an integer to append, to change the writing chunksize (default is 50000).
This will significantly lower your memory usage on writing.

• You can pass expectedrows=an integer to the first append, to set the TOTAL number of expectedrows
that PyTables will expected. This will optimize read/write performance.

• Select now supports passing start and stop to provide selection space limiting in selection.

• Greatly improved ISO8601 (e.g., yyyy-mm-dd) date parsing for file parsers (GH2698)

• Allow DataFrame.merge to handle combinatorial sizes too large for 64-bit integer (GH2690)

• Series now has unary negation (-series) and inversion (~series) operators (GH2686)

• DataFrame.plot now includes a logx parameter to change the x-axis to log scale (GH2327)

• Series arithmetic operators can now handle constant and ndarray input (GH2574)

• ExcelFile now takes a kind argument to specify the file type (GH2613)

• A faster implementation for Series.str methods (GH2602)

Bug Fixes

• HDFStore tables can now store float32 types correctly (cannot be mixed with float64 however)

• Fixed Google Analytics prefix when specifying request segment (GH2713).

• Function to reset Google Analytics token store so users can recover from improperly setup client secrets
(GH2687).

• Fixed groupby bug resulting in segfault when passing in MultiIndex (GH2706)

• Fixed bug where passing a Series with datetime64 values into to_datetime results in bogus output values
(GH2699)

• Fixed bug in pattern in HDFStore expressions when pattern is not a valid regex (GH2694)

• Fixed performance issues while aggregating boolean data (GH2692)

1.31. v0.10.1 (January 22, 2013) 413

https://github.com/pandas-dev/pandas/issues/2698
https://github.com/pandas-dev/pandas/issues/2690
https://github.com/pandas-dev/pandas/issues/2686
https://github.com/pandas-dev/pandas/issues/2327
https://github.com/pandas-dev/pandas/issues/2574
https://github.com/pandas-dev/pandas/issues/2613
https://github.com/pandas-dev/pandas/issues/2602
https://github.com/pandas-dev/pandas/issues/2713
https://github.com/pandas-dev/pandas/issues/2687
https://github.com/pandas-dev/pandas/issues/2706
https://github.com/pandas-dev/pandas/issues/2699
https://github.com/pandas-dev/pandas/issues/2694
https://github.com/pandas-dev/pandas/issues/2692

pandas: powerful Python data analysis toolkit, Release 0.23.4

• When given a boolean mask key and a Series of new values, Series __setitem__ will now align the incoming
values with the original Series (GH2686)

• Fixed MemoryError caused by performing counting sort on sorting MultiIndex levels with a very large number
of combinatorial values (GH2684)

• Fixed bug that causes plotting to fail when the index is a DatetimeIndex with a fixed-offset timezone (GH2683)

• Corrected businessday subtraction logic when the offset is more than 5 bdays and the starting date is on a
weekend (GH2680)

• Fixed C file parser behavior when the file has more columns than data (GH2668)

• Fixed file reader bug that misaligned columns with data in the presence of an implicit column and a specified
usecols value

• DataFrames with numerical or datetime indices are now sorted prior to plotting (GH2609)

• Fixed DataFrame.from_records error when passed columns, index, but empty records (GH2633)

• Several bug fixed for Series operations when dtype is datetime64 (GH2689, GH2629, GH2626)

See the full release notes or issue tracker on GitHub for a complete list.

1.32 v0.10.0 (December 17, 2012)

This is a major release from 0.9.1 and includes many new features and enhancements along with a large number of
bug fixes. There are also a number of important API changes that long-time pandas users should pay close attention
to.

1.32.1 File parsing new features

The delimited file parsing engine (the guts of read_csv and read_table) has been rewritten from the ground up
and now uses a fraction the amount of memory while parsing, while being 40% or more faster in most use cases (in
some cases much faster).

There are also many new features:

• Much-improved Unicode handling via the encoding option.

• Column filtering (usecols)

• Dtype specification (dtype argument)

• Ability to specify strings to be recognized as True/False

• Ability to yield NumPy record arrays (as_recarray)

• High performance delim_whitespace option

• Decimal format (e.g. European format) specification

• Easier CSV dialect options: escapechar, lineterminator, quotechar, etc.

• More robust handling of many exceptional kinds of files observed in the wild

414 Chapter 1. What’s New

https://github.com/pandas-dev/pandas/issues/2686
https://github.com/pandas-dev/pandas/issues/2684
https://github.com/pandas-dev/pandas/issues/2683
https://github.com/pandas-dev/pandas/issues/2680
https://github.com/pandas-dev/pandas/issues/2668
https://github.com/pandas-dev/pandas/issues/2609
https://github.com/pandas-dev/pandas/issues/2633
https://github.com/pandas-dev/pandas/issues/2689
https://github.com/pandas-dev/pandas/issues/2629
https://github.com/pandas-dev/pandas/issues/2626

pandas: powerful Python data analysis toolkit, Release 0.23.4

1.32.2 API changes

Deprecated DataFrame BINOP TimeSeries special case behavior

The default behavior of binary operations between a DataFrame and a Series has always been to align on the
DataFrame’s columns and broadcast down the rows, except in the special case that the DataFrame contains time
series. Since there are now method for each binary operator enabling you to specify how you want to broadcast, we
are phasing out this special case (Zen of Python: Special cases aren’t special enough to break the rules). Here’s what
I’m talking about:

In [1]: import pandas as pd

In [2]: df = pd.DataFrame(np.random.randn(6, 4),
...: index=pd.date_range('1/1/2000', periods=6))
...:

In [3]: df
Out[3]:

0 1 2 3
2000-01-01 -0.134024 -0.205969 1.348944 -1.198246
2000-01-02 -1.626124 0.982041 0.059493 -0.460111
2000-01-03 -1.565401 -0.025706 0.942864 2.502156
2000-01-04 -0.302741 0.261551 -0.066342 0.897097
2000-01-05 0.268766 -1.225092 0.582752 -1.490764
2000-01-06 -0.639757 -0.952750 -0.892402 0.505987

[6 rows x 4 columns]

deprecated now
In [4]: df - df[0]
\\Out[4]:
→˓

2000-01-01 00:00:00 2000-01-02 00:00:00 2000-01-03 00:00:00 2000-01-04
→˓00:00:00 2000-01-05 00:00:00 2000-01-06 00:00:00 0 1 2 3
2000-01-01 NaN NaN NaN
→˓ NaN NaN NaN NaN NaN NaN NaN
2000-01-02 NaN NaN NaN
→˓ NaN NaN NaN NaN NaN NaN NaN
2000-01-03 NaN NaN NaN
→˓ NaN NaN NaN NaN NaN NaN NaN
2000-01-04 NaN NaN NaN
→˓ NaN NaN NaN NaN NaN NaN NaN
2000-01-05 NaN NaN NaN
→˓ NaN NaN NaN NaN NaN NaN NaN
2000-01-06 NaN NaN NaN
→˓ NaN NaN NaN NaN NaN NaN NaN

[6 rows x 10 columns]

Change your code to
In [5]: df.sub(df[0], axis=0) # align on axis 0 (rows)
\\\Out[5]:
→˓

0 1 2 3
2000-01-01 0.0 -0.071946 1.482967 -1.064223
2000-01-02 0.0 2.608165 1.685618 1.166013
2000-01-03 0.0 1.539695 2.508265 4.067556
2000-01-04 0.0 0.564293 0.236399 1.199839

(continues on next page)

1.32. v0.10.0 (December 17, 2012) 415

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

2000-01-05 0.0 -1.493857 0.313986 -1.759530
2000-01-06 0.0 -0.312993 -0.252645 1.145744

[6 rows x 4 columns]

You will get a deprecation warning in the 0.10.x series, and the deprecated functionality will be removed in 0.11 or
later.

Altered resample default behavior

The default time series resample binning behavior of daily D and higher frequencies has been changed to
closed='left', label='left'. Lower nfrequencies are unaffected. The prior defaults were causing a great
deal of confusion for users, especially resampling data to daily frequency (which labeled the aggregated group with
the end of the interval: the next day).

In [1]: dates = pd.date_range('1/1/2000', '1/5/2000', freq='4h')

In [2]: series = Series(np.arange(len(dates)), index=dates)

In [3]: series
Out[3]:
2000-01-01 00:00:00 0
2000-01-01 04:00:00 1
2000-01-01 08:00:00 2
2000-01-01 12:00:00 3
2000-01-01 16:00:00 4
2000-01-01 20:00:00 5
2000-01-02 00:00:00 6
2000-01-02 04:00:00 7
2000-01-02 08:00:00 8
2000-01-02 12:00:00 9
2000-01-02 16:00:00 10
2000-01-02 20:00:00 11
2000-01-03 00:00:00 12
2000-01-03 04:00:00 13
2000-01-03 08:00:00 14
2000-01-03 12:00:00 15
2000-01-03 16:00:00 16
2000-01-03 20:00:00 17
2000-01-04 00:00:00 18
2000-01-04 04:00:00 19
2000-01-04 08:00:00 20
2000-01-04 12:00:00 21
2000-01-04 16:00:00 22
2000-01-04 20:00:00 23
2000-01-05 00:00:00 24
Freq: 4H, dtype: int64

In [4]: series.resample('D', how='sum')
Out[4]:
2000-01-01 15
2000-01-02 51
2000-01-03 87
2000-01-04 123
2000-01-05 24
Freq: D, dtype: int64

(continues on next page)

416 Chapter 1. What’s New

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

In [5]: # old behavior
In [6]: series.resample('D', how='sum', closed='right', label='right')
Out[6]:
2000-01-01 0
2000-01-02 21
2000-01-03 57
2000-01-04 93
2000-01-05 129
Freq: D, dtype: int64

• Infinity and negative infinity are no longer treated as NA by isnull and notnull. That they ever were was
a relic of early pandas. This behavior can be re-enabled globally by the mode.use_inf_as_null option:

In [6]: s = pd.Series([1.5, np.inf, 3.4, -np.inf])

In [7]: pd.isnull(s)
Out[7]:
0 False
1 False
2 False
3 False
Length: 4, dtype: bool

In [8]: s.fillna(0)
Out[8]:
0 1.500000
1 inf
2 3.400000
3 -inf
Length: 4, dtype: float64

In [9]: pd.set_option('use_inf_as_null', True)

In [10]: pd.isnull(s)
Out[10]:
0 False
1 True
2 False
3 True
Length: 4, dtype: bool

In [11]: s.fillna(0)
Out[11]:
0 1.5
1 0.0
2 3.4
3 0.0
Length: 4, dtype: float64

In [12]: pd.reset_option('use_inf_as_null')

• Methods with the inplace option now all return None instead of the calling object. E.g. code written like
df = df.fillna(0, inplace=True)may stop working. To fix, simply delete the unnecessary variable
assignment.

• pandas.merge no longer sorts the group keys (sort=False) by default. This was done for performance
reasons: the group-key sorting is often one of the more expensive parts of the computation and is often unnec-

1.32. v0.10.0 (December 17, 2012) 417

pandas: powerful Python data analysis toolkit, Release 0.23.4

essary.

• The default column names for a file with no header have been changed to the integers 0 through N - 1. This
is to create consistency with the DataFrame constructor with no columns specified. The v0.9.0 behavior (names
X0, X1, . . .) can be reproduced by specifying prefix='X':

In [6]: data= 'a,b,c\n1,Yes,2\n3,No,4'

In [7]: print(data)
a,b,c
1,Yes,2
3,No,4

In [8]: pd.read_csv(StringIO(data), header=None)
\\\\\\\\\\\\\\\\\\\\\Out[8]:

0 1 2
0 a b c
1 1 Yes 2
2 3 No 4

[3 rows x 3 columns]

In [9]: pd.read_csv(StringIO(data), header=None, prefix='X')
\\Out[9]:
→˓

X0 X1 X2
0 a b c
1 1 Yes 2
2 3 No 4

[3 rows x 3 columns]

• Values like 'Yes' and 'No' are not interpreted as boolean by default, though this can be controlled by new
true_values and false_values arguments:

In [10]: print(data)
a,b,c
1,Yes,2
3,No,4

In [11]: pd.read_csv(StringIO(data))
\\\\\\\\\\\\\\\\\\\\\Out[11]:

a b c
0 1 Yes 2
1 3 No 4

[2 rows x 3 columns]

In [12]: pd.read_csv(StringIO(data), true_values=['Yes'], false_values=['No'])
\\Out[12]:
→˓

a b c
0 1 True 2
1 3 False 4

[2 rows x 3 columns]

• The file parsers will not recognize non-string values arising from a converter function as NA if passed in the
na_values argument. It’s better to do post-processing using the replace function instead.

418 Chapter 1. What’s New

pandas: powerful Python data analysis toolkit, Release 0.23.4

• Calling fillna on Series or DataFrame with no arguments is no longer valid code. You must either specify a
fill value or an interpolation method:

In [13]: s = Series([np.nan, 1., 2., np.nan, 4])

In [14]: s
Out[14]:
0 NaN
1 1.0
2 2.0
3 NaN
4 4.0
Length: 5, dtype: float64

In [15]: s.fillna(0)
\\\Out[15]:
→˓

0 0.0
1 1.0
2 2.0
3 0.0
4 4.0
Length: 5, dtype: float64

In [16]: s.fillna(method='pad')
\\Out[16]:
→˓

0 NaN
1 1.0
2 2.0
3 2.0
4 4.0
Length: 5, dtype: float64

Convenience methods ffill and bfill have been added:

In [17]: s.ffill()
Out[17]:
0 NaN
1 1.0
2 2.0
3 2.0
4 4.0
Length: 5, dtype: float64

• Series.apply will now operate on a returned value from the applied function, that is itself a series, and
possibly upcast the result to a DataFrame

In [18]: def f(x):
....: return Series([x, x**2], index = ['x', 'x^2'])
....:

In [19]: s = Series(np.random.rand(5))

In [20]: s
Out[20]:
0 0.717478
1 0.815199

(continues on next page)

1.32. v0.10.0 (December 17, 2012) 419

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

2 0.452478
3 0.848385
4 0.235477
Length: 5, dtype: float64

In [21]: s.apply(f)
\\Out[21]:
→˓

x x^2
0 0.717478 0.514775
1 0.815199 0.664550
2 0.452478 0.204737
3 0.848385 0.719757
4 0.235477 0.055449

[5 rows x 2 columns]

• New API functions for working with pandas options (GH2097):

– get_option / set_option - get/set the value of an option. Partial names are accepted. -
reset_option - reset one or more options to their default value. Partial names are accepted. -
describe_option - print a description of one or more options. When called with no arguments.
print all registered options.

Note: set_printoptions/ reset_printoptions are now deprecated (but functioning), the print op-
tions now live under “display.XYZ”. For example:

In [22]: get_option("display.max_rows")
Out[22]: 15

• to_string() methods now always return unicode strings (GH2224).

1.32.3 New features

1.32.4 Wide DataFrame Printing

Instead of printing the summary information, pandas now splits the string representation across multiple rows by
default:

In [23]: wide_frame = DataFrame(randn(5, 16))

In [24]: wide_frame
Out[24]:

0 1 2 3 4 5 6 ...
→˓ 9 10 11 12 13 14 15
0 -0.681624 0.191356 1.180274 -0.834179 0.703043 0.166568 -0.583599 ... -0.
→˓882554 1.209871 -0.941235 0.863067 -0.336232 -0.976847 0.033862
1 0.441522 -0.316864 -0.017062 1.570114 -0.360875 -0.880096 0.235532 ... -1.
→˓702547 -1.621234 -0.906840 1.014601 -0.475108 -0.358944 1.262942
2 -0.412451 -0.462580 0.422194 0.288403 -0.487393 -0.777639 0.055865 ... 0.
→˓246392 0.965887 0.246354 -0.727728 -0.094414 -0.276854 0.158399
3 -0.277255 1.331263 0.585174 -0.568825 -0.719412 1.191340 -0.456362 ... 0.
→˓752889 -1.195795 -1.425911 -0.548829 0.774225 0.740501 1.510263
4 -1.642511 0.432560 1.218080 -0.564705 -0.581790 0.286071 0.048725 ... 0.
→˓054399 0.241963 -0.471786 0.314510 -0.059986 -2.069319 -1.115104

(continues on next page)

420 Chapter 1. What’s New

https://github.com/pandas-dev/pandas/issues/2097
https://github.com/pandas-dev/pandas/issues/2224

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

[5 rows x 16 columns]

The old behavior of printing out summary information can be achieved via the ‘expand_frame_repr’ print option:

In [25]: pd.set_option('expand_frame_repr', False)

In [26]: wide_frame
Out[26]:

0 1 2 3 4 5 6 7
→˓ 8 9 10 11 12 13 14 15
0 -0.681624 0.191356 1.180274 -0.834179 0.703043 0.166568 -0.583599 -1.201796 -1.
→˓422811 -0.882554 1.209871 -0.941235 0.863067 -0.336232 -0.976847 0.033862
1 0.441522 -0.316864 -0.017062 1.570114 -0.360875 -0.880096 0.235532 0.207232 -1.
→˓983857 -1.702547 -1.621234 -0.906840 1.014601 -0.475108 -0.358944 1.262942
2 -0.412451 -0.462580 0.422194 0.288403 -0.487393 -0.777639 0.055865 1.383381 0.
→˓085638 0.246392 0.965887 0.246354 -0.727728 -0.094414 -0.276854 0.158399
3 -0.277255 1.331263 0.585174 -0.568825 -0.719412 1.191340 -0.456362 0.089931 0.
→˓776079 0.752889 -1.195795 -1.425911 -0.548829 0.774225 0.740501 1.510263
4 -1.642511 0.432560 1.218080 -0.564705 -0.581790 0.286071 0.048725 1.002440 1.
→˓276582 0.054399 0.241963 -0.471786 0.314510 -0.059986 -2.069319 -1.115104

[5 rows x 16 columns]

The width of each line can be changed via ‘line_width’ (80 by default):

In [27]: pd.set_option('line_width', 40)

OptionError Traceback (most recent call last)
<ipython-input-27-b8740c4a0a1b> in <module>()
----> 1 pd.set_option('line_width', 40)

/pandas/pandas/core/config.py in __call__(self, *args, **kwds)
225
226 def __call__(self, *args, **kwds):

--> 227 return self.__func__(*args, **kwds)
228
229 @property

/pandas/pandas/core/config.py in _set_option(*args, **kwargs)
117
118 for k, v in zip(args[::2], args[1::2]):

--> 119 key = _get_single_key(k, silent)
120
121 o = _get_registered_option(key)

/pandas/pandas/core/config.py in _get_single_key(pat, silent)
81 if not silent:
82 _warn_if_deprecated(pat)

---> 83 raise OptionError('No such keys(s): {pat!r}'.format(pat=pat))
84 if len(keys) > 1:
85 raise OptionError('Pattern matched multiple keys')

OptionError: "No such keys(s): 'line_width'"

In [28]: wide_frame
\\\Out[28]:
→˓ (continues on next page)

1.32. v0.10.0 (December 17, 2012) 421

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

0 1 2 3 4 5 6 ...
→˓ 9 10 11 12 13 14 15
0 -0.681624 0.191356 1.180274 -0.834179 0.703043 0.166568 -0.583599 ... -0.
→˓882554 1.209871 -0.941235 0.863067 -0.336232 -0.976847 0.033862
1 0.441522 -0.316864 -0.017062 1.570114 -0.360875 -0.880096 0.235532 ... -1.
→˓702547 -1.621234 -0.906840 1.014601 -0.475108 -0.358944 1.262942
2 -0.412451 -0.462580 0.422194 0.288403 -0.487393 -0.777639 0.055865 ... 0.
→˓246392 0.965887 0.246354 -0.727728 -0.094414 -0.276854 0.158399
3 -0.277255 1.331263 0.585174 -0.568825 -0.719412 1.191340 -0.456362 ... 0.
→˓752889 -1.195795 -1.425911 -0.548829 0.774225 0.740501 1.510263
4 -1.642511 0.432560 1.218080 -0.564705 -0.581790 0.286071 0.048725 ... 0.
→˓054399 0.241963 -0.471786 0.314510 -0.059986 -2.069319 -1.115104

[5 rows x 16 columns]

1.32.5 Updated PyTables Support

Docs for PyTables Table format & several enhancements to the api. Here is a taste of what to expect.

In [29]: store = HDFStore('store.h5')

In [30]: df = DataFrame(randn(8, 3), index=date_range('1/1/2000', periods=8),
....: columns=['A', 'B', 'C'])
....:

In [31]: df
Out[31]:

A B C
2000-01-01 -0.369325 -1.502617 -0.376280
2000-01-02 0.511936 -0.116412 -0.625256
2000-01-03 -0.550627 1.261433 -0.552429
2000-01-04 1.695803 -1.025917 -0.910942
2000-01-05 0.426805 -0.131749 0.432600
2000-01-06 0.044671 -0.341265 1.844536
2000-01-07 -2.036047 0.000830 -0.955697
2000-01-08 -0.898872 -0.725411 0.059904

[8 rows x 3 columns]

appending data frames
In [32]: df1 = df[0:4]

In [33]: df2 = df[4:]

In [34]: store.append('df', df1)

In [35]: store.append('df', df2)

In [36]: store
Out[36]:
<class 'pandas.io.pytables.HDFStore'>
File path: store.h5

selecting the entire store
In [37]: store.select('df')

(continues on next page)

422 Chapter 1. What’s New

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

\\Out[37]:
A B C

2000-01-01 -0.369325 -1.502617 -0.376280
2000-01-02 0.511936 -0.116412 -0.625256
2000-01-03 -0.550627 1.261433 -0.552429
2000-01-04 1.695803 -1.025917 -0.910942
2000-01-05 0.426805 -0.131749 0.432600
2000-01-06 0.044671 -0.341265 1.844536
2000-01-07 -2.036047 0.000830 -0.955697
2000-01-08 -0.898872 -0.725411 0.059904

[8 rows x 3 columns]

In [38]: wp = Panel(randn(2, 5, 4), items=['Item1', 'Item2'],
....: major_axis=date_range('1/1/2000', periods=5),
....: minor_axis=['A', 'B', 'C', 'D'])
....:

In [39]: wp
Out[39]:
<class 'pandas.core.panel.Panel'>
Dimensions: 2 (items) x 5 (major_axis) x 4 (minor_axis)
Items axis: Item1 to Item2
Major_axis axis: 2000-01-01 00:00:00 to 2000-01-05 00:00:00
Minor_axis axis: A to D

storing a panel
In [40]: store.append('wp',wp)

selecting via A QUERY
In [41]: store.select('wp', "major_axis>20000102 and minor_axis=['A','B']")
Out[41]:
<class 'pandas.core.panel.Panel'>
Dimensions: 2 (items) x 3 (major_axis) x 2 (minor_axis)
Items axis: Item1 to Item2
Major_axis axis: 2000-01-03 00:00:00 to 2000-01-05 00:00:00
Minor_axis axis: A to B

removing data from tables
In [42]: store.remove('wp', "major_axis>20000103")
\\\Out[42]:
→˓8

In [43]: store.select('wp')
\\Out[43]:
→˓

<class 'pandas.core.panel.Panel'>
Dimensions: 2 (items) x 3 (major_axis) x 4 (minor_axis)
Items axis: Item1 to Item2
Major_axis axis: 2000-01-01 00:00:00 to 2000-01-03 00:00:00
Minor_axis axis: A to D

deleting a store
In [44]: del store['df']

In [45]: store

(continues on next page)

1.32. v0.10.0 (December 17, 2012) 423

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

Out[45]:
<class 'pandas.io.pytables.HDFStore'>
File path: store.h5

Enhancements

• added ability to hierarchical keys

In [46]: store.put('foo/bar/bah', df)

In [47]: store.append('food/orange', df)

In [48]: store.append('food/apple', df)

In [49]: store
Out[49]:
<class 'pandas.io.pytables.HDFStore'>
File path: store.h5

remove all nodes under this level
In [50]: store.remove('food')

In [51]: store
Out[51]:
<class 'pandas.io.pytables.HDFStore'>
File path: store.h5

• added mixed-dtype support!

In [52]: df['string'] = 'string'

In [53]: df['int'] = 1

In [54]: store.append('df',df)

In [55]: df1 = store.select('df')

In [56]: df1
Out[56]:

A B C string int
2000-01-01 -0.369325 -1.502617 -0.376280 string 1
2000-01-02 0.511936 -0.116412 -0.625256 string 1
2000-01-03 -0.550627 1.261433 -0.552429 string 1
2000-01-04 1.695803 -1.025917 -0.910942 string 1
2000-01-05 0.426805 -0.131749 0.432600 string 1
2000-01-06 0.044671 -0.341265 1.844536 string 1
2000-01-07 -2.036047 0.000830 -0.955697 string 1
2000-01-08 -0.898872 -0.725411 0.059904 string 1

[8 rows x 5 columns]

In [57]: df1.get_dtype_counts()
\\Out[57]:
→˓

float64 3
object 1
int64 1

(continues on next page)

424 Chapter 1. What’s New

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

Length: 3, dtype: int64

• performance improvements on table writing

• support for arbitrarily indexed dimensions

• SparseSeries now has a density property (GH2384)

• enable Series.str.strip/lstrip/rstrip methods to take an input argument to strip arbitrary char-
acters (GH2411)

• implement value_vars in melt to limit values to certain columns and add melt to pandas namespace
(GH2412)

Bug Fixes

• added Term method of specifying where conditions (GH1996).

• del store['df'] now call store.remove('df') for store deletion

• deleting of consecutive rows is much faster than before

• min_itemsize parameter can be specified in table creation to force a minimum size for indexing columns
(the previous implementation would set the column size based on the first append)

• indexing support via create_table_index (requires PyTables >= 2.3) (GH698).

• appending on a store would fail if the table was not first created via put

• fixed issue with missing attributes after loading a pickled dataframe (GH2431)

• minor change to select and remove: require a table ONLY if where is also provided (and not None)

Compatibility

0.10 of HDFStore is backwards compatible for reading tables created in a prior version of pandas, however, query
terms using the prior (undocumented) methodology are unsupported. You must read in the entire file and write it out
using the new format to take advantage of the updates.

1.32.6 N Dimensional Panels (Experimental)

Adding experimental support for Panel4D and factory functions to create n-dimensional named panels. Here is a taste
of what to expect.

In [58]: p4d = Panel4D(randn(2, 2, 5, 4),
....: labels=['Label1','Label2'],
....: items=['Item1', 'Item2'],
....: major_axis=date_range('1/1/2000', periods=5),
....: minor_axis=['A', 'B', 'C', 'D'])
....:

In [59]: p4d
Out[59]:
<class 'pandas.core.panelnd.Panel4D'>
Dimensions: 2 (labels) x 2 (items) x 5 (major_axis) x 4 (minor_axis)
Labels axis: Label1 to Label2
Items axis: Item1 to Item2
Major_axis axis: 2000-01-01 00:00:00 to 2000-01-05 00:00:00
Minor_axis axis: A to D

See the full release notes or issue tracker on GitHub for a complete list.

1.32. v0.10.0 (December 17, 2012) 425

https://github.com/pandas-dev/pandas/issues/2384
https://github.com/pandas-dev/pandas/issues/2411
https://github.com/pandas-dev/pandas/issues/2412
https://github.com/pandas-dev/pandas/issues/1996
https://github.com/pandas-dev/pandas/issues/698

pandas: powerful Python data analysis toolkit, Release 0.23.4

1.33 v0.9.1 (November 14, 2012)

This is a bugfix release from 0.9.0 and includes several new features and enhancements along with a large number of
bug fixes. The new features include by-column sort order for DataFrame and Series, improved NA handling for the
rank method, masking functions for DataFrame, and intraday time-series filtering for DataFrame.

1.33.1 New features

• Series.sort, DataFrame.sort, and DataFrame.sort_index can now be specified in a per-column manner to support
multiple sort orders (GH928)

In [2]: df = DataFrame(np.random.randint(0, 2, (6, 3)), columns=['A', 'B', 'C'])

In [3]: df.sort(['A', 'B'], ascending=[1, 0])

Out[3]:
A B C

3 0 1 1
4 0 1 1
2 0 0 1
0 1 0 0
1 1 0 0
5 1 0 0

• DataFrame.rank now supports additional argument values for the na_option parameter so missing values can
be assigned either the largest or the smallest rank (GH1508, GH2159)

In [1]: df = DataFrame(np.random.randn(6, 3), columns=['A', 'B', 'C'])

In [2]: df.loc[2:4] = np.nan

In [3]: df.rank()
Out[3]:

A B C
0 3.0 1.0 3.0
1 1.0 3.0 2.0
2 NaN NaN NaN
3 NaN NaN NaN
4 NaN NaN NaN
5 2.0 2.0 1.0

[6 rows x 3 columns]

In [4]: df.rank(na_option='top')
\\Out[4]:
→˓

A B C
0 6.0 4.0 6.0
1 4.0 6.0 5.0
2 2.0 2.0 2.0
3 2.0 2.0 2.0
4 2.0 2.0 2.0
5 5.0 5.0 4.0

[6 rows x 3 columns]

(continues on next page)

426 Chapter 1. What’s New

https://github.com/pandas-dev/pandas/issues/928
https://github.com/pandas-dev/pandas/issues/1508
https://github.com/pandas-dev/pandas/issues/2159

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

In [5]: df.rank(na_option='bottom')
\\Out[5]:
→˓

A B C
0 3.0 1.0 3.0
1 1.0 3.0 2.0
2 5.0 5.0 5.0
3 5.0 5.0 5.0
4 5.0 5.0 5.0
5 2.0 2.0 1.0

[6 rows x 3 columns]

• DataFrame has new where and mask methods to select values according to a given boolean mask (GH2109,
GH2151)

DataFrame currently supports slicing via a boolean vector the same length as the DataFrame (inside
the []). The returned DataFrame has the same number of columns as the original, but is sliced on its
index.

In [6]: df = DataFrame(np.random.randn(5, 3), columns = ['A','B','C'])

In [7]: df
Out[7]:

A B C
0 -1.101581 -1.187831 0.630693
1 2.369983 0.333769 -0.870464
2 1.118760 -0.224382 0.642489
3 0.961751 -1.848369 0.440883
4 1.235390 1.615529 -0.303272

[5 rows x 3 columns]

In [8]: df[df['A'] > 0]
\\\Out[8]:
→˓

A B C
1 2.369983 0.333769 -0.870464
2 1.118760 -0.224382 0.642489
3 0.961751 -1.848369 0.440883
4 1.235390 1.615529 -0.303272

[4 rows x 3 columns]

If a DataFrame is sliced with a DataFrame based boolean condition (with the same size as the original
DataFrame), then a DataFrame the same size (index and columns) as the original is returned, with
elements that do not meet the boolean condition as NaN. This is accomplished via the new method
DataFrame.where. In addition, where takes an optional other argument for replacement.

In [9]: df[df>0]
Out[9]:

A B C
0 NaN NaN 0.630693
1 2.369983 0.333769 NaN
2 1.118760 NaN 0.642489

(continues on next page)

1.33. v0.9.1 (November 14, 2012) 427

https://github.com/pandas-dev/pandas/issues/2109
https://github.com/pandas-dev/pandas/issues/2151

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

3 0.961751 NaN 0.440883
4 1.235390 1.615529 NaN

[5 rows x 3 columns]

In [10]: df.where(df>0)
\\\Out[10]:
→˓

A B C
0 NaN NaN 0.630693
1 2.369983 0.333769 NaN
2 1.118760 NaN 0.642489
3 0.961751 NaN 0.440883
4 1.235390 1.615529 NaN

[5 rows x 3 columns]

In [11]: df.where(df>0,-df)
\\\Out[11]:
→˓

A B C
0 1.101581 1.187831 0.630693
1 2.369983 0.333769 0.870464
2 1.118760 0.224382 0.642489
3 0.961751 1.848369 0.440883
4 1.235390 1.615529 0.303272

[5 rows x 3 columns]

Furthermore, where now aligns the input boolean condition (ndarray or DataFrame), such that partial
selection with setting is possible. This is analogous to partial setting via .ix (but on the contents rather
than the axis labels)

In [12]: df2 = df.copy()

In [13]: df2[df2[1:4] > 0] = 3

In [14]: df2
Out[14]:

A B C
0 -1.101581 -1.187831 0.630693
1 3.000000 3.000000 -0.870464
2 3.000000 -0.224382 3.000000
3 3.000000 -1.848369 3.000000
4 1.235390 1.615529 -0.303272

[5 rows x 3 columns]

DataFrame.mask is the inverse boolean operation of where.

In [15]: df.mask(df<=0)
Out[15]:

A B C
0 NaN NaN 0.630693
1 2.369983 0.333769 NaN
2 1.118760 NaN 0.642489

(continues on next page)

428 Chapter 1. What’s New

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

3 0.961751 NaN 0.440883
4 1.235390 1.615529 NaN

[5 rows x 3 columns]

• Enable referencing of Excel columns by their column names (GH1936)

In [16]: xl = ExcelFile('data/test.xls')

In [17]: xl.parse('Sheet1', index_col=0, parse_dates=True,
....: parse_cols='A:D')
....:

Out[17]:
A B C D

2000-01-03 0.980269 3.685731 -0.364217 -1.159738
2000-01-04 1.047916 -0.041232 -0.161812 0.212549
2000-01-05 0.498581 0.731168 -0.537677 1.346270
2000-01-06 1.120202 1.567621 0.003641 0.675253
2000-01-07 -0.487094 0.571455 -1.611639 0.103469
2000-01-10 0.836649 0.246462 0.588543 1.062782
2000-01-11 -0.157161 1.340307 1.195778 -1.097007

[7 rows x 4 columns]

• Added option to disable pandas-style tick locators and formatters using series.plot(x_compat=True) or pan-
das.plot_params[‘x_compat’] = True (GH2205)

• Existing TimeSeries methods at_time and between_time were added to DataFrame (GH2149)

• DataFrame.dot can now accept ndarrays (GH2042)

• DataFrame.drop now supports non-unique indexes (GH2101)

• Panel.shift now supports negative periods (GH2164)

• DataFrame now support unary ~ operator (GH2110)

1.33.2 API changes

• Upsampling data with a PeriodIndex will result in a higher frequency TimeSeries that spans the original time
window

In [1]: prng = period_range('2012Q1', periods=2, freq='Q')

In [2]: s = Series(np.random.randn(len(prng)), prng)

In [4]: s.resample('M')
Out[4]:
2012-01 -1.471992
2012-02 NaN
2012-03 NaN
2012-04 -0.493593
2012-05 NaN
2012-06 NaN
Freq: M, dtype: float64

• Period.end_time now returns the last nanosecond in the time interval (GH2124, GH2125, GH1764)

1.33. v0.9.1 (November 14, 2012) 429

https://github.com/pandas-dev/pandas/issues/1936
https://github.com/pandas-dev/pandas/issues/2205
https://github.com/pandas-dev/pandas/issues/2149
https://github.com/pandas-dev/pandas/issues/2042
https://github.com/pandas-dev/pandas/issues/2101
https://github.com/pandas-dev/pandas/issues/2164
https://github.com/pandas-dev/pandas/issues/2110
https://github.com/pandas-dev/pandas/issues/2124
https://github.com/pandas-dev/pandas/issues/2125
https://github.com/pandas-dev/pandas/issues/1764

pandas: powerful Python data analysis toolkit, Release 0.23.4

In [18]: p = Period('2012')

In [19]: p.end_time
Out[19]: Timestamp('2012-12-31 23:59:59.999999999')

• File parsers no longer coerce to float or bool for columns that have custom converters specified (GH2184)

In [20]: data = 'A,B,C\n00001,001,5\n00002,002,6'

In [21]: read_csv(StringIO(data), converters={'A' : lambda x: x.strip()})
Out[21]:

A B C
0 00001 1 5
1 00002 2 6

[2 rows x 3 columns]

See the full release notes or issue tracker on GitHub for a complete list.

1.34 v0.9.0 (October 7, 2012)

This is a major release from 0.8.1 and includes several new features and enhancements along with a large number of
bug fixes. New features include vectorized unicode encoding/decoding for Series.str, to_latex method to DataFrame,
more flexible parsing of boolean values, and enabling the download of options data from Yahoo! Finance.

1.34.1 New features

• Add encode and decode for unicode handling to vectorized string processing methods in Series.str (GH1706)

• Add DataFrame.to_latex method (GH1735)

• Add convenient expanding window equivalents of all rolling_* ops (GH1785)

• Add Options class to pandas.io.data for fetching options data from Yahoo! Finance (GH1748, GH1739)

• More flexible parsing of boolean values (Yes, No, TRUE, FALSE, etc) (GH1691, GH1295)

• Add level parameter to Series.reset_index

• TimeSeries.between_time can now select times across midnight (GH1871)

• Series constructor can now handle generator as input (GH1679)

• DataFrame.dropna can now take multiple axes (tuple/list) as input (GH924)

• Enable skip_footer parameter in ExcelFile.parse (GH1843)

1.34.2 API changes

• The default column names when header=None and no columns names passed to functions like read_csv
has changed to be more Pythonic and amenable to attribute access:

In [1]: data = '0,0,1\n1,1,0\n0,1,0'

In [2]: df = read_csv(StringIO(data), header=None)

(continues on next page)

430 Chapter 1. What’s New

https://github.com/pandas-dev/pandas/issues/2184
https://github.com/pandas-dev/pandas/issues/1706
https://github.com/pandas-dev/pandas/issues/1735
https://github.com/pandas-dev/pandas/issues/1785
https://github.com/pandas-dev/pandas/issues/1748
https://github.com/pandas-dev/pandas/issues/1739
https://github.com/pandas-dev/pandas/issues/1691
https://github.com/pandas-dev/pandas/issues/1295
https://github.com/pandas-dev/pandas/issues/1871
https://github.com/pandas-dev/pandas/issues/1679
https://github.com/pandas-dev/pandas/issues/924
https://github.com/pandas-dev/pandas/issues/1843

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

In [3]: df
Out[3]:

0 1 2
0 0 0 1
1 1 1 0
2 0 1 0

[3 rows x 3 columns]

• Creating a Series from another Series, passing an index, will cause reindexing to happen inside rather than treat-
ing the Series like an ndarray. Technically improper usages like Series(df[col1], index=df[col2])
that worked before “by accident” (this was never intended) will lead to all NA Series in some cases. To be per-
fectly clear:

In [4]: s1 = Series([1, 2, 3])

In [5]: s1
Out[5]:
0 1
1 2
2 3
Length: 3, dtype: int64

In [6]: s2 = Series(s1, index=['foo', 'bar', 'baz'])

In [7]: s2
Out[7]:
foo NaN
bar NaN
baz NaN
Length: 3, dtype: float64

• Deprecated day_of_year API removed from PeriodIndex, use dayofyear (GH1723)

• Don’t modify NumPy suppress printoption to True at import time

• The internal HDF5 data arrangement for DataFrames has been transposed. Legacy files will still be readable by
HDFStore (GH1834, GH1824)

• Legacy cruft removed: pandas.stats.misc.quantileTS

• Use ISO8601 format for Period repr: monthly, daily, and on down (GH1776)

• Empty DataFrame columns are now created as object dtype. This will prevent a class of TypeErrors that was
occurring in code where the dtype of a column would depend on the presence of data or not (e.g. a SQL query
having results) (GH1783)

• Setting parts of DataFrame/Panel using ix now aligns input Series/DataFrame (GH1630)

• first and last methods in GroupBy no longer drop non-numeric columns (GH1809)

• Resolved inconsistencies in specifying custom NA values in text parser. na_values of type dict no longer
override default NAs unless keep_default_na is set to false explicitly (GH1657)

• DataFrame.dot will not do data alignment, and also work with Series (GH1915)

See the full release notes or issue tracker on GitHub for a complete list.

1.34. v0.9.0 (October 7, 2012) 431

https://github.com/pandas-dev/pandas/issues/1723
https://github.com/pandas-dev/pandas/issues/1834
https://github.com/pandas-dev/pandas/issues/1824
https://github.com/pandas-dev/pandas/issues/1776
https://github.com/pandas-dev/pandas/issues/1783
https://github.com/pandas-dev/pandas/issues/1630
https://github.com/pandas-dev/pandas/issues/1809
https://github.com/pandas-dev/pandas/issues/1657
https://github.com/pandas-dev/pandas/issues/1915

pandas: powerful Python data analysis toolkit, Release 0.23.4

1.35 v0.8.1 (July 22, 2012)

This release includes a few new features, performance enhancements, and over 30 bug fixes from 0.8.0. New features
include notably NA friendly string processing functionality and a series of new plot types and options.

1.35.1 New features

• Add vectorized string processing methods accessible via Series.str (GH620)

• Add option to disable adjustment in EWMA (GH1584)

• Radviz plot (GH1566)

• Parallel coordinates plot

• Bootstrap plot

• Per column styles and secondary y-axis plotting (GH1559)

• New datetime converters millisecond plotting (GH1599)

• Add option to disable “sparse” display of hierarchical indexes (GH1538)

• Series/DataFrame’s set_index method can append levels to an existing Index/MultiIndex (GH1569,
GH1577)

1.35.2 Performance improvements

• Improved implementation of rolling min and max (thanks to Bottleneck !)

• Add accelerated 'median' GroupBy option (GH1358)

• Significantly improve the performance of parsing ISO8601-format date strings with DatetimeIndex or
to_datetime (GH1571)

• Improve the performance of GroupBy on single-key aggregations and use with Categorical types

• Significant datetime parsing performance improvements

1.36 v0.8.0 (June 29, 2012)

This is a major release from 0.7.3 and includes extensive work on the time series handling and processing infrastructure
as well as a great deal of new functionality throughout the library. It includes over 700 commits from more than 20
distinct authors. Most pandas 0.7.3 and earlier users should not experience any issues upgrading, but due to the
migration to the NumPy datetime64 dtype, there may be a number of bugs and incompatibilities lurking. Lingering
incompatibilities will be fixed ASAP in a 0.8.1 release if necessary. See the full release notes or issue tracker on
GitHub for a complete list.

1.36.1 Support for non-unique indexes

All objects can now work with non-unique indexes. Data alignment / join operations work according to SQL join
semantics (including, if application, index duplication in many-to-many joins)

432 Chapter 1. What’s New

https://github.com/pandas-dev/pandas/issues/620
https://github.com/pandas-dev/pandas/issues/1584
https://github.com/pandas-dev/pandas/issues/1566
https://github.com/pandas-dev/pandas/issues/1559
https://github.com/pandas-dev/pandas/issues/1599
https://github.com/pandas-dev/pandas/issues/1538
https://github.com/pandas-dev/pandas/issues/1569
https://github.com/pandas-dev/pandas/issues/1577
http://berkeleyanalytics.com/bottleneck/
https://github.com/pandas-dev/pandas/issues/1358
https://github.com/pandas-dev/pandas/issues/1571

pandas: powerful Python data analysis toolkit, Release 0.23.4

1.36.2 NumPy datetime64 dtype and 1.6 dependency

Time series data are now represented using NumPy’s datetime64 dtype; thus, pandas 0.8.0 now requires at least NumPy
1.6. It has been tested and verified to work with the development version (1.7+) of NumPy as well which includes some
significant user-facing API changes. NumPy 1.6 also has a number of bugs having to do with nanosecond resolution
data, so I recommend that you steer clear of NumPy 1.6’s datetime64 API functions (though limited as they are) and
only interact with this data using the interface that pandas provides.

See the end of the 0.8.0 section for a “porting” guide listing potential issues for users migrating legacy codebases from
pandas 0.7 or earlier to 0.8.0.

Bug fixes to the 0.7.x series for legacy NumPy < 1.6 users will be provided as they arise. There will be no more further
development in 0.7.x beyond bug fixes.

1.36.3 Time series changes and improvements

Note: With this release, legacy scikits.timeseries users should be able to port their code to use pandas.

Note: See documentation for overview of pandas timeseries API.

• New datetime64 representation speeds up join operations and data alignment, reduces memory usage, and
improve serialization / deserialization performance significantly over datetime.datetime

• High performance and flexible resample method for converting from high-to-low and low-to-high frequency.
Supports interpolation, user-defined aggregation functions, and control over how the intervals and result labeling
are defined. A suite of high performance Cython/C-based resampling functions (including Open-High-Low-
Close) have also been implemented.

• Revamp of frequency aliases and support for frequency shortcuts like ‘15min’, or ‘1h30min’

• New DatetimeIndex class supports both fixed frequency and irregular time series. Replaces now deprecated
DateRange class

• New PeriodIndex and Period classes for representing time spans and performing calendar logic, in-
cluding the 12 fiscal quarterly frequencies <timeseries.quarterly>. This is a partial port of, and a substantial
enhancement to, elements of the scikits.timeseries codebase. Support for conversion between PeriodIndex and
DatetimeIndex

• New Timestamp data type subclasses datetime.datetime, providing the same interface while enabling working
with nanosecond-resolution data. Also provides easy time zone conversions.

• Enhanced support for time zones. Add tz_convert and tz_lcoalize methods to TimeSeries and DataFrame.
All timestamps are stored as UTC; Timestamps from DatetimeIndex objects with time zone set will be localized
to localtime. Time zone conversions are therefore essentially free. User needs to know very little about pytz
library now; only time zone names as as strings are required. Time zone-aware timestamps are equal if and only
if their UTC timestamps match. Operations between time zone-aware time series with different time zones will
result in a UTC-indexed time series.

• Time series string indexing conveniences / shortcuts: slice years, year and month, and index values with strings

• Enhanced time series plotting; adaptation of scikits.timeseries matplotlib-based plotting code

• New date_range, bdate_range, and period_range factory functions

• Robust frequency inference function infer_freq and inferred_freq property of DatetimeIndex, with option
to infer frequency on construction of DatetimeIndex

1.36. v0.8.0 (June 29, 2012) 433

pandas: powerful Python data analysis toolkit, Release 0.23.4

• to_datetime function efficiently parses array of strings to DatetimeIndex. DatetimeIndex will parse array or
list of strings to datetime64

• Optimized support for datetime64-dtype data in Series and DataFrame columns

• New NaT (Not-a-Time) type to represent NA in timestamp arrays

• Optimize Series.asof for looking up “as of” values for arrays of timestamps

• Milli, Micro, Nano date offset objects

• Can index time series with datetime.time objects to select all data at particular time of day (TimeSeries.
at_time) or between two times (TimeSeries.between_time)

• Add tshift method for leading/lagging using the frequency (if any) of the index, as opposed to a naive lead/lag
using shift

1.36.4 Other new features

• New cut and qcut functions (like R’s cut function) for computing a categorical variable from a continuous
variable by binning values either into value-based (cut) or quantile-based (qcut) bins

• Rename Factor to Categorical and add a number of usability features

• Add limit argument to fillna/reindex

• More flexible multiple function application in GroupBy, and can pass list (name, function) tuples to get result in
particular order with given names

• Add flexible replace method for efficiently substituting values

• Enhanced read_csv/read_table for reading time series data and converting multiple columns to dates

• Add comments option to parser functions: read_csv, etc.

• Add dayfirst option to parser functions for parsing international DD/MM/YYYY dates

• Allow the user to specify the CSV reader dialect to control quoting etc.

• Handling thousands separators in read_csv to improve integer parsing.

• Enable unstacking of multiple levels in one shot. Alleviate pivot_table bugs (empty columns being intro-
duced)

• Move to klib-based hash tables for indexing; better performance and less memory usage than Python’s dict

• Add first, last, min, max, and prod optimized GroupBy functions

• New ordered_merge function

• Add flexible comparison instance methods eq, ne, lt, gt, etc. to DataFrame, Series

• Improve scatter_matrix plotting function and add histogram or kernel density estimates to diagonal

• Add ‘kde’ plot option for density plots

• Support for converting DataFrame to R data.frame through rpy2

• Improved support for complex numbers in Series and DataFrame

• Add pct_change method to all data structures

• Add max_colwidth configuration option for DataFrame console output

• Interpolate Series values using index values

• Can select multiple columns from GroupBy

434 Chapter 1. What’s New

pandas: powerful Python data analysis toolkit, Release 0.23.4

• Add update methods to Series/DataFrame for updating values in place

• Add any and all method to DataFrame

1.36.5 New plotting methods

Series.plot now supports a secondary_y option:

In [1]: plt.figure()
Out[1]: <Figure size 640x480 with 0 Axes>

In [2]: fx['FR'].plot(style='g')
\\Out[2]: <matplotlib.axes._subplots.
→˓AxesSubplot at 0x7f20c12d9cc0>

In [3]: fx['IT'].plot(style='k--', secondary_y=True)
\\Out[3]:
→˓<matplotlib.axes._subplots.AxesSubplot at 0x7f20d8552048>

Vytautas Jancauskas, the 2012 GSOC participant, has added many new plot types. For example, 'kde' is a new
option:

In [4]: s = Series(np.concatenate((np.random.randn(1000),
...: np.random.randn(1000) * 0.5 + 3)))
...:

In [5]: plt.figure()
Out[5]: <Figure size 640x480 with 0 Axes>

In [6]: s.hist(normed=True, alpha=0.2)
\\Out[6]: <matplotlib.axes._subplots.
→˓AxesSubplot at 0x7f20d55b69b0>

In [7]: s.plot(kind='kde')
\\Out[7]:
→˓<matplotlib.axes._subplots.AxesSubplot at 0x7f20d55b69b0>

See the plotting page for much more.

1.36.6 Other API changes

• Deprecation of offset, time_rule, and timeRule arguments names in time series functions. Warnings
will be printed until pandas 0.9 or 1.0.

1.36.7 Potential porting issues for pandas <= 0.7.3 users

The major change that may affect you in pandas 0.8.0 is that time series indexes use NumPy’s datetime64 data
type instead of dtype=object arrays of Python’s built-in datetime.datetime objects. DateRange has been
replaced by DatetimeIndex but otherwise behaved identically. But, if you have code that converts DateRange
or Index objects that used to contain datetime.datetime values to plain NumPy arrays, you may have bugs
lurking with code using scalar values because you are handing control over to NumPy:

1.36. v0.8.0 (June 29, 2012) 435

pandas: powerful Python data analysis toolkit, Release 0.23.4

In [8]: import datetime

In [9]: rng = date_range('1/1/2000', periods=10)

In [10]: rng[5]
Out[10]: Timestamp('2000-01-06 00:00:00', freq='D')

In [11]: isinstance(rng[5], datetime.datetime)
\\Out[11]: True

In [12]: rng_asarray = np.asarray(rng)

In [13]: scalar_val = rng_asarray[5]

In [14]: type(scalar_val)
Out[14]: numpy.datetime64

pandas’s Timestamp object is a subclass of datetime.datetime that has nanosecond support (the
nanosecond field store the nanosecond value between 0 and 999). It should substitute directly into any code that
used datetime.datetime values before. Thus, I recommend not casting DatetimeIndex to regular NumPy
arrays.

If you have code that requires an array of datetime.datetime objects, you have a couple of options. First, the
astype(object) method of DatetimeIndex produces an array of Timestamp objects:

In [15]: stamp_array = rng.astype(object)

In [16]: stamp_array
Out[16]:
Index([2000-01-01 00:00:00, 2000-01-02 00:00:00, 2000-01-03 00:00:00,

2000-01-04 00:00:00, 2000-01-05 00:00:00, 2000-01-06 00:00:00,
2000-01-07 00:00:00, 2000-01-08 00:00:00, 2000-01-09 00:00:00,
2000-01-10 00:00:00],

dtype='object')

In [17]: stamp_array[5]
\\\Out[17]:
→˓Timestamp('2000-01-06 00:00:00', freq='D')

To get an array of proper datetime.datetime objects, use the to_pydatetime method:

In [18]: dt_array = rng.to_pydatetime()

In [19]: dt_array
Out[19]:
array([datetime.datetime(2000, 1, 1, 0, 0),

datetime.datetime(2000, 1, 2, 0, 0),
datetime.datetime(2000, 1, 3, 0, 0),
datetime.datetime(2000, 1, 4, 0, 0),
datetime.datetime(2000, 1, 5, 0, 0),
datetime.datetime(2000, 1, 6, 0, 0),
datetime.datetime(2000, 1, 7, 0, 0),
datetime.datetime(2000, 1, 8, 0, 0),
datetime.datetime(2000, 1, 9, 0, 0),
datetime.datetime(2000, 1, 10, 0, 0)], dtype=object)

In [20]: dt_array[5]

(continues on next page)

436 Chapter 1. What’s New

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

\\Out[20]:
→˓datetime.datetime(2000, 1, 6, 0, 0)

matplotlib knows how to handle datetime.datetime but not Timestamp objects. While I recommend that you
plot time series using TimeSeries.plot, you can either use to_pydatetime or register a converter for the
Timestamp type. See matplotlib documentation for more on this.

Warning: There are bugs in the user-facing API with the nanosecond datetime64 unit in NumPy 1.6. In particular,
the string version of the array shows garbage values, and conversion to dtype=object is similarly broken.

In [21]: rng = date_range('1/1/2000', periods=10)

In [22]: rng
Out[22]:
DatetimeIndex(['2000-01-01', '2000-01-02', '2000-01-03', '2000-01-04',

'2000-01-05', '2000-01-06', '2000-01-07', '2000-01-08',
'2000-01-09', '2000-01-10'],
dtype='datetime64[ns]', freq='D')

In [23]: np.asarray(rng)
\\Out[23]:
→˓

array(['2000-01-01T00:00:00.000000000', '2000-01-02T00:00:00.000000000',
'2000-01-03T00:00:00.000000000', '2000-01-04T00:00:00.000000000',
'2000-01-05T00:00:00.000000000', '2000-01-06T00:00:00.000000000',
'2000-01-07T00:00:00.000000000', '2000-01-08T00:00:00.000000000',
'2000-01-09T00:00:00.000000000', '2000-01-10T00:00:00.000000000'], dtype=

→˓'datetime64[ns]')

In [24]: converted = np.asarray(rng, dtype=object)

In [25]: converted[5]
Out[25]: 947116800000000000

Trust me: don’t panic. If you are using NumPy 1.6 and restrict your interaction with datetime64 values to
pandas’s API you will be just fine. There is nothing wrong with the data-type (a 64-bit integer internally); all of the
important data processing happens in pandas and is heavily tested. I strongly recommend that you do not work
directly with datetime64 arrays in NumPy 1.6 and only use the pandas API.

Support for non-unique indexes: In the latter case, you may have code inside a try:... catch: block that
failed due to the index not being unique. In many cases it will no longer fail (some method like append still check for
uniqueness unless disabled). However, all is not lost: you can inspect index.is_unique and raise an exception
explicitly if it is False or go to a different code branch.

1.37 v.0.7.3 (April 12, 2012)

This is a minor release from 0.7.2 and fixes many minor bugs and adds a number of nice new features. There are
also a couple of API changes to note; these should not affect very many users, and we are inclined to call them “bug
fixes” even though they do constitute a change in behavior. See the full release notes or issue tracker on GitHub for a
complete list.

1.37. v.0.7.3 (April 12, 2012) 437

http://matplotlib.org/api/units_api.html

pandas: powerful Python data analysis toolkit, Release 0.23.4

1.37.1 New features

• New fixed width file reader, read_fwf

• New scatter_matrix function for making a scatter plot matrix

from pandas.tools.plotting import scatter_matrix
scatter_matrix(df, alpha=0.2)

• Add stacked argument to Series and DataFrame’s plot method for stacked bar plots.

df.plot(kind='bar', stacked=True)

438 Chapter 1. What’s New

pandas: powerful Python data analysis toolkit, Release 0.23.4

df.plot(kind='barh', stacked=True)

• Add log x and y scaling options to DataFrame.plot and Series.plot

• Add kurt methods to Series and DataFrame for computing kurtosis

1.37.2 NA Boolean Comparison API Change

Reverted some changes to how NA values (represented typically as NaN or None) are handled in non-numeric Series:

In [1]: series = Series(['Steve', np.nan, 'Joe'])

In [2]: series == 'Steve'
Out[2]:
0 True
1 False

(continues on next page)

1.37. v.0.7.3 (April 12, 2012) 439

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

2 False
Length: 3, dtype: bool

In [3]: series != 'Steve'
\\\Out[3]:
0 False
1 True
2 True
Length: 3, dtype: bool

In comparisons, NA / NaN will always come through as False except with != which is True. Be very careful with
boolean arithmetic, especially negation, in the presence of NA data. You may wish to add an explicit NA filter into
boolean array operations if you are worried about this:

In [4]: mask = series == 'Steve'

In [5]: series[mask & series.notnull()]
Out[5]:
0 Steve
Length: 1, dtype: object

While propagating NA in comparisons may seem like the right behavior to some users (and you could argue on purely
technical grounds that this is the right thing to do), the evaluation was made that propagating NA everywhere, including
in numerical arrays, would cause a large amount of problems for users. Thus, a “practicality beats purity” approach
was taken. This issue may be revisited at some point in the future.

1.37.3 Other API Changes

When calling apply on a grouped Series, the return value will also be a Series, to be more consistent with the
groupby behavior with DataFrame:

In [6]: df = DataFrame({'A' : ['foo', 'bar', 'foo', 'bar',
...: 'foo', 'bar', 'foo', 'foo'],
...: 'B' : ['one', 'one', 'two', 'three',
...: 'two', 'two', 'one', 'three'],
...: 'C' : np.random.randn(8), 'D' : np.random.randn(8)})
...:

In [7]: df
Out[7]:

A B C D
0 foo one -0.841015 0.459840
1 bar one 0.114219 -0.253040
2 foo two -0.405617 -0.261128
3 bar three 1.240678 0.406604
4 foo two -0.122828 -1.022256
5 bar two 1.525196 -0.882785
6 foo one 0.520047 1.793331
7 foo three 0.163834 -0.429688

[8 rows x 4 columns]

In [8]: grouped = df.groupby('A')['C']

In [9]: grouped.describe()
(continues on next page)

440 Chapter 1. What’s New

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

Out[9]:
count mean std min 25% 50% 75% max

A
bar 3.0 0.960031 0.746181 0.114219 0.677448 1.240678 1.382937 1.525196
foo 5.0 -0.137116 0.522064 -0.841015 -0.405617 -0.122828 0.163834 0.520047

[2 rows x 8 columns]

In [10]: grouped.apply(lambda x: x.sort_values()[-2:]) # top 2 values
\\\Out[10]:
→˓

A
bar 3 1.240678

5 1.525196
foo 7 0.163834

6 0.520047
Name: C, Length: 4, dtype: float64

1.38 v.0.7.2 (March 16, 2012)

This release targets bugs in 0.7.1, and adds a few minor features.

1.38.1 New features

• Add additional tie-breaking methods in DataFrame.rank (GH874)

• Add ascending parameter to rank in Series, DataFrame (GH875)

• Add coerce_float option to DataFrame.from_records (GH893)

• Add sort_columns parameter to allow unsorted plots (GH918)

• Enable column access via attributes on GroupBy (GH882)

• Can pass dict of values to DataFrame.fillna (GH661)

• Can select multiple hierarchical groups by passing list of values in .ix (GH134)

• Add axis option to DataFrame.fillna (GH174)

• Add level keyword to drop for dropping values from a level (GH159)

1.38.2 Performance improvements

• Use khash for Series.value_counts, add raw function to algorithms.py (GH861)

• Intercept __builtin__.sum in groupby (GH885)

1.39 v.0.7.1 (February 29, 2012)

This release includes a few new features and addresses over a dozen bugs in 0.7.0.

1.38. v.0.7.2 (March 16, 2012) 441

https://github.com/pandas-dev/pandas/issues/874
https://github.com/pandas-dev/pandas/issues/875
https://github.com/pandas-dev/pandas/issues/893
https://github.com/pandas-dev/pandas/issues/918
https://github.com/pandas-dev/pandas/issues/882
https://github.com/pandas-dev/pandas/issues/661
https://github.com/pandas-dev/pandas/issues/134
https://github.com/pandas-dev/pandas/issues/174
https://github.com/pandas-dev/pandas/issues/159
https://github.com/pandas-dev/pandas/issues/861
https://github.com/pandas-dev/pandas/issues/885

pandas: powerful Python data analysis toolkit, Release 0.23.4

1.39.1 New features

• Add to_clipboard function to pandas namespace for writing objects to the system clipboard (GH774)

• Add itertuples method to DataFrame for iterating through the rows of a dataframe as tuples (GH818)

• Add ability to pass fill_value and method to DataFrame and Series align method (GH806, GH807)

• Add fill_value option to reindex, align methods (GH784)

• Enable concat to produce DataFrame from Series (GH787)

• Add between method to Series (GH802)

• Add HTML representation hook to DataFrame for the IPython HTML notebook (GH773)

• Support for reading Excel 2007 XML documents using openpyxl

1.39.2 Performance improvements

• Improve performance and memory usage of fillna on DataFrame

• Can concatenate a list of Series along axis=1 to obtain a DataFrame (GH787)

1.40 v.0.7.0 (February 9, 2012)

1.40.1 New features

• New unified merge function for efficiently performing full gamut of database / relational-algebra operations.
Refactored existing join methods to use the new infrastructure, resulting in substantial performance gains
(GH220, GH249, GH267)

• New unified concatenation function for concatenating Series, DataFrame or Panel objects along an axis. Can
form union or intersection of the other axes. Improves performance of Series.append and DataFrame.
append (GH468, GH479, GH273)

• Can pass multiple DataFrames to DataFrame.append to concatenate (stack) and multiple Series to Series.
append too

• Can pass list of dicts (e.g., a list of JSON objects) to DataFrame constructor (GH526)

• You can now set multiple columns in a DataFrame via __getitem__, useful for transformation (GH342)

• Handle differently-indexed output values in DataFrame.apply (GH498)

In [1]: df = DataFrame(randn(10, 4))

In [2]: df.apply(lambda x: x.describe())
Out[2]:

0 1 2 3
count 10.000000 10.000000 10.000000 10.000000
mean 0.424980 0.115056 0.452000 -0.103829
std 0.898046 0.712034 0.867316 0.830197
min -1.337024 -0.779344 -1.206466 -1.022360
25% -0.000996 -0.344789 -0.120217 -0.744313
50% 0.860419 0.098422 0.540168 -0.387554
75% 1.094236 0.375137 1.076331 0.674952
max 1.207725 1.601703 1.663859 1.096187

(continues on next page)

442 Chapter 1. What’s New

https://github.com/pandas-dev/pandas/issues/774
https://github.com/pandas-dev/pandas/issues/818
https://github.com/pandas-dev/pandas/issues/806
https://github.com/pandas-dev/pandas/issues/807
https://github.com/pandas-dev/pandas/issues/784
https://github.com/pandas-dev/pandas/issues/787
https://github.com/pandas-dev/pandas/issues/802
https://github.com/pandas-dev/pandas/issues/773
https://github.com/pandas-dev/pandas/issues/787
https://github.com/pandas-dev/pandas/issues/220
https://github.com/pandas-dev/pandas/issues/249
https://github.com/pandas-dev/pandas/issues/267
https://github.com/pandas-dev/pandas/issues/468
https://github.com/pandas-dev/pandas/issues/479
https://github.com/pandas-dev/pandas/issues/273
https://github.com/pandas-dev/pandas/issues/526
https://github.com/pandas-dev/pandas/issues/342
https://github.com/pandas-dev/pandas/issues/498

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

[8 rows x 4 columns]

• Add reorder_levels method to Series and DataFrame (GH534)

• Add dict-like get function to DataFrame and Panel (GH521)

• Add DataFrame.iterrows method for efficiently iterating through the rows of a DataFrame

• Add DataFrame.to_panel with code adapted from LongPanel.to_long

• Add reindex_axis method added to DataFrame

• Add level option to binary arithmetic functions on DataFrame and Series

• Add level option to the reindex and align methods on Series and DataFrame for broadcasting values
across a level (GH542, GH552, others)

• Add attribute-based item access to Panel and add IPython completion (GH563)

• Add logy option to Series.plot for log-scaling on the Y axis

• Add index and header options to DataFrame.to_string

• Can pass multiple DataFrames to DataFrame.join to join on index (GH115)

• Can pass multiple Panels to Panel.join (GH115)

• Added justify argument to DataFrame.to_string to allow different alignment of column headers

• Add sort option to GroupBy to allow disabling sorting of the group keys for potential speedups (GH595)

• Can pass MaskedArray to Series constructor (GH563)

• Add Panel item access via attributes and IPython completion (GH554)

• Implement DataFrame.lookup, fancy-indexing analogue for retrieving values given a sequence of row and
column labels (GH338)

• Can pass a list of functions to aggregate with groupby on a DataFrame, yielding an aggregated result with
hierarchical columns (GH166)

• Can call cummin and cummax on Series and DataFrame to get cumulative minimum and maximum, respec-
tively (GH647)

• value_range added as utility function to get min and max of a dataframe (GH288)

• Added encoding argument to read_csv, read_table, to_csv and from_csv for non-ascii text
(GH717)

• Added abs method to pandas objects

• Added crosstab function for easily computing frequency tables

• Added isin method to index objects

• Added level argument to xs method of DataFrame.

1.40.2 API Changes to integer indexing

One of the potentially riskiest API changes in 0.7.0, but also one of the most important, was a complete review of how
integer indexes are handled with regard to label-based indexing. Here is an example:

1.40. v.0.7.0 (February 9, 2012) 443

https://github.com/pandas-dev/pandas/issues/534
https://github.com/pandas-dev/pandas/issues/521
https://github.com/pandas-dev/pandas/issues/542
https://github.com/pandas-dev/pandas/issues/552
https://github.com/pandas-dev/pandas/issues/563
https://github.com/pandas-dev/pandas/issues/115
https://github.com/pandas-dev/pandas/issues/115
https://github.com/pandas-dev/pandas/issues/595
https://github.com/pandas-dev/pandas/issues/563
https://github.com/pandas-dev/pandas/issues/554
https://github.com/pandas-dev/pandas/issues/338
https://github.com/pandas-dev/pandas/issues/166
https://github.com/pandas-dev/pandas/issues/647
https://github.com/pandas-dev/pandas/issues/288
https://github.com/pandas-dev/pandas/issues/717

pandas: powerful Python data analysis toolkit, Release 0.23.4

In [3]: s = Series(randn(10), index=range(0, 20, 2))

In [4]: s
Out[4]:
0 0.446246
2 -0.500268
4 0.814725
6 -0.312744
8 1.098892
10 1.306330
12 -0.366970
14 -0.030890
16 1.608095
18 -0.023287
Length: 10, dtype: float64

In [5]: s[0]
\\Out[5]:
→˓0.44624598505731339

In [6]: s[2]
\\Out[6]:
→˓-0.500268093241102

In [7]: s[4]
\\\Out[7]:
→˓0.8147247587659604

This is all exactly identical to the behavior before. However, if you ask for a key not contained in the Series, in
versions 0.6.1 and prior, Series would fall back on a location-based lookup. This now raises a KeyError:

In [2]: s[1]
KeyError: 1

This change also has the same impact on DataFrame:

In [3]: df = DataFrame(randn(8, 4), index=range(0, 16, 2))

In [4]: df
0 1 2 3

0 0.88427 0.3363 -0.1787 0.03162
2 0.14451 -0.1415 0.2504 0.58374
4 -1.44779 -0.9186 -1.4996 0.27163
6 -0.26598 -2.4184 -0.2658 0.11503
8 -0.58776 0.3144 -0.8566 0.61941
10 0.10940 -0.7175 -1.0108 0.47990
12 -1.16919 -0.3087 -0.6049 -0.43544
14 -0.07337 0.3410 0.0424 -0.16037

In [5]: df.ix[3]
KeyError: 3

In order to support purely integer-based indexing, the following methods have been added:

444 Chapter 1. What’s New

pandas: powerful Python data analysis toolkit, Release 0.23.4

Method Description
Series.iget_value(i) Retrieve value stored at location i
Series.iget(i) Alias for iget_value
DataFrame.irow(i) Retrieve the i-th row
DataFrame.icol(j) Retrieve the j-th column
DataFrame.iget_value(i, j) Retrieve the value at row i and column j

1.40.3 API tweaks regarding label-based slicing

Label-based slicing using ix now requires that the index be sorted (monotonic) unless both the start and endpoint are
contained in the index:

In [1]: s = Series(randn(6), index=list('gmkaec'))

In [2]: s
Out[2]:
g -1.182230
m -0.276183
k -0.243550
a 1.628992
e 0.073308
c -0.539890
dtype: float64

Then this is OK:

In [3]: s.ix['k':'e']
Out[3]:
k -0.243550
a 1.628992
e 0.073308
dtype: float64

But this is not:

In [12]: s.ix['b':'h']
KeyError 'b'

If the index had been sorted, the “range selection” would have been possible:

In [4]: s2 = s.sort_index()

In [5]: s2
Out[5]:
a 1.628992
c -0.539890
e 0.073308
g -1.182230
k -0.243550
m -0.276183
dtype: float64

In [6]: s2.ix['b':'h']
Out[6]:
c -0.539890

(continues on next page)

1.40. v.0.7.0 (February 9, 2012) 445

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

e 0.073308
g -1.182230
dtype: float64

1.40.4 Changes to Series [] operator

As as notational convenience, you can pass a sequence of labels or a label slice to a Series when getting and setting
values via [] (i.e. the __getitem__ and __setitem__ methods). The behavior will be the same as passing
similar input to ix except in the case of integer indexing:

In [8]: s = Series(randn(6), index=list('acegkm'))

In [9]: s
Out[9]:
a -0.800734
c -0.229737
e -0.781940
g 0.756053
k 2.613373
m -0.159310
Length: 6, dtype: float64

In [10]: s[['m', 'a', 'c', 'e']]
\\\Out[10]:
→˓

m -0.159310
a -0.800734
c -0.229737
e -0.781940
Length: 4, dtype: float64

In [11]: s['b':'l']
\\\Out[11]:
→˓

c -0.229737
e -0.781940
g 0.756053
k 2.613373
Length: 4, dtype: float64

In [12]: s['c':'k']
\\\Out[12]:
→˓

c -0.229737
e -0.781940
g 0.756053
k 2.613373
Length: 4, dtype: float64

In the case of integer indexes, the behavior will be exactly as before (shadowing ndarray):

In [13]: s = Series(randn(6), index=range(0, 12, 2))

In [14]: s[[4, 0, 2]]
Out[14]:

(continues on next page)

446 Chapter 1. What’s New

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

4 0.022862
0 -0.321246
2 -0.707337
Length: 3, dtype: float64

In [15]: s[1:5]
\\Out[15]:
→˓

2 -0.707337
4 0.022862
6 0.306713
8 -0.162222
Length: 4, dtype: float64

If you wish to do indexing with sequences and slicing on an integer index with label semantics, use ix.

1.40.5 Other API Changes

• The deprecated LongPanel class has been completely removed

• If Series.sort is called on a column of a DataFrame, an exception will now be raised. Before it was
possible to accidentally mutate a DataFrame’s column by doing df[col].sort() instead of the side-effect
free method df[col].order() (GH316)

• Miscellaneous renames and deprecations which will (harmlessly) raise FutureWarning

• drop added as an optional parameter to DataFrame.reset_index (GH699)

1.40.6 Performance improvements

• Cythonized GroupBy aggregations no longer presort the data, thus achieving a significant speedup (GH93).
GroupBy aggregations with Python functions significantly sped up by clever manipulation of the ndarray data
type in Cython (GH496).

• Better error message in DataFrame constructor when passed column labels don’t match data (GH497)

• Substantially improve performance of multi-GroupBy aggregation when a Python function is passed, reuse
ndarray object in Cython (GH496)

• Can store objects indexed by tuples and floats in HDFStore (GH492)

• Don’t print length by default in Series.to_string, add length option (GH489)

• Improve Cython code for multi-groupby to aggregate without having to sort the data (GH93)

• Improve MultiIndex reindexing speed by storing tuples in the MultiIndex, test for backwards unpickling com-
patibility

• Improve column reindexing performance by using specialized Cython take function

• Further performance tweaking of Series.__getitem__ for standard use cases

• Avoid Index dict creation in some cases (i.e. when getting slices, etc.), regression from prior versions

• Friendlier error message in setup.py if NumPy not installed

• Use common set of NA-handling operations (sum, mean, etc.) in Panel class also (GH536)

• Default name assignment when calling reset_index on DataFrame with a regular (non-hierarchical) index
(GH476)

1.40. v.0.7.0 (February 9, 2012) 447

https://github.com/pandas-dev/pandas/issues/316
https://github.com/pandas-dev/pandas/issues/699
https://github.com/pandas-dev/pandas/issues/93
https://github.com/pandas-dev/pandas/issues/496
https://github.com/pandas-dev/pandas/issues/497
https://github.com/pandas-dev/pandas/issues/496
https://github.com/pandas-dev/pandas/issues/492
https://github.com/pandas-dev/pandas/issues/489
https://github.com/pandas-dev/pandas/issues/93
https://github.com/pandas-dev/pandas/issues/536
https://github.com/pandas-dev/pandas/issues/476

pandas: powerful Python data analysis toolkit, Release 0.23.4

• Use Cythonized groupers when possible in Series/DataFrame stat ops with level parameter passed (GH545)

• Ported skiplist data structure to C to speed up rolling_median by about 5-10x in most typical use cases
(GH374)

1.41 v.0.6.1 (December 13, 2011)

1.41.1 New features

• Can append single rows (as Series) to a DataFrame

• Add Spearman and Kendall rank correlation options to Series.corr and DataFrame.corr (GH428)

• Added get_value and set_value methods to Series, DataFrame, and Panel for very low-overhead access
(>2x faster in many cases) to scalar elements (GH437, GH438). set_value is capable of producing an
enlarged object.

• Add PyQt table widget to sandbox (GH435)

• DataFrame.align can accept Series arguments and an axis option (GH461)

• Implement new SparseArray and SparseList data structures. SparseSeries now derives from SparseArray
(GH463)

• Better console printing options (GH453)

• Implement fast data ranking for Series and DataFrame, fast versions of scipy.stats.rankdata (GH428)

• Implement DataFrame.from_items alternate constructor (GH444)

• DataFrame.convert_objects method for inferring better dtypes for object columns (GH302)

• Add rolling_corr_pairwise function for computing Panel of correlation matrices (GH189)

• Add margins option to pivot_table for computing subgroup aggregates (GH114)

• Add Series.from_csv function (GH482)

• Can pass DataFrame/DataFrame and DataFrame/Series to rolling_corr/rolling_cov (GH #462)

• MultiIndex.get_level_values can accept the level name

1.41.2 Performance improvements

• Improve memory usage of DataFrame.describe (do not copy data unnecessarily) (PR #425)

• Optimize scalar value lookups in the general case by 25% or more in Series and DataFrame

• Fix performance regression in cross-sectional count in DataFrame, affecting DataFrame.dropna speed

• Column deletion in DataFrame copies no data (computes views on blocks) (GH #158)

1.42 v.0.6.0 (November 25, 2011)

1.42.1 New Features

• Added melt function to pandas.core.reshape

• Added level parameter to group by level in Series and DataFrame descriptive statistics (GH313)

448 Chapter 1. What’s New

https://github.com/pandas-dev/pandas/issues/545
https://github.com/pandas-dev/pandas/issues/374
https://github.com/pandas-dev/pandas/issues/428
https://github.com/pandas-dev/pandas/issues/437
https://github.com/pandas-dev/pandas/issues/438
https://github.com/pandas-dev/pandas/issues/435
https://github.com/pandas-dev/pandas/issues/461
https://github.com/pandas-dev/pandas/issues/463
https://github.com/pandas-dev/pandas/issues/453
https://github.com/pandas-dev/pandas/issues/428
https://github.com/pandas-dev/pandas/issues/444
https://github.com/pandas-dev/pandas/issues/302
https://github.com/pandas-dev/pandas/issues/189
https://github.com/pandas-dev/pandas/issues/114
https://github.com/pandas-dev/pandas/issues/482
https://github.com/pandas-dev/pandas/issues/313

pandas: powerful Python data analysis toolkit, Release 0.23.4

• Added head and tail methods to Series, analogous to to DataFrame (GH296)

• Added Series.isin function which checks if each value is contained in a passed sequence (GH289)

• Added float_format option to Series.to_string

• Added skip_footer (GH291) and converters (GH343) options to read_csv and read_table

• Added drop_duplicates and duplicated functions for removing duplicate DataFrame rows and check-
ing for duplicate rows, respectively (GH319)

• Implemented operators ‘&’, ‘|’, ‘^’, ‘-‘ on DataFrame (GH347)

• Added Series.mad, mean absolute deviation

• Added QuarterEnd DateOffset (GH321)

• Added dot to DataFrame (GH65)

• Added orient option to Panel.from_dict (GH359, GH301)

• Added orient option to DataFrame.from_dict

• Added passing list of tuples or list of lists to DataFrame.from_records (GH357)

• Added multiple levels to groupby (GH103)

• Allow multiple columns in by argument of DataFrame.sort_index (GH92, GH362)

• Added fast get_value and put_value methods to DataFrame (GH360)

• Added cov instance methods to Series and DataFrame (GH194, GH362)

• Added kind='bar' option to DataFrame.plot (GH348)

• Added idxmin and idxmax to Series and DataFrame (GH286)

• Added read_clipboard function to parse DataFrame from clipboard (GH300)

• Added nunique function to Series for counting unique elements (GH297)

• Made DataFrame constructor use Series name if no columns passed (GH373)

• Support regular expressions in read_table/read_csv (GH364)

• Added DataFrame.to_html for writing DataFrame to HTML (GH387)

• Added support for MaskedArray data in DataFrame, masked values converted to NaN (GH396)

• Added DataFrame.boxplot function (GH368)

• Can pass extra args, kwds to DataFrame.apply (GH376)

• Implement DataFrame.join with vector on argument (GH312)

• Added legend boolean flag to DataFrame.plot (GH324)

• Can pass multiple levels to stack and unstack (GH370)

• Can pass multiple values columns to pivot_table (GH381)

• Use Series name in GroupBy for result index (GH363)

• Added raw option to DataFrame.apply for performance if only need ndarray (GH309)

• Added proper, tested weighted least squares to standard and panel OLS (GH303)

1.42. v.0.6.0 (November 25, 2011) 449

https://github.com/pandas-dev/pandas/issues/296
https://github.com/pandas-dev/pandas/issues/289
https://github.com/pandas-dev/pandas/issues/291
https://github.com/pandas-dev/pandas/issues/343
https://github.com/pandas-dev/pandas/issues/319
https://github.com/pandas-dev/pandas/issues/347
https://github.com/pandas-dev/pandas/issues/321
https://github.com/pandas-dev/pandas/issues/65
https://github.com/pandas-dev/pandas/issues/359
https://github.com/pandas-dev/pandas/issues/301
https://github.com/pandas-dev/pandas/issues/357
https://github.com/pandas-dev/pandas/issues/103
https://github.com/pandas-dev/pandas/issues/92
https://github.com/pandas-dev/pandas/issues/362
https://github.com/pandas-dev/pandas/issues/360
https://github.com/pandas-dev/pandas/issues/194
https://github.com/pandas-dev/pandas/issues/362
https://github.com/pandas-dev/pandas/issues/348
https://github.com/pandas-dev/pandas/issues/286
https://github.com/pandas-dev/pandas/issues/300
https://github.com/pandas-dev/pandas/issues/297
https://github.com/pandas-dev/pandas/issues/373
https://github.com/pandas-dev/pandas/issues/364
https://github.com/pandas-dev/pandas/issues/387
https://github.com/pandas-dev/pandas/issues/396
https://github.com/pandas-dev/pandas/issues/368
https://github.com/pandas-dev/pandas/issues/376
https://github.com/pandas-dev/pandas/issues/312
https://github.com/pandas-dev/pandas/issues/324
https://github.com/pandas-dev/pandas/issues/370
https://github.com/pandas-dev/pandas/issues/381
https://github.com/pandas-dev/pandas/issues/363
https://github.com/pandas-dev/pandas/issues/309
https://github.com/pandas-dev/pandas/issues/303

pandas: powerful Python data analysis toolkit, Release 0.23.4

1.42.2 Performance Enhancements

• VBENCH Cythonized cache_readonly, resulting in substantial micro-performance enhancements through-
out the codebase (GH361)

• VBENCH Special Cython matrix iterator for applying arbitrary reduction operations with 3-5x better perfor-
mance than np.apply_along_axis (GH309)

• VBENCH Improved performance of MultiIndex.from_tuples

• VBENCH Special Cython matrix iterator for applying arbitrary reduction operations

• VBENCH + DOCUMENT Add raw option to DataFrame.apply for getting better performance when

• VBENCH Faster cythonized count by level in Series and DataFrame (GH341)

• VBENCH? Significant GroupBy performance enhancement with multiple keys with many “empty” combina-
tions

• VBENCH New Cython vectorized function map_infer speeds up Series.apply and Series.map sig-
nificantly when passed elementwise Python function, motivated by (GH355)

• VBENCH Significantly improved performance of Series.order, which also makes np.unique called on a
Series faster (GH327)

• VBENCH Vastly improved performance of GroupBy on axes with a MultiIndex (GH299)

1.43 v.0.5.0 (October 24, 2011)

1.43.1 New Features

• Added DataFrame.align method with standard join options

• Added parse_dates option to read_csv and read_table methods to optionally try to parse dates in the
index columns

• Added nrows, chunksize, and iterator arguments to read_csv and read_table. The last two
return a new TextParser class capable of lazily iterating through chunks of a flat file (GH242)

• Added ability to join on multiple columns in DataFrame.join (GH214)

• Added private _get_duplicates function to Index for identifying duplicate values more easily (ENH5c)

• Added column attribute access to DataFrame.

• Added Python tab completion hook for DataFrame columns. (GH233, GH230)

• Implemented Series.describe for Series containing objects (GH241)

• Added inner join option to DataFrame.join when joining on key(s) (GH248)

• Implemented selecting DataFrame columns by passing a list to __getitem__ (GH253)

• Implemented & and | to intersect / union Index objects, respectively (GH261)

• Added pivot_table convenience function to pandas namespace (GH234)

• Implemented Panel.rename_axis function (GH243)

• DataFrame will show index level names in console output (GH334)

• Implemented Panel.take

• Added set_eng_float_format for alternate DataFrame floating point string formatting (ENH61)

450 Chapter 1. What’s New

https://github.com/pandas-dev/pandas/issues/361
https://github.com/pandas-dev/pandas/issues/309
https://github.com/pandas-dev/pandas/issues/341
https://github.com/pandas-dev/pandas/issues/355
https://github.com/pandas-dev/pandas/issues/327
https://github.com/pandas-dev/pandas/issues/299
https://github.com/pandas-dev/pandas/issues/242
https://github.com/pandas-dev/pandas/issues/214
https://github.com/pandas-dev/pandas/commit/5ca6ff5d822ee4ddef1ec0d87b6d83d8b4bbd3eb
https://github.com/pandas-dev/pandas/issues/233
https://github.com/pandas-dev/pandas/issues/230
https://github.com/pandas-dev/pandas/issues/241
https://github.com/pandas-dev/pandas/issues/248
https://github.com/pandas-dev/pandas/issues/253
https://github.com/pandas-dev/pandas/issues/261
https://github.com/pandas-dev/pandas/issues/234
https://github.com/pandas-dev/pandas/issues/243
https://github.com/pandas-dev/pandas/issues/334
https://github.com/pandas-dev/pandas/commit/6141961

pandas: powerful Python data analysis toolkit, Release 0.23.4

• Added convenience set_index function for creating a DataFrame index from its existing columns

• Implemented groupby hierarchical index level name (GH223)

• Added support for different delimiters in DataFrame.to_csv (GH244)

• TODO: DOCS ABOUT TAKE METHODS

1.43.2 Performance Enhancements

• VBENCH Major performance improvements in file parsing functions read_csv and read_table

• VBENCH Added Cython function for converting tuples to ndarray very fast. Speeds up many MultiIndex-related
operations

• VBENCH Refactored merging / joining code into a tidy class and disabled unnecessary computations in the
float/object case, thus getting about 10% better performance (GH211)

• VBENCH Improved speed of DataFrame.xs on mixed-type DataFrame objects by about 5x, regression from
0.3.0 (GH215)

• VBENCH With new DataFrame.align method, speeding up binary operations between differently-indexed
DataFrame objects by 10-25%.

• VBENCH Significantly sped up conversion of nested dict into DataFrame (GH212)

• VBENCH Significantly speed up DataFrame __repr__ and count on large mixed-type DataFrame objects

1.44 v.0.4.3 through v0.4.1 (September 25 - October 9, 2011)

1.44.1 New Features

• Added Python 3 support using 2to3 (GH200)

• Added name attribute to Series, now prints as part of Series.__repr__

• Added instance methods isnull and notnull to Series (GH209, GH203)

• Added Series.align method for aligning two series with choice of join method (ENH56)

• Added method get_level_values to MultiIndex (GH188)

• Set values in mixed-type DataFrame objects via .ix indexing attribute (GH135)

• Added new DataFrame methods get_dtype_counts and property dtypes (ENHdc)

• Added ignore_index option to DataFrame.append to stack DataFrames (ENH1b)

• read_csv tries to sniff delimiters using csv.Sniffer (GH146)

• read_csv can read multiple columns into a MultiIndex; DataFrame’s to_csv method writes out a cor-
responding MultiIndex (GH151)

• DataFrame.rename has a new copy parameter to rename a DataFrame in place (ENHed)

• Enable unstacking by name (GH142)

• Enable sortlevel to work by level (GH141)

1.44. v.0.4.3 through v0.4.1 (September 25 - October 9, 2011) 451

https://github.com/pandas-dev/pandas/issues/223
https://github.com/pandas-dev/pandas/issues/244
https://github.com/pandas-dev/pandas/issues/211
https://github.com/pandas-dev/pandas/issues/215
https://github.com/pandas-dev/pandas/issues/212
https://github.com/pandas-dev/pandas/issues/200
https://github.com/pandas-dev/pandas/issues/209
https://github.com/pandas-dev/pandas/issues/203
https://github.com/pandas-dev/pandas/commit/56e0c9ffafac79ce262b55a6a13e1b10a88fbe93
https://github.com/pandas-dev/pandas/issues/188
https://github.com/pandas-dev/pandas/issues/135
https://github.com/pandas-dev/pandas/commit/dca3c5c5a6a3769ee01465baca04cfdfa66a4f76
https://github.com/pandas-dev/pandas/commit/1ba56251f0013ff7cd8834e9486cef2b10098371
https://github.com/pandas-dev/pandas/issues/146
https://github.com/pandas-dev/pandas/issues/151
https://github.com/pandas-dev/pandas/commit/edd9f1945fc010a57fa0ae3b3444d1fffe592591
https://github.com/pandas-dev/pandas/issues/142
https://github.com/pandas-dev/pandas/issues/141

pandas: powerful Python data analysis toolkit, Release 0.23.4

1.44.2 Performance Enhancements

• Altered binary operations on differently-indexed SparseSeries objects to use the integer-based (dense) alignment
logic which is faster with a larger number of blocks (GH205)

• Wrote faster Cython data alignment / merging routines resulting in substantial speed increases

• Improved performance of isnull and notnull, a regression from v0.3.0 (GH187)

• Refactored code related to DataFrame.join so that intermediate aligned copies of the data in each
DataFrame argument do not need to be created. Substantial performance increases result (GH176)

• Substantially improved performance of generic Index.intersection and Index.union

• Implemented BlockManager.take resulting in significantly faster take performance on mixed-type
DataFrame objects (GH104)

• Improved performance of Series.sort_index

• Significant groupby performance enhancement: removed unnecessary integrity checks in DataFrame internals
that were slowing down slicing operations to retrieve groups

• Optimized _ensure_index function resulting in performance savings in type-checking Index objects

• Wrote fast time series merging / joining methods in Cython. Will be integrated later into DataFrame.join and
related functions

452 Chapter 1. What’s New

https://github.com/pandas-dev/pandas/issues/205
https://github.com/pandas-dev/pandas/issues/187
https://github.com/pandas-dev/pandas/issues/176
https://github.com/pandas-dev/pandas/issues/104

CHAPTER

TWO

INSTALLATION

The easiest way to install pandas is to install it as part of the Anaconda distribution, a cross platform distribution for
data analysis and scientific computing. This is the recommended installation method for most users.

Instructions for installing from source, PyPI, ActivePython, various Linux distributions, or a development version are
also provided.

2.1 Plan for dropping Python 2.7

The Python core team plans to stop supporting Python 2.7 on January 1st, 2020. In line with NumPy’s plans, all
pandas releases through December 31, 2018 will support Python 2.

The final release before December 31, 2018 will be the last release to support Python 2. The released package will
continue to be available on PyPI and through conda.

Starting January 1, 2019, all releases will be Python 3 only.

If there are people interested in continued support for Python 2.7 past December 31, 2018 (either backporting bugfixes
or funding) please reach out to the maintainers on the issue tracker.

For more information, see the Python 3 statement and the Porting to Python 3 guide.

2.2 Python version support

Officially Python 2.7, 3.5, 3.6, and 3.7.

2.3 Installing pandas

2.3.1 Installing with Anaconda

Installing pandas and the rest of the NumPy and SciPy stack can be a little difficult for inexperienced users.

The simplest way to install not only pandas, but Python and the most popular packages that make up the SciPy
stack (IPython, NumPy, Matplotlib, . . .) is with Anaconda, a cross-platform (Linux, Mac OS X, Windows) Python
distribution for data analytics and scientific computing.

After running the installer, the user will have access to pandas and the rest of the SciPy stack without needing to install
anything else, and without needing to wait for any software to be compiled.

Installation instructions for Anaconda can be found here.

453

http://docs.continuum.io/anaconda/
https://pypi.org/project/pandas
https://www.activestate.com/activepython/downloads
http://github.com/pandas-dev/pandas
https://github.com/numpy/numpy/blob/master/doc/neps/nep-0014-dropping-python2.7-proposal.rst#plan-for-dropping-python-27-support
http://python3statement.org/
https://docs.python.org/3/howto/pyporting.html
http://www.numpy.org/
http://www.scipy.org/
http://www.scipy.org/
http://ipython.org/
http://www.numpy.org/
http://matplotlib.org/
http://docs.continuum.io/anaconda/
http://www.scipy.org/
http://docs.continuum.io/anaconda/
http://docs.continuum.io/anaconda/install.html

pandas: powerful Python data analysis toolkit, Release 0.23.4

A full list of the packages available as part of the Anaconda distribution can be found here.

Another advantage to installing Anaconda is that you don’t need admin rights to install it. Anaconda can install in the
user’s home directory, which makes it trivial to delete Anaconda if you decide (just delete that folder).

2.3.2 Installing with Miniconda

The previous section outlined how to get pandas installed as part of the Anaconda distribution. However this approach
means you will install well over one hundred packages and involves downloading the installer which is a few hundred
megabytes in size.

If you want to have more control on which packages, or have a limited internet bandwidth, then installing pandas with
Miniconda may be a better solution.

Conda is the package manager that the Anaconda distribution is built upon. It is a package manager that is both
cross-platform and language agnostic (it can play a similar role to a pip and virtualenv combination).

Miniconda allows you to create a minimal self contained Python installation, and then use the Conda command to
install additional packages.

First you will need Conda to be installed and downloading and running the Miniconda will do this for you. The
installer can be found here

The next step is to create a new conda environment. A conda environment is like a virtualenv that allows you to specify
a specific version of Python and set of libraries. Run the following commands from a terminal window:

conda create -n name_of_my_env python

This will create a minimal environment with only Python installed in it. To put your self inside this environment run:

source activate name_of_my_env

On Windows the command is:

activate name_of_my_env

The final step required is to install pandas. This can be done with the following command:

conda install pandas

To install a specific pandas version:

conda install pandas=0.20.3

To install other packages, IPython for example:

conda install ipython

To install the full Anaconda distribution:

conda install anaconda

If you need packages that are available to pip but not conda, then install pip, and then use pip to install those packages:

conda install pip
pip install django

454 Chapter 2. Installation

http://docs.continuum.io/anaconda/
http://docs.continuum.io/anaconda/pkg-docs.html
http://docs.continuum.io/anaconda/
http://conda.pydata.org/miniconda.html
http://conda.pydata.org/docs/
http://docs.continuum.io/anaconda/
http://conda.pydata.org/miniconda.html
http://conda.pydata.org/docs/
http://conda.pydata.org/docs/
http://conda.pydata.org/miniconda.html
http://conda.pydata.org/miniconda.html
http://docs.continuum.io/anaconda/

pandas: powerful Python data analysis toolkit, Release 0.23.4

2.3.3 Installing from PyPI

pandas can be installed via pip from PyPI.

pip install pandas

2.3.4 Installing with ActivePython

Installation instructions for ActivePython can be found here. Versions 2.7 and 3.5 include pandas.

2.3.5 Installing using your Linux distribution’s package manager.

The commands in this table will install pandas for Python 3 from your distribution. To install pandas for Python 2,
you may need to use the python-pandas package.

Distribution Status Download / Reposi-
tory Link

Install method

Debian stable official Debian reposi-
tory

sudo apt-get install python3-pandas

Debian &
Ubuntu

unstable
(latest
pack-
ages)

NeuroDebian sudo apt-get install python3-pandas

Ubuntu stable official Ubuntu reposi-
tory

sudo apt-get install python3-pandas

OpenSuse stable OpenSuse Repository zypper in python3-pandas
Fedora stable official Fedora reposi-

tory
dnf install python3-pandas

Centos/RHELstable EPEL repository yum install python3-pandas

However, the packages in the linux package managers are often a few versions behind, so to get the newest version of
pandas, it’s recommended to install using the pip or conda methods described above.

2.3.6 Installing from source

See the contributing documentation for complete instructions on building from the git source tree. Further, see creating
a development environment if you wish to create a pandas development environment.

2.4 Running the test suite

pandas is equipped with an exhaustive set of unit tests, covering about 97% of the codebase as of this writing. To
run it on your machine to verify that everything is working (and that you have all of the dependencies, soft and hard,
installed), make sure you have pytest and run:

>>> import pandas as pd
>>> pd.test()
running: pytest --skip-slow --skip-network C:\Users\TP\Anaconda3\envs\py36\lib\site-
→˓packages\pandas
============================= test session starts =============================

(continues on next page)

2.4. Running the test suite 455

https://pypi.org/project/pandas
https://www.activestate.com/activepython
https://www.activestate.com/activepython/downloads
http://packages.debian.org/search?keywords=pandas&searchon=names&suite=all§ion=all
http://packages.debian.org/search?keywords=pandas&searchon=names&suite=all§ion=all
http://neuro.debian.net/index.html#how-to-use-this-repository
http://packages.ubuntu.com/search?keywords=pandas&searchon=names&suite=all§ion=all
http://packages.ubuntu.com/search?keywords=pandas&searchon=names&suite=all§ion=all
http://software.opensuse.org/package/python-pandas?search_term=pandas
https://admin.fedoraproject.org/pkgdb/package/rpms/python-pandas/
https://admin.fedoraproject.org/pkgdb/package/rpms/python-pandas/
https://admin.fedoraproject.org/pkgdb/package/rpms/python-pandas/
http://doc.pytest.org/en/latest/

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

platform win32 -- Python 3.6.2, pytest-3.2.1, py-1.4.34, pluggy-0.4.0
rootdir: C:\Users\TP\Documents\Python\pandasdev\pandas, inifile: setup.cfg
collected 12145 items / 3 skipped

..S......

........S..

...

==================== 12130 passed, 12 skipped in 368.339 seconds =====================

2.5 Dependencies

• setuptools: 24.2.0 or higher

• NumPy: 1.9.0 or higher

• python-dateutil: 2.5.0 or higher

• pytz

2.5.1 Recommended Dependencies

• numexpr: for accelerating certain numerical operations. numexpr uses multiple cores as well as smart chunk-
ing and caching to achieve large speedups. If installed, must be Version 2.4.6 or higher.

• bottleneck: for accelerating certain types of nan evaluations. bottleneck uses specialized cython routines
to achieve large speedups. If installed, must be Version 1.0.0 or higher.

Note: You are highly encouraged to install these libraries, as they provide speed improvements, especially when
working with large data sets.

2.5.2 Optional Dependencies

• Cython: Only necessary to build development version. Version 0.24 or higher.

• SciPy: miscellaneous statistical functions, Version 0.14.0 or higher

• xarray: pandas like handling for > 2 dims, needed for converting Panels to xarray objects. Version 0.7.0 or
higher is recommended.

• PyTables: necessary for HDF5-based storage. Version 3.0.0 or higher required, Version 3.2.1 or higher highly
recommended.

• Feather Format: necessary for feather-based storage, version 0.3.1 or higher.

• Apache Parquet, either pyarrow (>= 0.4.1) or fastparquet (>= 0.0.6) for parquet-based storage. The snappy and
brotli are available for compression support.

• SQLAlchemy: for SQL database support. Version 0.8.1 or higher recommended. Besides SQLAlchemy, you
also need a database specific driver. You can find an overview of supported drivers for each SQL dialect in the
SQLAlchemy docs. Some common drivers are:

– psycopg2: for PostgreSQL

456 Chapter 2. Installation

https://setuptools.readthedocs.io/en/latest/
http://www.numpy.org
//https://dateutil.readthedocs.io/en/stable/
http://pytz.sourceforge.net/
https://github.com/pydata/numexpr
https://github.com/kwgoodman/bottleneck
http://www.cython.org
http://www.scipy.org
http://xarray.pydata.org
http://www.pytables.org
https://github.com/wesm/feather
https://parquet.apache.org/
http://arrow.apache.org/docs/python/
https://fastparquet.readthedocs.io/en/latest
https://pypi.org/project/python-snappy
https://pypi.org/project/brotlipy
http://www.sqlalchemy.org
http://docs.sqlalchemy.org/en/latest/dialects/index.html
http://initd.org/psycopg/

pandas: powerful Python data analysis toolkit, Release 0.23.4

– pymysql: for MySQL.

– SQLite: for SQLite, this is included in Python’s standard library by default.

• matplotlib: for plotting, Version 1.4.3 or higher.

• For Excel I/O:

– xlrd/xlwt: Excel reading (xlrd) and writing (xlwt)

– openpyxl: openpyxl version 2.4.0 for writing .xlsx files (xlrd >= 0.9.0)

– XlsxWriter: Alternative Excel writer

• Jinja2: Template engine for conditional HTML formatting.

• s3fs: necessary for Amazon S3 access (s3fs >= 0.0.7).

• blosc: for msgpack compression using blosc

• One of qtpy (requires PyQt or PySide), PyQt5, PyQt4, pygtk, xsel, or xclip: necessary to use
read_clipboard(). Most package managers on Linux distributions will have xclip and/or xsel im-
mediately available for installation.

• pandas-gbq: for Google BigQuery I/O.

• Backports.lzma: Only for Python 2, for writing to and/or reading from an xz compressed DataFrame in CSV;
Python 3 support is built into the standard library.

• One of the following combinations of libraries is needed to use the top-level read_html() function:

Changed in version 0.23.0.

Note: If using BeautifulSoup4 a minimum version of 4.2.1 is required

– BeautifulSoup4 and html5lib (Any recent version of html5lib is okay.)

– BeautifulSoup4 and lxml

– BeautifulSoup4 and html5lib and lxml

– Only lxml, although see HTML Table Parsing for reasons as to why you should probably not take this
approach.

Warning:

– if you install BeautifulSoup4 you must install either lxml or html5lib or both. read_html() will
not work with only BeautifulSoup4 installed.

– You are highly encouraged to read HTML Table Parsing gotchas. It explains issues surrounding the
installation and usage of the above three libraries.

Note:

– if you’re on a system with apt-get you can do

sudo apt-get build-dep python-lxml

to get the necessary dependencies for installation of lxml. This will prevent further headaches down the
line.

2.5. Dependencies 457

https://github.com/PyMySQL/PyMySQL
https://docs.python.org/3/library/sqlite3.html
http://matplotlib.org/
http://www.python-excel.org/
http://https://openpyxl.readthedocs.io/en/default/
https://pypi.org/project/XlsxWriter
http://jinja.pocoo.org/
http://s3fs.readthedocs.io/
https://pypi.org/project/blosc
https://github.com/spyder-ide/qtpy
https://www.riverbankcomputing.com/software/pyqt/download5
http://www.riverbankcomputing.com/software/pyqt/download
http://www.pygtk.org/
http://www.vergenet.net/~conrad/software/xsel/
https://github.com/astrand/xclip/
https://pandas-gbq.readthedocs.io/en/latest/install.html#dependencies
https://pypi.org/project/backports.lzma/
http://www.crummy.com/software/BeautifulSoup
https://github.com/html5lib/html5lib-python
https://github.com/html5lib/html5lib-python
http://www.crummy.com/software/BeautifulSoup
http://lxml.de
http://www.crummy.com/software/BeautifulSoup
https://github.com/html5lib/html5lib-python
http://lxml.de
http://lxml.de
http://www.crummy.com/software/BeautifulSoup
http://lxml.de
https://github.com/html5lib/html5lib-python
http://www.crummy.com/software/BeautifulSoup
http://lxml.de

pandas: powerful Python data analysis toolkit, Release 0.23.4

Note: Without the optional dependencies, many useful features will not work. Hence, it is highly recommended that
you install these. A packaged distribution like Anaconda, ActivePython (version 2.7 or 3.5), or Enthought Canopy
may be worth considering.

458 Chapter 2. Installation

http://docs.continuum.io/anaconda/
https://www.activestate.com/activepython/downloads
http://enthought.com/products/canopy

CHAPTER

THREE

CONTRIBUTING TO PANDAS

Table of contents:

• Where to start?

• Bug reports and enhancement requests

• Working with the code

– Version control, Git, and GitHub

– Getting started with Git

– Forking

– Creating a development environment

* Installing a C Compiler

* Creating a Python Environment

* Creating a Python Environment (pip)

– Creating a branch

• Contributing to the documentation

– About the pandas documentation

– How to build the pandas documentation

* Requirements

* Building the documentation

* Building master branch documentation

• Contributing to the code base

– Code standards

* C (cpplint)

* Python (PEP8)

* Backwards Compatibility

– Testing With Continuous Integration

– Test-driven development/code writing

* Writing tests

459

pandas: powerful Python data analysis toolkit, Release 0.23.4

* Transitioning to pytest

* Using pytest

– Running the test suite

– Running the performance test suite

– Documenting your code

• Contributing your changes to pandas

– Committing your code

– Pushing your changes

– Review your code

– Finally, make the pull request

– Updating your pull request

– Delete your merged branch (optional)

3.1 Where to start?

All contributions, bug reports, bug fixes, documentation improvements, enhancements, and ideas are welcome.

If you are brand new to pandas or open-source development, we recommend going through the GitHub “issues” tab to
find issues that interest you. There are a number of issues listed under Docs and good first issue where you could start
out. Once you’ve found an interesting issue, you can return here to get your development environment setup.

Feel free to ask questions on the mailing list or on Gitter.

3.2 Bug reports and enhancement requests

Bug reports are an important part of making pandas more stable. Having a complete bug report will allow others to
reproduce the bug and provide insight into fixing. See this stackoverflow article and this blogpost for tips on writing a
good bug report.

Trying the bug-producing code out on the master branch is often a worthwhile exercise to confirm the bug still exists.
It is also worth searching existing bug reports and pull requests to see if the issue has already been reported and/or
fixed.

Bug reports must:

1. Include a short, self-contained Python snippet reproducing the problem. You can format the code nicely by
using GitHub Flavored Markdown:

```python
>>> from pandas import DataFrame
>>> df = DataFrame(...)
...
```

2. Include the full version string of pandas and its dependencies. You can use the built in function:

460 Chapter 3. Contributing to pandas

https://github.com/pandas-dev/pandas/issues
https://github.com/pandas-dev/pandas/issues?labels=Docs&sort=updated&state=open
https://github.com/pandas-dev/pandas/issues?labels=good+first+issue&sort=updated&state=open
https://groups.google.com/forum/?fromgroups#!forum/pydata
https://gitter.im/pydata/pandas
https://stackoverflow.com/help/mcve
http://matthewrocklin.com/blog/work/2018/02/28/minimal-bug-reports
http://github.github.com/github-flavored-markdown/

pandas: powerful Python data analysis toolkit, Release 0.23.4

>>> import pandas as pd
>>> pd.show_versions()

3. Explain why the current behavior is wrong/not desired and what you expect instead.

The issue will then show up to the pandas community and be open to comments/ideas from others.

3.3 Working with the code

Now that you have an issue you want to fix, enhancement to add, or documentation to improve, you need to learn how
to work with GitHub and the pandas code base.

3.3.1 Version control, Git, and GitHub

To the new user, working with Git is one of the more daunting aspects of contributing to pandas. It can very quickly
become overwhelming, but sticking to the guidelines below will help keep the process straightforward and mostly
trouble free. As always, if you are having difficulties please feel free to ask for help.

The code is hosted on GitHub. To contribute you will need to sign up for a free GitHub account. We use Git for
version control to allow many people to work together on the project.

Some great resources for learning Git:

• the GitHub help pages.

• the NumPy’s documentation.

• Matthew Brett’s Pydagogue.

3.3.2 Getting started with Git

GitHub has instructions for installing git, setting up your SSH key, and configuring git. All these steps need to be
completed before you can work seamlessly between your local repository and GitHub.

3.3.3 Forking

You will need your own fork to work on the code. Go to the pandas project page and hit the Fork button. You will
want to clone your fork to your machine:

git clone https://github.com/your-user-name/pandas.git pandas-yourname
cd pandas-yourname
git remote add upstream https://github.com/pandas-dev/pandas.git

This creates the directory pandas-yourname and connects your repository to the upstream (main project) pandas
repository.

3.3.4 Creating a development environment

To test out code changes, you’ll need to build pandas from source, which requires a C compiler and Python environ-
ment. If you’re making documentation changes, you can skip to Contributing to the documentation but you won’t be
able to build the documentation locally before pushing your changes.

3.3. Working with the code 461

https://www.github.com/pandas-dev/pandas
https://github.com/signup/free
http://git-scm.com/
http://help.github.com/
http://docs.scipy.org/doc/numpy/dev/index.html
http://matthew-brett.github.com/pydagogue/
http://help.github.com/set-up-git-redirect
https://github.com/pandas-dev/pandas

pandas: powerful Python data analysis toolkit, Release 0.23.4

3.3.4.1 Installing a C Compiler

Pandas uses C extensions (mostly written using Cython) to speed up certain operations. To install pandas from source,
you need to compile these C extensions, which means you need a C compiler. This process depends on which platform
you’re using. Follow the CPython contributing guidelines for getting a compiler installed. You don’t need to do any
of the ./configure or make steps; you only need to install the compiler.

For Windows developers, the following links may be helpful.

• https://blogs.msdn.microsoft.com/pythonengineering/2016/04/11/unable-to-find-vcvarsall-bat/

• https://github.com/conda/conda-recipes/wiki/Building-from-Source-on-Windows-32-bit-and-64-bit

• https://cowboyprogrammer.org/building-python-wheels-for-windows/

• https://blog.ionelmc.ro/2014/12/21/compiling-python-extensions-on-windows/

• https://support.enthought.com/hc/en-us/articles/204469260-Building-Python-extensions-with-Canopy

Let us know if you have any difficulties by opening an issue or reaching out on Gitter.

3.3.4.2 Creating a Python Environment

Now that you have a C compiler, create an isolated pandas development environment:

• Install either Anaconda or miniconda

• Make sure your conda is up to date (conda update conda)

• Make sure that you have cloned the repository

• cd to the pandas source directory

We’ll now kick off a three-step process:

1. Install the build dependencies

2. Build and install pandas

3. Install the optional dependencies

Create and activate the build environment
conda env create -f ci/environment-dev.yaml
conda activate pandas-dev

or with older versions of Anaconda:
source activate pandas-dev

Build and install pandas
python setup.py build_ext --inplace -j 4
python -m pip install -e .

Install the rest of the optional dependencies
conda install -c defaults -c conda-forge --file=ci/requirements-optional-conda.txt

At this point you should be able to import pandas from your locally built version:

$ python # start an interpreter
>>> import pandas
>>> print(pandas.__version__)
0.22.0.dev0+29.g4ad6d4d74

462 Chapter 3. Contributing to pandas

https://docs.python.org/devguide/setup.html#build-dependencies
https://blogs.msdn.microsoft.com/pythonengineering/2016/04/11/unable-to-find-vcvarsall-bat/
https://github.com/conda/conda-recipes/wiki/Building-from-Source-on-Windows-32-bit-and-64-bit
https://cowboyprogrammer.org/building-python-wheels-for-windows/
https://blog.ionelmc.ro/2014/12/21/compiling-python-extensions-on-windows/
https://support.enthought.com/hc/en-us/articles/204469260-Building-Python-extensions-with-Canopy
https://gitter.im/pydata/pandas
https://www.anaconda.com/download/
https://conda.io/miniconda.html

pandas: powerful Python data analysis toolkit, Release 0.23.4

This will create the new environment, and not touch any of your existing environments, nor any existing Python
installation.

To view your environments:

conda info -e

To return to your root environment:

conda deactivate

See the full conda docs here.

3.3.4.3 Creating a Python Environment (pip)

If you aren’t using conda for you development environment, follow these instructions. You’ll need to have at least
python3.5 installed on your system.

Create a virtual environment
Use an ENV_DIR of your choice. We'll use ~/virtualenvs/pandas-dev
Any parent directories should already exist
python3 -m venv ~/virtualenvs/pandas-dev
Activate the virtulaenv
. ~/virtualenvs/pandas-dev/bin/activate

Install the build dependencies
python -m pip install -r ci/requirements_dev.txt
Build and install pandas
python setup.py build_ext --inplace -j 4
python -m pip install -e .

Install additional dependencies
python -m pip install -r ci/requirements-optional-pip.txt

3.3.5 Creating a branch

You want your master branch to reflect only production-ready code, so create a feature branch for making your changes.
For example:

git branch shiny-new-feature
git checkout shiny-new-feature

The above can be simplified to:

git checkout -b shiny-new-feature

This changes your working directory to the shiny-new-feature branch. Keep any changes in this branch specific to one
bug or feature so it is clear what the branch brings to pandas. You can have many shiny-new-features and switch in
between them using the git checkout command.

When creating this branch, make sure your master branch is up to date with the latest upstream master version. To
update your local master branch, you can do:

git checkout master
git pull upstream master --ff-only

3.3. Working with the code 463

http://conda.pydata.org/docs

pandas: powerful Python data analysis toolkit, Release 0.23.4

When you want to update the feature branch with changes in master after you created the branch, check the section on
updating a PR.

3.4 Contributing to the documentation

Contributing to the documentation benefits everyone who uses pandas. We encourage you to help us improve the
documentation, and you don’t have to be an expert on pandas to do so! In fact, there are sections of the docs that are
worse off after being written by experts. If something in the docs doesn’t make sense to you, updating the relevant
section after you figure it out is a great way to ensure it will help the next person.

Documentation:

• About the pandas documentation

• How to build the pandas documentation

– Requirements

– Building the documentation

– Building master branch documentation

3.4.1 About the pandas documentation

The documentation is written in reStructuredText, which is almost like writing in plain English, and built using
Sphinx. The Sphinx Documentation has an excellent introduction to reST. Review the Sphinx docs to perform more
complex changes to the documentation as well.

Some other important things to know about the docs:

• The pandas documentation consists of two parts: the docstrings in the code itself and the docs in this folder
pandas/doc/.

The docstrings provide a clear explanation of the usage of the individual functions, while the documentation
in this folder consists of tutorial-like overviews per topic together with some other information (what’s new,
installation, etc).

• The docstrings follow a pandas convention, based on the Numpy Docstring Standard. Follow the pandas
docstring guide for detailed instructions on how to write a correct docstring.

3.4.1.1 pandas docstring guide

Note: Video tutorial: Pandas docstring guide by Frank Akogun.

About docstrings and standards

A Python docstring is a string used to document a Python module, class, function or method, so programmers
can understand what it does without having to read the details of the implementation.

Also, it is a common practice to generate online (html) documentation automatically from docstrings. Sphinx
serves this purpose.

464 Chapter 3. Contributing to pandas

http://sphinx.pocoo.org/
http://sphinx.pocoo.org/rest.html
https://www.youtube.com/watch?v=EOA0lUeW4NI
http://www.sphinx-doc.org

pandas: powerful Python data analysis toolkit, Release 0.23.4

Next example gives an idea on how a docstring looks like:

def add(num1, num2):
"""
Add up two integer numbers.

This function simply wraps the `+` operator, and does not
do anything interesting, except for illustrating what is
the docstring of a very simple function.

Parameters

num1 : int

First number to add
num2 : int

Second number to add

Returns

int

The sum of `num1` and `num2`

See Also

subtract : Subtract one integer from another

Examples

>>> add(2, 2)
4
>>> add(25, 0)
25
>>> add(10, -10)
0
"""
return num1 + num2

Some standards exist about docstrings, so they are easier to read, and they can be exported to other formats such
as html or pdf.

The first conventions every Python docstring should follow are defined in PEP-257.

As PEP-257 is quite open, and some other standards exist on top of it. In the case of pandas, the numpy docstring
convention is followed. The conventions is explained in this document:

– numpydoc docstring guide (which is based in the original Guide to NumPy/SciPy documentation)

numpydoc is a Sphinx extension to support the numpy docstring convention.

The standard uses reStructuredText (reST). reStructuredText is a markup language that allows encoding styles
in plain text files. Documentation about reStructuredText can be found in:

– Sphinx reStructuredText primer

– Quick reStructuredText reference

– Full reStructuredText specification

Pandas has some helpers for sharing docstrings between related classes, see Sharing Docstrings.

The rest of this document will summarize all the above guides, and will provide additional convention specific
to the pandas project.

3.4. Contributing to the documentation 465

https://www.python.org/dev/peps/pep-0257/
http://numpydoc.readthedocs.io/en/latest/format.html
https://github.com/numpy/numpy/blob/master/doc/HOWTO_DOCUMENT.rst.txt
http://www.sphinx-doc.org/en/stable/rest.html
http://docutils.sourceforge.net/docs/user/rst/quickref.html
http://docutils.sourceforge.net/docs/ref/rst/restructuredtext.html

pandas: powerful Python data analysis toolkit, Release 0.23.4

Writing a docstring

General rules

Docstrings must be defined with three double-quotes. No blank lines should be left before or after the docstring.
The text starts in the next line after the opening quotes. The closing quotes have their own line (meaning that
they are not at the end of the last sentence).

In rare occasions reST styles like bold text or itallics will be used in docstrings, but is it common to have inline
code, which is presented between backticks. It is considered inline code:

– The name of a parameter

– Python code, a module, function, built-in, type, literal. . . (e.g. os, list, numpy.abs, datetime.
date, True)

– A pandas class (in the form :class:`pandas.Series`)

– A pandas method (in the form :meth:`pandas.Series.sum`)

– A pandas function (in the form :func:`pandas.to_datetime`)

Note: To display only the last component of the linked class, method or function, prefix it with ~. For example,
:class:`~pandas.Series` will link to pandas.Series but only display the last part, Series as the
link text. See Sphinx cross-referencing syntax for details.

Good:

def add_values(arr):
"""
Add the values in `arr`.

This is equivalent to Python `sum` of :meth:`pandas.Series.sum`.

Some sections are omitted here for simplicity.
"""
return sum(arr)

Bad:

def func():

"""Some function.

With several mistakes in the docstring.

It has a blank like after the signature `def func():`.

The text 'Some function' should go in the line after the
opening quotes of the docstring, not in the same line.

There is a blank line between the docstring and the first line
of code `foo = 1`.

The closing quotes should be in the next line, not in this one."""

foo = 1

(continues on next page)

466 Chapter 3. Contributing to pandas

http://www.sphinx-doc.org/en/stable/domains.html#cross-referencing-syntax

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

bar = 2
return foo + bar

Section 1: Short summary

The short summary is a single sentence that expresses what the function does in a concise way.

The short summary must start with a capital letter, end with a dot, and fit in a single line. It needs to express
what the object does without providing details. For functions and methods, the short summary must start with
an infinitive verb.

Good:

def astype(dtype):
"""
Cast Series type.

This section will provide further details.
"""
pass

Bad:

def astype(dtype):
"""
Casts Series type.

Verb in third-person of the present simple, should be infinitive.
"""
pass

def astype(dtype):
"""
Method to cast Series type.

Does not start with verb.
"""
pass

def astype(dtype):
"""
Cast Series type

Missing dot at the end.
"""
pass

def astype(dtype):
"""
Cast Series type from its current type to the new type defined in
the parameter dtype.

Summary is too verbose and doesn't fit in a single line.
"""
pass

3.4. Contributing to the documentation 467

pandas: powerful Python data analysis toolkit, Release 0.23.4

Section 2: Extended summary

The extended summary provides details on what the function does. It should not go into the details of the
parameters, or discuss implementation notes, which go in other sections.

A blank line is left between the short summary and the extended summary. And every paragraph in the extended
summary is finished by a dot.

The extended summary should provide details on why the function is useful and their use cases, if it is not too
generic.

def unstack():
"""
Pivot a row index to columns.

When using a multi-index, a level can be pivoted so each value in
the index becomes a column. This is especially useful when a subindex
is repeated for the main index, and data is easier to visualize as a
pivot table.

The index level will be automatically removed from the index when added
as columns.
"""
pass

Section 3: Parameters

The details of the parameters will be added in this section. This section has the title “Parameters”, followed by
a line with a hyphen under each letter of the word “Parameters”. A blank line is left before the section title, but
not after, and not between the line with the word “Parameters” and the one with the hyphens.

After the title, each parameter in the signature must be documented, including *args and **kwargs, but not self.

The parameters are defined by their name, followed by a space, a colon, another space, and the type (or types).
Note that the space between the name and the colon is important. Types are not defined for *args and **kwargs,
but must be defined for all other parameters. After the parameter definition, it is required to have a line with the
parameter description, which is indented, and can have multiple lines. The description must start with a capital
letter, and finish with a dot.

For keyword arguments with a default value, the default will be listed after a comma at the end of the type. The
exact form of the type in this case will be “int, default 0”. In some cases it may be useful to explain what the
default argument means, which can be added after a comma “int, default -1, meaning all cpus”.

In cases where the default value is None, meaning that the value will not be used. Instead of “str, default
None”, it is preferred to write “str, optional”. When None is a value being used, we will keep the form “str,
default None”. For example, in df.to_csv(compression=None), None is not a value being used, but means that
compression is optional, and no compression is being used if not provided. In this case we will use str, optional.
Only in cases like func(value=None) and None is being used in the same way as 0 or foo would be used, then
we will specify “str, int or None, default None”.

Good:

class Series:
def plot(self, kind, color='blue', **kwargs):

"""
Generate a plot.

(continues on next page)

468 Chapter 3. Contributing to pandas

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

Render the data in the Series as a matplotlib plot of the
specified kind.

Parameters

kind : str

Kind of matplotlib plot.
color : str, default 'blue'

Color name or rgb code.

**kwargs
These parameters will be passed to the matplotlib plotting
function.

"""
pass

Bad:

class Series:
def plot(self, kind, **kwargs):

"""
Generate a plot.

Render the data in the Series as a matplotlib plot of the
specified kind.

Note the blank line between the parameters title and the first
parameter. Also, note that after the name of the parameter `kind`
and before the colon, a space is missing.

Also, note that the parameter descriptions do not start with a
capital letter, and do not finish with a dot.

Finally, the `**kwargs` parameter is missing.

Parameters

kind: str
kind of matplotlib plot

"""
pass

Parameter types

When specifying the parameter types, Python built-in data types can be used directly (the Python type is pre-
ferred to the more verbose string, integer, boolean, etc):

– int

– float

– str

– bool

For complex types, define the subtypes. For dict and tuple, as more than one type is present, we use the brackets
to help read the type (curly brackets for dict and normal brackets for tuple):

3.4. Contributing to the documentation 469

pandas: powerful Python data analysis toolkit, Release 0.23.4

– list of int

– dict of {str : int}

– tuple of (str, int, int)

– tuple of (str,)

– set of str

In case where there are just a set of values allowed, list them in curly brackets and separated by commas
(followed by a space). If the values are ordinal and they have an order, list them in this order. Otherwise, list the
default value first, if there is one:

– {0, 10, 25}

– {‘simple’, ‘advanced’}

– {‘low’, ‘medium’, ‘high’}

– {‘cat’, ‘dog’, ‘bird’}

If the type is defined in a Python module, the module must be specified:

– datetime.date

– datetime.datetime

– decimal.Decimal

If the type is in a package, the module must be also specified:

– numpy.ndarray

– scipy.sparse.coo_matrix

If the type is a pandas type, also specify pandas except for Series and DataFrame:

– Series

– DataFrame

– pandas.Index

– pandas.Categorical

– pandas.SparseArray

If the exact type is not relevant, but must be compatible with a numpy array, array-like can be specified. If Any
type that can be iterated is accepted, iterable can be used:

– array-like

– iterable

If more than one type is accepted, separate them by commas, except the last two types, that need to be separated
by the word ‘or’:

– int or float

– float, decimal.Decimal or None

– str or list of str

If None is one of the accepted values, it always needs to be the last in the list.

For axis, the convention is to use something like:

– axis : {0 or ‘index’, 1 or ‘columns’, None}, default None

470 Chapter 3. Contributing to pandas

pandas: powerful Python data analysis toolkit, Release 0.23.4

Section 4: Returns or Yields

If the method returns a value, it will be documented in this section. Also if the method yields its output.

The title of the section will be defined in the same way as the “Parameters”. With the names “Returns” or
“Yields” followed by a line with as many hyphens as the letters in the preceding word.

The documentation of the return is also similar to the parameters. But in this case, no name will be provided,
unless the method returns or yields more than one value (a tuple of values).

The types for “Returns” and “Yields” are the same as the ones for the “Parameters”. Also, the description must
finish with a dot.

For example, with a single value:

def sample():
"""
Generate and return a random number.

The value is sampled from a continuous uniform distribution between
0 and 1.

Returns

float

Random number generated.
"""
return random.random()

With more than one value:

def random_letters():
"""
Generate and return a sequence of random letters.

The length of the returned string is also random, and is also
returned.

Returns

length : int

Length of the returned string.
letters : str

String of random letters.
"""
length = random.randint(1, 10)
letters = ''.join(random.choice(string.ascii_lowercase)

for i in range(length))
return length, letters

If the method yields its value:

def sample_values():
"""
Generate an infinite sequence of random numbers.

The values are sampled from a continuous uniform distribution between
0 and 1.

(continues on next page)

3.4. Contributing to the documentation 471

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

Yields

float

Random number generated.
"""
while True:

yield random.random()

Section 5: See Also

This section is used to let users know about pandas functionality related to the one being documented. In rare
cases, if no related methods or functions can be found at all, this section can be skipped.

An obvious example would be the head() and tail() methods. As tail() does the equivalent as head() but at the
end of the Series or DataFrame instead of at the beginning, it is good to let the users know about it.

To give an intuition on what can be considered related, here there are some examples:

– loc and iloc, as they do the same, but in one case providing indices and in the other positions

– max and min, as they do the opposite

– iterrows, itertuples and iteritems, as it is easy that a user looking for the method to iterate
over columns ends up in the method to iterate over rows, and vice-versa

– fillna and dropna, as both methods are used to handle missing values

– read_csv and to_csv, as they are complementary

– merge and join, as one is a generalization of the other

– astype and pandas.to_datetime, as users may be reading the documentation of astype to know
how to cast as a date, and the way to do it is with pandas.to_datetime

– where is related to numpy.where, as its functionality is based on it

When deciding what is related, you should mainly use your common sense and think about what can be useful
for the users reading the documentation, especially the less experienced ones.

When relating to other libraries (mainly numpy), use the name of the module first (not an alias like np). If the
function is in a module which is not the main one, like scipy.sparse, list the full module (e.g. scipy.
sparse.coo_matrix).

This section, as the previous, also has a header, “See Also” (note the capital S and A). Also followed by the line
with hyphens, and preceded by a blank line.

After the header, we will add a line for each related method or function, followed by a space, a colon, another
space, and a short description that illustrated what this method or function does, why is it relevant in this context,
and what are the key differences between the documented function and the one referencing. The description must
also finish with a dot.

Note that in “Returns” and “Yields”, the description is located in the following line than the type. But in this
section it is located in the same line, with a colon in between. If the description does not fit in the same line, it
can continue in the next ones, but it has to be indented in them.

For example:

472 Chapter 3. Contributing to pandas

pandas: powerful Python data analysis toolkit, Release 0.23.4

class Series:
def head(self):

"""
Return the first 5 elements of the Series.

This function is mainly useful to preview the values of the
Series without displaying the whole of it.

Returns

Series

Subset of the original series with the 5 first values.

See Also

Series.tail : Return the last 5 elements of the Series.
Series.iloc : Return a slice of the elements in the Series,

which can also be used to return the first or last n.
"""
return self.iloc[:5]

Section 6: Notes

This is an optional section used for notes about the implementation of the algorithm. Or to document technical
aspects of the function behavior.

Feel free to skip it, unless you are familiar with the implementation of the algorithm, or you discover some
counter-intuitive behavior while writing the examples for the function.

This section follows the same format as the extended summary section.

Section 7: Examples

This is one of the most important sections of a docstring, even if it is placed in the last position. As often, people
understand concepts better with examples, than with accurate explanations.

Examples in docstrings, besides illustrating the usage of the function or method, must be valid Python code, that
in a deterministic way returns the presented output, and that can be copied and run by users.

They are presented as a session in the Python terminal. >>> is used to present code. . . . is used for code
continuing from the previous line. Output is presented immediately after the last line of code generating the
output (no blank lines in between). Comments describing the examples can be added with blank lines before
and after them.

The way to present examples is as follows:

1. Import required libraries (except numpy and pandas)

2. Create the data required for the example

3. Show a very basic example that gives an idea of the most common use case

4. Add examples with explanations that illustrate how the parameters can be used for extended functionality

A simple example could be:

3.4. Contributing to the documentation 473

pandas: powerful Python data analysis toolkit, Release 0.23.4

class Series:
def head(self, n=5):

"""
Return the first elements of the Series.

This function is mainly useful to preview the values of the
Series without displaying the whole of it.

Parameters

n : int

Number of values to return.

Return

pandas.Series

Subset of the original series with the n first values.

See Also

tail : Return the last n elements of the Series.

Examples

>>> s = pd.Series(['Ant', 'Bear', 'Cow', 'Dog', 'Falcon',
... 'Lion', 'Monkey', 'Rabbit', 'Zebra'])
>>> s.head()
0 Ant
1 Bear
2 Cow
3 Dog
4 Falcon
dtype: object

With the `n` parameter, we can change the number of returned rows:

>>> s.head(n=3)
0 Ant
1 Bear
2 Cow
dtype: object
"""
return self.iloc[:n]

The examples should be as concise as possible. In cases where the complexity of the function requires long
examples, is recommended to use blocks with headers in bold. Use double star ** to make a text bold, like in
this example.

Conventions for the examples

Code in examples is assumed to always start with these two lines which are not shown:

import numpy as np
import pandas as pd

Any other module used in the examples must be explicitly imported, one per line (as recommended in PEP-8)

474 Chapter 3. Contributing to pandas

https://www.python.org/dev/peps/pep-0008/#imports

pandas: powerful Python data analysis toolkit, Release 0.23.4

and avoiding aliases. Avoid excessive imports, but if needed, imports from the standard library go first, followed
by third-party libraries (like matplotlib).

When illustrating examples with a single Series use the name s, and if illustrating with a single DataFrame
use the name df. For indices, idx is the preferred name. If a set of homogeneous Series or DataFrame
is used, name them s1, s2, s3. . . or df1, df2, df3. . . If the data is not homogeneous, and more than one
structure is needed, name them with something meaningful, for example df_main and df_to_join.

Data used in the example should be as compact as possible. The number of rows is recommended to be around
4, but make it a number that makes sense for the specific example. For example in the head method, it requires
to be higher than 5, to show the example with the default values. If doing the mean, we could use something
like [1, 2, 3], so it is easy to see that the value returned is the mean.

For more complex examples (groupping for example), avoid using data without interpretation, like a matrix of
random numbers with columns A, B, C, D. . . And instead use a meaningful example, which makes it easier to
understand the concept. Unless required by the example, use names of animals, to keep examples consistent.
And numerical properties of them.

When calling the method, keywords arguments head(n=3) are preferred to positional arguments head(3).

Good:

class Series:
def mean(self):

"""
Compute the mean of the input.

Examples

>>> s = pd.Series([1, 2, 3])
>>> s.mean()
2
"""
pass

def fillna(self, value):
"""
Replace missing values by `value`.

Examples

>>> s = pd.Series([1, np.nan, 3])
>>> s.fillna(0)
[1, 0, 3]
"""
pass

def groupby_mean(self):
"""
Group by index and return mean.

Examples

>>> s = pd.Series([380., 370., 24., 26],
... name='max_speed',
... index=['falcon', 'falcon', 'parrot', 'parrot'])
>>> s.groupby_mean()
index

(continues on next page)

3.4. Contributing to the documentation 475

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

falcon 375.0
parrot 25.0
Name: max_speed, dtype: float64
"""
pass

def contains(self, pattern, case_sensitive=True, na=numpy.nan):
"""
Return whether each value contains `pattern`.

In this case, we are illustrating how to use sections, even
if the example is simple enough and does not require them.

Examples

>>> s = pd.Series('Antelope', 'Lion', 'Zebra', numpy.nan)
>>> s.contains(pattern='a')
0 False
1 False
2 True
3 NaN
dtype: bool

Case sensitivity

With `case_sensitive` set to `False` we can match `a` with both
`a` and `A`:

>>> s.contains(pattern='a', case_sensitive=False)
0 True
1 False
2 True
3 NaN
dtype: bool

Missing values

We can fill missing values in the output using the `na` parameter:

>>> s.contains(pattern='a', na=False)
0 False
1 False
2 True
3 False
dtype: bool
"""
pass

Bad:

def method(foo=None, bar=None):
"""
A sample DataFrame method.

Do not import numpy and pandas.

Try to use meaningful data, when it makes the example easier
(continues on next page)

476 Chapter 3. Contributing to pandas

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

to understand.

Try to avoid positional arguments like in `df.method(1)`. They
can be all right if previously defined with a meaningful name,
like in `present_value(interest_rate)`, but avoid them otherwise.

When presenting the behavior with different parameters, do not place
all the calls one next to the other. Instead, add a short sentence
explaining what the example shows.

Examples

>>> import numpy as np
>>> import pandas as pd
>>> df = pd.DataFrame(numpy.random.randn(3, 3),
... columns=('a', 'b', 'c'))
>>> df.method(1)
21
>>> df.method(bar=14)
123
"""
pass

Tips for getting your examples pass the doctests

Getting the examples pass the doctests in the validation script can sometimes be tricky. Here are some attention
points:

– Import all needed libraries (except for pandas and numpy, those are already imported as import
pandas as pd and import numpy as np) and define all variables you use in the example.

– Try to avoid using random data. However random data might be OK in some cases, like if the function you
are documenting deals with probability distributions, or if the amount of data needed to make the function
result meaningful is too much, such that creating it manually is very cumbersome. In those cases, always
use a fixed random seed to make the generated examples predictable. Example:

>>> np.random.seed(42)
>>> df = pd.DataFrame({'normal': np.random.normal(100, 5, 20)})

– If you have a code snippet that wraps multiple lines, you need to use ‘. . . ’ on the continued lines:

>>> df = pd.DataFrame([[1, 2, 3], [4, 5, 6]], index=['a', 'b', 'c'],
... columns=['A', 'B'])

– If you want to show a case where an exception is raised, you can do:

>>> pd.to_datetime(["712-01-01"])
Traceback (most recent call last):
OutOfBoundsDatetime: Out of bounds nanosecond timestamp: 712-01-01 00:00:00

It is essential to include the “Traceback (most recent call last):”, but for the actual error only the error name
is sufficient.

– If there is a small part of the result that can vary (e.g. a hash in an object represenation), you can use ...
to represent this part.

3.4. Contributing to the documentation 477

pandas: powerful Python data analysis toolkit, Release 0.23.4

If you want to show that s.plot() returns a matplotlib AxesSubplot object, this will fail the doctest

>>> s.plot()
<matplotlib.axes._subplots.AxesSubplot at 0x7efd0c0b0690>

However, you can do (notice the comment that needs to be added)

>>> s.plot()
<matplotlib.axes._subplots.AxesSubplot at ...>

Plots in examples

There are some methods in pandas returning plots. To render the plots generated by the examples in the docu-
mentation, the .. plot:: directive exists.

To use it, place the next code after the “Examples” header as shown below. The plot will be generated automat-
ically when building the documentation.

class Series:
def plot(self):

"""
Generate a plot with the `Series` data.

Examples

.. plot::
:context: close-figs

>>> s = pd.Series([1, 2, 3])
>>> s.plot()

"""
pass

Sharing Docstrings

Pandas has a system for sharing docstrings, with slight variations, between classes. This helps us keep docstrings
consistent, while keeping things clear for the user reading. It comes at the cost of some complexity when writing.

Each shared docstring will have a base template with variables, like %(klass)s. The variables filled in later
on using the Substitution decorator. Finally, docstrings can be appended to with the Appender decorator.

In this example, we’ll create a parent docstring normally (this is like pandas.core.generic.NDFrame.
Then we’ll have two children (like pandas.core.series.Series and pandas.core.frame.
DataFrame). We’ll substitute the children’s class names in this docstring.

class Parent:
def my_function(self):

"""Apply my function to %(klass)s."""
...

class ChildA(Parent):
@Substitution(klass="ChildA")
@Appender(Parent.my_function.__doc__)
def my_function(self):

(continues on next page)

478 Chapter 3. Contributing to pandas

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

...

class ChildB(Parent):
@Substitution(klass="ChildB")
@Appender(Parent.my_function.__doc__)
def my_function(self):

...

The resulting docstrings are

>>> print(Parent.my_function.__doc__)
Apply my function to %(klass)s.
>>> print(ChildA.my_function.__doc__)
Apply my function to ChildA.
>>> print(ChildB.my_function.__doc__)
Apply my function to ChildB.

Notice two things:

1. We “append” the parent docstring to the children docstrings, which are initially empty.

2. Python decorators are applied inside out. So the order is Append then Substitution, even though Substitu-
tion comes first in the file.

Our files will often contain a module-level _shared_doc_kwargs with some common substitution values
(things like klass, axes, etc).

You can substitute and append in one shot with something like

@Appender(template % _shared_doc_kwargs)
def my_function(self):

...

where template may come from a module-level _shared_docs dictionary mapping function names to
docstrings. Wherever possible, we prefer using Appender and Substitution, since the docstring-writing
processes is slightly closer to normal.

See pandas.core.generic.NDFrame.fillna for an example template, and pandas.core.
series.Series.fillna and pandas.core.generic.frame.fillna for the filled versions.

• The tutorials make heavy use of the ipython directive sphinx extension. This directive lets you put code in the
documentation which will be run during the doc build. For example:

.. ipython:: python

x = 2
x**3

will be rendered as:

In [1]: x = 2

In [2]: x**3
Out[2]: 8

Almost all code examples in the docs are run (and the output saved) during the doc build. This approach means
that code examples will always be up to date, but it does make the doc building a bit more complex.

3.4. Contributing to the documentation 479

http://matplotlib.org/sampledoc/ipython_directive.html

pandas: powerful Python data analysis toolkit, Release 0.23.4

• Our API documentation in doc/source/api.rst houses the auto-generated documentation from the doc-
strings. For classes, there are a few subtleties around controlling which methods and attributes have pages
auto-generated.

We have two autosummary templates for classes.

1. _templates/autosummary/class.rst. Use this when you want to automatically generate a page
for every public method and attribute on the class. The Attributes and Methods sections will be
automatically added to the class’ rendered documentation by numpydoc. See DataFrame for an example.

2. _templates/autosummary/class_without_autosummary. Use this when you want to pick
a subset of methods / attributes to auto-generate pages for. When using this template, you should include an
Attributes and Methods section in the class docstring. See CategoricalIndex for an example.

Every method should be included in a toctree in api.rst, else Sphinx will emit a warning.

Note: The .rst files are used to automatically generate Markdown and HTML versions of the docs. For this reason,
please do not edit CONTRIBUTING.md directly, but instead make any changes to doc/source/contributing.
rst. Then, to generate CONTRIBUTING.md, use pandoc with the following command:

pandoc doc/source/contributing.rst -t markdown_github > CONTRIBUTING.md

The utility script scripts/validate_docstrings.py can be used to get a csv summary of the API documen-
tation. And also validate common errors in the docstring of a specific class, function or method. The summary also
compares the list of methods documented in doc/source/api.rst (which is used to generate the API Reference
page) and the actual public methods. This will identify methods documented in doc/source/api.rst that are
not actually class methods, and existing methods that are not documented in doc/source/api.rst.

3.4.2 How to build the pandas documentation

3.4.2.1 Requirements

First, you need to have a development environment to be able to build pandas (see the docs on creating a development
environment above).

3.4.2.2 Building the documentation

So how do you build the docs? Navigate to your local pandas/doc/ directory in the console and run:

python make.py html

Then you can find the HTML output in the folder pandas/doc/build/html/.

The first time you build the docs, it will take quite a while because it has to run all the code examples and build all the
generated docstring pages. In subsequent evocations, sphinx will try to only build the pages that have been modified.

If you want to do a full clean build, do:

python make.py clean
python make.py html

You can tell make.py to compile only a single section of the docs, greatly reducing the turn-around time for checking
your changes.

480 Chapter 3. Contributing to pandas

http://johnmacfarlane.net/pandoc/
http://pandas.pydata.org/pandas-docs/stable/api.html

pandas: powerful Python data analysis toolkit, Release 0.23.4

omit autosummary and API section
python make.py clean
python make.py --no-api

compile the docs with only a single
section, that which is in indexing.rst
python make.py clean
python make.py --single indexing

compile the reference docs for a single function
python make.py clean
python make.py --single DataFrame.join

For comparison, a full documentation build may take 15 minutes, but a single section may take 15 seconds. Subsequent
builds, which only process portions you have changed, will be faster.

You can also specify to use multiple cores to speed up the documentation build:

python make.py html --num-jobs 4

Open the following file in a web browser to see the full documentation you just built:

pandas/docs/build/html/index.html

And you’ll have the satisfaction of seeing your new and improved documentation!

3.4.2.3 Building master branch documentation

When pull requests are merged into the pandas master branch, the main parts of the documentation are also built by
Travis-CI. These docs are then hosted here, see also the Continuous Integration section.

3.5 Contributing to the code base

Code Base:

• Code standards

– C (cpplint)

– Python (PEP8)

– Backwards Compatibility

• Testing With Continuous Integration

• Test-driven development/code writing

– Writing tests

– Transitioning to pytest

– Using pytest

• Running the test suite

• Running the performance test suite

3.5. Contributing to the code base 481

http://pandas-docs.github.io/pandas-docs-travis

pandas: powerful Python data analysis toolkit, Release 0.23.4

• Documenting your code

3.5.1 Code standards

Writing good code is not just about what you write. It is also about how you write it. During Continuous Integration
testing, several tools will be run to check your code for stylistic errors. Generating any warnings will cause the test to
fail. Thus, good style is a requirement for submitting code to pandas.

In addition, because a lot of people use our library, it is important that we do not make sudden changes to the code
that could have the potential to break a lot of user code as a result, that is, we need it to be as backwards compatible as
possible to avoid mass breakages.

Additional standards are outlined on the code style wiki page.

3.5.1.1 C (cpplint)

pandas uses the Google standard. Google provides an open source style checker called cpplint, but we use a fork
of it that can be found here. Here are some of the more common cpplint issues:

• we restrict line-length to 80 characters to promote readability

• every header file must include a header guard to avoid name collisions if re-included

Continuous Integration will run the cpplint tool and report any stylistic errors in your code. Therefore, it is helpful
before submitting code to run the check yourself:

cpplint --extensions=c,h --headers=h --filter=-readability/casting,-runtime/int,-
→˓build/include_subdir modified-c-file

You can also run this command on an entire directory if necessary:

cpplint --extensions=c,h --headers=h --filter=-readability/casting,-runtime/int,-
→˓build/include_subdir --recursive modified-c-directory

To make your commits compliant with this standard, you can install the ClangFormat tool, which can be downloaded
here. To configure, in your home directory, run the following command:

clang-format style=google -dump-config > .clang-format

Then modify the file to ensure that any indentation width parameters are at least four. Once configured, you can run
the tool as follows:

clang-format modified-c-file

This will output what your file will look like if the changes are made, and to apply them, run the following command:

clang-format -i modified-c-file

To run the tool on an entire directory, you can run the following analogous commands:

clang-format modified-c-directory/*.c modified-c-directory/*.h
clang-format -i modified-c-directory/*.c modified-c-directory/*.h

Do note that this tool is best-effort, meaning that it will try to correct as many errors as possible, but it may not correct
all of them. Thus, it is recommended that you run cpplint to double check and make any other style fixes manually.

482 Chapter 3. Contributing to pandas

https://github.com/pandas-dev/pandas/wiki/Code-Style-and-Conventions
https://google.github.io/styleguide/cppguide.html
https://github.com/cpplint/cpplint
https://pypi.org/project/cpplint
http://clang.llvm.org/docs/ClangFormat.html
http://llvm.org/builds/

pandas: powerful Python data analysis toolkit, Release 0.23.4

3.5.1.2 Python (PEP8)

pandas uses the PEP8 standard. There are several tools to ensure you abide by this standard. Here are some of the
more common PEP8 issues:

• we restrict line-length to 79 characters to promote readability

• passing arguments should have spaces after commas, e.g. foo(arg1, arg2, kw1='bar')

Continuous Integration will run the flake8 tool and report any stylistic errors in your code. Therefore, it is helpful
before submitting code to run the check yourself on the diff:

git diff master -u -- "*.py" | flake8 --diff

This command will catch any stylistic errors in your changes specifically, but be beware it may not catch all of them.
For example, if you delete the only usage of an imported function, it is stylistically incorrect to import an unused
function. However, style-checking the diff will not catch this because the actual import is not part of the diff. Thus,
for completeness, you should run this command, though it will take longer:

git diff master --name-only -- "*.py" | grep "pandas/" | xargs -r flake8

Note that on OSX, the -r flag is not available, so you have to omit it and run this slightly modified command:

git diff master --name-only -- "*.py" | grep "pandas/" | xargs flake8

Note that on Windows, these commands are unfortunately not possible because commands like grep and xargs are
not available natively. To imitate the behavior with the commands above, you should run:

git diff master --name-only -- "*.py"

This will list all of the Python files that have been modified. The only ones that matter during linting are any whose
directory filepath begins with “pandas.” For each filepath, copy and paste it after the flake8 command as shown
below:

flake8 <python-filepath>

Alternatively, you can install the grep and xargs commands via the MinGW toolchain, and it will allow you to run
the commands above.

3.5.1.3 Backwards Compatibility

Please try to maintain backward compatibility. pandas has lots of users with lots of existing code, so don’t break it if
at all possible. If you think breakage is required, clearly state why as part of the pull request. Also, be careful when
changing method signatures and add deprecation warnings where needed. Also, add the deprecated sphinx directive
to the deprecated functions or methods.

If a function with the same arguments as the one being deprecated exist, you can use the pandas.util.
_decorators.deprecate:

from pandas.util._decorators import deprecate

deprecate('old_func', 'new_func', '0.21.0')

Otherwise, you need to do it manually:

3.5. Contributing to the code base 483

http://www.python.org/dev/peps/pep-0008/
https://pypi.org/project/flake8
http://www.mingw.org/

pandas: powerful Python data analysis toolkit, Release 0.23.4

def old_func():
"""Summary of the function.

.. deprecated:: 0.21.0
Use new_func instead.

"""
warnings.warn('Use new_func instead.', FutureWarning, stacklevel=2)
new_func()

3.5.2 Testing With Continuous Integration

The pandas test suite will run automatically on Travis-CI, Appveyor, and Circle CI continuous integration services,
once your pull request is submitted. However, if you wish to run the test suite on a branch prior to submitting the pull
request, then the continuous integration services need to be hooked to your GitHub repository. Instructions are here
for Travis-CI, Appveyor , and CircleCI.

A pull-request will be considered for merging when you have an all ‘green’ build. If any tests are failing, then you
will get a red ‘X’, where you can click through to see the individual failed tests. This is an example of a green build.

Note: Each time you push to your fork, a new run of the tests will be triggered on the CI. Appveyor will auto-cancel
any non-currently-running tests for that same pull-request. You can enable the auto-cancel feature for Travis-CI here
and for CircleCI here.

3.5.3 Test-driven development/code writing

pandas is serious about testing and strongly encourages contributors to embrace test-driven development (TDD). This
development process “relies on the repetition of a very short development cycle: first the developer writes an (initially
failing) automated test case that defines a desired improvement or new function, then produces the minimum amount

484 Chapter 3. Contributing to pandas

https://travis-ci.org/
https://www.appveyor.com/
https://circleci.com/
http://about.travis-ci.org/docs/user/getting-started/
https://www.appveyor.com/docs/
https://circleci.com/
https://docs.travis-ci.com/user/customizing-the-build/#Building-only-the-latest-commit
https://circleci.com/changelog-legacy/#option-to-auto-cancel-redundant-builds
http://en.wikipedia.org/wiki/Test-driven_development

pandas: powerful Python data analysis toolkit, Release 0.23.4

of code to pass that test.” So, before actually writing any code, you should write your tests. Often the test can be taken
from the original GitHub issue. However, it is always worth considering additional use cases and writing corresponding
tests.

Adding tests is one of the most common requests after code is pushed to pandas. Therefore, it is worth getting in the
habit of writing tests ahead of time so this is never an issue.

Like many packages, pandas uses pytest and the convenient extensions in numpy.testing.

Note: The earliest supported pytest version is 3.1.0.

3.5.3.1 Writing tests

All tests should go into the tests subdirectory of the specific package. This folder contains many current examples of
tests, and we suggest looking to these for inspiration. If your test requires working with files or network connectivity,
there is more information on the testing page of the wiki.

The pandas.util.testing module has many special assert functions that make it easier to make statements
about whether Series or DataFrame objects are equivalent. The easiest way to verify that your code is correct is to
explicitly construct the result you expect, then compare the actual result to the expected correct result:

def test_pivot(self):
data = {

'index' : ['A', 'B', 'C', 'C', 'B', 'A'],
'columns' : ['One', 'One', 'One', 'Two', 'Two', 'Two'],
'values' : [1., 2., 3., 3., 2., 1.]

}

frame = DataFrame(data)
pivoted = frame.pivot(index='index', columns='columns', values='values')

expected = DataFrame({
'One' : {'A' : 1., 'B' : 2., 'C' : 3.},
'Two' : {'A' : 1., 'B' : 2., 'C' : 3.}

})

assert_frame_equal(pivoted, expected)

3.5.3.2 Transitioning to pytest

pandas existing test structure is mostly classed based, meaning that you will typically find tests wrapped in a class.

class TestReallyCoolFeature(object):
....

Going forward, we are moving to a more functional style using the pytest framework, which offers a richer testing
framework that will facilitate testing and developing. Thus, instead of writing test classes, we will write test functions
like this:

def test_really_cool_feature():
....

3.5. Contributing to the code base 485

http://doc.pytest.org/en/latest/
http://docs.scipy.org/doc/numpy/reference/routines.testing.html
https://github.com/pandas-dev/pandas/wiki/Testing
http://doc.pytest.org/en/latest/

pandas: powerful Python data analysis toolkit, Release 0.23.4

3.5.3.3 Using pytest

Here is an example of a self-contained set of tests that illustrate multiple features that we like to use.

• functional style: tests are like test_* and only take arguments that are either fixtures or parameters

• pytest.mark can be used to set metadata on test functions, e.g. skip or xfail.

• using parametrize: allow testing of multiple cases

• to set a mark on a parameter, pytest.param(..., marks=...) syntax should be used

• fixture, code for object construction, on a per-test basis

• using bare assert for scalars and truth-testing

• tm.assert_series_equal (and its counter part tm.assert_frame_equal), for pandas object com-
parisons.

• the typical pattern of constructing an expected and comparing versus the result

We would name this file test_cool_feature.py and put in an appropriate place in the pandas/tests/
structure.

import pytest
import numpy as np
import pandas as pd
from pandas.util import testing as tm

@pytest.mark.parametrize('dtype', ['int8', 'int16', 'int32', 'int64'])
def test_dtypes(dtype):

assert str(np.dtype(dtype)) == dtype

@pytest.mark.parametrize('dtype', ['float32',
pytest.param('int16', marks=pytest.mark.skip),
pytest.param('int32',

marks=pytest.mark.xfail(reason='to show how it works'))])
def test_mark(dtype):

assert str(np.dtype(dtype)) == 'float32'

@pytest.fixture
def series():

return pd.Series([1, 2, 3])

@pytest.fixture(params=['int8', 'int16', 'int32', 'int64'])
def dtype(request):

return request.param

def test_series(series, dtype):
result = series.astype(dtype)
assert result.dtype == dtype

expected = pd.Series([1, 2, 3], dtype=dtype)
tm.assert_series_equal(result, expected)

A test run of this yields

((pandas) bash-3.2$ pytest test_cool_feature.py -v
=========================== test session starts ===========================
platform darwin -- Python 3.6.2, pytest-3.2.1, py-1.4.31, pluggy-0.4.0
collected 11 items

(continues on next page)

486 Chapter 3. Contributing to pandas

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

tester.py::test_dtypes[int8] PASSED
tester.py::test_dtypes[int16] PASSED
tester.py::test_dtypes[int32] PASSED
tester.py::test_dtypes[int64] PASSED
tester.py::test_mark[float32] PASSED
tester.py::test_mark[int16] SKIPPED
tester.py::test_mark[int32] xfail
tester.py::test_series[int8] PASSED
tester.py::test_series[int16] PASSED
tester.py::test_series[int32] PASSED
tester.py::test_series[int64] PASSED

Tests that we have parametrized are now accessible via the test name, for example we could run these with -k
int8 to sub-select only those tests which match int8.

((pandas) bash-3.2$ pytest test_cool_feature.py -v -k int8
=========================== test session starts ===========================
platform darwin -- Python 3.6.2, pytest-3.2.1, py-1.4.31, pluggy-0.4.0
collected 11 items

test_cool_feature.py::test_dtypes[int8] PASSED
test_cool_feature.py::test_series[int8] PASSED

3.5.4 Running the test suite

The tests can then be run directly inside your Git clone (without having to install pandas) by typing:

pytest pandas

The tests suite is exhaustive and takes around 20 minutes to run. Often it is worth running only a subset of tests first
around your changes before running the entire suite.

The easiest way to do this is with:

pytest pandas/path/to/test.py -k regex_matching_test_name

Or with one of the following constructs:

pytest pandas/tests/[test-module].py
pytest pandas/tests/[test-module].py::[TestClass]
pytest pandas/tests/[test-module].py::[TestClass]::[test_method]

Using pytest-xdist, one can speed up local testing on multicore machines. To use this feature, you will need to install
pytest-xdist via:

pip install pytest-xdist

Two scripts are provided to assist with this. These scripts distribute testing across 4 threads.

On Unix variants, one can type:

test_fast.sh

On Windows, one can type:

3.5. Contributing to the code base 487

https://pypi.org/project/pytest-xdist

pandas: powerful Python data analysis toolkit, Release 0.23.4

test_fast.bat

This can significantly reduce the time it takes to locally run tests before submitting a pull request.

For more, see the pytest documentation.

New in version 0.20.0.

Furthermore one can run

pd.test()

with an imported pandas to run tests similarly.

3.5.5 Running the performance test suite

Performance matters and it is worth considering whether your code has introduced performance regressions. pandas
is in the process of migrating to asv benchmarks to enable easy monitoring of the performance of critical pandas
operations. These benchmarks are all found in the pandas/asv_bench directory. asv supports both python2 and
python3.

To use all features of asv, you will need either conda or virtualenv. For more details please check the asv
installation webpage.

To install asv:

pip install git+https://github.com/spacetelescope/asv

If you need to run a benchmark, change your directory to asv_bench/ and run:

asv continuous -f 1.1 upstream/master HEAD

You can replace HEAD with the name of the branch you are working on, and report benchmarks that changed by
more than 10%. The command uses conda by default for creating the benchmark environments. If you want to use
virtualenv instead, write:

asv continuous -f 1.1 -E virtualenv upstream/master HEAD

The -E virtualenv option should be added to all asv commands that run benchmarks. The default value is
defined in asv.conf.json.

Running the full test suite can take up to one hour and use up to 3GB of RAM. Usually it is sufficient to paste only
a subset of the results into the pull request to show that the committed changes do not cause unexpected performance
regressions. You can run specific benchmarks using the -b flag, which takes a regular expression. For example, this
will only run tests from a pandas/asv_bench/benchmarks/groupby.py file:

asv continuous -f 1.1 upstream/master HEAD -b ^groupby

If you want to only run a specific group of tests from a file, you can do it using . as a separator. For example:

asv continuous -f 1.1 upstream/master HEAD -b groupby.GroupByMethods

will only run the GroupByMethods benchmark defined in groupby.py.

You can also run the benchmark suite using the version of pandas already installed in your current Python envi-
ronment. This can be useful if you do not have virtualenv or conda, or are using the setup.py develop ap-
proach discussed above; for the in-place build you need to set PYTHONPATH, e.g. PYTHONPATH="$PWD/.."
asv [remaining arguments]. You can run benchmarks using an existing Python environment by:

488 Chapter 3. Contributing to pandas

http://doc.pytest.org/en/latest/
https://github.com/spacetelescope/asv
https://asv.readthedocs.io/en/latest/installing.html
https://asv.readthedocs.io/en/latest/installing.html

pandas: powerful Python data analysis toolkit, Release 0.23.4

asv run -e -E existing

or, to use a specific Python interpreter,:

asv run -e -E existing:python3.5

This will display stderr from the benchmarks, and use your local python that comes from your $PATH.

Information on how to write a benchmark and how to use asv can be found in the asv documentation.

3.5.6 Documenting your code

Changes should be reflected in the release notes located in doc/source/whatsnew/vx.y.z.txt. This file
contains an ongoing change log for each release. Add an entry to this file to document your fix, enhancement
or (unavoidable) breaking change. Make sure to include the GitHub issue number when adding your entry (using
:issue:`1234` where 1234 is the issue/pull request number).

If your code is an enhancement, it is most likely necessary to add usage examples to the existing documentation. This
can be done following the section regarding documentation above. Further, to let users know when this feature was
added, the versionadded directive is used. The sphinx syntax for that is:

.. versionadded:: 0.21.0

This will put the text New in version 0.21.0 wherever you put the sphinx directive. This should also be put in the
docstring when adding a new function or method (example) or a new keyword argument (example).

3.6 Contributing your changes to pandas

3.6.1 Committing your code

Keep style fixes to a separate commit to make your pull request more readable.

Once you’ve made changes, you can see them by typing:

git status

If you have created a new file, it is not being tracked by git. Add it by typing:

git add path/to/file-to-be-added.py

Doing ‘git status’ again should give something like:

On branch shiny-new-feature
#
modified: /relative/path/to/file-you-added.py
#

Finally, commit your changes to your local repository with an explanatory message. Pandas uses a convention for
commit message prefixes and layout. Here are some common prefixes along with general guidelines for when to use
them:

• ENH: Enhancement, new functionality

• BUG: Bug fix

3.6. Contributing your changes to pandas 489

https://asv.readthedocs.io/en/latest/writing_benchmarks.html
https://github.com/pandas-dev/pandas/blob/v0.20.2/pandas/core/frame.py#L1495
https://github.com/pandas-dev/pandas/blob/v0.20.2/pandas/core/generic.py#L568

pandas: powerful Python data analysis toolkit, Release 0.23.4

• DOC: Additions/updates to documentation

• TST: Additions/updates to tests

• BLD: Updates to the build process/scripts

• PERF: Performance improvement

• CLN: Code cleanup

The following defines how a commit message should be structured. Please reference the relevant GitHub issues in
your commit message using GH1234 or #1234. Either style is fine, but the former is generally preferred:

• a subject line with < 80 chars.

• One blank line.

• Optionally, a commit message body.

Now you can commit your changes in your local repository:

git commit -m

3.6.2 Pushing your changes

When you want your changes to appear publicly on your GitHub page, push your forked feature branch’s commits:

git push origin shiny-new-feature

Here origin is the default name given to your remote repository on GitHub. You can see the remote repositories:

git remote -v

If you added the upstream repository as described above you will see something like:

origin git@github.com:yourname/pandas.git (fetch)
origin git@github.com:yourname/pandas.git (push)
upstream git://github.com/pandas-dev/pandas.git (fetch)
upstream git://github.com/pandas-dev/pandas.git (push)

Now your code is on GitHub, but it is not yet a part of the pandas project. For that to happen, a pull request needs to
be submitted on GitHub.

3.6.3 Review your code

When you’re ready to ask for a code review, file a pull request. Before you do, once again make sure that you have
followed all the guidelines outlined in this document regarding code style, tests, performance tests, and documentation.
You should also double check your branch changes against the branch it was based on:

1. Navigate to your repository on GitHub – https://github.com/your-user-name/pandas

2. Click on Branches

3. Click on the Compare button for your feature branch

4. Select the base and compare branches, if necessary. This will be master and shiny-new-feature,
respectively.

490 Chapter 3. Contributing to pandas

https://github.com/your-user-name/pandas

pandas: powerful Python data analysis toolkit, Release 0.23.4

3.6.4 Finally, make the pull request

If everything looks good, you are ready to make a pull request. A pull request is how code from a local repository
becomes available to the GitHub community and can be looked at and eventually merged into the master version. This
pull request and its associated changes will eventually be committed to the master branch and available in the next
release. To submit a pull request:

1. Navigate to your repository on GitHub

2. Click on the Pull Request button

3. You can then click on Commits and Files Changed to make sure everything looks okay one last time

4. Write a description of your changes in the Preview Discussion tab

5. Click Send Pull Request.

This request then goes to the repository maintainers, and they will review the code.

3.6.5 Updating your pull request

Based on the review you get on your pull request, you will probably need to make some changes to the code. In that
case, you can make them in your branch, add a new commit to that branch, push it to GitHub, and the pull request will
be automatically updated. Pushing them to GitHub again is done by:

git push origin shiny-new-feature

This will automatically update your pull request with the latest code and restart the Continuous Integration tests.

Another reason you might need to update your pull request is to solve conflicts with changes that have been merged
into the master branch since you opened your pull request.

To do this, you need to “merge upstream master” in your branch:

git checkout shiny-new-feature
git fetch upstream
git merge upstream/master

If there are no conflicts (or they could be fixed automatically), a file with a default commit message will open, and you
can simply save and quit this file.

If there are merge conflicts, you need to solve those conflicts. See for example at https://help.github.com/articles/
resolving-a-merge-conflict-using-the-command-line/ for an explanation on how to do this. Once the conflicts are
merged and the files where the conflicts were solved are added, you can run git commit to save those fixes.

If you have uncommitted changes at the moment you want to update the branch with master, you will need to stash
them prior to updating (see the stash docs). This will effectively store your changes and they can be reapplied after
updating.

After the feature branch has been update locally, you can now update your pull request by pushing to the branch on
GitHub:

git push origin shiny-new-feature

3.6.6 Delete your merged branch (optional)

Once your feature branch is accepted into upstream, you’ll probably want to get rid of the branch. First, merge
upstream master into your branch so git knows it is safe to delete your branch:

3.6. Contributing your changes to pandas 491

https://help.github.com/articles/resolving-a-merge-conflict-using-the-command-line/
https://help.github.com/articles/resolving-a-merge-conflict-using-the-command-line/
https://git-scm.com/book/en/v2/Git-Tools-Stashing-and-Cleaning

pandas: powerful Python data analysis toolkit, Release 0.23.4

git fetch upstream
git checkout master
git merge upstream/master

Then you can do:

git branch -d shiny-new-feature

Make sure you use a lower-case -d, or else git won’t warn you if your feature branch has not actually been merged.

The branch will still exist on GitHub, so to delete it there do:

git push origin --delete shiny-new-feature

492 Chapter 3. Contributing to pandas

CHAPTER

FOUR

PACKAGE OVERVIEW

pandas is an open source, BSD-licensed library providing high-performance, easy-to-use data structures and data
analysis tools for the Python programming language.

pandas consists of the following elements:

• A set of labeled array data structures, the primary of which are Series and DataFrame.

• Index objects enabling both simple axis indexing and multi-level / hierarchical axis indexing.

• An integrated group by engine for aggregating and transforming data sets.

• Date range generation (date_range) and custom date offsets enabling the implementation of customized frequen-
cies.

• Input/Output tools: loading tabular data from flat files (CSV, delimited, Excel 2003), and saving and loading
pandas objects from the fast and efficient PyTables/HDF5 format.

• Memory-efficient “sparse” versions of the standard data structures for storing data that is mostly missing or
mostly constant (some fixed value).

• Moving window statistics (rolling mean, rolling standard deviation, etc.).

4.1 Data Structures

Dimensions Name Description
1 Series 1D labeled homogeneously-typed array
2 DataFrame General 2D labeled, size-mutable tabular structure with potentially

heterogeneously-typed column

4.1.1 Why more than one data structure?

The best way to think about the pandas data structures is as flexible containers for lower dimensional data. For
example, DataFrame is a container for Series, and Series is a container for scalars. We would like to be able to insert
and remove objects from these containers in a dictionary-like fashion.

Also, we would like sensible default behaviors for the common API functions which take into account the typical
orientation of time series and cross-sectional data sets. When using ndarrays to store 2- and 3-dimensional data, a
burden is placed on the user to consider the orientation of the data set when writing functions; axes are considered
more or less equivalent (except when C- or Fortran-contiguousness matters for performance). In pandas, the axes are
intended to lend more semantic meaning to the data; i.e., for a particular data set there is likely to be a “right” way to
orient the data. The goal, then, is to reduce the amount of mental effort required to code up data transformations in
downstream functions.

493

https://www.python.org/

pandas: powerful Python data analysis toolkit, Release 0.23.4

For example, with tabular data (DataFrame) it is more semantically helpful to think of the index (the rows) and the
columns rather than axis 0 and axis 1. Iterating through the columns of the DataFrame thus results in more readable
code:

for col in df.columns:
series = df[col]
do something with series

4.2 Mutability and copying of data

All pandas data structures are value-mutable (the values they contain can be altered) but not always size-mutable. The
length of a Series cannot be changed, but, for example, columns can be inserted into a DataFrame. However, the vast
majority of methods produce new objects and leave the input data untouched. In general we like to favor immutability
where sensible.

4.3 Getting Support

The first stop for pandas issues and ideas is the Github Issue Tracker. If you have a general question, pandas community
experts can answer through Stack Overflow.

4.4 Community

pandas is actively supported today by a community of like-minded individuals around the world who contribute their
valuable time and energy to help make open source pandas possible. Thanks to all of our contributors.

If you’re interested in contributing, please visit Contributing to pandas webpage.

pandas is a NumFOCUS sponsored project. This will help ensure the success of development of pandas as a world-
class open-source project, and makes it possible to donate to the project.

4.5 Project Governance

The governance process that pandas project has used informally since its inception in 2008 is formalized in Project
Governance documents. The documents clarify how decisions are made and how the various elements of our commu-
nity interact, including the relationship between open source collaborative development and work that may be funded
by for-profit or non-profit entities.

Wes McKinney is the Benevolent Dictator for Life (BDFL).

4.6 Development Team

The list of the Core Team members and more detailed information can be found on the people’s page of the governance
repo.

494 Chapter 4. Package overview

https://github.com/pandas-dev/pandas/issues
http://stackoverflow.com/questions/tagged/pandas
https://github.com/pandas-dev/pandas/graphs/contributors
http://pandas.pydata.org/pandas-docs/stable/contributing.html
https://www.numfocus.org/open-source-projects/
https://pandas.pydata.org/donate.html
https://github.com/pandas-dev/pandas-governance
https://github.com/pandas-dev/pandas-governance
https://github.com/pandas-dev/pandas-governance/blob/master/people.md

pandas: powerful Python data analysis toolkit, Release 0.23.4

4.7 Institutional Partners

The information about current institutional partners can be found on pandas website page.

4.8 License

BSD 3-Clause License

Copyright (c) 2008-2012, AQR Capital Management, LLC, Lambda Foundry, Inc. and PyData
→˓Development Team
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

* Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.

* Neither the name of the copyright holder nor the names of its
contributors may be used to endorse or promote products derived from
this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

4.7. Institutional Partners 495

https://pandas.pydata.org/about.html

pandas: powerful Python data analysis toolkit, Release 0.23.4

496 Chapter 4. Package overview

CHAPTER

FIVE

10 MINUTES TO PANDAS

This is a short introduction to pandas, geared mainly for new users. You can see more complex recipes in the Cookbook.

Customarily, we import as follows:

In [1]: import pandas as pd

In [2]: import numpy as np

In [3]: import matplotlib.pyplot as plt

5.1 Object Creation

See the Data Structure Intro section.

Creating a Series by passing a list of values, letting pandas create a default integer index:

In [4]: s = pd.Series([1,3,5,np.nan,6,8])

In [5]: s
Out[5]:
0 1.0
1 3.0
2 5.0
3 NaN
4 6.0
5 8.0
dtype: float64

Creating a DataFrame by passing a NumPy array, with a datetime index and labeled columns:

In [6]: dates = pd.date_range('20130101', periods=6)

In [7]: dates
Out[7]:
DatetimeIndex(['2013-01-01', '2013-01-02', '2013-01-03', '2013-01-04',

'2013-01-05', '2013-01-06'],
dtype='datetime64[ns]', freq='D')

In [8]: df = pd.DataFrame(np.random.randn(6,4), index=dates, columns=list('ABCD'))

In [9]: df
Out[9]:

(continues on next page)

497

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

A B C D
2013-01-01 0.469112 -0.282863 -1.509059 -1.135632
2013-01-02 1.212112 -0.173215 0.119209 -1.044236
2013-01-03 -0.861849 -2.104569 -0.494929 1.071804
2013-01-04 0.721555 -0.706771 -1.039575 0.271860
2013-01-05 -0.424972 0.567020 0.276232 -1.087401
2013-01-06 -0.673690 0.113648 -1.478427 0.524988

Creating a DataFrame by passing a dict of objects that can be converted to series-like.

In [10]: df2 = pd.DataFrame({ 'A' : 1.,
....: 'B' : pd.Timestamp('20130102'),
....: 'C' : pd.Series(1,index=list(range(4)),dtype='float32'),
....: 'D' : np.array([3] * 4,dtype='int32'),
....: 'E' : pd.Categorical(["test","train","test","train"]),
....: 'F' : 'foo' })
....:

In [11]: df2
Out[11]:

A B C D E F
0 1.0 2013-01-02 1.0 3 test foo
1 1.0 2013-01-02 1.0 3 train foo
2 1.0 2013-01-02 1.0 3 test foo
3 1.0 2013-01-02 1.0 3 train foo

The columns of the resulting DataFrame have different dtypes.

In [12]: df2.dtypes
Out[12]:
A float64
B datetime64[ns]
C float32
D int32
E category
F object
dtype: object

If you’re using IPython, tab completion for column names (as well as public attributes) is automatically enabled.
Here’s a subset of the attributes that will be completed:

In [13]: df2.<TAB>
df2.A df2.bool
df2.abs df2.boxplot
df2.add df2.C
df2.add_prefix df2.clip
df2.add_suffix df2.clip_lower
df2.align df2.clip_upper
df2.all df2.columns
df2.any df2.combine
df2.append df2.combine_first
df2.apply df2.compound
df2.applymap df2.consolidate
df2.D

As you can see, the columns A, B, C, and D are automatically tab completed. E is there as well; the rest of the attributes
have been truncated for brevity.

498 Chapter 5. 10 Minutes to pandas

pandas: powerful Python data analysis toolkit, Release 0.23.4

5.2 Viewing Data

See the Basics section.

Here is how to view the top and bottom rows of the frame:

In [14]: df.head()
Out[14]:

A B C D
2013-01-01 0.469112 -0.282863 -1.509059 -1.135632
2013-01-02 1.212112 -0.173215 0.119209 -1.044236
2013-01-03 -0.861849 -2.104569 -0.494929 1.071804
2013-01-04 0.721555 -0.706771 -1.039575 0.271860
2013-01-05 -0.424972 0.567020 0.276232 -1.087401

In [15]: df.tail(3)
\\Out[15]:
→˓

A B C D
2013-01-04 0.721555 -0.706771 -1.039575 0.271860
2013-01-05 -0.424972 0.567020 0.276232 -1.087401
2013-01-06 -0.673690 0.113648 -1.478427 0.524988

Display the index, columns, and the underlying NumPy data:

In [16]: df.index
Out[16]:
DatetimeIndex(['2013-01-01', '2013-01-02', '2013-01-03', '2013-01-04',

'2013-01-05', '2013-01-06'],
dtype='datetime64[ns]', freq='D')

In [17]: df.columns
\\\Out[17]:
→˓Index(['A', 'B', 'C', 'D'], dtype='object')

In [18]: df.values
\\Out[18]:
→˓

array([[0.4691, -0.2829, -1.5091, -1.1356],
[1.2121, -0.1732, 0.1192, -1.0442],
[-0.8618, -2.1046, -0.4949, 1.0718],
[0.7216, -0.7068, -1.0396, 0.2719],
[-0.425 , 0.567 , 0.2762, -1.0874],
[-0.6737, 0.1136, -1.4784, 0.525]])

describe() shows a quick statistic summary of your data:

In [19]: df.describe()
Out[19]:

A B C D
count 6.000000 6.000000 6.000000 6.000000
mean 0.073711 -0.431125 -0.687758 -0.233103
std 0.843157 0.922818 0.779887 0.973118
min -0.861849 -2.104569 -1.509059 -1.135632
25% -0.611510 -0.600794 -1.368714 -1.076610
50% 0.022070 -0.228039 -0.767252 -0.386188
75% 0.658444 0.041933 -0.034326 0.461706
max 1.212112 0.567020 0.276232 1.071804

5.2. Viewing Data 499

pandas: powerful Python data analysis toolkit, Release 0.23.4

Transposing your data:

In [20]: df.T
Out[20]:

2013-01-01 2013-01-02 2013-01-03 2013-01-04 2013-01-05 2013-01-06
A 0.469112 1.212112 -0.861849 0.721555 -0.424972 -0.673690
B -0.282863 -0.173215 -2.104569 -0.706771 0.567020 0.113648
C -1.509059 0.119209 -0.494929 -1.039575 0.276232 -1.478427
D -1.135632 -1.044236 1.071804 0.271860 -1.087401 0.524988

Sorting by an axis:

In [21]: df.sort_index(axis=1, ascending=False)
Out[21]:

D C B A
2013-01-01 -1.135632 -1.509059 -0.282863 0.469112
2013-01-02 -1.044236 0.119209 -0.173215 1.212112
2013-01-03 1.071804 -0.494929 -2.104569 -0.861849
2013-01-04 0.271860 -1.039575 -0.706771 0.721555
2013-01-05 -1.087401 0.276232 0.567020 -0.424972
2013-01-06 0.524988 -1.478427 0.113648 -0.673690

Sorting by values:

In [22]: df.sort_values(by='B')
Out[22]:

A B C D
2013-01-03 -0.861849 -2.104569 -0.494929 1.071804
2013-01-04 0.721555 -0.706771 -1.039575 0.271860
2013-01-01 0.469112 -0.282863 -1.509059 -1.135632
2013-01-02 1.212112 -0.173215 0.119209 -1.044236
2013-01-06 -0.673690 0.113648 -1.478427 0.524988
2013-01-05 -0.424972 0.567020 0.276232 -1.087401

5.3 Selection

Note: While standard Python / Numpy expressions for selecting and setting are intuitive and come in handy for
interactive work, for production code, we recommend the optimized pandas data access methods, .at, .iat, .loc
and .iloc.

See the indexing documentation Indexing and Selecting Data and MultiIndex / Advanced Indexing.

5.3.1 Getting

Selecting a single column, which yields a Series, equivalent to df.A:

In [23]: df['A']
Out[23]:
2013-01-01 0.469112
2013-01-02 1.212112
2013-01-03 -0.861849
2013-01-04 0.721555

(continues on next page)

500 Chapter 5. 10 Minutes to pandas

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

2013-01-05 -0.424972
2013-01-06 -0.673690
Freq: D, Name: A, dtype: float64

Selecting via [], which slices the rows.

In [24]: df[0:3]
Out[24]:

A B C D
2013-01-01 0.469112 -0.282863 -1.509059 -1.135632
2013-01-02 1.212112 -0.173215 0.119209 -1.044236
2013-01-03 -0.861849 -2.104569 -0.494929 1.071804

In [25]: df['20130102':'20130104']
\\Out[25]:
→˓

A B C D
2013-01-02 1.212112 -0.173215 0.119209 -1.044236
2013-01-03 -0.861849 -2.104569 -0.494929 1.071804
2013-01-04 0.721555 -0.706771 -1.039575 0.271860

5.3.2 Selection by Label

See more in Selection by Label.

For getting a cross section using a label:

In [26]: df.loc[dates[0]]
Out[26]:
A 0.469112
B -0.282863
C -1.509059
D -1.135632
Name: 2013-01-01 00:00:00, dtype: float64

Selecting on a multi-axis by label:

In [27]: df.loc[:,['A','B']]
Out[27]:

A B
2013-01-01 0.469112 -0.282863
2013-01-02 1.212112 -0.173215
2013-01-03 -0.861849 -2.104569
2013-01-04 0.721555 -0.706771
2013-01-05 -0.424972 0.567020
2013-01-06 -0.673690 0.113648

Showing label slicing, both endpoints are included:

In [28]: df.loc['20130102':'20130104',['A','B']]
Out[28]:

A B
2013-01-02 1.212112 -0.173215
2013-01-03 -0.861849 -2.104569
2013-01-04 0.721555 -0.706771

5.3. Selection 501

pandas: powerful Python data analysis toolkit, Release 0.23.4

Reduction in the dimensions of the returned object:

In [29]: df.loc['20130102',['A','B']]
Out[29]:
A 1.212112
B -0.173215
Name: 2013-01-02 00:00:00, dtype: float64

For getting a scalar value:

In [30]: df.loc[dates[0],'A']
Out[30]: 0.46911229990718628

For getting fast access to a scalar (equivalent to the prior method):

In [31]: df.at[dates[0],'A']
Out[31]: 0.46911229990718628

5.3.3 Selection by Position

See more in Selection by Position.

Select via the position of the passed integers:

In [32]: df.iloc[3]
Out[32]:
A 0.721555
B -0.706771
C -1.039575
D 0.271860
Name: 2013-01-04 00:00:00, dtype: float64

By integer slices, acting similar to numpy/python:

In [33]: df.iloc[3:5,0:2]
Out[33]:

A B
2013-01-04 0.721555 -0.706771
2013-01-05 -0.424972 0.567020

By lists of integer position locations, similar to the numpy/python style:

In [34]: df.iloc[[1,2,4],[0,2]]
Out[34]:

A C
2013-01-02 1.212112 0.119209
2013-01-03 -0.861849 -0.494929
2013-01-05 -0.424972 0.276232

For slicing rows explicitly:

In [35]: df.iloc[1:3,:]
Out[35]:

A B C D
2013-01-02 1.212112 -0.173215 0.119209 -1.044236
2013-01-03 -0.861849 -2.104569 -0.494929 1.071804

502 Chapter 5. 10 Minutes to pandas

pandas: powerful Python data analysis toolkit, Release 0.23.4

For slicing columns explicitly:

In [36]: df.iloc[:,1:3]
Out[36]:

B C
2013-01-01 -0.282863 -1.509059
2013-01-02 -0.173215 0.119209
2013-01-03 -2.104569 -0.494929
2013-01-04 -0.706771 -1.039575
2013-01-05 0.567020 0.276232
2013-01-06 0.113648 -1.478427

For getting a value explicitly:

In [37]: df.iloc[1,1]
Out[37]: -0.17321464905330858

For getting fast access to a scalar (equivalent to the prior method):

In [38]: df.iat[1,1]
Out[38]: -0.17321464905330858

5.3.4 Boolean Indexing

Using a single column’s values to select data.

In [39]: df[df.A > 0]
Out[39]:

A B C D
2013-01-01 0.469112 -0.282863 -1.509059 -1.135632
2013-01-02 1.212112 -0.173215 0.119209 -1.044236
2013-01-04 0.721555 -0.706771 -1.039575 0.271860

Selecting values from a DataFrame where a boolean condition is met.

In [40]: df[df > 0]
Out[40]:

A B C D
2013-01-01 0.469112 NaN NaN NaN
2013-01-02 1.212112 NaN 0.119209 NaN
2013-01-03 NaN NaN NaN 1.071804
2013-01-04 0.721555 NaN NaN 0.271860
2013-01-05 NaN 0.567020 0.276232 NaN
2013-01-06 NaN 0.113648 NaN 0.524988

Using the isin() method for filtering:

In [41]: df2 = df.copy()

In [42]: df2['E'] = ['one', 'one','two','three','four','three']

In [43]: df2
Out[43]:

A B C D E
2013-01-01 0.469112 -0.282863 -1.509059 -1.135632 one
2013-01-02 1.212112 -0.173215 0.119209 -1.044236 one

(continues on next page)

5.3. Selection 503

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

2013-01-03 -0.861849 -2.104569 -0.494929 1.071804 two
2013-01-04 0.721555 -0.706771 -1.039575 0.271860 three
2013-01-05 -0.424972 0.567020 0.276232 -1.087401 four
2013-01-06 -0.673690 0.113648 -1.478427 0.524988 three

In [44]: df2[df2['E'].isin(['two','four'])]
\\Out[44]:
→˓

A B C D E
2013-01-03 -0.861849 -2.104569 -0.494929 1.071804 two
2013-01-05 -0.424972 0.567020 0.276232 -1.087401 four

5.3.5 Setting

Setting a new column automatically aligns the data by the indexes.

In [45]: s1 = pd.Series([1,2,3,4,5,6], index=pd.date_range('20130102', periods=6))

In [46]: s1
Out[46]:
2013-01-02 1
2013-01-03 2
2013-01-04 3
2013-01-05 4
2013-01-06 5
2013-01-07 6
Freq: D, dtype: int64

In [47]: df['F'] = s1

Setting values by label:

In [48]: df.at[dates[0],'A'] = 0

Setting values by position:

In [49]: df.iat[0,1] = 0

Setting by assigning with a NumPy array:

In [50]: df.loc[:,'D'] = np.array([5] * len(df))

The result of the prior setting operations.

In [51]: df
Out[51]:

A B C D F
2013-01-01 0.000000 0.000000 -1.509059 5 NaN
2013-01-02 1.212112 -0.173215 0.119209 5 1.0
2013-01-03 -0.861849 -2.104569 -0.494929 5 2.0
2013-01-04 0.721555 -0.706771 -1.039575 5 3.0
2013-01-05 -0.424972 0.567020 0.276232 5 4.0
2013-01-06 -0.673690 0.113648 -1.478427 5 5.0

A where operation with setting.

504 Chapter 5. 10 Minutes to pandas

pandas: powerful Python data analysis toolkit, Release 0.23.4

In [52]: df2 = df.copy()

In [53]: df2[df2 > 0] = -df2

In [54]: df2
Out[54]:

A B C D F
2013-01-01 0.000000 0.000000 -1.509059 -5 NaN
2013-01-02 -1.212112 -0.173215 -0.119209 -5 -1.0
2013-01-03 -0.861849 -2.104569 -0.494929 -5 -2.0
2013-01-04 -0.721555 -0.706771 -1.039575 -5 -3.0
2013-01-05 -0.424972 -0.567020 -0.276232 -5 -4.0
2013-01-06 -0.673690 -0.113648 -1.478427 -5 -5.0

5.4 Missing Data

pandas primarily uses the value np.nan to represent missing data. It is by default not included in computations. See
the Missing Data section.

Reindexing allows you to change/add/delete the index on a specified axis. This returns a copy of the data.

In [55]: df1 = df.reindex(index=dates[0:4], columns=list(df.columns) + ['E'])

In [56]: df1.loc[dates[0]:dates[1],'E'] = 1

In [57]: df1
Out[57]:

A B C D F E
2013-01-01 0.000000 0.000000 -1.509059 5 NaN 1.0
2013-01-02 1.212112 -0.173215 0.119209 5 1.0 1.0
2013-01-03 -0.861849 -2.104569 -0.494929 5 2.0 NaN
2013-01-04 0.721555 -0.706771 -1.039575 5 3.0 NaN

To drop any rows that have missing data.

In [58]: df1.dropna(how='any')
Out[58]:

A B C D F E
2013-01-02 1.212112 -0.173215 0.119209 5 1.0 1.0

Filling missing data.

In [59]: df1.fillna(value=5)
Out[59]:

A B C D F E
2013-01-01 0.000000 0.000000 -1.509059 5 5.0 1.0
2013-01-02 1.212112 -0.173215 0.119209 5 1.0 1.0
2013-01-03 -0.861849 -2.104569 -0.494929 5 2.0 5.0
2013-01-04 0.721555 -0.706771 -1.039575 5 3.0 5.0

To get the boolean mask where values are nan.

In [60]: pd.isna(df1)
Out[60]:

A B C D F E

(continues on next page)

5.4. Missing Data 505

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

2013-01-01 False False False False True False
2013-01-02 False False False False False False
2013-01-03 False False False False False True
2013-01-04 False False False False False True

5.5 Operations

See the Basic section on Binary Ops.

5.5.1 Stats

Operations in general exclude missing data.

Performing a descriptive statistic:

In [61]: df.mean()
Out[61]:
A -0.004474
B -0.383981
C -0.687758
D 5.000000
F 3.000000
dtype: float64

Same operation on the other axis:

In [62]: df.mean(1)
Out[62]:
2013-01-01 0.872735
2013-01-02 1.431621
2013-01-03 0.707731
2013-01-04 1.395042
2013-01-05 1.883656
2013-01-06 1.592306
Freq: D, dtype: float64

Operating with objects that have different dimensionality and need alignment. In addition, pandas automatically
broadcasts along the specified dimension.

In [63]: s = pd.Series([1,3,5,np.nan,6,8], index=dates).shift(2)

In [64]: s
Out[64]:
2013-01-01 NaN
2013-01-02 NaN
2013-01-03 1.0
2013-01-04 3.0
2013-01-05 5.0
2013-01-06 NaN
Freq: D, dtype: float64

In [65]: df.sub(s, axis='index')
\\Out[65]:
→˓ (continues on next page)

506 Chapter 5. 10 Minutes to pandas

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

A B C D F
2013-01-01 NaN NaN NaN NaN NaN
2013-01-02 NaN NaN NaN NaN NaN
2013-01-03 -1.861849 -3.104569 -1.494929 4.0 1.0
2013-01-04 -2.278445 -3.706771 -4.039575 2.0 0.0
2013-01-05 -5.424972 -4.432980 -4.723768 0.0 -1.0
2013-01-06 NaN NaN NaN NaN NaN

5.5.2 Apply

Applying functions to the data:

In [66]: df.apply(np.cumsum)
Out[66]:

A B C D F
2013-01-01 0.000000 0.000000 -1.509059 5 NaN
2013-01-02 1.212112 -0.173215 -1.389850 10 1.0
2013-01-03 0.350263 -2.277784 -1.884779 15 3.0
2013-01-04 1.071818 -2.984555 -2.924354 20 6.0
2013-01-05 0.646846 -2.417535 -2.648122 25 10.0
2013-01-06 -0.026844 -2.303886 -4.126549 30 15.0

In [67]: df.apply(lambda x: x.max() - x.min())
\\\Out[67]:
→˓

A 2.073961
B 2.671590
C 1.785291
D 0.000000
F 4.000000
dtype: float64

5.5.3 Histogramming

See more at Histogramming and Discretization.

In [68]: s = pd.Series(np.random.randint(0, 7, size=10))

In [69]: s
Out[69]:
0 4
1 2
2 1
3 2
4 6
5 4
6 4
7 6
8 4
9 4
dtype: int64

In [70]: s.value_counts()

(continues on next page)

5.5. Operations 507

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

\\\Out[70]:
→˓

4 5
6 2
2 2
1 1
dtype: int64

5.5.4 String Methods

Series is equipped with a set of string processing methods in the str attribute that make it easy to operate on each
element of the array, as in the code snippet below. Note that pattern-matching in str generally uses regular expressions
by default (and in some cases always uses them). See more at Vectorized String Methods.

In [71]: s = pd.Series(['A', 'B', 'C', 'Aaba', 'Baca', np.nan, 'CABA', 'dog', 'cat'])

In [72]: s.str.lower()
Out[72]:
0 a
1 b
2 c
3 aaba
4 baca
5 NaN
6 caba
7 dog
8 cat
dtype: object

5.6 Merge

5.6.1 Concat

pandas provides various facilities for easily combining together Series, DataFrame, and Panel objects with various
kinds of set logic for the indexes and relational algebra functionality in the case of join / merge-type operations.

See the Merging section.

Concatenating pandas objects together with concat():

In [73]: df = pd.DataFrame(np.random.randn(10, 4))

In [74]: df
Out[74]:

0 1 2 3
0 -0.548702 1.467327 -1.015962 -0.483075
1 1.637550 -1.217659 -0.291519 -1.745505
2 -0.263952 0.991460 -0.919069 0.266046
3 -0.709661 1.669052 1.037882 -1.705775
4 -0.919854 -0.042379 1.247642 -0.009920
5 0.290213 0.495767 0.362949 1.548106
6 -1.131345 -0.089329 0.337863 -0.945867

(continues on next page)

508 Chapter 5. 10 Minutes to pandas

https://docs.python.org/3/library/re.html

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

7 -0.932132 1.956030 0.017587 -0.016692
8 -0.575247 0.254161 -1.143704 0.215897
9 1.193555 -0.077118 -0.408530 -0.862495

break it into pieces
In [75]: pieces = [df[:3], df[3:7], df[7:]]

In [76]: pd.concat(pieces)
Out[76]:

0 1 2 3
0 -0.548702 1.467327 -1.015962 -0.483075
1 1.637550 -1.217659 -0.291519 -1.745505
2 -0.263952 0.991460 -0.919069 0.266046
3 -0.709661 1.669052 1.037882 -1.705775
4 -0.919854 -0.042379 1.247642 -0.009920
5 0.290213 0.495767 0.362949 1.548106
6 -1.131345 -0.089329 0.337863 -0.945867
7 -0.932132 1.956030 0.017587 -0.016692
8 -0.575247 0.254161 -1.143704 0.215897
9 1.193555 -0.077118 -0.408530 -0.862495

5.6.2 Join

SQL style merges. See the Database style joining section.

In [77]: left = pd.DataFrame({'key': ['foo', 'foo'], 'lval': [1, 2]})

In [78]: right = pd.DataFrame({'key': ['foo', 'foo'], 'rval': [4, 5]})

In [79]: left
Out[79]:

key lval
0 foo 1
1 foo 2

In [80]: right
\\\Out[80]:

key rval
0 foo 4
1 foo 5

In [81]: pd.merge(left, right, on='key')
\\Out[81]:
→˓

key lval rval
0 foo 1 4
1 foo 1 5
2 foo 2 4
3 foo 2 5

Another example that can be given is:

In [82]: left = pd.DataFrame({'key': ['foo', 'bar'], 'lval': [1, 2]})

In [83]: right = pd.DataFrame({'key': ['foo', 'bar'], 'rval': [4, 5]})

(continues on next page)

5.6. Merge 509

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

In [84]: left
Out[84]:

key lval
0 foo 1
1 bar 2

In [85]: right
\\\Out[85]:

key rval
0 foo 4
1 bar 5

In [86]: pd.merge(left, right, on='key')
\\Out[86]:
→˓

key lval rval
0 foo 1 4
1 bar 2 5

5.6.3 Append

Append rows to a dataframe. See the Appending section.

In [87]: df = pd.DataFrame(np.random.randn(8, 4), columns=['A','B','C','D'])

In [88]: df
Out[88]:

A B C D
0 1.346061 1.511763 1.627081 -0.990582
1 -0.441652 1.211526 0.268520 0.024580
2 -1.577585 0.396823 -0.105381 -0.532532
3 1.453749 1.208843 -0.080952 -0.264610
4 -0.727965 -0.589346 0.339969 -0.693205
5 -0.339355 0.593616 0.884345 1.591431
6 0.141809 0.220390 0.435589 0.192451
7 -0.096701 0.803351 1.715071 -0.708758

In [89]: s = df.iloc[3]

In [90]: df.append(s, ignore_index=True)
Out[90]:

A B C D
0 1.346061 1.511763 1.627081 -0.990582
1 -0.441652 1.211526 0.268520 0.024580
2 -1.577585 0.396823 -0.105381 -0.532532
3 1.453749 1.208843 -0.080952 -0.264610
4 -0.727965 -0.589346 0.339969 -0.693205
5 -0.339355 0.593616 0.884345 1.591431
6 0.141809 0.220390 0.435589 0.192451
7 -0.096701 0.803351 1.715071 -0.708758
8 1.453749 1.208843 -0.080952 -0.264610

510 Chapter 5. 10 Minutes to pandas

pandas: powerful Python data analysis toolkit, Release 0.23.4

5.7 Grouping

By “group by” we are referring to a process involving one or more of the following steps:

• Splitting the data into groups based on some criteria

• Applying a function to each group independently

• Combining the results into a data structure

See the Grouping section.

In [91]: df = pd.DataFrame({'A' : ['foo', 'bar', 'foo', 'bar',
....: 'foo', 'bar', 'foo', 'foo'],
....: 'B' : ['one', 'one', 'two', 'three',
....: 'two', 'two', 'one', 'three'],
....: 'C' : np.random.randn(8),
....: 'D' : np.random.randn(8)})
....:

In [92]: df
Out[92]:

A B C D
0 foo one -1.202872 -0.055224
1 bar one -1.814470 2.395985
2 foo two 1.018601 1.552825
3 bar three -0.595447 0.166599
4 foo two 1.395433 0.047609
5 bar two -0.392670 -0.136473
6 foo one 0.007207 -0.561757
7 foo three 1.928123 -1.623033

Grouping and then applying the sum() function to the resulting groups.

In [93]: df.groupby('A').sum()
Out[93]:

C D
A
bar -2.802588 2.42611
foo 3.146492 -0.63958

Grouping by multiple columns forms a hierarchical index, and again we can apply the sum function.

In [94]: df.groupby(['A','B']).sum()
Out[94]:

C D
A B
bar one -1.814470 2.395985

three -0.595447 0.166599
two -0.392670 -0.136473

foo one -1.195665 -0.616981
three 1.928123 -1.623033
two 2.414034 1.600434

5.8 Reshaping

See the sections on Hierarchical Indexing and Reshaping.

5.7. Grouping 511

pandas: powerful Python data analysis toolkit, Release 0.23.4

5.8.1 Stack

In [95]: tuples = list(zip(*[['bar', 'bar', 'baz', 'baz',
....: 'foo', 'foo', 'qux', 'qux'],
....: ['one', 'two', 'one', 'two',
....: 'one', 'two', 'one', 'two']]))
....:

In [96]: index = pd.MultiIndex.from_tuples(tuples, names=['first', 'second'])

In [97]: df = pd.DataFrame(np.random.randn(8, 2), index=index, columns=['A', 'B'])

In [98]: df2 = df[:4]

In [99]: df2
Out[99]:

A B
first second
bar one 0.029399 -0.542108

two 0.282696 -0.087302
baz one -1.575170 1.771208

two 0.816482 1.100230

The stack() method “compresses” a level in the DataFrame’s columns.

In [100]: stacked = df2.stack()

In [101]: stacked
Out[101]:
first second
bar one A 0.029399

B -0.542108
two A 0.282696

B -0.087302
baz one A -1.575170

B 1.771208
two A 0.816482

B 1.100230
dtype: float64

With a “stacked” DataFrame or Series (having a MultiIndex as the index), the inverse operation of stack() is
unstack(), which by default unstacks the last level:

In [102]: stacked.unstack()
Out[102]:

A B
first second
bar one 0.029399 -0.542108

two 0.282696 -0.087302
baz one -1.575170 1.771208

two 0.816482 1.100230

In [103]: stacked.unstack(1)
\\\Out[103]:
→˓

second one two
first

(continues on next page)

512 Chapter 5. 10 Minutes to pandas

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

bar A 0.029399 0.282696
B -0.542108 -0.087302

baz A -1.575170 0.816482
B 1.771208 1.100230

In [104]: stacked.unstack(0)
\\Out[104]:
→˓

first bar baz
second
one A 0.029399 -1.575170

B -0.542108 1.771208
two A 0.282696 0.816482

B -0.087302 1.100230

5.8.2 Pivot Tables

See the section on Pivot Tables.

In [105]: df = pd.DataFrame({'A' : ['one', 'one', 'two', 'three'] * 3,
.....: 'B' : ['A', 'B', 'C'] * 4,
.....: 'C' : ['foo', 'foo', 'foo', 'bar', 'bar', 'bar'] * 2,
.....: 'D' : np.random.randn(12),
.....: 'E' : np.random.randn(12)})
.....:

In [106]: df
Out[106]:

A B C D E
0 one A foo 1.418757 -0.179666
1 one B foo -1.879024 1.291836
2 two C foo 0.536826 -0.009614
3 three A bar 1.006160 0.392149
4 one B bar -0.029716 0.264599
5 one C bar -1.146178 -0.057409
6 two A foo 0.100900 -1.425638
7 three B foo -1.035018 1.024098
8 one C foo 0.314665 -0.106062
9 one A bar -0.773723 1.824375
10 two B bar -1.170653 0.595974
11 three C bar 0.648740 1.167115

We can produce pivot tables from this data very easily:

In [107]: pd.pivot_table(df, values='D', index=['A', 'B'], columns=['C'])
Out[107]:
C bar foo
A B
one A -0.773723 1.418757

B -0.029716 -1.879024
C -1.146178 0.314665

three A 1.006160 NaN
B NaN -1.035018
C 0.648740 NaN

two A NaN 0.100900

(continues on next page)

5.8. Reshaping 513

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

B -1.170653 NaN
C NaN 0.536826

5.9 Time Series

pandas has simple, powerful, and efficient functionality for performing resampling operations during frequency con-
version (e.g., converting secondly data into 5-minutely data). This is extremely common in, but not limited to, financial
applications. See the Time Series section.

In [108]: rng = pd.date_range('1/1/2012', periods=100, freq='S')

In [109]: ts = pd.Series(np.random.randint(0, 500, len(rng)), index=rng)

In [110]: ts.resample('5Min').sum()
Out[110]:
2012-01-01 25083
Freq: 5T, dtype: int64

Time zone representation:

In [111]: rng = pd.date_range('3/6/2012 00:00', periods=5, freq='D')

In [112]: ts = pd.Series(np.random.randn(len(rng)), rng)

In [113]: ts
Out[113]:
2012-03-06 0.464000
2012-03-07 0.227371
2012-03-08 -0.496922
2012-03-09 0.306389
2012-03-10 -2.290613
Freq: D, dtype: float64

In [114]: ts_utc = ts.tz_localize('UTC')

In [115]: ts_utc
Out[115]:
2012-03-06 00:00:00+00:00 0.464000
2012-03-07 00:00:00+00:00 0.227371
2012-03-08 00:00:00+00:00 -0.496922
2012-03-09 00:00:00+00:00 0.306389
2012-03-10 00:00:00+00:00 -2.290613
Freq: D, dtype: float64

Converting to another time zone:

In [116]: ts_utc.tz_convert('US/Eastern')
Out[116]:
2012-03-05 19:00:00-05:00 0.464000
2012-03-06 19:00:00-05:00 0.227371
2012-03-07 19:00:00-05:00 -0.496922
2012-03-08 19:00:00-05:00 0.306389
2012-03-09 19:00:00-05:00 -2.290613
Freq: D, dtype: float64

514 Chapter 5. 10 Minutes to pandas

pandas: powerful Python data analysis toolkit, Release 0.23.4

Converting between time span representations:

In [117]: rng = pd.date_range('1/1/2012', periods=5, freq='M')

In [118]: ts = pd.Series(np.random.randn(len(rng)), index=rng)

In [119]: ts
Out[119]:
2012-01-31 -1.134623
2012-02-29 -1.561819
2012-03-31 -0.260838
2012-04-30 0.281957
2012-05-31 1.523962
Freq: M, dtype: float64

In [120]: ps = ts.to_period()

In [121]: ps
Out[121]:
2012-01 -1.134623
2012-02 -1.561819
2012-03 -0.260838
2012-04 0.281957
2012-05 1.523962
Freq: M, dtype: float64

In [122]: ps.to_timestamp()
\\\Out[122]:
→˓

2012-01-01 -1.134623
2012-02-01 -1.561819
2012-03-01 -0.260838
2012-04-01 0.281957
2012-05-01 1.523962
Freq: MS, dtype: float64

Converting between period and timestamp enables some convenient arithmetic functions to be used. In the following
example, we convert a quarterly frequency with year ending in November to 9am of the end of the month following
the quarter end:

In [123]: prng = pd.period_range('1990Q1', '2000Q4', freq='Q-NOV')

In [124]: ts = pd.Series(np.random.randn(len(prng)), prng)

In [125]: ts.index = (prng.asfreq('M', 'e') + 1).asfreq('H', 's') + 9

In [126]: ts.head()
Out[126]:
1990-03-01 09:00 -0.902937
1990-06-01 09:00 0.068159
1990-09-01 09:00 -0.057873
1990-12-01 09:00 -0.368204
1991-03-01 09:00 -1.144073
Freq: H, dtype: float64

5.9. Time Series 515

pandas: powerful Python data analysis toolkit, Release 0.23.4

5.10 Categoricals

pandas can include categorical data in a DataFrame. For full docs, see the categorical introduction and the API
documentation.

In [127]: df = pd.DataFrame({"id":[1,2,3,4,5,6], "raw_grade":['a', 'b', 'b', 'a', 'a',
→˓ 'e']})

Convert the raw grades to a categorical data type.

In [128]: df["grade"] = df["raw_grade"].astype("category")

In [129]: df["grade"]
Out[129]:
0 a
1 b
2 b
3 a
4 a
5 e
Name: grade, dtype: category
Categories (3, object): [a, b, e]

Rename the categories to more meaningful names (assigning to Series.cat.categories is inplace!).

In [130]: df["grade"].cat.categories = ["very good", "good", "very bad"]

Reorder the categories and simultaneously add the missing categories (methods under Series .cat return a new
Series by default).

In [131]: df["grade"] = df["grade"].cat.set_categories(["very bad", "bad", "medium",
→˓"good", "very good"])

In [132]: df["grade"]
Out[132]:
0 very good
1 good
2 good
3 very good
4 very good
5 very bad
Name: grade, dtype: category
Categories (5, object): [very bad, bad, medium, good, very good]

Sorting is per order in the categories, not lexical order.

In [133]: df.sort_values(by="grade")
Out[133]:

id raw_grade grade
5 6 e very bad
1 2 b good
2 3 b good
0 1 a very good
3 4 a very good
4 5 a very good

Grouping by a categorical column also shows empty categories.

516 Chapter 5. 10 Minutes to pandas

pandas: powerful Python data analysis toolkit, Release 0.23.4

In [134]: df.groupby("grade").size()
Out[134]:
grade
very bad 1
bad 0
medium 0
good 2
very good 3
dtype: int64

5.11 Plotting

See the Plotting docs.

In [135]: ts = pd.Series(np.random.randn(1000), index=pd.date_range('1/1/2000',
→˓periods=1000))

In [136]: ts = ts.cumsum()

In [137]: ts.plot()
Out[137]: <matplotlib.axes._subplots.AxesSubplot at 0x7faa453cf710>

On a DataFrame, the plot() method is a convenience to plot all of the columns with labels:

5.11. Plotting 517

pandas: powerful Python data analysis toolkit, Release 0.23.4

In [138]: df = pd.DataFrame(np.random.randn(1000, 4), index=ts.index,
.....: columns=['A', 'B', 'C', 'D'])
.....:

In [139]: df = df.cumsum()

In [140]: plt.figure(); df.plot(); plt.legend(loc='best')
Out[140]: <matplotlib.legend.Legend at 0x7faa35768668>

5.12 Getting Data In/Out

5.12.1 CSV

Writing to a csv file.

In [141]: df.to_csv('foo.csv')

Reading from a csv file.

In [142]: pd.read_csv('foo.csv')
Out[142]:

Unnamed: 0 A B C D

(continues on next page)

518 Chapter 5. 10 Minutes to pandas

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

0 2000-01-01 0.266457 -0.399641 -0.219582 1.186860
1 2000-01-02 -1.170732 -0.345873 1.653061 -0.282953
2 2000-01-03 -1.734933 0.530468 2.060811 -0.515536
3 2000-01-04 -1.555121 1.452620 0.239859 -1.156896
4 2000-01-05 0.578117 0.511371 0.103552 -2.428202
5 2000-01-06 0.478344 0.449933 -0.741620 -1.962409
6 2000-01-07 1.235339 -0.091757 -1.543861 -1.084753
..
993 2002-09-20 -10.628548 -9.153563 -7.883146 28.313940
994 2002-09-21 -10.390377 -8.727491 -6.399645 30.914107
995 2002-09-22 -8.985362 -8.485624 -4.669462 31.367740
996 2002-09-23 -9.558560 -8.781216 -4.499815 30.518439
997 2002-09-24 -9.902058 -9.340490 -4.386639 30.105593
998 2002-09-25 -10.216020 -9.480682 -3.933802 29.758560
999 2002-09-26 -11.856774 -10.671012 -3.216025 29.369368

[1000 rows x 5 columns]

5.12.2 HDF5

Reading and writing to HDFStores.

Writing to a HDF5 Store.

In [143]: df.to_hdf('foo.h5','df')

Reading from a HDF5 Store.

In [144]: pd.read_hdf('foo.h5','df')
Out[144]:

A B C D
2000-01-01 0.266457 -0.399641 -0.219582 1.186860
2000-01-02 -1.170732 -0.345873 1.653061 -0.282953
2000-01-03 -1.734933 0.530468 2.060811 -0.515536
2000-01-04 -1.555121 1.452620 0.239859 -1.156896
2000-01-05 0.578117 0.511371 0.103552 -2.428202
2000-01-06 0.478344 0.449933 -0.741620 -1.962409
2000-01-07 1.235339 -0.091757 -1.543861 -1.084753
...
2002-09-20 -10.628548 -9.153563 -7.883146 28.313940
2002-09-21 -10.390377 -8.727491 -6.399645 30.914107
2002-09-22 -8.985362 -8.485624 -4.669462 31.367740
2002-09-23 -9.558560 -8.781216 -4.499815 30.518439
2002-09-24 -9.902058 -9.340490 -4.386639 30.105593
2002-09-25 -10.216020 -9.480682 -3.933802 29.758560
2002-09-26 -11.856774 -10.671012 -3.216025 29.369368

[1000 rows x 4 columns]

5.12.3 Excel

Reading and writing to MS Excel.

Writing to an excel file.

5.12. Getting Data In/Out 519

pandas: powerful Python data analysis toolkit, Release 0.23.4

In [145]: df.to_excel('foo.xlsx', sheet_name='Sheet1')

Reading from an excel file.

In [146]: pd.read_excel('foo.xlsx', 'Sheet1', index_col=None, na_values=['NA'])
Out[146]:

A B C D
2000-01-01 0.266457 -0.399641 -0.219582 1.186860
2000-01-02 -1.170732 -0.345873 1.653061 -0.282953
2000-01-03 -1.734933 0.530468 2.060811 -0.515536
2000-01-04 -1.555121 1.452620 0.239859 -1.156896
2000-01-05 0.578117 0.511371 0.103552 -2.428202
2000-01-06 0.478344 0.449933 -0.741620 -1.962409
2000-01-07 1.235339 -0.091757 -1.543861 -1.084753
...
2002-09-20 -10.628548 -9.153563 -7.883146 28.313940
2002-09-21 -10.390377 -8.727491 -6.399645 30.914107
2002-09-22 -8.985362 -8.485624 -4.669462 31.367740
2002-09-23 -9.558560 -8.781216 -4.499815 30.518439
2002-09-24 -9.902058 -9.340490 -4.386639 30.105593
2002-09-25 -10.216020 -9.480682 -3.933802 29.758560
2002-09-26 -11.856774 -10.671012 -3.216025 29.369368

[1000 rows x 4 columns]

5.13 Gotchas

If you are attempting to perform an operation you might see an exception like:

>>> if pd.Series([False, True, False]):
print("I was true")

Traceback
...

ValueError: The truth value of an array is ambiguous. Use a.empty, a.any() or a.all().

See Comparisons for an explanation and what to do.

See Gotchas as well.

520 Chapter 5. 10 Minutes to pandas

CHAPTER

SIX

TUTORIALS

This is a guide to many pandas tutorials, geared mainly for new users.

6.1 Internal Guides

pandas’ own 10 Minutes to pandas.

More complex recipes are in the Cookbook.

A handy pandas cheat sheet.

6.2 pandas Cookbook

The goal of this 2015 cookbook (by Julia Evans) is to give you some concrete examples for getting started with pandas.
These are examples with real-world data, and all the bugs and weirdness that entails.

Here are links to the v0.2 release. For an up-to-date table of contents, see the pandas-cookbook GitHub repository. To
run the examples in this tutorial, you’ll need to clone the GitHub repository and get IPython Notebook running. See
How to use this cookbook.

• A quick tour of the IPython Notebook: Shows off IPython’s awesome tab completion and magic functions.

• Chapter 1: Reading your data into pandas is pretty much the easiest thing. Even when the encoding is wrong!

• Chapter 2: It’s not totally obvious how to select data from a pandas dataframe. Here we explain the basics (how
to take slices and get columns)

• Chapter 3: Here we get into serious slicing and dicing and learn how to filter dataframes in complicated ways,
really fast.

• Chapter 4: Groupby/aggregate is seriously my favorite thing about pandas and I use it all the time. You should
probably read this.

• Chapter 5: Here you get to find out if it’s cold in Montreal in the winter (spoiler: yes). Web scraping with pandas
is fun! Here we combine dataframes.

• Chapter 6: Strings with pandas are great. It has all these vectorized string operations and they’re the best. We
will turn a bunch of strings containing “Snow” into vectors of numbers in a trice.

• Chapter 7: Cleaning up messy data is never a joy, but with pandas it’s easier.

• Chapter 8: Parsing Unix timestamps is confusing at first but it turns out to be really easy.

• Chapter 9: Reading data from SQL databases.

521

http://pandas.pydata.org/Pandas_Cheat_Sheet.pdf
http://jvns.ca
http://github.com/jvns/pandas-cookbook
https://github.com/jvns/pandas-cookbook#how-to-use-this-cookbook
http://nbviewer.jupyter.org/github/jvns/pandas-cookbook/blob/v0.2/cookbook/A%20quick%20tour%20of%20IPython%20Notebook.ipynb
http://nbviewer.jupyter.org/github/jvns/pandas-cookbook/blob/v0.2/cookbook/Chapter%201%20-%20Reading%20from%20a%20CSV.ipynb
http://nbviewer.jupyter.org/github/jvns/pandas-cookbook/blob/v0.2/cookbook/Chapter%202%20-%20Selecting%20data%20%26%20finding%20the%20most%20common%20complaint%20type.ipynb
http://nbviewer.jupyter.org/github/jvns/pandas-cookbook/blob/v0.2/cookbook/Chapter%203%20-%20Which%20borough%20has%20the%20most%20noise%20complaints%20%28or%2C%20more%20selecting%20data%29.ipynb
http://nbviewer.jupyter.org/github/jvns/pandas-cookbook/blob/v0.2/cookbook/Chapter%204%20-%20Find%20out%20on%20which%20weekday%20people%20bike%20the%20most%20with%20groupby%20and%20aggregate.ipynb
http://nbviewer.jupyter.org/github/jvns/pandas-cookbook/blob/v0.2/cookbook/Chapter%205%20-%20Combining%20dataframes%20and%20scraping%20Canadian%20weather%20data.ipynb
http://nbviewer.jupyter.org/github/jvns/pandas-cookbook/blob/v0.2/cookbook/Chapter%206%20-%20String%20Operations-%20Which%20month%20was%20the%20snowiest.ipynb
http://nbviewer.jupyter.org/github/jvns/pandas-cookbook/blob/v0.2/cookbook/Chapter%207%20-%20Cleaning%20up%20messy%20data.ipynb
http://nbviewer.jupyter.org/github/jvns/pandas-cookbook/blob/v0.2/cookbook/Chapter%208%20-%20How%20to%20deal%20with%20timestamps.ipynb
http://nbviewer.jupyter.org/github/jvns/pandas-cookbook/blob/v0.2/cookbook/Chapter%209%20-%20Loading%20data%20from%20SQL%20databases.ipynb

pandas: powerful Python data analysis toolkit, Release 0.23.4

6.3 Lessons for new pandas users

For more resources, please visit the main repository.

• 01 - Lesson: - Importing libraries - Creating data sets - Creating data frames - Reading from CSV - Exporting
to CSV - Finding maximums - Plotting data

• 02 - Lesson: - Reading from TXT - Exporting to TXT - Selecting top/bottom records - Descriptive statistics -
Grouping/sorting data

• 03 - Lesson: - Creating functions - Reading from EXCEL - Exporting to EXCEL - Outliers - Lambda functions
- Slice and dice data

• 04 - Lesson: - Adding/deleting columns - Index operations

• 05 - Lesson: - Stack/Unstack/Transpose functions

• 06 - Lesson: - GroupBy function

• 07 - Lesson: - Ways to calculate outliers

• 08 - Lesson: - Read from Microsoft SQL databases

• 09 - Lesson: - Export to CSV/EXCEL/TXT

• 10 - Lesson: - Converting between different kinds of formats

• 11 - Lesson: - Combining data from various sources

6.4 Practical data analysis with Python

This guide is a comprehensive introduction to the data analysis process using the Python data ecosystem and an
interesting open dataset. There are four sections covering selected topics as follows:

• Munging Data

• Aggregating Data

• Visualizing Data

• Time Series

6.5 Exercises for new users

Practice your skills with real data sets and exercises. For more resources, please visit the main repository.

• 01 - Getting & Knowing Your Data

• 02 - Filtering & Sorting

• 03 - Grouping

• 04 - Apply

• 05 - Merge

• 06 - Stats

• 07 - Visualization

• 08 - Creating Series and DataFrames

522 Chapter 6. Tutorials

https://bitbucket.org/hrojas/learn-pandas
http://nbviewer.ipython.org/urls/bitbucket.org/hrojas/learn-pandas/raw/master/lessons/01%20-%20Lesson.ipynb
http://nbviewer.ipython.org/urls/bitbucket.org/hrojas/learn-pandas/raw/master/lessons/02%20-%20Lesson.ipynb
http://nbviewer.ipython.org/urls/bitbucket.org/hrojas/learn-pandas/raw/master/lessons/03%20-%20Lesson.ipynb
http://nbviewer.ipython.org/urls/bitbucket.org/hrojas/learn-pandas/raw/master/lessons/04%20-%20Lesson.ipynb
http://nbviewer.ipython.org/urls/bitbucket.org/hrojas/learn-pandas/raw/master/lessons/05%20-%20Lesson.ipynb
http://nbviewer.ipython.org/urls/bitbucket.org/hrojas/learn-pandas/raw/master/lessons/06%20-%20Lesson.ipynb
http://nbviewer.ipython.org/urls/bitbucket.org/hrojas/learn-pandas/raw/master/lessons/07%20-%20Lesson.ipynb
http://nbviewer.ipython.org/urls/bitbucket.org/hrojas/learn-pandas/raw/master/lessons/08%20-%20Lesson.ipynb
http://nbviewer.ipython.org/urls/bitbucket.org/hrojas/learn-pandas/raw/master/lessons/09%20-%20Lesson.ipynb
http://nbviewer.ipython.org/urls/bitbucket.org/hrojas/learn-pandas/raw/master/lessons/10%20-%20Lesson.ipynb
http://nbviewer.ipython.org/urls/bitbucket.org/hrojas/learn-pandas/raw/master/lessons/11%20-%20Lesson.ipynb
http://wavedatalab.github.io/datawithpython
http://wavedatalab.github.io/datawithpython/munge.html
http://wavedatalab.github.io/datawithpython/aggregate.html
http://wavedatalab.github.io/datawithpython/visualize.html
http://wavedatalab.github.io/datawithpython/timeseries.html
https://github.com/guipsamora/pandas_exercises
https://github.com/guipsamora/pandas_exercises/tree/master/01_Getting_%26_Knowing_Your_Data
https://github.com/guipsamora/pandas_exercises/tree/master/02_Filtering_%26_Sorting
https://github.com/guipsamora/pandas_exercises/tree/master/03_Grouping
https://github.com/guipsamora/pandas_exercises/tree/master/04_Apply
https://github.com/guipsamora/pandas_exercises/tree/master/05_Merge
https://github.com/guipsamora/pandas_exercises/tree/master/06_Stats
https://github.com/guipsamora/pandas_exercises/tree/master/07_Visualization
https://github.com/guipsamora/pandas_exercises/tree/master/08_Creating_Series_and_DataFrames/Pokemon

pandas: powerful Python data analysis toolkit, Release 0.23.4

• 09 - Time Series

• 10 - Deleting

6.6 Modern pandas

Tutorial series written in 2016 by Tom Augspurger. The source may be found in the GitHub repository
TomAugspurger/effective-pandas.

• Modern Pandas

• Method Chaining

• Indexes

• Performance

• Tidy Data

• Visualization

• Timeseries

6.7 Excel charts with pandas, vincent and xlsxwriter

• Using Pandas and XlsxWriter to create Excel charts

6.8 Video Tutorials

• Pandas From The Ground Up (2015) (2:24) GitHub repo

• Introduction Into Pandas (2016) (1:28) GitHub repo

• Pandas: .head() to .tail() (2016) (1:26) GitHub repo

6.9 Various Tutorials

• Wes McKinney’s (pandas BDFL) blog

• Statistical analysis made easy in Python with SciPy and pandas DataFrames, by Randal Olson

• Statistical Data Analysis in Python, tutorial videos, by Christopher Fonnesbeck from SciPy 2013

• Financial analysis in Python, by Thomas Wiecki

• Intro to pandas data structures, by Greg Reda

• Pandas and Python: Top 10, by Manish Amde

• Pandas Tutorial, by Mikhail Semeniuk

• Pandas DataFrames Tutorial, by Karlijn Willems

• A concise tutorial with real life examples

6.6. Modern pandas 523

https://github.com/guipsamora/pandas_exercises/tree/master/09_Time_Series
https://github.com/guipsamora/pandas_exercises/tree/master/10_Deleting
https://github.com/TomAugspurger
https://github.com/TomAugspurger/effective-pandas
http://tomaugspurger.github.io/modern-1-intro.html
http://tomaugspurger.github.io/method-chaining.html
http://tomaugspurger.github.io/modern-3-indexes.html
http://tomaugspurger.github.io/modern-4-performance.html
http://tomaugspurger.github.io/modern-5-tidy.html
http://tomaugspurger.github.io/modern-6-visualization.html
http://tomaugspurger.github.io/modern-7-timeseries.html
https://pandas-xlsxwriter-charts.readthedocs.io/
https://www.youtube.com/watch?v=5JnMutdy6Fw
https://github.com/brandon-rhodes/pycon-pandas-tutorial
https://www.youtube.com/watch?v=-NR-ynQg0YM
https://github.com/chendaniely/2016-pydata-carolinas-pandas
https://www.youtube.com/watch?v=7vuO9QXDN50
https://github.com/TomAugspurger/pydata-chi-h2t
http://blog.wesmckinney.com/
http://www.randalolson.com/2012/08/06/statistical-analysis-made-easy-in-python/
http://conference.scipy.org/scipy2013/tutorial_detail.php?id=109
http://nbviewer.ipython.org/github/twiecki/financial-analysis-python-tutorial/blob/master/1.%20Pandas%20Basics.ipynb
http://www.gregreda.com/2013/10/26/intro-to-pandas-data-structures/
http://manishamde.github.io/blog/2013/03/07/pandas-and-python-top-10/
http://www.bearrelroll.com/2013/05/python-pandas-tutorial
http://www.datacamp.com/community/tutorials/pandas-tutorial-dataframe-python
https://tutswiki.com/pandas-cookbook/chapter1

pandas: powerful Python data analysis toolkit, Release 0.23.4

524 Chapter 6. Tutorials

CHAPTER

SEVEN

COOKBOOK

This is a repository for short and sweet examples and links for useful pandas recipes. We encourage users to add to
this documentation.

Adding interesting links and/or inline examples to this section is a great First Pull Request.

Simplified, condensed, new-user friendly, in-line examples have been inserted where possible to augment the Stack-
Overflow and GitHub links. Many of the links contain expanded information, above what the in-line examples offer.

Pandas (pd) and Numpy (np) are the only two abbreviated imported modules. The rest are kept explicitly imported for
newer users.

These examples are written for Python 3. Minor tweaks might be necessary for earlier python versions.

7.1 Idioms

These are some neat pandas idioms

if-then/if-then-else on one column, and assignment to another one or more columns:

In [1]: df = pd.DataFrame(
...: {'AAA' : [4,5,6,7], 'BBB' : [10,20,30,40],'CCC' : [100,50,-30,-50]}); df
...:

Out[1]:
AAA BBB CCC

0 4 10 100
1 5 20 50
2 6 30 -30
3 7 40 -50

7.1.1 if-then. . .

An if-then on one column

In [2]: df.loc[df.AAA >= 5,'BBB'] = -1; df
Out[2]:

AAA BBB CCC
0 4 10 100
1 5 -1 50
2 6 -1 -30
3 7 -1 -50

An if-then with assignment to 2 columns:

525

http://stackoverflow.com/questions/17128302/python-pandas-idiom-for-if-then-else

pandas: powerful Python data analysis toolkit, Release 0.23.4

In [3]: df.loc[df.AAA >= 5,['BBB','CCC']] = 555; df
Out[3]:

AAA BBB CCC
0 4 10 100
1 5 555 555
2 6 555 555
3 7 555 555

Add another line with different logic, to do the -else

In [4]: df.loc[df.AAA < 5,['BBB','CCC']] = 2000; df
Out[4]:

AAA BBB CCC
0 4 2000 2000
1 5 555 555
2 6 555 555
3 7 555 555

Or use pandas where after you’ve set up a mask

In [5]: df_mask = pd.DataFrame({'AAA' : [True] * 4, 'BBB' : [False] * 4,'CCC' : [True,
→˓False] * 2})

In [6]: df.where(df_mask,-1000)
Out[6]:

AAA BBB CCC
0 4 -1000 2000
1 5 -1000 -1000
2 6 -1000 555
3 7 -1000 -1000

if-then-else using numpy’s where()

In [7]: df = pd.DataFrame(
...: {'AAA' : [4,5,6,7], 'BBB' : [10,20,30,40],'CCC' : [100,50,-30,-50]}); df
...:

Out[7]:
AAA BBB CCC

0 4 10 100
1 5 20 50
2 6 30 -30
3 7 40 -50

In [8]: df['logic'] = np.where(df['AAA'] > 5,'high','low'); df
\\Out[8]:
→˓

AAA BBB CCC logic
0 4 10 100 low
1 5 20 50 low
2 6 30 -30 high
3 7 40 -50 high

7.1.2 Splitting

Split a frame with a boolean criterion

526 Chapter 7. Cookbook

http://stackoverflow.com/questions/19913659/pandas-conditional-creation-of-a-series-dataframe-column
http://stackoverflow.com/questions/14957116/how-to-split-a-dataframe-according-to-a-boolean-criterion

pandas: powerful Python data analysis toolkit, Release 0.23.4

In [9]: df = pd.DataFrame(
...: {'AAA' : [4,5,6,7], 'BBB' : [10,20,30,40],'CCC' : [100,50,-30,-50]}); df
...:

Out[9]:
AAA BBB CCC

0 4 10 100
1 5 20 50
2 6 30 -30
3 7 40 -50

In [10]: dflow = df[df.AAA <= 5]; dflow
\\Out[10]:
→˓

AAA BBB CCC
0 4 10 100
1 5 20 50

In [11]: dfhigh = df[df.AAA > 5]; dfhigh
\\\Out[11]:
→˓

AAA BBB CCC
2 6 30 -30
3 7 40 -50

7.1.3 Building Criteria

Select with multi-column criteria

In [12]: df = pd.DataFrame(
....: {'AAA' : [4,5,6,7], 'BBB' : [10,20,30,40],'CCC' : [100,50,-30,-50]}); df
....:

Out[12]:
AAA BBB CCC

0 4 10 100
1 5 20 50
2 6 30 -30
3 7 40 -50

. . . and (without assignment returns a Series)

In [13]: newseries = df.loc[(df['BBB'] < 25) & (df['CCC'] >= -40), 'AAA']; newseries
Out[13]:
0 4
1 5
Name: AAA, dtype: int64

. . . or (without assignment returns a Series)

In [14]: newseries = df.loc[(df['BBB'] > 25) | (df['CCC'] >= -40), 'AAA']; newseries;

. . . or (with assignment modifies the DataFrame.)

In [15]: df.loc[(df['BBB'] > 25) | (df['CCC'] >= 75), 'AAA'] = 0.1; df
Out[15]:

AAA BBB CCC
0 0.1 10 100

(continues on next page)

7.1. Idioms 527

http://stackoverflow.com/questions/15315452/selecting-with-complex-criteria-from-pandas-dataframe

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

1 5.0 20 50
2 0.1 30 -30
3 0.1 40 -50

Select rows with data closest to certain value using argsort

In [16]: df = pd.DataFrame(
....: {'AAA' : [4,5,6,7], 'BBB' : [10,20,30,40],'CCC' : [100,50,-30,-50]}); df
....:

Out[16]:
AAA BBB CCC

0 4 10 100
1 5 20 50
2 6 30 -30
3 7 40 -50

In [17]: aValue = 43.0

In [18]: df.loc[(df.CCC-aValue).abs().argsort()]
Out[18]:

AAA BBB CCC
1 5 20 50
0 4 10 100
2 6 30 -30
3 7 40 -50

Dynamically reduce a list of criteria using a binary operators

In [19]: df = pd.DataFrame(
....: {'AAA' : [4,5,6,7], 'BBB' : [10,20,30,40],'CCC' : [100,50,-30,-50]}); df
....:

Out[19]:
AAA BBB CCC

0 4 10 100
1 5 20 50
2 6 30 -30
3 7 40 -50

In [20]: Crit1 = df.AAA <= 5.5

In [21]: Crit2 = df.BBB == 10.0

In [22]: Crit3 = df.CCC > -40.0

One could hard code:

In [23]: AllCrit = Crit1 & Crit2 & Crit3

. . . Or it can be done with a list of dynamically built criteria

In [24]: CritList = [Crit1,Crit2,Crit3]

In [25]: AllCrit = functools.reduce(lambda x,y: x & y, CritList)

In [26]: df[AllCrit]
Out[26]:

(continues on next page)

528 Chapter 7. Cookbook

http://stackoverflow.com/questions/17758023/return-rows-in-a-dataframe-closest-to-a-user-defined-number
http://stackoverflow.com/questions/21058254/pandas-boolean-operation-in-a-python-list/21058331

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

AAA BBB CCC
0 4 10 100

7.2 Selection

7.2.1 DataFrames

The indexing docs.

Using both row labels and value conditionals

In [27]: df = pd.DataFrame(
....: {'AAA' : [4,5,6,7], 'BBB' : [10,20,30,40],'CCC' : [100,50,-30,-50]}); df
....:

Out[27]:
AAA BBB CCC

0 4 10 100
1 5 20 50
2 6 30 -30
3 7 40 -50

In [28]: df[(df.AAA <= 6) & (df.index.isin([0,2,4]))]
\\\Out[28]:
→˓

AAA BBB CCC
0 4 10 100
2 6 30 -30

Use loc for label-oriented slicing and iloc positional slicing

In [29]: data = {'AAA' : [4,5,6,7], 'BBB' : [10,20,30,40],'CCC' : [100,50,-30,-50]}

In [30]: df = pd.DataFrame(data=data,index=['foo','bar','boo','kar']); df
Out[30]:

AAA BBB CCC
foo 4 10 100
bar 5 20 50
boo 6 30 -30
kar 7 40 -50

There are 2 explicit slicing methods, with a third general case

1. Positional-oriented (Python slicing style : exclusive of end)

2. Label-oriented (Non-Python slicing style : inclusive of end)

3. General (Either slicing style : depends on if the slice contains labels or positions)

In [31]: df.loc['bar':'kar'] #Label
Out[31]:

AAA BBB CCC
bar 5 20 50
boo 6 30 -30
kar 7 40 -50

(continues on next page)

7.2. Selection 529

http://stackoverflow.com/questions/14725068/pandas-using-row-labels-in-boolean-indexing
https://github.com/pandas-dev/pandas/issues/2904

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

Generic
In [32]: df.iloc[0:3]
\\Out[32]:
→˓

AAA BBB CCC
foo 4 10 100
bar 5 20 50
boo 6 30 -30

In [33]: df.loc['bar':'kar']
\\Out[33]:
→˓

AAA BBB CCC
bar 5 20 50
boo 6 30 -30
kar 7 40 -50

Ambiguity arises when an index consists of integers with a non-zero start or non-unit increment.

In [34]: df2 = pd.DataFrame(data=data,index=[1,2,3,4]); #Note index starts at 1.

In [35]: df2.iloc[1:3] #Position-oriented
Out[35]:

AAA BBB CCC
2 5 20 50
3 6 30 -30

In [36]: df2.loc[1:3] #Label-oriented
\\\Out[36]:

AAA BBB CCC
1 4 10 100
2 5 20 50
3 6 30 -30

Using inverse operator (~) to take the complement of a mask

In [37]: df = pd.DataFrame(
....: {'AAA' : [4,5,6,7], 'BBB' : [10,20,30,40], 'CCC' : [100,50,-30,-50]});

→˓df
....:

Out[37]:
AAA BBB CCC

0 4 10 100
1 5 20 50
2 6 30 -30
3 7 40 -50

In [38]: df[~((df.AAA <= 6) & (df.index.isin([0,2,4])))]
\\\Out[38]:
→˓

AAA BBB CCC
1 5 20 50
3 7 40 -50

530 Chapter 7. Cookbook

http://stackoverflow.com/questions/14986510/picking-out-elements-based-on-complement-of-indices-in-python-pandas

pandas: powerful Python data analysis toolkit, Release 0.23.4

7.2.2 Panels

Extend a panel frame by transposing, adding a new dimension, and transposing back to the original dimensions

In [39]: rng = pd.date_range('1/1/2013',periods=100,freq='D')

In [40]: data = np.random.randn(100, 4)

In [41]: cols = ['A','B','C','D']

In [42]: df1, df2, df3 = pd.DataFrame(data, rng, cols), pd.DataFrame(data, rng, cols),
→˓ pd.DataFrame(data, rng, cols)

In [43]: pf = pd.Panel({'df1':df1,'df2':df2,'df3':df3});pf
Out[43]:
<class 'pandas.core.panel.Panel'>
Dimensions: 3 (items) x 100 (major_axis) x 4 (minor_axis)
Items axis: df1 to df3
Major_axis axis: 2013-01-01 00:00:00 to 2013-04-10 00:00:00
Minor_axis axis: A to D

In [44]: pf.loc[:,:,'F'] = pd.DataFrame(data, rng, cols);pf
\\\Out[44]:
→˓

<class 'pandas.core.panel.Panel'>
Dimensions: 3 (items) x 100 (major_axis) x 5 (minor_axis)
Items axis: df1 to df3
Major_axis axis: 2013-01-01 00:00:00 to 2013-04-10 00:00:00
Minor_axis axis: A to F

Mask a panel by using np.where and then reconstructing the panel with the new masked values

7.2.3 New Columns

Efficiently and dynamically creating new columns using applymap

In [45]: df = pd.DataFrame(
....: {'AAA' : [1,2,1,3], 'BBB' : [1,1,2,2], 'CCC' : [2,1,3,1]}); df
....:

Out[45]:
AAA BBB CCC

0 1 1 2
1 2 1 1
2 1 2 3
3 3 2 1

In [46]: source_cols = df.columns # or some subset would work too.

In [47]: new_cols = [str(x) + "_cat" for x in source_cols]

In [48]: categories = {1 : 'Alpha', 2 : 'Beta', 3 : 'Charlie' }

In [49]: df[new_cols] = df[source_cols].applymap(categories.get);df
Out[49]:

AAA BBB CCC AAA_cat BBB_cat CCC_cat
0 1 1 2 Alpha Alpha Beta

(continues on next page)

7.2. Selection 531

http://stackoverflow.com/questions/15364050/extending-a-pandas-panel-frame-along-the-minor-axis
http://stackoverflow.com/questions/14650341/boolean-mask-in-pandas-panel
http://stackoverflow.com/questions/16575868/efficiently-creating-additional-columns-in-a-pandas-dataframe-using-map

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

1 2 1 1 Beta Alpha Alpha
2 1 2 3 Alpha Beta Charlie
3 3 2 1 Charlie Beta Alpha

Keep other columns when using min() with groupby

In [50]: df = pd.DataFrame(
....: {'AAA' : [1,1,1,2,2,2,3,3], 'BBB' : [2,1,3,4,5,1,2,3]}); df
....:

Out[50]:
AAA BBB

0 1 2
1 1 1
2 1 3
3 2 4
4 2 5
5 2 1
6 3 2
7 3 3

Method 1 : idxmin() to get the index of the mins

In [51]: df.loc[df.groupby("AAA")["BBB"].idxmin()]
Out[51]:

AAA BBB
1 1 1
5 2 1
6 3 2

Method 2 : sort then take first of each

In [52]: df.sort_values(by="BBB").groupby("AAA", as_index=False).first()
Out[52]:

AAA BBB
0 1 1
1 2 1
2 3 2

Notice the same results, with the exception of the index.

7.3 MultiIndexing

The multindexing docs.

Creating a multi-index from a labeled frame

In [53]: df = pd.DataFrame({'row' : [0,1,2],
....: 'One_X' : [1.1,1.1,1.1],
....: 'One_Y' : [1.2,1.2,1.2],
....: 'Two_X' : [1.11,1.11,1.11],
....: 'Two_Y' : [1.22,1.22,1.22]}); df
....:

Out[53]:
row One_X One_Y Two_X Two_Y

0 0 1.1 1.2 1.11 1.22

(continues on next page)

532 Chapter 7. Cookbook

http://stackoverflow.com/questions/23394476/keep-other-columns-when-using-min-with-groupby
http://stackoverflow.com/questions/14916358/reshaping-dataframes-in-pandas-based-on-column-labels

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

1 1 1.1 1.2 1.11 1.22
2 2 1.1 1.2 1.11 1.22

As Labelled Index
In [54]: df = df.set_index('row');df
\\Out[54]:
→˓

One_X One_Y Two_X Two_Y
row
0 1.1 1.2 1.11 1.22
1 1.1 1.2 1.11 1.22
2 1.1 1.2 1.11 1.22

With Hierarchical Columns
In [55]: df.columns = pd.MultiIndex.from_tuples([tuple(c.split('_')) for c in df.
→˓columns]);df
\\Out[55]:
→˓

One Two
X Y X Y

row
0 1.1 1.2 1.11 1.22
1 1.1 1.2 1.11 1.22
2 1.1 1.2 1.11 1.22

Now stack & Reset
In [56]: df = df.stack(0).reset_index(1);df
\\Out[56]:
→˓

level_1 X Y
row
0 One 1.10 1.20
0 Two 1.11 1.22
1 One 1.10 1.20
1 Two 1.11 1.22
2 One 1.10 1.20
2 Two 1.11 1.22

And fix the labels (Notice the label 'level_1' got added automatically)
In [57]: df.columns = ['Sample','All_X','All_Y'];df
\\Out[57]:
→˓

Sample All_X All_Y
row
0 One 1.10 1.20
0 Two 1.11 1.22
1 One 1.10 1.20
1 Two 1.11 1.22
2 One 1.10 1.20
2 Two 1.11 1.22

7.3.1 Arithmetic

Performing arithmetic with a multi-index that needs broadcasting

7.3. MultiIndexing 533

http://stackoverflow.com/questions/19501510/divide-entire-pandas-multiindex-dataframe-by-dataframe-variable/19502176#19502176

pandas: powerful Python data analysis toolkit, Release 0.23.4

In [58]: cols = pd.MultiIndex.from_tuples([(x,y) for x in ['A','B','C'] for y in ['O
→˓','I']])

In [59]: df = pd.DataFrame(np.random.randn(2,6),index=['n','m'],columns=cols); df
Out[59]:

A B C
O I O I O I

n 1.920906 -0.388231 -2.314394 0.665508 0.402562 0.399555
m -1.765956 0.850423 0.388054 0.992312 0.744086 -0.739776

In [60]: df = df.div(df['C'],level=1); df
\\Out[60]:
→˓

A B C
O I O I O I

n 4.771702 -0.971660 -5.749162 1.665625 1.0 1.0
m -2.373321 -1.149568 0.521518 -1.341367 1.0 1.0

7.3.2 Slicing

Slicing a multi-index with xs

In [61]: coords = [('AA','one'),('AA','six'),('BB','one'),('BB','two'),('BB','six')]

In [62]: index = pd.MultiIndex.from_tuples(coords)

In [63]: df = pd.DataFrame([11,22,33,44,55],index,['MyData']); df
Out[63]:

MyData
AA one 11

six 22
BB one 33

two 44
six 55

To take the cross section of the 1st level and 1st axis the index:

In [64]: df.xs('BB',level=0,axis=0) #Note : level and axis are optional, and default
→˓to zero
Out[64]:

MyData
one 33
two 44
six 55

. . . and now the 2nd level of the 1st axis.

In [65]: df.xs('six',level=1,axis=0)
Out[65]:

MyData
AA 22
BB 55

Slicing a multi-index with xs, method #2

534 Chapter 7. Cookbook

http://stackoverflow.com/questions/12590131/how-to-slice-multindex-columns-in-pandas-dataframes
http://stackoverflow.com/questions/14964493/multiindex-based-indexing-in-pandas

pandas: powerful Python data analysis toolkit, Release 0.23.4

In [66]: index = list(itertools.product(['Ada','Quinn','Violet'],['Comp','Math','Sci
→˓']))

In [67]: headr = list(itertools.product(['Exams','Labs'],['I','II']))

In [68]: indx = pd.MultiIndex.from_tuples(index,names=['Student','Course'])

In [69]: cols = pd.MultiIndex.from_tuples(headr) #Notice these are un-named

In [70]: data = [[70+x+y+(x*y)%3 for x in range(4)] for y in range(9)]

In [71]: df = pd.DataFrame(data,indx,cols); df
Out[71]:

Exams Labs
I II I II

Student Course
Ada Comp 70 71 72 73

Math 71 73 75 74
Sci 72 75 75 75

Quinn Comp 73 74 75 76
Math 74 76 78 77
Sci 75 78 78 78

Violet Comp 76 77 78 79
Math 77 79 81 80
Sci 78 81 81 81

In [72]: All = slice(None)

In [73]: df.loc['Violet']
Out[73]:

Exams Labs
I II I II

Course
Comp 76 77 78 79
Math 77 79 81 80
Sci 78 81 81 81

In [74]: df.loc[(All,'Math'),All]
\\Out[74]:
→˓

Exams Labs
I II I II

Student Course
Ada Math 71 73 75 74
Quinn Math 74 76 78 77
Violet Math 77 79 81 80

In [75]: df.loc[(slice('Ada','Quinn'),'Math'),All]
\\Out[75]:
→˓

Exams Labs
I II I II

Student Course
Ada Math 71 73 75 74
Quinn Math 74 76 78 77

In [76]: df.loc[(All,'Math'),('Exams')]

(continues on next page)

7.3. MultiIndexing 535

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

\\Out[76]:
→˓

I II
Student Course
Ada Math 71 73
Quinn Math 74 76
Violet Math 77 79

In [77]: df.loc[(All,'Math'),(All,'II')]
\\\Out[77]:
→˓

Exams Labs
II II

Student Course
Ada Math 73 74
Quinn Math 76 77
Violet Math 79 80

Setting portions of a multi-index with xs

7.3.3 Sorting

Sort by specific column or an ordered list of columns, with a multi-index

In [78]: df.sort_values(by=('Labs', 'II'), ascending=False)
Out[78]:

Exams Labs
I II I II

Student Course
Violet Sci 78 81 81 81

Math 77 79 81 80
Comp 76 77 78 79

Quinn Sci 75 78 78 78
Math 74 76 78 77
Comp 73 74 75 76

Ada Sci 72 75 75 75
Math 71 73 75 74
Comp 70 71 72 73

Partial Selection, the need for sortedness;

7.3.4 Levels

Prepending a level to a multiindex

Flatten Hierarchical columns

7.4 Missing Data

The missing data docs.

Fill forward a reversed timeseries

536 Chapter 7. Cookbook

http://stackoverflow.com/questions/19319432/pandas-selecting-a-lower-level-in-a-dataframe-to-do-a-ffill
http://stackoverflow.com/questions/14733871/mutli-index-sorting-in-pandas
https://github.com/pandas-dev/pandas/issues/2995
http://stackoverflow.com/questions/14744068/prepend-a-level-to-a-pandas-multiindex
http://stackoverflow.com/questions/14507794/python-pandas-how-to-flatten-a-hierarchical-index-in-columns

pandas: powerful Python data analysis toolkit, Release 0.23.4

In [79]: df = pd.DataFrame(np.random.randn(6,1), index=pd.date_range('2013-08-01',
→˓periods=6, freq='B'), columns=list('A'))

In [80]: df.loc[df.index[3], 'A'] = np.nan

In [81]: df
Out[81]:

A
2013-08-01 -1.054874
2013-08-02 -0.179642
2013-08-05 0.639589
2013-08-06 NaN
2013-08-07 1.906684
2013-08-08 0.104050

In [82]: df.reindex(df.index[::-1]).ffill()
\\\Out[82]:
→˓

A
2013-08-08 0.104050
2013-08-07 1.906684
2013-08-06 1.906684
2013-08-05 0.639589
2013-08-02 -0.179642
2013-08-01 -1.054874

cumsum reset at NaN values

7.4.1 Replace

Using replace with backrefs

7.5 Grouping

The grouping docs.

Basic grouping with apply

Unlike agg, apply’s callable is passed a sub-DataFrame which gives you access to all the columns

In [83]: df = pd.DataFrame({'animal': 'cat dog cat fish dog cat cat'.split(),
....: 'size': list('SSMMMLL'),
....: 'weight': [8, 10, 11, 1, 20, 12, 12],
....: 'adult' : [False] * 5 + [True] * 2}); df
....:

Out[83]:
animal size weight adult

0 cat S 8 False
1 dog S 10 False
2 cat M 11 False
3 fish M 1 False
4 dog M 20 False
5 cat L 12 True
6 cat L 12 True

(continues on next page)

7.5. Grouping 537

http://stackoverflow.com/questions/18196811/cumsum-reset-at-nan
http://stackoverflow.com/questions/16818871/extracting-value-and-creating-new-column-out-of-it
http://stackoverflow.com/questions/15322632/python-pandas-df-groupy-agg-column-reference-in-agg

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

#List the size of the animals with the highest weight.
In [84]: df.groupby('animal').apply(lambda subf: subf['size'][subf['weight'].
→˓idxmax()])
\\Out[84]:
→˓

animal
cat L
dog M
fish M
dtype: object

Using get_group

In [85]: gb = df.groupby(['animal'])

In [86]: gb.get_group('cat')
Out[86]:

animal size weight adult
0 cat S 8 False
2 cat M 11 False
5 cat L 12 True
6 cat L 12 True

Apply to different items in a group

In [87]: def GrowUp(x):
....: avg_weight = sum(x[x['size'] == 'S'].weight * 1.5)
....: avg_weight += sum(x[x['size'] == 'M'].weight * 1.25)
....: avg_weight += sum(x[x['size'] == 'L'].weight)
....: avg_weight /= len(x)
....: return pd.Series(['L',avg_weight,True], index=['size', 'weight', 'adult'])
....:

In [88]: expected_df = gb.apply(GrowUp)

In [89]: expected_df
Out[89]:

size weight adult
animal
cat L 12.4375 True
dog L 20.0000 True
fish L 1.2500 True

Expanding Apply

In [90]: S = pd.Series([i / 100.0 for i in range(1,11)])

In [91]: def CumRet(x,y):
....: return x * (1 + y)
....:

In [92]: def Red(x):
....: return functools.reduce(CumRet,x,1.0)
....:

In [93]: S.expanding().apply(Red, raw=True)
Out[93]:

(continues on next page)

538 Chapter 7. Cookbook

http://stackoverflow.com/questions/14734533/how-to-access-pandas-groupby-dataframe-by-key
http://stackoverflow.com/questions/15262134/apply-different-functions-to-different-items-in-group-object-python-pandas
http://stackoverflow.com/questions/14542145/reductions-down-a-column-in-pandas

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

0 1.010000
1 1.030200
2 1.061106
3 1.103550
4 1.158728
5 1.228251
6 1.314229
7 1.419367
8 1.547110
9 1.701821
dtype: float64

Replacing some values with mean of the rest of a group

In [94]: df = pd.DataFrame({'A' : [1, 1, 2, 2], 'B' : [1, -1, 1, 2]})

In [95]: gb = df.groupby('A')

In [96]: def replace(g):
....: mask = g < 0
....: g.loc[mask] = g[~mask].mean()
....: return g
....:

In [97]: gb.transform(replace)
Out[97]:

B
0 1.0
1 1.0
2 1.0
3 2.0

Sort groups by aggregated data

In [98]: df = pd.DataFrame({'code': ['foo', 'bar', 'baz'] * 2,
....: 'data': [0.16, -0.21, 0.33, 0.45, -0.59, 0.62],
....: 'flag': [False, True] * 3})
....:

In [99]: code_groups = df.groupby('code')

In [100]: agg_n_sort_order = code_groups[['data']].transform(sum).sort_values(by='data
→˓')

In [101]: sorted_df = df.loc[agg_n_sort_order.index]

In [102]: sorted_df
Out[102]:

code data flag
1 bar -0.21 True
4 bar -0.59 False
0 foo 0.16 False
3 foo 0.45 True
2 baz 0.33 False
5 baz 0.62 True

Create multiple aggregated columns

7.5. Grouping 539

http://stackoverflow.com/questions/14760757/replacing-values-with-groupby-means
http://stackoverflow.com/questions/14941366/pandas-sort-by-group-aggregate-and-column
http://stackoverflow.com/questions/14897100/create-multiple-columns-in-pandas-aggregation-function

pandas: powerful Python data analysis toolkit, Release 0.23.4

In [103]: rng = pd.date_range(start="2014-10-07",periods=10,freq='2min')

In [104]: ts = pd.Series(data = list(range(10)), index = rng)

In [105]: def MyCust(x):
.....: if len(x) > 2:
.....: return x[1] * 1.234
.....: return pd.NaT
.....:

In [106]: mhc = {'Mean' : np.mean, 'Max' : np.max, 'Custom' : MyCust}

In [107]: ts.resample("5min").apply(mhc)
Out[107]:
Custom 2014-10-07 00:00:00 1.234

2014-10-07 00:05:00 NaT
2014-10-07 00:10:00 7.404
2014-10-07 00:15:00 NaT

Max 2014-10-07 00:00:00 2
2014-10-07 00:05:00 4
2014-10-07 00:10:00 7
2014-10-07 00:15:00 9

Mean 2014-10-07 00:00:00 1
2014-10-07 00:05:00 3.5
2014-10-07 00:10:00 6
2014-10-07 00:15:00 8.5

dtype: object

In [108]: ts
\\\Out[108]:
→˓

2014-10-07 00:00:00 0
2014-10-07 00:02:00 1
2014-10-07 00:04:00 2
2014-10-07 00:06:00 3
2014-10-07 00:08:00 4
2014-10-07 00:10:00 5
2014-10-07 00:12:00 6
2014-10-07 00:14:00 7
2014-10-07 00:16:00 8
2014-10-07 00:18:00 9
Freq: 2T, dtype: int64

Create a value counts column and reassign back to the DataFrame

In [109]: df = pd.DataFrame({'Color': 'Red Red Red Blue'.split(),
.....: 'Value': [100, 150, 50, 50]}); df
.....:

Out[109]:
Color Value

0 Red 100
1 Red 150
2 Red 50
3 Blue 50

In [110]: df['Counts'] = df.groupby(['Color']).transform(len)

(continues on next page)

540 Chapter 7. Cookbook

http://stackoverflow.com/questions/17709270/i-want-to-create-a-column-of-value-counts-in-my-pandas-dataframe

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

In [111]: df
Out[111]:

Color Value Counts
0 Red 100 3
1 Red 150 3
2 Red 50 3
3 Blue 50 1

Shift groups of the values in a column based on the index

In [112]: df = pd.DataFrame(
.....: {u'line_race': [10, 10, 8, 10, 10, 8],
.....: u'beyer': [99, 102, 103, 103, 88, 100]},
.....: index=[u'Last Gunfighter', u'Last Gunfighter', u'Last Gunfighter',
.....: u'Paynter', u'Paynter', u'Paynter']); df
.....:

Out[112]:
line_race beyer

Last Gunfighter 10 99
Last Gunfighter 10 102
Last Gunfighter 8 103
Paynter 10 103
Paynter 10 88
Paynter 8 100

In [113]: df['beyer_shifted'] = df.groupby(level=0)['beyer'].shift(1)

In [114]: df
Out[114]:

line_race beyer beyer_shifted
Last Gunfighter 10 99 NaN
Last Gunfighter 10 102 99.0
Last Gunfighter 8 103 102.0
Paynter 10 103 NaN
Paynter 10 88 103.0
Paynter 8 100 88.0

Select row with maximum value from each group

In [115]: df = pd.DataFrame({'host':['other','other','that','this','this'],
.....: 'service':['mail','web','mail','mail','web'],
.....: 'no':[1, 2, 1, 2, 1]}).set_index(['host', 'service'])
.....:

In [116]: mask = df.groupby(level=0).agg('idxmax')

In [117]: df_count = df.loc[mask['no']].reset_index()

In [118]: df_count
Out[118]:

host service no
0 other web 2
1 that mail 1
2 this mail 2

Grouping like Python’s itertools.groupby

7.5. Grouping 541

http://stackoverflow.com/q/23198053/190597
http://stackoverflow.com/q/26701849/190597
http://stackoverflow.com/q/29142487/846892

pandas: powerful Python data analysis toolkit, Release 0.23.4

In [119]: df = pd.DataFrame([0, 1, 0, 1, 1, 1, 0, 1, 1], columns=['A'])

In [120]: df.A.groupby((df.A != df.A.shift()).cumsum()).groups
Out[120]:
{1: Int64Index([0], dtype='int64'),
2: Int64Index([1], dtype='int64'),
3: Int64Index([2], dtype='int64'),
4: Int64Index([3, 4, 5], dtype='int64'),
5: Int64Index([6], dtype='int64'),
6: Int64Index([7, 8], dtype='int64')}

In [121]: df.A.groupby((df.A != df.A.shift()).cumsum()).cumsum()
\\Out[121]:
→˓

0 0
1 1
2 0
3 1
4 2
5 3
6 0
7 1
8 2
Name: A, dtype: int64

7.5.1 Expanding Data

Alignment and to-date

Rolling Computation window based on values instead of counts

Rolling Mean by Time Interval

7.5.2 Splitting

Splitting a frame

Create a list of dataframes, split using a delineation based on logic included in rows.

In [122]: df = pd.DataFrame(data={'Case' : ['A','A','A','B','A','A','B','A','A'],
.....: 'Data' : np.random.randn(9)})
.....:

In [123]: dfs = list(zip(*df.groupby((1*(df['Case']=='B')).cumsum().rolling(window=3,
→˓min_periods=1).median())))[-1]

In [124]: dfs[0]
Out[124]:

Case Data
0 A 0.174068
1 A -0.439461
2 A -0.741343
3 B -0.079673

In [125]: dfs[1]

(continues on next page)

542 Chapter 7. Cookbook

http://stackoverflow.com/questions/15489011/python-time-series-alignment-and-to-date-functions
http://stackoverflow.com/questions/14300768/pandas-rolling-computation-with-window-based-on-values-instead-of-counts
http://stackoverflow.com/questions/15771472/pandas-rolling-mean-by-time-interval
http://stackoverflow.com/questions/13353233/best-way-to-split-a-dataframe-given-an-edge/15449992#15449992

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

\\Out[125]:
→˓

Case Data
4 A -0.922875
5 A 0.303638
6 B -0.917368

In [126]: dfs[2]
\\\Out[126]:
→˓

Case Data
7 A -1.624062
8 A -0.758514

7.5.3 Pivot

The Pivot docs.

Partial sums and subtotals

In [127]: df = pd.DataFrame(data={'Province' : ['ON','QC','BC','AL','AL','MN','ON'],
.....: 'City' : ['Toronto','Montreal','Vancouver','Calgary

→˓','Edmonton','Winnipeg','Windsor'],
.....: 'Sales' : [13,6,16,8,4,3,1]})
.....:

In [128]: table = pd.pivot_table(df,values=['Sales'],index=['Province'],columns=['City
→˓'],aggfunc=np.sum,margins=True)

In [129]: table.stack('City')
Out[129]:

Sales
Province City
AL All 12.0

Calgary 8.0
Edmonton 4.0

BC All 16.0
Vancouver 16.0

MN All 3.0
Winnipeg 3.0

... ...
All Calgary 8.0

Edmonton 4.0
Montreal 6.0
Toronto 13.0
Vancouver 16.0
Windsor 1.0
Winnipeg 3.0

[20 rows x 1 columns]

Frequency table like plyr in R

In [130]: grades = [48,99,75,80,42,80,72,68,36,78]

(continues on next page)

7.5. Grouping 543

http://stackoverflow.com/questions/15570099/pandas-pivot-tables-row-subtotals/15574875#15574875
http://stackoverflow.com/questions/15589354/frequency-tables-in-pandas-like-plyr-in-r

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

In [131]: df = pd.DataFrame({'ID': ["x%d" % r for r in range(10)],
.....: 'Gender' : ['F', 'M', 'F', 'M', 'F', 'M', 'F', 'M', 'M',

→˓ 'M'],
.....: 'ExamYear': ['2007','2007','2007','2008','2008','2008',

→˓'2008','2009','2009','2009'],
.....: 'Class': ['algebra', 'stats', 'bio', 'algebra', 'algebra

→˓', 'stats', 'stats', 'algebra', 'bio', 'bio'],
.....: 'Participated': ['yes','yes','yes','yes','no','yes','yes

→˓','yes','yes','yes'],
.....: 'Passed': ['yes' if x > 50 else 'no' for x in grades],
.....: 'Employed': [True,True,True,False,False,False,False,

→˓True,True,False],
.....: 'Grade': grades})
.....:

In [132]: df.groupby('ExamYear').agg({'Participated': lambda x: x.value_counts()['yes
→˓'],

.....: 'Passed': lambda x: sum(x == 'yes'),

.....: 'Employed' : lambda x : sum(x),

.....: 'Grade' : lambda x : sum(x) / len(x)})

.....:
Out[132]:

Participated Passed Employed Grade
ExamYear
2007 3 2 3 74.000000
2008 3 3 0 68.500000
2009 3 2 2 60.666667

Plot pandas DataFrame with year over year data

To create year and month crosstabulation:

In [133]: df = pd.DataFrame({'value': np.random.randn(36)},
.....: index=pd.date_range('2011-01-01', freq='M', periods=36))
.....:

In [134]: pd.pivot_table(df, index=df.index.month, columns=df.index.year,
.....: values='value', aggfunc='sum')
.....:

Out[134]:
2011 2012 2013

1 -0.560859 0.120930 0.516870
2 -0.589005 -0.210518 0.343125
3 -1.070678 -0.931184 2.137827
4 -1.681101 0.240647 0.452429
5 0.403776 -0.027462 0.483103
6 0.609862 0.033113 0.061495
7 0.387936 -0.658418 0.240767
8 1.815066 0.324102 0.782413
9 0.705200 -1.403048 0.628462
10 -0.668049 -0.581967 -0.880627
11 0.242501 -1.233862 0.777575
12 0.313421 -3.520876 -0.779367

544 Chapter 7. Cookbook

http://stackoverflow.com/questions/30379789/plot-pandas-data-frame-with-year-over-year-data

pandas: powerful Python data analysis toolkit, Release 0.23.4

7.5.4 Apply

Rolling Apply to Organize - Turning embedded lists into a multi-index frame

In [135]: df = pd.DataFrame(data={'A' : [[2,4,8,16],[100,200],[10,20,30]], 'B' : [['a
→˓','b','c'],['jj','kk'],['ccc']]},index=['I','II','III'])

In [136]: def SeriesFromSubList(aList):
.....: return pd.Series(aList)
.....:

In [137]: df_orgz = pd.concat(dict([(ind,row.apply(SeriesFromSubList)) for ind,row
→˓in df.iterrows()]))

Rolling Apply with a DataFrame returning a Series

Rolling Apply to multiple columns where function calculates a Series before a Scalar from the Series is returned

In [138]: df = pd.DataFrame(data=np.random.randn(2000,2)/10000,
.....: index=pd.date_range('2001-01-01',periods=2000),
.....: columns=['A','B']); df
.....:

Out[138]:
A B

2001-01-01 0.000032 -0.000004
2001-01-02 -0.000001 0.000207
2001-01-03 0.000120 -0.000220
2001-01-04 -0.000083 -0.000165
2001-01-05 -0.000047 0.000156
2001-01-06 0.000027 0.000104
2001-01-07 0.000041 -0.000101
...
2006-06-17 -0.000034 0.000034
2006-06-18 0.000002 0.000166
2006-06-19 0.000023 -0.000081
2006-06-20 -0.000061 0.000012
2006-06-21 -0.000111 0.000027
2006-06-22 -0.000061 -0.000009
2006-06-23 0.000074 -0.000138

[2000 rows x 2 columns]

In [139]: def gm(aDF,Const):
.....: v = ((((aDF.A+aDF.B)+1).cumprod())-1)*Const
.....: return (aDF.index[0],v.iloc[-1])
.....:

In [140]: S = pd.Series(dict([gm(df.iloc[i:min(i+51,len(df)-1)],5) for i in
→˓range(len(df)-50)])); S
Out[140]:
2001-01-01 -0.001373
2001-01-02 -0.001705
2001-01-03 -0.002885
2001-01-04 -0.002987
2001-01-05 -0.002384
2001-01-06 -0.004700
2001-01-07 -0.005500

...

(continues on next page)

7.5. Grouping 545

http://stackoverflow.com/questions/17349981/converting-pandas-dataframe-with-categorical-values-into-binary-values
http://stackoverflow.com/questions/19121854/using-rolling-apply-on-a-dataframe-object

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

2006-04-28 -0.002682
2006-04-29 -0.002436
2006-04-30 -0.002602
2006-05-01 -0.001785
2006-05-02 -0.001799
2006-05-03 -0.000605
2006-05-04 -0.000541
Length: 1950, dtype: float64

Rolling apply with a DataFrame returning a Scalar

Rolling Apply to multiple columns where function returns a Scalar (Volume Weighted Average Price)

In [141]: rng = pd.date_range(start = '2014-01-01',periods = 100)

In [142]: df = pd.DataFrame({'Open' : np.random.randn(len(rng)),
.....: 'Close' : np.random.randn(len(rng)),
.....: 'Volume' : np.random.randint(100,2000,len(rng))},

→˓index=rng); df
.....:

Out[142]:
Open Close Volume

2014-01-01 0.011174 -0.653039 1581
2014-01-02 0.214258 1.314205 1707
2014-01-03 -1.046922 -0.341915 1768
2014-01-04 -0.752902 -1.303586 836
2014-01-05 -0.410793 0.396288 694
2014-01-06 0.648401 -0.548006 796
2014-01-07 0.737320 0.481380 265
...
2014-04-04 0.120378 -2.548128 564
2014-04-05 0.231661 0.223346 1908
2014-04-06 0.952664 1.228841 1090
2014-04-07 -0.176090 0.552784 1813
2014-04-08 1.781318 -0.795389 1103
2014-04-09 -0.753493 -0.018815 1456
2014-04-10 -1.047997 1.138197 1193

[100 rows x 3 columns]

In [143]: def vwap(bars): return ((bars.Close*bars.Volume).sum()/bars.Volume.sum())

In [144]: window = 5

In [145]: s = pd.concat([(pd.Series(vwap(df.iloc[i:i+window]), index=[df.
→˓index[i+window]])) for i in range(len(df)-window)]);

In [146]: s.round(2)
Out[146]:
2014-01-06 -0.03
2014-01-07 0.07
2014-01-08 -0.40
2014-01-09 -0.81
2014-01-10 -0.63
2014-01-11 -0.86
2014-01-12 -0.36

...

(continues on next page)

546 Chapter 7. Cookbook

http://stackoverflow.com/questions/21040766/python-pandas-rolling-apply-two-column-input-into-function/21045831#21045831

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

2014-04-04 -1.27
2014-04-05 -1.36
2014-04-06 -0.73
2014-04-07 0.04
2014-04-08 0.21
2014-04-09 0.07
2014-04-10 0.25
Length: 95, dtype: float64

7.6 Timeseries

Between times

Using indexer between time

Constructing a datetime range that excludes weekends and includes only certain times

Vectorized Lookup

Aggregation and plotting time series

Turn a matrix with hours in columns and days in rows into a continuous row sequence in the form of a time series.
How to rearrange a Python pandas DataFrame?

Dealing with duplicates when reindexing a timeseries to a specified frequency

Calculate the first day of the month for each entry in a DatetimeIndex

In [147]: dates = pd.date_range('2000-01-01', periods=5)

In [148]: dates.to_period(freq='M').to_timestamp()
Out[148]:
DatetimeIndex(['2000-01-01', '2000-01-01', '2000-01-01', '2000-01-01',

'2000-01-01'],
dtype='datetime64[ns]', freq=None)

7.6.1 Resampling

The Resample docs.

Using Grouper instead of TimeGrouper for time grouping of values

Time grouping with some missing values

Valid frequency arguments to Grouper

Grouping using a MultiIndex

Using TimeGrouper and another grouping to create subgroups, then apply a custom function

Resampling with custom periods

Resample intraday frame without adding new days

Resample minute data

Resample with groupby

7.6. Timeseries 547

http://stackoverflow.com/questions/14539992/pandas-drop-rows-outside-of-time-range
http://stackoverflow.com/questions/17559885/pandas-dataframe-mask-based-on-index
http://stackoverflow.com/questions/24010830/pandas-generate-sequential-timestamp-with-jump/24014440#24014440?
http://stackoverflow.com/questions/13893227/vectorized-look-up-of-values-in-pandas-dataframe
http://nipunbatra.github.io/2015/06/timeseries/
http://stackoverflow.com/questions/15432659/how-to-rearrange-a-python-pandas-dataframe
http://stackoverflow.com/questions/22244383/pandas-df-refill-adding-two-columns-of-different-shape
https://stackoverflow.com/questions/15297053/how-can-i-divide-single-values-of-a-dataframe-by-monthly-averages
https://stackoverflow.com/questions/33637312/pandas-grouper-by-frequency-with-completeness-requirement
http://pandas.pydata.org/pandas-docs/stable/timeseries.html#offset-aliases
https://stackoverflow.com/questions/41483763/pandas-timegrouper-on-multiindex
https://github.com/pandas-dev/pandas/issues/3791
http://stackoverflow.com/questions/15408156/resampling-with-custom-periods
http://stackoverflow.com/questions/14898574/resample-intrday-pandas-dataframe-without-add-new-days
http://stackoverflow.com/questions/14861023/resampling-minute-data
http://stackoverflow.com/q/18677271/564538

pandas: powerful Python data analysis toolkit, Release 0.23.4

7.7 Merge

The Concat docs. The Join docs.

Append two dataframes with overlapping index (emulate R rbind)

In [149]: rng = pd.date_range('2000-01-01', periods=6)

In [150]: df1 = pd.DataFrame(np.random.randn(6, 3), index=rng, columns=['A', 'B', 'C
→˓'])

In [151]: df2 = df1.copy()

Depending on df construction, ignore_index may be needed

In [152]: df = df1.append(df2,ignore_index=True); df
Out[152]:

A B C
0 -0.480676 -1.305282 -0.212846
1 1.979901 0.363112 -0.275732
2 -1.433852 0.580237 -0.013672
3 1.776623 -0.803467 0.521517
4 -0.302508 -0.442948 -0.395768
5 -0.249024 -0.031510 2.413751
6 -0.480676 -1.305282 -0.212846
7 1.979901 0.363112 -0.275732
8 -1.433852 0.580237 -0.013672
9 1.776623 -0.803467 0.521517
10 -0.302508 -0.442948 -0.395768
11 -0.249024 -0.031510 2.413751

Self Join of a DataFrame

In [153]: df = pd.DataFrame(data={'Area' : ['A'] * 5 + ['C'] * 2,
.....: 'Bins' : [110] * 2 + [160] * 3 + [40] * 2,
.....: 'Test_0' : [0, 1, 0, 1, 2, 0, 1],
.....: 'Data' : np.random.randn(7)});df
.....:

Out[153]:
Area Bins Test_0 Data

0 A 110 0 -0.378914
1 A 110 1 -1.032527
2 A 160 0 -1.402816
3 A 160 1 0.715333
4 A 160 2 -0.091438
5 C 40 0 1.608418
6 C 40 1 0.753207

In [154]: df['Test_1'] = df['Test_0'] - 1

In [155]: pd.merge(df, df, left_on=['Bins', 'Area','Test_0'], right_on=['Bins', 'Area
→˓','Test_1'],suffixes=('_L','_R'))
Out[155]:

Area Bins Test_0_L Data_L Test_1_L Test_0_R Data_R Test_1_R
0 A 110 0 -0.378914 -1 1 -1.032527 0
1 A 160 0 -1.402816 -1 1 0.715333 0
2 A 160 1 0.715333 0 2 -0.091438 1
3 C 40 0 1.608418 -1 1 0.753207 0

548 Chapter 7. Cookbook

http://stackoverflow.com/questions/14988480/pandas-version-of-rbind
https://github.com/pandas-dev/pandas/issues/2996

pandas: powerful Python data analysis toolkit, Release 0.23.4

How to set the index and join

KDB like asof join

Join with a criteria based on the values

Using searchsorted to merge based on values inside a range

7.8 Plotting

The Plotting docs.

Make Matplotlib look like R

Setting x-axis major and minor labels

Plotting multiple charts in an ipython notebook

Creating a multi-line plot

Plotting a heatmap

Annotate a time-series plot

Annotate a time-series plot #2

Generate Embedded plots in excel files using Pandas, Vincent and xlsxwriter

Boxplot for each quartile of a stratifying variable

In [156]: df = pd.DataFrame(
.....: {u'stratifying_var': np.random.uniform(0, 100, 20),
.....: u'price': np.random.normal(100, 5, 20)})
.....:

In [157]: df[u'quartiles'] = pd.qcut(
.....: df[u'stratifying_var'],
.....: 4,
.....: labels=[u'0-25%', u'25-50%', u'50-75%', u'75-100%'])
.....:

In [158]: df.boxplot(column=u'price', by=u'quartiles')
Out[158]: <matplotlib.axes._subplots.AxesSubplot at 0x7f210fbc2668>

7.8. Plotting 549

http://stackoverflow.com/questions/14341805/pandas-merge-pd-merge-how-to-set-the-index-and-join
http://stackoverflow.com/questions/12322289/kdb-like-asof-join-for-timeseries-data-in-pandas/12336039#12336039
http://stackoverflow.com/questions/15581829/how-to-perform-an-inner-or-outer-join-of-dataframes-with-pandas-on-non-simplisti
http://stackoverflow.com/questions/25125626/pandas-merge-with-logic/2512764
http://stackoverflow.com/questions/14349055/making-matplotlib-graphs-look-like-r-by-default
http://stackoverflow.com/questions/12945971/pandas-timeseries-plot-setting-x-axis-major-and-minor-ticks-and-labels
http://stackoverflow.com/questions/16392921/make-more-than-one-chart-in-same-ipython-notebook-cell
http://stackoverflow.com/questions/16568964/make-a-multiline-plot-from-csv-file-in-matplotlib
http://stackoverflow.com/questions/17050202/plot-timeseries-of-histograms-in-python
http://stackoverflow.com/questions/11067368/annotate-time-series-plot-in-matplotlib
http://stackoverflow.com/questions/17891493/annotating-points-from-a-pandas-dataframe-in-matplotlib-plot
https://pandas-xlsxwriter-charts.readthedocs.io/
http://stackoverflow.com/questions/23232989/boxplot-stratified-by-column-in-python-pandas

pandas: powerful Python data analysis toolkit, Release 0.23.4

7.9 Data In/Out

Performance comparison of SQL vs HDF5

7.9.1 CSV

The CSV docs

read_csv in action

appending to a csv

Reading a csv chunk-by-chunk

Reading only certain rows of a csv chunk-by-chunk

Reading the first few lines of a frame

Reading a file that is compressed but not by gzip/bz2 (the native compressed formats which read_csv under-
stands). This example shows a WinZipped file, but is a general application of opening the file within a context
manager and using that handle to read. See here

Inferring dtypes from a file

Dealing with bad lines

550 Chapter 7. Cookbook

http://stackoverflow.com/questions/16628329/hdf5-and-sqlite-concurrency-compression-i-o-performance
http://wesmckinney.com/blog/update-on-upcoming-pandas-v0-10-new-file-parser-other-performance-wins/
http://stackoverflow.com/questions/17134942/pandas-dataframe-output-end-of-csv
http://stackoverflow.com/questions/11622652/large-persistent-dataframe-in-pandas/12193309#12193309
http://stackoverflow.com/questions/19674212/pandas-data-frame-select-rows-and-clear-memory
http://stackoverflow.com/questions/15008970/way-to-read-first-few-lines-for-pandas-dataframe
http://stackoverflow.com/questions/17789907/pandas-convert-winzipped-csv-file-to-data-frame
http://stackoverflow.com/questions/15555005/get-inferred-dataframe-types-iteratively-using-chunksize
http://github.com/pandas-dev/pandas/issues/2886

pandas: powerful Python data analysis toolkit, Release 0.23.4

Dealing with bad lines II

Reading CSV with Unix timestamps and converting to local timezone

Write a multi-row index CSV without writing duplicates

7.9.1.1 Reading multiple files to create a single DataFrame

The best way to combine multiple files into a single DataFrame is to read the individual frames one by one, put all of
the individual frames into a list, and then combine the frames in the list using pd.concat():

In [159]: for i in range(3):
.....: data = pd.DataFrame(np.random.randn(10, 4))
.....: data.to_csv('file_{}.csv'.format(i))
.....:

In [160]: files = ['file_0.csv', 'file_1.csv', 'file_2.csv']

In [161]: result = pd.concat([pd.read_csv(f) for f in files], ignore_index=True)

You can use the same approach to read all files matching a pattern. Here is an example using glob:

In [162]: import glob

In [163]: files = glob.glob('file_*.csv')

In [164]: result = pd.concat([pd.read_csv(f) for f in files], ignore_index=True)

Finally, this strategy will work with the other pd.read_*(...) functions described in the io docs.

7.9.1.2 Parsing date components in multi-columns

Parsing date components in multi-columns is faster with a format

In [30]: i = pd.date_range('20000101',periods=10000)

In [31]: df = pd.DataFrame(dict(year = i.year, month = i.month, day = i.day))

In [32]: df.head()
Out[32]:

day month year
0 1 1 2000
1 2 1 2000
2 3 1 2000
3 4 1 2000
4 5 1 2000

In [33]: %timeit pd.to_datetime(df.year*10000+df.month*100+df.day,format='%Y%m%d')
100 loops, best of 3: 7.08 ms per loop

simulate combinging into a string, then parsing
In [34]: ds = df.apply(lambda x: "%04d%02d%02d" % (x['year'],x['month'],x['day']),
→˓axis=1)

In [35]: ds.head()
Out[35]:

(continues on next page)

7.9. Data In/Out 551

http://nipunbatra.github.io/2013/06/reading-unclean-data-csv-using-pandas/
http://nipunbatra.github.io/2013/06/pandas-reading-csv-with-unix-timestamps-and-converting-to-local-timezone/
http://stackoverflow.com/questions/17349574/pandas-write-multiindex-rows-with-to-csv

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

0 20000101
1 20000102
2 20000103
3 20000104
4 20000105
dtype: object

In [36]: %timeit pd.to_datetime(ds)
1 loops, best of 3: 488 ms per loop

7.9.1.3 Skip row between header and data

In [165]: data = """;;;;
.....: ;;;;
.....: ;;;;
.....: ;;;;
.....: ;;;;
.....: ;;;;
.....: ;;;;
.....: ;;;;
.....: ;;;;
.....: ;;;;
.....: date;Param1;Param2;Param4;Param5
.....: ;m2;°C;m2;m
.....: ;;;;
.....: 01.01.1990 00:00;1;1;2;3
.....: 01.01.1990 01:00;5;3;4;5
.....: 01.01.1990 02:00;9;5;6;7
.....: 01.01.1990 03:00;13;7;8;9
.....: 01.01.1990 04:00;17;9;10;11
.....: 01.01.1990 05:00;21;11;12;13
.....: """
.....:

Option 1: pass rows explicitly to skiprows

In [166]: pd.read_csv(StringIO(data), sep=';', skiprows=[11,12],
.....: index_col=0, parse_dates=True, header=10)
.....:

Out[166]:
Param1 Param2 Param4 Param5

date
1990-01-01 00:00:00 1 1 2 3
1990-01-01 01:00:00 5 3 4 5
1990-01-01 02:00:00 9 5 6 7
1990-01-01 03:00:00 13 7 8 9
1990-01-01 04:00:00 17 9 10 11
1990-01-01 05:00:00 21 11 12 13

552 Chapter 7. Cookbook

pandas: powerful Python data analysis toolkit, Release 0.23.4

Option 2: read column names and then data

In [167]: pd.read_csv(StringIO(data), sep=';', header=10, nrows=10).columns
Out[167]: Index(['date', 'Param1', 'Param2', 'Param4', 'Param5'], dtype='object')

In [168]: columns = pd.read_csv(StringIO(data), sep=';', header=10, nrows=10).columns

In [169]: pd.read_csv(StringIO(data), sep=';', index_col=0,
.....: header=12, parse_dates=True, names=columns)
.....:

Out[169]:
Param1 Param2 Param4 Param5

date
1990-01-01 00:00:00 1 1 2 3
1990-01-01 01:00:00 5 3 4 5
1990-01-01 02:00:00 9 5 6 7
1990-01-01 03:00:00 13 7 8 9
1990-01-01 04:00:00 17 9 10 11
1990-01-01 05:00:00 21 11 12 13

7.9.2 SQL

The SQL docs

Reading from databases with SQL

7.9.3 Excel

The Excel docs

Reading from a filelike handle

Modifying formatting in XlsxWriter output

7.9.4 HTML

Reading HTML tables from a server that cannot handle the default request header

7.9.5 HDFStore

The HDFStores docs

Simple Queries with a Timestamp Index

Managing heterogeneous data using a linked multiple table hierarchy

Merging on-disk tables with millions of rows

Avoiding inconsistencies when writing to a store from multiple processes/threads

De-duplicating a large store by chunks, essentially a recursive reduction operation. Shows a function for taking in data
from csv file and creating a store by chunks, with date parsing as well. See here

Creating a store chunk-by-chunk from a csv file

Appending to a store, while creating a unique index

7.9. Data In/Out 553

http://stackoverflow.com/questions/10065051/python-pandas-and-databases-like-mysql
http://stackoverflow.com/questions/15588713/sheets-of-excel-workbook-from-a-url-into-a-pandas-dataframe
http://pbpython.com/improve-pandas-excel-output.html
http://stackoverflow.com/a/18939272/564538
http://stackoverflow.com/questions/13926089/selecting-columns-from-pandas-hdfstore-table
http://github.com/pandas-dev/pandas/issues/3032
http://stackoverflow.com/questions/14614512/merging-two-tables-with-millions-of-rows-in-python/14617925#14617925
http://stackoverflow.com/a/29014295/2858145
http://stackoverflow.com/questions/16110252/need-to-compare-very-large-files-around-1-5gb-in-python/16110391#16110391
http://stackoverflow.com/questions/20428355/appending-column-to-frame-of-hdf-file-in-pandas/20428786#20428786
http://stackoverflow.com/questions/16997048/how-does-one-append-large-amounts-of-data-to-a-pandas-hdfstore-and-get-a-natural/16999397#16999397

pandas: powerful Python data analysis toolkit, Release 0.23.4

Large Data work flows

Reading in a sequence of files, then providing a global unique index to a store while appending

Groupby on a HDFStore with low group density

Groupby on a HDFStore with high group density

Hierarchical queries on a HDFStore

Counting with a HDFStore

Troubleshoot HDFStore exceptions

Setting min_itemsize with strings

Using ptrepack to create a completely-sorted-index on a store

Storing Attributes to a group node

In [170]: df = pd.DataFrame(np.random.randn(8,3))

In [171]: store = pd.HDFStore('test.h5')

In [172]: store.put('df',df)

you can store an arbitrary Python object via pickle
In [173]: store.get_storer('df').attrs.my_attribute = dict(A = 10)

In [174]: store.get_storer('df').attrs.my_attribute
Out[174]: {'A': 10}

7.9.6 Binary Files

pandas readily accepts NumPy record arrays, if you need to read in a binary file consisting of an array of C structs.
For example, given this C program in a file called main.c compiled with gcc main.c -std=gnu99 on a 64-bit
machine,

#include <stdio.h>
#include <stdint.h>

typedef struct _Data
{

int32_t count;
double avg;
float scale;

} Data;

int main(int argc, const char *argv[])
{

size_t n = 10;
Data d[n];

for (int i = 0; i < n; ++i)
{

d[i].count = i;
d[i].avg = i + 1.0;
d[i].scale = (float) i + 2.0f;

}

(continues on next page)

554 Chapter 7. Cookbook

http://stackoverflow.com/questions/14262433/large-data-work-flows-using-pandas
http://stackoverflow.com/questions/16997048/how-does-one-append-large-amounts-of-data-to-a-pandas-hdfstore-and-get-a-natural
http://stackoverflow.com/questions/15798209/pandas-group-by-query-on-large-data-in-hdfstore
http://stackoverflow.com/questions/25459982/trouble-with-grouby-on-millions-of-keys-on-a-chunked-file-in-python-pandas/25471765#25471765
http://stackoverflow.com/questions/22777284/improve-query-performance-from-a-large-hdfstore-table-with-pandas/22820780#22820780
http://stackoverflow.com/questions/20497897/converting-dict-of-dicts-into-pandas-dataframe-memory-issues
http://stackoverflow.com/questions/15488809/how-to-trouble-shoot-hdfstore-exception-cannot-find-the-correct-atom-type
http://stackoverflow.com/questions/15988871/hdfstore-appendstring-dataframe-fails-when-string-column-contents-are-longer
http://stackoverflow.com/questions/17893370/ptrepack-sortby-needs-full-index

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

FILE *file = fopen("binary.dat", "wb");
fwrite(&d, sizeof(Data), n, file);
fclose(file);

return 0;
}

the following Python code will read the binary file 'binary.dat' into a pandas DataFrame, where each element
of the struct corresponds to a column in the frame:

names = 'count', 'avg', 'scale'

note that the offsets are larger than the size of the type because of
struct padding
offsets = 0, 8, 16
formats = 'i4', 'f8', 'f4'
dt = np.dtype({'names': names, 'offsets': offsets, 'formats': formats},

align=True)
df = pd.DataFrame(np.fromfile('binary.dat', dt))

Note: The offsets of the structure elements may be different depending on the architecture of the machine on which
the file was created. Using a raw binary file format like this for general data storage is not recommended, as it is not
cross platform. We recommended either HDF5 or msgpack, both of which are supported by pandas’ IO facilities.

7.10 Computation

Numerical integration (sample-based) of a time series

7.11 Timedeltas

The Timedeltas docs.

Using timedeltas

In [175]: s = pd.Series(pd.date_range('2012-1-1', periods=3, freq='D'))

In [176]: s - s.max()
Out[176]:
0 -2 days
1 -1 days
2 0 days
dtype: timedelta64[ns]

In [177]: s.max() - s
\\Out[177]:
0 2 days
1 1 days
2 0 days
dtype: timedelta64[ns]

(continues on next page)

7.10. Computation 555

http://nbviewer.ipython.org/5720498
http://github.com/pandas-dev/pandas/pull/2899

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

In [178]: s - datetime.datetime(2011,1,1,3,5)
\\\Out[178]:
→˓

0 364 days 20:55:00
1 365 days 20:55:00
2 366 days 20:55:00
dtype: timedelta64[ns]

In [179]: s + datetime.timedelta(minutes=5)
\\\Out[179]:
→˓

0 2012-01-01 00:05:00
1 2012-01-02 00:05:00
2 2012-01-03 00:05:00
dtype: datetime64[ns]

In [180]: datetime.datetime(2011,1,1,3,5) - s
\\Out[180]:
→˓

0 -365 days +03:05:00
1 -366 days +03:05:00
2 -367 days +03:05:00
dtype: timedelta64[ns]

In [181]: datetime.timedelta(minutes=5) + s
\\Out[181]:
→˓

0 2012-01-01 00:05:00
1 2012-01-02 00:05:00
2 2012-01-03 00:05:00
dtype: datetime64[ns]

Adding and subtracting deltas and dates

In [182]: deltas = pd.Series([datetime.timedelta(days=i) for i in range(3)])

In [183]: df = pd.DataFrame(dict(A = s, B = deltas)); df
Out[183]:

A B
0 2012-01-01 0 days
1 2012-01-02 1 days
2 2012-01-03 2 days

In [184]: df['New Dates'] = df['A'] + df['B'];

In [185]: df['Delta'] = df['A'] - df['New Dates']; df
Out[185]:

A B New Dates Delta
0 2012-01-01 0 days 2012-01-01 0 days
1 2012-01-02 1 days 2012-01-03 -1 days
2 2012-01-03 2 days 2012-01-05 -2 days

In [186]: df.dtypes
\\\Out[186]:
→˓

A datetime64[ns]
(continues on next page)

556 Chapter 7. Cookbook

http://stackoverflow.com/questions/16385785/add-days-to-dates-in-dataframe

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

B timedelta64[ns]
New Dates datetime64[ns]
Delta timedelta64[ns]
dtype: object

Another example

Values can be set to NaT using np.nan, similar to datetime

In [187]: y = s - s.shift(); y
Out[187]:
0 NaT
1 1 days
2 1 days
dtype: timedelta64[ns]

In [188]: y[1] = np.nan; y
\\\Out[188]:
0 NaT
1 NaT
2 1 days
dtype: timedelta64[ns]

7.12 Aliasing Axis Names

To globally provide aliases for axis names, one can define these 2 functions:

In [189]: def set_axis_alias(cls, axis, alias):
.....: if axis not in cls._AXIS_NUMBERS:
.....: raise Exception("invalid axis [%s] for alias [%s]" % (axis, alias))
.....: cls._AXIS_ALIASES[alias] = axis
.....:

In [190]: def clear_axis_alias(cls, axis, alias):
.....: if axis not in cls._AXIS_NUMBERS:
.....: raise Exception("invalid axis [%s] for alias [%s]" % (axis, alias))
.....: cls._AXIS_ALIASES.pop(alias,None)
.....:

In [191]: set_axis_alias(pd.DataFrame,'columns', 'myaxis2')

In [192]: df2 = pd.DataFrame(np.random.randn(3,2),columns=['c1','c2'],index=['i1','i2
→˓','i3'])

In [193]: df2.sum(axis='myaxis2')
Out[193]:
i1 0.745167
i2 -0.176251
i3 0.014354
dtype: float64

In [194]: clear_axis_alias(pd.DataFrame,'columns', 'myaxis2')

7.12. Aliasing Axis Names 557

http://stackoverflow.com/questions/15683588/iterating-through-a-pandas-dataframe

pandas: powerful Python data analysis toolkit, Release 0.23.4

7.13 Creating Example Data

To create a dataframe from every combination of some given values, like R’s expand.grid() function, we can
create a dict where the keys are column names and the values are lists of the data values:

In [195]: def expand_grid(data_dict):
.....: rows = itertools.product(*data_dict.values())
.....: return pd.DataFrame.from_records(rows, columns=data_dict.keys())
.....:

In [196]: df = expand_grid(
.....: {'height': [60, 70],
.....: 'weight': [100, 140, 180],
.....: 'sex': ['Male', 'Female']})
.....:

In [197]: df
Out[197]:

height weight sex
0 60 100 Male
1 60 100 Female
2 60 140 Male
3 60 140 Female
4 60 180 Male
5 60 180 Female
6 70 100 Male
7 70 100 Female
8 70 140 Male
9 70 140 Female
10 70 180 Male
11 70 180 Female

558 Chapter 7. Cookbook

CHAPTER

EIGHT

INTRO TO DATA STRUCTURES

We’ll start with a quick, non-comprehensive overview of the fundamental data structures in pandas to get you started.
The fundamental behavior about data types, indexing, and axis labeling / alignment apply across all of the objects. To
get started, import NumPy and load pandas into your namespace:

In [1]: import numpy as np

In [2]: import pandas as pd

Here is a basic tenet to keep in mind: data alignment is intrinsic. The link between labels and data will not be broken
unless done so explicitly by you.

We’ll give a brief intro to the data structures, then consider all of the broad categories of functionality and methods in
separate sections.

8.1 Series

Series is a one-dimensional labeled array capable of holding any data type (integers, strings, floating point numbers,
Python objects, etc.). The axis labels are collectively referred to as the index. The basic method to create a Series is
to call:

>>> s = pd.Series(data, index=index)

Here, data can be many different things:

• a Python dict

• an ndarray

• a scalar value (like 5)

The passed index is a list of axis labels. Thus, this separates into a few cases depending on what data is:

From ndarray

If data is an ndarray, index must be the same length as data. If no index is passed, one will be created having values
[0, ..., len(data) - 1].

In [3]: s = pd.Series(np.random.randn(5), index=['a', 'b', 'c', 'd', 'e'])

In [4]: s
Out[4]:
a 0.4691
b -0.2829

(continues on next page)

559

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

c -1.5091
d -1.1356
e 1.2121
dtype: float64

In [5]: s.index
\\Out[5]:
→˓Index(['a', 'b', 'c', 'd', 'e'], dtype='object')

In [6]: pd.Series(np.random.randn(5))
\\\Out[6]:
→˓

0 -0.1732
1 0.1192
2 -1.0442
3 -0.8618
4 -2.1046
dtype: float64

Note: pandas supports non-unique index values. If an operation that does not support duplicate index values is
attempted, an exception will be raised at that time. The reason for being lazy is nearly all performance-based (there
are many instances in computations, like parts of GroupBy, where the index is not used).

From dict

Series can be instantiated from dicts:

In [7]: d = {'b' : 1, 'a' : 0, 'c' : 2}

In [8]: pd.Series(d)
Out[8]:
b 1
a 0
c 2
dtype: int64

Note: When the data is a dict, and an index is not passed, the Series index will be ordered by the dict’s insertion
order, if you’re using Python version >= 3.6 and Pandas version >= 0.23.

If you’re using Python < 3.6 or Pandas < 0.23, and an index is not passed, the Series index will be the lexically
ordered list of dict keys.

In the example above, if you were on a Python version lower than 3.6 or a Pandas version lower than 0.23, the Series
would be ordered by the lexical order of the dict keys (i.e. ['a', 'b', 'c'] rather than ['b', 'a', 'c']).

If an index is passed, the values in data corresponding to the labels in the index will be pulled out.

In [9]: d = {'a' : 0., 'b' : 1., 'c' : 2.}

In [10]: pd.Series(d)
Out[10]:
a 0.0
b 1.0
c 2.0

(continues on next page)

560 Chapter 8. Intro to Data Structures

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

dtype: float64

In [11]: pd.Series(d, index=['b', 'c', 'd', 'a'])
\\Out[11]:
b 1.0
c 2.0
d NaN
a 0.0
dtype: float64

Note: NaN (not a number) is the standard missing data marker used in pandas.

From scalar value

If data is a scalar value, an index must be provided. The value will be repeated to match the length of index.

In [12]: pd.Series(5., index=['a', 'b', 'c', 'd', 'e'])
Out[12]:
a 5.0
b 5.0
c 5.0
d 5.0
e 5.0
dtype: float64

8.1.1 Series is ndarray-like

Series acts very similarly to a ndarray, and is a valid argument to most NumPy functions. However, operations
such as slicing will also slice the index.

In [13]: s[0]
Out[13]: 0.46911229990718628

In [14]: s[:3]
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\Out[14]:
a 0.4691
b -0.2829
c -1.5091
dtype: float64

In [15]: s[s > s.median()]
\\Out[15]:
→˓

a 0.4691
e 1.2121
dtype: float64

In [16]: s[[4, 3, 1]]
\\\Out[16]:
→˓

e 1.2121
d -1.1356
b -0.2829

(continues on next page)

8.1. Series 561

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

dtype: float64

In [17]: np.exp(s)
\\Out[17]:
→˓

a 1.5986
b 0.7536
c 0.2211
d 0.3212
e 3.3606
dtype: float64

We will address array-based indexing in a separate section.

8.1.2 Series is dict-like

A Series is like a fixed-size dict in that you can get and set values by index label:

In [18]: s['a']
Out[18]: 0.46911229990718628

In [19]: s['e'] = 12.

In [20]: s
Out[20]:
a 0.4691
b -0.2829
c -1.5091
d -1.1356
e 12.0000
dtype: float64

In [21]: 'e' in s
\\Out[21]:
→˓True

In [22]: 'f' in s
\\Out[22]:
→˓False

If a label is not contained, an exception is raised:

>>> s['f']
KeyError: 'f'

Using the get method, a missing label will return None or specified default:

In [23]: s.get('f')

In [24]: s.get('f', np.nan)
Out[24]: nan

See also the section on attribute access.

562 Chapter 8. Intro to Data Structures

pandas: powerful Python data analysis toolkit, Release 0.23.4

8.1.3 Vectorized operations and label alignment with Series

When working with raw NumPy arrays, looping through value-by-value is usually not necessary. The same is true
when working with Series in pandas. Series can also be passed into most NumPy methods expecting an ndarray.

In [25]: s + s
Out[25]:
a 0.9382
b -0.5657
c -3.0181
d -2.2713
e 24.0000
dtype: float64

In [26]: s * 2
\\Out[26]:
→˓

a 0.9382
b -0.5657
c -3.0181
d -2.2713
e 24.0000
dtype: float64

In [27]: np.exp(s)
\\Out[27]:
→˓

a 1.5986
b 0.7536
c 0.2211
d 0.3212
e 162754.7914
dtype: float64

A key difference between Series and ndarray is that operations between Series automatically align the data based on
label. Thus, you can write computations without giving consideration to whether the Series involved have the same
labels.

In [28]: s[1:] + s[:-1]
Out[28]:
a NaN
b -0.5657
c -3.0181
d -2.2713
e NaN
dtype: float64

The result of an operation between unaligned Series will have the union of the indexes involved. If a label is not found
in one Series or the other, the result will be marked as missing NaN. Being able to write code without doing any explicit
data alignment grants immense freedom and flexibility in interactive data analysis and research. The integrated data
alignment features of the pandas data structures set pandas apart from the majority of related tools for working with
labeled data.

Note: In general, we chose to make the default result of operations between differently indexed objects yield the
union of the indexes in order to avoid loss of information. Having an index label, though the data is missing, is
typically important information as part of a computation. You of course have the option of dropping labels with

8.1. Series 563

pandas: powerful Python data analysis toolkit, Release 0.23.4

missing data via the dropna function.

8.1.4 Name attribute

Series can also have a name attribute:

In [29]: s = pd.Series(np.random.randn(5), name='something')

In [30]: s
Out[30]:
0 -0.4949
1 1.0718
2 0.7216
3 -0.7068
4 -1.0396
Name: something, dtype: float64

In [31]: s.name
\\Out[31]:
→˓'something'

The Series name will be assigned automatically in many cases, in particular when taking 1D slices of DataFrame as
you will see below.

New in version 0.18.0.

You can rename a Series with the pandas.Series.rename() method.

In [32]: s2 = s.rename("different")

In [33]: s2.name
Out[33]: 'different'

Note that s and s2 refer to different objects.

8.2 DataFrame

DataFrame is a 2-dimensional labeled data structure with columns of potentially different types. You can think of it
like a spreadsheet or SQL table, or a dict of Series objects. It is generally the most commonly used pandas object.
Like Series, DataFrame accepts many different kinds of input:

• Dict of 1D ndarrays, lists, dicts, or Series

• 2-D numpy.ndarray

• Structured or record ndarray

• A Series

• Another DataFrame

Along with the data, you can optionally pass index (row labels) and columns (column labels) arguments. If you pass
an index and / or columns, you are guaranteeing the index and / or columns of the resulting DataFrame. Thus, a dict
of Series plus a specific index will discard all data not matching up to the passed index.

If axis labels are not passed, they will be constructed from the input data based on common sense rules.

564 Chapter 8. Intro to Data Structures

http://docs.scipy.org/doc/numpy/user/basics.rec.html

pandas: powerful Python data analysis toolkit, Release 0.23.4

Note: When the data is a dict, and columns is not specified, the DataFrame columns will be ordered by the dict’s
insertion order, if you are using Python version >= 3.6 and Pandas >= 0.23.

If you are using Python < 3.6 or Pandas < 0.23, and columns is not specified, the DataFrame columns will be the
lexically ordered list of dict keys.

8.2.1 From dict of Series or dicts

The resulting index will be the union of the indexes of the various Series. If there are any nested dicts, these will first
be converted to Series. If no columns are passed, the columns will be the ordered list of dict keys.

In [34]: d = {'one' : pd.Series([1., 2., 3.], index=['a', 'b', 'c']),
....: 'two' : pd.Series([1., 2., 3., 4.], index=['a', 'b', 'c', 'd'])}
....:

In [35]: df = pd.DataFrame(d)

In [36]: df
Out[36]:

one two
a 1.0 1.0
b 2.0 2.0
c 3.0 3.0
d NaN 4.0

In [37]: pd.DataFrame(d, index=['d', 'b', 'a'])
\\Out[37]:

one two
d NaN 4.0
b 2.0 2.0
a 1.0 1.0

In [38]: pd.DataFrame(d, index=['d', 'b', 'a'], columns=['two', 'three'])
\\Out[38]:
→˓

two three
d 4.0 NaN
b 2.0 NaN
a 1.0 NaN

The row and column labels can be accessed respectively by accessing the index and columns attributes:

Note: When a particular set of columns is passed along with a dict of data, the passed columns override the keys in
the dict.

In [39]: df.index
Out[39]: Index(['a', 'b', 'c', 'd'], dtype='object')

In [40]: df.columns
\\\Out[40]: Index(['one', 'two'],
→˓dtype='object')

8.2. DataFrame 565

pandas: powerful Python data analysis toolkit, Release 0.23.4

8.2.2 From dict of ndarrays / lists

The ndarrays must all be the same length. If an index is passed, it must clearly also be the same length as the arrays.
If no index is passed, the result will be range(n), where n is the array length.

In [41]: d = {'one' : [1., 2., 3., 4.],
....: 'two' : [4., 3., 2., 1.]}
....:

In [42]: pd.DataFrame(d)
Out[42]:

one two
0 1.0 4.0
1 2.0 3.0
2 3.0 2.0
3 4.0 1.0

In [43]: pd.DataFrame(d, index=['a', 'b', 'c', 'd'])
\\Out[43]:

one two
a 1.0 4.0
b 2.0 3.0
c 3.0 2.0
d 4.0 1.0

8.2.3 From structured or record array

This case is handled identically to a dict of arrays.

In [44]: data = np.zeros((2,), dtype=[('A', 'i4'),('B', 'f4'),('C', 'a10')])

In [45]: data[:] = [(1,2.,'Hello'), (2,3.,"World")]

In [46]: pd.DataFrame(data)
Out[46]:

A B C
0 1 2.0 b'Hello'
1 2 3.0 b'World'

In [47]: pd.DataFrame(data, index=['first', 'second'])
\\Out[47]:

A B C
first 1 2.0 b'Hello'
second 2 3.0 b'World'

In [48]: pd.DataFrame(data, columns=['C', 'A', 'B'])
\\\Out[48]:
→˓

C A B
0 b'Hello' 1 2.0
1 b'World' 2 3.0

Note: DataFrame is not intended to work exactly like a 2-dimensional NumPy ndarray.

566 Chapter 8. Intro to Data Structures

pandas: powerful Python data analysis toolkit, Release 0.23.4

8.2.4 From a list of dicts

In [49]: data2 = [{'a': 1, 'b': 2}, {'a': 5, 'b': 10, 'c': 20}]

In [50]: pd.DataFrame(data2)
Out[50]:

a b c
0 1 2 NaN
1 5 10 20.0

In [51]: pd.DataFrame(data2, index=['first', 'second'])
\\\Out[51]:

a b c
first 1 2 NaN
second 5 10 20.0

In [52]: pd.DataFrame(data2, columns=['a', 'b'])
\\\Out[52]:
→˓

a b
0 1 2
1 5 10

8.2.5 From a dict of tuples

You can automatically create a multi-indexed frame by passing a tuples dictionary.

In [53]: pd.DataFrame({('a', 'b'): {('A', 'B'): 1, ('A', 'C'): 2},
....: ('a', 'a'): {('A', 'C'): 3, ('A', 'B'): 4},
....: ('a', 'c'): {('A', 'B'): 5, ('A', 'C'): 6},
....: ('b', 'a'): {('A', 'C'): 7, ('A', 'B'): 8},
....: ('b', 'b'): {('A', 'D'): 9, ('A', 'B'): 10}})
....:

Out[53]:
a b
b a c a b

A B 1.0 4.0 5.0 8.0 10.0
C 2.0 3.0 6.0 7.0 NaN
D NaN NaN NaN NaN 9.0

8.2.6 From a Series

The result will be a DataFrame with the same index as the input Series, and with one column whose name is the
original name of the Series (only if no other column name provided).

Missing Data

Much more will be said on this topic in the Missing data section. To construct a DataFrame with missing data, we use
np.nan to represent missing values. Alternatively, you may pass a numpy.MaskedArray as the data argument to
the DataFrame constructor, and its masked entries will be considered missing.

8.2.7 Alternate Constructors

DataFrame.from_dict

8.2. DataFrame 567

pandas: powerful Python data analysis toolkit, Release 0.23.4

DataFrame.from_dict takes a dict of dicts or a dict of array-like sequences and returns a DataFrame. It operates
like the DataFrame constructor except for the orient parameter which is 'columns' by default, but which can
be set to 'index' in order to use the dict keys as row labels.

In [54]: pd.DataFrame.from_dict(dict([('A', [1, 2, 3]), ('B', [4, 5, 6])]))
Out[54]:

A B
0 1 4
1 2 5
2 3 6

If you pass orient='index', the keys will be the row labels. In this case, you can also pass the desired column
names:

In [55]: pd.DataFrame.from_dict(dict([('A', [1, 2, 3]), ('B', [4, 5, 6])]),
....: orient='index', columns=['one', 'two', 'three'])
....:

Out[55]:
one two three

A 1 2 3
B 4 5 6

DataFrame.from_records

DataFrame.from_records takes a list of tuples or an ndarray with structured dtype. It works analogously to the
normal DataFrame constructor, except that the resulting DataFrame index may be a specific field of the structured
dtype. For example:

In [56]: data
Out[56]:
array([(1, 2., b'Hello'), (2, 3., b'World')],

dtype=[('A', '<i4'), ('B', '<f4'), ('C', 'S10')])

In [57]: pd.DataFrame.from_records(data, index='C')
\\Out[57]:
→˓

A B
C
b'Hello' 1 2.0
b'World' 2 3.0

8.2.8 Column selection, addition, deletion

You can treat a DataFrame semantically like a dict of like-indexed Series objects. Getting, setting, and deleting
columns works with the same syntax as the analogous dict operations:

In [58]: df['one']
Out[58]:
a 1.0
b 2.0
c 3.0
d NaN
Name: one, dtype: float64

In [59]: df['three'] = df['one'] * df['two']

(continues on next page)

568 Chapter 8. Intro to Data Structures

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

In [60]: df['flag'] = df['one'] > 2

In [61]: df
Out[61]:

one two three flag
a 1.0 1.0 1.0 False
b 2.0 2.0 4.0 False
c 3.0 3.0 9.0 True
d NaN 4.0 NaN False

Columns can be deleted or popped like with a dict:

In [62]: del df['two']

In [63]: three = df.pop('three')

In [64]: df
Out[64]:

one flag
a 1.0 False
b 2.0 False
c 3.0 True
d NaN False

When inserting a scalar value, it will naturally be propagated to fill the column:

In [65]: df['foo'] = 'bar'

In [66]: df
Out[66]:

one flag foo
a 1.0 False bar
b 2.0 False bar
c 3.0 True bar
d NaN False bar

When inserting a Series that does not have the same index as the DataFrame, it will be conformed to the DataFrame’s
index:

In [67]: df['one_trunc'] = df['one'][:2]

In [68]: df
Out[68]:

one flag foo one_trunc
a 1.0 False bar 1.0
b 2.0 False bar 2.0
c 3.0 True bar NaN
d NaN False bar NaN

You can insert raw ndarrays but their length must match the length of the DataFrame’s index.

By default, columns get inserted at the end. The insert function is available to insert at a particular location in the
columns:

In [69]: df.insert(1, 'bar', df['one'])

In [70]: df
(continues on next page)

8.2. DataFrame 569

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

Out[70]:
one bar flag foo one_trunc

a 1.0 1.0 False bar 1.0
b 2.0 2.0 False bar 2.0
c 3.0 3.0 True bar NaN
d NaN NaN False bar NaN

8.2.9 Assigning New Columns in Method Chains

Inspired by dplyr’s mutate verb, DataFrame has an assign() method that allows you to easily create new columns
that are potentially derived from existing columns.

In [71]: iris = pd.read_csv('data/iris.data')

In [72]: iris.head()
Out[72]:

SepalLength SepalWidth PetalLength PetalWidth Name
0 5.1 3.5 1.4 0.2 Iris-setosa
1 4.9 3.0 1.4 0.2 Iris-setosa
2 4.7 3.2 1.3 0.2 Iris-setosa
3 4.6 3.1 1.5 0.2 Iris-setosa
4 5.0 3.6 1.4 0.2 Iris-setosa

In [73]: (iris.assign(sepal_ratio = iris['SepalWidth'] / iris['SepalLength'])
....: .head())
....:

\\Out[73]:
→˓

SepalLength SepalWidth PetalLength PetalWidth Name sepal_ratio
0 5.1 3.5 1.4 0.2 Iris-setosa 0.6863
1 4.9 3.0 1.4 0.2 Iris-setosa 0.6122
2 4.7 3.2 1.3 0.2 Iris-setosa 0.6809
3 4.6 3.1 1.5 0.2 Iris-setosa 0.6739
4 5.0 3.6 1.4 0.2 Iris-setosa 0.7200

In the example above, we inserted a precomputed value. We can also pass in a function of one argument to be evaluated
on the DataFrame being assigned to.

In [74]: iris.assign(sepal_ratio = lambda x: (x['SepalWidth'] /
....: x['SepalLength'])).head()
....:

Out[74]:
SepalLength SepalWidth PetalLength PetalWidth Name sepal_ratio

0 5.1 3.5 1.4 0.2 Iris-setosa 0.6863
1 4.9 3.0 1.4 0.2 Iris-setosa 0.6122
2 4.7 3.2 1.3 0.2 Iris-setosa 0.6809
3 4.6 3.1 1.5 0.2 Iris-setosa 0.6739
4 5.0 3.6 1.4 0.2 Iris-setosa 0.7200

assign always returns a copy of the data, leaving the original DataFrame untouched.

Passing a callable, as opposed to an actual value to be inserted, is useful when you don’t have a reference to the
DataFrame at hand. This is common when using assign in a chain of operations. For example, we can limit the
DataFrame to just those observations with a Sepal Length greater than 5, calculate the ratio, and plot:

570 Chapter 8. Intro to Data Structures

http://cran.rstudio.com/web/packages/dplyr/vignettes/introduction.html#mutate

pandas: powerful Python data analysis toolkit, Release 0.23.4

In [75]: (iris.query('SepalLength > 5')
....: .assign(SepalRatio = lambda x: x.SepalWidth / x.SepalLength,
....: PetalRatio = lambda x: x.PetalWidth / x.PetalLength)
....: .plot(kind='scatter', x='SepalRatio', y='PetalRatio'))
....:

Out[75]: <matplotlib.axes._subplots.AxesSubplot at 0x7f210fb001d0>

Since a function is passed in, the function is computed on the DataFrame being assigned to. Importantly, this is the
DataFrame that’s been filtered to those rows with sepal length greater than 5. The filtering happens first, and then the
ratio calculations. This is an example where we didn’t have a reference to the filtered DataFrame available.

The function signature for assign is simply **kwargs. The keys are the column names for the new fields, and the
values are either a value to be inserted (for example, a Series or NumPy array), or a function of one argument to be
called on the DataFrame. A copy of the original DataFrame is returned, with the new values inserted.

Changed in version 0.23.0.

Starting with Python 3.6 the order of **kwargs is preserved. This allows for dependent assignment, where an
expression later in **kwargs can refer to a column created earlier in the same assign().

In [76]: dfa = pd.DataFrame({"A": [1, 2, 3],
....: "B": [4, 5, 6]})
....:

In [77]: dfa.assign(C=lambda x: x['A'] + x['B'],
....: D=lambda x: x['A'] + x['C'])

(continues on next page)

8.2. DataFrame 571

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

....:
Out[77]:

A B C D
0 1 4 5 6
1 2 5 7 9
2 3 6 9 12

In the second expression, x['C'] will refer to the newly created column, that’s equal to dfa['A'] + dfa['B'].

To write code compatible with all versions of Python, split the assignment in two.

In [78]: dependent = pd.DataFrame({"A": [1, 1, 1]})

In [79]: (dependent.assign(A=lambda x: x['A'] + 1)
....: .assign(B=lambda x: x['A'] + 2))
....:

Out[79]:
A B

0 2 4
1 2 4
2 2 4

Warning: Dependent assignment maybe subtly change the behavior of your code between Python 3.6 and older
versions of Python.

If you wish write code that supports versions of python before and after 3.6, you’ll need to take care when passing
assign expressions that

• Updating an existing column

• Referring to the newly updated column in the same assign

For example, we’ll update column “A” and then refer to it when creating “B”.

>>> dependent = pd.DataFrame({"A": [1, 1, 1]})
>>> dependent.assign(A=lambda x: x["A"] + 1,

B=lambda x: x["A"] + 2)

For Python 3.5 and earlier the expression creating B refers to the “old” value of A, [1, 1, 1]. The output is
then

A B
0 2 3
1 2 3
2 2 3

For Python 3.6 and later, the expression creating A refers to the “new” value of A, [2, 2, 2], which results in

A B
0 2 4
1 2 4
2 2 4

8.2.10 Indexing / Selection

The basics of indexing are as follows:

572 Chapter 8. Intro to Data Structures

pandas: powerful Python data analysis toolkit, Release 0.23.4

Operation Syntax Result
Select column df[col] Series
Select row by label df.loc[label] Series
Select row by integer location df.iloc[loc] Series
Slice rows df[5:10] DataFrame
Select rows by boolean vector df[bool_vec] DataFrame

Row selection, for example, returns a Series whose index is the columns of the DataFrame:

In [80]: df.loc['b']
Out[80]:
one 2
bar 2
flag False
foo bar
one_trunc 2
Name: b, dtype: object

In [81]: df.iloc[2]
\\Out[81]:
→˓

one 3
bar 3
flag True
foo bar
one_trunc NaN
Name: c, dtype: object

For a more exhaustive treatment of sophisticated label-based indexing and slicing, see the section on indexing. We
will address the fundamentals of reindexing / conforming to new sets of labels in the section on reindexing.

8.2.11 Data alignment and arithmetic

Data alignment between DataFrame objects automatically align on both the columns and the index (row labels).
Again, the resulting object will have the union of the column and row labels.

In [82]: df = pd.DataFrame(np.random.randn(10, 4), columns=['A', 'B', 'C', 'D'])

In [83]: df2 = pd.DataFrame(np.random.randn(7, 3), columns=['A', 'B', 'C'])

In [84]: df + df2
Out[84]:

A B C D
0 0.0457 -0.0141 1.3809 NaN
1 -0.9554 -1.5010 0.0372 NaN
2 -0.6627 1.5348 -0.8597 NaN
3 -2.4529 1.2373 -0.1337 NaN
4 1.4145 1.9517 -2.3204 NaN
5 -0.4949 -1.6497 -1.0846 NaN
6 -1.0476 -0.7486 -0.8055 NaN
7 NaN NaN NaN NaN
8 NaN NaN NaN NaN
9 NaN NaN NaN NaN

8.2. DataFrame 573

pandas: powerful Python data analysis toolkit, Release 0.23.4

When doing an operation between DataFrame and Series, the default behavior is to align the Series index on the
DataFrame columns, thus broadcasting row-wise. For example:

In [85]: df - df.iloc[0]
Out[85]:

A B C D
0 0.0000 0.0000 0.0000 0.0000
1 -1.3593 -0.2487 -0.4534 -1.7547
2 0.2531 0.8297 0.0100 -1.9912
3 -1.3111 0.0543 -1.7249 -1.6205
4 0.5730 1.5007 -0.6761 1.3673
5 -1.7412 0.7820 -1.2416 -2.0531
6 -1.2408 -0.8696 -0.1533 0.0004
7 -0.7439 0.4110 -0.9296 -0.2824
8 -1.1949 1.3207 0.2382 -1.4826
9 2.2938 1.8562 0.7733 -1.4465

In the special case of working with time series data, and the DataFrame index also contains dates, the broadcasting
will be column-wise:

In [86]: index = pd.date_range('1/1/2000', periods=8)

In [87]: df = pd.DataFrame(np.random.randn(8, 3), index=index, columns=list('ABC'))

In [88]: df
Out[88]:

A B C
2000-01-01 -1.2268 0.7698 -1.2812
2000-01-02 -0.7277 -0.1213 -0.0979
2000-01-03 0.6958 0.3417 0.9597
2000-01-04 -1.1103 -0.6200 0.1497
2000-01-05 -0.7323 0.6877 0.1764
2000-01-06 0.4033 -0.1550 0.3016
2000-01-07 -2.1799 -1.3698 -0.9542
2000-01-08 1.4627 -1.7432 -0.8266

In [89]: type(df['A'])
\\\Out[89]:
→˓pandas.core.series.Series

In [90]: df - df['A']
\\Out[90]:
→˓

2000-01-01 00:00:00 2000-01-02 00:00:00 2000-01-03 00:00:00 \
2000-01-01 NaN NaN NaN
2000-01-02 NaN NaN NaN
2000-01-03 NaN NaN NaN
2000-01-04 NaN NaN NaN
2000-01-05 NaN NaN NaN
2000-01-06 NaN NaN NaN
2000-01-07 NaN NaN NaN
2000-01-08 NaN NaN NaN

2000-01-04 00:00:00 ... 2000-01-08 00:00:00 A B C
2000-01-01 NaN ... NaN NaN NaN NaN
2000-01-02 NaN ... NaN NaN NaN NaN
2000-01-03 NaN ... NaN NaN NaN NaN
2000-01-04 NaN ... NaN NaN NaN NaN

(continues on next page)

574 Chapter 8. Intro to Data Structures

http://docs.scipy.org/doc/numpy/user/basics.broadcasting.html

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

2000-01-05 NaN ... NaN NaN NaN NaN
2000-01-06 NaN ... NaN NaN NaN NaN
2000-01-07 NaN ... NaN NaN NaN NaN
2000-01-08 NaN ... NaN NaN NaN NaN

[8 rows x 11 columns]

Warning:

df - df['A']

is now deprecated and will be removed in a future release. The preferred way to replicate this behavior is

df.sub(df['A'], axis=0)

For explicit control over the matching and broadcasting behavior, see the section on flexible binary operations.

Operations with scalars are just as you would expect:

In [91]: df * 5 + 2
Out[91]:

A B C
2000-01-01 -4.1341 5.8490 -4.4062
2000-01-02 -1.6385 1.3935 1.5106
2000-01-03 5.4789 3.7087 6.7986
2000-01-04 -3.5517 -1.0999 2.7487
2000-01-05 -1.6617 5.4387 2.8822
2000-01-06 4.0165 1.2252 3.5081
2000-01-07 -8.8993 -4.8492 -2.7710
2000-01-08 9.3135 -6.7158 -2.1330

In [92]: 1 / df
\\\Out[92]:
→˓

A B C
2000-01-01 -0.8151 1.2990 -0.7805
2000-01-02 -1.3742 -8.2436 -10.2163
2000-01-03 1.4372 2.9262 1.0420
2000-01-04 -0.9006 -1.6130 6.6779
2000-01-05 -1.3655 1.4540 5.6675
2000-01-06 2.4795 -6.4537 3.3154
2000-01-07 -0.4587 -0.7300 -1.0480
2000-01-08 0.6837 -0.5737 -1.2098

In [93]: df ** 4
\\\Out[93]:
→˓

A B C
2000-01-01 2.2653 0.3512 2.6948e+00
2000-01-02 0.2804 0.0002 9.1796e-05
2000-01-03 0.2344 0.0136 8.4838e-01
2000-01-04 1.5199 0.1477 5.0286e-04
2000-01-05 0.2876 0.2237 9.6924e-04
2000-01-06 0.0265 0.0006 8.2769e-03
2000-01-07 22.5795 3.5212 8.2903e-01
2000-01-08 4.5774 9.2332 4.6683e-01

8.2. DataFrame 575

pandas: powerful Python data analysis toolkit, Release 0.23.4

Boolean operators work as well:

In [94]: df1 = pd.DataFrame({'a' : [1, 0, 1], 'b' : [0, 1, 1] }, dtype=bool)

In [95]: df2 = pd.DataFrame({'a' : [0, 1, 1], 'b' : [1, 1, 0] }, dtype=bool)

In [96]: df1 & df2
Out[96]:

a b
0 False False
1 False True
2 True False

In [97]: df1 | df2
\\Out[97]:

a b
0 True True
1 True True
2 True True

In [98]: df1 ^ df2
\\Out[98]:
→˓

a b
0 True True
1 True False
2 False True

In [99]: -df1
\\Out[99]:
→˓

a b
0 False True
1 True False
2 False False

8.2.12 Transposing

To transpose, access the T attribute (also the transpose function), similar to an ndarray:

only show the first 5 rows
In [100]: df[:5].T
Out[100]:

2000-01-01 2000-01-02 2000-01-03 2000-01-04 2000-01-05
A -1.2268 -0.7277 0.6958 -1.1103 -0.7323
B 0.7698 -0.1213 0.3417 -0.6200 0.6877
C -1.2812 -0.0979 0.9597 0.1497 0.1764

8.2.13 DataFrame interoperability with NumPy functions

Elementwise NumPy ufuncs (log, exp, sqrt, . . .) and various other NumPy functions can be used with no issues on
DataFrame, assuming the data within are numeric:

In [101]: np.exp(df)
Out[101]:

(continues on next page)

576 Chapter 8. Intro to Data Structures

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

A B C
2000-01-01 0.2932 2.1593 0.2777
2000-01-02 0.4830 0.8858 0.9068
2000-01-03 2.0053 1.4074 2.6110
2000-01-04 0.3294 0.5380 1.1615
2000-01-05 0.4808 1.9892 1.1930
2000-01-06 1.4968 0.8565 1.3521
2000-01-07 0.1131 0.2541 0.3851
2000-01-08 4.3176 0.1750 0.4375

In [102]: np.asarray(df)
\\Out[102]:
→˓

array([[-1.2268, 0.7698, -1.2812],
[-0.7277, -0.1213, -0.0979],
[0.6958, 0.3417, 0.9597],
[-1.1103, -0.62 , 0.1497],
[-0.7323, 0.6877, 0.1764],
[0.4033, -0.155 , 0.3016],
[-2.1799, -1.3698, -0.9542],
[1.4627, -1.7432, -0.8266]])

The dot method on DataFrame implements matrix multiplication:

In [103]: df.T.dot(df)
Out[103]:

A B C
A 11.3419 -0.0598 3.0080
B -0.0598 6.5206 2.0833
C 3.0080 2.0833 4.3105

Similarly, the dot method on Series implements dot product:

In [104]: s1 = pd.Series(np.arange(5,10))

In [105]: s1.dot(s1)
Out[105]: 255

DataFrame is not intended to be a drop-in replacement for ndarray as its indexing semantics are quite different in
places from a matrix.

8.2.14 Console display

Very large DataFrames will be truncated to display them in the console. You can also get a summary using info().
(Here I am reading a CSV version of the baseball dataset from the plyr R package):

In [106]: baseball = pd.read_csv('data/baseball.csv')

In [107]: print(baseball)
id player year stint ... hbp sh sf gidp

0 88641 womacto01 2006 2 ... 0.0 3.0 0.0 0.0
1 88643 schilcu01 2006 1 ... 0.0 0.0 0.0 0.0
..
98 89533 aloumo01 2007 1 ... 2.0 0.0 3.0 13.0
99 89534 alomasa02 2007 1 ... 0.0 0.0 0.0 0.0

(continues on next page)

8.2. DataFrame 577

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

[100 rows x 23 columns]

In [108]: baseball.info()
\\\
→˓<class 'pandas.core.frame.DataFrame'>
RangeIndex: 100 entries, 0 to 99
Data columns (total 23 columns):
id 100 non-null int64
player 100 non-null object
year 100 non-null int64
stint 100 non-null int64
team 100 non-null object
lg 100 non-null object
g 100 non-null int64
ab 100 non-null int64
r 100 non-null int64
h 100 non-null int64
X2b 100 non-null int64
X3b 100 non-null int64
hr 100 non-null int64
rbi 100 non-null float64
sb 100 non-null float64
cs 100 non-null float64
bb 100 non-null int64
so 100 non-null float64
ibb 100 non-null float64
hbp 100 non-null float64
sh 100 non-null float64
sf 100 non-null float64
gidp 100 non-null float64
dtypes: float64(9), int64(11), object(3)
memory usage: 18.0+ KB

However, using to_string will return a string representation of the DataFrame in tabular form, though it won’t
always fit the console width:

In [109]: print(baseball.iloc[-20:, :12].to_string())
id player year stint team lg g ab r h X2b X3b

80 89474 finlest01 2007 1 COL NL 43 94 9 17 3 0
81 89480 embreal01 2007 1 OAK AL 4 0 0 0 0 0
82 89481 edmonji01 2007 1 SLN NL 117 365 39 92 15 2
83 89482 easleda01 2007 1 NYN NL 76 193 24 54 6 0
84 89489 delgaca01 2007 1 NYN NL 139 538 71 139 30 0
85 89493 cormirh01 2007 1 CIN NL 6 0 0 0 0 0
86 89494 coninje01 2007 2 NYN NL 21 41 2 8 2 0
87 89495 coninje01 2007 1 CIN NL 80 215 23 57 11 1
88 89497 clemero02 2007 1 NYA AL 2 2 0 1 0 0
89 89498 claytro01 2007 2 BOS AL 8 6 1 0 0 0
90 89499 claytro01 2007 1 TOR AL 69 189 23 48 14 0
91 89501 cirilje01 2007 2 ARI NL 28 40 6 8 4 0
92 89502 cirilje01 2007 1 MIN AL 50 153 18 40 9 2
93 89521 bondsba01 2007 1 SFN NL 126 340 75 94 14 0
94 89523 biggicr01 2007 1 HOU NL 141 517 68 130 31 3
95 89525 benitar01 2007 2 FLO NL 34 0 0 0 0 0
96 89526 benitar01 2007 1 SFN NL 19 0 0 0 0 0

(continues on next page)

578 Chapter 8. Intro to Data Structures

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

97 89530 ausmubr01 2007 1 HOU NL 117 349 38 82 16 3
98 89533 aloumo01 2007 1 NYN NL 87 328 51 112 19 1
99 89534 alomasa02 2007 1 NYN NL 8 22 1 3 1 0

Wide DataFrames will be printed across multiple rows by default:

In [110]: pd.DataFrame(np.random.randn(3, 12))
Out[110]:

0 1 2 3 4 5 6 7
→˓ 8 9 10 11
0 -0.345352 1.314232 0.690579 0.995761 2.396780 0.014871 3.357427 -0.317441 -1.
→˓236269 0.896171 -0.487602 -0.082240
1 -2.182937 0.380396 0.084844 0.432390 1.519970 -0.493662 0.600178 0.274230 0.
→˓132885 -0.023688 2.410179 1.450520
2 0.206053 -0.251905 -2.213588 1.063327 1.266143 0.299368 -0.863838 0.408204 -1.
→˓048089 -0.025747 -0.988387 0.094055

You can change how much to print on a single row by setting the display.width option:

In [111]: pd.set_option('display.width', 40) # default is 80

In [112]: pd.DataFrame(np.random.randn(3, 12))
Out[112]:

0 1 2 3 4 5 6 7
→˓ 8 9 10 11
0 1.262731 1.289997 0.082423 -0.055758 0.536580 -0.489682 0.369374 -0.034571 -2.
→˓484478 -0.281461 0.030711 0.109121
1 1.126203 -0.977349 1.474071 -0.064034 -1.282782 0.781836 -1.071357 0.441153 2.
→˓353925 0.583787 0.221471 -0.744471
2 0.758527 1.729689 -0.964980 -0.845696 -1.340896 1.846883 -1.328865 1.682706 -1.
→˓717693 0.888782 0.228440 0.901805

You can adjust the max width of the individual columns by setting display.max_colwidth

In [113]: datafile={'filename': ['filename_01','filename_02'],
.....: 'path': ["media/user_name/storage/folder_01/filename_01",
.....: "media/user_name/storage/folder_02/filename_02"]}
.....:

In [114]: pd.set_option('display.max_colwidth',30)

In [115]: pd.DataFrame(datafile)
Out[115]:

filename path
0 filename_01 media/user_name/storage/fo...
1 filename_02 media/user_name/storage/fo...

In [116]: pd.set_option('display.max_colwidth',100)

In [117]: pd.DataFrame(datafile)
Out[117]:

filename path
0 filename_01 media/user_name/storage/folder_01/filename_01
1 filename_02 media/user_name/storage/folder_02/filename_02

You can also disable this feature via the expand_frame_repr option. This will print the table in one block.

8.2. DataFrame 579

pandas: powerful Python data analysis toolkit, Release 0.23.4

8.2.15 DataFrame column attribute access and IPython completion

If a DataFrame column label is a valid Python variable name, the column can be accessed like an attribute:

In [118]: df = pd.DataFrame({'foo1' : np.random.randn(5),
.....: 'foo2' : np.random.randn(5)})
.....:

In [119]: df
Out[119]:

foo1 foo2
0 1.171216 -0.858447
1 0.520260 0.306996
2 -1.197071 -0.028665
3 -1.066969 0.384316
4 -0.303421 1.574159

In [120]: df.foo1
\\\Out[120]:
→˓

0 1.171216
1 0.520260
2 -1.197071
3 -1.066969
4 -0.303421
Name: foo1, dtype: float64

The columns are also connected to the IPython completion mechanism so they can be tab-completed:

In [5]: df.fo<TAB>
df.foo1 df.foo2

8.3 Panel

Warning: In 0.20.0, Panel is deprecated and will be removed in a future version. See the section Deprecate
Panel.

Panel is a somewhat less-used, but still important container for 3-dimensional data. The term panel data is derived
from econometrics and is partially responsible for the name pandas: pan(el)-da(ta)-s. The names for the 3 axes are
intended to give some semantic meaning to describing operations involving panel data and, in particular, econometric
analysis of panel data. However, for the strict purposes of slicing and dicing a collection of DataFrame objects, you
may find the axis names slightly arbitrary:

• items: axis 0, each item corresponds to a DataFrame contained inside

• major_axis: axis 1, it is the index (rows) of each of the DataFrames

• minor_axis: axis 2, it is the columns of each of the DataFrames

Construction of Panels works about like you would expect:

580 Chapter 8. Intro to Data Structures

http://ipython.org
http://en.wikipedia.org/wiki/Panel_data

pandas: powerful Python data analysis toolkit, Release 0.23.4

8.3.1 From 3D ndarray with optional axis labels

In [121]: wp = pd.Panel(np.random.randn(2, 5, 4), items=['Item1', 'Item2'],
.....: major_axis=pd.date_range('1/1/2000', periods=5),
.....: minor_axis=['A', 'B', 'C', 'D'])
.....:

In [122]: wp
Out[122]:
<class 'pandas.core.panel.Panel'>
Dimensions: 2 (items) x 5 (major_axis) x 4 (minor_axis)
Items axis: Item1 to Item2
Major_axis axis: 2000-01-01 00:00:00 to 2000-01-05 00:00:00
Minor_axis axis: A to D

8.3.2 From dict of DataFrame objects

In [123]: data = {'Item1' : pd.DataFrame(np.random.randn(4, 3)),
.....: 'Item2' : pd.DataFrame(np.random.randn(4, 2))}
.....:

In [124]: pd.Panel(data)
Out[124]:
<class 'pandas.core.panel.Panel'>
Dimensions: 2 (items) x 4 (major_axis) x 3 (minor_axis)
Items axis: Item1 to Item2
Major_axis axis: 0 to 3
Minor_axis axis: 0 to 2

Note that the values in the dict need only be convertible to DataFrame. Thus, they can be any of the other valid
inputs to DataFrame as per above.

One helpful factory method is Panel.from_dict, which takes a dictionary of DataFrames as above, and the
following named parameters:

Parameter Default Description
intersect False drops elements whose indices do not align
orient items use minor to use DataFrames’ columns as panel items

For example, compare to the construction above:

In [125]: pd.Panel.from_dict(data, orient='minor')
Out[125]:
<class 'pandas.core.panel.Panel'>
Dimensions: 3 (items) x 4 (major_axis) x 2 (minor_axis)
Items axis: 0 to 2
Major_axis axis: 0 to 3
Minor_axis axis: Item1 to Item2

Orient is especially useful for mixed-type DataFrames. If you pass a dict of DataFrame objects with mixed-type
columns, all of the data will get upcasted to dtype=object unless you pass orient='minor':

In [126]: df = pd.DataFrame({'a': ['foo', 'bar', 'baz'],
.....: 'b': np.random.randn(3)})

(continues on next page)

8.3. Panel 581

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

.....:

In [127]: df
Out[127]:

a b
0 foo -0.308853
1 bar -0.681087
2 baz 0.377953

In [128]: data = {'item1': df, 'item2': df}

In [129]: panel = pd.Panel.from_dict(data, orient='minor')

In [130]: panel['a']
Out[130]:

item1 item2
0 foo foo
1 bar bar
2 baz baz

In [131]: panel['b']
\\\Out[131]:

item1 item2
0 -0.308853 -0.308853
1 -0.681087 -0.681087
2 0.377953 0.377953

In [132]: panel['b'].dtypes
\\Out[132]:
→˓

item1 float64
item2 float64
dtype: object

Note: Panel, being less commonly used than Series and DataFrame, has been slightly neglected feature-wise. A
number of methods and options available in DataFrame are not available in Panel.

8.3.3 From DataFrame using to_panel method

to_panel converts a DataFrame with a two-level index to a Panel.

In [133]: midx = pd.MultiIndex(levels=[['one', 'two'], ['x','y']], labels=[[1,1,0,0],
→˓[1,0,1,0]])

In [134]: df = pd.DataFrame({'A' : [1, 2, 3, 4], 'B': [5, 6, 7, 8]}, index=midx)

In [135]: df.to_panel()
Out[135]:
<class 'pandas.core.panel.Panel'>
Dimensions: 2 (items) x 2 (major_axis) x 2 (minor_axis)
Items axis: A to B
Major_axis axis: one to two
Minor_axis axis: x to y

582 Chapter 8. Intro to Data Structures

pandas: powerful Python data analysis toolkit, Release 0.23.4

8.3.4 Item selection / addition / deletion

Similar to DataFrame functioning as a dict of Series, Panel is like a dict of DataFrames:

In [136]: wp['Item1']
Out[136]:

A B C D
2000-01-01 1.588931 0.476720 0.473424 -0.242861
2000-01-02 -0.014805 -0.284319 0.650776 -1.461665
2000-01-03 -1.137707 -0.891060 -0.693921 1.613616
2000-01-04 0.464000 0.227371 -0.496922 0.306389
2000-01-05 -2.290613 -1.134623 -1.561819 -0.260838

In [137]: wp['Item3'] = wp['Item1'] / wp['Item2']

The API for insertion and deletion is the same as for DataFrame. And as with DataFrame, if the item is a valid Python
identifier, you can access it as an attribute and tab-complete it in IPython.

8.3.5 Transposing

A Panel can be rearranged using its transpose method (which does not make a copy by default unless the data are
heterogeneous):

In [138]: wp.transpose(2, 0, 1)
Out[138]:
<class 'pandas.core.panel.Panel'>
Dimensions: 4 (items) x 3 (major_axis) x 5 (minor_axis)
Items axis: A to D
Major_axis axis: Item1 to Item3
Minor_axis axis: 2000-01-01 00:00:00 to 2000-01-05 00:00:00

8.3.6 Indexing / Selection

Operation Syntax Result
Select item wp[item] DataFrame
Get slice at major_axis label wp.major_xs(val) DataFrame
Get slice at minor_axis label wp.minor_xs(val) DataFrame

For example, using the earlier example data, we could do:

In [139]: wp['Item1']
Out[139]:

A B C D
2000-01-01 1.588931 0.476720 0.473424 -0.242861
2000-01-02 -0.014805 -0.284319 0.650776 -1.461665
2000-01-03 -1.137707 -0.891060 -0.693921 1.613616
2000-01-04 0.464000 0.227371 -0.496922 0.306389
2000-01-05 -2.290613 -1.134623 -1.561819 -0.260838

In [140]: wp.major_xs(wp.major_axis[2])
\\\Out[140]:
→˓

Item1 Item2 Item3

(continues on next page)

8.3. Panel 583

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

A -1.137707 0.800193 -1.421791
B -0.891060 0.782098 -1.139320
C -0.693921 -1.069094 0.649074
D 1.613616 -1.099248 -1.467927

In [141]: wp.minor_axis
\\Out[141]:
→˓Index(['A', 'B', 'C', 'D'], dtype='object')

In [142]: wp.minor_xs('C')
\\Out[142]:
→˓

Item1 Item2 Item3
2000-01-01 0.473424 -0.902937 -0.524316
2000-01-02 0.650776 -1.144073 -0.568824
2000-01-03 -0.693921 -1.069094 0.649074
2000-01-04 -0.496922 0.661084 -0.751678
2000-01-05 -1.561819 -1.056652 1.478083

8.3.7 Squeezing

Another way to change the dimensionality of an object is to squeeze a 1-len object, similar to wp['Item1'].

In [143]: wp.reindex(items=['Item1']).squeeze()
Out[143]:

A B C D
2000-01-01 1.588931 0.476720 0.473424 -0.242861
2000-01-02 -0.014805 -0.284319 0.650776 -1.461665
2000-01-03 -1.137707 -0.891060 -0.693921 1.613616
2000-01-04 0.464000 0.227371 -0.496922 0.306389
2000-01-05 -2.290613 -1.134623 -1.561819 -0.260838

In [144]: wp.reindex(items=['Item1'], minor=['B']).squeeze()
\\\Out[144]:
→˓

2000-01-01 0.476720
2000-01-02 -0.284319
2000-01-03 -0.891060
2000-01-04 0.227371
2000-01-05 -1.134623
Freq: D, Name: B, dtype: float64

8.3.8 Conversion to DataFrame

A Panel can be represented in 2D form as a hierarchically indexed DataFrame. See the section hierarchical indexing
for more on this. To convert a Panel to a DataFrame, use the to_frame method:

In [145]: panel = pd.Panel(np.random.randn(3, 5, 4), items=['one', 'two', 'three'],
.....: major_axis=pd.date_range('1/1/2000', periods=5),
.....: minor_axis=['a', 'b', 'c', 'd'])
.....:

In [146]: panel.to_frame()

(continues on next page)

584 Chapter 8. Intro to Data Structures

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

Out[146]:
one two three

major minor
2000-01-01 a 0.493672 1.219492 -1.290493

b -2.461467 0.062297 0.787872
c -1.553902 -0.110388 1.515707
d 2.015523 -1.184357 -0.276487

2000-01-02 a -1.833722 -0.558081 -0.223762
b 1.771740 0.077849 1.397431
c -0.670027 0.629498 1.503874
d 0.049307 -1.035260 -0.478905

2000-01-03 a -0.521493 -0.438229 -0.135950
b -3.201750 0.503703 -0.730327
c 0.792716 0.413086 -0.033277
d 0.146111 -1.139050 0.281151

2000-01-04 a 1.903247 0.660342 -1.298915
b -0.747169 0.464794 -2.819487
c -0.309038 -0.309337 -0.851985
d 0.393876 -0.649593 -1.106952

2000-01-05 a 1.861468 0.683758 -0.937731
b 0.936527 -0.643834 -1.537770
c 1.255746 0.421287 0.555759
d -2.655452 1.032814 -2.277282

8.4 Deprecate Panel

Over the last few years, pandas has increased in both breadth and depth, with new features, datatype support, and
manipulation routines. As a result, supporting efficient indexing and functional routines for Series, DataFrame
and Panel has contributed to an increasingly fragmented and difficult-to-understand codebase.

The 3-D structure of a Panel is much less common for many types of data analysis, than the 1-D of the Series or
the 2-D of the DataFrame. Going forward it makes sense for pandas to focus on these areas exclusively.

Oftentimes, one can simply use a MultiIndex DataFrame for easily working with higher dimensional data.

In addition, the xarray package was built from the ground up, specifically in order to support the multi-dimensional
analysis that is one of Panel s main usecases. Here is a link to the xarray panel-transition documentation.

In [147]: p = tm.makePanel()

In [148]: p
Out[148]:
<class 'pandas.core.panel.Panel'>
Dimensions: 3 (items) x 30 (major_axis) x 4 (minor_axis)
Items axis: ItemA to ItemC
Major_axis axis: 2000-01-03 00:00:00 to 2000-02-11 00:00:00
Minor_axis axis: A to D

Convert to a MultiIndex DataFrame.

In [149]: p.to_frame()
Out[149]:

ItemA ItemB ItemC
major minor
2000-01-03 A -0.390201 -1.624062 -0.605044

(continues on next page)

8.4. Deprecate Panel 585

http://xarray.pydata.org/en/stable/pandas.html#panel-transition

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

B 1.562443 0.483103 0.583129
C -1.085663 0.768159 -0.273458
D 0.136235 -0.021763 -0.700648

2000-01-04 A 1.207122 -0.758514 0.878404
B 0.763264 0.061495 -0.876690
C -1.114738 0.225441 -0.335117
D 0.886313 -0.047152 -1.166607

2000-01-05 A 0.178690 -0.560859 -0.921485
B 0.162027 0.240767 -1.919354
C -0.058216 0.543294 -0.476268
D -1.350722 0.088472 -0.367236

2000-01-06 A -1.004168 -0.589005 -0.200312
B -0.902704 0.782413 -0.572707
C -0.486768 0.771931 -1.765602
D -0.886348 -0.857435 1.296674

2000-01-07 A -1.377627 -1.070678 0.522423
B 1.106010 0.628462 -1.736484
C 1.685148 -0.968145 0.578223
D -1.013316 -2.503786 0.641385

2000-01-10 A 0.499281 -1.681101 0.722511
B -0.199234 -0.880627 -1.335113
C 0.112572 -1.176383 0.242697
D 1.920906 -1.058041 -0.779432

2000-01-11 A -1.405256 0.403776 -1.702486
B 0.458265 0.777575 -1.244471
C -1.495309 -3.192716 0.208129
D -0.388231 -0.657981 0.602456

2000-01-12 A 0.162565 0.609862 -0.709535
B 0.491048 -0.779367 0.347339

...
2000-02-02 C -0.303961 -0.463752 -0.288962

D 0.104050 1.116086 0.506445
2000-02-03 A -2.338595 -0.581967 -0.801820

B -0.557697 -0.033731 -0.176382
C 0.625555 -0.055289 0.875359
D 0.174068 -0.443915 1.626369

2000-02-04 A -0.374279 -1.233862 -0.915751
B 0.381353 -1.108761 -1.970108
C -0.059268 -0.360853 -0.614618
D -0.439461 -0.200491 0.429518

2000-02-07 A -2.359958 -3.520876 -0.288156
B 1.337122 -0.314399 -1.044208
C 0.249698 0.728197 0.565375
D -0.741343 1.092633 0.013910

2000-02-08 A -1.157886 0.516870 -1.199945
B -1.531095 -0.860626 -0.821179
C 1.103949 1.326768 0.068184
D -0.079673 -1.675194 -0.458272

2000-02-09 A -0.551865 0.343125 -0.072869
B 1.331458 0.370397 -1.914267
C -1.087532 0.208927 0.788871
D -0.922875 0.437234 -1.531004

2000-02-10 A 1.592673 2.137827 -1.828740
B -0.571329 -1.761442 -0.826439
C 1.998044 0.292058 -0.280343
D 0.303638 0.388254 -0.500569

2000-02-11 A 1.559318 0.452429 -1.716981
(continues on next page)

586 Chapter 8. Intro to Data Structures

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

B -0.026671 -0.899454 0.124808
C -0.244548 -2.019610 0.931536
D -0.917368 0.479630 0.870690

[120 rows x 3 columns]

Alternatively, one can convert to an xarray DataArray.

In [150]: p.to_xarray()
Out[150]:
<xarray.DataArray (items: 3, major_axis: 30, minor_axis: 4)>
array([[[-0.390201, 1.562443, -1.085663, 0.136235],

[1.207122, 0.763264, -1.114738, 0.886313],
...,
[1.592673, -0.571329, 1.998044, 0.303638],
[1.559318, -0.026671, -0.244548, -0.917368]],

[[-1.624062, 0.483103, 0.768159, -0.021763],
[-0.758514, 0.061495, 0.225441, -0.047152],
...,
[2.137827, -1.761442, 0.292058, 0.388254],
[0.452429, -0.899454, -2.01961 , 0.47963]],

[[-0.605044, 0.583129, -0.273458, -0.700648],
[0.878404, -0.87669 , -0.335117, -1.166607],
...,
[-1.82874 , -0.826439, -0.280343, -0.500569],
[-1.716981, 0.124808, 0.931536, 0.87069]]])

Coordinates:

* items (items) object 'ItemA' 'ItemB' 'ItemC'

* major_axis (major_axis) datetime64[ns] 2000-01-03 2000-01-04 2000-01-05 ...

* minor_axis (minor_axis) object 'A' 'B' 'C' 'D'

You can see the full-documentation for the xarray package.

8.4. Deprecate Panel 587

http://xarray.pydata.org/en/stable/

pandas: powerful Python data analysis toolkit, Release 0.23.4

588 Chapter 8. Intro to Data Structures

CHAPTER

NINE

ESSENTIAL BASIC FUNCTIONALITY

Here we discuss a lot of the essential functionality common to the pandas data structures. Here’s how to create some
of the objects used in the examples from the previous section:

In [1]: index = pd.date_range('1/1/2000', periods=8)

In [2]: s = pd.Series(np.random.randn(5), index=['a', 'b', 'c', 'd', 'e'])

In [3]: df = pd.DataFrame(np.random.randn(8, 3), index=index,
...: columns=['A', 'B', 'C'])
...:

In [4]: wp = pd.Panel(np.random.randn(2, 5, 4), items=['Item1', 'Item2'],
...: major_axis=pd.date_range('1/1/2000', periods=5),
...: minor_axis=['A', 'B', 'C', 'D'])
...:

9.1 Head and Tail

To view a small sample of a Series or DataFrame object, use the head() and tail() methods. The default number
of elements to display is five, but you may pass a custom number.

In [5]: long_series = pd.Series(np.random.randn(1000))

In [6]: long_series.head()
Out[6]:
0 0.229453
1 0.304418
2 0.736135
3 -0.859631
4 -0.424100
dtype: float64

In [7]: long_series.tail(3)
\\Out[7]:
→˓

997 -0.351587
998 1.136249
999 -0.448789
dtype: float64

589

pandas: powerful Python data analysis toolkit, Release 0.23.4

9.2 Attributes and the raw ndarray(s)

pandas objects have a number of attributes enabling you to access the metadata

• shape: gives the axis dimensions of the object, consistent with ndarray

• Axis labels

– Series: index (only axis)

– DataFrame: index (rows) and columns

– Panel: items, major_axis, and minor_axis

Note, these attributes can be safely assigned to!

In [8]: df[:2]
Out[8]:

A B C
2000-01-01 0.048869 -1.360687 -0.47901
2000-01-02 -0.859661 -0.231595 -0.52775

In [9]: df.columns = [x.lower() for x in df.columns]

In [10]: df
Out[10]:

a b c
2000-01-01 0.048869 -1.360687 -0.479010
2000-01-02 -0.859661 -0.231595 -0.527750
2000-01-03 -1.296337 0.150680 0.123836
2000-01-04 0.571764 1.555563 -0.823761
2000-01-05 0.535420 -1.032853 1.469725
2000-01-06 1.304124 1.449735 0.203109
2000-01-07 -1.032011 0.969818 -0.962723
2000-01-08 1.382083 -0.938794 0.669142

To get the actual data inside a data structure, one need only access the values property:

In [11]: s.values
Out[11]: array([-1.9339, 0.3773, 0.7341, 2.1416, -0.0112])

In [12]: df.values
\\Out[12]:
array([[0.0489, -1.3607, -0.479],

[-0.8597, -0.2316, -0.5278],
[-1.2963, 0.1507, 0.1238],
[0.5718, 1.5556, -0.8238],
[0.5354, -1.0329, 1.4697],
[1.3041, 1.4497, 0.2031],
[-1.032 , 0.9698, -0.9627],
[1.3821, -0.9388, 0.6691]])

In [13]: wp.values
\\\Out[13]:
→˓

array([[[-0.4336, -0.2736, 0.6804, -0.3084],
[-0.2761, -1.8212, -1.9936, -1.9274],
[-2.0279, 1.625 , 0.5511, 3.0593],
[0.4553, -0.0307, 0.9357, 1.0612],

(continues on next page)

590 Chapter 9. Essential Basic Functionality

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

[-2.1079, 0.1999, 0.3236, -0.6416]],

[[-0.5875, 0.0539, 0.1949, -0.382],
[0.3186, 2.0891, -0.7283, -0.0903],
[-0.7482, 1.3189, -2.0298, 0.7927],
[0.461 , -0.5427, -0.3054, -0.4792],
[0.095 , -0.2701, -0.7071, -0.7739]]])

If a DataFrame or Panel contains homogeneously-typed data, the ndarray can actually be modified in-place, and the
changes will be reflected in the data structure. For heterogeneous data (e.g. some of the DataFrame’s columns are not
all the same dtype), this will not be the case. The values attribute itself, unlike the axis labels, cannot be assigned to.

Note: When working with heterogeneous data, the dtype of the resulting ndarray will be chosen to accommodate all
of the data involved. For example, if strings are involved, the result will be of object dtype. If there are only floats and
integers, the resulting array will be of float dtype.

9.3 Accelerated operations

pandas has support for accelerating certain types of binary numerical and boolean operations using the numexpr
library and the bottleneck libraries.

These libraries are especially useful when dealing with large data sets, and provide large speedups. numexpr uses
smart chunking, caching, and multiple cores. bottleneck is a set of specialized cython routines that are especially
fast when dealing with arrays that have nans.

Here is a sample (using 100 column x 100,000 row DataFrames):

Operation 0.11.0 (ms) Prior Version (ms) Ratio to Prior
df1 > df2 13.32 125.35 0.1063
df1 * df2 21.71 36.63 0.5928
df1 + df2 22.04 36.50 0.6039

You are highly encouraged to install both libraries. See the section Recommended Dependencies for more installation
info.

These are both enabled to be used by default, you can control this by setting the options:

New in version 0.20.0.

pd.set_option('compute.use_bottleneck', False)
pd.set_option('compute.use_numexpr', False)

9.4 Flexible binary operations

With binary operations between pandas data structures, there are two key points of interest:

• Broadcasting behavior between higher- (e.g. DataFrame) and lower-dimensional (e.g. Series) objects.

• Missing data in computations.

We will demonstrate how to manage these issues independently, though they can be handled simultaneously.

9.3. Accelerated operations 591

pandas: powerful Python data analysis toolkit, Release 0.23.4

9.4.1 Matching / broadcasting behavior

DataFrame has the methods add(), sub(), mul(), div() and related functions radd(), rsub(), . . . for
carrying out binary operations. For broadcasting behavior, Series input is of primary interest. Using these functions,
you can use to either match on the index or columns via the axis keyword:

In [14]: df = pd.DataFrame({'one' : pd.Series(np.random.randn(3), index=['a', 'b', 'c
→˓']),

....: 'two' : pd.Series(np.random.randn(4), index=['a', 'b', 'c
→˓', 'd']),

....: 'three' : pd.Series(np.random.randn(3), index=['b', 'c',
→˓'d'])})

....:

In [15]: df
Out[15]:

one two three
a -1.101558 1.124472 NaN
b -0.177289 2.487104 -0.634293
c 0.462215 -0.486066 1.931194
d NaN -0.456288 -1.222918

In [16]: row = df.iloc[1]

In [17]: column = df['two']

In [18]: df.sub(row, axis='columns')
Out[18]:

one two three
a -0.924269 -1.362632 NaN
b 0.000000 0.000000 0.000000
c 0.639504 -2.973170 2.565487
d NaN -2.943392 -0.588625

In [19]: df.sub(row, axis=1)
\\Out[19]:
→˓

one two three
a -0.924269 -1.362632 NaN
b 0.000000 0.000000 0.000000
c 0.639504 -2.973170 2.565487
d NaN -2.943392 -0.588625

In [20]: df.sub(column, axis='index')
\\Out[20]:
→˓

one two three
a -2.226031 0.0 NaN
b -2.664393 0.0 -3.121397
c 0.948280 0.0 2.417260
d NaN 0.0 -0.766631

In [21]: df.sub(column, axis=0)
\\\Out[21]:
→˓

one two three
a -2.226031 0.0 NaN
b -2.664393 0.0 -3.121397

(continues on next page)

592 Chapter 9. Essential Basic Functionality

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

c 0.948280 0.0 2.417260
d NaN 0.0 -0.766631

Furthermore you can align a level of a multi-indexed DataFrame with a Series.

In [22]: dfmi = df.copy()

In [23]: dfmi.index = pd.MultiIndex.from_tuples([(1,'a'),(1,'b'),(1,'c'),(2,'a')],
....: names=['first','second'])
....:

In [24]: dfmi.sub(column, axis=0, level='second')
Out[24]:

one two three
first second
1 a -2.226031 0.00000 NaN

b -2.664393 0.00000 -3.121397
c 0.948280 0.00000 2.417260

2 a NaN -1.58076 -2.347391

With Panel, describing the matching behavior is a bit more difficult, so the arithmetic methods instead (and perhaps
confusingly?) give you the option to specify the broadcast axis. For example, suppose we wished to demean the data
over a particular axis. This can be accomplished by taking the mean over an axis and broadcasting over the same axis:

In [25]: major_mean = wp.mean(axis='major')

In [26]: major_mean
Out[26]:

Item1 Item2
A -0.878036 -0.092218
B -0.060128 0.529811
C 0.099453 -0.715139
D 0.248599 -0.186535

In [27]: wp.sub(major_mean, axis='major')
\\Out[27]:
→˓

<class 'pandas.core.panel.Panel'>
Dimensions: 2 (items) x 5 (major_axis) x 4 (minor_axis)
Items axis: Item1 to Item2
Major_axis axis: 2000-01-01 00:00:00 to 2000-01-05 00:00:00
Minor_axis axis: A to D

And similarly for axis="items" and axis="minor".

Note: I could be convinced to make the axis argument in the DataFrame methods match the broadcasting behavior of
Panel. Though it would require a transition period so users can change their code. . .

Series and Index also support the divmod() builtin. This function takes the floor division and modulo operation at
the same time returning a two-tuple of the same type as the left hand side. For example:

In [28]: s = pd.Series(np.arange(10))

In [29]: s
Out[29]:

(continues on next page)

9.4. Flexible binary operations 593

https://docs.python.org/3/library/functions.html#divmod

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

0 0
1 1
2 2
3 3
4 4
5 5
6 6
7 7
8 8
9 9
dtype: int64

In [30]: div, rem = divmod(s, 3)

In [31]: div
Out[31]:
0 0
1 0
2 0
3 1
4 1
5 1
6 2
7 2
8 2
9 3
dtype: int64

In [32]: rem
\\\Out[32]:
→˓

0 0
1 1
2 2
3 0
4 1
5 2
6 0
7 1
8 2
9 0
dtype: int64

In [33]: idx = pd.Index(np.arange(10))

In [34]: idx
Out[34]: Int64Index([0, 1, 2, 3, 4, 5, 6, 7, 8, 9], dtype='int64')

In [35]: div, rem = divmod(idx, 3)

In [36]: div
Out[36]: Int64Index([0, 0, 0, 1, 1, 1, 2, 2, 2, 3], dtype='int64')

In [37]: rem
\\\Out[37]:
→˓Int64Index([0, 1, 2, 0, 1, 2, 0, 1, 2, 0], dtype='int64')

594 Chapter 9. Essential Basic Functionality

pandas: powerful Python data analysis toolkit, Release 0.23.4

We can also do elementwise divmod():

In [38]: div, rem = divmod(s, [2, 2, 3, 3, 4, 4, 5, 5, 6, 6])

In [39]: div
Out[39]:
0 0
1 0
2 0
3 1
4 1
5 1
6 1
7 1
8 1
9 1
dtype: int64

In [40]: rem
\\\Out[40]:
→˓

0 0
1 1
2 2
3 0
4 0
5 1
6 1
7 2
8 2
9 3
dtype: int64

9.4.2 Missing data / operations with fill values

In Series and DataFrame, the arithmetic functions have the option of inputting a fill_value, namely a value to substitute
when at most one of the values at a location are missing. For example, when adding two DataFrame objects, you may
wish to treat NaN as 0 unless both DataFrames are missing that value, in which case the result will be NaN (you can
later replace NaN with some other value using fillna if you wish).

In [41]: df
Out[41]:

one two three
a -1.101558 1.124472 NaN
b -0.177289 2.487104 -0.634293
c 0.462215 -0.486066 1.931194
d NaN -0.456288 -1.222918

In [42]: df2
\\Out[42]:
→˓

one two three
a -1.101558 1.124472 1.000000
b -0.177289 2.487104 -0.634293
c 0.462215 -0.486066 1.931194
d NaN -0.456288 -1.222918

(continues on next page)

9.4. Flexible binary operations 595

https://docs.python.org/3/library/functions.html#divmod

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

In [43]: df + df2
\\Out[43]:
→˓

one two three
a -2.203116 2.248945 NaN
b -0.354579 4.974208 -1.268586
c 0.924429 -0.972131 3.862388
d NaN -0.912575 -2.445837

In [44]: df.add(df2, fill_value=0)
\\Out[44]:
→˓

one two three
a -2.203116 2.248945 1.000000
b -0.354579 4.974208 -1.268586
c 0.924429 -0.972131 3.862388
d NaN -0.912575 -2.445837

9.4.3 Flexible Comparisons

Series and DataFrame have the binary comparison methods eq, ne, lt, gt, le, and ge whose behavior is analogous
to the binary arithmetic operations described above:

In [45]: df.gt(df2)
Out[45]:

one two three
a False False False
b False False False
c False False False
d False False False

In [46]: df2.ne(df)
\\\Out[46]:
→˓

one two three
a False False True
b False False False
c False False False
d True False False

These operations produce a pandas object of the same type as the left-hand-side input that is of dtype bool. These
boolean objects can be used in indexing operations, see the section on Boolean indexing.

9.4.4 Boolean Reductions

You can apply the reductions: empty , any(), all(), and bool() to provide a way to summarize a boolean result.

In [47]: (df > 0).all()
Out[47]:
one False
two False
three False

(continues on next page)

596 Chapter 9. Essential Basic Functionality

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

dtype: bool

In [48]: (df > 0).any()
\\\Out[48]:
one True
two True
three True
dtype: bool

You can reduce to a final boolean value.

In [49]: (df > 0).any().any()
Out[49]: True

You can test if a pandas object is empty, via the empty property.

In [50]: df.empty
Out[50]: False

In [51]: pd.DataFrame(columns=list('ABC')).empty
\\\\\\\\\\\\\\\Out[51]: True

To evaluate single-element pandas objects in a boolean context, use the method bool():

In [52]: pd.Series([True]).bool()
Out[52]: True

In [53]: pd.Series([False]).bool()
\\\\\\\\\\\\\\Out[53]: False

In [54]: pd.DataFrame([[True]]).bool()
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\Out[54]: True

In [55]: pd.DataFrame([[False]]).bool()
\\\Out[55]: False

Warning: You might be tempted to do the following:

>>> if df:
...

Or
>>> df and df2

These will both raise errors, as you are trying to compare multiple values.

ValueError: The truth value of an array is ambiguous. Use a.empty, a.any() or a.
→˓all().

See gotchas for a more detailed discussion.

9.4. Flexible binary operations 597

pandas: powerful Python data analysis toolkit, Release 0.23.4

9.4.5 Comparing if objects are equivalent

Often you may find that there is more than one way to compute the same result. As a simple example, consider
df+df and df*2. To test that these two computations produce the same result, given the tools shown above, you
might imagine using (df+df == df*2).all(). But in fact, this expression is False:

In [56]: df+df == df*2
Out[56]:

one two three
a True True False
b True True True
c True True True
d False True True

In [57]: (df+df == df*2).all()
\\Out[57]:
→˓

one False
two True
three False
dtype: bool

Notice that the boolean DataFrame df+df == df*2 contains some False values! This is because NaNs do not
compare as equals:

In [58]: np.nan == np.nan
Out[58]: False

So, NDFrames (such as Series, DataFrames, and Panels) have an equals() method for testing equality, with NaNs
in corresponding locations treated as equal.

In [59]: (df+df).equals(df*2)
Out[59]: True

Note that the Series or DataFrame index needs to be in the same order for equality to be True:

In [60]: df1 = pd.DataFrame({'col':['foo', 0, np.nan]})

In [61]: df2 = pd.DataFrame({'col':[np.nan, 0, 'foo']}, index=[2,1,0])

In [62]: df1.equals(df2)
Out[62]: False

In [63]: df1.equals(df2.sort_index())
\\\\\\\\\\\\\\\Out[63]: True

9.4.6 Comparing array-like objects

You can conveniently perform element-wise comparisons when comparing a pandas data structure with a scalar value:

In [64]: pd.Series(['foo', 'bar', 'baz']) == 'foo'
Out[64]:
0 True
1 False
2 False
dtype: bool

(continues on next page)

598 Chapter 9. Essential Basic Functionality

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

In [65]: pd.Index(['foo', 'bar', 'baz']) == 'foo'
\\\Out[65]: array([True, False,
→˓False], dtype=bool)

Pandas also handles element-wise comparisons between different array-like objects of the same length:

In [66]: pd.Series(['foo', 'bar', 'baz']) == pd.Index(['foo', 'bar', 'qux'])
Out[66]:
0 True
1 True
2 False
dtype: bool

In [67]: pd.Series(['foo', 'bar', 'baz']) == np.array(['foo', 'bar', 'qux'])
\\\Out[67]:
0 True
1 True
2 False
dtype: bool

Trying to compare Index or Series objects of different lengths will raise a ValueError:

In [55]: pd.Series(['foo', 'bar', 'baz']) == pd.Series(['foo', 'bar'])
ValueError: Series lengths must match to compare

In [56]: pd.Series(['foo', 'bar', 'baz']) == pd.Series(['foo'])
ValueError: Series lengths must match to compare

Note that this is different from the NumPy behavior where a comparison can be broadcast:

In [68]: np.array([1, 2, 3]) == np.array([2])
Out[68]: array([False, True, False], dtype=bool)

or it can return False if broadcasting can not be done:

In [69]: np.array([1, 2, 3]) == np.array([1, 2])
Out[69]: False

9.4.7 Combining overlapping data sets

A problem occasionally arising is the combination of two similar data sets where values in one are preferred over the
other. An example would be two data series representing a particular economic indicator where one is considered to
be of “higher quality”. However, the lower quality series might extend further back in history or have more complete
data coverage. As such, we would like to combine two DataFrame objects where missing values in one DataFrame
are conditionally filled with like-labeled values from the other DataFrame. The function implementing this operation
is combine_first(), which we illustrate:

In [70]: df1 = pd.DataFrame({'A' : [1., np.nan, 3., 5., np.nan],
....: 'B' : [np.nan, 2., 3., np.nan, 6.]})
....:

In [71]: df2 = pd.DataFrame({'A' : [5., 2., 4., np.nan, 3., 7.],
....: 'B' : [np.nan, np.nan, 3., 4., 6., 8.]})

(continues on next page)

9.4. Flexible binary operations 599

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

....:

In [72]: df1
Out[72]:

A B
0 1.0 NaN
1 NaN 2.0
2 3.0 3.0
3 5.0 NaN
4 NaN 6.0

In [73]: df2
\\Out[73]:
→˓

A B
0 5.0 NaN
1 2.0 NaN
2 4.0 3.0
3 NaN 4.0
4 3.0 6.0
5 7.0 8.0

In [74]: df1.combine_first(df2)
\\Out[74]:
→˓

A B
0 1.0 NaN
1 2.0 2.0
2 3.0 3.0
3 5.0 4.0
4 3.0 6.0
5 7.0 8.0

9.4.8 General DataFrame Combine

The combine_first() method above calls the more general DataFrame.combine(). This method takes
another DataFrame and a combiner function, aligns the input DataFrame and then passes the combiner function pairs
of Series (i.e., columns whose names are the same).

So, for instance, to reproduce combine_first() as above:

In [75]: combiner = lambda x, y: np.where(pd.isna(x), y, x)

In [76]: df1.combine(df2, combiner)
Out[76]:

A B
0 1.0 NaN
1 2.0 2.0
2 3.0 3.0
3 5.0 4.0
4 3.0 6.0
5 7.0 8.0

600 Chapter 9. Essential Basic Functionality

pandas: powerful Python data analysis toolkit, Release 0.23.4

9.5 Descriptive statistics

There exists a large number of methods for computing descriptive statistics and other related operations on Series,
DataFrame, and Panel. Most of these are aggregations (hence producing a lower-dimensional result) like sum(),
mean(), and quantile(), but some of them, like cumsum() and cumprod(), produce an object of the same
size. Generally speaking, these methods take an axis argument, just like ndarray.{sum, std, . . . }, but the axis can be
specified by name or integer:

• Series: no axis argument needed

• DataFrame: “index” (axis=0, default), “columns” (axis=1)

• Panel: “items” (axis=0), “major” (axis=1, default), “minor” (axis=2)

For example:

In [77]: df
Out[77]:

one two three
a -1.101558 1.124472 NaN
b -0.177289 2.487104 -0.634293
c 0.462215 -0.486066 1.931194
d NaN -0.456288 -1.222918

In [78]: df.mean(0)
\\Out[78]:
→˓

one -0.272211
two 0.667306
three 0.024661
dtype: float64

In [79]: df.mean(1)
\\\Out[79]:
→˓

a 0.011457
b 0.558507
c 0.635781
d -0.839603
dtype: float64

All such methods have a skipna option signaling whether to exclude missing data (True by default):

In [80]: df.sum(0, skipna=False)
Out[80]:
one NaN
two 2.669223
three NaN
dtype: float64

In [81]: df.sum(axis=1, skipna=True)
\\\Out[81]:
→˓

a 0.022914
b 1.675522
c 1.907343
d -1.679206
dtype: float64

9.5. Descriptive statistics 601

pandas: powerful Python data analysis toolkit, Release 0.23.4

Combined with the broadcasting / arithmetic behavior, one can describe various statistical procedures, like standard-
ization (rendering data zero mean and standard deviation 1), very concisely:

In [82]: ts_stand = (df - df.mean()) / df.std()

In [83]: ts_stand.std()
Out[83]:
one 1.0
two 1.0
three 1.0
dtype: float64

In [84]: xs_stand = df.sub(df.mean(1), axis=0).div(df.std(1), axis=0)

In [85]: xs_stand.std(1)
Out[85]:
a 1.0
b 1.0
c 1.0
d 1.0
dtype: float64

Note that methods like cumsum() and cumprod() preserve the location of NaN values. This is somewhat different
from expanding() and rolling(). For more details please see this note.

In [86]: df.cumsum()
Out[86]:

one two three
a -1.101558 1.124472 NaN
b -1.278848 3.611576 -0.634293
c -0.816633 3.125511 1.296901
d NaN 2.669223 0.073983

Here is a quick reference summary table of common functions. Each also takes an optional level parameter which
applies only if the object has a hierarchical index.

602 Chapter 9. Essential Basic Functionality

pandas: powerful Python data analysis toolkit, Release 0.23.4

Function Description
count Number of non-NA observations
sum Sum of values
mean Mean of values
mad Mean absolute deviation
median Arithmetic median of values
min Minimum
max Maximum
mode Mode
abs Absolute Value
prod Product of values
std Bessel-corrected sample standard deviation
var Unbiased variance
sem Standard error of the mean
skew Sample skewness (3rd moment)
kurt Sample kurtosis (4th moment)
quantile Sample quantile (value at %)
cumsum Cumulative sum
cumprod Cumulative product
cummax Cumulative maximum
cummin Cumulative minimum

Note that by chance some NumPy methods, like mean, std, and sum, will exclude NAs on Series input by default:

In [87]: np.mean(df['one'])
Out[87]: -0.27221094480450114

In [88]: np.mean(df['one'].values)
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\Out[88]: nan

Series.nunique() will return the number of unique non-NA values in a Series:

In [89]: series = pd.Series(np.random.randn(500))

In [90]: series[20:500] = np.nan

In [91]: series[10:20] = 5

In [92]: series.nunique()
Out[92]: 11

9.5.1 Summarizing data: describe

There is a convenient describe() function which computes a variety of summary statistics about a Series or the
columns of a DataFrame (excluding NAs of course):

In [93]: series = pd.Series(np.random.randn(1000))

In [94]: series[::2] = np.nan

In [95]: series.describe()
Out[95]:

(continues on next page)

9.5. Descriptive statistics 603

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

count 500.000000
mean -0.032127
std 1.067484
min -3.463789
25% -0.725523
50% -0.053230
75% 0.679790
max 3.120271
dtype: float64

In [96]: frame = pd.DataFrame(np.random.randn(1000, 5), columns=['a', 'b', 'c', 'd',
→˓'e'])

In [97]: frame.iloc[::2] = np.nan

In [98]: frame.describe()
Out[98]:

a b c d e
count 500.000000 500.000000 500.000000 500.000000 500.000000
mean -0.045109 -0.052045 0.024520 0.006117 0.001141
std 1.029268 1.002320 1.042793 1.040134 1.005207
min -2.915767 -3.294023 -3.610499 -2.907036 -3.010899
25% -0.763783 -0.720389 -0.609600 -0.665896 -0.682900
50% -0.086033 -0.048843 0.006093 0.043191 -0.001651
75% 0.663399 0.620980 0.728382 0.735973 0.656439
max 3.400646 2.925597 3.416896 3.331522 3.007143

You can select specific percentiles to include in the output:

In [99]: series.describe(percentiles=[.05, .25, .75, .95])
Out[99]:
count 500.000000
mean -0.032127
std 1.067484
min -3.463789
5% -1.733545
25% -0.725523
50% -0.053230
75% 0.679790
95% 1.854383
max 3.120271
dtype: float64

By default, the median is always included.

For a non-numerical Series object, describe() will give a simple summary of the number of unique values and
most frequently occurring values:

In [100]: s = pd.Series(['a', 'a', 'b', 'b', 'a', 'a', np.nan, 'c', 'd', 'a'])

In [101]: s.describe()
Out[101]:
count 9
unique 4
top a
freq 5
dtype: object

604 Chapter 9. Essential Basic Functionality

pandas: powerful Python data analysis toolkit, Release 0.23.4

Note that on a mixed-type DataFrame object, describe() will restrict the summary to include only numerical
columns or, if none are, only categorical columns:

In [102]: frame = pd.DataFrame({'a': ['Yes', 'Yes', 'No', 'No'], 'b': range(4)})

In [103]: frame.describe()
Out[103]:

b
count 4.000000
mean 1.500000
std 1.290994
min 0.000000
25% 0.750000
50% 1.500000
75% 2.250000
max 3.000000

This behaviour can be controlled by providing a list of types as include/exclude arguments. The special value
all can also be used:

In [104]: frame.describe(include=['object'])
Out[104]:

a
count 4
unique 2
top Yes
freq 2

In [105]: frame.describe(include=['number'])
\\\Out[105]:

b
count 4.000000
mean 1.500000
std 1.290994
min 0.000000
25% 0.750000
50% 1.500000
75% 2.250000
max 3.000000

In [106]: frame.describe(include='all')
\\Out[106]:
→˓

a b
count 4 4.000000
unique 2 NaN
top Yes NaN
freq 2 NaN
mean NaN 1.500000
std NaN 1.290994
min NaN 0.000000
25% NaN 0.750000
50% NaN 1.500000
75% NaN 2.250000
max NaN 3.000000

That feature relies on select_dtypes. Refer to there for details about accepted inputs.

9.5. Descriptive statistics 605

pandas: powerful Python data analysis toolkit, Release 0.23.4

9.5.2 Index of Min/Max Values

The idxmin() and idxmax() functions on Series and DataFrame compute the index labels with the minimum and
maximum corresponding values:

In [107]: s1 = pd.Series(np.random.randn(5))

In [108]: s1
Out[108]:
0 -1.649461
1 0.169660
2 1.246181
3 0.131682
4 -2.001988
dtype: float64

In [109]: s1.idxmin(), s1.idxmax()
\\Out[109]:
→˓(4, 2)

In [110]: df1 = pd.DataFrame(np.random.randn(5,3), columns=['A','B','C'])

In [111]: df1
Out[111]:

A B C
0 -1.273023 0.870502 0.214583
1 0.088452 -0.173364 1.207466
2 0.546121 0.409515 -0.310515
3 0.585014 -0.490528 -0.054639
4 -0.239226 0.701089 0.228656

In [112]: df1.idxmin(axis=0)
\\\Out[112]:
→˓

A 0
B 3
C 2
dtype: int64

In [113]: df1.idxmax(axis=1)
\\Out[113]:
→˓

0 B
1 C
2 A
3 A
4 B
dtype: object

When there are multiple rows (or columns) matching the minimum or maximum value, idxmin() and idxmax()
return the first matching index:

In [114]: df3 = pd.DataFrame([2, 1, 1, 3, np.nan], columns=['A'], index=list('edcba'))

In [115]: df3
Out[115]:

A
e 2.0

(continues on next page)

606 Chapter 9. Essential Basic Functionality

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

d 1.0
c 1.0
b 3.0
a NaN

In [116]: df3['A'].idxmin()
\\\Out[116]: 'd'

Note: idxmin and idxmax are called argmin and argmax in NumPy.

9.5.3 Value counts (histogramming) / Mode

The value_counts() Series method and top-level function computes a histogram of a 1D array of values. It can
also be used as a function on regular arrays:

In [117]: data = np.random.randint(0, 7, size=50)

In [118]: data
Out[118]:
array([3, 3, 0, 2, 1, 0, 5, 5, 3, 6, 1, 5, 6, 2, 0, 0, 6, 3, 3, 5, 0, 4, 3,

3, 3, 0, 6, 1, 3, 5, 5, 0, 4, 0, 6, 3, 6, 5, 4, 3, 2, 1, 5, 0, 1, 1,
6, 4, 1, 4])

In [119]: s = pd.Series(data)

In [120]: s.value_counts()
Out[120]:
3 11
0 9
5 8
6 7
1 7
4 5
2 3
dtype: int64

In [121]: pd.value_counts(data)
\\Out[121]:
→˓

3 11
0 9
5 8
6 7
1 7
4 5
2 3
dtype: int64

Similarly, you can get the most frequently occurring value(s) (the mode) of the values in a Series or DataFrame:

In [122]: s5 = pd.Series([1, 1, 3, 3, 3, 5, 5, 7, 7, 7])

In [123]: s5.mode()

(continues on next page)

9.5. Descriptive statistics 607

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

Out[123]:
0 3
1 7
dtype: int64

In [124]: df5 = pd.DataFrame({"A": np.random.randint(0, 7, size=50),
.....: "B": np.random.randint(-10, 15, size=50)})
.....:

In [125]: df5.mode()
Out[125]:

A B
0 2 -5

9.5.4 Discretization and quantiling

Continuous values can be discretized using the cut() (bins based on values) and qcut() (bins based on sample
quantiles) functions:

In [126]: arr = np.random.randn(20)

In [127]: factor = pd.cut(arr, 4)

In [128]: factor
Out[128]:
[(-2.611, -1.58], (0.473, 1.499], (-2.611, -1.58], (-1.58, -0.554], (-0.554, 0.473], .
→˓.., (0.473, 1.499], (0.473, 1.499], (-0.554, 0.473], (-0.554, 0.473], (-0.554, 0.
→˓473]]
Length: 20
Categories (4, interval[float64]): [(-2.611, -1.58] < (-1.58, -0.554] < (-0.554, 0.
→˓473] <

(0.473, 1.499]]

In [129]: factor = pd.cut(arr, [-5, -1, 0, 1, 5])

In [130]: factor
Out[130]:
[(-5, -1], (0, 1], (-5, -1], (-1, 0], (-1, 0], ..., (1, 5], (1, 5], (-1, 0], (-1, 0],
→˓(-1, 0]]
Length: 20
Categories (4, interval[int64]): [(-5, -1] < (-1, 0] < (0, 1] < (1, 5]]

qcut() computes sample quantiles. For example, we could slice up some normally distributed data into equal-size
quartiles like so:

In [131]: arr = np.random.randn(30)

In [132]: factor = pd.qcut(arr, [0, .25, .5, .75, 1])

In [133]: factor
Out[133]:
[(0.544, 1.976], (0.544, 1.976], (-1.255, -0.375], (0.544, 1.976], (-0.103, 0.544], ..
→˓., (-0.103, 0.544], (0.544, 1.976], (-0.103, 0.544], (-1.255, -0.375], (-0.375, -0.
→˓103]]
Length: 30

(continues on next page)

608 Chapter 9. Essential Basic Functionality

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

Categories (4, interval[float64]): [(-1.255, -0.375] < (-0.375, -0.103] < (-0.103, 0.
→˓544] <

(0.544, 1.976]]

In [134]: pd.value_counts(factor)
\\\Out[134]:
→˓

(0.544, 1.976] 8
(-1.255, -0.375] 8
(-0.103, 0.544] 7
(-0.375, -0.103] 7
dtype: int64

We can also pass infinite values to define the bins:

In [135]: arr = np.random.randn(20)

In [136]: factor = pd.cut(arr, [-np.inf, 0, np.inf])

In [137]: factor
Out[137]:
[(0.0, inf], (0.0, inf], (0.0, inf], (0.0, inf], (-inf, 0.0], ..., (-inf, 0.0], (-inf,
→˓ 0.0], (0.0, inf], (-inf, 0.0], (0.0, inf]]
Length: 20
Categories (2, interval[float64]): [(-inf, 0.0] < (0.0, inf]]

9.6 Function application

To apply your own or another library’s functions to pandas objects, you should be aware of the three methods below.
The appropriate method to use depends on whether your function expects to operate on an entire DataFrame or
Series, row- or column-wise, or elementwise.

1. Tablewise Function Application: pipe()

2. Row or Column-wise Function Application: apply()

3. Aggregation API: agg() and transform()

4. Applying Elementwise Functions: applymap()

9.6.1 Tablewise Function Application

DataFrames and Series can of course just be passed into functions. However, if the function needs to be called
in a chain, consider using the pipe() method. Compare the following

f, g, and h are functions taking and returning ``DataFrames``
>>> f(g(h(df), arg1=1), arg2=2, arg3=3)

with the equivalent

>>> (df.pipe(h)
.pipe(g, arg1=1)
.pipe(f, arg2=2, arg3=3)

)

9.6. Function application 609

pandas: powerful Python data analysis toolkit, Release 0.23.4

Pandas encourages the second style, which is known as method chaining. pipe makes it easy to use your own or
another library’s functions in method chains, alongside pandas’ methods.

In the example above, the functions f, g, and h each expected the DataFrame as the first positional argument. What
if the function you wish to apply takes its data as, say, the second argument? In this case, provide pipe with a tuple
of (callable, data_keyword). .pipe will route the DataFrame to the argument specified in the tuple.

For example, we can fit a regression using statsmodels. Their API expects a formula first and a DataFrame as the
second argument, data. We pass in the function, keyword pair (sm.ols, 'data') to pipe:

In [138]: import statsmodels.formula.api as sm

In [139]: bb = pd.read_csv('data/baseball.csv', index_col='id')

In [140]: (bb.query('h > 0')
.....: .assign(ln_h = lambda df: np.log(df.h))
.....: .pipe((sm.ols, 'data'), 'hr ~ ln_h + year + g + C(lg)')
.....: .fit()
.....: .summary()
.....:)
.....:

Out[140]:
<class 'statsmodels.iolib.summary.Summary'>
"""

OLS Regression Results
==
Dep. Variable: hr R-squared: 0.685
Model: OLS Adj. R-squared: 0.665
Method: Least Squares F-statistic: 34.28
Date: Sun, 05 Aug 2018 Prob (F-statistic): 3.48e-15
Time: 11:57:36 Log-Likelihood: -205.92
No. Observations: 68 AIC: 421.8
Df Residuals: 63 BIC: 432.9
Df Model: 4
Covariance Type: nonrobust
===

coef std err t P>|t| [0.025 0.975]

Intercept -8484.7720 4664.146 -1.819 0.074 -1.78e+04 835.780
C(lg)[T.NL] -2.2736 1.325 -1.716 0.091 -4.922 0.375
ln_h -1.3542 0.875 -1.547 0.127 -3.103 0.395
year 4.2277 2.324 1.819 0.074 -0.417 8.872
g 0.1841 0.029 6.258 0.000 0.125 0.243
==
Omnibus: 10.875 Durbin-Watson: 1.999
Prob(Omnibus): 0.004 Jarque-Bera (JB): 17.298
Skew: 0.537 Prob(JB): 0.000175
Kurtosis: 5.225 Cond. No. 1.49e+07
==

Warnings:
[1] Standard Errors assume that the covariance matrix of the errors is correctly
→˓specified.
[2] The condition number is large, 1.49e+07. This might indicate that there are
strong multicollinearity or other numerical problems.
"""

The pipe method is inspired by unix pipes and more recently dplyr and magrittr, which have introduced the popular
(%>%) (read pipe) operator for R. The implementation of pipe here is quite clean and feels right at home in python.

610 Chapter 9. Essential Basic Functionality

https://github.com/hadley/dplyr
https://github.com/smbache/magrittr
http://www.r-project.org

pandas: powerful Python data analysis toolkit, Release 0.23.4

We encourage you to view the source code of pipe().

9.6.2 Row or Column-wise Function Application

Arbitrary functions can be applied along the axes of a DataFrame using the apply() method, which, like the de-
scriptive statistics methods, takes an optional axis argument:

In [141]: df.apply(np.mean)
Out[141]:
one -0.272211
two 0.667306
three 0.024661
dtype: float64

In [142]: df.apply(np.mean, axis=1)
\\Out[142]:
→˓

a 0.011457
b 0.558507
c 0.635781
d -0.839603
dtype: float64

In [143]: df.apply(lambda x: x.max() - x.min())
\\Out[143]:
→˓

one 1.563773
two 2.973170
three 3.154112
dtype: float64

In [144]: df.apply(np.cumsum)
\\Out[144]:
→˓

one two three
a -1.101558 1.124472 NaN
b -1.278848 3.611576 -0.634293
c -0.816633 3.125511 1.296901
d NaN 2.669223 0.073983

In [145]: df.apply(np.exp)
\\\Out[145]:
→˓

one two three
a 0.332353 3.078592 NaN
b 0.837537 12.026397 0.53031
c 1.587586 0.615041 6.89774
d NaN 0.633631 0.29437

The apply() method will also dispatch on a string method name.

In [146]: df.apply('mean')
Out[146]:
one -0.272211
two 0.667306
three 0.024661
dtype: float64

(continues on next page)

9.6. Function application 611

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

In [147]: df.apply('mean', axis=1)
\\Out[147]:
→˓

a 0.011457
b 0.558507
c 0.635781
d -0.839603
dtype: float64

The return type of the function passed to apply() affects the type of the final output from DataFrame.apply for
the default behaviour:

• If the applied function returns a Series, the final output is a DataFrame. The columns match the index of
the Series returned by the applied function.

• If the applied function returns any other type, the final output is a Series.

This default behaviour can be overridden using the result_type, which accepts three options: reduce,
broadcast, and expand. These will determine how list-likes return values expand (or not) to a DataFrame.

apply() combined with some cleverness can be used to answer many questions about a data set. For example,
suppose we wanted to extract the date where the maximum value for each column occurred:

In [148]: tsdf = pd.DataFrame(np.random.randn(1000, 3), columns=['A', 'B', 'C'],
.....: index=pd.date_range('1/1/2000', periods=1000))
.....:

In [149]: tsdf.apply(lambda x: x.idxmax())
Out[149]:
A 2001-04-25
B 2002-05-31
C 2002-09-25
dtype: datetime64[ns]

You may also pass additional arguments and keyword arguments to the apply() method. For instance, consider the
following function you would like to apply:

def subtract_and_divide(x, sub, divide=1):
return (x - sub) / divide

You may then apply this function as follows:

df.apply(subtract_and_divide, args=(5,), divide=3)

Another useful feature is the ability to pass Series methods to carry out some Series operation on each column or row:

In [150]: tsdf
Out[150]:

A B C
2000-01-01 -0.720299 0.546303 -0.082042
2000-01-02 0.200295 -0.577554 -0.908402
2000-01-03 0.102533 1.653614 0.303319
2000-01-04 NaN NaN NaN
2000-01-05 NaN NaN NaN
2000-01-06 NaN NaN NaN
2000-01-07 NaN NaN NaN

(continues on next page)

612 Chapter 9. Essential Basic Functionality

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

2000-01-08 0.532566 0.341548 0.150493
2000-01-09 0.330418 1.761200 0.567133
2000-01-10 -0.251020 1.020099 1.893177

In [151]: tsdf.apply(pd.Series.interpolate)
\\Out[151]:
→˓

A B C
2000-01-01 -0.720299 0.546303 -0.082042
2000-01-02 0.200295 -0.577554 -0.908402
2000-01-03 0.102533 1.653614 0.303319
2000-01-04 0.188539 1.391201 0.272754
2000-01-05 0.274546 1.128788 0.242189
2000-01-06 0.360553 0.866374 0.211624
2000-01-07 0.446559 0.603961 0.181059
2000-01-08 0.532566 0.341548 0.150493
2000-01-09 0.330418 1.761200 0.567133
2000-01-10 -0.251020 1.020099 1.893177

Finally, apply() takes an argument raw which is False by default, which converts each row or column into a Series
before applying the function. When set to True, the passed function will instead receive an ndarray object, which has
positive performance implications if you do not need the indexing functionality.

9.6.3 Aggregation API

New in version 0.20.0.

The aggregation API allows one to express possibly multiple aggregation operations in a single concise way. This API
is similar across pandas objects, see groupby API, the window functions API, and the resample API. The entry point
for aggregation is DataFrame.aggregate(), or the alias DataFrame.agg().

We will use a similar starting frame from above:

In [152]: tsdf = pd.DataFrame(np.random.randn(10, 3), columns=['A', 'B', 'C'],
.....: index=pd.date_range('1/1/2000', periods=10))
.....:

In [153]: tsdf.iloc[3:7] = np.nan

In [154]: tsdf
Out[154]:

A B C
2000-01-01 0.170247 -0.916844 0.835024
2000-01-02 1.259919 0.801111 0.445614
2000-01-03 1.453046 2.430373 0.653093
2000-01-04 NaN NaN NaN
2000-01-05 NaN NaN NaN
2000-01-06 NaN NaN NaN
2000-01-07 NaN NaN NaN
2000-01-08 -1.874526 0.569822 -0.609644
2000-01-09 0.812462 0.565894 -1.461363
2000-01-10 -0.985475 1.388154 -0.078747

Using a single function is equivalent to apply(). You can also pass named methods as strings. These will return a
Series of the aggregated output:

9.6. Function application 613

pandas: powerful Python data analysis toolkit, Release 0.23.4

In [155]: tsdf.agg(np.sum)
Out[155]:
A 0.835673
B 4.838510
C -0.216025
dtype: float64

In [156]: tsdf.agg('sum')
\\Out[156]:
A 0.835673
B 4.838510
C -0.216025
dtype: float64

these are equivalent to a ``.sum()`` because we are aggregating on a single function
In [157]: tsdf.sum()
\\Out[157]:
→˓

A 0.835673
B 4.838510
C -0.216025
dtype: float64

Single aggregations on a Series this will return a scalar value:

In [158]: tsdf.A.agg('sum')
Out[158]: 0.83567297915820504

9.6.3.1 Aggregating with multiple functions

You can pass multiple aggregation arguments as a list. The results of each of the passed functions will be a row in the
resulting DataFrame. These are naturally named from the aggregation function.

In [159]: tsdf.agg(['sum'])
Out[159]:

A B C
sum 0.835673 4.83851 -0.216025

Multiple functions yield multiple rows:

In [160]: tsdf.agg(['sum', 'mean'])
Out[160]:

A B C
sum 0.835673 4.838510 -0.216025
mean 0.139279 0.806418 -0.036004

On a Series, multiple functions return a Series, indexed by the function names:

In [161]: tsdf.A.agg(['sum', 'mean'])
Out[161]:
sum 0.835673
mean 0.139279
Name: A, dtype: float64

Passing a lambda function will yield a <lambda> named row:

614 Chapter 9. Essential Basic Functionality

pandas: powerful Python data analysis toolkit, Release 0.23.4

In [162]: tsdf.A.agg(['sum', lambda x: x.mean()])
Out[162]:
sum 0.835673
<lambda> 0.139279
Name: A, dtype: float64

Passing a named function will yield that name for the row:

In [163]: def mymean(x):
.....: return x.mean()
.....:

In [164]: tsdf.A.agg(['sum', mymean])
Out[164]:
sum 0.835673
mymean 0.139279
Name: A, dtype: float64

9.6.3.2 Aggregating with a dict

Passing a dictionary of column names to a scalar or a list of scalars, to DataFrame.agg allows you to customize
which functions are applied to which columns. Note that the results are not in any particular order, you can use an
OrderedDict instead to guarantee ordering.

In [165]: tsdf.agg({'A': 'mean', 'B': 'sum'})
Out[165]:
A 0.139279
B 4.838510
dtype: float64

Passing a list-like will generate a DataFrame output. You will get a matrix-like output of all of the aggregators. The
output will consist of all unique functions. Those that are not noted for a particular column will be NaN:

In [166]: tsdf.agg({'A': ['mean', 'min'], 'B': 'sum'})
Out[166]:

A B
mean 0.139279 NaN
min -1.874526 NaN
sum NaN 4.83851

9.6.3.3 Mixed Dtypes

When presented with mixed dtypes that cannot aggregate, .agg will only take the valid aggregations. This is similar
to how groupby .agg works.

In [167]: mdf = pd.DataFrame({'A': [1, 2, 3],
.....: 'B': [1., 2., 3.],
.....: 'C': ['foo', 'bar', 'baz'],
.....: 'D': pd.date_range('20130101', periods=3)})
.....:

In [168]: mdf.dtypes
Out[168]:
A int64

(continues on next page)

9.6. Function application 615

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

B float64
C object
D datetime64[ns]
dtype: object

In [169]: mdf.agg(['min', 'sum'])
Out[169]:

A B C D
min 1 1.0 bar 2013-01-01
sum 6 6.0 foobarbaz NaT

9.6.3.4 Custom describe

With .agg() is it possible to easily create a custom describe function, similar to the built in describe function.

In [170]: from functools import partial

In [171]: q_25 = partial(pd.Series.quantile, q=0.25)

In [172]: q_25.__name__ = '25%'

In [173]: q_75 = partial(pd.Series.quantile, q=0.75)

In [174]: q_75.__name__ = '75%'

In [175]: tsdf.agg(['count', 'mean', 'std', 'min', q_25, 'median', q_75, 'max'])
Out[175]:

A B C
count 6.000000 6.000000 6.000000
mean 0.139279 0.806418 -0.036004
std 1.323362 1.100830 0.874990
min -1.874526 -0.916844 -1.461363
25% -0.696544 0.566876 -0.476920
median 0.491354 0.685467 0.183433
75% 1.148055 1.241393 0.601223
max 1.453046 2.430373 0.835024

9.6.4 Transform API

New in version 0.20.0.

The transform() method returns an object that is indexed the same (same size) as the original. This API allows
you to provide multiple operations at the same time rather than one-by-one. Its API is quite similar to the .agg API.

We create a frame similar to the one used in the above sections.

In [176]: tsdf = pd.DataFrame(np.random.randn(10, 3), columns=['A', 'B', 'C'],
.....: index=pd.date_range('1/1/2000', periods=10))
.....:

In [177]: tsdf.iloc[3:7] = np.nan

In [178]: tsdf
Out[178]:

(continues on next page)

616 Chapter 9. Essential Basic Functionality

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

A B C
2000-01-01 -0.578465 -0.503335 -0.987140
2000-01-02 -0.767147 -0.266046 1.083797
2000-01-03 0.195348 0.722247 -0.894537
2000-01-04 NaN NaN NaN
2000-01-05 NaN NaN NaN
2000-01-06 NaN NaN NaN
2000-01-07 NaN NaN NaN
2000-01-08 -0.556397 0.542165 -0.308675
2000-01-09 -1.010924 -0.672504 -1.139222
2000-01-10 0.354653 0.563622 -0.365106

Transform the entire frame. .transform() allows input functions as: a NumPy function, a string function name or
a user defined function.

In [179]: tsdf.transform(np.abs)
Out[179]:

A B C
2000-01-01 0.578465 0.503335 0.987140
2000-01-02 0.767147 0.266046 1.083797
2000-01-03 0.195348 0.722247 0.894537
2000-01-04 NaN NaN NaN
2000-01-05 NaN NaN NaN
2000-01-06 NaN NaN NaN
2000-01-07 NaN NaN NaN
2000-01-08 0.556397 0.542165 0.308675
2000-01-09 1.010924 0.672504 1.139222
2000-01-10 0.354653 0.563622 0.365106

In [180]: tsdf.transform('abs')
\\Out[180]:
→˓

A B C
2000-01-01 0.578465 0.503335 0.987140
2000-01-02 0.767147 0.266046 1.083797
2000-01-03 0.195348 0.722247 0.894537
2000-01-04 NaN NaN NaN
2000-01-05 NaN NaN NaN
2000-01-06 NaN NaN NaN
2000-01-07 NaN NaN NaN
2000-01-08 0.556397 0.542165 0.308675
2000-01-09 1.010924 0.672504 1.139222
2000-01-10 0.354653 0.563622 0.365106

In [181]: tsdf.transform(lambda x: x.abs())
\\Out[181]:
→˓

A B C
2000-01-01 0.578465 0.503335 0.987140
2000-01-02 0.767147 0.266046 1.083797
2000-01-03 0.195348 0.722247 0.894537
2000-01-04 NaN NaN NaN
2000-01-05 NaN NaN NaN
2000-01-06 NaN NaN NaN
2000-01-07 NaN NaN NaN
2000-01-08 0.556397 0.542165 0.308675

(continues on next page)

9.6. Function application 617

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

2000-01-09 1.010924 0.672504 1.139222
2000-01-10 0.354653 0.563622 0.365106

Here transform() received a single function; this is equivalent to a ufunc application.

In [182]: np.abs(tsdf)
Out[182]:

A B C
2000-01-01 0.578465 0.503335 0.987140
2000-01-02 0.767147 0.266046 1.083797
2000-01-03 0.195348 0.722247 0.894537
2000-01-04 NaN NaN NaN
2000-01-05 NaN NaN NaN
2000-01-06 NaN NaN NaN
2000-01-07 NaN NaN NaN
2000-01-08 0.556397 0.542165 0.308675
2000-01-09 1.010924 0.672504 1.139222
2000-01-10 0.354653 0.563622 0.365106

Passing a single function to .transform() with a Series will yield a single Series in return.

In [183]: tsdf.A.transform(np.abs)
Out[183]:
2000-01-01 0.578465
2000-01-02 0.767147
2000-01-03 0.195348
2000-01-04 NaN
2000-01-05 NaN
2000-01-06 NaN
2000-01-07 NaN
2000-01-08 0.556397
2000-01-09 1.010924
2000-01-10 0.354653
Freq: D, Name: A, dtype: float64

9.6.4.1 Transform with multiple functions

Passing multiple functions will yield a column multi-indexed DataFrame. The first level will be the original frame
column names; the second level will be the names of the transforming functions.

In [184]: tsdf.transform([np.abs, lambda x: x+1])
Out[184]:

A B C
absolute <lambda> absolute <lambda> absolute <lambda>

2000-01-01 0.578465 0.421535 0.503335 0.496665 0.987140 0.012860
2000-01-02 0.767147 0.232853 0.266046 0.733954 1.083797 2.083797
2000-01-03 0.195348 1.195348 0.722247 1.722247 0.894537 0.105463
2000-01-04 NaN NaN NaN NaN NaN NaN
2000-01-05 NaN NaN NaN NaN NaN NaN
2000-01-06 NaN NaN NaN NaN NaN NaN
2000-01-07 NaN NaN NaN NaN NaN NaN
2000-01-08 0.556397 0.443603 0.542165 1.542165 0.308675 0.691325
2000-01-09 1.010924 -0.010924 0.672504 0.327496 1.139222 -0.139222
2000-01-10 0.354653 1.354653 0.563622 1.563622 0.365106 0.634894

618 Chapter 9. Essential Basic Functionality

pandas: powerful Python data analysis toolkit, Release 0.23.4

Passing multiple functions to a Series will yield a DataFrame. The resulting column names will be the transforming
functions.

In [185]: tsdf.A.transform([np.abs, lambda x: x+1])
Out[185]:

absolute <lambda>
2000-01-01 0.578465 0.421535
2000-01-02 0.767147 0.232853
2000-01-03 0.195348 1.195348
2000-01-04 NaN NaN
2000-01-05 NaN NaN
2000-01-06 NaN NaN
2000-01-07 NaN NaN
2000-01-08 0.556397 0.443603
2000-01-09 1.010924 -0.010924
2000-01-10 0.354653 1.354653

9.6.4.2 Transforming with a dict

Passing a dict of functions will allow selective transforming per column.

In [186]: tsdf.transform({'A': np.abs, 'B': lambda x: x+1})
Out[186]:

A B
2000-01-01 0.578465 0.496665
2000-01-02 0.767147 0.733954
2000-01-03 0.195348 1.722247
2000-01-04 NaN NaN
2000-01-05 NaN NaN
2000-01-06 NaN NaN
2000-01-07 NaN NaN
2000-01-08 0.556397 1.542165
2000-01-09 1.010924 0.327496
2000-01-10 0.354653 1.563622

Passing a dict of lists will generate a multi-indexed DataFrame with these selective transforms.

In [187]: tsdf.transform({'A': np.abs, 'B': [lambda x: x+1, 'sqrt']})
Out[187]:

A B
absolute <lambda> sqrt

2000-01-01 0.578465 0.496665 NaN
2000-01-02 0.767147 0.733954 NaN
2000-01-03 0.195348 1.722247 0.849851
2000-01-04 NaN NaN NaN
2000-01-05 NaN NaN NaN
2000-01-06 NaN NaN NaN
2000-01-07 NaN NaN NaN
2000-01-08 0.556397 1.542165 0.736318
2000-01-09 1.010924 0.327496 NaN
2000-01-10 0.354653 1.563622 0.750748

9.6.5 Applying Elementwise Functions

Since not all functions can be vectorized (accept NumPy arrays and return another array or value), the methods
applymap() on DataFrame and analogously map() on Series accept any Python function taking a single value and

9.6. Function application 619

pandas: powerful Python data analysis toolkit, Release 0.23.4

returning a single value. For example:

In [188]: df4
Out[188]:

one two three
a -1.101558 1.124472 NaN
b -0.177289 2.487104 -0.634293
c 0.462215 -0.486066 1.931194
d NaN -0.456288 -1.222918

In [189]: f = lambda x: len(str(x))

In [190]: df4['one'].map(f)
Out[190]:
a 19
b 20
c 18
d 3
Name: one, dtype: int64

In [191]: df4.applymap(f)
\\\Out[191]:

one two three
a 19 18 3
b 20 18 19
c 18 20 18
d 3 19 19

Series.map() has an additional feature; it can be used to easily “link” or “map” values defined by a secondary
series. This is closely related to merging/joining functionality:

In [192]: s = pd.Series(['six', 'seven', 'six', 'seven', 'six'],
.....: index=['a', 'b', 'c', 'd', 'e'])
.....:

In [193]: t = pd.Series({'six' : 6., 'seven' : 7.})

In [194]: s
Out[194]:
a six
b seven
c six
d seven
e six
dtype: object

In [195]: s.map(t)
\\Out[195]:
→˓

a 6.0
b 7.0
c 6.0
d 7.0
e 6.0
dtype: float64

620 Chapter 9. Essential Basic Functionality

pandas: powerful Python data analysis toolkit, Release 0.23.4

9.6.6 Applying with a Panel

Applying with a Panel will pass a Series to the applied function. If the applied function returns a Series, the
result of the application will be a Panel. If the applied function reduces to a scalar, the result of the application will
be a DataFrame.

In [196]: import pandas.util.testing as tm

In [197]: panel = tm.makePanel(5)

In [198]: panel
Out[198]:
<class 'pandas.core.panel.Panel'>
Dimensions: 3 (items) x 5 (major_axis) x 4 (minor_axis)
Items axis: ItemA to ItemC
Major_axis axis: 2000-01-03 00:00:00 to 2000-01-07 00:00:00
Minor_axis axis: A to D

In [199]: panel['ItemA']
\\Out[199]:
→˓

A B C D
2000-01-03 1.092702 0.604244 -2.927808 0.339642
2000-01-04 -1.481449 -0.487265 0.082065 1.499953
2000-01-05 1.781190 1.990533 0.456554 -0.317818
2000-01-06 -0.031543 0.327007 -1.757911 0.447371
2000-01-07 0.480993 1.053639 0.982407 -1.315799

A transformational apply.

In [200]: result = panel.apply(lambda x: x*2, axis='items')

In [201]: result
Out[201]:
<class 'pandas.core.panel.Panel'>
Dimensions: 3 (items) x 5 (major_axis) x 4 (minor_axis)
Items axis: ItemA to ItemC
Major_axis axis: 2000-01-03 00:00:00 to 2000-01-07 00:00:00
Minor_axis axis: A to D

In [202]: result['ItemA']
\\Out[202]:
→˓

A B C D
2000-01-03 2.185405 1.208489 -5.855616 0.679285
2000-01-04 -2.962899 -0.974530 0.164130 2.999905
2000-01-05 3.562379 3.981066 0.913107 -0.635635
2000-01-06 -0.063086 0.654013 -3.515821 0.894742
2000-01-07 0.961986 2.107278 1.964815 -2.631598

A reduction operation.

In [203]: panel.apply(lambda x: x.dtype, axis='items')
Out[203]:

A B C D
2000-01-03 float64 float64 float64 float64
2000-01-04 float64 float64 float64 float64
2000-01-05 float64 float64 float64 float64

(continues on next page)

9.6. Function application 621

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

2000-01-06 float64 float64 float64 float64
2000-01-07 float64 float64 float64 float64

A similar reduction type operation.

In [204]: panel.apply(lambda x: x.sum(), axis='major_axis')
Out[204]:

ItemA ItemB ItemC
A 1.841893 0.918017 -1.160547
B 3.488158 -2.629773 0.603397
C -3.164692 0.805970 0.806501
D 0.653349 -0.152299 0.252577

This last reduction is equivalent to:

In [205]: panel.sum('major_axis')
Out[205]:

ItemA ItemB ItemC
A 1.841893 0.918017 -1.160547
B 3.488158 -2.629773 0.603397
C -3.164692 0.805970 0.806501
D 0.653349 -0.152299 0.252577

A transformation operation that returns a Panel, but is computing the z-score across the major_axis.

In [206]: result = panel.apply(
.....: lambda x: (x-x.mean())/x.std(),
.....: axis='major_axis')
.....:

In [207]: result
Out[207]:
<class 'pandas.core.panel.Panel'>
Dimensions: 3 (items) x 5 (major_axis) x 4 (minor_axis)
Items axis: ItemA to ItemC
Major_axis axis: 2000-01-03 00:00:00 to 2000-01-07 00:00:00
Minor_axis axis: A to D

In [208]: result['ItemA']
\\Out[208]:
→˓

A B C D
2000-01-03 0.585813 -0.102070 -1.394063 0.201263
2000-01-04 -1.496089 -1.295066 0.434343 1.318766
2000-01-05 1.142642 1.413112 0.661833 -0.431942
2000-01-06 -0.323445 -0.405085 -0.683386 0.305017
2000-01-07 0.091079 0.389108 0.981273 -1.393105

Apply can also accept multiple axes in the axis argument. This will pass a DataFrame of the cross-section to the
applied function.

In [209]: f = lambda x: ((x.T-x.mean(1))/x.std(1)).T

In [210]: result = panel.apply(f, axis = ['items','major_axis'])

In [211]: result

(continues on next page)

622 Chapter 9. Essential Basic Functionality

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

Out[211]:
<class 'pandas.core.panel.Panel'>
Dimensions: 4 (items) x 5 (major_axis) x 3 (minor_axis)
Items axis: A to D
Major_axis axis: 2000-01-03 00:00:00 to 2000-01-07 00:00:00
Minor_axis axis: ItemA to ItemC

In [212]: result.loc[:,:,'ItemA']
\\Out[212]:
→˓

A B C D
2000-01-03 0.859304 0.448509 -1.109374 0.397237
2000-01-04 -1.053319 -1.063370 0.986639 1.152266
2000-01-05 1.106511 1.143185 -0.093917 -0.583083
2000-01-06 0.561619 -0.835608 -1.075936 0.194525
2000-01-07 -0.339514 1.097901 0.747522 -1.147605

This is equivalent to the following:

In [213]: result = pd.Panel(dict([(ax, f(panel.loc[:,:,ax]))
.....: for ax in panel.minor_axis]))
.....:

In [214]: result
Out[214]:
<class 'pandas.core.panel.Panel'>
Dimensions: 4 (items) x 5 (major_axis) x 3 (minor_axis)
Items axis: A to D
Major_axis axis: 2000-01-03 00:00:00 to 2000-01-07 00:00:00
Minor_axis axis: ItemA to ItemC

In [215]: result.loc[:,:,'ItemA']
\\Out[215]:
→˓

A B C D
2000-01-03 0.859304 0.448509 -1.109374 0.397237
2000-01-04 -1.053319 -1.063370 0.986639 1.152266
2000-01-05 1.106511 1.143185 -0.093917 -0.583083
2000-01-06 0.561619 -0.835608 -1.075936 0.194525
2000-01-07 -0.339514 1.097901 0.747522 -1.147605

9.7 Reindexing and altering labels

reindex() is the fundamental data alignment method in pandas. It is used to implement nearly all other features
relying on label-alignment functionality. To reindex means to conform the data to match a given set of labels along a
particular axis. This accomplishes several things:

• Reorders the existing data to match a new set of labels

• Inserts missing value (NA) markers in label locations where no data for that label existed

• If specified, fill data for missing labels using logic (highly relevant to working with time series data)

Here is a simple example:

9.7. Reindexing and altering labels 623

pandas: powerful Python data analysis toolkit, Release 0.23.4

In [216]: s = pd.Series(np.random.randn(5), index=['a', 'b', 'c', 'd', 'e'])

In [217]: s
Out[217]:
a -0.454087
b -0.360309
c -0.951631
d -0.535459
e 0.835231
dtype: float64

In [218]: s.reindex(['e', 'b', 'f', 'd'])
\\Out[218]:
→˓

e 0.835231
b -0.360309
f NaN
d -0.535459
dtype: float64

Here, the f label was not contained in the Series and hence appears as NaN in the result.

With a DataFrame, you can simultaneously reindex the index and columns:

In [219]: df
Out[219]:

one two three
a -1.101558 1.124472 NaN
b -0.177289 2.487104 -0.634293
c 0.462215 -0.486066 1.931194
d NaN -0.456288 -1.222918

In [220]: df.reindex(index=['c', 'f', 'b'], columns=['three', 'two', 'one'])
\\\Out[220]:
→˓

three two one
c 1.931194 -0.486066 0.462215
f NaN NaN NaN
b -0.634293 2.487104 -0.177289

You may also use reindex with an axis keyword:

In [221]: df.reindex(['c', 'f', 'b'], axis='index')
Out[221]:

one two three
c 0.462215 -0.486066 1.931194
f NaN NaN NaN
b -0.177289 2.487104 -0.634293

Note that the Index objects containing the actual axis labels can be shared between objects. So if we have a Series
and a DataFrame, the following can be done:

In [222]: rs = s.reindex(df.index)

In [223]: rs
Out[223]:
a -0.454087
b -0.360309

(continues on next page)

624 Chapter 9. Essential Basic Functionality

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

c -0.951631
d -0.535459
dtype: float64

In [224]: rs.index is df.index
\\Out[224]:
→˓True

This means that the reindexed Series’s index is the same Python object as the DataFrame’s index.

New in version 0.21.0.

DataFrame.reindex() also supports an “axis-style” calling convention, where you specify a single labels
argument and the axis it applies to.

In [225]: df.reindex(['c', 'f', 'b'], axis='index')
Out[225]:

one two three
c 0.462215 -0.486066 1.931194
f NaN NaN NaN
b -0.177289 2.487104 -0.634293

In [226]: df.reindex(['three', 'two', 'one'], axis='columns')
\\\Out[226]:
→˓

three two one
a NaN 1.124472 -1.101558
b -0.634293 2.487104 -0.177289
c 1.931194 -0.486066 0.462215
d -1.222918 -0.456288 NaN

See also:

MultiIndex / Advanced Indexing is an even more concise way of doing reindexing.

Note: When writing performance-sensitive code, there is a good reason to spend some time becoming a reindexing
ninja: many operations are faster on pre-aligned data. Adding two unaligned DataFrames internally triggers a
reindexing step. For exploratory analysis you will hardly notice the difference (because reindex has been heavily
optimized), but when CPU cycles matter sprinkling a few explicit reindex calls here and there can have an impact.

9.7.1 Reindexing to align with another object

You may wish to take an object and reindex its axes to be labeled the same as another object. While the syntax for this
is straightforward albeit verbose, it is a common enough operation that the reindex_like() method is available
to make this simpler:

In [227]: df2
Out[227]:

one two
a -1.101558 1.124472
b -0.177289 2.487104
c 0.462215 -0.486066

In [228]: df3

(continues on next page)

9.7. Reindexing and altering labels 625

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

\\\Out[228]:
→˓

one two
a -0.829347 0.082635
b 0.094922 1.445267
c 0.734426 -1.527903

In [229]: df.reindex_like(df2)
\\Out[229]:
→˓

one two
a -1.101558 1.124472
b -0.177289 2.487104
c 0.462215 -0.486066

9.7.2 Aligning objects with each other with align

The align() method is the fastest way to simultaneously align two objects. It supports a join argument (related to
joining and merging):

• join='outer': take the union of the indexes (default)

• join='left': use the calling object’s index

• join='right': use the passed object’s index

• join='inner': intersect the indexes

It returns a tuple with both of the reindexed Series:

In [230]: s = pd.Series(np.random.randn(5), index=['a', 'b', 'c', 'd', 'e'])

In [231]: s1 = s[:4]

In [232]: s2 = s[1:]

In [233]: s1.align(s2)
Out[233]:
(a 0.505453
b 1.788110
c -0.405908
d -0.801912
e NaN
dtype: float64, a NaN
b 1.788110
c -0.405908
d -0.801912
e 0.768460
dtype: float64)

In [234]: s1.align(s2, join='inner')
\\Out[234]:
→˓

(b 1.788110
c -0.405908
d -0.801912
dtype: float64, b 1.788110

(continues on next page)

626 Chapter 9. Essential Basic Functionality

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

c -0.405908
d -0.801912
dtype: float64)

In [235]: s1.align(s2, join='left')
\\Out[235]:
→˓

(a 0.505453
b 1.788110
c -0.405908
d -0.801912
dtype: float64, a NaN
b 1.788110
c -0.405908
d -0.801912
dtype: float64)

For DataFrames, the join method will be applied to both the index and the columns by default:

In [236]: df.align(df2, join='inner')
Out[236]:
(one two
a -1.101558 1.124472
b -0.177289 2.487104
c 0.462215 -0.486066, one two
a -1.101558 1.124472
b -0.177289 2.487104
c 0.462215 -0.486066)

You can also pass an axis option to only align on the specified axis:

In [237]: df.align(df2, join='inner', axis=0)
Out[237]:
(one two three
a -1.101558 1.124472 NaN
b -0.177289 2.487104 -0.634293
c 0.462215 -0.486066 1.931194, one two
a -1.101558 1.124472
b -0.177289 2.487104
c 0.462215 -0.486066)

If you pass a Series to DataFrame.align(), you can choose to align both objects either on the DataFrame’s index
or columns using the axis argument:

In [238]: df.align(df2.iloc[0], axis=1)
Out[238]:
(one three two
a -1.101558 NaN 1.124472
b -0.177289 -0.634293 2.487104
c 0.462215 1.931194 -0.486066
d NaN -1.222918 -0.456288, one -1.101558
three NaN
two 1.124472
Name: a, dtype: float64)

9.7. Reindexing and altering labels 627

pandas: powerful Python data analysis toolkit, Release 0.23.4

9.7.3 Filling while reindexing

reindex() takes an optional parameter method which is a filling method chosen from the following table:

Method Action
pad / ffill Fill values forward
bfill / backfill Fill values backward
nearest Fill from the nearest index value

We illustrate these fill methods on a simple Series:

In [239]: rng = pd.date_range('1/3/2000', periods=8)

In [240]: ts = pd.Series(np.random.randn(8), index=rng)

In [241]: ts2 = ts[[0, 3, 6]]

In [242]: ts
Out[242]:
2000-01-03 0.466284
2000-01-04 -0.457411
2000-01-05 -0.364060
2000-01-06 0.785367
2000-01-07 -1.463093
2000-01-08 1.187315
2000-01-09 -0.493153
2000-01-10 -1.323445
Freq: D, dtype: float64

In [243]: ts2
\\\Out[243]:
→˓

2000-01-03 0.466284
2000-01-06 0.785367
2000-01-09 -0.493153
dtype: float64

In [244]: ts2.reindex(ts.index)
\\Out[244]:
→˓

2000-01-03 0.466284
2000-01-04 NaN
2000-01-05 NaN
2000-01-06 0.785367
2000-01-07 NaN
2000-01-08 NaN
2000-01-09 -0.493153
2000-01-10 NaN
Freq: D, dtype: float64

In [245]: ts2.reindex(ts.index, method='ffill')
\\\Out[245]:
→˓

2000-01-03 0.466284
2000-01-04 0.466284
2000-01-05 0.466284
2000-01-06 0.785367

(continues on next page)

628 Chapter 9. Essential Basic Functionality

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

2000-01-07 0.785367
2000-01-08 0.785367
2000-01-09 -0.493153
2000-01-10 -0.493153
Freq: D, dtype: float64

In [246]: ts2.reindex(ts.index, method='bfill')
\\Out[246]:
→˓

2000-01-03 0.466284
2000-01-04 0.785367
2000-01-05 0.785367
2000-01-06 0.785367
2000-01-07 -0.493153
2000-01-08 -0.493153
2000-01-09 -0.493153
2000-01-10 NaN
Freq: D, dtype: float64

In [247]: ts2.reindex(ts.index, method='nearest')
\\\Out[247]:
→˓

2000-01-03 0.466284
2000-01-04 0.466284
2000-01-05 0.785367
2000-01-06 0.785367
2000-01-07 0.785367
2000-01-08 -0.493153
2000-01-09 -0.493153
2000-01-10 -0.493153
Freq: D, dtype: float64

These methods require that the indexes are ordered increasing or decreasing.

Note that the same result could have been achieved using fillna (except for method='nearest') or interpolate:

In [248]: ts2.reindex(ts.index).fillna(method='ffill')
Out[248]:
2000-01-03 0.466284
2000-01-04 0.466284
2000-01-05 0.466284
2000-01-06 0.785367
2000-01-07 0.785367
2000-01-08 0.785367
2000-01-09 -0.493153
2000-01-10 -0.493153
Freq: D, dtype: float64

reindex() will raise a ValueError if the index is not monotonically increasing or decreasing. fillna() and
interpolate() will not perform any checks on the order of the index.

9.7.4 Limits on filling while reindexing

The limit and tolerance arguments provide additional control over filling while reindexing. Limit specifies the
maximum count of consecutive matches:

9.7. Reindexing and altering labels 629

pandas: powerful Python data analysis toolkit, Release 0.23.4

In [249]: ts2.reindex(ts.index, method='ffill', limit=1)
Out[249]:
2000-01-03 0.466284
2000-01-04 0.466284
2000-01-05 NaN
2000-01-06 0.785367
2000-01-07 0.785367
2000-01-08 NaN
2000-01-09 -0.493153
2000-01-10 -0.493153
Freq: D, dtype: float64

In contrast, tolerance specifies the maximum distance between the index and indexer values:

In [250]: ts2.reindex(ts.index, method='ffill', tolerance='1 day')
Out[250]:
2000-01-03 0.466284
2000-01-04 0.466284
2000-01-05 NaN
2000-01-06 0.785367
2000-01-07 0.785367
2000-01-08 NaN
2000-01-09 -0.493153
2000-01-10 -0.493153
Freq: D, dtype: float64

Notice that when used on a DatetimeIndex, TimedeltaIndex or PeriodIndex, tolerance will coerced
into a Timedelta if possible. This allows you to specify tolerance with appropriate strings.

9.7.5 Dropping labels from an axis

A method closely related to reindex is the drop() function. It removes a set of labels from an axis:

In [251]: df
Out[251]:

one two three
a -1.101558 1.124472 NaN
b -0.177289 2.487104 -0.634293
c 0.462215 -0.486066 1.931194
d NaN -0.456288 -1.222918

In [252]: df.drop(['a', 'd'], axis=0)
\\\Out[252]:
→˓

one two three
b -0.177289 2.487104 -0.634293
c 0.462215 -0.486066 1.931194

In [253]: df.drop(['one'], axis=1)
\\Out[253]:
→˓

two three
a 1.124472 NaN
b 2.487104 -0.634293
c -0.486066 1.931194
d -0.456288 -1.222918

630 Chapter 9. Essential Basic Functionality

pandas: powerful Python data analysis toolkit, Release 0.23.4

Note that the following also works, but is a bit less obvious / clean:

In [254]: df.reindex(df.index.difference(['a', 'd']))
Out[254]:

one two three
b -0.177289 2.487104 -0.634293
c 0.462215 -0.486066 1.931194

9.7.6 Renaming / mapping labels

The rename()method allows you to relabel an axis based on some mapping (a dict or Series) or an arbitrary function.

In [255]: s
Out[255]:
a 0.505453
b 1.788110
c -0.405908
d -0.801912
e 0.768460
dtype: float64

In [256]: s.rename(str.upper)
\\Out[256]:
→˓

A 0.505453
B 1.788110
C -0.405908
D -0.801912
E 0.768460
dtype: float64

If you pass a function, it must return a value when called with any of the labels (and must produce a set of unique
values). A dict or Series can also be used:

In [257]: df.rename(columns={'one': 'foo', 'two': 'bar'},
.....: index={'a': 'apple', 'b': 'banana', 'd': 'durian'})
.....:

Out[257]:
foo bar three

apple -1.101558 1.124472 NaN
banana -0.177289 2.487104 -0.634293
c 0.462215 -0.486066 1.931194
durian NaN -0.456288 -1.222918

If the mapping doesn’t include a column/index label, it isn’t renamed. Note that extra labels in the mapping don’t
throw an error.

New in version 0.21.0.

DataFrame.rename() also supports an “axis-style” calling convention, where you specify a single mapper and
the axis to apply that mapping to.

In [258]: df.rename({'one': 'foo', 'two': 'bar'}, axis='columns')
Out[258]:

foo bar three
a -1.101558 1.124472 NaN
b -0.177289 2.487104 -0.634293

(continues on next page)

9.7. Reindexing and altering labels 631

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

c 0.462215 -0.486066 1.931194
d NaN -0.456288 -1.222918

In [259]: df.rename({'a': 'apple', 'b': 'banana', 'd': 'durian'}, axis='index')
\\\Out[259]:
→˓

one two three
apple -1.101558 1.124472 NaN
banana -0.177289 2.487104 -0.634293
c 0.462215 -0.486066 1.931194
durian NaN -0.456288 -1.222918

The rename() method also provides an inplace named parameter that is by default False and copies the under-
lying data. Pass inplace=True to rename the data in place.

New in version 0.18.0.

Finally, rename() also accepts a scalar or list-like for altering the Series.name attribute.

In [260]: s.rename("scalar-name")
Out[260]:
a 0.505453
b 1.788110
c -0.405908
d -0.801912
e 0.768460
Name: scalar-name, dtype: float64

The Panel class has a related rename_axis() class which can rename any of its three axes.

9.8 Iteration

The behavior of basic iteration over pandas objects depends on the type. When iterating over a Series, it is regarded
as array-like, and basic iteration produces the values. Other data structures, like DataFrame and Panel, follow the
dict-like convention of iterating over the “keys” of the objects.

In short, basic iteration (for i in object) produces:

• Series: values

• DataFrame: column labels

• Panel: item labels

Thus, for example, iterating over a DataFrame gives you the column names:

In [261]: df = pd.DataFrame({'col1' : np.random.randn(3), 'col2' : np.random.randn(3)}
→˓,

.....: index=['a', 'b', 'c'])

.....:

In [262]: for col in df:
.....: print(col)
.....:

col1
col2

632 Chapter 9. Essential Basic Functionality

pandas: powerful Python data analysis toolkit, Release 0.23.4

Pandas objects also have the dict-like iteritems() method to iterate over the (key, value) pairs.

To iterate over the rows of a DataFrame, you can use the following methods:

• iterrows(): Iterate over the rows of a DataFrame as (index, Series) pairs. This converts the rows to Series
objects, which can change the dtypes and has some performance implications.

• itertuples(): Iterate over the rows of a DataFrame as namedtuples of the values. This is a lot faster than
iterrows(), and is in most cases preferable to use to iterate over the values of a DataFrame.

Warning: Iterating through pandas objects is generally slow. In many cases, iterating manually over the rows is
not needed and can be avoided with one of the following approaches:

• Look for a vectorized solution: many operations can be performed using built-in methods or NumPy func-
tions, (boolean) indexing, . . .

• When you have a function that cannot work on the full DataFrame/Series at once, it is better to use apply()
instead of iterating over the values. See the docs on function application.

• If you need to do iterative manipulations on the values but performance is important, consider writing the in-
ner loop with cython or numba. See the enhancing performance section for some examples of this approach.

Warning: You should never modify something you are iterating over. This is not guaranteed to work in all cases.
Depending on the data types, the iterator returns a copy and not a view, and writing to it will have no effect!

For example, in the following case setting the value has no effect:

In [263]: df = pd.DataFrame({'a': [1, 2, 3], 'b': ['a', 'b', 'c']})

In [264]: for index, row in df.iterrows():
.....: row['a'] = 10
.....:

In [265]: df
Out[265]:

a b
0 1 a
1 2 b
2 3 c

9.8.1 iteritems

Consistent with the dict-like interface, iteritems() iterates through key-value pairs:

• Series: (index, scalar value) pairs

• DataFrame: (column, Series) pairs

• Panel: (item, DataFrame) pairs

For example:

In [266]: for item, frame in wp.iteritems():
.....: print(item)
.....: print(frame)
.....:

(continues on next page)

9.8. Iteration 633

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

Item1
A B C D

2000-01-01 -0.433567 -0.273610 0.680433 -0.308450
2000-01-02 -0.276099 -1.821168 -1.993606 -1.927385
2000-01-03 -2.027924 1.624972 0.551135 3.059267
2000-01-04 0.455264 -0.030740 0.935716 1.061192
2000-01-05 -2.107852 0.199905 0.323586 -0.641630
Item2

A B C D
2000-01-01 -0.587514 0.053897 0.194889 -0.381994
2000-01-02 0.318587 2.089075 -0.728293 -0.090255
2000-01-03 -0.748199 1.318931 -2.029766 0.792652
2000-01-04 0.461007 -0.542749 -0.305384 -0.479195
2000-01-05 0.095031 -0.270099 -0.707140 -0.773882

9.8.2 iterrows

iterrows() allows you to iterate through the rows of a DataFrame as Series objects. It returns an iterator yielding
each index value along with a Series containing the data in each row:

In [267]: for row_index, row in df.iterrows():
.....: print('%s\n%s' % (row_index, row))
.....:

0
a 1
b a
Name: 0, dtype: object
1
a 2
b b
Name: 1, dtype: object
2
a 3
b c
Name: 2, dtype: object

Note: Because iterrows() returns a Series for each row, it does not preserve dtypes across the rows (dtypes are
preserved across columns for DataFrames). For example,

In [268]: df_orig = pd.DataFrame([[1, 1.5]], columns=['int', 'float'])

In [269]: df_orig.dtypes
Out[269]:
int int64
float float64
dtype: object

In [270]: row = next(df_orig.iterrows())[1]

In [271]: row
Out[271]:
int 1.0
float 1.5
Name: 0, dtype: float64

634 Chapter 9. Essential Basic Functionality

pandas: powerful Python data analysis toolkit, Release 0.23.4

All values in row, returned as a Series, are now upcasted to floats, also the original integer value in column x:

In [272]: row['int'].dtype
Out[272]: dtype('float64')

In [273]: df_orig['int'].dtype
\\\\\\\\\\\\\\\\\\\\\\\\\\\Out[273]: dtype('int64')

To preserve dtypes while iterating over the rows, it is better to use itertuples() which returns namedtuples of the
values and which is generally much faster than iterrows().

For instance, a contrived way to transpose the DataFrame would be:

In [274]: df2 = pd.DataFrame({'x': [1, 2, 3], 'y': [4, 5, 6]})

In [275]: print(df2)
x y

0 1 4
1 2 5
2 3 6

In [276]: print(df2.T)
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ 0 1 2
x 1 2 3
y 4 5 6

In [277]: df2_t = pd.DataFrame(dict((idx,values) for idx, values in df2.iterrows()))

In [278]: print(df2_t)
0 1 2

x 1 2 3
y 4 5 6

9.8.3 itertuples

The itertuples() method will return an iterator yielding a namedtuple for each row in the DataFrame. The first
element of the tuple will be the row’s corresponding index value, while the remaining values are the row values.

For instance:

In [279]: for row in df.itertuples():
.....: print(row)
.....:

Pandas(Index=0, a=1, b='a')
Pandas(Index=1, a=2, b='b')
Pandas(Index=2, a=3, b='c')

This method does not convert the row to a Series object; it merely returns the values inside a namedtuple. Therefore,
itertuples() preserves the data type of the values and is generally faster as iterrows().

Note: The column names will be renamed to positional names if they are invalid Python identifiers, repeated, or start
with an underscore. With a large number of columns (>255), regular tuples are returned.

9.8. Iteration 635

pandas: powerful Python data analysis toolkit, Release 0.23.4

9.9 .dt accessor

Series has an accessor to succinctly return datetime like properties for the values of the Series, if it is a date-
time/period like Series. This will return a Series, indexed like the existing Series.

datetime
In [280]: s = pd.Series(pd.date_range('20130101 09:10:12', periods=4))

In [281]: s
Out[281]:
0 2013-01-01 09:10:12
1 2013-01-02 09:10:12
2 2013-01-03 09:10:12
3 2013-01-04 09:10:12
dtype: datetime64[ns]

In [282]: s.dt.hour
\\\Out[282]:
→˓

0 9
1 9
2 9
3 9
dtype: int64

In [283]: s.dt.second
\\\Out[283]:
→˓

0 12
1 12
2 12
3 12
dtype: int64

In [284]: s.dt.day
\\\Out[284]:
→˓

0 1
1 2
2 3
3 4
dtype: int64

This enables nice expressions like this:

In [285]: s[s.dt.day==2]
Out[285]:
1 2013-01-02 09:10:12
dtype: datetime64[ns]

You can easily produces tz aware transformations:

In [286]: stz = s.dt.tz_localize('US/Eastern')

In [287]: stz
Out[287]:
0 2013-01-01 09:10:12-05:00

(continues on next page)

636 Chapter 9. Essential Basic Functionality

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

1 2013-01-02 09:10:12-05:00
2 2013-01-03 09:10:12-05:00
3 2013-01-04 09:10:12-05:00
dtype: datetime64[ns, US/Eastern]

In [288]: stz.dt.tz
\\\Out[288]:
→˓<DstTzInfo 'US/Eastern' LMT-1 day, 19:04:00 STD>

You can also chain these types of operations:

In [289]: s.dt.tz_localize('UTC').dt.tz_convert('US/Eastern')
Out[289]:
0 2013-01-01 04:10:12-05:00
1 2013-01-02 04:10:12-05:00
2 2013-01-03 04:10:12-05:00
3 2013-01-04 04:10:12-05:00
dtype: datetime64[ns, US/Eastern]

You can also format datetime values as strings with Series.dt.strftime() which supports the same format as
the standard strftime().

DatetimeIndex
In [290]: s = pd.Series(pd.date_range('20130101', periods=4))

In [291]: s
Out[291]:
0 2013-01-01
1 2013-01-02
2 2013-01-03
3 2013-01-04
dtype: datetime64[ns]

In [292]: s.dt.strftime('%Y/%m/%d')
\\\Out[292]:
→˓

0 2013/01/01
1 2013/01/02
2 2013/01/03
3 2013/01/04
dtype: object

PeriodIndex
In [293]: s = pd.Series(pd.period_range('20130101', periods=4))

In [294]: s
Out[294]:
0 2013-01-01
1 2013-01-02
2 2013-01-03
3 2013-01-04
dtype: object

In [295]: s.dt.strftime('%Y/%m/%d')
\\\Out[295]:
→˓

(continues on next page)

9.9. .dt accessor 637

https://docs.python.org/3/library/datetime.html#datetime.datetime.strftime

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

0 2013/01/01
1 2013/01/02
2 2013/01/03
3 2013/01/04
dtype: object

The .dt accessor works for period and timedelta dtypes.

period
In [296]: s = pd.Series(pd.period_range('20130101', periods=4, freq='D'))

In [297]: s
Out[297]:
0 2013-01-01
1 2013-01-02
2 2013-01-03
3 2013-01-04
dtype: object

In [298]: s.dt.year
\\\Out[298]:
→˓

0 2013
1 2013
2 2013
3 2013
dtype: int64

In [299]: s.dt.day
\\\Out[299]:
→˓

0 1
1 2
2 3
3 4
dtype: int64

timedelta
In [300]: s = pd.Series(pd.timedelta_range('1 day 00:00:05', periods=4, freq='s'))

In [301]: s
Out[301]:
0 1 days 00:00:05
1 1 days 00:00:06
2 1 days 00:00:07
3 1 days 00:00:08
dtype: timedelta64[ns]

In [302]: s.dt.days
\\Out[302]:
→˓

0 1
1 1
2 1
3 1
dtype: int64

(continues on next page)

638 Chapter 9. Essential Basic Functionality

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

In [303]: s.dt.seconds
\\Out[303]:
→˓

0 5
1 6
2 7
3 8
dtype: int64

In [304]: s.dt.components
\\Out[304]:
→˓

days hours minutes seconds milliseconds microseconds nanoseconds
0 1 0 0 5 0 0 0
1 1 0 0 6 0 0 0
2 1 0 0 7 0 0 0
3 1 0 0 8 0 0 0

Note: Series.dt will raise a TypeError if you access with a non-datetime-like values.

9.10 Vectorized string methods

Series is equipped with a set of string processing methods that make it easy to operate on each element of the array.
Perhaps most importantly, these methods exclude missing/NA values automatically. These are accessed via the Series’s
str attribute and generally have names matching the equivalent (scalar) built-in string methods. For example:

In [305]: s = pd.Series(['A', 'B', 'C', 'Aaba', 'Baca', np.nan, 'CABA', 'dog
→˓', 'cat'])

In [306]: s.str.lower()
Out[306]:
0 a
1 b
2 c
3 aaba
4 baca
5 NaN
6 caba
7 dog
8 cat
dtype: object

Powerful pattern-matching methods are provided as well, but note that pattern-matching generally uses regular expres-
sions by default (and in some cases always uses them).

Please see Vectorized String Methods for a complete description.

9.10. Vectorized string methods 639

https://docs.python.org/3/library/re.html
https://docs.python.org/3/library/re.html

pandas: powerful Python data analysis toolkit, Release 0.23.4

9.11 Sorting

Pandas supports three kinds of sorting: sorting by index labels, sorting by column values, and sorting by a combination
of both.

9.11.1 By Index

The Series.sort_index() and DataFrame.sort_index() methods are used to sort a pandas object by its
index levels.

In [307]: df = pd.DataFrame({'one' : pd.Series(np.random.randn(3), index=['a', 'b', 'c
→˓']),

.....: 'two' : pd.Series(np.random.randn(4), index=['a', 'b', 'c
→˓', 'd']),

.....: 'three' : pd.Series(np.random.randn(3), index=['b', 'c',
→˓'d'])})

.....:

In [308]: unsorted_df = df.reindex(index=['a', 'd', 'c', 'b'],
.....: columns=['three', 'two', 'one'])
.....:

In [309]: unsorted_df
Out[309]:

three two one
a NaN 0.708543 0.036274
d -0.540166 0.586626 NaN
c 0.410238 1.121731 1.044630
b -0.282532 -2.038777 -0.490032

DataFrame
In [310]: unsorted_df.sort_index()
\\\Out[310]:
→˓

three two one
a NaN 0.708543 0.036274
b -0.282532 -2.038777 -0.490032
c 0.410238 1.121731 1.044630
d -0.540166 0.586626 NaN

In [311]: unsorted_df.sort_index(ascending=False)
\\Out[311]:
→˓

three two one
d -0.540166 0.586626 NaN
c 0.410238 1.121731 1.044630
b -0.282532 -2.038777 -0.490032
a NaN 0.708543 0.036274

In [312]: unsorted_df.sort_index(axis=1)
\\\Out[312]:
→˓

one three two
a 0.036274 NaN 0.708543
d NaN -0.540166 0.586626
c 1.044630 0.410238 1.121731

(continues on next page)

640 Chapter 9. Essential Basic Functionality

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

b -0.490032 -0.282532 -2.038777

Series
In [313]: unsorted_df['three'].sort_index()
\\Out[313]:
→˓

a NaN
b -0.282532
c 0.410238
d -0.540166
Name: three, dtype: float64

9.11.2 By Values

The Series.sort_values()method is used to sort a Series by its values. The DataFrame.sort_values()
method is used to sort a DataFrame by its column or row values. The optional by parameter to DataFrame.
sort_values() may used to specify one or more columns to use to determine the sorted order.

In [314]: df1 = pd.DataFrame({'one':[2,1,1,1],'two':[1,3,2,4],'three':[5,4,3,2]})

In [315]: df1.sort_values(by='two')
Out[315]:

one two three
0 2 1 5
2 1 2 3
1 1 3 4
3 1 4 2

The by parameter can take a list of column names, e.g.:

In [316]: df1[['one', 'two', 'three']].sort_values(by=['one','two'])
Out[316]:

one two three
2 1 2 3
1 1 3 4
3 1 4 2
0 2 1 5

These methods have special treatment of NA values via the na_position argument:

In [317]: s[2] = np.nan

In [318]: s.sort_values()
Out[318]:
0 A
3 Aaba
1 B
4 Baca
6 CABA
8 cat
7 dog
2 NaN
5 NaN
dtype: object

(continues on next page)

9.11. Sorting 641

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

In [319]: s.sort_values(na_position='first')
\\\Out[319]:
→˓

2 NaN
5 NaN
0 A
3 Aaba
1 B
4 Baca
6 CABA
8 cat
7 dog
dtype: object

9.11.3 By Indexes and Values

New in version 0.23.0.

Strings passed as the by parameter to DataFrame.sort_values() may refer to either columns or index level
names.

Build MultiIndex
In [320]: idx = pd.MultiIndex.from_tuples([('a', 1), ('a', 2), ('a', 2),

.....: ('b', 2), ('b', 1), ('b', 1)])

.....:

In [321]: idx.names = ['first', 'second']

Build DataFrame
In [322]: df_multi = pd.DataFrame({'A': np.arange(6, 0, -1)},

.....: index=idx)

.....:

In [323]: df_multi
Out[323]:

A
first second
a 1 6

2 5
2 4

b 2 3
1 2
1 1

Sort by ‘second’ (index) and ‘A’ (column)

In [324]: df_multi.sort_values(by=['second', 'A'])
Out[324]:

A
first second
b 1 1

1 2
a 1 6
b 2 3
a 2 4

2 5

642 Chapter 9. Essential Basic Functionality

pandas: powerful Python data analysis toolkit, Release 0.23.4

Note: If a string matches both a column name and an index level name then a warning is issued and the column takes
precedence. This will result in an ambiguity error in a future version.

9.11.4 searchsorted

Series has the searchsorted() method, which works similarly to numpy.ndarray.searchsorted().

In [325]: ser = pd.Series([1, 2, 3])

In [326]: ser.searchsorted([0, 3])
Out[326]: array([0, 2])

In [327]: ser.searchsorted([0, 4])
\\\\\\\\\\\\\\\\\\\\\\\\Out[327]: array([0, 3])

In [328]: ser.searchsorted([1, 3], side='right')
\\Out[328]: array([1, 3])

In [329]: ser.searchsorted([1, 3], side='left')
\\Out[329]:
→˓array([0, 2])

In [330]: ser = pd.Series([3, 1, 2])

In [331]: ser.searchsorted([0, 3], sorter=np.argsort(ser))
Out[331]: array([0, 2])

9.11.5 smallest / largest values

Series has the nsmallest() and nlargest() methods which return the smallest or largest 𝑛 values. For a
large Series this can be much faster than sorting the entire Series and calling head(n) on the result.

In [332]: s = pd.Series(np.random.permutation(10))

In [333]: s
Out[333]:
0 8
1 2
2 9
3 5
4 6
5 0
6 1
7 7
8 4
9 3
dtype: int64

In [334]: s.sort_values()
\\Out[334]:
→˓

5 0
6 1

(continues on next page)

9.11. Sorting 643

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.searchsorted.html#numpy.ndarray.searchsorted

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

1 2
9 3
8 4
3 5
4 6
7 7
0 8
2 9
dtype: int64

In [335]: s.nsmallest(3)
\\Out[335]:
→˓

5 0
6 1
1 2
dtype: int64

In [336]: s.nlargest(3)
\\\Out[336]:
→˓

2 9
0 8
7 7
dtype: int64

DataFrame also has the nlargest and nsmallest methods.

In [337]: df = pd.DataFrame({'a': [-2, -1, 1, 10, 8, 11, -1],
.....: 'b': list('abdceff'),
.....: 'c': [1.0, 2.0, 4.0, 3.2, np.nan, 3.0, 4.0]})
.....:

In [338]: df.nlargest(3, 'a')
Out[338]:

a b c
5 11 f 3.0
3 10 c 3.2
4 8 e NaN

In [339]: df.nlargest(5, ['a', 'c'])
\\\Out[339]:

a b c
6 -1 f 4.0
5 11 f 3.0
3 10 c 3.2
4 8 e NaN
2 1 d 4.0

In [340]: df.nsmallest(3, 'a')
\\Out[340]:
→˓

a b c
0 -2 a 1.0
1 -1 b 2.0
6 -1 f 4.0

(continues on next page)

644 Chapter 9. Essential Basic Functionality

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

In [341]: df.nsmallest(5, ['a', 'c'])
\\\Out[341]:
→˓

a b c
0 -2 a 1.0
2 1 d 4.0
4 8 e NaN
1 -1 b 2.0
6 -1 f 4.0

9.11.6 Sorting by a multi-index column

You must be explicit about sorting when the column is a multi-index, and fully specify all levels to by.

In [342]: df1.columns = pd.MultiIndex.from_tuples([('a','one'),('a','two'),('b','three
→˓')])

In [343]: df1.sort_values(by=('a','two'))
Out[343]:

a b
one two three

0 2 1 5
2 1 2 3
1 1 3 4
3 1 4 2

9.12 Copying

The copy() method on pandas objects copies the underlying data (though not the axis indexes, since they are im-
mutable) and returns a new object. Note that it is seldom necessary to copy objects. For example, there are only a
handful of ways to alter a DataFrame in-place:

• Inserting, deleting, or modifying a column.

• Assigning to the index or columns attributes.

• For homogeneous data, directly modifying the values via the values attribute or advanced indexing.

To be clear, no pandas method has the side effect of modifying your data; almost every method returns a new object,
leaving the original object untouched. If the data is modified, it is because you did so explicitly.

9.13 dtypes

The main types stored in pandas objects are float, int, bool, datetime64[ns] and datetime64[ns,
tz], timedelta[ns], category and object. In addition these dtypes have item sizes, e.g. int64 and
int32. See Series with TZ for more detail on datetime64[ns, tz] dtypes.

A convenient dtypes attribute for DataFrame returns a Series with the data type of each column.

In [344]: dft = pd.DataFrame(dict(A = np.random.rand(3),
.....: B = 1,

(continues on next page)

9.12. Copying 645

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

.....: C = 'foo',

.....: D = pd.Timestamp('20010102'),

.....: E = pd.Series([1.0]*3).astype('float32'),

.....: F = False,

.....: G = pd.Series([1]*3,dtype='int8')))

.....:

In [345]: dft
Out[345]:

A B C D E F G
0 0.809585 1 foo 2001-01-02 1.0 False 1
1 0.128238 1 foo 2001-01-02 1.0 False 1
2 0.775752 1 foo 2001-01-02 1.0 False 1

In [346]: dft.dtypes
\\\Out[346]:
→˓

A float64
B int64
C object
D datetime64[ns]
E float32
F bool
G int8
dtype: object

On a Series object, use the dtype attribute.

In [347]: dft['A'].dtype
Out[347]: dtype('float64')

If a pandas object contains data with multiple dtypes in a single column, the dtype of the column will be chosen to
accommodate all of the data types (object is the most general).

these ints are coerced to floats
In [348]: pd.Series([1, 2, 3, 4, 5, 6.])
Out[348]:
0 1.0
1 2.0
2 3.0
3 4.0
4 5.0
5 6.0
dtype: float64

string data forces an ``object`` dtype
In [349]: pd.Series([1, 2, 3, 6., 'foo'])
\\Out[349]:
→˓

0 1
1 2
2 3
3 6
4 foo
dtype: object

The number of columns of each type in a DataFrame can be found by calling get_dtype_counts().

646 Chapter 9. Essential Basic Functionality

pandas: powerful Python data analysis toolkit, Release 0.23.4

In [350]: dft.get_dtype_counts()
Out[350]:
float64 1
float32 1
int64 1
int8 1
datetime64[ns] 1
bool 1
object 1
dtype: int64

Numeric dtypes will propagate and can coexist in DataFrames. If a dtype is passed (either directly via the dtype
keyword, a passed ndarray, or a passed Series, then it will be preserved in DataFrame operations. Furthermore,
different numeric dtypes will NOT be combined. The following example will give you a taste.

In [351]: df1 = pd.DataFrame(np.random.randn(8, 1), columns=['A'], dtype='float32')

In [352]: df1
Out[352]:

A
0 0.890400
1 0.283331
2 -0.303613
3 -1.192210
4 0.065420
5 0.455918
6 2.008328
7 0.188942

In [353]: df1.dtypes
\\\Out[353]:
→˓

A float32
dtype: object

In [354]: df2 = pd.DataFrame(dict(A = pd.Series(np.random.randn(8), dtype='float16'),
.....: B = pd.Series(np.random.randn(8)),
.....: C = pd.Series(np.array(np.random.randn(8), dtype=

→˓'uint8'))))
.....:

In [355]: df2
Out[355]:

A B C
0 -0.454346 0.200071 255
1 -0.916504 -0.557756 255
2 0.640625 -0.141988 0
3 2.675781 -0.174060 0
4 -0.007866 0.258626 0
5 -0.204224 0.941688 0
6 -0.100098 -1.849045 0
7 -0.402100 -0.949458 0

In [356]: df2.dtypes
\\Out[356]:
→˓

A float16

(continues on next page)

9.13. dtypes 647

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

B float64
C uint8
dtype: object

9.13.1 defaults

By default integer types are int64 and float types are float64, regardless of platform (32-bit or 64-bit). The
following will all result in int64 dtypes.

In [357]: pd.DataFrame([1, 2], columns=['a']).dtypes
Out[357]:
a int64
dtype: object

In [358]: pd.DataFrame({'a': [1, 2]}).dtypes
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\Out[358]:
a int64
dtype: object

In [359]: pd.DataFrame({'a': 1 }, index=list(range(2))).dtypes
\\Out[359]:
a int64
dtype: object

Note that Numpy will choose platform-dependent types when creating arrays. The following WILL result in int32
on 32-bit platform.

In [360]: frame = pd.DataFrame(np.array([1, 2]))

9.13.2 upcasting

Types can potentially be upcasted when combined with other types, meaning they are promoted from the current type
(e.g. int to float).

In [361]: df3 = df1.reindex_like(df2).fillna(value=0.0) + df2

In [362]: df3
Out[362]:

A B C
0 0.436054 0.200071 255.0
1 -0.633173 -0.557756 255.0
2 0.337012 -0.141988 0.0
3 1.483571 -0.174060 0.0
4 0.057555 0.258626 0.0
5 0.251695 0.941688 0.0
6 1.908231 -1.849045 0.0
7 -0.213158 -0.949458 0.0

In [363]: df3.dtypes
\\Out[363]:
→˓

A float32
B float64

(continues on next page)

648 Chapter 9. Essential Basic Functionality

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

C float64
dtype: object

The values attribute on a DataFrame return the lower-common-denominator of the dtypes, meaning the dtype that
can accommodate ALL of the types in the resulting homogeneous dtyped NumPy array. This can force some upcast-
ing.

In [364]: df3.values.dtype
Out[364]: dtype('float64')

9.13.3 astype

You can use the astype() method to explicitly convert dtypes from one to another. These will by default return a
copy, even if the dtype was unchanged (pass copy=False to change this behavior). In addition, they will raise an
exception if the astype operation is invalid.

Upcasting is always according to the numpy rules. If two different dtypes are involved in an operation, then the more
general one will be used as the result of the operation.

In [365]: df3
Out[365]:

A B C
0 0.436054 0.200071 255.0
1 -0.633173 -0.557756 255.0
2 0.337012 -0.141988 0.0
3 1.483571 -0.174060 0.0
4 0.057555 0.258626 0.0
5 0.251695 0.941688 0.0
6 1.908231 -1.849045 0.0
7 -0.213158 -0.949458 0.0

In [366]: df3.dtypes
\\Out[366]:
→˓

A float32
B float64
C float64
dtype: object

conversion of dtypes
In [367]: df3.astype('float32').dtypes
\\Out[367]:
→˓

A float32
B float32
C float32
dtype: object

Convert a subset of columns to a specified type using astype().

In [368]: dft = pd.DataFrame({'a': [1,2,3], 'b': [4,5,6], 'c': [7, 8, 9]})

In [369]: dft[['a','b']] = dft[['a','b']].astype(np.uint8)

In [370]: dft

(continues on next page)

9.13. dtypes 649

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

Out[370]:
a b c

0 1 4 7
1 2 5 8
2 3 6 9

In [371]: dft.dtypes
\\\Out[371]:
a uint8
b uint8
c int64
dtype: object

New in version 0.19.0.

Convert certain columns to a specific dtype by passing a dict to astype().

In [372]: dft1 = pd.DataFrame({'a': [1,0,1], 'b': [4,5,6], 'c': [7, 8, 9]})

In [373]: dft1 = dft1.astype({'a': np.bool, 'c': np.float64})

In [374]: dft1
Out[374]:

a b c
0 True 4 7.0
1 False 5 8.0
2 True 6 9.0

In [375]: dft1.dtypes
\\\Out[375]:
→˓

a bool
b int64
c float64
dtype: object

Note: When trying to convert a subset of columns to a specified type using astype() and loc(), upcasting occurs.

loc() tries to fit in what we are assigning to the current dtypes, while [] will overwrite them taking the dtype from
the right hand side. Therefore the following piece of code produces the unintended result.

In [376]: dft = pd.DataFrame({'a': [1,2,3], 'b': [4,5,6], 'c': [7, 8, 9]})

In [377]: dft.loc[:, ['a', 'b']].astype(np.uint8).dtypes
Out[377]:
a uint8
b uint8
dtype: object

In [378]: dft.loc[:, ['a', 'b']] = dft.loc[:, ['a', 'b']].astype(np.uint8)

In [379]: dft.dtypes
Out[379]:
a int64
b int64
c int64

(continues on next page)

650 Chapter 9. Essential Basic Functionality

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

dtype: object

9.13.4 object conversion

pandas offers various functions to try to force conversion of types from the object dtype to other types. In cases
where the data is already of the correct type, but stored in an object array, the DataFrame.infer_objects()
and Series.infer_objects() methods can be used to soft convert to the correct type.

In [380]: import datetime

In [381]: df = pd.DataFrame([[1, 2],
.....: ['a', 'b'],
.....: [datetime.datetime(2016, 3, 2), datetime.

→˓datetime(2016, 3, 2)]])
.....:

In [382]: df = df.T

In [383]: df
Out[383]:

0 1 2
0 1 a 2016-03-02 00:00:00
1 2 b 2016-03-02 00:00:00

In [384]: df.dtypes
\\Out[384]:
→˓

0 object
1 object
2 object
dtype: object

Because the data was transposed the original inference stored all columns as object, which infer_objects will
correct.

In [385]: df.infer_objects().dtypes
Out[385]:
0 int64
1 object
2 datetime64[ns]
dtype: object

The following functions are available for one dimensional object arrays or scalars to perform hard conversion of objects
to a specified type:

• to_numeric() (conversion to numeric dtypes)

In [386]: m = ['1.1', 2, 3]

In [387]: pd.to_numeric(m)
Out[387]: array([1.1, 2. , 3.])

• to_datetime() (conversion to datetime objects)

9.13. dtypes 651

pandas: powerful Python data analysis toolkit, Release 0.23.4

In [388]: import datetime

In [389]: m = ['2016-07-09', datetime.datetime(2016, 3, 2)]

In [390]: pd.to_datetime(m)
Out[390]: DatetimeIndex(['2016-07-09', '2016-03-02'], dtype='datetime64[ns]',
→˓freq=None)

• to_timedelta() (conversion to timedelta objects)

In [391]: m = ['5us', pd.Timedelta('1day')]

In [392]: pd.to_timedelta(m)
Out[392]: TimedeltaIndex(['0 days 00:00:00.000005', '1 days 00:00:00'], dtype=
→˓'timedelta64[ns]', freq=None)

To force a conversion, we can pass in an errors argument, which specifies how pandas should deal with elements
that cannot be converted to desired dtype or object. By default, errors='raise', meaning that any errors encoun-
tered will be raised during the conversion process. However, if errors='coerce', these errors will be ignored
and pandas will convert problematic elements to pd.NaT (for datetime and timedelta) or np.nan (for numeric).
This might be useful if you are reading in data which is mostly of the desired dtype (e.g. numeric, datetime), but
occasionally has non-conforming elements intermixed that you want to represent as missing:

In [393]: import datetime

In [394]: m = ['apple', datetime.datetime(2016, 3, 2)]

In [395]: pd.to_datetime(m, errors='coerce')
Out[395]: DatetimeIndex(['NaT', '2016-03-02'], dtype='datetime64[ns]', freq=None)

In [396]: m = ['apple', 2, 3]

In [397]: pd.to_numeric(m, errors='coerce')
Out[397]: array([nan, 2., 3.])

In [398]: m = ['apple', pd.Timedelta('1day')]

In [399]: pd.to_timedelta(m, errors='coerce')
Out[399]: TimedeltaIndex([NaT, '1 days'], dtype='timedelta64[ns]', freq=None)

The errors parameter has a third option of errors='ignore', which will simply return the passed in data if it
encounters any errors with the conversion to a desired data type:

In [400]: import datetime

In [401]: m = ['apple', datetime.datetime(2016, 3, 2)]

In [402]: pd.to_datetime(m, errors='ignore')
Out[402]: array(['apple', datetime.datetime(2016, 3, 2, 0, 0)], dtype=object)

In [403]: m = ['apple', 2, 3]

In [404]: pd.to_numeric(m, errors='ignore')
Out[404]: array(['apple', 2, 3], dtype=object)

In [405]: m = ['apple', pd.Timedelta('1day')]

(continues on next page)

652 Chapter 9. Essential Basic Functionality

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

In [406]: pd.to_timedelta(m, errors='ignore')
Out[406]: array(['apple', Timedelta('1 days 00:00:00')], dtype=object)

In addition to object conversion, to_numeric() provides another argument downcast, which gives the option of
downcasting the newly (or already) numeric data to a smaller dtype, which can conserve memory:

In [407]: m = ['1', 2, 3]

In [408]: pd.to_numeric(m, downcast='integer') # smallest signed int dtype
Out[408]: array([1, 2, 3], dtype=int8)

In [409]: pd.to_numeric(m, downcast='signed') # same as 'integer'
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\Out[409]: array([1, 2, 3], dtype=int8)

In [410]: pd.to_numeric(m, downcast='unsigned') # smallest unsigned int dtype
\\Out[410]:
→˓array([1, 2, 3], dtype=uint8)

In [411]: pd.to_numeric(m, downcast='float') # smallest float dtype
\\Out[411]:
→˓array([1., 2., 3.], dtype=float32)

As these methods apply only to one-dimensional arrays, lists or scalars; they cannot be used directly on multi-
dimensional objects such as DataFrames. However, with apply(), we can “apply” the function over each column
efficiently:

In [412]: import datetime

In [413]: df = pd.DataFrame([['2016-07-09', datetime.datetime(2016, 3, 2)]] * 2,
→˓dtype='O')

In [414]: df
Out[414]:

0 1
0 2016-07-09 2016-03-02 00:00:00
1 2016-07-09 2016-03-02 00:00:00

In [415]: df.apply(pd.to_datetime)
\\Out[415]:
→˓

0 1
0 2016-07-09 2016-03-02
1 2016-07-09 2016-03-02

In [416]: df = pd.DataFrame([['1.1', 2, 3]] * 2, dtype='O')

In [417]: df
Out[417]:

0 1 2
0 1.1 2 3
1 1.1 2 3

In [418]: df.apply(pd.to_numeric)
\\Out[418]:

0 1 2
0 1.1 2 3

(continues on next page)

9.13. dtypes 653

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

1 1.1 2 3

In [419]: df = pd.DataFrame([['5us', pd.Timedelta('1day')]] * 2, dtype='O')

In [420]: df
Out[420]:

0 1
0 5us 1 days 00:00:00
1 5us 1 days 00:00:00

In [421]: df.apply(pd.to_timedelta)
\\\Out[421]:
→˓

0 1
0 00:00:00.000005 1 days
1 00:00:00.000005 1 days

9.13.5 gotchas

Performing selection operations on integer type data can easily upcast the data to floating. The dtype of the
input data will be preserved in cases where nans are not introduced. See also Support for integer NA.

In [422]: dfi = df3.astype('int32')

In [423]: dfi['E'] = 1

In [424]: dfi
Out[424]:

A B C E
0 0 0 255 1
1 0 0 255 1
2 0 0 0 1
3 1 0 0 1
4 0 0 0 1
5 0 0 0 1
6 1 -1 0 1
7 0 0 0 1

In [425]: dfi.dtypes
\\\Out[425]:
→˓

A int32
B int32
C int32
E int64
dtype: object

In [426]: casted = dfi[dfi>0]

In [427]: casted
Out[427]:

A B C E
0 NaN NaN 255.0 1
1 NaN NaN 255.0 1
2 NaN NaN NaN 1

(continues on next page)

654 Chapter 9. Essential Basic Functionality

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

3 1.0 NaN NaN 1
4 NaN NaN NaN 1
5 NaN NaN NaN 1
6 1.0 NaN NaN 1
7 NaN NaN NaN 1

In [428]: casted.dtypes
\\Out[428]:
→˓

A float64
B float64
C float64
E int64
dtype: object

While float dtypes are unchanged.

In [429]: dfa = df3.copy()

In [430]: dfa['A'] = dfa['A'].astype('float32')

In [431]: dfa.dtypes
Out[431]:
A float32
B float64
C float64
dtype: object

In [432]: casted = dfa[df2>0]

In [433]: casted
Out[433]:

A B C
0 NaN 0.200071 255.0
1 NaN NaN 255.0
2 0.337012 NaN NaN
3 1.483571 NaN NaN
4 NaN 0.258626 NaN
5 NaN 0.941688 NaN
6 NaN NaN NaN
7 NaN NaN NaN

In [434]: casted.dtypes
\\Out[434]:
→˓

A float32
B float64
C float64
dtype: object

9.14 Selecting columns based on dtype

The select_dtypes() method implements subsetting of columns based on their dtype.

First, let’s create a DataFrame with a slew of different dtypes:

9.14. Selecting columns based on dtype 655

pandas: powerful Python data analysis toolkit, Release 0.23.4

In [435]: df = pd.DataFrame({'string': list('abc'),
.....: 'int64': list(range(1, 4)),
.....: 'uint8': np.arange(3, 6).astype('u1'),
.....: 'float64': np.arange(4.0, 7.0),
.....: 'bool1': [True, False, True],
.....: 'bool2': [False, True, False],
.....: 'dates': pd.date_range('now', periods=3).values,
.....: 'category': pd.Series(list("ABC")).astype('category')})
.....:

In [436]: df['tdeltas'] = df.dates.diff()

In [437]: df['uint64'] = np.arange(3, 6).astype('u8')

In [438]: df['other_dates'] = pd.date_range('20130101', periods=3).values

In [439]: df['tz_aware_dates'] = pd.date_range('20130101', periods=3, tz='US/Eastern')

In [440]: df
Out[440]:

string int64 uint8 float64 bool1 bool2 dates category
→˓tdeltas uint64 other_dates tz_aware_dates
0 a 1 3 4.0 True False 2018-08-05 11:57:39.507525 A
→˓NaT 3 2013-01-01 2013-01-01 00:00:00-05:00
1 b 2 4 5.0 False True 2018-08-06 11:57:39.507525 B 1
→˓days 4 2013-01-02 2013-01-02 00:00:00-05:00
2 c 3 5 6.0 True False 2018-08-07 11:57:39.507525 C 1
→˓days 5 2013-01-03 2013-01-03 00:00:00-05:00

And the dtypes:

In [441]: df.dtypes
Out[441]:
string object
int64 int64
uint8 uint8
float64 float64
bool1 bool
bool2 bool
dates datetime64[ns]
category category
tdeltas timedelta64[ns]
uint64 uint64
other_dates datetime64[ns]
tz_aware_dates datetime64[ns, US/Eastern]
dtype: object

select_dtypes() has two parameters include and exclude that allow you to say “give me the columns with
these dtypes” (include) and/or “give the columns without these dtypes” (exclude).

For example, to select bool columns:

In [442]: df.select_dtypes(include=[bool])
Out[442]:

bool1 bool2
0 True False
1 False True
2 True False

656 Chapter 9. Essential Basic Functionality

pandas: powerful Python data analysis toolkit, Release 0.23.4

You can also pass the name of a dtype in the NumPy dtype hierarchy:

In [443]: df.select_dtypes(include=['bool'])
Out[443]:

bool1 bool2
0 True False
1 False True
2 True False

select_dtypes() also works with generic dtypes as well.

For example, to select all numeric and boolean columns while excluding unsigned integers:

In [444]: df.select_dtypes(include=['number', 'bool'], exclude=['unsignedinteger'])
Out[444]:

int64 float64 bool1 bool2 tdeltas
0 1 4.0 True False NaT
1 2 5.0 False True 1 days
2 3 6.0 True False 1 days

To select string columns you must use the object dtype:

In [445]: df.select_dtypes(include=['object'])
Out[445]:

string
0 a
1 b
2 c

To see all the child dtypes of a generic dtype like numpy.number you can define a function that returns a tree of
child dtypes:

In [446]: def subdtypes(dtype):
.....: subs = dtype.__subclasses__()
.....: if not subs:
.....: return dtype
.....: return [dtype, [subdtypes(dt) for dt in subs]]
.....:

All NumPy dtypes are subclasses of numpy.generic:

In [447]: subdtypes(np.generic)
Out[447]:
[numpy.generic,
[[numpy.number,
[[numpy.integer,

[[numpy.signedinteger,
[numpy.int8,
numpy.int16,
numpy.int32,
numpy.int64,
numpy.int64,
numpy.timedelta64]],

[numpy.unsignedinteger,
[numpy.uint8,
numpy.uint16,
numpy.uint32,
numpy.uint64,

(continues on next page)

9.14. Selecting columns based on dtype 657

http://docs.scipy.org/doc/numpy/reference/arrays.scalars.html

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

numpy.uint64]]]],
[numpy.inexact,
[[numpy.floating,

[numpy.float16, numpy.float32, numpy.float64, numpy.float128]],
[numpy.complexfloating,
[numpy.complex64, numpy.complex128, numpy.complex256]]]]]],

[numpy.flexible,
[[numpy.character, [numpy.bytes_, numpy.str_]],
[numpy.void, [numpy.record]]]],

numpy.bool_,
numpy.datetime64,
numpy.object_]]

Note: Pandas also defines the types category, and datetime64[ns, tz], which are not integrated into the
normal NumPy hierarchy and won’t show up with the above function.

658 Chapter 9. Essential Basic Functionality

CHAPTER

TEN

WORKING WITH TEXT DATA

Series and Index are equipped with a set of string processing methods that make it easy to operate on each element of
the array. Perhaps most importantly, these methods exclude missing/NA values automatically. These are accessed via
the str attribute and generally have names matching the equivalent (scalar) built-in string methods:

In [1]: s = pd.Series(['A', 'B', 'C', 'Aaba', 'Baca', np.nan, 'CABA', 'dog', 'cat'])

In [2]: s.str.lower()
Out[2]:
0 a
1 b
2 c
3 aaba
4 baca
5 NaN
6 caba
7 dog
8 cat
dtype: object

In [3]: s.str.upper()
\\\Out[3]:
→˓

0 A
1 B
2 C
3 AABA
4 BACA
5 NaN
6 CABA
7 DOG
8 CAT
dtype: object

In [4]: s.str.len()
\\Out[4]:
→˓

0 1.0
1 1.0
2 1.0
3 4.0
4 4.0
5 NaN
6 4.0
7 3.0

(continues on next page)

659

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

8 3.0
dtype: float64

In [5]: idx = pd.Index([' jack', 'jill ', ' jesse ', 'frank'])

In [6]: idx.str.strip()
Out[6]: Index(['jack', 'jill', 'jesse', 'frank'], dtype='object')

In [7]: idx.str.lstrip()
\\Out[7]: Index(['jack
→˓', 'jill ', 'jesse ', 'frank'], dtype='object')

In [8]: idx.str.rstrip()
\\Out[8]:
→˓Index([' jack', 'jill', ' jesse', 'frank'], dtype='object')

The string methods on Index are especially useful for cleaning up or transforming DataFrame columns. For instance,
you may have columns with leading or trailing whitespace:

In [9]: df = pd.DataFrame(randn(3, 2), columns=[' Column A ', ' Column B '],
...: index=range(3))
...:

In [10]: df
Out[10]:

Column A Column B
0 -1.425575 -1.336299
1 0.740933 1.032121
2 -1.585660 0.913812

Since df.columns is an Index object, we can use the .str accessor

In [11]: df.columns.str.strip()
Out[11]: Index(['Column A', 'Column B'], dtype='object')

In [12]: df.columns.str.lower()
\\\Out[12]: Index([' column a ',
→˓ ' column b '], dtype='object')

These string methods can then be used to clean up the columns as needed. Here we are removing leading and trailing
whitespaces, lowercasing all names, and replacing any remaining whitespaces with underscores:

In [13]: df.columns = df.columns.str.strip().str.lower().str.replace(' ', '_')

In [14]: df
Out[14]:

column_a column_b
0 -1.425575 -1.336299
1 0.740933 1.032121
2 -1.585660 0.913812

Note: If you have a Series where lots of elements are repeated (i.e. the number of unique elements in the
Series is a lot smaller than the length of the Series), it can be faster to convert the original Series to one of
type category and then use .str.<method> or .dt.<property> on that. The performance difference comes
from the fact that, for Series of type category, the string operations are done on the .categories and not on

660 Chapter 10. Working with Text Data

pandas: powerful Python data analysis toolkit, Release 0.23.4

each element of the Series.

Please note that a Series of type category with string .categories has some limitations in comparison of
Series of type string (e.g. you can’t add strings to each other: s + " " + s won’t work if s is a Series of type
category). Also, .str methods which operate on elements of type list are not available on such a Series.

10.1 Splitting and Replacing Strings

Methods like split return a Series of lists:

In [15]: s2 = pd.Series(['a_b_c', 'c_d_e', np.nan, 'f_g_h'])

In [16]: s2.str.split('_')
Out[16]:
0 [a, b, c]
1 [c, d, e]
2 NaN
3 [f, g, h]
dtype: object

Elements in the split lists can be accessed using get or [] notation:

In [17]: s2.str.split('_').str.get(1)
Out[17]:
0 b
1 d
2 NaN
3 g
dtype: object

In [18]: s2.str.split('_').str[1]
\\Out[18]:
0 b
1 d
2 NaN
3 g
dtype: object

It is easy to expand this to return a DataFrame using expand.

In [19]: s2.str.split('_', expand=True)
Out[19]:

0 1 2
0 a b c
1 c d e
2 NaN NaN NaN
3 f g h

It is also possible to limit the number of splits:

In [20]: s2.str.split('_', expand=True, n=1)
Out[20]:

0 1
0 a b_c
1 c d_e

(continues on next page)

10.1. Splitting and Replacing Strings 661

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

2 NaN NaN
3 f g_h

rsplit is similar to split except it works in the reverse direction, i.e., from the end of the string to the beginning
of the string:

In [21]: s2.str.rsplit('_', expand=True, n=1)
Out[21]:

0 1
0 a_b c
1 c_d e
2 NaN NaN
3 f_g h

replace by default replaces regular expressions:

In [22]: s3 = pd.Series(['A', 'B', 'C', 'Aaba', 'Baca',
....: '', np.nan, 'CABA', 'dog', 'cat'])
....:

In [23]: s3
Out[23]:
0 A
1 B
2 C
3 Aaba
4 Baca
5
6 NaN
7 CABA
8 dog
9 cat
dtype: object

In [24]: s3.str.replace('^.a|dog', 'XX-XX ', case=False)
\\Out[24]:
→˓

0 A
1 B
2 C
3 XX-XX ba
4 XX-XX ca
5
6 NaN
7 XX-XX BA
8 XX-XX
9 XX-XX t
dtype: object

Some caution must be taken to keep regular expressions in mind! For example, the following code will cause trouble
because of the regular expression meaning of $:

Consider the following badly formatted financial data
In [25]: dollars = pd.Series(['12', '-$10', '$10,000'])

This does what you'd naively expect:

(continues on next page)

662 Chapter 10. Working with Text Data

https://docs.python.org/3/library/re.html

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

In [26]: dollars.str.replace('$', '')
Out[26]:
0 12
1 -10
2 10,000
dtype: object

But this doesn't:
In [27]: dollars.str.replace('-$', '-')
\\Out[27]:
0 12
1 -$10
2 $10,000
dtype: object

We need to escape the special character (for >1 len patterns)
In [28]: dollars.str.replace(r'-\$', '-')
\\\Out[28]:
→˓

0 12
1 -10
2 $10,000
dtype: object

New in version 0.23.0.

If you do want literal replacement of a string (equivalent to str.replace()), you can set the optional regex
parameter to False, rather than escaping each character. In this case both pat and repl must be strings:

These lines are equivalent
In [29]: dollars.str.replace(r'-\$', '-')
Out[29]:
0 12
1 -10
2 $10,000
dtype: object

In [30]: dollars.str.replace('-$', '-', regex=False)
\\\Out[30]:
0 12
1 -10
2 $10,000
dtype: object

New in version 0.20.0.

The replace method can also take a callable as replacement. It is called on every pat using re.sub(). The
callable should expect one positional argument (a regex object) and return a string.

Reverse every lowercase alphabetic word
In [31]: pat = r'[a-z]+'

In [32]: repl = lambda m: m.group(0)[::-1]

In [33]: pd.Series(['foo 123', 'bar baz', np.nan]).str.replace(pat, repl)
Out[33]:
0 oof 123

(continues on next page)

10.1. Splitting and Replacing Strings 663

https://docs.python.org/3/library/stdtypes.html#str.replace
https://docs.python.org/3/library/re.html#re.sub

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

1 rab zab
2 NaN
dtype: object

Using regex groups
In [34]: pat = r"(?P<one>\w+) (?P<two>\w+) (?P<three>\w+)"

In [35]: repl = lambda m: m.group('two').swapcase()

In [36]: pd.Series(['Foo Bar Baz', np.nan]).str.replace(pat, repl)
Out[36]:
0 bAR
1 NaN
dtype: object

New in version 0.20.0.

The replace method also accepts a compiled regular expression object from re.compile() as a pattern. All
flags should be included in the compiled regular expression object.

In [37]: import re

In [38]: regex_pat = re.compile(r'^.a|dog', flags=re.IGNORECASE)

In [39]: s3.str.replace(regex_pat, 'XX-XX ')
Out[39]:
0 A
1 B
2 C
3 XX-XX ba
4 XX-XX ca
5
6 NaN
7 XX-XX BA
8 XX-XX
9 XX-XX t
dtype: object

Including a flags argument when calling replace with a compiled regular expression object will raise a
ValueError.

In [40]: s3.str.replace(regex_pat, 'XX-XX ', flags=re.IGNORECASE)

ValueError: case and flags cannot be set when pat is a compiled regex

10.2 Concatenation

There are several ways to concatenate a Series or Index, either with itself or others, all based on cat(), resp.
Index.str.cat.

10.2.1 Concatenating a single Series into a string

The content of a Series (or Index) can be concatenated:

664 Chapter 10. Working with Text Data

https://docs.python.org/3/library/re.html#re.compile

pandas: powerful Python data analysis toolkit, Release 0.23.4

In [41]: s = pd.Series(['a', 'b', 'c', 'd'])

In [42]: s.str.cat(sep=',')
Out[42]: 'a,b,c,d'

If not specified, the keyword sep for the separator defaults to the empty string, sep='':

In [43]: s.str.cat()
Out[43]: 'abcd'

By default, missing values are ignored. Using na_rep, they can be given a representation:

In [44]: t = pd.Series(['a', 'b', np.nan, 'd'])

In [45]: t.str.cat(sep=',')
Out[45]: 'a,b,d'

In [46]: t.str.cat(sep=',', na_rep='-')
\\\\\\\\\\\\\\\\\Out[46]: 'a,b,-,d'

10.2.2 Concatenating a Series and something list-like into a Series

The first argument to cat() can be a list-like object, provided that it matches the length of the calling Series (or
Index).

In [47]: s.str.cat(['A', 'B', 'C', 'D'])
Out[47]:
0 aA
1 bB
2 cC
3 dD
dtype: object

Missing values on either side will result in missing values in the result as well, unless na_rep is specified:

In [48]: s.str.cat(t)
Out[48]:
0 aa
1 bb
2 NaN
3 dd
dtype: object

In [49]: s.str.cat(t, na_rep='-')
\\Out[49]:
0 aa
1 bb
2 c-
3 dd
dtype: object

10.2.3 Concatenating a Series and something array-like into a Series

New in version 0.23.0.

10.2. Concatenation 665

pandas: powerful Python data analysis toolkit, Release 0.23.4

The parameter others can also be two-dimensional. In this case, the number or rows must match the lengths of the
calling Series (or Index).

In [50]: d = pd.concat([t, s], axis=1)

In [51]: s
Out[51]:
0 a
1 b
2 c
3 d
dtype: object

In [52]: d
\\Out[52]:

0 1
0 a a
1 b b
2 NaN c
3 d d

In [53]: s.str.cat(d, na_rep='-')
\\Out[53]:
→˓

0 aaa
1 bbb
2 c-c
3 ddd
dtype: object

10.2.4 Concatenating a Series and an indexed object into a Series, with alignment

New in version 0.23.0.

For concatenation with a Series or DataFrame, it is possible to align the indexes before concatenation by setting
the join-keyword.

In [54]: u = pd.Series(['b', 'd', 'a', 'c'], index=[1, 3, 0, 2])

In [55]: s
Out[55]:
0 a
1 b
2 c
3 d
dtype: object

In [56]: u
\\Out[56]:
1 b
3 d
0 a
2 c
dtype: object

In [57]: s.str.cat(u)
\\Out[57]:
→˓ (continues on next page)

666 Chapter 10. Working with Text Data

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

0 ab
1 bd
2 ca
3 dc
dtype: object

In [58]: s.str.cat(u, join='left')
\\Out[58]:
→˓

0 aa
1 bb
2 cc
3 dd
dtype: object

Warning: If the join keyword is not passed, the method cat() will currently fall back to the behavior before
version 0.23.0 (i.e. no alignment), but a FutureWarning will be raised if any of the involved indexes differ,
since this default will change to join='left' in a future version.

The usual options are available for join (one of 'left', 'outer', 'inner', 'right'). In particular,
alignment also means that the different lengths do not need to coincide anymore.

In [59]: v = pd.Series(['z', 'a', 'b', 'd', 'e'], index=[-1, 0, 1, 3, 4])

In [60]: s
Out[60]:
0 a
1 b
2 c
3 d
dtype: object

In [61]: v
\\Out[61]:
-1 z
0 a
1 b
3 d
4 e

dtype: object

In [62]: s.str.cat(v, join='left', na_rep='-')
\\Out[62]:
→˓

0 aa
1 bb
2 c-
3 dd
dtype: object

In [63]: s.str.cat(v, join='outer', na_rep='-')
\\Out[63]:
→˓

-1 -z

(continues on next page)

10.2. Concatenation 667

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

0 aa
1 bb
2 c-
3 dd
4 -e

dtype: object

The same alignment can be used when others is a DataFrame:

In [64]: f = d.loc[[3, 2, 1, 0], :]

In [65]: s
Out[65]:
0 a
1 b
2 c
3 d
dtype: object

In [66]: f
\\Out[66]:

0 1
3 d d
2 NaN c
1 b b
0 a a

In [67]: s.str.cat(f, join='left', na_rep='-')
\\Out[67]:
→˓

0 aaa
1 bbb
2 c-c
3 ddd
dtype: object

10.2.5 Concatenating a Series and many objects into a Series

All one-dimensional list-likes can be arbitrarily combined in a list-like container (including iterators, dict-views,
etc.):

In [68]: s
Out[68]:
0 a
1 b
2 c
3 d
dtype: object

In [69]: u
\\Out[69]:
1 b
3 d
0 a
2 c

(continues on next page)

668 Chapter 10. Working with Text Data

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

dtype: object

In [70]: s.str.cat([u, pd.Index(u.values), ['A', 'B', 'C', 'D'], map(str, u.index)],
→˓na_rep='-')
\\Out[70]:
→˓

0 abbA1
1 bddB3
2 caaC0
3 dccD2
dtype: object

All elements must match in length to the calling Series (or Index), except those having an index if join is not
None:

In [71]: v
Out[71]:
-1 z
0 a
1 b
3 d
4 e

dtype: object

In [72]: s.str.cat([u, v, ['A', 'B', 'C', 'D']], join='outer', na_rep='-')
\\Out[72]:
-1 --z-
0 aaaA
1 bbbB
2 cc-C
3 dddD
4 --e-

dtype: object

If using join='right' on a list of others that contains different indexes, the union of these indexes will be used
as the basis for the final concatenation:

In [73]: u.loc[[3]]
Out[73]:
3 d
dtype: object

In [74]: v.loc[[-1, 0]]
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\Out[74]:
-1 z
0 a

dtype: object

In [75]: s.str.cat([u.loc[[3]], v.loc[[-1, 0]]], join='right', na_rep='-')
\\\Out[75]:
-1 --z
0 a-a
3 dd-

dtype: object

10.2. Concatenation 669

pandas: powerful Python data analysis toolkit, Release 0.23.4

10.3 Indexing with .str

You can use [] notation to directly index by position locations. If you index past the end of the string, the result will
be a NaN.

In [76]: s = pd.Series(['A', 'B', 'C', 'Aaba', 'Baca', np.nan,
....: 'CABA', 'dog', 'cat'])
....:

In [77]: s.str[0]
Out[77]:
0 A
1 B
2 C
3 A
4 B
5 NaN
6 C
7 d
8 c
dtype: object

In [78]: s.str[1]
\\\Out[78]:
→˓

0 NaN
1 NaN
2 NaN
3 a
4 a
5 NaN
6 A
7 o
8 a
dtype: object

10.4 Extracting Substrings

10.4.1 Extract first match in each subject (extract)

Warning: In version 0.18.0, extract gained the expand argument. When expand=False it returns a
Series, Index, or DataFrame, depending on the subject and regular expression pattern (same behavior as
pre-0.18.0). When expand=True it always returns a DataFrame, which is more consistent and less confusing
from the perspective of a user. expand=True is the default since version 0.23.0.

The extract method accepts a regular expression with at least one capture group.

Extracting a regular expression with more than one group returns a DataFrame with one column per group.

In [79]: pd.Series(['a1', 'b2', 'c3']).str.extract('([ab])(\d)', expand=False)
Out[79]:

0 1

(continues on next page)

670 Chapter 10. Working with Text Data

https://docs.python.org/3/library/re.html

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

0 a 1
1 b 2
2 NaN NaN

Elements that do not match return a row filled with NaN. Thus, a Series of messy strings can be “converted” into a
like-indexed Series or DataFrame of cleaned-up or more useful strings, without necessitating get() to access tuples
or re.match objects. The dtype of the result is always object, even if no match is found and the result only contains
NaN.

Named groups like

In [80]: pd.Series(['a1', 'b2', 'c3']).str.extract('(?P<letter>[ab])(?P<digit>\d)',
→˓expand=False)
Out[80]:

letter digit
0 a 1
1 b 2
2 NaN NaN

and optional groups like

In [81]: pd.Series(['a1', 'b2', '3']).str.extract('([ab])?(\d)', expand=False)
Out[81]:

0 1
0 a 1
1 b 2
2 NaN 3

can also be used. Note that any capture group names in the regular expression will be used for column names;
otherwise capture group numbers will be used.

Extracting a regular expression with one group returns a DataFrame with one column if expand=True.

In [82]: pd.Series(['a1', 'b2', 'c3']).str.extract('[ab](\d)', expand=True)
Out[82]:

0
0 1
1 2
2 NaN

It returns a Series if expand=False.

In [83]: pd.Series(['a1', 'b2', 'c3']).str.extract('[ab](\d)', expand=False)
Out[83]:
0 1
1 2
2 NaN
dtype: object

Calling on an Index with a regex with exactly one capture group returns a DataFrame with one column if
expand=True.

In [84]: s = pd.Series(["a1", "b2", "c3"], ["A11", "B22", "C33"])

In [85]: s
Out[85]:
A11 a1

(continues on next page)

10.4. Extracting Substrings 671

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

B22 b2
C33 c3
dtype: object

In [86]: s.index.str.extract("(?P<letter>[a-zA-Z])", expand=True)
\\Out[86]:

letter
0 A
1 B
2 C

It returns an Index if expand=False.

In [87]: s.index.str.extract("(?P<letter>[a-zA-Z])", expand=False)
Out[87]: Index(['A', 'B', 'C'], dtype='object', name='letter')

Calling on an Index with a regex with more than one capture group returns a DataFrame if expand=True.

In [88]: s.index.str.extract("(?P<letter>[a-zA-Z])([0-9]+)", expand=True)
Out[88]:

letter 1
0 A 11
1 B 22
2 C 33

It raises ValueError if expand=False.

>>> s.index.str.extract("(?P<letter>[a-zA-Z])([0-9]+)", expand=False)
ValueError: only one regex group is supported with Index

The table below summarizes the behavior of extract(expand=False) (input subject in first column, number of
groups in regex in first row)

1 group >1 group
Index Index ValueError
Series Series DataFrame

10.4.2 Extract all matches in each subject (extractall)

New in version 0.18.0.

Unlike extract (which returns only the first match),

In [89]: s = pd.Series(["a1a2", "b1", "c1"], index=["A", "B", "C"])

In [90]: s
Out[90]:
A a1a2
B b1
C c1
dtype: object

In [91]: two_groups = '(?P<letter>[a-z])(?P<digit>[0-9])'

(continues on next page)

672 Chapter 10. Working with Text Data

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

In [92]: s.str.extract(two_groups, expand=True)
Out[92]:

letter digit
A a 1
B b 1
C c 1

the extractall method returns every match. The result of extractall is always a DataFrame with a
MultiIndex on its rows. The last level of the MultiIndex is named match and indicates the order in the
subject.

In [93]: s.str.extractall(two_groups)
Out[93]:

letter digit
match

A 0 a 1
1 a 2

B 0 b 1
C 0 c 1

When each subject string in the Series has exactly one match,

In [94]: s = pd.Series(['a3', 'b3', 'c2'])

In [95]: s
Out[95]:
0 a3
1 b3
2 c2
dtype: object

then extractall(pat).xs(0, level='match') gives the same result as extract(pat).

In [96]: extract_result = s.str.extract(two_groups, expand=True)

In [97]: extract_result
Out[97]:

letter digit
0 a 3
1 b 3
2 c 2

In [98]: extractall_result = s.str.extractall(two_groups)

In [99]: extractall_result
Out[99]:

letter digit
match

0 0 a 3
1 0 b 3
2 0 c 2

In [100]: extractall_result.xs(0, level="match")
\\\Out[100]:
→˓

letter digit

(continues on next page)

10.4. Extracting Substrings 673

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

0 a 3
1 b 3
2 c 2

Index also supports .str.extractall. It returns a DataFrame which has the same result as a Series.str.
extractall with a default index (starts from 0).

New in version 0.19.0.

In [101]: pd.Index(["a1a2", "b1", "c1"]).str.extractall(two_groups)
Out[101]:

letter digit
match

0 0 a 1
1 a 2

1 0 b 1
2 0 c 1

In [102]: pd.Series(["a1a2", "b1", "c1"]).str.extractall(two_groups)
\\\Out[102]:
→˓

letter digit
match

0 0 a 1
1 a 2

1 0 b 1
2 0 c 1

10.5 Testing for Strings that Match or Contain a Pattern

You can check whether elements contain a pattern:

In [103]: pattern = r'[0-9][a-z]'

In [104]: pd.Series(['1', '2', '3a', '3b', '03c']).str.contains(pattern)
Out[104]:
0 False
1 False
2 True
3 True
4 True
dtype: bool

Or whether elements match a pattern:

In [105]: pd.Series(['1', '2', '3a', '3b', '03c']).str.match(pattern)
Out[105]:
0 False
1 False
2 True
3 True
4 False
dtype: bool

674 Chapter 10. Working with Text Data

pandas: powerful Python data analysis toolkit, Release 0.23.4

The distinction between match and contains is strictness: match relies on strict re.match, while contains
relies on re.search.

Methods like match, contains, startswith, and endswith take an extra na argument so missing values can
be considered True or False:

In [106]: s4 = pd.Series(['A', 'B', 'C', 'Aaba', 'Baca', np.nan, 'CABA', 'dog', 'cat
→˓'])

In [107]: s4.str.contains('A', na=False)
Out[107]:
0 True
1 False
2 False
3 True
4 False
5 False
6 True
7 False
8 False
dtype: bool

10.6 Creating Indicator Variables

You can extract dummy variables from string columns. For example if they are separated by a '|':

In [108]: s = pd.Series(['a', 'a|b', np.nan, 'a|c'])

In [109]: s.str.get_dummies(sep='|')
Out[109]:

a b c
0 1 0 0
1 1 1 0
2 0 0 0
3 1 0 1

String Index also supports get_dummies which returns a MultiIndex.

New in version 0.18.1.

In [110]: idx = pd.Index(['a', 'a|b', np.nan, 'a|c'])

In [111]: idx.str.get_dummies(sep='|')
Out[111]:
MultiIndex(levels=[[0, 1], [0, 1], [0, 1]],

labels=[[1, 1, 0, 1], [0, 1, 0, 0], [0, 0, 0, 1]],
names=['a', 'b', 'c'])

See also get_dummies().

10.7 Method Summary

10.6. Creating Indicator Variables 675

pandas: powerful Python data analysis toolkit, Release 0.23.4

Method Description
cat() Concatenate strings
split() Split strings on delimiter
rsplit() Split strings on delimiter working from the end of the string
get() Index into each element (retrieve i-th element)
join() Join strings in each element of the Series with passed separator
get_dummies() Split strings on the delimiter returning DataFrame of dummy variables
contains() Return boolean array if each string contains pattern/regex
replace() Replace occurrences of pattern/regex/string with some other string or the return value of a

callable given the occurrence
repeat() Duplicate values (s.str.repeat(3) equivalent to x * 3)
pad() Add whitespace to left, right, or both sides of strings
center() Equivalent to str.center
ljust() Equivalent to str.ljust
rjust() Equivalent to str.rjust
zfill() Equivalent to str.zfill
wrap() Split long strings into lines with length less than a given width
slice() Slice each string in the Series
slice_replace() Replace slice in each string with passed value
count() Count occurrences of pattern
startswith() Equivalent to str.startswith(pat) for each element
endswith() Equivalent to str.endswith(pat) for each element
findall() Compute list of all occurrences of pattern/regex for each string
match() Call re.match on each element, returning matched groups as list
extract() Call re.search on each element, returning DataFrame with one row for each element

and one column for each regex capture group
extractall() Call re.findall on each element, returning DataFrame with one row for each match

and one column for each regex capture group
len() Compute string lengths
strip() Equivalent to str.strip
rstrip() Equivalent to str.rstrip
lstrip() Equivalent to str.lstrip
partition() Equivalent to str.partition
rpartition() Equivalent to str.rpartition
lower() Equivalent to str.lower
upper() Equivalent to str.upper
find() Equivalent to str.find
rfind() Equivalent to str.rfind
index() Equivalent to str.index
rindex() Equivalent to str.rindex
capitalize() Equivalent to str.capitalize
swapcase() Equivalent to str.swapcase
normalize() Return Unicode normal form. Equivalent to unicodedata.normalize
translate() Equivalent to str.translate
isalnum() Equivalent to str.isalnum
isalpha() Equivalent to str.isalpha
isdigit() Equivalent to str.isdigit
isspace() Equivalent to str.isspace
islower() Equivalent to str.islower
isupper() Equivalent to str.isupper
istitle() Equivalent to str.istitle

Continued on next page

676 Chapter 10. Working with Text Data

pandas: powerful Python data analysis toolkit, Release 0.23.4

Table 1 – continued from previous page
Method Description
isnumeric() Equivalent to str.isnumeric
isdecimal() Equivalent to str.isdecimal

10.7. Method Summary 677

pandas: powerful Python data analysis toolkit, Release 0.23.4

678 Chapter 10. Working with Text Data

CHAPTER

ELEVEN

OPTIONS AND SETTINGS

11.1 Overview

pandas has an options system that lets you customize some aspects of its behaviour, display-related options being those
the user is most likely to adjust.

Options have a full “dotted-style”, case-insensitive name (e.g. display.max_rows). You can get/set options
directly as attributes of the top-level options attribute:

In [1]: import pandas as pd

In [2]: pd.options.display.max_rows
Out[2]: 15

In [3]: pd.options.display.max_rows = 999

In [4]: pd.options.display.max_rows
Out[4]: 999

The API is composed of 5 relevant functions, available directly from the pandas namespace:

• get_option() / set_option() - get/set the value of a single option.

• reset_option() - reset one or more options to their default value.

• describe_option() - print the descriptions of one or more options.

• option_context() - execute a codeblock with a set of options that revert to prior settings after execution.

Note: Developers can check out pandas/core/config.py for more information.

All of the functions above accept a regexp pattern (re.search style) as an argument, and so passing in a substring
will work - as long as it is unambiguous:

In [5]: pd.get_option("display.max_rows")
Out[5]: 999

In [6]: pd.set_option("display.max_rows",101)

In [7]: pd.get_option("display.max_rows")
Out[7]: 101

In [8]: pd.set_option("max_r",102)

In [9]: pd.get_option("display.max_rows")
Out[9]: 102

679

https://github.com/pandas-dev/pandas/blob/master/pandas/core/config.py

pandas: powerful Python data analysis toolkit, Release 0.23.4

The following will not work because it matches multiple option names, e.g. display.max_colwidth,
display.max_rows, display.max_columns:

In [10]: try:
....: pd.get_option("column")
....: except KeyError as e:
....: print(e)
....:

'Pattern matched multiple keys'

Note: Using this form of shorthand may cause your code to break if new options with similar names are added in
future versions.

You can get a list of available options and their descriptions with describe_option. When called with no argu-
ment describe_option will print out the descriptions for all available options.

11.2 Getting and Setting Options

As described above, get_option() and set_option() are available from the pandas namespace. To change an
option, call set_option('option regex', new_value).

In [11]: pd.get_option('mode.sim_interactive')
Out[11]: False

In [12]: pd.set_option('mode.sim_interactive', True)

In [13]: pd.get_option('mode.sim_interactive')
Out[13]: True

Note: The option ‘mode.sim_interactive’ is mostly used for debugging purposes.

All options also have a default value, and you can use reset_option to do just that:

In [14]: pd.get_option("display.max_rows")
Out[14]: 60

In [15]: pd.set_option("display.max_rows",999)

In [16]: pd.get_option("display.max_rows")
Out[16]: 999

In [17]: pd.reset_option("display.max_rows")

In [18]: pd.get_option("display.max_rows")
Out[18]: 60

It’s also possible to reset multiple options at once (using a regex):

In [19]: pd.reset_option("^display")

option_context context manager has been exposed through the top-level API, allowing you to execute code with
given option values. Option values are restored automatically when you exit the with block:

In [20]: with pd.option_context("display.max_rows",10,"display.max_columns", 5):
....: print(pd.get_option("display.max_rows"))
....: print(pd.get_option("display.max_columns"))

(continues on next page)

680 Chapter 11. Options and Settings

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

....:
10
5

In [21]: print(pd.get_option("display.max_rows"))
\\\\\60

In [22]: print(pd.get_option("display.max_columns"))
\\\\\\\\0

11.3 Setting Startup Options in python/ipython Environment

Using startup scripts for the python/ipython environment to import pandas and set options makes working with pandas
more efficient. To do this, create a .py or .ipy script in the startup directory of the desired profile. An example where
the startup folder is in a default ipython profile can be found at:

$IPYTHONDIR/profile_default/startup

More information can be found in the ipython documentation. An example startup script for pandas is displayed
below:

import pandas as pd
pd.set_option('display.max_rows', 999)
pd.set_option('precision', 5)

11.4 Frequently Used Options

The following is a walkthrough of the more frequently used display options.

display.max_rows and display.max_columns sets the maximum number of rows and columns displayed
when a frame is pretty-printed. Truncated lines are replaced by an ellipsis.

In [23]: df = pd.DataFrame(np.random.randn(7,2))

In [24]: pd.set_option('max_rows', 7)

In [25]: df
Out[25]:

0 1
0 0.469112 -0.282863
1 -1.509059 -1.135632
2 1.212112 -0.173215
3 0.119209 -1.044236
4 -0.861849 -2.104569
5 -0.494929 1.071804
6 0.721555 -0.706771

In [26]: pd.set_option('max_rows', 5)

In [27]: df
Out[27]:

(continues on next page)

11.3. Setting Startup Options in python/ipython Environment 681

http://ipython.org/ipython-doc/stable/interactive/tutorial.html#startup-files

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

0 1
0 0.469112 -0.282863
1 -1.509059 -1.135632
..
5 -0.494929 1.071804
6 0.721555 -0.706771

[7 rows x 2 columns]

In [28]: pd.reset_option('max_rows')

display.expand_frame_repr allows for the representation of dataframes to stretch across pages, wrapped over
the full column vs row-wise.

In [29]: df = pd.DataFrame(np.random.randn(5,10))

In [30]: pd.set_option('expand_frame_repr', True)

In [31]: df
Out[31]:

0 1 2 3 4 5 6 7
→˓ 8 9
0 -1.039575 0.271860 -0.424972 0.567020 0.276232 -1.087401 -0.673690 0.113648 -1.
→˓478427 0.524988
1 0.404705 0.577046 -1.715002 -1.039268 -0.370647 -1.157892 -1.344312 0.844885 1.
→˓075770 -0.109050
2 1.643563 -1.469388 0.357021 -0.674600 -1.776904 -0.968914 -1.294524 0.413738 0.
→˓276662 -0.472035
3 -0.013960 -0.362543 -0.006154 -0.923061 0.895717 0.805244 -1.206412 2.565646 1.
→˓431256 1.340309
4 -1.170299 -0.226169 0.410835 0.813850 0.132003 -0.827317 -0.076467 -1.187678 1.
→˓130127 -1.436737

In [32]: pd.set_option('expand_frame_repr', False)

In [33]: df
Out[33]:

0 1 2 3 4 5 6 7
→˓ 8 9
0 -1.039575 0.271860 -0.424972 0.567020 0.276232 -1.087401 -0.673690 0.113648 -1.
→˓478427 0.524988
1 0.404705 0.577046 -1.715002 -1.039268 -0.370647 -1.157892 -1.344312 0.844885 1.
→˓075770 -0.109050
2 1.643563 -1.469388 0.357021 -0.674600 -1.776904 -0.968914 -1.294524 0.413738 0.
→˓276662 -0.472035
3 -0.013960 -0.362543 -0.006154 -0.923061 0.895717 0.805244 -1.206412 2.565646 1.
→˓431256 1.340309
4 -1.170299 -0.226169 0.410835 0.813850 0.132003 -0.827317 -0.076467 -1.187678 1.
→˓130127 -1.436737

In [34]: pd.reset_option('expand_frame_repr')

display.large_repr lets you select whether to display dataframes that exceed max_columns or max_rows
as a truncated frame, or as a summary.

In [35]: df = pd.DataFrame(np.random.randn(10,10))

(continues on next page)

682 Chapter 11. Options and Settings

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

In [36]: pd.set_option('max_rows', 5)

In [37]: pd.set_option('large_repr', 'truncate')

In [38]: df
Out[38]:

0 1 2 3 4 5 6 7
→˓ 8 9
0 -1.413681 1.607920 1.024180 0.569605 0.875906 -2.211372 0.974466 -2.006747 -0.
→˓410001 -0.078638
1 0.545952 -1.219217 -1.226825 0.769804 -1.281247 -0.727707 -0.121306 -0.097883 0.
→˓695775 0.341734
..
→˓
8 -2.484478 -0.281461 0.030711 0.109121 1.126203 -0.977349 1.474071 -0.064034 -1.
→˓282782 0.781836
9 -1.071357 0.441153 2.353925 0.583787 0.221471 -0.744471 0.758527 1.729689 -0.
→˓964980 -0.845696

[10 rows x 10 columns]

In [39]: pd.set_option('large_repr', 'info')

In [40]: df
Out[40]:
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 10 entries, 0 to 9
Data columns (total 10 columns):
0 10 non-null float64
1 10 non-null float64
2 10 non-null float64
3 10 non-null float64
4 10 non-null float64
5 10 non-null float64
6 10 non-null float64
7 10 non-null float64
8 10 non-null float64
9 10 non-null float64
dtypes: float64(10)
memory usage: 880.0 bytes

In [41]: pd.reset_option('large_repr')

In [42]: pd.reset_option('max_rows')

display.max_colwidth sets the maximum width of columns. Cells of this length or longer will be truncated
with an ellipsis.

In [43]: df = pd.DataFrame(np.array([['foo', 'bar', 'bim', 'uncomfortably long string
→˓'],

....: ['horse', 'cow', 'banana', 'apple']]))

....:

In [44]: pd.set_option('max_colwidth',40)

(continues on next page)

11.4. Frequently Used Options 683

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

In [45]: df
Out[45]:

0 1 2 3
0 foo bar bim uncomfortably long string
1 horse cow banana apple

In [46]: pd.set_option('max_colwidth', 6)

In [47]: df
Out[47]:

0 1 2 3
0 foo bar bim un...
1 horse cow ba... apple

In [48]: pd.reset_option('max_colwidth')

display.max_info_columns sets a threshold for when by-column info will be given.

In [49]: df = pd.DataFrame(np.random.randn(10,10))

In [50]: pd.set_option('max_info_columns', 11)

In [51]: df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 10 entries, 0 to 9
Data columns (total 10 columns):
0 10 non-null float64
1 10 non-null float64
2 10 non-null float64
3 10 non-null float64
4 10 non-null float64
5 10 non-null float64
6 10 non-null float64
7 10 non-null float64
8 10 non-null float64
9 10 non-null float64
dtypes: float64(10)
memory usage: 880.0 bytes

In [52]: pd.set_option('max_info_columns', 5)

In [53]: df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 10 entries, 0 to 9
Columns: 10 entries, 0 to 9
dtypes: float64(10)
memory usage: 880.0 bytes

In [54]: pd.reset_option('max_info_columns')

display.max_info_rows: df.info() will usually show null-counts for each column. For large frames this
can be quite slow. max_info_rows and max_info_cols limit this null check only to frames with smaller
dimensions then specified. Note that you can specify the option df.info(null_counts=True) to override on
showing a particular frame.

In [55]: df = pd.DataFrame(np.random.choice([0,1,np.nan], size=(10,10)))

(continues on next page)

684 Chapter 11. Options and Settings

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

In [56]: df
Out[56]:

0 1 2 3 4 5 6 7 8 9
0 0.0 1.0 1.0 0.0 1.0 1.0 0.0 NaN 1.0 NaN
1 1.0 NaN 0.0 0.0 1.0 1.0 NaN 1.0 0.0 1.0
2 NaN NaN NaN 1.0 1.0 0.0 NaN 0.0 1.0 NaN
3 0.0 1.0 1.0 NaN 0.0 NaN 1.0 NaN NaN 0.0
4 0.0 1.0 0.0 0.0 1.0 0.0 0.0 NaN 0.0 0.0
5 0.0 NaN 1.0 NaN NaN NaN NaN 0.0 1.0 NaN
6 0.0 1.0 0.0 0.0 NaN 1.0 NaN NaN 0.0 NaN
7 0.0 NaN 1.0 1.0 NaN 1.0 1.0 1.0 1.0 NaN
8 0.0 0.0 NaN 0.0 NaN 1.0 0.0 0.0 NaN NaN
9 NaN NaN 0.0 NaN NaN NaN 0.0 1.0 1.0 NaN

In [57]: pd.set_option('max_info_rows', 11)

In [58]: df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 10 entries, 0 to 9
Data columns (total 10 columns):
0 8 non-null float64
1 5 non-null float64
2 8 non-null float64
3 7 non-null float64
4 5 non-null float64
5 7 non-null float64
6 6 non-null float64
7 6 non-null float64
8 8 non-null float64
9 3 non-null float64
dtypes: float64(10)
memory usage: 880.0 bytes

In [59]: pd.set_option('max_info_rows', 5)

In [60]: df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 10 entries, 0 to 9
Data columns (total 10 columns):
0 float64
1 float64
2 float64
3 float64
4 float64
5 float64
6 float64
7 float64
8 float64
9 float64
dtypes: float64(10)
memory usage: 880.0 bytes

In [61]: pd.reset_option('max_info_rows')

display.precision sets the output display precision in terms of decimal places. This is only a suggestion.

11.4. Frequently Used Options 685

pandas: powerful Python data analysis toolkit, Release 0.23.4

In [62]: df = pd.DataFrame(np.random.randn(5,5))

In [63]: pd.set_option('precision',7)

In [64]: df
Out[64]:

0 1 2 3 4
0 -2.0490276 2.8466122 -1.2080493 -0.4503923 2.4239054
1 0.1211080 0.2669165 0.8438259 -0.2225400 2.0219807
2 -0.7167894 -2.2244851 -1.0611370 -0.2328247 0.4307933
3 -0.6654779 1.8298075 -1.4065093 1.0782481 0.3227741
4 0.2003243 0.8900241 0.1948132 0.3516326 0.4488815

In [65]: pd.set_option('precision',4)

In [66]: df
Out[66]:

0 1 2 3 4
0 -2.0490 2.8466 -1.2080 -0.4504 2.4239
1 0.1211 0.2669 0.8438 -0.2225 2.0220
2 -0.7168 -2.2245 -1.0611 -0.2328 0.4308
3 -0.6655 1.8298 -1.4065 1.0782 0.3228
4 0.2003 0.8900 0.1948 0.3516 0.4489

display.chop_threshold sets at what level pandas rounds to zero when it displays a Series of DataFrame. This
setting does not change the precision at which the number is stored.

In [67]: df = pd.DataFrame(np.random.randn(6,6))

In [68]: pd.set_option('chop_threshold', 0)

In [69]: df
Out[69]:

0 1 2 3 4 5
0 -0.1979 0.9657 -1.5229 -0.1166 0.2956 -1.0477
1 1.6406 1.9058 2.7721 0.0888 -1.1442 -0.6334
2 0.9254 -0.0064 -0.8204 -0.6009 -1.0393 0.8248
3 -0.8241 -0.3377 -0.9278 -0.8401 0.2485 -0.1093
4 0.4320 -0.4607 0.3365 -3.2076 -1.5359 0.4098
5 -0.6731 -0.7411 -0.1109 -2.6729 0.8645 0.0609

In [70]: pd.set_option('chop_threshold', .5)

In [71]: df
Out[71]:

0 1 2 3 4 5
0 0.0000 0.9657 -1.5229 0.0000 0.0000 -1.0477
1 1.6406 1.9058 2.7721 0.0000 -1.1442 -0.6334
2 0.9254 0.0000 -0.8204 -0.6009 -1.0393 0.8248
3 -0.8241 0.0000 -0.9278 -0.8401 0.0000 0.0000
4 0.0000 0.0000 0.0000 -3.2076 -1.5359 0.0000
5 -0.6731 -0.7411 0.0000 -2.6729 0.8645 0.0000

In [72]: pd.reset_option('chop_threshold')

display.colheader_justify controls the justification of the headers. The options are ‘right’, and ‘left’.

686 Chapter 11. Options and Settings

pandas: powerful Python data analysis toolkit, Release 0.23.4

In [73]: df = pd.DataFrame(np.array([np.random.randn(6), np.random.randint(1,9,6)*.1,
→˓np.zeros(6)]).T,

....: columns=['A', 'B', 'C'], dtype='float')

....:

In [74]: pd.set_option('colheader_justify', 'right')

In [75]: df
Out[75]:

A B C
0 0.9331 0.3 0.0
1 0.2888 0.2 0.0
2 1.3250 0.2 0.0
3 0.5892 0.7 0.0
4 0.5314 0.1 0.0
5 -1.1987 0.7 0.0

In [76]: pd.set_option('colheader_justify', 'left')

In [77]: df
Out[77]:

A B C
0 0.9331 0.3 0.0
1 0.2888 0.2 0.0
2 1.3250 0.2 0.0
3 0.5892 0.7 0.0
4 0.5314 0.1 0.0
5 -1.1987 0.7 0.0

In [78]: pd.reset_option('colheader_justify')

11.5 Available Options

Option Default Function
display.chop_threshold None If set to a float value, all float values smaller then the given threshold will be displayed as exactly 0 by repr and friends.
display.colheader_justify right Controls the justification of column headers. used by DataFrameFormatter.
display.column_space 12 No description available.
display.date_dayfirst False When True, prints and parses dates with the day first, eg 20/01/2005
display.date_yearfirst False When True, prints and parses dates with the year first, eg 2005/01/20
display.encoding UTF-8 Defaults to the detected encoding of the console. Specifies the encoding to be used for strings returned by to_string, these are generally strings meant to be displayed on the console.
display.expand_frame_repr True Whether to print out the full DataFrame repr for wide DataFrames across multiple lines, max_columns is still respected, but the output will wrap-around across multiple “pages” if its width exceeds display.width.
display.float_format None The callable should accept a floating point number and return a string with the desired format of the number. This is used in some places like SeriesFormatter. See core.format.EngFormatter for an example.
display.large_repr truncate For DataFrames exceeding max_rows/max_cols, the repr (and HTML repr) can show a truncated table (the default), or switch to the view from df.info() (the behaviour in earlier versions of pandas). allowable settings, [‘truncate’, ‘info’]
display.latex.repr False Whether to produce a latex DataFrame representation for jupyter frontends that support it.
display.latex.escape True Escapes special characters in DataFrames, when using the to_latex method.
display.latex.longtable False Specifies if the to_latex method of a DataFrame uses the longtable format.
display.latex.multicolumn True Combines columns when using a MultiIndex
display.latex.multicolumn_format ‘l’ Alignment of multicolumn labels
display.latex.multirow False Combines rows when using a MultiIndex. Centered instead of top-aligned, separated by clines.
display.max_columns 0 or 20 max_rows and max_columns are used in __repr__() methods to decide if to_string() or info() is used to render an object to a string. In case Python/IPython is running in a terminal this is set to 0 by default and pandas will correctly auto-detect the width of the terminal and switch to a smaller format in case all columns would not fit vertically. The IPython notebook, IPython qtconsole, or IDLE do not run in a terminal and hence it is not possible to do correct auto-detection, in which case the default is set to 20. ‘None’ value means unlimited.
display.max_colwidth 50 The maximum width in characters of a column in the repr of a pandas data structure. When the column overflows, a “. . . ” placeholder is embedded in the output.

Continued on next page

11.5. Available Options 687

pandas: powerful Python data analysis toolkit, Release 0.23.4

Table 1 – continued from previous page
Option Default Function

display.max_info_columns 100 max_info_columns is used in DataFrame.info method to decide if per column information will be printed.
display.max_info_rows 1690785 df.info() will usually show null-counts for each column. For large frames this can be quite slow. max_info_rows and max_info_cols limit this null check only to frames with smaller dimensions then specified.
display.max_rows 60 This sets the maximum number of rows pandas should output when printing out various output. For example, this value determines whether the repr() for a dataframe prints out fully or just a summary repr. ‘None’ value means unlimited.
display.max_seq_items 100 when pretty-printing a long sequence, no more then max_seq_items will be printed. If items are omitted, they will be denoted by the addition of “. . . ” to the resulting string. If set to None, the number of items to be printed is unlimited.
display.memory_usage True This specifies if the memory usage of a DataFrame should be displayed when the df.info() method is invoked.
display.multi_sparse True “Sparsify” MultiIndex display (don’t display repeated elements in outer levels within groups)
display.notebook_repr_html True When True, IPython notebook will use html representation for pandas objects (if it is available).
display.pprint_nest_depth 3 Controls the number of nested levels to process when pretty-printing
display.precision 6 Floating point output precision in terms of number of places after the decimal, for regular formatting as well as scientific notation. Similar to numpy’s precision print option
display.show_dimensions truncate Whether to print out dimensions at the end of DataFrame repr. If ‘truncate’ is specified, only print out the dimensions if the frame is truncated (e.g. not display all rows and/or columns)
display.width 80 Width of the display in characters. In case python/IPython is running in a terminal this can be set to None and pandas will correctly auto-detect the width. Note that the IPython notebook, IPython qtconsole, or IDLE do not run in a terminal and hence it is not possible to correctly detect the width.
display.html.table_schema False Whether to publish a Table Schema representation for frontends that support it.
display.html.border 1 A border=value attribute is inserted in the <table> tag for the DataFrame HTML repr.
display.html.use_mathjax True When True, Jupyter notebook will process table contents using MathJax, rendering mathematical expressions enclosed by the dollar symbol.
io.excel.xls.writer xlwt The default Excel writer engine for ‘xls’ files.
io.excel.xlsm.writer openpyxl The default Excel writer engine for ‘xlsm’ files. Available options: ‘openpyxl’ (the default).
io.excel.xlsx.writer openpyxl The default Excel writer engine for ‘xlsx’ files.
io.hdf.default_format None default format writing format, if None, then put will default to ‘fixed’ and append will default to ‘table’
io.hdf.dropna_table True drop ALL nan rows when appending to a table
io.parquet.engine None The engine to use as a default for parquet reading and writing. If None then try ‘pyarrow’ and ‘fastparquet’
mode.chained_assignment warn Controls SettingWithCopyWarning: ‘raise’, ‘warn’, or None. Raise an exception, warn, or no action if trying to use chained assignment.
mode.sim_interactive False Whether to simulate interactive mode for purposes of testing.
mode.use_inf_as_na False True means treat None, NaN, -INF, INF as NA (old way), False means None and NaN are null, but INF, -INF are not NA (new way).
compute.use_bottleneck True Use the bottleneck library to accelerate computation if it is installed.
compute.use_numexpr True Use the numexpr library to accelerate computation if it is installed.
plotting.matplotlib.register_converters True Register custom converters with matplotlib. Set to False to de-register.

11.6 Number Formatting

pandas also allows you to set how numbers are displayed in the console. This option is not set through the
set_options API.

Use the set_eng_float_format function to alter the floating-point formatting of pandas objects to produce a
particular format.

For instance:

In [79]: import numpy as np

In [80]: pd.set_eng_float_format(accuracy=3, use_eng_prefix=True)

In [81]: s = pd.Series(np.random.randn(5), index=['a', 'b', 'c', 'd', 'e'])

In [82]: s/1.e3
Out[82]:
a -236.866u
b 846.974u
c -685.597u
d 609.099u
e -303.961u
dtype: float64

(continues on next page)

688 Chapter 11. Options and Settings

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

In [83]: s/1.e6
\\\Out[83]:
→˓

a -236.866n
b 846.974n
c -685.597n
d 609.099n
e -303.961n
dtype: float64

To round floats on a case-by-case basis, you can also use round() and round().

11.7 Unicode Formatting

Warning: Enabling this option will affect the performance for printing of DataFrame and Series (about 2 times
slower). Use only when it is actually required.

Some East Asian countries use Unicode characters whose width corresponds to two Latin characters. If a DataFrame
or Series contains these characters, the default output mode may not align them properly.

Note: Screen captures are attached for each output to show the actual results.

In [84]: df = pd.DataFrame({u'': ['UK', u''], u'': ['Alice', u'']})

In [85]: df;

Enabling display.unicode.east_asian_width allows pandas to check each character’s “East Asian Width”
property. These characters can be aligned properly by setting this option to True. However, this will result in longer
render times than the standard len function.

In [86]: pd.set_option('display.unicode.east_asian_width', True)

In [87]: df;

In addition, Unicode characters whose width is “Ambiguous” can either be 1 or 2 characters wide depending on the
terminal setting or encoding. The option display.unicode.ambiguous_as_wide can be used to handle the
ambiguity.

11.7. Unicode Formatting 689

pandas: powerful Python data analysis toolkit, Release 0.23.4

By default, an “Ambiguous” character’s width, such as “¡” (inverted exclamation) in the example below, is taken to be
1.

In [88]: df = pd.DataFrame({'a': ['xxx', u'¡¡'], 'b': ['yyy', u'¡¡']})

In [89]: df;

Enabling display.unicode.ambiguous_as_wide makes pandas interpret these characters’ widths to be 2.
(Note that this option will only be effective when display.unicode.east_asian_width is enabled.)

However, setting this option incorrectly for your terminal will cause these characters to be aligned incorrectly:

In [90]: pd.set_option('display.unicode.ambiguous_as_wide', True)

In [91]: df;

11.8 Table Schema Display

New in version 0.20.0.

DataFrame and Serieswill publish a Table Schema representation by default. False by default, this can be enabled
globally with the display.html.table_schema option:

In [92]: pd.set_option('display.html.table_schema', True)

Only 'display.max_rows' are serialized and published.

690 Chapter 11. Options and Settings

CHAPTER

TWELVE

INDEXING AND SELECTING DATA

The axis labeling information in pandas objects serves many purposes:

• Identifies data (i.e. provides metadata) using known indicators, important for analysis, visualization, and inter-
active console display.

• Enables automatic and explicit data alignment.

• Allows intuitive getting and setting of subsets of the data set.

In this section, we will focus on the final point: namely, how to slice, dice, and generally get and set subsets of pandas
objects. The primary focus will be on Series and DataFrame as they have received more development attention in this
area.

Note: The Python and NumPy indexing operators [] and attribute operator . provide quick and easy access to pandas
data structures across a wide range of use cases. This makes interactive work intuitive, as there’s little new to learn if
you already know how to deal with Python dictionaries and NumPy arrays. However, since the type of the data to be
accessed isn’t known in advance, directly using standard operators has some optimization limits. For production code,
we recommended that you take advantage of the optimized pandas data access methods exposed in this chapter.

Warning: Whether a copy or a reference is returned for a setting operation, may depend on the context. This is
sometimes called chained assignment and should be avoided. See Returning a View versus Copy.

Warning: Indexing on an integer-based Index with floats has been clarified in 0.18.0, for a summary of the
changes, see here.

See the MultiIndex / Advanced Indexing for MultiIndex and more advanced indexing documentation.

See the cookbook for some advanced strategies.

12.1 Different Choices for Indexing

Object selection has had a number of user-requested additions in order to support more explicit location based index-
ing. Pandas now supports three types of multi-axis indexing.

• .loc is primarily label based, but may also be used with a boolean array. .loc will raise KeyError when
the items are not found. Allowed inputs are:

691

pandas: powerful Python data analysis toolkit, Release 0.23.4

– A single label, e.g. 5 or 'a' (Note that 5 is interpreted as a label of the index. This use is not an integer
position along the index.).

– A list or array of labels ['a', 'b', 'c'].

– A slice object with labels 'a':'f' (Note that contrary to usual python slices, both the start and the stop
are included, when present in the index! See Slicing with labels.).

– A boolean array

– A callable function with one argument (the calling Series, DataFrame or Panel) and that returns valid
output for indexing (one of the above).

New in version 0.18.1.

See more at Selection by Label.

• .iloc is primarily integer position based (from 0 to length-1 of the axis), but may also be used with a
boolean array. .iloc will raise IndexError if a requested indexer is out-of-bounds, except slice indexers
which allow out-of-bounds indexing. (this conforms with Python/NumPy slice semantics). Allowed inputs are:

– An integer e.g. 5.

– A list or array of integers [4, 3, 0].

– A slice object with ints 1:7.

– A boolean array.

– A callable function with one argument (the calling Series, DataFrame or Panel) and that returns valid
output for indexing (one of the above).

New in version 0.18.1.

See more at Selection by Position, Advanced Indexing and Advanced Hierarchical.

• .loc, .iloc, and also [] indexing can accept a callable as indexer. See more at Selection By Callable.

Getting values from an object with multi-axes selection uses the following notation (using .loc as an example, but
the following applies to .iloc as well). Any of the axes accessors may be the null slice :. Axes left out of the
specification are assumed to be :, e.g. p.loc['a'] is equivalent to p.loc['a', :, :].

Object Type Indexers
Series s.loc[indexer]
DataFrame df.loc[row_indexer,column_indexer]
Panel p.loc[item_indexer,major_indexer,

minor_indexer]

12.2 Basics

As mentioned when introducing the data structures in the last section, the primary function of indexing with [] (a.k.a.
__getitem__ for those familiar with implementing class behavior in Python) is selecting out lower-dimensional
slices. The following table shows return type values when indexing pandas objects with []:

Object Type Selection Return Value Type
Series series[label] scalar value
DataFrame frame[colname] Series corresponding to colname
Panel panel[itemname] DataFrame corresponding to the itemname

692 Chapter 12. Indexing and Selecting Data

pandas: powerful Python data analysis toolkit, Release 0.23.4

Here we construct a simple time series data set to use for illustrating the indexing functionality:

In [1]: dates = pd.date_range('1/1/2000', periods=8)

In [2]: df = pd.DataFrame(np.random.randn(8, 4), index=dates, columns=['A', 'B', 'C',
→˓'D'])

In [3]: df
Out[3]:

A B C D
2000-01-01 0.469112 -0.282863 -1.509059 -1.135632
2000-01-02 1.212112 -0.173215 0.119209 -1.044236
2000-01-03 -0.861849 -2.104569 -0.494929 1.071804
2000-01-04 0.721555 -0.706771 -1.039575 0.271860
2000-01-05 -0.424972 0.567020 0.276232 -1.087401
2000-01-06 -0.673690 0.113648 -1.478427 0.524988
2000-01-07 0.404705 0.577046 -1.715002 -1.039268
2000-01-08 -0.370647 -1.157892 -1.344312 0.844885

In [4]: panel = pd.Panel({'one' : df, 'two' : df - df.mean()})

In [5]: panel
Out[5]:
<class 'pandas.core.panel.Panel'>
Dimensions: 2 (items) x 8 (major_axis) x 4 (minor_axis)
Items axis: one to two
Major_axis axis: 2000-01-01 00:00:00 to 2000-01-08 00:00:00
Minor_axis axis: A to D

Note: None of the indexing functionality is time series specific unless specifically stated.

Thus, as per above, we have the most basic indexing using []:

In [6]: s = df['A']

In [7]: s[dates[5]]
Out[7]: -0.67368970808837059

In [8]: panel['two']
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\Out[8]:

A B C D
2000-01-01 0.409571 0.113086 -0.610826 -0.936507
2000-01-02 1.152571 0.222735 1.017442 -0.845111
2000-01-03 -0.921390 -1.708620 0.403304 1.270929
2000-01-04 0.662014 -0.310822 -0.141342 0.470985
2000-01-05 -0.484513 0.962970 1.174465 -0.888276
2000-01-06 -0.733231 0.509598 -0.580194 0.724113
2000-01-07 0.345164 0.972995 -0.816769 -0.840143
2000-01-08 -0.430188 -0.761943 -0.446079 1.044010

You can pass a list of columns to [] to select columns in that order. If a column is not contained in the DataFrame, an
exception will be raised. Multiple columns can also be set in this manner:

In [9]: df
Out[9]:

A B C D

(continues on next page)

12.2. Basics 693

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

2000-01-01 0.469112 -0.282863 -1.509059 -1.135632
2000-01-02 1.212112 -0.173215 0.119209 -1.044236
2000-01-03 -0.861849 -2.104569 -0.494929 1.071804
2000-01-04 0.721555 -0.706771 -1.039575 0.271860
2000-01-05 -0.424972 0.567020 0.276232 -1.087401
2000-01-06 -0.673690 0.113648 -1.478427 0.524988
2000-01-07 0.404705 0.577046 -1.715002 -1.039268
2000-01-08 -0.370647 -1.157892 -1.344312 0.844885

In [10]: df[['B', 'A']] = df[['A', 'B']]

In [11]: df
Out[11]:

A B C D
2000-01-01 -0.282863 0.469112 -1.509059 -1.135632
2000-01-02 -0.173215 1.212112 0.119209 -1.044236
2000-01-03 -2.104569 -0.861849 -0.494929 1.071804
2000-01-04 -0.706771 0.721555 -1.039575 0.271860
2000-01-05 0.567020 -0.424972 0.276232 -1.087401
2000-01-06 0.113648 -0.673690 -1.478427 0.524988
2000-01-07 0.577046 0.404705 -1.715002 -1.039268
2000-01-08 -1.157892 -0.370647 -1.344312 0.844885

You may find this useful for applying a transform (in-place) to a subset of the columns.

Warning: pandas aligns all AXES when setting Series and DataFrame from .loc, and .iloc.

This will not modify df because the column alignment is before value assignment.

In [12]: df[['A', 'B']]
Out[12]:

A B
2000-01-01 -0.282863 0.469112
2000-01-02 -0.173215 1.212112
2000-01-03 -2.104569 -0.861849
2000-01-04 -0.706771 0.721555
2000-01-05 0.567020 -0.424972
2000-01-06 0.113648 -0.673690
2000-01-07 0.577046 0.404705
2000-01-08 -1.157892 -0.370647

In [13]: df.loc[:,['B', 'A']] = df[['A', 'B']]

In [14]: df[['A', 'B']]
Out[14]:

A B
2000-01-01 -0.282863 0.469112
2000-01-02 -0.173215 1.212112
2000-01-03 -2.104569 -0.861849
2000-01-04 -0.706771 0.721555
2000-01-05 0.567020 -0.424972
2000-01-06 0.113648 -0.673690
2000-01-07 0.577046 0.404705
2000-01-08 -1.157892 -0.370647

The correct way to swap column values is by using raw values:

694 Chapter 12. Indexing and Selecting Data

pandas: powerful Python data analysis toolkit, Release 0.23.4

In [15]: df.loc[:,['B', 'A']] = df[['A', 'B']].values

In [16]: df[['A', 'B']]
Out[16]:

A B
2000-01-01 0.469112 -0.282863
2000-01-02 1.212112 -0.173215
2000-01-03 -0.861849 -2.104569
2000-01-04 0.721555 -0.706771
2000-01-05 -0.424972 0.567020
2000-01-06 -0.673690 0.113648
2000-01-07 0.404705 0.577046
2000-01-08 -0.370647 -1.157892

12.3 Attribute Access

You may access an index on a Series, column on a DataFrame, and an item on a Panel directly as an attribute:

In [17]: sa = pd.Series([1,2,3],index=list('abc'))

In [18]: dfa = df.copy()

In [19]: sa.b
Out[19]: 2

In [20]: dfa.A
\\\\\\\\\\\Out[20]:
2000-01-01 0.469112
2000-01-02 1.212112
2000-01-03 -0.861849
2000-01-04 0.721555
2000-01-05 -0.424972
2000-01-06 -0.673690
2000-01-07 0.404705
2000-01-08 -0.370647
Freq: D, Name: A, dtype: float64

In [21]: panel.one
\\Out[21]:
→˓

A B C D
2000-01-01 0.469112 -0.282863 -1.509059 -1.135632
2000-01-02 1.212112 -0.173215 0.119209 -1.044236
2000-01-03 -0.861849 -2.104569 -0.494929 1.071804
2000-01-04 0.721555 -0.706771 -1.039575 0.271860
2000-01-05 -0.424972 0.567020 0.276232 -1.087401
2000-01-06 -0.673690 0.113648 -1.478427 0.524988
2000-01-07 0.404705 0.577046 -1.715002 -1.039268
2000-01-08 -0.370647 -1.157892 -1.344312 0.844885

In [22]: sa.a = 5

In [23]: sa
(continues on next page)

12.3. Attribute Access 695

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

Out[23]:
a 5
b 2
c 3
dtype: int64

In [24]: dfa.A = list(range(len(dfa.index))) # ok if A already exists

In [25]: dfa
Out[25]:

A B C D
2000-01-01 0 -0.282863 -1.509059 -1.135632
2000-01-02 1 -0.173215 0.119209 -1.044236
2000-01-03 2 -2.104569 -0.494929 1.071804
2000-01-04 3 -0.706771 -1.039575 0.271860
2000-01-05 4 0.567020 0.276232 -1.087401
2000-01-06 5 0.113648 -1.478427 0.524988
2000-01-07 6 0.577046 -1.715002 -1.039268
2000-01-08 7 -1.157892 -1.344312 0.844885

In [26]: dfa['A'] = list(range(len(dfa.index))) # use this form to create a new
→˓column

In [27]: dfa
Out[27]:

A B C D
2000-01-01 0 -0.282863 -1.509059 -1.135632
2000-01-02 1 -0.173215 0.119209 -1.044236
2000-01-03 2 -2.104569 -0.494929 1.071804
2000-01-04 3 -0.706771 -1.039575 0.271860
2000-01-05 4 0.567020 0.276232 -1.087401
2000-01-06 5 0.113648 -1.478427 0.524988
2000-01-07 6 0.577046 -1.715002 -1.039268
2000-01-08 7 -1.157892 -1.344312 0.844885

Warning:

• You can use this access only if the index element is a valid Python identifier, e.g. s.1 is not allowed. See
here for an explanation of valid identifiers.

• The attribute will not be available if it conflicts with an existing method name, e.g. s.min is not allowed.

• Similarly, the attribute will not be available if it conflicts with any of the following list: index,
major_axis, minor_axis, items.

• In any of these cases, standard indexing will still work, e.g. s['1'], s['min'], and s['index'] will
access the corresponding element or column.

If you are using the IPython environment, you may also use tab-completion to see these accessible attributes.

You can also assign a dict to a row of a DataFrame:

In [28]: x = pd.DataFrame({'x': [1, 2, 3], 'y': [3, 4, 5]})

In [29]: x.iloc[1] = dict(x=9, y=99)

(continues on next page)

696 Chapter 12. Indexing and Selecting Data

https://docs.python.org/3/reference/lexical_analysis.html#identifiers

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

In [30]: x
Out[30]:

x y
0 1 3
1 9 99
2 3 5

You can use attribute access to modify an existing element of a Series or column of a DataFrame, but be careful; if
you try to use attribute access to create a new column, it creates a new attribute rather than a new column. In 0.21.0
and later, this will raise a UserWarning:

In[1]: df = pd.DataFrame({'one': [1., 2., 3.]})
In[2]: df.two = [4, 5, 6]
UserWarning: Pandas doesn't allow Series to be assigned into nonexistent columns -
→˓see https://pandas.pydata.org/pandas-docs/stable/indexing.html#attribute_access
In[3]: df
Out[3]:

one
0 1.0
1 2.0
2 3.0

12.4 Slicing ranges

The most robust and consistent way of slicing ranges along arbitrary axes is described in the Selection by Position
section detailing the .iloc method. For now, we explain the semantics of slicing using the [] operator.

With Series, the syntax works exactly as with an ndarray, returning a slice of the values and the corresponding labels:

In [31]: s[:5]
Out[31]:
2000-01-01 0.469112
2000-01-02 1.212112
2000-01-03 -0.861849
2000-01-04 0.721555
2000-01-05 -0.424972
Freq: D, Name: A, dtype: float64

In [32]: s[::2]
\\Out[32]:
→˓

2000-01-01 0.469112
2000-01-03 -0.861849
2000-01-05 -0.424972
2000-01-07 0.404705
Freq: 2D, Name: A, dtype: float64

In [33]: s[::-1]
\\Out[33]:
→˓

2000-01-08 -0.370647
2000-01-07 0.404705
2000-01-06 -0.673690
2000-01-05 -0.424972

(continues on next page)

12.4. Slicing ranges 697

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

2000-01-04 0.721555
2000-01-03 -0.861849
2000-01-02 1.212112
2000-01-01 0.469112
Freq: -1D, Name: A, dtype: float64

Note that setting works as well:

In [34]: s2 = s.copy()

In [35]: s2[:5] = 0

In [36]: s2
Out[36]:
2000-01-01 0.000000
2000-01-02 0.000000
2000-01-03 0.000000
2000-01-04 0.000000
2000-01-05 0.000000
2000-01-06 -0.673690
2000-01-07 0.404705
2000-01-08 -0.370647
Freq: D, Name: A, dtype: float64

With DataFrame, slicing inside of [] slices the rows. This is provided largely as a convenience since it is such a
common operation.

In [37]: df[:3]
Out[37]:

A B C D
2000-01-01 0.469112 -0.282863 -1.509059 -1.135632
2000-01-02 1.212112 -0.173215 0.119209 -1.044236
2000-01-03 -0.861849 -2.104569 -0.494929 1.071804

In [38]: df[::-1]
\\Out[38]:
→˓

A B C D
2000-01-08 -0.370647 -1.157892 -1.344312 0.844885
2000-01-07 0.404705 0.577046 -1.715002 -1.039268
2000-01-06 -0.673690 0.113648 -1.478427 0.524988
2000-01-05 -0.424972 0.567020 0.276232 -1.087401
2000-01-04 0.721555 -0.706771 -1.039575 0.271860
2000-01-03 -0.861849 -2.104569 -0.494929 1.071804
2000-01-02 1.212112 -0.173215 0.119209 -1.044236
2000-01-01 0.469112 -0.282863 -1.509059 -1.135632

12.5 Selection By Label

Warning: Whether a copy or a reference is returned for a setting operation, may depend on the context. This is
sometimes called chained assignment and should be avoided. See Returning a View versus Copy.

698 Chapter 12. Indexing and Selecting Data

pandas: powerful Python data analysis toolkit, Release 0.23.4

Warning:

.loc is strict when you present slicers that are not compatible (or convertible) with the index type.
For example using integers in a DatetimeIndex. These will raise a TypeError.

In [39]: dfl = pd.DataFrame(np.random.randn(5,4), columns=list('ABCD'), index=pd.
→˓date_range('20130101',periods=5))

In [40]: dfl
Out[40]:

A B C D
2013-01-01 1.075770 -0.109050 1.643563 -1.469388
2013-01-02 0.357021 -0.674600 -1.776904 -0.968914
2013-01-03 -1.294524 0.413738 0.276662 -0.472035
2013-01-04 -0.013960 -0.362543 -0.006154 -0.923061
2013-01-05 0.895717 0.805244 -1.206412 2.565646

In [4]: dfl.loc[2:3]
TypeError: cannot do slice indexing on <class 'pandas.tseries.index.DatetimeIndex'>
→˓with these indexers [2] of <type 'int'>

String likes in slicing can be convertible to the type of the index and lead to natural slicing.

In [41]: dfl.loc['20130102':'20130104']
Out[41]:

A B C D
2013-01-02 0.357021 -0.674600 -1.776904 -0.968914
2013-01-03 -1.294524 0.413738 0.276662 -0.472035
2013-01-04 -0.013960 -0.362543 -0.006154 -0.923061

Warning: Starting in 0.21.0, pandas will show a FutureWarning if indexing with a list with missing labels.
In the future this will raise a KeyError. See list-like Using loc with missing keys in a list is Deprecated.

pandas provides a suite of methods in order to have purely label based indexing. This is a strict inclusion based
protocol. Every label asked for must be in the index, or a KeyError will be raised. When slicing, both the start
bound AND the stop bound are included, if present in the index. Integers are valid labels, but they refer to the label
and not the position.

The .loc attribute is the primary access method. The following are valid inputs:

• A single label, e.g. 5 or 'a' (Note that 5 is interpreted as a label of the index. This use is not an integer
position along the index.).

• A list or array of labels ['a', 'b', 'c'].

• A slice object with labels 'a':'f' (Note that contrary to usual python slices, both the start and the stop are
included, when present in the index! See Slicing with labels.).

• A boolean array.

• A callable, see Selection By Callable.

In [42]: s1 = pd.Series(np.random.randn(6),index=list('abcdef'))

In [43]: s1
Out[43]:
a 1.431256

(continues on next page)

12.5. Selection By Label 699

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

b 1.340309
c -1.170299
d -0.226169
e 0.410835
f 0.813850
dtype: float64

In [44]: s1.loc['c':]
\\\Out[44]:
→˓

c -1.170299
d -0.226169
e 0.410835
f 0.813850
dtype: float64

In [45]: s1.loc['b']
\\Out[45]:
→˓1.3403088497993827

Note that setting works as well:

In [46]: s1.loc['c':] = 0

In [47]: s1
Out[47]:
a 1.431256
b 1.340309
c 0.000000
d 0.000000
e 0.000000
f 0.000000
dtype: float64

With a DataFrame:

In [48]: df1 = pd.DataFrame(np.random.randn(6,4),
....: index=list('abcdef'),
....: columns=list('ABCD'))
....:

In [49]: df1
Out[49]:

A B C D
a 0.132003 -0.827317 -0.076467 -1.187678
b 1.130127 -1.436737 -1.413681 1.607920
c 1.024180 0.569605 0.875906 -2.211372
d 0.974466 -2.006747 -0.410001 -0.078638
e 0.545952 -1.219217 -1.226825 0.769804
f -1.281247 -0.727707 -0.121306 -0.097883

In [50]: df1.loc[['a', 'b', 'd'], :]
\\Out[50]:
→˓

A B C D
a 0.132003 -0.827317 -0.076467 -1.187678
b 1.130127 -1.436737 -1.413681 1.607920

(continues on next page)

700 Chapter 12. Indexing and Selecting Data

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

d 0.974466 -2.006747 -0.410001 -0.078638

Accessing via label slices:

In [51]: df1.loc['d':, 'A':'C']
Out[51]:

A B C
d 0.974466 -2.006747 -0.410001
e 0.545952 -1.219217 -1.226825
f -1.281247 -0.727707 -0.121306

For getting a cross section using a label (equivalent to df.xs('a')):

In [52]: df1.loc['a']
Out[52]:
A 0.132003
B -0.827317
C -0.076467
D -1.187678
Name: a, dtype: float64

For getting values with a boolean array:

In [53]: df1.loc['a'] > 0
Out[53]:
A True
B False
C False
D False
Name: a, dtype: bool

In [54]: df1.loc[:, df1.loc['a'] > 0]
\\\Out[54]:

A
a 0.132003
b 1.130127
c 1.024180
d 0.974466
e 0.545952
f -1.281247

For getting a value explicitly (equivalent to deprecated df.get_value('a','A')):

this is also equivalent to ``df1.at['a','A']``
In [55]: df1.loc['a', 'A']
Out[55]: 0.13200317033032932

12.5.1 Slicing with labels

When using .loc with slices, if both the start and the stop labels are present in the index, then elements located
between the two (including them) are returned:

In [56]: s = pd.Series(list('abcde'), index=[0,3,2,5,4])

In [57]: s.loc[3:5]

(continues on next page)

12.5. Selection By Label 701

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

Out[57]:
3 b
2 c
5 d
dtype: object

If at least one of the two is absent, but the index is sorted, and can be compared against start and stop labels, then
slicing will still work as expected, by selecting labels which rank between the two:

In [58]: s.sort_index()
Out[58]:
0 a
2 c
3 b
4 e
5 d
dtype: object

In [59]: s.sort_index().loc[1:6]
\\\Out[59]:
2 c
3 b
4 e
5 d
dtype: object

However, if at least one of the two is absent and the index is not sorted, an error will be raised (since doing otherwise
would be computationally expensive, as well as potentially ambiguous for mixed type indexes). For instance, in the
above example, s.loc[1:6] would raise KeyError.

12.6 Selection By Position

Warning: Whether a copy or a reference is returned for a setting operation, may depend on the context. This is
sometimes called chained assignment and should be avoided. See Returning a View versus Copy.

Pandas provides a suite of methods in order to get purely integer based indexing. The semantics follow closely
Python and NumPy slicing. These are 0-based indexing. When slicing, the start bounds is included, while the upper
bound is excluded. Trying to use a non-integer, even a valid label will raise an IndexError.

The .iloc attribute is the primary access method. The following are valid inputs:

• An integer e.g. 5.

• A list or array of integers [4, 3, 0].

• A slice object with ints 1:7.

• A boolean array.

• A callable, see Selection By Callable.

In [60]: s1 = pd.Series(np.random.randn(5), index=list(range(0,10,2)))

In [61]: s1

(continues on next page)

702 Chapter 12. Indexing and Selecting Data

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

Out[61]:
0 0.695775
2 0.341734
4 0.959726
6 -1.110336
8 -0.619976
dtype: float64

In [62]: s1.iloc[:3]
\\\Out[62]:
→˓

0 0.695775
2 0.341734
4 0.959726
dtype: float64

In [63]: s1.iloc[3]
\\Out[63]:
→˓-1.1103361028911669

Note that setting works as well:

In [64]: s1.iloc[:3] = 0

In [65]: s1
Out[65]:
0 0.000000
2 0.000000
4 0.000000
6 -1.110336
8 -0.619976
dtype: float64

With a DataFrame:

In [66]: df1 = pd.DataFrame(np.random.randn(6,4),
....: index=list(range(0,12,2)),
....: columns=list(range(0,8,2)))
....:

In [67]: df1
Out[67]:

0 2 4 6
0 0.149748 -0.732339 0.687738 0.176444
2 0.403310 -0.154951 0.301624 -2.179861
4 -1.369849 -0.954208 1.462696 -1.743161
6 -0.826591 -0.345352 1.314232 0.690579
8 0.995761 2.396780 0.014871 3.357427
10 -0.317441 -1.236269 0.896171 -0.487602

Select via integer slicing:

In [68]: df1.iloc[:3]
Out[68]:

0 2 4 6
0 0.149748 -0.732339 0.687738 0.176444
2 0.403310 -0.154951 0.301624 -2.179861

(continues on next page)

12.6. Selection By Position 703

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

4 -1.369849 -0.954208 1.462696 -1.743161

In [69]: df1.iloc[1:5, 2:4]
\\Out[69]:
→˓

4 6
2 0.301624 -2.179861
4 1.462696 -1.743161
6 1.314232 0.690579
8 0.014871 3.357427

Select via integer list:

In [70]: df1.iloc[[1, 3, 5], [1, 3]]
Out[70]:

2 6
2 -0.154951 -2.179861
6 -0.345352 0.690579
10 -1.236269 -0.487602

In [71]: df1.iloc[1:3, :]
Out[71]:

0 2 4 6
2 0.403310 -0.154951 0.301624 -2.179861
4 -1.369849 -0.954208 1.462696 -1.743161

In [72]: df1.iloc[:, 1:3]
Out[72]:

2 4
0 -0.732339 0.687738
2 -0.154951 0.301624
4 -0.954208 1.462696
6 -0.345352 1.314232
8 2.396780 0.014871
10 -1.236269 0.896171

this is also equivalent to ``df1.iat[1,1]``
In [73]: df1.iloc[1, 1]
Out[73]: -0.15495077442490321

For getting a cross section using an integer position (equiv to df.xs(1)):

In [74]: df1.iloc[1]
Out[74]:
0 0.403310
2 -0.154951
4 0.301624
6 -2.179861
Name: 2, dtype: float64

Out of range slice indexes are handled gracefully just as in Python/Numpy.

these are allowed in python/numpy.
In [75]: x = list('abcdef')

(continues on next page)

704 Chapter 12. Indexing and Selecting Data

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

In [76]: x
Out[76]: ['a', 'b', 'c', 'd', 'e', 'f']

In [77]: x[4:10]
\\Out[77]: ['e', 'f']

In [78]: x[8:10]
\\Out[78]: []

In [79]: s = pd.Series(x)

In [80]: s
Out[80]:
0 a
1 b
2 c
3 d
4 e
5 f
dtype: object

In [81]: s.iloc[4:10]
\\Out[81]:
4 e
5 f
dtype: object

In [82]: s.iloc[8:10]
\\Out[82]:
→˓Series([], dtype: object)

Note that using slices that go out of bounds can result in an empty axis (e.g. an empty DataFrame being returned).

In [83]: dfl = pd.DataFrame(np.random.randn(5,2), columns=list('AB'))

In [84]: dfl
Out[84]:

A B
0 -0.082240 -2.182937
1 0.380396 0.084844
2 0.432390 1.519970
3 -0.493662 0.600178
4 0.274230 0.132885

In [85]: dfl.iloc[:, 2:3]
\\Out[85]:
→˓

Empty DataFrame
Columns: []
Index: [0, 1, 2, 3, 4]

In [86]: dfl.iloc[:, 1:3]
\\\Out[86]:
→˓

B
0 -2.182937
1 0.084844

(continues on next page)

12.6. Selection By Position 705

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

2 1.519970
3 0.600178
4 0.132885

In [87]: dfl.iloc[4:6]
\\\Out[87]:
→˓

A B
4 0.27423 0.132885

A single indexer that is out of bounds will raise an IndexError. A list of indexers where any element is out of
bounds will raise an IndexError.

dfl.iloc[[4, 5, 6]]
IndexError: positional indexers are out-of-bounds

dfl.iloc[:, 4]
IndexError: single positional indexer is out-of-bounds

12.7 Selection By Callable

New in version 0.18.1.

.loc, .iloc, and also [] indexing can accept a callable as indexer. The callable must be a function with
one argument (the calling Series, DataFrame or Panel) and that returns valid output for indexing.

In [88]: df1 = pd.DataFrame(np.random.randn(6, 4),
....: index=list('abcdef'),
....: columns=list('ABCD'))
....:

In [89]: df1
Out[89]:

A B C D
a -0.023688 2.410179 1.450520 0.206053
b -0.251905 -2.213588 1.063327 1.266143
c 0.299368 -0.863838 0.408204 -1.048089
d -0.025747 -0.988387 0.094055 1.262731
e 1.289997 0.082423 -0.055758 0.536580
f -0.489682 0.369374 -0.034571 -2.484478

In [90]: df1.loc[lambda df: df.A > 0, :]
\\Out[90]:
→˓

A B C D
c 0.299368 -0.863838 0.408204 -1.048089
e 1.289997 0.082423 -0.055758 0.536580

In [91]: df1.loc[:, lambda df: ['A', 'B']]
\\Out[91]:
→˓

A B
a -0.023688 2.410179
b -0.251905 -2.213588

(continues on next page)

706 Chapter 12. Indexing and Selecting Data

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

c 0.299368 -0.863838
d -0.025747 -0.988387
e 1.289997 0.082423
f -0.489682 0.369374

In [92]: df1.iloc[:, lambda df: [0, 1]]
\\Out[92]:
→˓

A B
a -0.023688 2.410179
b -0.251905 -2.213588
c 0.299368 -0.863838
d -0.025747 -0.988387
e 1.289997 0.082423
f -0.489682 0.369374

In [93]: df1[lambda df: df.columns[0]]
\\Out[93]:
→˓

a -0.023688
b -0.251905
c 0.299368
d -0.025747
e 1.289997
f -0.489682
Name: A, dtype: float64

You can use callable indexing in Series.

In [94]: df1.A.loc[lambda s: s > 0]
Out[94]:
c 0.299368
e 1.289997
Name: A, dtype: float64

Using these methods / indexers, you can chain data selection operations without using temporary variable.

In [95]: bb = pd.read_csv('data/baseball.csv', index_col='id')

In [96]: (bb.groupby(['year', 'team']).sum()
....: .loc[lambda df: df.r > 100])
....:

Out[96]:
stint g ab r h X2b X3b hr rbi sb cs bb so

→˓ibb hbp sh sf gidp
year team
→˓

2007 CIN 6 379 745 101 203 35 2 36 125.0 10.0 1.0 105 127.0 14.
→˓0 1.0 1.0 15.0 18.0

DET 5 301 1062 162 283 54 4 37 144.0 24.0 7.0 97 176.0 3.
→˓0 10.0 4.0 8.0 28.0

HOU 4 311 926 109 218 47 6 14 77.0 10.0 4.0 60 212.0 3.
→˓0 9.0 16.0 6.0 17.0

LAN 11 413 1021 153 293 61 3 36 154.0 7.0 5.0 114 141.0 8.
→˓0 9.0 3.0 8.0 29.0

NYN 13 622 1854 240 509 101 3 61 243.0 22.0 4.0 174 310.0 24.
→˓0 23.0 18.0 15.0 48.0

(continues on next page)

12.7. Selection By Callable 707

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

SFN 5 482 1305 198 337 67 6 40 171.0 26.0 7.0 235 188.0 51.
→˓0 8.0 16.0 6.0 41.0

TEX 2 198 729 115 200 40 4 28 115.0 21.0 4.0 73 140.0 4.
→˓0 5.0 2.0 8.0 16.0

TOR 4 459 1408 187 378 96 2 58 223.0 4.0 2.0 190 265.0 16.
→˓0 12.0 4.0 16.0 38.0

12.8 IX Indexer is Deprecated

Warning: Starting in 0.20.0, the .ix indexer is deprecated, in favor of the more strict .iloc and .loc indexers.

.ix offers a lot of magic on the inference of what the user wants to do. To wit, .ix can decide to index positionally
OR via labels depending on the data type of the index. This has caused quite a bit of user confusion over the years.

The recommended methods of indexing are:

• .loc if you want to label index.

• .iloc if you want to positionally index.

In [97]: dfd = pd.DataFrame({'A': [1, 2, 3],
....: 'B': [4, 5, 6]},
....: index=list('abc'))
....:

In [98]: dfd
Out[98]:

A B
a 1 4
b 2 5
c 3 6

Previous behavior, where you wish to get the 0th and the 2nd elements from the index in the ‘A’ column.

In [3]: dfd.ix[[0, 2], 'A']
Out[3]:
a 1
c 3
Name: A, dtype: int64

Using .loc. Here we will select the appropriate indexes from the index, then use label indexing.

In [99]: dfd.loc[dfd.index[[0, 2]], 'A']
Out[99]:
a 1
c 3
Name: A, dtype: int64

This can also be expressed using .iloc, by explicitly getting locations on the indexers, and using positional indexing
to select things.

In [100]: dfd.iloc[[0, 2], dfd.columns.get_loc('A')]
Out[100]:

(continues on next page)

708 Chapter 12. Indexing and Selecting Data

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

a 1
c 3
Name: A, dtype: int64

For getting multiple indexers, using .get_indexer:

In [101]: dfd.iloc[[0, 2], dfd.columns.get_indexer(['A', 'B'])]
Out[101]:

A B
a 1 4
c 3 6

12.9 Indexing with list with missing labels is Deprecated

Warning: Starting in 0.21.0, using .loc or [] with a list with one or more missing labels, is deprecated, in favor
of .reindex.

In prior versions, using .loc[list-of-labels] would work as long as at least 1 of the keys was found (oth-
erwise it would raise a KeyError). This behavior is deprecated and will show a warning message pointing to this
section. The recommended alternative is to use .reindex().

For example.

In [102]: s = pd.Series([1, 2, 3])

In [103]: s
Out[103]:
0 1
1 2
2 3
dtype: int64

Selection with all keys found is unchanged.

In [104]: s.loc[[1, 2]]
Out[104]:
1 2
2 3
dtype: int64

Previous Behavior

In [4]: s.loc[[1, 2, 3]]
Out[4]:
1 2.0
2 3.0
3 NaN
dtype: float64

Current Behavior

12.9. Indexing with list with missing labels is Deprecated 709

pandas: powerful Python data analysis toolkit, Release 0.23.4

In [4]: s.loc[[1, 2, 3]]
Passing list-likes to .loc with any non-matching elements will raise
KeyError in the future, you can use .reindex() as an alternative.

See the documentation here:
http://pandas.pydata.org/pandas-docs/stable/indexing.html#deprecate-loc-reindex-
→˓listlike

Out[4]:
1 2.0
2 3.0
3 NaN
dtype: float64

12.9.1 Reindexing

The idiomatic way to achieve selecting potentially not-found elmenents is via .reindex(). See also the section on
reindexing.

In [105]: s.reindex([1, 2, 3])
Out[105]:
1 2.0
2 3.0
3 NaN
dtype: float64

Alternatively, if you want to select only valid keys, the following is idiomatic and efficient; it is guaranteed to preserve
the dtype of the selection.

In [106]: labels = [1, 2, 3]

In [107]: s.loc[s.index.intersection(labels)]
Out[107]:
1 2
2 3
dtype: int64

Having a duplicated index will raise for a .reindex():

In [108]: s = pd.Series(np.arange(4), index=['a', 'a', 'b', 'c'])

In [109]: labels = ['c', 'd']

In [17]: s.reindex(labels)
ValueError: cannot reindex from a duplicate axis

Generally, you can intersect the desired labels with the current axis, and then reindex.

In [110]: s.loc[s.index.intersection(labels)].reindex(labels)
Out[110]:
c 3.0
d NaN
dtype: float64

However, this would still raise if your resulting index is duplicated.

710 Chapter 12. Indexing and Selecting Data

pandas: powerful Python data analysis toolkit, Release 0.23.4

In [41]: labels = ['a', 'd']

In [42]: s.loc[s.index.intersection(labels)].reindex(labels)
ValueError: cannot reindex from a duplicate axis

12.10 Selecting Random Samples

A random selection of rows or columns from a Series, DataFrame, or Panel with the sample() method. The method
will sample rows by default, and accepts a specific number of rows/columns to return, or a fraction of rows.

In [111]: s = pd.Series([0,1,2,3,4,5])

When no arguments are passed, returns 1 row.
In [112]: s.sample()
Out[112]:
4 4
dtype: int64

One may specify either a number of rows:
In [113]: s.sample(n=3)
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\Out[113]:
0 0
4 4
1 1
dtype: int64

Or a fraction of the rows:
In [114]: s.sample(frac=0.5)
\\Out[114]:
5 5
3 3
1 1
dtype: int64

By default, sample will return each row at most once, but one can also sample with replacement using the replace
option:

In [115]: s = pd.Series([0,1,2,3,4,5])

Without replacement (default):
In [116]: s.sample(n=6, replace=False)
Out[116]:
0 0
1 1
5 5
3 3
2 2
4 4
dtype: int64

With replacement:
In [117]: s.sample(n=6, replace=True)
\\Out[117]:
0 0
4 4

(continues on next page)

12.10. Selecting Random Samples 711

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

3 3
2 2
4 4
4 4
dtype: int64

By default, each row has an equal probability of being selected, but if you want rows to have different probabilities,
you can pass the sample function sampling weights as weights. These weights can be a list, a NumPy array, or a
Series, but they must be of the same length as the object you are sampling. Missing values will be treated as a weight
of zero, and inf values are not allowed. If weights do not sum to 1, they will be re-normalized by dividing all weights
by the sum of the weights. For example:

In [118]: s = pd.Series([0,1,2,3,4,5])

In [119]: example_weights = [0, 0, 0.2, 0.2, 0.2, 0.4]

In [120]: s.sample(n=3, weights=example_weights)
Out[120]:
5 5
4 4
3 3
dtype: int64

Weights will be re-normalized automatically
In [121]: example_weights2 = [0.5, 0, 0, 0, 0, 0]

In [122]: s.sample(n=1, weights=example_weights2)
Out[122]:
0 0
dtype: int64

When applied to a DataFrame, you can use a column of the DataFrame as sampling weights (provided you are sampling
rows and not columns) by simply passing the name of the column as a string.

In [123]: df2 = pd.DataFrame({'col1':[9,8,7,6], 'weight_column':[0.5, 0.4, 0.1, 0]})

In [124]: df2.sample(n = 3, weights = 'weight_column')
Out[124]:

col1 weight_column
1 8 0.4
0 9 0.5
2 7 0.1

sample also allows users to sample columns instead of rows using the axis argument.

In [125]: df3 = pd.DataFrame({'col1':[1,2,3], 'col2':[2,3,4]})

In [126]: df3.sample(n=1, axis=1)
Out[126]:

col1
0 1
1 2
2 3

Finally, one can also set a seed for sample’s random number generator using the random_state argument, which
will accept either an integer (as a seed) or a NumPy RandomState object.

712 Chapter 12. Indexing and Selecting Data

pandas: powerful Python data analysis toolkit, Release 0.23.4

In [127]: df4 = pd.DataFrame({'col1':[1,2,3], 'col2':[2,3,4]})

With a given seed, the sample will always draw the same rows.
In [128]: df4.sample(n=2, random_state=2)
Out[128]:

col1 col2
2 3 4
1 2 3

In [129]: df4.sample(n=2, random_state=2)
\\\Out[129]:

col1 col2
2 3 4
1 2 3

12.11 Setting With Enlargement

The .loc/[] operations can perform enlargement when setting a non-existent key for that axis.

In the Series case this is effectively an appending operation.

In [130]: se = pd.Series([1,2,3])

In [131]: se
Out[131]:
0 1
1 2
2 3
dtype: int64

In [132]: se[5] = 5.

In [133]: se
Out[133]:
0 1.0
1 2.0
2 3.0
5 5.0
dtype: float64

A DataFrame can be enlarged on either axis via .loc.

In [134]: dfi = pd.DataFrame(np.arange(6).reshape(3,2),
.....: columns=['A','B'])
.....:

In [135]: dfi
Out[135]:

A B
0 0 1
1 2 3
2 4 5

In [136]: dfi.loc[:,'C'] = dfi.loc[:,'A']

(continues on next page)

12.11. Setting With Enlargement 713

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

In [137]: dfi
Out[137]:

A B C
0 0 1 0
1 2 3 2
2 4 5 4

This is like an append operation on the DataFrame.

In [138]: dfi.loc[3] = 5

In [139]: dfi
Out[139]:

A B C
0 0 1 0
1 2 3 2
2 4 5 4
3 5 5 5

12.12 Fast scalar value getting and setting

Since indexing with [] must handle a lot of cases (single-label access, slicing, boolean indexing, etc.), it has a bit of
overhead in order to figure out what you’re asking for. If you only want to access a scalar value, the fastest way is to
use the at and iat methods, which are implemented on all of the data structures.

Similarly to loc, at provides label based scalar lookups, while, iat provides integer based lookups analogously to
iloc

In [140]: s.iat[5]
Out[140]: 5

In [141]: df.at[dates[5], 'A']
\\\\\\\\\\\\Out[141]: -0.67368970808837059

In [142]: df.iat[3, 0]
\\\Out[142]: 0.72155516224436689

You can also set using these same indexers.

In [143]: df.at[dates[5], 'E'] = 7

In [144]: df.iat[3, 0] = 7

at may enlarge the object in-place as above if the indexer is missing.

In [145]: df.at[dates[-1]+1, 0] = 7

In [146]: df
Out[146]:

A B C D E 0
2000-01-01 0.469112 -0.282863 -1.509059 -1.135632 NaN NaN
2000-01-02 1.212112 -0.173215 0.119209 -1.044236 NaN NaN
2000-01-03 -0.861849 -2.104569 -0.494929 1.071804 NaN NaN
2000-01-04 7.000000 -0.706771 -1.039575 0.271860 NaN NaN

(continues on next page)

714 Chapter 12. Indexing and Selecting Data

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

2000-01-05 -0.424972 0.567020 0.276232 -1.087401 NaN NaN
2000-01-06 -0.673690 0.113648 -1.478427 0.524988 7.0 NaN
2000-01-07 0.404705 0.577046 -1.715002 -1.039268 NaN NaN
2000-01-08 -0.370647 -1.157892 -1.344312 0.844885 NaN NaN
2000-01-09 NaN NaN NaN NaN NaN 7.0

12.13 Boolean indexing

Another common operation is the use of boolean vectors to filter the data. The operators are: | for or, & for and, and
~ for not. These must be grouped by using parentheses, since by default Python will evaluate an expression such as
df.A > 2 & df.B < 3 as df.A > (2 & df.B) < 3, while the desired evaluation order is (df.A > 2)
& (df.B < 3).

Using a boolean vector to index a Series works exactly as in a NumPy ndarray:

In [147]: s = pd.Series(range(-3, 4))

In [148]: s
Out[148]:
0 -3
1 -2
2 -1
3 0
4 1
5 2
6 3
dtype: int64

In [149]: s[s > 0]
\\\Out[149]:
4 1
5 2
6 3
dtype: int64

In [150]: s[(s < -1) | (s > 0.5)]
\\Out[150]:
→˓

0 -3
1 -2
4 1
5 2
6 3
dtype: int64

In [151]: s[~(s < 0)]
\\\Out[151]:
→˓

3 0
4 1
5 2
6 3
dtype: int64

You may select rows from a DataFrame using a boolean vector the same length as the DataFrame’s index (for example,

12.13. Boolean indexing 715

pandas: powerful Python data analysis toolkit, Release 0.23.4

something derived from one of the columns of the DataFrame):

In [152]: df[df['A'] > 0]
Out[152]:

A B C D E 0
2000-01-01 0.469112 -0.282863 -1.509059 -1.135632 NaN NaN
2000-01-02 1.212112 -0.173215 0.119209 -1.044236 NaN NaN
2000-01-04 7.000000 -0.706771 -1.039575 0.271860 NaN NaN
2000-01-07 0.404705 0.577046 -1.715002 -1.039268 NaN NaN

List comprehensions and map method of Series can also be used to produce more complex criteria:

In [153]: df2 = pd.DataFrame({'a' : ['one', 'one', 'two', 'three', 'two', 'one', 'six
→˓'],

.....: 'b' : ['x', 'y', 'y', 'x', 'y', 'x', 'x'],

.....: 'c' : np.random.randn(7)})

.....:

only want 'two' or 'three'
In [154]: criterion = df2['a'].map(lambda x: x.startswith('t'))

In [155]: df2[criterion]
Out[155]:

a b c
2 two y 0.041290
3 three x 0.361719
4 two y -0.238075

equivalent but slower
In [156]: df2[[x.startswith('t') for x in df2['a']]]
\\\Out[156]:
→˓

a b c
2 two y 0.041290
3 three x 0.361719
4 two y -0.238075

Multiple criteria
In [157]: df2[criterion & (df2['b'] == 'x')]
\\Out[157]:
→˓

a b c
3 three x 0.361719

With the choice methods Selection by Label, Selection by Position, and Advanced Indexing you may select along more
than one axis using boolean vectors combined with other indexing expressions.

In [158]: df2.loc[criterion & (df2['b'] == 'x'),'b':'c']
Out[158]:

b c
3 x 0.361719

12.14 Indexing with isin

Consider the isin() method of Series, which returns a boolean vector that is true wherever the Series elements
exist in the passed list. This allows you to select rows where one or more columns have values you want:

716 Chapter 12. Indexing and Selecting Data

pandas: powerful Python data analysis toolkit, Release 0.23.4

In [159]: s = pd.Series(np.arange(5), index=np.arange(5)[::-1], dtype='int64')

In [160]: s
Out[160]:
4 0
3 1
2 2
1 3
0 4
dtype: int64

In [161]: s.isin([2, 4, 6])
\\\Out[161]:
4 False
3 False
2 True
1 False
0 True
dtype: bool

In [162]: s[s.isin([2, 4, 6])]
\\\Out[162]:
→˓

2 2
0 4
dtype: int64

The same method is available for Index objects and is useful for the cases when you don’t know which of the sought
labels are in fact present:

In [163]: s[s.index.isin([2, 4, 6])]
Out[163]:
4 0
2 2
dtype: int64

compare it to the following
In [164]: s.reindex([2, 4, 6])
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\Out[164]:
2 2.0
4 0.0
6 NaN
dtype: float64

In addition to that, MultiIndex allows selecting a separate level to use in the membership check:

In [165]: s_mi = pd.Series(np.arange(6),
.....: index=pd.MultiIndex.from_product([[0, 1], ['a', 'b', 'c

→˓']]))
.....:

In [166]: s_mi
Out[166]:
0 a 0

b 1
c 2

1 a 3

(continues on next page)

12.14. Indexing with isin 717

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

b 4
c 5

dtype: int64

In [167]: s_mi.iloc[s_mi.index.isin([(1, 'a'), (2, 'b'), (0, 'c')])]
\\Out[167]:
→˓

0 c 2
1 a 3
dtype: int64

In [168]: s_mi.iloc[s_mi.index.isin(['a', 'c', 'e'], level=1)]
\\Out[168]:
→˓

0 a 0
c 2

1 a 3
c 5

dtype: int64

DataFrame also has an isin()method. When calling isin, pass a set of values as either an array or dict. If values is
an array, isin returns a DataFrame of booleans that is the same shape as the original DataFrame, with True wherever
the element is in the sequence of values.

In [169]: df = pd.DataFrame({'vals': [1, 2, 3, 4], 'ids': ['a', 'b', 'f', 'n'],
.....: 'ids2': ['a', 'n', 'c', 'n']})
.....:

In [170]: values = ['a', 'b', 1, 3]

In [171]: df.isin(values)
Out[171]:

vals ids ids2
0 True True True
1 False True False
2 True False False
3 False False False

Oftentimes you’ll want to match certain values with certain columns. Just make values a dict where the key is the
column, and the value is a list of items you want to check for.

In [172]: values = {'ids': ['a', 'b'], 'vals': [1, 3]}

In [173]: df.isin(values)
Out[173]:

vals ids ids2
0 True True False
1 False True False
2 True False False
3 False False False

Combine DataFrame’s isin with the any() and all() methods to quickly select subsets of your data that meet a
given criteria. To select a row where each column meets its own criterion:

In [174]: values = {'ids': ['a', 'b'], 'ids2': ['a', 'c'], 'vals': [1, 3]}

(continues on next page)

718 Chapter 12. Indexing and Selecting Data

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

In [175]: row_mask = df.isin(values).all(1)

In [176]: df[row_mask]
Out[176]:

vals ids ids2
0 1 a a

12.15 The where() Method and Masking

Selecting values from a Series with a boolean vector generally returns a subset of the data. To guarantee that selection
output has the same shape as the original data, you can use the where method in Series and DataFrame.

To return only the selected rows:

In [177]: s[s > 0]
Out[177]:
3 1
2 2
1 3
0 4
dtype: int64

To return a Series of the same shape as the original:

In [178]: s.where(s > 0)
Out[178]:
4 NaN
3 1.0
2 2.0
1 3.0
0 4.0
dtype: float64

Selecting values from a DataFrame with a boolean criterion now also preserves input data shape. where is used under
the hood as the implementation. The code below is equivalent to df.where(df < 0).

In [179]: df[df < 0]
Out[179]:

A B C D
2000-01-01 -2.104139 -1.309525 NaN NaN
2000-01-02 -0.352480 NaN -1.192319 NaN
2000-01-03 -0.864883 NaN -0.227870 NaN
2000-01-04 NaN -1.222082 NaN -1.233203
2000-01-05 NaN -0.605656 -1.169184 NaN
2000-01-06 NaN -0.948458 NaN -0.684718
2000-01-07 -2.670153 -0.114722 NaN -0.048048
2000-01-08 NaN NaN -0.048788 -0.808838

In addition, where takes an optional other argument for replacement of values where the condition is False, in the
returned copy.

In [180]: df.where(df < 0, -df)
Out[180]:

A B C D

(continues on next page)

12.15. The where() Method and Masking 719

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

2000-01-01 -2.104139 -1.309525 -0.485855 -0.245166
2000-01-02 -0.352480 -0.390389 -1.192319 -1.655824
2000-01-03 -0.864883 -0.299674 -0.227870 -0.281059
2000-01-04 -0.846958 -1.222082 -0.600705 -1.233203
2000-01-05 -0.669692 -0.605656 -1.169184 -0.342416
2000-01-06 -0.868584 -0.948458 -2.297780 -0.684718
2000-01-07 -2.670153 -0.114722 -0.168904 -0.048048
2000-01-08 -0.801196 -1.392071 -0.048788 -0.808838

You may wish to set values based on some boolean criteria. This can be done intuitively like so:

In [181]: s2 = s.copy()

In [182]: s2[s2 < 0] = 0

In [183]: s2
Out[183]:
4 0
3 1
2 2
1 3
0 4
dtype: int64

In [184]: df2 = df.copy()

In [185]: df2[df2 < 0] = 0

In [186]: df2
Out[186]:

A B C D
2000-01-01 0.000000 0.000000 0.485855 0.245166
2000-01-02 0.000000 0.390389 0.000000 1.655824
2000-01-03 0.000000 0.299674 0.000000 0.281059
2000-01-04 0.846958 0.000000 0.600705 0.000000
2000-01-05 0.669692 0.000000 0.000000 0.342416
2000-01-06 0.868584 0.000000 2.297780 0.000000
2000-01-07 0.000000 0.000000 0.168904 0.000000
2000-01-08 0.801196 1.392071 0.000000 0.000000

By default, where returns a modified copy of the data. There is an optional parameter inplace so that the original
data can be modified without creating a copy:

In [187]: df_orig = df.copy()

In [188]: df_orig.where(df > 0, -df, inplace=True);

In [189]: df_orig
Out[189]:

A B C D
2000-01-01 2.104139 1.309525 0.485855 0.245166
2000-01-02 0.352480 0.390389 1.192319 1.655824
2000-01-03 0.864883 0.299674 0.227870 0.281059
2000-01-04 0.846958 1.222082 0.600705 1.233203
2000-01-05 0.669692 0.605656 1.169184 0.342416
2000-01-06 0.868584 0.948458 2.297780 0.684718

(continues on next page)

720 Chapter 12. Indexing and Selecting Data

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

2000-01-07 2.670153 0.114722 0.168904 0.048048
2000-01-08 0.801196 1.392071 0.048788 0.808838

Note: The signature for DataFrame.where() differs from numpy.where(). Roughly df1.where(m,
df2) is equivalent to np.where(m, df1, df2).

In [190]: df.where(df < 0, -df) == np.where(df < 0, df, -df)
Out[190]:

A B C D
2000-01-01 True True True True
2000-01-02 True True True True
2000-01-03 True True True True
2000-01-04 True True True True
2000-01-05 True True True True
2000-01-06 True True True True
2000-01-07 True True True True
2000-01-08 True True True True

alignment

Furthermore, where aligns the input boolean condition (ndarray or DataFrame), such that partial selection with setting
is possible. This is analogous to partial setting via .loc (but on the contents rather than the axis labels).

In [191]: df2 = df.copy()

In [192]: df2[df2[1:4] > 0] = 3

In [193]: df2
Out[193]:

A B C D
2000-01-01 -2.104139 -1.309525 0.485855 0.245166
2000-01-02 -0.352480 3.000000 -1.192319 3.000000
2000-01-03 -0.864883 3.000000 -0.227870 3.000000
2000-01-04 3.000000 -1.222082 3.000000 -1.233203
2000-01-05 0.669692 -0.605656 -1.169184 0.342416
2000-01-06 0.868584 -0.948458 2.297780 -0.684718
2000-01-07 -2.670153 -0.114722 0.168904 -0.048048
2000-01-08 0.801196 1.392071 -0.048788 -0.808838

Where can also accept axis and level parameters to align the input when performing the where.

In [194]: df2 = df.copy()

In [195]: df2.where(df2>0,df2['A'],axis='index')
Out[195]:

A B C D
2000-01-01 -2.104139 -2.104139 0.485855 0.245166
2000-01-02 -0.352480 0.390389 -0.352480 1.655824
2000-01-03 -0.864883 0.299674 -0.864883 0.281059
2000-01-04 0.846958 0.846958 0.600705 0.846958
2000-01-05 0.669692 0.669692 0.669692 0.342416
2000-01-06 0.868584 0.868584 2.297780 0.868584
2000-01-07 -2.670153 -2.670153 0.168904 -2.670153
2000-01-08 0.801196 1.392071 0.801196 0.801196

12.15. The where() Method and Masking 721

https://docs.scipy.org/doc/numpy/reference/generated/numpy.where.html#numpy.where

pandas: powerful Python data analysis toolkit, Release 0.23.4

This is equivalent to (but faster than) the following.

In [196]: df2 = df.copy()

In [197]: df.apply(lambda x, y: x.where(x>0,y), y=df['A'])
Out[197]:

A B C D
2000-01-01 -2.104139 -2.104139 0.485855 0.245166
2000-01-02 -0.352480 0.390389 -0.352480 1.655824
2000-01-03 -0.864883 0.299674 -0.864883 0.281059
2000-01-04 0.846958 0.846958 0.600705 0.846958
2000-01-05 0.669692 0.669692 0.669692 0.342416
2000-01-06 0.868584 0.868584 2.297780 0.868584
2000-01-07 -2.670153 -2.670153 0.168904 -2.670153
2000-01-08 0.801196 1.392071 0.801196 0.801196

New in version 0.18.1.

Where can accept a callable as condition and other arguments. The function must be with one argument (the calling
Series or DataFrame) and that returns valid output as condition and other argument.

In [198]: df3 = pd.DataFrame({'A': [1, 2, 3],
.....: 'B': [4, 5, 6],
.....: 'C': [7, 8, 9]})
.....:

In [199]: df3.where(lambda x: x > 4, lambda x: x + 10)
Out[199]:

A B C
0 11 14 7
1 12 5 8
2 13 6 9

12.15.1 Mask

mask() is the inverse boolean operation of where.

In [200]: s.mask(s >= 0)
Out[200]:
4 NaN
3 NaN
2 NaN
1 NaN
0 NaN
dtype: float64

In [201]: df.mask(df >= 0)
\\Out[201]:

A B C D
2000-01-01 -2.104139 -1.309525 NaN NaN
2000-01-02 -0.352480 NaN -1.192319 NaN
2000-01-03 -0.864883 NaN -0.227870 NaN
2000-01-04 NaN -1.222082 NaN -1.233203
2000-01-05 NaN -0.605656 -1.169184 NaN
2000-01-06 NaN -0.948458 NaN -0.684718
2000-01-07 -2.670153 -0.114722 NaN -0.048048
2000-01-08 NaN NaN -0.048788 -0.808838

722 Chapter 12. Indexing and Selecting Data

pandas: powerful Python data analysis toolkit, Release 0.23.4

12.16 The query() Method

DataFrame objects have a query() method that allows selection using an expression.

You can get the value of the frame where column b has values between the values of columns a and c. For example:

In [202]: n = 10

In [203]: df = pd.DataFrame(np.random.rand(n, 3), columns=list('abc'))

In [204]: df
Out[204]:

a b c
0 0.438921 0.118680 0.863670
1 0.138138 0.577363 0.686602
2 0.595307 0.564592 0.520630
3 0.913052 0.926075 0.616184
4 0.078718 0.854477 0.898725
5 0.076404 0.523211 0.591538
6 0.792342 0.216974 0.564056
7 0.397890 0.454131 0.915716
8 0.074315 0.437913 0.019794
9 0.559209 0.502065 0.026437

pure python
In [205]: df[(df.a < df.b) & (df.b < df.c)]
\\\Out[205]:
→˓

a b c
1 0.138138 0.577363 0.686602
4 0.078718 0.854477 0.898725
5 0.076404 0.523211 0.591538
7 0.397890 0.454131 0.915716

query
In [206]: df.query('(a < b) & (b < c)')
\\Out[206]:
→˓

a b c
1 0.138138 0.577363 0.686602
4 0.078718 0.854477 0.898725
5 0.076404 0.523211 0.591538
7 0.397890 0.454131 0.915716

Do the same thing but fall back on a named index if there is no column with the name a.

In [207]: df = pd.DataFrame(np.random.randint(n / 2, size=(n, 2)), columns=list('bc'))

In [208]: df.index.name = 'a'

In [209]: df
Out[209]:

b c
a
0 0 4
1 0 1
2 3 4

(continues on next page)

12.16. The query() Method 723

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

3 4 3
4 1 4
5 0 3
6 0 1
7 3 4
8 2 3
9 1 1

In [210]: df.query('a < b and b < c')
\\\Out[210]:
→˓

b c
a
2 3 4

If instead you don’t want to or cannot name your index, you can use the name index in your query expression:

In [211]: df = pd.DataFrame(np.random.randint(n, size=(n, 2)), columns=list('bc'))

In [212]: df
Out[212]:

b c
0 3 1
1 3 0
2 5 6
3 5 2
4 7 4
5 0 1
6 2 5
7 0 1
8 6 0
9 7 9

In [213]: df.query('index < b < c')
\\\Out[213]:
→˓

b c
2 5 6

Note: If the name of your index overlaps with a column name, the column name is given precedence. For example,

In [214]: df = pd.DataFrame({'a': np.random.randint(5, size=5)})

In [215]: df.index.name = 'a'

In [216]: df.query('a > 2') # uses the column 'a', not the index
Out[216]:

a
a
1 3
3 3

You can still use the index in a query expression by using the special identifier ‘index’:

In [217]: df.query('index > 2')

(continues on next page)

724 Chapter 12. Indexing and Selecting Data

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

Out[217]:
a

a
3 3
4 2

If for some reason you have a column named index, then you can refer to the index as ilevel_0 as well, but at
this point you should consider renaming your columns to something less ambiguous.

12.16.1 MultiIndex query() Syntax

You can also use the levels of a DataFrame with a MultiIndex as if they were columns in the frame:

In [218]: n = 10

In [219]: colors = np.random.choice(['red', 'green'], size=n)

In [220]: foods = np.random.choice(['eggs', 'ham'], size=n)

In [221]: colors
Out[221]:
array(['red', 'red', 'red', 'green', 'green', 'green', 'green', 'green',

'green', 'green'],
dtype='<U5')

In [222]: foods
\\\Out[222]:
→˓

array(['ham', 'ham', 'eggs', 'eggs', 'eggs', 'ham', 'ham', 'eggs', 'eggs',
'eggs'],

dtype='<U4')

In [223]: index = pd.MultiIndex.from_arrays([colors, foods], names=['color', 'food'])

In [224]: df = pd.DataFrame(np.random.randn(n, 2), index=index)

In [225]: df
Out[225]:

0 1
color food
red ham 0.194889 -0.381994

ham 0.318587 2.089075
eggs -0.728293 -0.090255

green eggs -0.748199 1.318931
eggs -2.029766 0.792652
ham 0.461007 -0.542749
ham -0.305384 -0.479195
eggs 0.095031 -0.270099
eggs -0.707140 -0.773882
eggs 0.229453 0.304418

In [226]: df.query('color == "red"')
\\\Out[226]:
→˓

(continues on next page)

12.16. The query() Method 725

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

0 1
color food
red ham 0.194889 -0.381994

ham 0.318587 2.089075
eggs -0.728293 -0.090255

If the levels of the MultiIndex are unnamed, you can refer to them using special names:

In [227]: df.index.names = [None, None]

In [228]: df
Out[228]:

0 1
red ham 0.194889 -0.381994

ham 0.318587 2.089075
eggs -0.728293 -0.090255

green eggs -0.748199 1.318931
eggs -2.029766 0.792652
ham 0.461007 -0.542749
ham -0.305384 -0.479195
eggs 0.095031 -0.270099
eggs -0.707140 -0.773882
eggs 0.229453 0.304418

In [229]: df.query('ilevel_0 == "red"')
\\Out[229]:
→˓

0 1
red ham 0.194889 -0.381994

ham 0.318587 2.089075
eggs -0.728293 -0.090255

The convention is ilevel_0, which means “index level 0” for the 0th level of the index.

12.16.2 query() Use Cases

A use case for query() is when you have a collection of DataFrame objects that have a subset of column names
(or index levels/names) in common. You can pass the same query to both frames without having to specify which
frame you’re interested in querying

In [230]: df = pd.DataFrame(np.random.rand(n, 3), columns=list('abc'))

In [231]: df
Out[231]:

a b c
0 0.224283 0.736107 0.139168
1 0.302827 0.657803 0.713897
2 0.611185 0.136624 0.984960
3 0.195246 0.123436 0.627712
4 0.618673 0.371660 0.047902
5 0.480088 0.062993 0.185760
6 0.568018 0.483467 0.445289
7 0.309040 0.274580 0.587101
8 0.258993 0.477769 0.370255
9 0.550459 0.840870 0.304611

(continues on next page)

726 Chapter 12. Indexing and Selecting Data

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

In [232]: df2 = pd.DataFrame(np.random.rand(n + 2, 3), columns=df.columns)

In [233]: df2
Out[233]:

a b c
0 0.357579 0.229800 0.596001
1 0.309059 0.957923 0.965663
2 0.123102 0.336914 0.318616
3 0.526506 0.323321 0.860813
4 0.518736 0.486514 0.384724
5 0.190804 0.505723 0.614533
6 0.891939 0.623977 0.676639
7 0.480559 0.378528 0.460858
8 0.420223 0.136404 0.141295
9 0.732206 0.419540 0.604675
10 0.604466 0.848974 0.896165
11 0.589168 0.920046 0.732716

In [234]: expr = '0.0 <= a <= c <= 0.5'

In [235]: map(lambda frame: frame.query(expr), [df, df2])
Out[235]: <map at 0x7f20f7b679e8>

12.16.3 query() Python versus pandas Syntax Comparison

Full numpy-like syntax:

In [236]: df = pd.DataFrame(np.random.randint(n, size=(n, 3)), columns=list('abc'))

In [237]: df
Out[237]:

a b c
0 7 8 9
1 1 0 7
2 2 7 2
3 6 2 2
4 2 6 3
5 3 8 2
6 1 7 2
7 5 1 5
8 9 8 0
9 1 5 0

In [238]: df.query('(a < b) & (b < c)')
\\Out[238]:
→˓

a b c
0 7 8 9

In [239]: df[(df.a < df.b) & (df.b < df.c)]
\\\Out[239]:
→˓

a b c
0 7 8 9

12.16. The query() Method 727

pandas: powerful Python data analysis toolkit, Release 0.23.4

Slightly nicer by removing the parentheses (by binding making comparison operators bind tighter than & and |).

In [240]: df.query('a < b & b < c')
Out[240]:

a b c
0 7 8 9

Use English instead of symbols:

In [241]: df.query('a < b and b < c')
Out[241]:

a b c
0 7 8 9

Pretty close to how you might write it on paper:

In [242]: df.query('a < b < c')
Out[242]:

a b c
0 7 8 9

12.16.4 The in and not in operators

query() also supports special use of Python’s in and not in comparison operators, providing a succinct syntax
for calling the isin method of a Series or DataFrame.

get all rows where columns "a" and "b" have overlapping values
In [243]: df = pd.DataFrame({'a': list('aabbccddeeff'), 'b': list('aaaabbbbcccc'),

.....: 'c': np.random.randint(5, size=12),

.....: 'd': np.random.randint(9, size=12)})

.....:

In [244]: df
Out[244]:

a b c d
0 a a 2 6
1 a a 4 7
2 b a 1 6
3 b a 2 1
4 c b 3 6
5 c b 0 2
6 d b 3 3
7 d b 2 1
8 e c 4 3
9 e c 2 0
10 f c 0 6
11 f c 1 2

In [245]: df.query('a in b')
\\Out[245]:
→˓

a b c d
0 a a 2 6
1 a a 4 7
2 b a 1 6
3 b a 2 1

(continues on next page)

728 Chapter 12. Indexing and Selecting Data

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

4 c b 3 6
5 c b 0 2

How you'd do it in pure Python
In [246]: df[df.a.isin(df.b)]
\\\Out[246]:
→˓

a b c d
0 a a 2 6
1 a a 4 7
2 b a 1 6
3 b a 2 1
4 c b 3 6
5 c b 0 2

In [247]: df.query('a not in b')
\\Out[247]:
→˓

a b c d
6 d b 3 3
7 d b 2 1
8 e c 4 3
9 e c 2 0
10 f c 0 6
11 f c 1 2

pure Python
In [248]: df[~df.a.isin(df.b)]
\\Out[248]:
→˓

a b c d
6 d b 3 3
7 d b 2 1
8 e c 4 3
9 e c 2 0
10 f c 0 6
11 f c 1 2

You can combine this with other expressions for very succinct queries:

rows where cols a and b have overlapping values and col c's values are less than
→˓col d's
In [249]: df.query('a in b and c < d')
Out[249]:

a b c d
0 a a 2 6
1 a a 4 7
2 b a 1 6
4 c b 3 6
5 c b 0 2

pure Python
In [250]: df[df.b.isin(df.a) & (df.c < df.d)]
\\\Out[250]:
→˓

a b c d
0 a a 2 6

(continues on next page)

12.16. The query() Method 729

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

1 a a 4 7
2 b a 1 6
4 c b 3 6
5 c b 0 2
10 f c 0 6
11 f c 1 2

Note: Note that in and not in are evaluated in Python, since numexpr has no equivalent of this operation.
However, only the in/not in expression itself is evaluated in vanilla Python. For example, in the expression

df.query('a in b + c + d')

(b + c + d) is evaluated by numexpr and then the in operation is evaluated in plain Python. In general, any
operations that can be evaluated using numexpr will be.

12.16.5 Special use of the == operator with list objects

Comparing a list of values to a column using ==/!= works similarly to in/not in.

In [251]: df.query('b == ["a", "b", "c"]')
Out[251]:

a b c d
0 a a 2 6
1 a a 4 7
2 b a 1 6
3 b a 2 1
4 c b 3 6
5 c b 0 2
6 d b 3 3
7 d b 2 1
8 e c 4 3
9 e c 2 0
10 f c 0 6
11 f c 1 2

pure Python
In [252]: df[df.b.isin(["a", "b", "c"])]
\\Out[252]:
→˓

a b c d
0 a a 2 6
1 a a 4 7
2 b a 1 6
3 b a 2 1
4 c b 3 6
5 c b 0 2
6 d b 3 3
7 d b 2 1
8 e c 4 3
9 e c 2 0
10 f c 0 6
11 f c 1 2

(continues on next page)

730 Chapter 12. Indexing and Selecting Data

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

In [253]: df.query('c == [1, 2]')
\\Out[253]:
→˓

a b c d
0 a a 2 6
2 b a 1 6
3 b a 2 1
7 d b 2 1
9 e c 2 0
11 f c 1 2

In [254]: df.query('c != [1, 2]')
\\Out[254]:
→˓

a b c d
1 a a 4 7
4 c b 3 6
5 c b 0 2
6 d b 3 3
8 e c 4 3
10 f c 0 6

using in/not in
In [255]: df.query('[1, 2] in c')
\\Out[255]:
→˓

a b c d
0 a a 2 6
2 b a 1 6
3 b a 2 1
7 d b 2 1
9 e c 2 0
11 f c 1 2

In [256]: df.query('[1, 2] not in c')
\\Out[256]:
→˓

a b c d
1 a a 4 7
4 c b 3 6
5 c b 0 2
6 d b 3 3
8 e c 4 3
10 f c 0 6

pure Python
In [257]: df[df.c.isin([1, 2])]
\\Out[257]:
→˓

a b c d
0 a a 2 6
2 b a 1 6
3 b a 2 1
7 d b 2 1
9 e c 2 0
11 f c 1 2

12.16. The query() Method 731

pandas: powerful Python data analysis toolkit, Release 0.23.4

12.16.6 Boolean Operators

You can negate boolean expressions with the word not or the ~ operator.

In [258]: df = pd.DataFrame(np.random.rand(n, 3), columns=list('abc'))

In [259]: df['bools'] = np.random.rand(len(df)) > 0.5

In [260]: df.query('~bools')
Out[260]:

a b c bools
2 0.697753 0.212799 0.329209 False
7 0.275396 0.691034 0.826619 False
8 0.190649 0.558748 0.262467 False

In [261]: df.query('not bools')
\\\Out[261]:
→˓

a b c bools
2 0.697753 0.212799 0.329209 False
7 0.275396 0.691034 0.826619 False
8 0.190649 0.558748 0.262467 False

In [262]: df.query('not bools') == df[~df.bools]
\\Out[262]:
→˓

a b c bools
2 True True True True
7 True True True True
8 True True True True

Of course, expressions can be arbitrarily complex too:

short query syntax
In [263]: shorter = df.query('a < b < c and (not bools) or bools > 2')

equivalent in pure Python
In [264]: longer = df[(df.a < df.b) & (df.b < df.c) & (~df.bools) | (df.bools > 2)]

In [265]: shorter
Out[265]:

a b c bools
7 0.275396 0.691034 0.826619 False

In [266]: longer
\\\Out[266]:
→˓

a b c bools
7 0.275396 0.691034 0.826619 False

In [267]: shorter == longer
\\Out[267]:
→˓

a b c bools
7 True True True True

732 Chapter 12. Indexing and Selecting Data

pandas: powerful Python data analysis toolkit, Release 0.23.4

12.16.7 Performance of query()

DataFrame.query() using numexpr is slightly faster than Python for large frames.

Note: You will only see the performance benefits of using the numexpr engine with DataFrame.query() if
your frame has more than approximately 200,000 rows.

This plot was created using a DataFrame with 3 columns each containing floating point values generated using
numpy.random.randn().

12.17 Duplicate Data

If you want to identify and remove duplicate rows in a DataFrame, there are two methods that will help: duplicated
and drop_duplicates. Each takes as an argument the columns to use to identify duplicated rows.

12.17. Duplicate Data 733

pandas: powerful Python data analysis toolkit, Release 0.23.4

• duplicated returns a boolean vector whose length is the number of rows, and which indicates whether a row
is duplicated.

• drop_duplicates removes duplicate rows.

By default, the first observed row of a duplicate set is considered unique, but each method has a keep parameter to
specify targets to be kept.

• keep='first' (default): mark / drop duplicates except for the first occurrence.

• keep='last': mark / drop duplicates except for the last occurrence.

• keep=False: mark / drop all duplicates.

In [268]: df2 = pd.DataFrame({'a': ['one', 'one', 'two', 'two', 'two', 'three', 'four
→˓'],

.....: 'b': ['x', 'y', 'x', 'y', 'x', 'x', 'x'],

.....: 'c': np.random.randn(7)})

.....:

In [269]: df2
Out[269]:

a b c
0 one x -1.067137
1 one y 0.309500
2 two x -0.211056
3 two y -1.842023
4 two x -0.390820
5 three x -1.964475
6 four x 1.298329

In [270]: df2.duplicated('a')
\\\Out[270]:
→˓

0 False
1 True
2 False
3 True
4 True
5 False
6 False
dtype: bool

In [271]: df2.duplicated('a', keep='last')
\\\Out[271]:
→˓

0 True
1 False
2 True
3 True
4 False
5 False
6 False
dtype: bool

In [272]: df2.duplicated('a', keep=False)
\\\Out[272]:
→˓

0 True
1 True

(continues on next page)

734 Chapter 12. Indexing and Selecting Data

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

2 True
3 True
4 True
5 False
6 False
dtype: bool

In [273]: df2.drop_duplicates('a')
\\\Out[273]:
→˓

a b c
0 one x -1.067137
2 two x -0.211056
5 three x -1.964475
6 four x 1.298329

In [274]: df2.drop_duplicates('a', keep='last')
\\Out[274]:
→˓

a b c
1 one y 0.309500
4 two x -0.390820
5 three x -1.964475
6 four x 1.298329

In [275]: df2.drop_duplicates('a', keep=False)
\\\Out[275]:
→˓

a b c
5 three x -1.964475
6 four x 1.298329

Also, you can pass a list of columns to identify duplications.

In [276]: df2.duplicated(['a', 'b'])
Out[276]:
0 False
1 False
2 False
3 False
4 True
5 False
6 False
dtype: bool

In [277]: df2.drop_duplicates(['a', 'b'])
\\Out[277]:
→˓

a b c
0 one x -1.067137
1 one y 0.309500
2 two x -0.211056
3 two y -1.842023
5 three x -1.964475
6 four x 1.298329

To drop duplicates by index value, use Index.duplicated then perform slicing. The same set of options are

12.17. Duplicate Data 735

pandas: powerful Python data analysis toolkit, Release 0.23.4

available for the keep parameter.

In [278]: df3 = pd.DataFrame({'a': np.arange(6),
.....: 'b': np.random.randn(6)},
.....: index=['a', 'a', 'b', 'c', 'b', 'a'])
.....:

In [279]: df3
Out[279]:

a b
a 0 1.440455
a 1 2.456086
b 2 1.038402
c 3 -0.894409
b 4 0.683536
a 5 3.082764

In [280]: df3.index.duplicated()
\\Out[280]:
→˓array([False, True, False, False, True, True], dtype=bool)

In [281]: df3[~df3.index.duplicated()]
\\Out[281]:
→˓

a b
a 0 1.440455
b 2 1.038402
c 3 -0.894409

In [282]: df3[~df3.index.duplicated(keep='last')]
\\\Out[282]:
→˓

a b
c 3 -0.894409
b 4 0.683536
a 5 3.082764

In [283]: df3[~df3.index.duplicated(keep=False)]
\\Out[283]:
→˓

a b
c 3 -0.894409

12.18 Dictionary-like get() method

Each of Series, DataFrame, and Panel have a get method which can return a default value.

In [284]: s = pd.Series([1,2,3], index=['a','b','c'])

In [285]: s.get('a') # equivalent to s['a']
Out[285]: 1

In [286]: s.get('x', default=-1)
\\\\\\\\\\\\Out[286]: -1

736 Chapter 12. Indexing and Selecting Data

pandas: powerful Python data analysis toolkit, Release 0.23.4

12.19 The lookup() Method

Sometimes you want to extract a set of values given a sequence of row labels and column labels, and the lookup
method allows for this and returns a NumPy array. For instance:

In [287]: dflookup = pd.DataFrame(np.random.rand(20,4), columns = ['A','B','C','D'])

In [288]: dflookup.lookup(list(range(0,10,2)), ['B','C','A','B','D'])
Out[288]: array([0.3506, 0.4779, 0.4825, 0.9197, 0.5019])

12.20 Index objects

The pandas Index class and its subclasses can be viewed as implementing an ordered multiset. Duplicates are
allowed. However, if you try to convert an Index object with duplicate entries into a set, an exception will be
raised.

Index also provides the infrastructure necessary for lookups, data alignment, and reindexing. The easiest way to
create an Index directly is to pass a list or other sequence to Index:

In [289]: index = pd.Index(['e', 'd', 'a', 'b'])

In [290]: index
Out[290]: Index(['e', 'd', 'a', 'b'], dtype='object')

In [291]: 'd' in index
\\Out[291]: True

You can also pass a name to be stored in the index:

In [292]: index = pd.Index(['e', 'd', 'a', 'b'], name='something')

In [293]: index.name
Out[293]: 'something'

The name, if set, will be shown in the console display:

In [294]: index = pd.Index(list(range(5)), name='rows')

In [295]: columns = pd.Index(['A', 'B', 'C'], name='cols')

In [296]: df = pd.DataFrame(np.random.randn(5, 3), index=index, columns=columns)

In [297]: df
Out[297]:
cols A B C
rows
0 1.295989 0.185778 0.436259
1 0.678101 0.311369 -0.528378
2 -0.674808 -1.103529 -0.656157
3 1.889957 2.076651 -1.102192
4 -1.211795 -0.791746 0.634724

In [298]: df['A']
\\Out[298]:
→˓

(continues on next page)

12.19. The lookup() Method 737

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

rows
0 1.295989
1 0.678101
2 -0.674808
3 1.889957
4 -1.211795
Name: A, dtype: float64

12.20.1 Setting metadata

Indexes are “mostly immutable”, but it is possible to set and change their metadata, like the index name (or, for
MultiIndex, levels and labels).

You can use the rename, set_names, set_levels, and set_labels to set these attributes directly. They
default to returning a copy; however, you can specify inplace=True to have the data change in place.

See Advanced Indexing for usage of MultiIndexes.

In [299]: ind = pd.Index([1, 2, 3])

In [300]: ind.rename("apple")
Out[300]: Int64Index([1, 2, 3], dtype='int64', name='apple')

In [301]: ind
\\\Out[301]: Int64Index([1,
→˓2, 3], dtype='int64')

In [302]: ind.set_names(["apple"], inplace=True)

In [303]: ind.name = "bob"

In [304]: ind
Out[304]: Int64Index([1, 2, 3], dtype='int64', name='bob')

set_names, set_levels, and set_labels also take an optional level‘ argument

In [305]: index = pd.MultiIndex.from_product([range(3), ['one', 'two']], names=['first
→˓', 'second'])

In [306]: index
Out[306]:
MultiIndex(levels=[[0, 1, 2], ['one', 'two']],

labels=[[0, 0, 1, 1, 2, 2], [0, 1, 0, 1, 0, 1]],
names=['first', 'second'])

In [307]: index.levels[1]
\\Out[307]:
→˓Index(['one', 'two'], dtype='object', name='second')

In [308]: index.set_levels(["a", "b"], level=1)
\\\Out[308]:
→˓

MultiIndex(levels=[[0, 1, 2], ['a', 'b']],
labels=[[0, 0, 1, 1, 2, 2], [0, 1, 0, 1, 0, 1]],
names=['first', 'second'])

738 Chapter 12. Indexing and Selecting Data

pandas: powerful Python data analysis toolkit, Release 0.23.4

12.20.2 Set operations on Index objects

The two main operations are union (|) and intersection (&). These can be directly called as instance
methods or used via overloaded operators. Difference is provided via the .difference() method.

In [309]: a = pd.Index(['c', 'b', 'a'])

In [310]: b = pd.Index(['c', 'e', 'd'])

In [311]: a | b
Out[311]: Index(['a', 'b', 'c', 'd', 'e'], dtype='object')

In [312]: a & b
\\\Out[312]: Index(['c'],
→˓dtype='object')

In [313]: a.difference(b)
\\Out[313]:
→˓Index(['a', 'b'], dtype='object')

Also available is the symmetric_difference (^) operation, which returns elements that appear in either idx1
or idx2, but not in both. This is equivalent to the Index created by idx1.difference(idx2).union(idx2.
difference(idx1)), with duplicates dropped.

In [314]: idx1 = pd.Index([1, 2, 3, 4])

In [315]: idx2 = pd.Index([2, 3, 4, 5])

In [316]: idx1.symmetric_difference(idx2)
Out[316]: Int64Index([1, 5], dtype='int64')

In [317]: idx1 ^ idx2
\\Out[317]: Int64Index([1, 5], dtype='int64
→˓')

Note: The resulting index from a set operation will be sorted in ascending order.

12.20.3 Missing values

Important: Even though Index can hold missing values (NaN), it should be avoided if you do not want any
unexpected results. For example, some operations exclude missing values implicitly.

Index.fillna fills missing values with specified scalar value.

In [318]: idx1 = pd.Index([1, np.nan, 3, 4])

In [319]: idx1
Out[319]: Float64Index([1.0, nan, 3.0, 4.0], dtype='float64')

In [320]: idx1.fillna(2)
\\Out[320]:
→˓Float64Index([1.0, 2.0, 3.0, 4.0], dtype='float64')

(continues on next page)

12.20. Index objects 739

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

In [321]: idx2 = pd.DatetimeIndex([pd.Timestamp('2011-01-01'), pd.NaT, pd.Timestamp(
→˓'2011-01-03')])

In [322]: idx2
Out[322]: DatetimeIndex(['2011-01-01', 'NaT', '2011-01-03'], dtype='datetime64[ns]',
→˓freq=None)

In [323]: idx2.fillna(pd.Timestamp('2011-01-02'))
\\Out[323]:
→˓DatetimeIndex(['2011-01-01', '2011-01-02', '2011-01-03'], dtype='datetime64[ns]',
→˓freq=None)

12.21 Set / Reset Index

Occasionally you will load or create a data set into a DataFrame and want to add an index after you’ve already done
so. There are a couple of different ways.

12.21.1 Set an index

DataFrame has a set_index() method which takes a column name (for a regular Index) or a list of column names
(for a MultiIndex). To create a new, re-indexed DataFrame:

In [324]: data
Out[324]:

a b c d
0 bar one z 1.0
1 bar two y 2.0
2 foo one x 3.0
3 foo two w 4.0

In [325]: indexed1 = data.set_index('c')

In [326]: indexed1
Out[326]:

a b d
c
z bar one 1.0
y bar two 2.0
x foo one 3.0
w foo two 4.0

In [327]: indexed2 = data.set_index(['a', 'b'])

In [328]: indexed2
Out[328]:

c d
a b
bar one z 1.0

two y 2.0
foo one x 3.0

two w 4.0

740 Chapter 12. Indexing and Selecting Data

pandas: powerful Python data analysis toolkit, Release 0.23.4

The append keyword option allow you to keep the existing index and append the given columns to a MultiIndex:

In [329]: frame = data.set_index('c', drop=False)

In [330]: frame = frame.set_index(['a', 'b'], append=True)

In [331]: frame
Out[331]:

c d
c a b
z bar one z 1.0
y bar two y 2.0
x foo one x 3.0
w foo two w 4.0

Other options in set_index allow you not drop the index columns or to add the index in-place (without creating a
new object):

In [332]: data.set_index('c', drop=False)
Out[332]:

a b c d
c
z bar one z 1.0
y bar two y 2.0
x foo one x 3.0
w foo two w 4.0

In [333]: data.set_index(['a', 'b'], inplace=True)

In [334]: data
Out[334]:

c d
a b
bar one z 1.0

two y 2.0
foo one x 3.0

two w 4.0

12.21.2 Reset the index

As a convenience, there is a new function on DataFrame called reset_index() which transfers the index values
into the DataFrame’s columns and sets a simple integer index. This is the inverse operation of set_index().

In [335]: data
Out[335]:

c d
a b
bar one z 1.0

two y 2.0
foo one x 3.0

two w 4.0

In [336]: data.reset_index()
\\\Out[336]:
→˓

a b c d

(continues on next page)

12.21. Set / Reset Index 741

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

0 bar one z 1.0
1 bar two y 2.0
2 foo one x 3.0
3 foo two w 4.0

The output is more similar to a SQL table or a record array. The names for the columns derived from the index are the
ones stored in the names attribute.

You can use the level keyword to remove only a portion of the index:

In [337]: frame
Out[337]:

c d
c a b
z bar one z 1.0
y bar two y 2.0
x foo one x 3.0
w foo two w 4.0

In [338]: frame.reset_index(level=1)
\\\Out[338]:
→˓

a c d
c b
z one bar z 1.0
y two bar y 2.0
x one foo x 3.0
w two foo w 4.0

reset_index takes an optional parameter drop which if true simply discards the index, instead of putting index
values in the DataFrame’s columns.

12.21.3 Adding an ad hoc index

If you create an index yourself, you can just assign it to the index field:

data.index = index

12.22 Returning a view versus a copy

When setting values in a pandas object, care must be taken to avoid what is called chained indexing. Here is an
example.

In [339]: dfmi = pd.DataFrame([list('abcd'),
.....: list('efgh'),
.....: list('ijkl'),
.....: list('mnop')],
.....: columns=pd.MultiIndex.from_product([['one','two'],
.....: ['first','second

→˓']]))
.....:

In [340]: dfmi

(continues on next page)

742 Chapter 12. Indexing and Selecting Data

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

Out[340]:
one two

first second first second
0 a b c d
1 e f g h
2 i j k l
3 m n o p

Compare these two access methods:

In [341]: dfmi['one']['second']
Out[341]:
0 b
1 f
2 j
3 n
Name: second, dtype: object

In [342]: dfmi.loc[:,('one','second')]
Out[342]:
0 b
1 f
2 j
3 n
Name: (one, second), dtype: object

These both yield the same results, so which should you use? It is instructive to understand the order of operations on
these and why method 2 (.loc) is much preferred over method 1 (chained []).

dfmi['one'] selects the first level of the columns and returns a DataFrame that is singly-indexed. Then an-
other Python operation dfmi_with_one['second'] selects the series indexed by 'second'. This is indicated
by the variable dfmi_with_one because pandas sees these operations as separate events. e.g. separate calls to
__getitem__, so it has to treat them as linear operations, they happen one after another.

Contrast this to df.loc[:,('one','second')] which passes a nested tuple of (slice(None),('one',
'second')) to a single call to __getitem__. This allows pandas to deal with this as a single entity. Furthermore
this order of operations can be significantly faster, and allows one to index both axes if so desired.

12.22.1 Why does assignment fail when using chained indexing?

The problem in the previous section is just a performance issue. What’s up with the SettingWithCopy warning?
We don’t usually throw warnings around when you do something that might cost a few extra milliseconds!

But it turns out that assigning to the product of chained indexing has inherently unpredictable results. To see this,
think about how the Python interpreter executes this code:

dfmi.loc[:,('one','second')] = value
becomes
dfmi.loc.__setitem__((slice(None), ('one', 'second')), value)

But this code is handled differently:

dfmi['one']['second'] = value
becomes
dfmi.__getitem__('one').__setitem__('second', value)

12.22. Returning a view versus a copy 743

pandas: powerful Python data analysis toolkit, Release 0.23.4

See that __getitem__ in there? Outside of simple cases, it’s very hard to predict whether it will return a view or a
copy (it depends on the memory layout of the array, about which pandas makes no guarantees), and therefore whether
the __setitem__ will modify dfmi or a temporary object that gets thrown out immediately afterward. That’s what
SettingWithCopy is warning you about!

Note: You may be wondering whether we should be concerned about the loc property in the first example. But
dfmi.loc is guaranteed to be dfmi itself with modified indexing behavior, so dfmi.loc.__getitem__ /
dfmi.loc.__setitem__ operate on dfmi directly. Of course, dfmi.loc.__getitem__(idx) may be
a view or a copy of dfmi.

Sometimes a SettingWithCopy warning will arise at times when there’s no obvious chained indexing going on.
These are the bugs that SettingWithCopy is designed to catch! Pandas is probably trying to warn you that you’ve
done this:

def do_something(df):
foo = df[['bar', 'baz']] # Is foo a view? A copy? Nobody knows!
... many lines here ...
foo['quux'] = value # We don't know whether this will modify df or not!
return foo

Yikes!

12.22.2 Evaluation order matters

When you use chained indexing, the order and type of the indexing operation partially determine whether the result is
a slice into the original object, or a copy of the slice.

Pandas has the SettingWithCopyWarning because assigning to a copy of a slice is frequently not intentional,
but a mistake caused by chained indexing returning a copy where a slice was expected.

If you would like pandas to be more or less trusting about assignment to a chained indexing expression, you can set
the option mode.chained_assignment to one of these values:

• 'warn', the default, means a SettingWithCopyWarning is printed.

• 'raise' means pandas will raise a SettingWithCopyException you have to deal with.

• None will suppress the warnings entirely.

In [343]: dfb = pd.DataFrame({'a' : ['one', 'one', 'two',
.....: 'three', 'two', 'one', 'six'],
.....: 'c' : np.arange(7)})
.....:

This will show the SettingWithCopyWarning
but the frame values will be set
In [344]: dfb['c'][dfb.a.str.startswith('o')] = 42

This however is operating on a copy and will not work.

>>> pd.set_option('mode.chained_assignment','warn')
>>> dfb[dfb.a.str.startswith('o')]['c'] = 42
Traceback (most recent call last)

...
SettingWithCopyWarning:

(continues on next page)

744 Chapter 12. Indexing and Selecting Data

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_index,col_indexer] = value instead

A chained assignment can also crop up in setting in a mixed dtype frame.

Note: These setting rules apply to all of .loc/.iloc.

This is the correct access method:

In [345]: dfc = pd.DataFrame({'A':['aaa','bbb','ccc'],'B':[1,2,3]})

In [346]: dfc.loc[0,'A'] = 11

In [347]: dfc
Out[347]:

A B
0 11 1
1 bbb 2
2 ccc 3

This can work at times, but it is not guaranteed to, and therefore should be avoided:

In [348]: dfc = dfc.copy()

In [349]: dfc['A'][0] = 111

In [350]: dfc
Out[350]:

A B
0 111 1
1 bbb 2
2 ccc 3

This will not work at all, and so should be avoided:

>>> pd.set_option('mode.chained_assignment','raise')
>>> dfc.loc[0]['A'] = 1111
Traceback (most recent call last)

...
SettingWithCopyException:

A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_index,col_indexer] = value instead

Warning: The chained assignment warnings / exceptions are aiming to inform the user of a possibly invalid
assignment. There may be false positives; situations where a chained assignment is inadvertently reported.

12.22. Returning a view versus a copy 745

pandas: powerful Python data analysis toolkit, Release 0.23.4

746 Chapter 12. Indexing and Selecting Data

CHAPTER

THIRTEEN

MULTIINDEX / ADVANCED INDEXING

This section covers indexing with a MultiIndex and more advanced indexing features.

See the Indexing and Selecting Data for general indexing documentation.

Warning: Whether a copy or a reference is returned for a setting operation, may depend on the context. This is
sometimes called chained assignment and should be avoided. See Returning a View versus Copy.

See the cookbook for some advanced strategies.

13.1 Hierarchical indexing (MultiIndex)

Hierarchical / Multi-level indexing is very exciting as it opens the door to some quite sophisticated data analysis and
manipulation, especially for working with higher dimensional data. In essence, it enables you to store and manipulate
data with an arbitrary number of dimensions in lower dimensional data structures like Series (1d) and DataFrame (2d).

In this section, we will show what exactly we mean by “hierarchical” indexing and how it integrates with all of the
pandas indexing functionality described above and in prior sections. Later, when discussing group by and pivoting and
reshaping data, we’ll show non-trivial applications to illustrate how it aids in structuring data for analysis.

See the cookbook for some advanced strategies.

13.1.1 Creating a MultiIndex (hierarchical index) object

The MultiIndex object is the hierarchical analogue of the standard Index object which typically stores the axis
labels in pandas objects. You can think of MultiIndex as an array of tuples where each tuple is unique. A
MultiIndex can be created from a list of arrays (using MultiIndex.from_arrays), an array of tuples (us-
ing MultiIndex.from_tuples), or a crossed set of iterables (using MultiIndex.from_product). The
Index constructor will attempt to return a MultiIndex when it is passed a list of tuples. The following examples
demonstrate different ways to initialize MultiIndexes.

In [1]: arrays = [['bar', 'bar', 'baz', 'baz', 'foo', 'foo', 'qux', 'qux'],
...: ['one', 'two', 'one', 'two', 'one', 'two', 'one', 'two']]
...:

In [2]: tuples = list(zip(*arrays))

In [3]: tuples
Out[3]:
[('bar', 'one'),

(continues on next page)

747

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

('bar', 'two'),
('baz', 'one'),
('baz', 'two'),
('foo', 'one'),
('foo', 'two'),
('qux', 'one'),
('qux', 'two')]

In [4]: index = pd.MultiIndex.from_tuples(tuples, names=['first', 'second'])

In [5]: index
Out[5]:
MultiIndex(levels=[['bar', 'baz', 'foo', 'qux'], ['one', 'two']],

labels=[[0, 0, 1, 1, 2, 2, 3, 3], [0, 1, 0, 1, 0, 1, 0, 1]],
names=['first', 'second'])

In [6]: s = pd.Series(np.random.randn(8), index=index)

In [7]: s
Out[7]:
first second
bar one 0.469112

two -0.282863
baz one -1.509059

two -1.135632
foo one 1.212112

two -0.173215
qux one 0.119209

two -1.044236
dtype: float64

When you want every pairing of the elements in two iterables, it can be easier to use the MultiIndex.
from_product function:

In [8]: iterables = [['bar', 'baz', 'foo', 'qux'], ['one', 'two']]

In [9]: pd.MultiIndex.from_product(iterables, names=['first', 'second'])
Out[9]:
MultiIndex(levels=[['bar', 'baz', 'foo', 'qux'], ['one', 'two']],

labels=[[0, 0, 1, 1, 2, 2, 3, 3], [0, 1, 0, 1, 0, 1, 0, 1]],
names=['first', 'second'])

As a convenience, you can pass a list of arrays directly into Series or DataFrame to construct a MultiIndex automati-
cally:

In [10]: arrays = [np.array(['bar', 'bar', 'baz', 'baz', 'foo', 'foo', 'qux', 'qux']),
....: np.array(['one', 'two', 'one', 'two', 'one', 'two', 'one', 'two'])]
....:

In [11]: s = pd.Series(np.random.randn(8), index=arrays)

In [12]: s
Out[12]:
bar one -0.861849

two -2.104569
baz one -0.494929

(continues on next page)

748 Chapter 13. MultiIndex / Advanced Indexing

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

two 1.071804
foo one 0.721555

two -0.706771
qux one -1.039575

two 0.271860
dtype: float64

In [13]: df = pd.DataFrame(np.random.randn(8, 4), index=arrays)

In [14]: df
Out[14]:

0 1 2 3
bar one -0.424972 0.567020 0.276232 -1.087401

two -0.673690 0.113648 -1.478427 0.524988
baz one 0.404705 0.577046 -1.715002 -1.039268

two -0.370647 -1.157892 -1.344312 0.844885
foo one 1.075770 -0.109050 1.643563 -1.469388

two 0.357021 -0.674600 -1.776904 -0.968914
qux one -1.294524 0.413738 0.276662 -0.472035

two -0.013960 -0.362543 -0.006154 -0.923061

All of the MultiIndex constructors accept a names argument which stores string names for the levels themselves.
If no names are provided, None will be assigned:

In [15]: df.index.names
Out[15]: FrozenList([None, None])

This index can back any axis of a pandas object, and the number of levels of the index is up to you:

In [16]: df = pd.DataFrame(np.random.randn(3, 8), index=['A', 'B', 'C'],
→˓columns=index)

In [17]: df
Out[17]:
first bar baz foo qux
second one two one two one two one two
A 0.895717 0.805244 -1.206412 2.565646 1.431256 1.340309 -1.170299 -0.226169
B 0.410835 0.813850 0.132003 -0.827317 -0.076467 -1.187678 1.130127 -1.436737
C -1.413681 1.607920 1.024180 0.569605 0.875906 -2.211372 0.974466 -2.006747

In [18]: pd.DataFrame(np.random.randn(6, 6), index=index[:6], columns=index[:6])
\\\Out[18]:
→˓

first bar baz foo
second one two one two one two
first second
bar one -0.410001 -0.078638 0.545952 -1.219217 -1.226825 0.769804

two -1.281247 -0.727707 -0.121306 -0.097883 0.695775 0.341734
baz one 0.959726 -1.110336 -0.619976 0.149748 -0.732339 0.687738

two 0.176444 0.403310 -0.154951 0.301624 -2.179861 -1.369849
foo one -0.954208 1.462696 -1.743161 -0.826591 -0.345352 1.314232

two 0.690579 0.995761 2.396780 0.014871 3.357427 -0.317441

We’ve “sparsified” the higher levels of the indexes to make the console output a bit easier on the eyes. Note that how
the index is displayed can be controlled using the multi_sparse option in pandas.set_options():

13.1. Hierarchical indexing (MultiIndex) 749

pandas: powerful Python data analysis toolkit, Release 0.23.4

In [19]: with pd.option_context('display.multi_sparse', False):
....: df
....:

It’s worth keeping in mind that there’s nothing preventing you from using tuples as atomic labels on an axis:

In [20]: pd.Series(np.random.randn(8), index=tuples)
Out[20]:
(bar, one) -1.236269
(bar, two) 0.896171
(baz, one) -0.487602
(baz, two) -0.082240
(foo, one) -2.182937
(foo, two) 0.380396
(qux, one) 0.084844
(qux, two) 0.432390
dtype: float64

The reason that the MultiIndex matters is that it can allow you to do grouping, selection, and reshaping operations
as we will describe below and in subsequent areas of the documentation. As you will see in later sections, you can find
yourself working with hierarchically-indexed data without creating a MultiIndex explicitly yourself. However,
when loading data from a file, you may wish to generate your own MultiIndex when preparing the data set.

13.1.2 Reconstructing the level labels

The method get_level_values will return a vector of the labels for each location at a particular level:

In [21]: index.get_level_values(0)
Out[21]: Index(['bar', 'bar', 'baz', 'baz', 'foo', 'foo', 'qux', 'qux'], dtype='object
→˓', name='first')

In [22]: index.get_level_values('second')
\\\Out[22]:
→˓Index(['one', 'two', 'one', 'two', 'one', 'two', 'one', 'two'], dtype='object',
→˓name='second')

13.1.3 Basic indexing on axis with MultiIndex

One of the important features of hierarchical indexing is that you can select data by a “partial” label identifying a
subgroup in the data. Partial selection “drops” levels of the hierarchical index in the result in a completely analogous
way to selecting a column in a regular DataFrame:

In [23]: df['bar']
Out[23]:
second one two
A 0.895717 0.805244
B 0.410835 0.813850
C -1.413681 1.607920

In [24]: df['bar', 'one']
\\Out[24]:
→˓

A 0.895717
B 0.410835

(continues on next page)

750 Chapter 13. MultiIndex / Advanced Indexing

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

C -1.413681
Name: (bar, one), dtype: float64

In [25]: df['bar']['one']
\\\Out[25]:
→˓

A 0.895717
B 0.410835
C -1.413681
Name: one, dtype: float64

In [26]: s['qux']
\\\Out[26]:
→˓

one -1.039575
two 0.271860
dtype: float64

See Cross-section with hierarchical index for how to select on a deeper level.

13.1.4 Defined Levels

The repr of a MultiIndex shows all the defined levels of an index, even if the they are not actually used. When
slicing an index, you may notice this. For example:

In [27]: df.columns # original MultiIndex
Out[27]:
MultiIndex(levels=[['bar', 'baz', 'foo', 'qux'], ['one', 'two']],

labels=[[0, 0, 1, 1, 2, 2, 3, 3], [0, 1, 0, 1, 0, 1, 0, 1]],
names=['first', 'second'])

In [28]: df[['foo','qux']].columns # sliced
\\Out[28]:
→˓

MultiIndex(levels=[['bar', 'baz', 'foo', 'qux'], ['one', 'two']],
labels=[[2, 2, 3, 3], [0, 1, 0, 1]],
names=['first', 'second'])

This is done to avoid a recomputation of the levels in order to make slicing highly performant. If you want to see only
the used levels, you can use the MultiIndex.get_level_values() method.

In [29]: df[['foo','qux']].columns.values
Out[29]: array([('foo', 'one'), ('foo', 'two'), ('qux', 'one'), ('qux', 'two')],
→˓dtype=object)

for a specific level
In [30]: df[['foo','qux']].columns.get_level_values(0)
\\\Out[30]:
→˓Index(['foo', 'foo', 'qux', 'qux'], dtype='object', name='first')

To reconstruct the MultiIndex with only the used levels, the remove_unused_levels method may be used.

New in version 0.20.0.

13.1. Hierarchical indexing (MultiIndex) 751

pandas: powerful Python data analysis toolkit, Release 0.23.4

In [31]: df[['foo','qux']].columns.remove_unused_levels()
Out[31]:
MultiIndex(levels=[['foo', 'qux'], ['one', 'two']],

labels=[[0, 0, 1, 1], [0, 1, 0, 1]],
names=['first', 'second'])

13.1.5 Data alignment and using reindex

Operations between differently-indexed objects having MultiIndex on the axes will work as you expect; data
alignment will work the same as an Index of tuples:

In [32]: s + s[:-2]
Out[32]:
bar one -1.723698

two -4.209138
baz one -0.989859

two 2.143608
foo one 1.443110

two -1.413542
qux one NaN

two NaN
dtype: float64

In [33]: s + s[::2]
\\\Out[33]:
→˓

bar one -1.723698
two NaN

baz one -0.989859
two NaN

foo one 1.443110
two NaN

qux one -2.079150
two NaN

dtype: float64

reindex can be called with another MultiIndex, or even a list or array of tuples:

In [34]: s.reindex(index[:3])
Out[34]:
first second
bar one -0.861849

two -2.104569
baz one -0.494929
dtype: float64

In [35]: s.reindex([('foo', 'two'), ('bar', 'one'), ('qux', 'one'), ('baz', 'one')])
\\\Out[35]:
→˓

foo two -0.706771
bar one -0.861849
qux one -1.039575
baz one -0.494929
dtype: float64

752 Chapter 13. MultiIndex / Advanced Indexing

pandas: powerful Python data analysis toolkit, Release 0.23.4

13.2 Advanced indexing with hierarchical index

Syntactically integrating MultiIndex in advanced indexing with .loc is a bit challenging, but we’ve made every
effort to do so. In general, MultiIndex keys take the form of tuples. For example, the following works as you would
expect:

In [36]: df = df.T

In [37]: df
Out[37]:

A B C
first second
bar one 0.895717 0.410835 -1.413681

two 0.805244 0.813850 1.607920
baz one -1.206412 0.132003 1.024180

two 2.565646 -0.827317 0.569605
foo one 1.431256 -0.076467 0.875906

two 1.340309 -1.187678 -2.211372
qux one -1.170299 1.130127 0.974466

two -0.226169 -1.436737 -2.006747

In [38]: df.loc[('bar', 'two'),]
\\Out[38]:
→˓

A 0.805244
B 0.813850
C 1.607920
Name: (bar, two), dtype: float64

Note that df.loc['bar', 'two'] would also work in this example, but this shorthand notation can lead to
ambiguity in general.

If you also want to index a specific column with .loc, you must use a tuple like this:

In [39]: df.loc[('bar', 'two'), 'A']
Out[39]: 0.80524402538637851

You don’t have to specify all levels of the MultiIndex by passing only the first elements of the tuple. For example,
you can use “partial” indexing to get all elements with bar in the first level as follows:

df.loc[‘bar’]

This is a shortcut for the slightly more verbose notation df.loc[('bar',),] (equivalent to df.loc['bar',]
in this example).

“Partial” slicing also works quite nicely.

In [40]: df.loc['baz':'foo']
Out[40]:

A B C
first second
baz one -1.206412 0.132003 1.024180

two 2.565646 -0.827317 0.569605
foo one 1.431256 -0.076467 0.875906

two 1.340309 -1.187678 -2.211372

You can slice with a ‘range’ of values, by providing a slice of tuples.

13.2. Advanced indexing with hierarchical index 753

pandas: powerful Python data analysis toolkit, Release 0.23.4

In [41]: df.loc[('baz', 'two'):('qux', 'one')]
Out[41]:

A B C
first second
baz two 2.565646 -0.827317 0.569605
foo one 1.431256 -0.076467 0.875906

two 1.340309 -1.187678 -2.211372
qux one -1.170299 1.130127 0.974466

In [42]: df.loc[('baz', 'two'):'foo']
\\Out[42]:
→˓

A B C
first second
baz two 2.565646 -0.827317 0.569605
foo one 1.431256 -0.076467 0.875906

two 1.340309 -1.187678 -2.211372

Passing a list of labels or tuples works similar to reindexing:

In [43]: df.loc[[('bar', 'two'), ('qux', 'one')]]
Out[43]:

A B C
first second
bar two 0.805244 0.813850 1.607920
qux one -1.170299 1.130127 0.974466

Note: It is important to note that tuples and lists are not treated identically in pandas when it comes to indexing.
Whereas a tuple is interpreted as one multi-level key, a list is used to specify several keys. Or in other words, tuples
go horizontally (traversing levels), lists go vertically (scanning levels).

Importantly, a list of tuples indexes several complete MultiIndex keys, whereas a tuple of lists refer to several
values within a level:

In [44]: s = pd.Series([1, 2, 3, 4, 5, 6],
....: index=pd.MultiIndex.from_product([["A", "B"], ["c", "d", "e

→˓"]]))
....:

In [45]: s.loc[[("A", "c"), ("B", "d")]] # list of tuples
Out[45]:
A c 1
B d 5
dtype: int64

In [46]: s.loc[(["A", "B"], ["c", "d"])] # tuple of lists
\\\Out[46]:
A c 1

d 2
B c 4

d 5
dtype: int64

754 Chapter 13. MultiIndex / Advanced Indexing

pandas: powerful Python data analysis toolkit, Release 0.23.4

13.2.1 Using slicers

You can slice a MultiIndex by providing multiple indexers.

You can provide any of the selectors as if you are indexing by label, see Selection by Label, including slices, lists of
labels, labels, and boolean indexers.

You can use slice(None) to select all the contents of that level. You do not need to specify all the deeper levels,
they will be implied as slice(None).

As usual, both sides of the slicers are included as this is label indexing.

Warning: You should specify all axes in the .loc specifier, meaning the indexer for the index and for the
columns. There are some ambiguous cases where the passed indexer could be mis-interpreted as indexing both
axes, rather than into say the MultiIndex for the rows.

You should do this:
df.loc[(slice('A1','A3'),.....), :]

You should not do this:
df.loc[(slice('A1','A3'),.....)]

In [47]: def mklbl(prefix,n):
....: return ["%s%s" % (prefix,i) for i in range(n)]
....:

In [48]: miindex = pd.MultiIndex.from_product([mklbl('A',4),
....: mklbl('B',2),
....: mklbl('C',4),
....: mklbl('D',2)])
....:

In [49]: micolumns = pd.MultiIndex.from_tuples([('a','foo'),('a','bar'),
....: ('b','foo'),('b','bah')],
....: names=['lvl0', 'lvl1'])
....:

In [50]: dfmi = pd.DataFrame(np.arange(len(miindex)*len(micolumns)).
→˓reshape((len(miindex),len(micolumns))),

....: index=miindex,

....: columns=micolumns).sort_index().sort_index(axis=1)

....:

In [51]: dfmi
Out[51]:
lvl0 a b
lvl1 bar foo bah foo
A0 B0 C0 D0 1 0 3 2

D1 5 4 7 6
C1 D0 9 8 11 10

D1 13 12 15 14
C2 D0 17 16 19 18

D1 21 20 23 22
C3 D0 25 24 27 26

...
A3 B1 C0 D1 229 228 231 230

(continues on next page)

13.2. Advanced indexing with hierarchical index 755

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

C1 D0 233 232 235 234
D1 237 236 239 238

C2 D0 241 240 243 242
D1 245 244 247 246

C3 D0 249 248 251 250
D1 253 252 255 254

[64 rows x 4 columns]

Basic multi-index slicing using slices, lists, and labels.

In [52]: dfmi.loc[(slice('A1','A3'), slice(None), ['C1', 'C3']), :]
Out[52]:
lvl0 a b
lvl1 bar foo bah foo
A1 B0 C1 D0 73 72 75 74

D1 77 76 79 78
C3 D0 89 88 91 90

D1 93 92 95 94
B1 C1 D0 105 104 107 106

D1 109 108 111 110
C3 D0 121 120 123 122

...
A3 B0 C1 D1 205 204 207 206

C3 D0 217 216 219 218
D1 221 220 223 222

B1 C1 D0 233 232 235 234
D1 237 236 239 238

C3 D0 249 248 251 250
D1 253 252 255 254

[24 rows x 4 columns]

You can use pandas.IndexSlice to facilitate a more natural syntax using :, rather than using slice(None).

In [53]: idx = pd.IndexSlice

In [54]: dfmi.loc[idx[:, :, ['C1', 'C3']], idx[:, 'foo']]
Out[54]:
lvl0 a b
lvl1 foo foo
A0 B0 C1 D0 8 10

D1 12 14
C3 D0 24 26

D1 28 30
B1 C1 D0 40 42

D1 44 46
C3 D0 56 58

...
A3 B0 C1 D1 204 206

C3 D0 216 218
D1 220 222

B1 C1 D0 232 234
D1 236 238

C3 D0 248 250
D1 252 254

(continues on next page)

756 Chapter 13. MultiIndex / Advanced Indexing

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

[32 rows x 2 columns]

It is possible to perform quite complicated selections using this method on multiple axes at the same time.

In [55]: dfmi.loc['A1', (slice(None), 'foo')]
Out[55]:
lvl0 a b
lvl1 foo foo
B0 C0 D0 64 66

D1 68 70
C1 D0 72 74

D1 76 78
C2 D0 80 82

D1 84 86
C3 D0 88 90

...
B1 C0 D1 100 102

C1 D0 104 106
D1 108 110

C2 D0 112 114
D1 116 118

C3 D0 120 122
D1 124 126

[16 rows x 2 columns]

In [56]: dfmi.loc[idx[:, :, ['C1', 'C3']], idx[:, 'foo']]
\\Out[56]:
→˓

lvl0 a b
lvl1 foo foo
A0 B0 C1 D0 8 10

D1 12 14
C3 D0 24 26

D1 28 30
B1 C1 D0 40 42

D1 44 46
C3 D0 56 58

...
A3 B0 C1 D1 204 206

C3 D0 216 218
D1 220 222

B1 C1 D0 232 234
D1 236 238

C3 D0 248 250
D1 252 254

[32 rows x 2 columns]

Using a boolean indexer you can provide selection related to the values.

In [57]: mask = dfmi[('a', 'foo')] > 200

In [58]: dfmi.loc[idx[mask, :, ['C1', 'C3']], idx[:, 'foo']]
Out[58]:
lvl0 a b
lvl1 foo foo

(continues on next page)

13.2. Advanced indexing with hierarchical index 757

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

A3 B0 C1 D1 204 206
C3 D0 216 218

D1 220 222
B1 C1 D0 232 234

D1 236 238
C3 D0 248 250

D1 252 254

You can also specify the axis argument to .loc to interpret the passed slicers on a single axis.

In [59]: dfmi.loc(axis=0)[:, :, ['C1', 'C3']]
Out[59]:
lvl0 a b
lvl1 bar foo bah foo
A0 B0 C1 D0 9 8 11 10

D1 13 12 15 14
C3 D0 25 24 27 26

D1 29 28 31 30
B1 C1 D0 41 40 43 42

D1 45 44 47 46
C3 D0 57 56 59 58

...
A3 B0 C1 D1 205 204 207 206

C3 D0 217 216 219 218
D1 221 220 223 222

B1 C1 D0 233 232 235 234
D1 237 236 239 238

C3 D0 249 248 251 250
D1 253 252 255 254

[32 rows x 4 columns]

Furthermore you can set the values using the following methods.

In [60]: df2 = dfmi.copy()

In [61]: df2.loc(axis=0)[:, :, ['C1', 'C3']] = -10

In [62]: df2
Out[62]:
lvl0 a b
lvl1 bar foo bah foo
A0 B0 C0 D0 1 0 3 2

D1 5 4 7 6
C1 D0 -10 -10 -10 -10

D1 -10 -10 -10 -10
C2 D0 17 16 19 18

D1 21 20 23 22
C3 D0 -10 -10 -10 -10

...
A3 B1 C0 D1 229 228 231 230

C1 D0 -10 -10 -10 -10
D1 -10 -10 -10 -10

C2 D0 241 240 243 242
D1 245 244 247 246

C3 D0 -10 -10 -10 -10
D1 -10 -10 -10 -10

(continues on next page)

758 Chapter 13. MultiIndex / Advanced Indexing

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

[64 rows x 4 columns]

You can use a right-hand-side of an alignable object as well.

In [63]: df2 = dfmi.copy()

In [64]: df2.loc[idx[:, :, ['C1', 'C3']], :] = df2 * 1000

In [65]: df2
Out[65]:
lvl0 a b
lvl1 bar foo bah foo
A0 B0 C0 D0 1 0 3 2

D1 5 4 7 6
C1 D0 9000 8000 11000 10000

D1 13000 12000 15000 14000
C2 D0 17 16 19 18

D1 21 20 23 22
C3 D0 25000 24000 27000 26000

...
A3 B1 C0 D1 229 228 231 230

C1 D0 233000 232000 235000 234000
D1 237000 236000 239000 238000

C2 D0 241 240 243 242
D1 245 244 247 246

C3 D0 249000 248000 251000 250000
D1 253000 252000 255000 254000

[64 rows x 4 columns]

13.2.2 Cross-section

The xs method of DataFrame additionally takes a level argument to make selecting data at a particular level of a
MultiIndex easier.

In [66]: df
Out[66]:

A B C
first second
bar one 0.895717 0.410835 -1.413681

two 0.805244 0.813850 1.607920
baz one -1.206412 0.132003 1.024180

two 2.565646 -0.827317 0.569605
foo one 1.431256 -0.076467 0.875906

two 1.340309 -1.187678 -2.211372
qux one -1.170299 1.130127 0.974466

two -0.226169 -1.436737 -2.006747

In [67]: df.xs('one', level='second')
\\Out[67]:
→˓

A B C
first
bar 0.895717 0.410835 -1.413681

(continues on next page)

13.2. Advanced indexing with hierarchical index 759

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

baz -1.206412 0.132003 1.024180
foo 1.431256 -0.076467 0.875906
qux -1.170299 1.130127 0.974466

using the slicers
In [68]: df.loc[(slice(None),'one'),:]
Out[68]:

A B C
first second
bar one 0.895717 0.410835 -1.413681
baz one -1.206412 0.132003 1.024180
foo one 1.431256 -0.076467 0.875906
qux one -1.170299 1.130127 0.974466

You can also select on the columns with xs(), by providing the axis argument.

In [69]: df = df.T

In [70]: df.xs('one', level='second', axis=1)
Out[70]:
first bar baz foo qux
A 0.895717 -1.206412 1.431256 -1.170299
B 0.410835 0.132003 -0.076467 1.130127
C -1.413681 1.024180 0.875906 0.974466

using the slicers
In [71]: df.loc[:,(slice(None),'one')]
Out[71]:
first bar baz foo qux
second one one one one
A 0.895717 -1.206412 1.431256 -1.170299
B 0.410835 0.132003 -0.076467 1.130127
C -1.413681 1.024180 0.875906 0.974466

xs() also allows selection with multiple keys.

In [72]: df.xs(('one', 'bar'), level=('second', 'first'), axis=1)
Out[72]:
first bar
second one
A 0.895717
B 0.410835
C -1.413681

using the slicers
In [73]: df.loc[:,('bar','one')]
Out[73]:
A 0.895717
B 0.410835
C -1.413681
Name: (bar, one), dtype: float64

You can pass drop_level=False to xs() to retain the level that was selected.

760 Chapter 13. MultiIndex / Advanced Indexing

pandas: powerful Python data analysis toolkit, Release 0.23.4

In [74]: df.xs('one', level='second', axis=1, drop_level=False)
Out[74]:
first bar baz foo qux
second one one one one
A 0.895717 -1.206412 1.431256 -1.170299
B 0.410835 0.132003 -0.076467 1.130127
C -1.413681 1.024180 0.875906 0.974466

Compare the above with the result using drop_level=True (the default value).

In [75]: df.xs('one', level='second', axis=1, drop_level=True)
Out[75]:
first bar baz foo qux
A 0.895717 -1.206412 1.431256 -1.170299
B 0.410835 0.132003 -0.076467 1.130127
C -1.413681 1.024180 0.875906 0.974466

13.2.3 Advanced reindexing and alignment

The parameter level has been added to the reindex and align methods of pandas objects. This is useful to
broadcast values across a level. For instance:

In [76]: midx = pd.MultiIndex(levels=[['zero', 'one'], ['x','y']],
....: labels=[[1,1,0,0],[1,0,1,0]])
....:

In [77]: df = pd.DataFrame(np.random.randn(4,2), index=midx)

In [78]: df
Out[78]:

0 1
one y 1.519970 -0.493662

x 0.600178 0.274230
zero y 0.132885 -0.023688

x 2.410179 1.450520

In [79]: df2 = df.mean(level=0)

In [80]: df2
Out[80]:

0 1
one 1.060074 -0.109716
zero 1.271532 0.713416

In [81]: df2.reindex(df.index, level=0)
\\\Out[81]:
→˓

0 1
one y 1.060074 -0.109716

x 1.060074 -0.109716
zero y 1.271532 0.713416

x 1.271532 0.713416

aligning
In [82]: df_aligned, df2_aligned = df.align(df2, level=0)

(continues on next page)

13.2. Advanced indexing with hierarchical index 761

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

In [83]: df_aligned
Out[83]:

0 1
one y 1.519970 -0.493662

x 0.600178 0.274230
zero y 0.132885 -0.023688

x 2.410179 1.450520

In [84]: df2_aligned
\\\Out[84]:
→˓

0 1
one y 1.060074 -0.109716

x 1.060074 -0.109716
zero y 1.271532 0.713416

x 1.271532 0.713416

13.2.4 Swapping levels with swaplevel()

The swaplevel function can switch the order of two levels:

In [85]: df[:5]
Out[85]:

0 1
one y 1.519970 -0.493662

x 0.600178 0.274230
zero y 0.132885 -0.023688

x 2.410179 1.450520

In [86]: df[:5].swaplevel(0, 1, axis=0)
\\\Out[86]:
→˓

0 1
y one 1.519970 -0.493662
x one 0.600178 0.274230
y zero 0.132885 -0.023688
x zero 2.410179 1.450520

13.2.5 Reordering levels with reorder_levels()

The reorder_levels function generalizes the swaplevel function, allowing you to permute the hierarchical
index levels in one step:

In [87]: df[:5].reorder_levels([1,0], axis=0)
Out[87]:

0 1
y one 1.519970 -0.493662
x one 0.600178 0.274230
y zero 0.132885 -0.023688
x zero 2.410179 1.450520

762 Chapter 13. MultiIndex / Advanced Indexing

pandas: powerful Python data analysis toolkit, Release 0.23.4

13.3 Sorting a MultiIndex

For MultiIndex-ed objects to be indexed and sliced effectively, they need to be sorted. As with any index, you can use
sort_index.

In [88]: import random; random.shuffle(tuples)

In [89]: s = pd.Series(np.random.randn(8), index=pd.MultiIndex.from_tuples(tuples))

In [90]: s
Out[90]:
baz one 0.206053
foo two -0.251905

one -2.213588
baz two 1.063327
qux two 1.266143
bar two 0.299368

one -0.863838
qux one 0.408204
dtype: float64

In [91]: s.sort_index()
\\\Out[91]:
→˓

bar one -0.863838
two 0.299368

baz one 0.206053
two 1.063327

foo one -2.213588
two -0.251905

qux one 0.408204
two 1.266143

dtype: float64

In [92]: s.sort_index(level=0)
\\Out[92]:
→˓

bar one -0.863838
two 0.299368

baz one 0.206053
two 1.063327

foo one -2.213588
two -0.251905

qux one 0.408204
two 1.266143

dtype: float64

In [93]: s.sort_index(level=1)
\\\Out[93]:
→˓

bar one -0.863838
baz one 0.206053
foo one -2.213588
qux one 0.408204
bar two 0.299368
baz two 1.063327
foo two -0.251905

(continues on next page)

13.3. Sorting a MultiIndex 763

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

qux two 1.266143
dtype: float64

You may also pass a level name to sort_index if the MultiIndex levels are named.

In [94]: s.index.set_names(['L1', 'L2'], inplace=True)

In [95]: s.sort_index(level='L1')
Out[95]:
L1 L2
bar one -0.863838

two 0.299368
baz one 0.206053

two 1.063327
foo one -2.213588

two -0.251905
qux one 0.408204

two 1.266143
dtype: float64

In [96]: s.sort_index(level='L2')
\\Out[96]:
→˓

L1 L2
bar one -0.863838
baz one 0.206053
foo one -2.213588
qux one 0.408204
bar two 0.299368
baz two 1.063327
foo two -0.251905
qux two 1.266143
dtype: float64

On higher dimensional objects, you can sort any of the other axes by level if they have a MultiIndex:

In [97]: df.T.sort_index(level=1, axis=1)
Out[97]:

one zero one zero
x x y y

0 0.600178 2.410179 1.519970 0.132885
1 0.274230 1.450520 -0.493662 -0.023688

Indexing will work even if the data are not sorted, but will be rather inefficient (and show a PerformanceWarning).
It will also return a copy of the data rather than a view:

In [98]: dfm = pd.DataFrame({'jim': [0, 0, 1, 1],
....: 'joe': ['x', 'x', 'z', 'y'],
....: 'jolie': np.random.rand(4)})
....:

In [99]: dfm = dfm.set_index(['jim', 'joe'])

In [100]: dfm
Out[100]:

jolie

(continues on next page)

764 Chapter 13. MultiIndex / Advanced Indexing

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

jim joe
0 x 0.490671

x 0.120248
1 z 0.537020

y 0.110968

In [4]: dfm.loc[(1, 'z')]
PerformanceWarning: indexing past lexsort depth may impact performance.

Out[4]:
jolie

jim joe
1 z 0.64094

Furthermore if you try to index something that is not fully lexsorted, this can raise:

In [5]: dfm.loc[(0,'y'):(1, 'z')]
UnsortedIndexError: 'Key length (2) was greater than MultiIndex lexsort depth (1)'

The is_lexsorted() method on an Index show if the index is sorted, and the lexsort_depth property
returns the sort depth:

In [101]: dfm.index.is_lexsorted()
Out[101]: False

In [102]: dfm.index.lexsort_depth
\\\\\\\\\\\\\\\\Out[102]: 1

In [103]: dfm = dfm.sort_index()

In [104]: dfm
Out[104]:

jolie
jim joe
0 x 0.490671

x 0.120248
1 y 0.110968

z 0.537020

In [105]: dfm.index.is_lexsorted()
\\\Out[105]:
→˓True

In [106]: dfm.index.lexsort_depth
\\Out[106]:
→˓2

And now selection works as expected.

In [107]: dfm.loc[(0,'y'):(1, 'z')]
Out[107]:

jolie
jim joe
1 y 0.110968

z 0.537020

13.3. Sorting a MultiIndex 765

pandas: powerful Python data analysis toolkit, Release 0.23.4

13.4 Take Methods

Similar to NumPy ndarrays, pandas Index, Series, and DataFrame also provides the take method that retrieves
elements along a given axis at the given indices. The given indices must be either a list or an ndarray of integer index
positions. take will also accept negative integers as relative positions to the end of the object.

In [108]: index = pd.Index(np.random.randint(0, 1000, 10))

In [109]: index
Out[109]: Int64Index([214, 502, 712, 567, 786, 175, 993, 133, 758, 329], dtype='int64
→˓')

In [110]: positions = [0, 9, 3]

In [111]: index[positions]
Out[111]: Int64Index([214, 329, 567], dtype='int64')

In [112]: index.take(positions)
\\\Out[112]: Int64Index([214, 329,
→˓567], dtype='int64')

In [113]: ser = pd.Series(np.random.randn(10))

In [114]: ser.iloc[positions]
Out[114]:
0 -0.179666
9 1.824375
3 0.392149
dtype: float64

In [115]: ser.take(positions)
\\Out[115]:
0 -0.179666
9 1.824375
3 0.392149
dtype: float64

For DataFrames, the given indices should be a 1d list or ndarray that specifies row or column positions.

In [116]: frm = pd.DataFrame(np.random.randn(5, 3))

In [117]: frm.take([1, 4, 3])
Out[117]:

0 1 2
1 -1.237881 0.106854 -1.276829
4 0.629675 -1.425966 1.857704
3 0.979542 -1.633678 0.615855

In [118]: frm.take([0, 2], axis=1)
\\\Out[118]:
→˓

0 2
0 0.595974 0.601544
1 -1.237881 -1.276829
2 -0.767101 1.499591
3 0.979542 0.615855
4 0.629675 1.857704

766 Chapter 13. MultiIndex / Advanced Indexing

pandas: powerful Python data analysis toolkit, Release 0.23.4

It is important to note that the take method on pandas objects are not intended to work on boolean indices and may
return unexpected results.

In [119]: arr = np.random.randn(10)

In [120]: arr.take([False, False, True, True])
Out[120]: array([-1.1935, -1.1935, 0.6775, 0.6775])

In [121]: arr[[0, 1]]
\\Out[121]: array([-1.1935, 0.
→˓6775])

In [122]: ser = pd.Series(np.random.randn(10))

In [123]: ser.take([False, False, True, True])
Out[123]:
0 0.233141
0 0.233141
1 -0.223540
1 -0.223540
dtype: float64

In [124]: ser.iloc[[0, 1]]
\\Out[124]:
→˓

0 0.233141
1 -0.223540
dtype: float64

Finally, as a small note on performance, because the take method handles a narrower range of inputs, it can offer
performance that is a good deal faster than fancy indexing.

13.5 Index Types

We have discussed MultiIndex in the previous sections pretty extensively. DatetimeIndex and PeriodIndex
are shown here, and information about TimedeltaIndex‘ is found here.

In the following sub-sections we will highlight some other index types.

13.5.1 CategoricalIndex

CategoricalIndex is a type of index that is useful for supporting indexing with duplicates. This is a container
around a Categorical and allows efficient indexing and storage of an index with a large number of duplicated
elements.

In [125]: from pandas.api.types import CategoricalDtype

In [126]: df = pd.DataFrame({'A': np.arange(6),
.....: 'B': list('aabbca')})
.....:

In [127]: df['B'] = df['B'].astype(CategoricalDtype(list('cab')))

In [128]: df

(continues on next page)

13.5. Index Types 767

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

Out[128]:
A B

0 0 a
1 1 a
2 2 b
3 3 b
4 4 c
5 5 a

In [129]: df.dtypes
\\\Out[129]:
A int64
B category
dtype: object

In [130]: df.B.cat.categories
\\Out[130]:
→˓Index(['c', 'a', 'b'], dtype='object')

Setting the index will create a CategoricalIndex.

In [131]: df2 = df.set_index('B')

In [132]: df2.index
Out[132]: CategoricalIndex(['a', 'a', 'b', 'b', 'c', 'a'], categories=['c', 'a', 'b'],
→˓ ordered=False, name='B', dtype='category')

Indexing with __getitem__/.iloc/.loc works similarly to an Index with duplicates. The indexers must be
in the category or the operation will raise a KeyError.

In [133]: df2.loc['a']
Out[133]:

A
B
a 0
a 1
a 5

The CategoricalIndex is preserved after indexing:

In [134]: df2.loc['a'].index
Out[134]: CategoricalIndex(['a', 'a', 'a'], categories=['c', 'a', 'b'], ordered=False,
→˓ name='B', dtype='category')

Sorting the index will sort by the order of the categories (recall that we created the index with
CategoricalDtype(list('cab')), so the sorted order is cab).

In [135]: df2.sort_index()
Out[135]:

A
B
c 4
a 0
a 1
a 5
b 2
b 3

768 Chapter 13. MultiIndex / Advanced Indexing

pandas: powerful Python data analysis toolkit, Release 0.23.4

Groupby operations on the index will preserve the index nature as well.

In [136]: df2.groupby(level=0).sum()
Out[136]:

A
B
c 4
a 6
b 5

In [137]: df2.groupby(level=0).sum().index
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\Out[137]: CategoricalIndex(['c', 'a', 'b'],
→˓categories=['c', 'a', 'b'], ordered=False, name='B', dtype='category')

Reindexing operations will return a resulting index based on the type of the passed indexer. Passing a list will return
a plain-old Index; indexing with a Categorical will return a CategoricalIndex, indexed according to the
categories of the passed Categorical dtype. This allows one to arbitrarily index these even with values not in the
categories, similarly to how you can reindex any pandas index.

In [138]: df2.reindex(['a','e'])
Out[138]:

A
B
a 0.0
a 1.0
a 5.0
e NaN

In [139]: df2.reindex(['a','e']).index
\\\Out[139]: Index(['a', 'a', 'a',
→˓'e'], dtype='object', name='B')

In [140]: df2.reindex(pd.Categorical(['a','e'],categories=list('abcde')))
\\\Out[140]:
→˓

A
B
a 0.0
a 1.0
a 5.0
e NaN

In [141]: df2.reindex(pd.Categorical(['a','e'],categories=list('abcde'))).index
\\Out[141]:
→˓CategoricalIndex(['a', 'a', 'a', 'e'], categories=['a', 'b', 'c', 'd', 'e'],
→˓ordered=False, name='B', dtype='category')

Warning: Reshaping and Comparison operations on a CategoricalIndex must have the same categories or
a TypeError will be raised.

In [9]: df3 = pd.DataFrame({'A' : np.arange(6),
'B' : pd.Series(list('aabbca')).astype('category')})

In [11]: df3 = df3.set_index('B')

In [11]: df3.index
Out[11]: CategoricalIndex([u'a', u'a', u'b', u'b', u'c', u'a'], categories=[u'a', u
→˓'b', u'c'], ordered=False, name=u'B', dtype='category')

In [12]: pd.concat([df2, df3]
TypeError: categories must match existing categories when appending13.5. Index Types 769

pandas: powerful Python data analysis toolkit, Release 0.23.4

13.5.2 Int64Index and RangeIndex

Warning: Indexing on an integer-based Index with floats has been clarified in 0.18.0, for a summary of the
changes, see here.

Int64Index is a fundamental basic index in pandas. This is an Immutable array implementing an ordered, sliceable
set. Prior to 0.18.0, the Int64Index would provide the default index for all NDFrame objects.

RangeIndex is a sub-class of Int64Index added in version 0.18.0, now providing the default index for all
NDFrame objects. RangeIndex is an optimized version of Int64Index that can represent a monotonic ordered
set. These are analogous to Python range types.

13.5.3 Float64Index

By default a Float64Index will be automatically created when passing floating, or mixed-integer-floating values
in index creation. This enables a pure label-based slicing paradigm that makes [],ix,loc for scalar indexing and
slicing work exactly the same.

In [142]: indexf = pd.Index([1.5, 2, 3, 4.5, 5])

In [143]: indexf
Out[143]: Float64Index([1.5, 2.0, 3.0, 4.5, 5.0], dtype='float64')

In [144]: sf = pd.Series(range(5), index=indexf)

In [145]: sf
Out[145]:
1.5 0
2.0 1
3.0 2
4.5 3
5.0 4
dtype: int64

Scalar selection for [],.loc will always be label based. An integer will match an equal float index (e.g. 3 is
equivalent to 3.0).

In [146]: sf[3]
Out[146]: 2

In [147]: sf[3.0]
\\\\\\\\\\\\Out[147]: 2

In [148]: sf.loc[3]
\\\\\\\\\\\\\\\\\\\\\\\\Out[148]: 2

In [149]: sf.loc[3.0]
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\Out[149]: 2

The only positional indexing is via iloc.

770 Chapter 13. MultiIndex / Advanced Indexing

https://docs.python.org/3/library/stdtypes.html#typesseq-range

pandas: powerful Python data analysis toolkit, Release 0.23.4

In [150]: sf.iloc[3]
Out[150]: 3

A scalar index that is not found will raise a KeyError. Slicing is primarily on the values of the index when using
[],ix,loc, and always positional when using iloc. The exception is when the slice is boolean, in which case it
will always be positional.

In [151]: sf[2:4]
Out[151]:
2.0 1
3.0 2
dtype: int64

In [152]: sf.loc[2:4]
\\Out[152]:
2.0 1
3.0 2
dtype: int64

In [153]: sf.iloc[2:4]
\\Out[153]:
→˓

3.0 2
4.5 3
dtype: int64

In float indexes, slicing using floats is allowed.

In [154]: sf[2.1:4.6]
Out[154]:
3.0 2
4.5 3
dtype: int64

In [155]: sf.loc[2.1:4.6]
\\Out[155]:
3.0 2
4.5 3
dtype: int64

In non-float indexes, slicing using floats will raise a TypeError.

In [1]: pd.Series(range(5))[3.5]
TypeError: the label [3.5] is not a proper indexer for this index type (Int64Index)

In [1]: pd.Series(range(5))[3.5:4.5]
TypeError: the slice start [3.5] is not a proper indexer for this index type
→˓(Int64Index)

Warning: Using a scalar float indexer for .iloc has been removed in 0.18.0, so the following will raise a
TypeError:

In [3]: pd.Series(range(5)).iloc[3.0]
TypeError: cannot do positional indexing on <class 'pandas.indexes.range.RangeIndex
→˓'> with these indexers [3.0] of <type 'float'>

13.5. Index Types 771

pandas: powerful Python data analysis toolkit, Release 0.23.4

Here is a typical use-case for using this type of indexing. Imagine that you have a somewhat irregular timedelta-like
indexing scheme, but the data is recorded as floats. This could for example be millisecond offsets.

In [156]: dfir = pd.concat([pd.DataFrame(np.random.randn(5,2),
.....: index=np.arange(5) * 250.0,
.....: columns=list('AB')),
.....: pd.DataFrame(np.random.randn(6,2),
.....: index=np.arange(4,10) * 250.1,
.....: columns=list('AB'))])
.....:

In [157]: dfir
Out[157]:

A B
0.0 0.997289 -1.693316
250.0 -0.179129 -1.598062
500.0 0.936914 0.912560
750.0 -1.003401 1.632781
1000.0 -0.724626 0.178219
1000.4 0.310610 -0.108002
1250.5 -0.974226 -1.147708
1500.6 -2.281374 0.760010
1750.7 -0.742532 1.533318
2000.8 2.495362 -0.432771
2250.9 -0.068954 0.043520

Selection operations then will always work on a value basis, for all selection operators.

In [158]: dfir[0:1000.4]
Out[158]:

A B
0.0 0.997289 -1.693316
250.0 -0.179129 -1.598062
500.0 0.936914 0.912560
750.0 -1.003401 1.632781
1000.0 -0.724626 0.178219
1000.4 0.310610 -0.108002

In [159]: dfir.loc[0:1001,'A']
\\Out[159]:
→˓

0.0 0.997289
250.0 -0.179129
500.0 0.936914
750.0 -1.003401
1000.0 -0.724626
1000.4 0.310610
Name: A, dtype: float64

In [160]: dfir.loc[1000.4]
\\\Out[160]:
→˓

A 0.310610
B -0.108002
Name: 1000.4, dtype: float64

You could retrieve the first 1 second (1000 ms) of data as such:

772 Chapter 13. MultiIndex / Advanced Indexing

pandas: powerful Python data analysis toolkit, Release 0.23.4

In [161]: dfir[0:1000]
Out[161]:

A B
0.0 0.997289 -1.693316
250.0 -0.179129 -1.598062
500.0 0.936914 0.912560
750.0 -1.003401 1.632781
1000.0 -0.724626 0.178219

If you need integer based selection, you should use iloc:

In [162]: dfir.iloc[0:5]
Out[162]:

A B
0.0 0.997289 -1.693316
250.0 -0.179129 -1.598062
500.0 0.936914 0.912560
750.0 -1.003401 1.632781
1000.0 -0.724626 0.178219

13.5.4 IntervalIndex

New in version 0.20.0.

IntervalIndex together with its own dtype, interval as well as the Interval scalar type, allow first-class
support in pandas for interval notation.

The IntervalIndex allows some unique indexing and is also used as a return type for the categories in cut()
and qcut().

Warning: These indexing behaviors are provisional and may change in a future version of pandas.

An IntervalIndex can be used in Series and in DataFrame as the index.

In [163]: df = pd.DataFrame({'A': [1, 2, 3, 4]},
.....: index=pd.IntervalIndex.from_breaks([0, 1, 2, 3, 4]))
.....:

In [164]: df
Out[164]:

A
(0, 1] 1
(1, 2] 2
(2, 3] 3
(3, 4] 4

Label based indexing via .loc along the edges of an interval works as you would expect, selecting that particular
interval.

In [165]: df.loc[2]
Out[165]:
A 2
Name: (1, 2], dtype: int64

(continues on next page)

13.5. Index Types 773

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

In [166]: df.loc[[2, 3]]
\\\Out[166]:

A
(1, 2] 2
(2, 3] 3

If you select a label contained within an interval, this will also select the interval.

In [167]: df.loc[2.5]
Out[167]:
A 3
Name: (2, 3], dtype: int64

In [168]: df.loc[[2.5, 3.5]]
\\\Out[168]:

A
(2, 3] 3
(3, 4] 4

Interval and IntervalIndex are used by cut and qcut:

In [169]: c = pd.cut(range(4), bins=2)

In [170]: c
Out[170]:
[(-0.003, 1.5], (-0.003, 1.5], (1.5, 3.0], (1.5, 3.0]]
Categories (2, interval[float64]): [(-0.003, 1.5] < (1.5, 3.0]]

In [171]: c.categories
\\Out[171]:
→˓

IntervalIndex([(-0.003, 1.5], (1.5, 3.0]]
closed='right',
dtype='interval[float64]')

Furthermore, IntervalIndex allows one to bin other data with these same bins, with NaN representing a missing
value similar to other dtypes.

In [172]: pd.cut([0, 3, 5, 1], bins=c.categories)
Out[172]:
[(-0.003, 1.5], (1.5, 3.0], NaN, (-0.003, 1.5]]
Categories (2, interval[float64]): [(-0.003, 1.5] < (1.5, 3.0]]

13.5.4.1 Generating Ranges of Intervals

If we need intervals on a regular frequency, we can use the interval_range() function to create an
IntervalIndex using various combinations of start, end, and periods. The default frequency for
interval_range is a 1 for numeric intervals, and calendar day for datetime-like intervals:

In [173]: pd.interval_range(start=0, end=5)
Out[173]:
IntervalIndex([(0, 1], (1, 2], (2, 3], (3, 4], (4, 5]]

closed='right',
dtype='interval[int64]')

(continues on next page)

774 Chapter 13. MultiIndex / Advanced Indexing

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

In [174]: pd.interval_range(start=pd.Timestamp('2017-01-01'), periods=4)
\\\Out[174]:
→˓

IntervalIndex([(2017-01-01, 2017-01-02], (2017-01-02, 2017-01-03], (2017-01-03, 2017-
→˓01-04], (2017-01-04, 2017-01-05]]

closed='right',
dtype='interval[datetime64[ns]]')

In [175]: pd.interval_range(end=pd.Timedelta('3 days'), periods=3)
\\\Out[175]:
→˓

IntervalIndex([(0 days 00:00:00, 1 days 00:00:00], (1 days 00:00:00, 2 days 00:00:00],
→˓ (2 days 00:00:00, 3 days 00:00:00]]

closed='right',
dtype='interval[timedelta64[ns]]')

The freq parameter can used to specify non-default frequencies, and can utilize a variety of frequency aliases with
datetime-like intervals:

In [176]: pd.interval_range(start=0, periods=5, freq=1.5)
Out[176]:
IntervalIndex([(0.0, 1.5], (1.5, 3.0], (3.0, 4.5], (4.5, 6.0], (6.0, 7.5]]

closed='right',
dtype='interval[float64]')

In [177]: pd.interval_range(start=pd.Timestamp('2017-01-01'), periods=4, freq='W')
\\\Out[177]:
→˓

IntervalIndex([(2017-01-01, 2017-01-08], (2017-01-08, 2017-01-15], (2017-01-15, 2017-
→˓01-22], (2017-01-22, 2017-01-29]]

closed='right',
dtype='interval[datetime64[ns]]')

In [178]: pd.interval_range(start=pd.Timedelta('0 days'), periods=3, freq='9H')
\\\Out[178]:
→˓

IntervalIndex([(0 days 00:00:00, 0 days 09:00:00], (0 days 09:00:00, 0 days 18:00:00],
→˓ (0 days 18:00:00, 1 days 03:00:00]]

closed='right',
dtype='interval[timedelta64[ns]]')

Additionally, the closed parameter can be used to specify which side(s) the intervals are closed on. Intervals are
closed on the right side by default.

In [179]: pd.interval_range(start=0, end=4, closed='both')
Out[179]:
IntervalIndex([[0, 1], [1, 2], [2, 3], [3, 4]]

closed='both',
dtype='interval[int64]')

In [180]: pd.interval_range(start=0, end=4, closed='neither')
\\Out[180]:
→˓

IntervalIndex([(0, 1), (1, 2), (2, 3), (3, 4)]
closed='neither',
dtype='interval[int64]')

13.5. Index Types 775

pandas: powerful Python data analysis toolkit, Release 0.23.4

New in version 0.23.0.

Specifying start, end, and periods will generate a range of evenly spaced intervals from start to end inclu-
sively, with periods number of elements in the resulting IntervalIndex:

In [181]: pd.interval_range(start=0, end=6, periods=4)
Out[181]:
IntervalIndex([(0.0, 1.5], (1.5, 3.0], (3.0, 4.5], (4.5, 6.0]]

closed='right',
dtype='interval[float64]')

In [182]: pd.interval_range(pd.Timestamp('2018-01-01'), pd.Timestamp('2018-02-28'),
→˓periods=3)
\\\Out[182]:
→˓

IntervalIndex([(2018-01-01, 2018-01-20 08:00:00], (2018-01-20 08:00:00, 2018-02-08
→˓16:00:00], (2018-02-08 16:00:00, 2018-02-28]]

closed='right',
dtype='interval[datetime64[ns]]')

13.6 Miscellaneous indexing FAQ

13.6.1 Integer indexing

Label-based indexing with integer axis labels is a thorny topic. It has been discussed heavily on mailing lists and
among various members of the scientific Python community. In pandas, our general viewpoint is that labels matter
more than integer locations. Therefore, with an integer axis index only label-based indexing is possible with the
standard tools like .loc. The following code will generate exceptions:

s = pd.Series(range(5))
s[-1]
df = pd.DataFrame(np.random.randn(5, 4))
df
df.loc[-2:]

This deliberate decision was made to prevent ambiguities and subtle bugs (many users reported finding bugs when the
API change was made to stop “falling back” on position-based indexing).

13.6.2 Non-monotonic indexes require exact matches

If the index of a Series or DataFrame is monotonically increasing or decreasing, then the bounds of a label-based
slice can be outside the range of the index, much like slice indexing a normal Python list. Monotonicity of an index
can be tested with the is_monotonic_increasing and is_monotonic_decreasing attributes.

In [183]: df = pd.DataFrame(index=[2,3,3,4,5], columns=['data'], data=list(range(5)))

In [184]: df.index.is_monotonic_increasing
Out[184]: True

no rows 0 or 1, but still returns rows 2, 3 (both of them), and 4:
In [185]: df.loc[0:4, :]
\\\\\\\\\\\\\\\Out[185]:

data

(continues on next page)

776 Chapter 13. MultiIndex / Advanced Indexing

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

2 0
3 1
3 2
4 3

slice is are outside the index, so empty DataFrame is returned
In [186]: df.loc[13:15, :]
\\Out[186]:
Empty DataFrame
Columns: [data]
Index: []

On the other hand, if the index is not monotonic, then both slice bounds must be unique members of the index.

In [187]: df = pd.DataFrame(index=[2,3,1,4,3,5], columns=['data'],
→˓data=list(range(6)))

In [188]: df.index.is_monotonic_increasing
Out[188]: False

OK because 2 and 4 are in the index
In [189]: df.loc[2:4, :]
\\\\\\\\\\\\\\\\Out[189]:

data
2 0
3 1
1 2
4 3

0 is not in the index
In [9]: df.loc[0:4, :]
KeyError: 0

3 is not a unique label
In [11]: df.loc[2:3, :]
KeyError: 'Cannot get right slice bound for non-unique label: 3'

Index.is_monotonic_increasing() and Index.is_monotonic_decreasing() only check that an
index is weakly monotonic. To check for strict montonicity, you can combine one of those with Index.
is_unique()

In [190]: weakly_monotonic = pd.Index(['a', 'b', 'c', 'c'])

In [191]: weakly_monotonic
Out[191]: Index(['a', 'b', 'c', 'c'], dtype='object')

In [192]: weakly_monotonic.is_monotonic_increasing
\\Out[192]: True

In [193]: weakly_monotonic.is_monotonic_increasing & weakly_monotonic.is_unique
\\\Out[193]: False

13.6. Miscellaneous indexing FAQ 777

pandas: powerful Python data analysis toolkit, Release 0.23.4

13.6.3 Endpoints are inclusive

Compared with standard Python sequence slicing in which the slice endpoint is not inclusive, label-based slicing in
pandas is inclusive. The primary reason for this is that it is often not possible to easily determine the “successor” or
next element after a particular label in an index. For example, consider the following Series:

In [194]: s = pd.Series(np.random.randn(6), index=list('abcdef'))

In [195]: s
Out[195]:
a 0.112246
b 0.871721
c -0.816064
d -0.784880
e 1.030659
f 0.187483
dtype: float64

Suppose we wished to slice from c to e, using integers this would be accomplished as such:

In [196]: s[2:5]
Out[196]:
c -0.816064
d -0.784880
e 1.030659
dtype: float64

However, if you only had c and e, determining the next element in the index can be somewhat complicated. For
example, the following does not work:

s.loc['c':'e'+1]

A very common use case is to limit a time series to start and end at two specific dates. To enable this, we made the
design to make label-based slicing include both endpoints:

In [197]: s.loc['c':'e']
Out[197]:
c -0.816064
d -0.784880
e 1.030659
dtype: float64

This is most definitely a “practicality beats purity” sort of thing, but it is something to watch out for if you expect
label-based slicing to behave exactly in the way that standard Python integer slicing works.

13.6.4 Indexing potentially changes underlying Series dtype

The different indexing operation can potentially change the dtype of a Series.

In [198]: series1 = pd.Series([1, 2, 3])

In [199]: series1.dtype
Out[199]: dtype('int64')

In [200]: res = series1.reindex([0, 4])

(continues on next page)

778 Chapter 13. MultiIndex / Advanced Indexing

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

In [201]: res.dtype
Out[201]: dtype('float64')

In [202]: res
\\\\\\\\\\\\\\\\\\\\\\\\\\\Out[202]:
0 1.0
4 NaN
dtype: float64

In [203]: series2 = pd.Series([True])

In [204]: series2.dtype
Out[204]: dtype('bool')

In [205]: res = series2.reindex_like(series1)

In [206]: res.dtype
Out[206]: dtype('O')

In [207]: res
\\\\\\\\\\\\\\\\\\\\\Out[207]:
0 True
1 NaN
2 NaN
dtype: object

This is because the (re)indexing operations above silently inserts NaNs and the dtype changes accordingly. This can
cause some issues when using numpy ufuncs such as numpy.logical_and.

See the this old issue for a more detailed discussion.

13.6. Miscellaneous indexing FAQ 779

https://github.com/pydata/pandas/issues/2388

pandas: powerful Python data analysis toolkit, Release 0.23.4

780 Chapter 13. MultiIndex / Advanced Indexing

CHAPTER

FOURTEEN

COMPUTATIONAL TOOLS

14.1 Statistical Functions

14.1.1 Percent Change

Series, DataFrame, and Panel all have a method pct_change() to compute the percent change over a given
number of periods (using fill_method to fill NA/null values before computing the percent change).

In [1]: ser = pd.Series(np.random.randn(8))

In [2]: ser.pct_change()
Out[2]:
0 NaN
1 -1.602976
2 4.334938
3 -0.247456
4 -2.067345
5 -1.142903
6 -1.688214
7 -9.759729
dtype: float64

In [3]: df = pd.DataFrame(np.random.randn(10, 4))

In [4]: df.pct_change(periods=3)
Out[4]:

0 1 2 3
0 NaN NaN NaN NaN
1 NaN NaN NaN NaN
2 NaN NaN NaN NaN
3 -0.218320 -1.054001 1.987147 -0.510183
4 -0.439121 -1.816454 0.649715 -4.822809
5 -0.127833 -3.042065 -5.866604 -1.776977
6 -2.596833 -1.959538 -2.111697 -3.798900
7 -0.117826 -2.169058 0.036094 -0.067696
8 2.492606 -1.357320 -1.205802 -1.558697
9 -1.012977 2.324558 -1.003744 -0.371806

14.1.2 Covariance

Series.cov() can be used to compute covariance between series (excluding missing values).

781

pandas: powerful Python data analysis toolkit, Release 0.23.4

In [5]: s1 = pd.Series(np.random.randn(1000))

In [6]: s2 = pd.Series(np.random.randn(1000))

In [7]: s1.cov(s2)
Out[7]: 0.00068010881743108204

Analogously, DataFrame.cov() to compute pairwise covariances among the series in the DataFrame, also exclud-
ing NA/null values.

Note: Assuming the missing data are missing at random this results in an estimate for the covariance matrix which
is unbiased. However, for many applications this estimate may not be acceptable because the estimated covariance
matrix is not guaranteed to be positive semi-definite. This could lead to estimated correlations having absolute values
which are greater than one, and/or a non-invertible covariance matrix. See Estimation of covariance matrices for more
details.

In [8]: frame = pd.DataFrame(np.random.randn(1000, 5), columns=['a', 'b', 'c', 'd', 'e
→˓'])

In [9]: frame.cov()
Out[9]:

a b c d e
a 1.000882 -0.003177 -0.002698 -0.006889 0.031912
b -0.003177 1.024721 0.000191 0.009212 0.000857
c -0.002698 0.000191 0.950735 -0.031743 -0.005087
d -0.006889 0.009212 -0.031743 1.002983 -0.047952
e 0.031912 0.000857 -0.005087 -0.047952 1.042487

DataFrame.cov also supports an optional min_periods keyword that specifies the required minimum number
of observations for each column pair in order to have a valid result.

In [10]: frame = pd.DataFrame(np.random.randn(20, 3), columns=['a', 'b', 'c'])

In [11]: frame.loc[frame.index[:5], 'a'] = np.nan

In [12]: frame.loc[frame.index[5:10], 'b'] = np.nan

In [13]: frame.cov()
Out[13]:

a b c
a 1.123670 -0.412851 0.018169
b -0.412851 1.154141 0.305260
c 0.018169 0.305260 1.301149

In [14]: frame.cov(min_periods=12)
\\Out[14]:
→˓

a b c
a 1.123670 NaN 0.018169
b NaN 1.154141 0.305260
c 0.018169 0.305260 1.301149

782 Chapter 14. Computational tools

http://en.wikipedia.org/w/index.php?title=Estimation_of_covariance_matrices

pandas: powerful Python data analysis toolkit, Release 0.23.4

14.1.3 Correlation

Correlation may be computed using the corr() method. Using the method parameter, several methods for com-
puting correlations are provided:

Method name Description
pearson
(default)

Standard correlation coefficient

kendall Kendall Tau correlation coefficient
spearman Spearman rank correlation coefficient

All of these are currently computed using pairwise complete observations. Wikipedia has articles covering the above
correlation coefficients:

• Pearson correlation coefficient

• Kendall rank correlation coefficient

• Spearman’s rank correlation coefficient

Note: Please see the caveats associated with this method of calculating correlation matrices in the covariance section.

In [15]: frame = pd.DataFrame(np.random.randn(1000, 5), columns=['a', 'b', 'c', 'd',
→˓'e'])

In [16]: frame.iloc[::2] = np.nan

Series with Series
In [17]: frame['a'].corr(frame['b'])
Out[17]: 0.013479040400098794

In [18]: frame['a'].corr(frame['b'], method='spearman')
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\Out[18]: -0.0072898851595406371

Pairwise correlation of DataFrame columns
In [19]: frame.corr()
\\Out[19]:

a b c d e
a 1.000000 0.013479 -0.049269 -0.042239 -0.028525
b 0.013479 1.000000 -0.020433 -0.011139 0.005654
c -0.049269 -0.020433 1.000000 0.018587 -0.054269
d -0.042239 -0.011139 0.018587 1.000000 -0.017060
e -0.028525 0.005654 -0.054269 -0.017060 1.000000

Note that non-numeric columns will be automatically excluded from the correlation calculation.

Like cov, corr also supports the optional min_periods keyword:

In [20]: frame = pd.DataFrame(np.random.randn(20, 3), columns=['a', 'b', 'c'])

In [21]: frame.loc[frame.index[:5], 'a'] = np.nan

In [22]: frame.loc[frame.index[5:10], 'b'] = np.nan

In [23]: frame.corr()
Out[23]:

(continues on next page)

14.1. Statistical Functions 783

https://en.wikipedia.org/wiki/Pearson_correlation_coefficient
https://en.wikipedia.org/wiki/Kendall_rank_correlation_coefficient
https://en.wikipedia.org/wiki/Spearman%27s_rank_correlation_coefficient

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

a b c
a 1.000000 -0.121111 0.069544
b -0.121111 1.000000 0.051742
c 0.069544 0.051742 1.000000

In [24]: frame.corr(min_periods=12)
\\Out[24]:
→˓

a b c
a 1.000000 NaN 0.069544
b NaN 1.000000 0.051742
c 0.069544 0.051742 1.000000

A related method corrwith() is implemented on DataFrame to compute the correlation between like-labeled Series
contained in different DataFrame objects.

In [25]: index = ['a', 'b', 'c', 'd', 'e']

In [26]: columns = ['one', 'two', 'three', 'four']

In [27]: df1 = pd.DataFrame(np.random.randn(5, 4), index=index, columns=columns)

In [28]: df2 = pd.DataFrame(np.random.randn(4, 4), index=index[:4], columns=columns)

In [29]: df1.corrwith(df2)
Out[29]:
one -0.125501
two -0.493244
three 0.344056
four 0.004183
dtype: float64

In [30]: df2.corrwith(df1, axis=1)
\\\Out[30]:
→˓

a -0.675817
b 0.458296
c 0.190809
d -0.186275
e NaN
dtype: float64

14.1.4 Data ranking

The rank()method produces a data ranking with ties being assigned the mean of the ranks (by default) for the group:

In [31]: s = pd.Series(np.random.np.random.randn(5), index=list('abcde'))

In [32]: s['d'] = s['b'] # so there's a tie

In [33]: s.rank()
Out[33]:
a 5.0
b 2.5
c 1.0

(continues on next page)

784 Chapter 14. Computational tools

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

d 2.5
e 4.0
dtype: float64

rank() is also a DataFrame method and can rank either the rows (axis=0) or the columns (axis=1). NaN values
are excluded from the ranking.

In [34]: df = pd.DataFrame(np.random.np.random.randn(10, 6))

In [35]: df[4] = df[2][:5] # some ties

In [36]: df
Out[36]:

0 1 2 3 4 5
0 -0.904948 -1.163537 -1.457187 0.135463 -1.457187 0.294650
1 -0.976288 -0.244652 -0.748406 -0.999601 -0.748406 -0.800809
2 0.401965 1.460840 1.256057 1.308127 1.256057 0.876004
3 0.205954 0.369552 -0.669304 0.038378 -0.669304 1.140296
4 -0.477586 -0.730705 -1.129149 -0.601463 -1.129149 -0.211196
5 -1.092970 -0.689246 0.908114 0.204848 NaN 0.463347
6 0.376892 0.959292 0.095572 -0.593740 NaN -0.069180
7 -1.002601 1.957794 -0.120708 0.094214 NaN -1.467422
8 -0.547231 0.664402 -0.519424 -0.073254 NaN -1.263544
9 -0.250277 -0.237428 -1.056443 0.419477 NaN 1.375064

In [37]: df.rank(1)
\\Out[37]:
→˓

0 1 2 3 4 5
0 4.0 3.0 1.5 5.0 1.5 6.0
1 2.0 6.0 4.5 1.0 4.5 3.0
2 1.0 6.0 3.5 5.0 3.5 2.0
3 4.0 5.0 1.5 3.0 1.5 6.0
4 5.0 3.0 1.5 4.0 1.5 6.0
5 1.0 2.0 5.0 3.0 NaN 4.0
6 4.0 5.0 3.0 1.0 NaN 2.0
7 2.0 5.0 3.0 4.0 NaN 1.0
8 2.0 5.0 3.0 4.0 NaN 1.0
9 2.0 3.0 1.0 4.0 NaN 5.0

rank optionally takes a parameter ascending which by default is true; when false, data is reverse-ranked, with
larger values assigned a smaller rank.

rank supports different tie-breaking methods, specified with the method parameter:

• average : average rank of tied group

• min : lowest rank in the group

• max : highest rank in the group

• first : ranks assigned in the order they appear in the array

14.2 Window Functions

For working with data, a number of window functions are provided for computing common window or rolling statistics.
Among these are count, sum, mean, median, correlation, variance, covariance, standard deviation, skewness, and

14.2. Window Functions 785

pandas: powerful Python data analysis toolkit, Release 0.23.4

kurtosis.

The rolling() and expanding() functions can be used directly from DataFrameGroupBy objects, see the
groupby docs.

Note: The API for window statistics is quite similar to the way one works with GroupBy objects, see the documen-
tation here.

We work with rolling, expanding and exponentially weighted data through the corresponding objects,
Rolling, Expanding and EWM.

In [38]: s = pd.Series(np.random.randn(1000), index=pd.date_range('1/1/2000',
→˓periods=1000))

In [39]: s = s.cumsum()

In [40]: s
Out[40]:
2000-01-01 -0.268824
2000-01-02 -1.771855
2000-01-03 -0.818003
2000-01-04 -0.659244
2000-01-05 -1.942133
2000-01-06 -1.869391
2000-01-07 0.563674

...
2002-09-20 -68.233054
2002-09-21 -66.765687
2002-09-22 -67.457323
2002-09-23 -69.253182
2002-09-24 -70.296818
2002-09-25 -70.844674
2002-09-26 -72.475016
Freq: D, Length: 1000, dtype: float64

These are created from methods on Series and DataFrame.

In [41]: r = s.rolling(window=60)

In [42]: r
Out[42]: Rolling [window=60,center=False,axis=0]

These object provide tab-completion of the available methods and properties.

In [14]: r.
r.agg r.apply r.count r.exclusions r.max r.median r.
→˓name r.skew r.sum
r.aggregate r.corr r.cov r.kurt r.mean r.min r.
→˓quantile r.std r.var

Generally these methods all have the same interface. They all accept the following arguments:

• window: size of moving window

• min_periods: threshold of non-null data points to require (otherwise result is NA)

• center: boolean, whether to set the labels at the center (default is False)

We can then call methods on these rolling objects. These return like-indexed objects:

786 Chapter 14. Computational tools

pandas: powerful Python data analysis toolkit, Release 0.23.4

In [43]: r.mean()
Out[43]:
2000-01-01 NaN
2000-01-02 NaN
2000-01-03 NaN
2000-01-04 NaN
2000-01-05 NaN
2000-01-06 NaN
2000-01-07 NaN

...
2002-09-20 -62.694135
2002-09-21 -62.812190
2002-09-22 -62.914971
2002-09-23 -63.061867
2002-09-24 -63.213876
2002-09-25 -63.375074
2002-09-26 -63.539734
Freq: D, Length: 1000, dtype: float64

In [44]: s.plot(style='k--')
Out[44]: <matplotlib.axes._subplots.AxesSubplot at 0x7f2115c02ba8>

In [45]: r.mean().plot(style='k')
\\\Out[45]:
→˓<matplotlib.axes._subplots.AxesSubplot at 0x7f2115c02ba8>

14.2. Window Functions 787

pandas: powerful Python data analysis toolkit, Release 0.23.4

They can also be applied to DataFrame objects. This is really just syntactic sugar for applying the moving window
operator to all of the DataFrame’s columns:

In [46]: df = pd.DataFrame(np.random.randn(1000, 4),
....: index=pd.date_range('1/1/2000', periods=1000),
....: columns=['A', 'B', 'C', 'D'])
....:

In [47]: df = df.cumsum()

In [48]: df.rolling(window=60).sum().plot(subplots=True)
Out[48]:
array([<matplotlib.axes._subplots.AxesSubplot object at 0x7f21156c40f0>,

<matplotlib.axes._subplots.AxesSubplot object at 0x7f2115662ef0>,
<matplotlib.axes._subplots.AxesSubplot object at 0x7f21156950f0>,
<matplotlib.axes._subplots.AxesSubplot object at 0x7f211563d2b0>],

→˓dtype=object)

14.2.1 Method Summary

We provide a number of common statistical functions:

788 Chapter 14. Computational tools

pandas: powerful Python data analysis toolkit, Release 0.23.4

Method Description
count() Number of non-null observations
sum() Sum of values
mean() Mean of values
median() Arithmetic median of values
min() Minimum
max() Maximum
std() Bessel-corrected sample standard deviation
var() Unbiased variance
skew() Sample skewness (3rd moment)
kurt() Sample kurtosis (4th moment)
quantile() Sample quantile (value at %)
apply() Generic apply
cov() Unbiased covariance (binary)
corr() Correlation (binary)

The apply() function takes an extra func argument and performs generic rolling computations. The func argu-
ment should be a single function that produces a single value from an ndarray input. Suppose we wanted to compute
the mean absolute deviation on a rolling basis:

In [49]: mad = lambda x: np.fabs(x - x.mean()).mean()

In [50]: s.rolling(window=60).apply(mad, raw=True).plot(style='k')
Out[50]: <matplotlib.axes._subplots.AxesSubplot at 0x7f21153d6ef0>

14.2. Window Functions 789

pandas: powerful Python data analysis toolkit, Release 0.23.4

14.2.2 Rolling Windows

Passing win_type to .rolling generates a generic rolling window computation, that is weighted according the
win_type. The following methods are available:

Method Description
sum() Sum of values
mean() Mean of values

The weights used in the window are specified by the win_type keyword. The list of recognized types are the
scipy.signal window functions:

• boxcar

• triang

• blackman

• hamming

• bartlett

• parzen

• bohman

790 Chapter 14. Computational tools

https://docs.scipy.org/doc/scipy/reference/signal.html#window-functions

pandas: powerful Python data analysis toolkit, Release 0.23.4

• blackmanharris

• nuttall

• barthann

• kaiser (needs beta)

• gaussian (needs std)

• general_gaussian (needs power, width)

• slepian (needs width).

In [51]: ser = pd.Series(np.random.randn(10), index=pd.date_range('1/1/2000',
→˓periods=10))

In [52]: ser.rolling(window=5, win_type='triang').mean()
Out[52]:
2000-01-01 NaN
2000-01-02 NaN
2000-01-03 NaN
2000-01-04 NaN
2000-01-05 -1.037870
2000-01-06 -0.767705
2000-01-07 -0.383197
2000-01-08 -0.395513
2000-01-09 -0.558440
2000-01-10 -0.672416
Freq: D, dtype: float64

Note that the boxcar window is equivalent to mean().

In [53]: ser.rolling(window=5, win_type='boxcar').mean()
Out[53]:
2000-01-01 NaN
2000-01-02 NaN
2000-01-03 NaN
2000-01-04 NaN
2000-01-05 -0.841164
2000-01-06 -0.779948
2000-01-07 -0.565487
2000-01-08 -0.502815
2000-01-09 -0.553755
2000-01-10 -0.472211
Freq: D, dtype: float64

In [54]: ser.rolling(window=5).mean()
\\Out[54]:
→˓

2000-01-01 NaN
2000-01-02 NaN
2000-01-03 NaN
2000-01-04 NaN
2000-01-05 -0.841164
2000-01-06 -0.779948
2000-01-07 -0.565487
2000-01-08 -0.502815
2000-01-09 -0.553755
2000-01-10 -0.472211
Freq: D, dtype: float64

14.2. Window Functions 791

pandas: powerful Python data analysis toolkit, Release 0.23.4

For some windowing functions, additional parameters must be specified:

In [55]: ser.rolling(window=5, win_type='gaussian').mean(std=0.1)
Out[55]:
2000-01-01 NaN
2000-01-02 NaN
2000-01-03 NaN
2000-01-04 NaN
2000-01-05 -1.309989
2000-01-06 -1.153000
2000-01-07 0.606382
2000-01-08 -0.681101
2000-01-09 -0.289724
2000-01-10 -0.996632
Freq: D, dtype: float64

Note: For .sum() with a win_type, there is no normalization done to the weights for the window. Passing custom
weights of [1, 1, 1] will yield a different result than passing weights of [2, 2, 2], for example. When passing
a win_type instead of explicitly specifying the weights, the weights are already normalized so that the largest weight
is 1.

In contrast, the nature of the .mean() calculation is such that the weights are normalized with respect to each other.
Weights of [1, 1, 1] and [2, 2, 2] yield the same result.

14.2.3 Time-aware Rolling

New in version 0.19.0.

New in version 0.19.0 are the ability to pass an offset (or convertible) to a .rolling() method and have it produce
variable sized windows based on the passed time window. For each time point, this includes all preceding values
occurring within the indicated time delta.

This can be particularly useful for a non-regular time frequency index.

In [56]: dft = pd.DataFrame({'B': [0, 1, 2, np.nan, 4]},
....: index=pd.date_range('20130101 09:00:00', periods=5, freq=

→˓'s'))
....:

In [57]: dft
Out[57]:

B
2013-01-01 09:00:00 0.0
2013-01-01 09:00:01 1.0
2013-01-01 09:00:02 2.0
2013-01-01 09:00:03 NaN
2013-01-01 09:00:04 4.0

This is a regular frequency index. Using an integer window parameter works to roll along the window frequency.

In [58]: dft.rolling(2).sum()
Out[58]:

B
2013-01-01 09:00:00 NaN
2013-01-01 09:00:01 1.0

(continues on next page)

792 Chapter 14. Computational tools

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

2013-01-01 09:00:02 3.0
2013-01-01 09:00:03 NaN
2013-01-01 09:00:04 NaN

In [59]: dft.rolling(2, min_periods=1).sum()
\\Out[59]:
→˓

B
2013-01-01 09:00:00 0.0
2013-01-01 09:00:01 1.0
2013-01-01 09:00:02 3.0
2013-01-01 09:00:03 2.0
2013-01-01 09:00:04 4.0

Specifying an offset allows a more intuitive specification of the rolling frequency.

In [60]: dft.rolling('2s').sum()
Out[60]:

B
2013-01-01 09:00:00 0.0
2013-01-01 09:00:01 1.0
2013-01-01 09:00:02 3.0
2013-01-01 09:00:03 2.0
2013-01-01 09:00:04 4.0

Using a non-regular, but still monotonic index, rolling with an integer window does not impart any special calculation.

In [61]: dft = pd.DataFrame({'B': [0, 1, 2, np.nan, 4]},
....: index = pd.Index([pd.Timestamp('20130101 09:00:00'),
....: pd.Timestamp('20130101 09:00:02'),
....: pd.Timestamp('20130101 09:00:03'),
....: pd.Timestamp('20130101 09:00:05'),
....: pd.Timestamp('20130101 09:00:06')],
....: name='foo'))
....:

In [62]: dft
Out[62]:

B
foo
2013-01-01 09:00:00 0.0
2013-01-01 09:00:02 1.0
2013-01-01 09:00:03 2.0
2013-01-01 09:00:05 NaN
2013-01-01 09:00:06 4.0

In [63]: dft.rolling(2).sum()
\\\Out[63]:
→˓

B
foo
2013-01-01 09:00:00 NaN
2013-01-01 09:00:02 1.0
2013-01-01 09:00:03 3.0
2013-01-01 09:00:05 NaN
2013-01-01 09:00:06 NaN

14.2. Window Functions 793

pandas: powerful Python data analysis toolkit, Release 0.23.4

Using the time-specification generates variable windows for this sparse data.

In [64]: dft.rolling('2s').sum()
Out[64]:

B
foo
2013-01-01 09:00:00 0.0
2013-01-01 09:00:02 1.0
2013-01-01 09:00:03 3.0
2013-01-01 09:00:05 NaN
2013-01-01 09:00:06 4.0

Furthermore, we now allow an optional on parameter to specify a column (rather than the default of the index) in a
DataFrame.

In [65]: dft = dft.reset_index()

In [66]: dft
Out[66]:

foo B
0 2013-01-01 09:00:00 0.0
1 2013-01-01 09:00:02 1.0
2 2013-01-01 09:00:03 2.0
3 2013-01-01 09:00:05 NaN
4 2013-01-01 09:00:06 4.0

In [67]: dft.rolling('2s', on='foo').sum()
\\Out[67]:
→˓

foo B
0 2013-01-01 09:00:00 0.0
1 2013-01-01 09:00:02 1.0
2 2013-01-01 09:00:03 3.0
3 2013-01-01 09:00:05 NaN
4 2013-01-01 09:00:06 4.0

14.2.4 Rolling Window Endpoints

New in version 0.20.0.

The inclusion of the interval endpoints in rolling window calculations can be specified with the closed parameter:

closed Description Default for
right close right endpoint time-based windows
left close left endpoint
both close both endpoints fixed windows
neither open endpoints

For example, having the right endpoint open is useful in many problems that require that there is no contamination
from present information back to past information. This allows the rolling window to compute statistics “up to that
point in time”, but not including that point in time.

In [68]: df = pd.DataFrame({'x': 1},
....: index = [pd.Timestamp('20130101 09:00:01'),
....: pd.Timestamp('20130101 09:00:02'),

(continues on next page)

794 Chapter 14. Computational tools

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

....: pd.Timestamp('20130101 09:00:03'),

....: pd.Timestamp('20130101 09:00:04'),

....: pd.Timestamp('20130101 09:00:06')])

....:

In [69]: df["right"] = df.rolling('2s', closed='right').x.sum() # default

In [70]: df["both"] = df.rolling('2s', closed='both').x.sum()

In [71]: df["left"] = df.rolling('2s', closed='left').x.sum()

In [72]: df["neither"] = df.rolling('2s', closed='neither').x.sum()

In [73]: df
Out[73]:

x right both left neither
2013-01-01 09:00:01 1 1.0 1.0 NaN NaN
2013-01-01 09:00:02 1 2.0 2.0 1.0 1.0
2013-01-01 09:00:03 1 2.0 3.0 2.0 1.0
2013-01-01 09:00:04 1 2.0 3.0 2.0 1.0
2013-01-01 09:00:06 1 1.0 2.0 1.0 NaN

Currently, this feature is only implemented for time-based windows. For fixed windows, the closed parameter cannot
be set and the rolling window will always have both endpoints closed.

14.2.5 Time-aware Rolling vs. Resampling

Using .rolling() with a time-based index is quite similar to resampling. They both operate and perform reductive
operations on time-indexed pandas objects.

When using .rolling() with an offset. The offset is a time-delta. Take a backwards-in-time looking window, and
aggregate all of the values in that window (including the end-point, but not the start-point). This is the new value at
that point in the result. These are variable sized windows in time-space for each point of the input. You will get a same
sized result as the input.

When using .resample() with an offset. Construct a new index that is the frequency of the offset. For each
frequency bin, aggregate points from the input within a backwards-in-time looking window that fall in that bin. The
result of this aggregation is the output for that frequency point. The windows are fixed size in the frequency space.
Your result will have the shape of a regular frequency between the min and the max of the original input object.

To summarize, .rolling() is a time-based window operation, while .resample() is a frequency-based window
operation.

14.2.6 Centering Windows

By default the labels are set to the right edge of the window, but a center keyword is available so the labels can be
set at the center.

In [74]: ser.rolling(window=5).mean()
Out[74]:
2000-01-01 NaN
2000-01-02 NaN
2000-01-03 NaN
2000-01-04 NaN

(continues on next page)

14.2. Window Functions 795

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

2000-01-05 -0.841164
2000-01-06 -0.779948
2000-01-07 -0.565487
2000-01-08 -0.502815
2000-01-09 -0.553755
2000-01-10 -0.472211
Freq: D, dtype: float64

In [75]: ser.rolling(window=5, center=True).mean()
\\Out[75]:
→˓

2000-01-01 NaN
2000-01-02 NaN
2000-01-03 -0.841164
2000-01-04 -0.779948
2000-01-05 -0.565487
2000-01-06 -0.502815
2000-01-07 -0.553755
2000-01-08 -0.472211
2000-01-09 NaN
2000-01-10 NaN
Freq: D, dtype: float64

14.2.7 Binary Window Functions

cov() and corr() can compute moving window statistics about two Series or any combination of DataFrame/
Series or DataFrame/DataFrame. Here is the behavior in each case:

• two Series: compute the statistic for the pairing.

• DataFrame/Series: compute the statistics for each column of the DataFrame with the passed Series, thus
returning a DataFrame.

• DataFrame/DataFrame: by default compute the statistic for matching column names, returning a
DataFrame. If the keyword argument pairwise=True is passed then computes the statistic for each pair
of columns, returning a MultiIndexed DataFrame whose index are the dates in question (see the next
section).

For example:

In [76]: df = pd.DataFrame(np.random.randn(1000, 4),
....: index=pd.date_range('1/1/2000', periods=1000),
....: columns=['A', 'B', 'C', 'D'])
....:

In [77]: df = df.cumsum()

In [78]: df2 = df[:20]

In [79]: df2.rolling(window=5).corr(df2['B'])
Out[79]:

A B C D
2000-01-01 NaN NaN NaN NaN
2000-01-02 NaN NaN NaN NaN
2000-01-03 NaN NaN NaN NaN
2000-01-04 NaN NaN NaN NaN

(continues on next page)

796 Chapter 14. Computational tools

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

2000-01-05 0.768775 1.0 -0.977990 0.800252
2000-01-06 0.744106 1.0 -0.967912 0.830021
2000-01-07 0.683257 1.0 -0.928969 0.384916
...
2000-01-14 -0.392318 1.0 0.570240 -0.591056
2000-01-15 0.017217 1.0 0.649900 -0.896258
2000-01-16 0.691078 1.0 0.807450 -0.939302
2000-01-17 0.274506 1.0 0.582601 -0.902954
2000-01-18 0.330459 1.0 0.515707 -0.545268
2000-01-19 0.046756 1.0 -0.104334 -0.419799
2000-01-20 -0.328241 1.0 -0.650974 -0.777777

[20 rows x 4 columns]

14.2.8 Computing rolling pairwise covariances and correlations

Warning: Prior to version 0.20.0 if pairwise=True was passed, a Panel would be returned. This will now
return a 2-level MultiIndexed DataFrame, see the whatsnew here.

In financial data analysis and other fields it’s common to compute covariance and correlation matrices for a collection
of time series. Often one is also interested in moving-window covariance and correlation matrices. This can be done
by passing the pairwise keyword argument, which in the case of DataFrame inputs will yield a MultiIndexed
DataFrame whose index are the dates in question. In the case of a single DataFrame argument the pairwise
argument can even be omitted:

Note: Missing values are ignored and each entry is computed using the pairwise complete observations. Please see
the covariance section for caveats associated with this method of calculating covariance and correlation matrices.

In [80]: covs = df[['B','C','D']].rolling(window=50).cov(df[['A','B','C']],
→˓pairwise=True)

In [81]: covs.loc['2002-09-22':]
Out[81]:

B C D
2002-09-22 A 1.367467 8.676734 -8.047366

B 3.067315 0.865946 -1.052533
C 0.865946 7.739761 -4.943924

2002-09-23 A 0.910343 8.669065 -8.443062
B 2.625456 0.565152 -0.907654
C 0.565152 7.825521 -5.367526

2002-09-24 A 0.463332 8.514509 -8.776514
B 2.306695 0.267746 -0.732186
C 0.267746 7.771425 -5.696962

2002-09-25 A 0.467976 8.198236 -9.162599
B 2.307129 0.267287 -0.754080
C 0.267287 7.466559 -5.822650

2002-09-26 A 0.545781 7.899084 -9.326238
B 2.311058 0.322295 -0.844451
C 0.322295 7.038237 -5.684445

14.2. Window Functions 797

pandas: powerful Python data analysis toolkit, Release 0.23.4

In [82]: correls = df.rolling(window=50).corr()

In [83]: correls.loc['2002-09-22':]
Out[83]:

A B C D
2002-09-22 A 1.000000 0.186397 0.744551 -0.769767

B 0.186397 1.000000 0.177725 -0.240802
C 0.744551 0.177725 1.000000 -0.712051
D -0.769767 -0.240802 -0.712051 1.000000

2002-09-23 A 1.000000 0.134723 0.743113 -0.758758
B 0.134723 1.000000 0.124683 -0.209934
C 0.743113 0.124683 1.000000 -0.719088

...
2002-09-25 B 0.075157 1.000000 0.064399 -0.164179

C 0.731888 0.064399 1.000000 -0.704686
D -0.739160 -0.164179 -0.704686 1.000000

2002-09-26 A 1.000000 0.087756 0.727792 -0.736562
B 0.087756 1.000000 0.079913 -0.179477
C 0.727792 0.079913 1.000000 -0.692303
D -0.736562 -0.179477 -0.692303 1.000000

[20 rows x 4 columns]

You can efficiently retrieve the time series of correlations between two columns by reshaping and indexing:

In [84]: correls.unstack(1)[('A', 'C')].plot()
Out[84]: <matplotlib.axes._subplots.AxesSubplot at 0x7f210fd6a2b0>

798 Chapter 14. Computational tools

pandas: powerful Python data analysis toolkit, Release 0.23.4

14.3 Aggregation

Once the Rolling, Expanding or EWM objects have been created, several methods are available to perform multiple
computations on the data. These operations are similar to the aggregating API, groupby API, and resample API.

In [85]: dfa = pd.DataFrame(np.random.randn(1000, 3),
....: index=pd.date_range('1/1/2000', periods=1000),
....: columns=['A', 'B', 'C'])
....:

In [86]: r = dfa.rolling(window=60,min_periods=1)

In [87]: r
Out[87]: Rolling [window=60,min_periods=1,center=False,axis=0]

We can aggregate by passing a function to the entire DataFrame, or select a Series (or multiple Series) via standard
__getitem__.

In [88]: r.aggregate(np.sum)
Out[88]:

A B C
2000-01-01 -0.289838 -0.370545 -1.284206
2000-01-02 -0.216612 -1.675528 -1.169415

(continues on next page)

14.3. Aggregation 799

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

2000-01-03 1.154661 -1.634017 -1.566620
2000-01-04 2.969393 -4.003274 -1.816179
2000-01-05 4.690630 -4.682017 -2.717209
2000-01-06 3.880630 -4.447700 -1.078947
2000-01-07 4.001957 -2.884072 -3.116903
...
2002-09-20 2.652493 -10.528875 9.867805
2002-09-21 0.844497 -9.280944 9.522649
2002-09-22 2.860036 -9.270337 6.415245
2002-09-23 3.510163 -8.151439 5.177219
2002-09-24 6.524983 -10.168078 5.792639
2002-09-25 6.409626 -9.956226 5.704050
2002-09-26 5.093787 -7.074515 6.905823

[1000 rows x 3 columns]

In [89]: r['A'].aggregate(np.sum)
\\\Out[89]:
→˓

2000-01-01 -0.289838
2000-01-02 -0.216612
2000-01-03 1.154661
2000-01-04 2.969393
2000-01-05 4.690630
2000-01-06 3.880630
2000-01-07 4.001957

...
2002-09-20 2.652493
2002-09-21 0.844497
2002-09-22 2.860036
2002-09-23 3.510163
2002-09-24 6.524983
2002-09-25 6.409626
2002-09-26 5.093787
Freq: D, Name: A, Length: 1000, dtype: float64

In [90]: r[['A','B']].aggregate(np.sum)
\\\Out[90]:
→˓

A B
2000-01-01 -0.289838 -0.370545
2000-01-02 -0.216612 -1.675528
2000-01-03 1.154661 -1.634017
2000-01-04 2.969393 -4.003274
2000-01-05 4.690630 -4.682017
2000-01-06 3.880630 -4.447700
2000-01-07 4.001957 -2.884072
...
2002-09-20 2.652493 -10.528875
2002-09-21 0.844497 -9.280944
2002-09-22 2.860036 -9.270337
2002-09-23 3.510163 -8.151439
2002-09-24 6.524983 -10.168078
2002-09-25 6.409626 -9.956226
2002-09-26 5.093787 -7.074515

[1000 rows x 2 columns]

800 Chapter 14. Computational tools

pandas: powerful Python data analysis toolkit, Release 0.23.4

As you can see, the result of the aggregation will have the selected columns, or all columns if none are selected.

14.3.1 Applying multiple functions

With windowed Series you can also pass a list of functions to do aggregation with, outputting a DataFrame:

In [91]: r['A'].agg([np.sum, np.mean, np.std])
Out[91]:

sum mean std
2000-01-01 -0.289838 -0.289838 NaN
2000-01-02 -0.216612 -0.108306 0.256725
2000-01-03 1.154661 0.384887 0.873311
2000-01-04 2.969393 0.742348 1.009734
2000-01-05 4.690630 0.938126 0.977914
2000-01-06 3.880630 0.646772 1.128883
2000-01-07 4.001957 0.571708 1.049487
...
2002-09-20 2.652493 0.044208 1.164919
2002-09-21 0.844497 0.014075 1.148231
2002-09-22 2.860036 0.047667 1.132051
2002-09-23 3.510163 0.058503 1.134296
2002-09-24 6.524983 0.108750 1.144204
2002-09-25 6.409626 0.106827 1.142913
2002-09-26 5.093787 0.084896 1.151416

[1000 rows x 3 columns]

On a windowed DataFrame, you can pass a list of functions to apply to each column, which produces an aggregated
result with a hierarchical index:

In [92]: r.agg([np.sum, np.mean])
Out[92]:

A B C
sum mean sum mean sum mean

2000-01-01 -0.289838 -0.289838 -0.370545 -0.370545 -1.284206 -1.284206
2000-01-02 -0.216612 -0.108306 -1.675528 -0.837764 -1.169415 -0.584708
2000-01-03 1.154661 0.384887 -1.634017 -0.544672 -1.566620 -0.522207
2000-01-04 2.969393 0.742348 -4.003274 -1.000819 -1.816179 -0.454045
2000-01-05 4.690630 0.938126 -4.682017 -0.936403 -2.717209 -0.543442
2000-01-06 3.880630 0.646772 -4.447700 -0.741283 -1.078947 -0.179825
2000-01-07 4.001957 0.571708 -2.884072 -0.412010 -3.116903 -0.445272
...
2002-09-20 2.652493 0.044208 -10.528875 -0.175481 9.867805 0.164463
2002-09-21 0.844497 0.014075 -9.280944 -0.154682 9.522649 0.158711
2002-09-22 2.860036 0.047667 -9.270337 -0.154506 6.415245 0.106921
2002-09-23 3.510163 0.058503 -8.151439 -0.135857 5.177219 0.086287
2002-09-24 6.524983 0.108750 -10.168078 -0.169468 5.792639 0.096544
2002-09-25 6.409626 0.106827 -9.956226 -0.165937 5.704050 0.095068
2002-09-26 5.093787 0.084896 -7.074515 -0.117909 6.905823 0.115097

[1000 rows x 6 columns]

Passing a dict of functions has different behavior by default, see the next section.

14.3. Aggregation 801

pandas: powerful Python data analysis toolkit, Release 0.23.4

14.3.2 Applying different functions to DataFrame columns

By passing a dict to aggregate you can apply a different aggregation to the columns of a DataFrame:

In [93]: r.agg({'A' : np.sum,
....: 'B' : lambda x: np.std(x, ddof=1)})
....:

Out[93]:
A B

2000-01-01 -0.289838 NaN
2000-01-02 -0.216612 0.660747
2000-01-03 1.154661 0.689929
2000-01-04 2.969393 1.072199
2000-01-05 4.690630 0.939657
2000-01-06 3.880630 0.966848
2000-01-07 4.001957 1.240137
...
2002-09-20 2.652493 1.114814
2002-09-21 0.844497 1.113220
2002-09-22 2.860036 1.113208
2002-09-23 3.510163 1.132381
2002-09-24 6.524983 1.080963
2002-09-25 6.409626 1.082911
2002-09-26 5.093787 1.136199

[1000 rows x 2 columns]

The function names can also be strings. In order for a string to be valid it must be implemented on the windowed
object

In [94]: r.agg({'A' : 'sum', 'B' : 'std'})
Out[94]:

A B
2000-01-01 -0.289838 NaN
2000-01-02 -0.216612 0.660747
2000-01-03 1.154661 0.689929
2000-01-04 2.969393 1.072199
2000-01-05 4.690630 0.939657
2000-01-06 3.880630 0.966848
2000-01-07 4.001957 1.240137
...
2002-09-20 2.652493 1.114814
2002-09-21 0.844497 1.113220
2002-09-22 2.860036 1.113208
2002-09-23 3.510163 1.132381
2002-09-24 6.524983 1.080963
2002-09-25 6.409626 1.082911
2002-09-26 5.093787 1.136199

[1000 rows x 2 columns]

Furthermore you can pass a nested dict to indicate different aggregations on different columns.

In [95]: r.agg({'A' : ['sum','std'], 'B' : ['mean','std'] })
Out[95]:

A B
sum std mean std

2000-01-01 -0.289838 NaN -0.370545 NaN
(continues on next page)

802 Chapter 14. Computational tools

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

2000-01-02 -0.216612 0.256725 -0.837764 0.660747
2000-01-03 1.154661 0.873311 -0.544672 0.689929
2000-01-04 2.969393 1.009734 -1.000819 1.072199
2000-01-05 4.690630 0.977914 -0.936403 0.939657
2000-01-06 3.880630 1.128883 -0.741283 0.966848
2000-01-07 4.001957 1.049487 -0.412010 1.240137
...
2002-09-20 2.652493 1.164919 -0.175481 1.114814
2002-09-21 0.844497 1.148231 -0.154682 1.113220
2002-09-22 2.860036 1.132051 -0.154506 1.113208
2002-09-23 3.510163 1.134296 -0.135857 1.132381
2002-09-24 6.524983 1.144204 -0.169468 1.080963
2002-09-25 6.409626 1.142913 -0.165937 1.082911
2002-09-26 5.093787 1.151416 -0.117909 1.136199

[1000 rows x 4 columns]

14.4 Expanding Windows

A common alternative to rolling statistics is to use an expanding window, which yields the value of the statistic with
all the data available up to that point in time.

These follow a similar interface to .rolling, with the .expanding method returning an Expanding object.

As these calculations are a special case of rolling statistics, they are implemented in pandas such that the following
two calls are equivalent:

In [96]: df.rolling(window=len(df), min_periods=1).mean()[:5]
Out[96]:

A B C D
2000-01-01 0.314226 -0.001675 0.071823 0.892566
2000-01-02 0.654522 -0.171495 0.179278 0.853361
2000-01-03 0.708733 -0.064489 -0.238271 1.371111
2000-01-04 0.987613 0.163472 -0.919693 1.566485
2000-01-05 1.426971 0.288267 -1.358877 1.808650

In [97]: df.expanding(min_periods=1).mean()[:5]
\\Out[97]:
→˓

A B C D
2000-01-01 0.314226 -0.001675 0.071823 0.892566
2000-01-02 0.654522 -0.171495 0.179278 0.853361
2000-01-03 0.708733 -0.064489 -0.238271 1.371111
2000-01-04 0.987613 0.163472 -0.919693 1.566485
2000-01-05 1.426971 0.288267 -1.358877 1.808650

These have a similar set of methods to .rolling methods.

14.4. Expanding Windows 803

pandas: powerful Python data analysis toolkit, Release 0.23.4

14.4.1 Method Summary

Function Description
count() Number of non-null observations
sum() Sum of values
mean() Mean of values
median() Arithmetic median of values
min() Minimum
max() Maximum
std() Unbiased standard deviation
var() Unbiased variance
skew() Unbiased skewness (3rd moment)
kurt() Unbiased kurtosis (4th moment)
quantile() Sample quantile (value at %)
apply() Generic apply
cov() Unbiased covariance (binary)
corr() Correlation (binary)

Aside from not having a window parameter, these functions have the same interfaces as their .rolling counter-
parts. Like above, the parameters they all accept are:

• min_periods: threshold of non-null data points to require. Defaults to minimum needed to compute statistic.
No NaNs will be output once min_periods non-null data points have been seen.

• center: boolean, whether to set the labels at the center (default is False).

Note: The output of the .rolling and .expanding methods do not return a NaN if there are at least
min_periods non-null values in the current window. For example:

In [98]: sn = pd.Series([1, 2, np.nan, 3, np.nan, 4])

In [99]: sn
Out[99]:
0 1.0
1 2.0
2 NaN
3 3.0
4 NaN
5 4.0
dtype: float64

In [100]: sn.rolling(2).max()
\\\Out[100]:
→˓

0 NaN
1 2.0
2 NaN
3 NaN
4 NaN
5 NaN
dtype: float64

In [101]: sn.rolling(2, min_periods=1).max()
\\\Out[101]:
→˓

(continues on next page)

804 Chapter 14. Computational tools

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

0 1.0
1 2.0
2 2.0
3 3.0
4 3.0
5 4.0
dtype: float64

In case of expanding functions, this differs from cumsum(), cumprod(), cummax(), and cummin(), which
return NaN in the output wherever a NaN is encountered in the input. In order to match the output of cumsum with
expanding, use fillna():

In [102]: sn.expanding().sum()
Out[102]:
0 1.0
1 3.0
2 3.0
3 6.0
4 6.0
5 10.0
dtype: float64

In [103]: sn.cumsum()
\\Out[103]:
→˓

0 1.0
1 3.0
2 NaN
3 6.0
4 NaN
5 10.0
dtype: float64

In [104]: sn.cumsum().fillna(method='ffill')
\\Out[104]:
→˓

0 1.0
1 3.0
2 3.0
3 6.0
4 6.0
5 10.0
dtype: float64

An expanding window statistic will be more stable (and less responsive) than its rolling window counterpart as the
increasing window size decreases the relative impact of an individual data point. As an example, here is the mean()
output for the previous time series dataset:

In [105]: s.plot(style='k--')
Out[105]: <matplotlib.axes._subplots.AxesSubplot at 0x7f210fc68518>

In [106]: s.expanding().mean().plot(style='k')
\\Out[106]:
→˓<matplotlib.axes._subplots.AxesSubplot at 0x7f210fc68518>

14.4. Expanding Windows 805

pandas: powerful Python data analysis toolkit, Release 0.23.4

14.5 Exponentially Weighted Windows

A related set of functions are exponentially weighted versions of several of the above statistics. A similar interface
to .rolling and .expanding is accessed through the .ewm method to receive an EWM object. A number of
expanding EW (exponentially weighted) methods are provided:

Function Description
mean() EW moving average
var() EW moving variance
std() EW moving standard deviation
corr() EW moving correlation
cov() EW moving covariance

In general, a weighted moving average is calculated as

𝑦𝑡 =

∑︀𝑡
𝑖=0 𝑤𝑖𝑥𝑡−𝑖∑︀𝑡

𝑖=0 𝑤𝑖

,

where 𝑥𝑡 is the input, 𝑦𝑡 is the result and the 𝑤𝑖 are the weights.

The EW functions support two variants of exponential weights. The default, adjust=True, uses the weights 𝑤𝑖 =

806 Chapter 14. Computational tools

pandas: powerful Python data analysis toolkit, Release 0.23.4

(1− 𝛼)𝑖 which gives

𝑦𝑡 =
𝑥𝑡 + (1− 𝛼)𝑥𝑡−1 + (1− 𝛼)2𝑥𝑡−2 + ...+ (1− 𝛼)𝑡𝑥0

1 + (1− 𝛼) + (1− 𝛼)2 + ...+ (1− 𝛼)𝑡

When adjust=False is specified, moving averages are calculated as

𝑦0 = 𝑥0

𝑦𝑡 = (1− 𝛼)𝑦𝑡−1 + 𝛼𝑥𝑡,

which is equivalent to using weights

𝑤𝑖 =

{︃
𝛼(1− 𝛼)𝑖 if 𝑖 < 𝑡

(1− 𝛼)𝑖 if 𝑖 = 𝑡.

Note: These equations are sometimes written in terms of 𝛼′ = 1− 𝛼, e.g.

𝑦𝑡 = 𝛼′𝑦𝑡−1 + (1− 𝛼′)𝑥𝑡.

The difference between the above two variants arises because we are dealing with series which have finite history.
Consider a series of infinite history:

𝑦𝑡 =
𝑥𝑡 + (1− 𝛼)𝑥𝑡−1 + (1− 𝛼)2𝑥𝑡−2 + ...

1 + (1− 𝛼) + (1− 𝛼)2 + ...

Noting that the denominator is a geometric series with initial term equal to 1 and a ratio of 1− 𝛼 we have

𝑦𝑡 =
𝑥𝑡 + (1− 𝛼)𝑥𝑡−1 + (1− 𝛼)2𝑥𝑡−2 + ...

1
1−(1−𝛼)

= [𝑥𝑡 + (1− 𝛼)𝑥𝑡−1 + (1− 𝛼)2𝑥𝑡−2 + ...]𝛼

= 𝛼𝑥𝑡 + [(1− 𝛼)𝑥𝑡−1 + (1− 𝛼)2𝑥𝑡−2 + ...]𝛼

= 𝛼𝑥𝑡 + (1− 𝛼)[𝑥𝑡−1 + (1− 𝛼)𝑥𝑡−2 + ...]𝛼

= 𝛼𝑥𝑡 + (1− 𝛼)𝑦𝑡−1

which shows the equivalence of the above two variants for infinite series. When adjust=True we have 𝑦0 = 𝑥0

and from the last representation above we have 𝑦𝑡 = 𝛼𝑥𝑡 + (1 − 𝛼)𝑦𝑡−1, therefore there is an assumption that 𝑥0 is
not an ordinary value but rather an exponentially weighted moment of the infinite series up to that point.

One must have 0 < 𝛼 ≤ 1, and while since version 0.18.0 it has been possible to pass 𝛼 directly, it’s often easier to
think about either the span, center of mass (com) or half-life of an EW moment:

𝛼 =

⎧⎪⎨⎪⎩
2

𝑠+1 , for span 𝑠 ≥ 1
1

1+𝑐 , for center of mass 𝑐 ≥ 0

1− exp
log 0.5

ℎ , for half-life ℎ > 0

One must specify precisely one of span, center of mass, half-life and alpha to the EW functions:

• Span corresponds to what is commonly called an “N-day EW moving average”.

• Center of mass has a more physical interpretation and can be thought of in terms of span: 𝑐 = (𝑠− 1)/2.

• Half-life is the period of time for the exponential weight to reduce to one half.

• Alpha specifies the smoothing factor directly.

Here is an example for a univariate time series:

14.5. Exponentially Weighted Windows 807

pandas: powerful Python data analysis toolkit, Release 0.23.4

In [107]: s.plot(style='k--')
Out[107]: <matplotlib.axes._subplots.AxesSubplot at 0x7f210fbff908>

In [108]: s.ewm(span=20).mean().plot(style='k')
\\Out[108]:
→˓<matplotlib.axes._subplots.AxesSubplot at 0x7f210fbff908>

EWM has a min_periods argument, which has the same meaning it does for all the .expanding and .rolling
methods: no output values will be set until at least min_periods non-null values are encountered in the (expanding)
window.

EWM also has an ignore_na argument, which determines how intermediate null values affect the calculation of
the weights. When ignore_na=False (the default), weights are calculated based on absolute positions, so that
intermediate null values affect the result. When ignore_na=True, weights are calculated by ignoring intermediate
null values. For example, assuming adjust=True, if ignore_na=False, the weighted average of 3, NaN, 5
would be calculated as

(1− 𝛼)2 · 3 + 1 · 5
(1− 𝛼)2 + 1

.

Whereas if ignore_na=True, the weighted average would be calculated as

(1− 𝛼) · 3 + 1 · 5
(1− 𝛼) + 1

.

The var(), std(), and cov() functions have a bias argument, specifying whether the result should con-
tain biased or unbiased statistics. For example, if bias=True, ewmvar(x) is calculated as ewmvar(x) =

808 Chapter 14. Computational tools

pandas: powerful Python data analysis toolkit, Release 0.23.4

ewma(x**2) - ewma(x)**2; whereas if bias=False (the default), the biased variance statistics are scaled
by debiasing factors (︁∑︀𝑡

𝑖=0 𝑤𝑖

)︁2

(︁∑︀𝑡
𝑖=0 𝑤𝑖

)︁2

−
∑︀𝑡

𝑖=0 𝑤
2
𝑖

.

(For 𝑤𝑖 = 1, this reduces to the usual 𝑁/(𝑁 − 1) factor, with 𝑁 = 𝑡 + 1.) See Weighted Sample Variance on
Wikipedia for further details.

14.5. Exponentially Weighted Windows 809

http://en.wikipedia.org/wiki/Weighted_arithmetic_mean#Weighted_sample_variance

pandas: powerful Python data analysis toolkit, Release 0.23.4

810 Chapter 14. Computational tools

CHAPTER

FIFTEEN

WORKING WITH MISSING DATA

In this section, we will discuss missing (also referred to as NA) values in pandas.

Note: The choice of using NaN internally to denote missing data was largely for simplicity and performance reasons.
It differs from the MaskedArray approach of, for example, scikits.timeseries. We are hopeful that NumPy
will soon be able to provide a native NA type solution (similar to R) performant enough to be used in pandas.

See the cookbook for some advanced strategies.

15.1 Missing data basics

15.1.1 When / why does data become missing?

Some might quibble over our usage of missing. By “missing” we simply mean NA (“not available”) or “not present
for whatever reason”. Many data sets simply arrive with missing data, either because it exists and was not collected or
it never existed. For example, in a collection of financial time series, some of the time series might start on different
dates. Thus, values prior to the start date would generally be marked as missing.

In pandas, one of the most common ways that missing data is introduced into a data set is by reindexing. For example:

In [1]: df = pd.DataFrame(np.random.randn(5, 3), index=['a', 'c', 'e', 'f', 'h'],
...: columns=['one', 'two', 'three'])
...:

In [2]: df['four'] = 'bar'

In [3]: df['five'] = df['one'] > 0

In [4]: df
Out[4]:

one two three four five
a -0.166778 0.501113 -0.355322 bar False
c -0.337890 0.580967 0.983801 bar False
e 0.057802 0.761948 -0.712964 bar True
f -0.443160 -0.974602 1.047704 bar False
h -0.717852 -1.053898 -0.019369 bar False

In [5]: df2 = df.reindex(['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h'])

In [6]: df2
Out[6]:

(continues on next page)

811

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

one two three four five
a -0.166778 0.501113 -0.355322 bar False
b NaN NaN NaN NaN NaN
c -0.337890 0.580967 0.983801 bar False
d NaN NaN NaN NaN NaN
e 0.057802 0.761948 -0.712964 bar True
f -0.443160 -0.974602 1.047704 bar False
g NaN NaN NaN NaN NaN
h -0.717852 -1.053898 -0.019369 bar False

15.1.2 Values considered “missing”

As data comes in many shapes and forms, pandas aims to be flexible with regard to handling missing data. While
NaN is the default missing value marker for reasons of computational speed and convenience, we need to be able to
easily detect this value with data of different types: floating point, integer, boolean, and general object. In many cases,
however, the Python None will arise and we wish to also consider that “missing” or “not available” or “NA”.

Note: If you want to consider inf and -inf to be “NA” in computations, you can set pandas.options.mode.
use_inf_as_na = True.

To make detecting missing values easier (and across different array dtypes), pandas provides the isna() and
notna() functions, which are also methods on Series and DataFrame objects:

In [7]: df2['one']
Out[7]:
a -0.166778
b NaN
c -0.337890
d NaN
e 0.057802
f -0.443160
g NaN
h -0.717852
Name: one, dtype: float64

In [8]: pd.isna(df2['one'])
\\\Out[8]:
→˓

a False
b True
c False
d True
e False
f False
g True
h False
Name: one, dtype: bool

In [9]: df2['four'].notna()
\\\Out[9]:
→˓

a True
b False

(continues on next page)

812 Chapter 15. Working with missing data

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

c True
d False
e True
f True
g False
h True
Name: four, dtype: bool

In [10]: df2.isna()
\\Out[10]:
→˓

one two three four five
a False False False False False
b True True True True True
c False False False False False
d True True True True True
e False False False False False
f False False False False False
g True True True True True
h False False False False False

Warning: One has to be mindful that in Python (and NumPy), the nan's don’t compare equal, but None's do.
Note that pandas/NumPy uses the fact that np.nan != np.nan, and treats None like np.nan.

In [11]: None == None
Out[11]: True

In [12]: np.nan == np.nan
\\\\\\\\\\\\\\Out[12]: False

So as compared to above, a scalar equality comparison versus a None/np.nan doesn’t provide useful informa-
tion.

In [13]: df2['one'] == np.nan
Out[13]:
a False
b False
c False
d False
e False
f False
g False
h False
Name: one, dtype: bool

15.2 Datetimes

For datetime64[ns] types, NaT represents missing values. This is a pseudo-native sentinel value that can be represented
by NumPy in a singular dtype (datetime64[ns]). pandas objects provide intercompatibility between NaT and NaN.

In [14]: df2 = df.copy()

In [15]: df2['timestamp'] = pd.Timestamp('20120101')

(continues on next page)

15.2. Datetimes 813

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

In [16]: df2
Out[16]:

one two three four five timestamp
a -0.166778 0.501113 -0.355322 bar False 2012-01-01
c -0.337890 0.580967 0.983801 bar False 2012-01-01
e 0.057802 0.761948 -0.712964 bar True 2012-01-01
f -0.443160 -0.974602 1.047704 bar False 2012-01-01
h -0.717852 -1.053898 -0.019369 bar False 2012-01-01

In [17]: df2.loc[['a','c','h'],['one','timestamp']] = np.nan

In [18]: df2
Out[18]:

one two three four five timestamp
a NaN 0.501113 -0.355322 bar False NaT
c NaN 0.580967 0.983801 bar False NaT
e 0.057802 0.761948 -0.712964 bar True 2012-01-01
f -0.443160 -0.974602 1.047704 bar False 2012-01-01
h NaN -1.053898 -0.019369 bar False NaT

In [19]: df2.get_dtype_counts()
\\Out[19]:
→˓

float64 3
object 1
bool 1
datetime64[ns] 1
dtype: int64

15.3 Inserting missing data

You can insert missing values by simply assigning to containers. The actual missing value used will be chosen based
on the dtype.

For example, numeric containers will always use NaN regardless of the missing value type chosen:

In [20]: s = pd.Series([1, 2, 3])

In [21]: s.loc[0] = None

In [22]: s
Out[22]:
0 NaN
1 2.0
2 3.0
dtype: float64

Likewise, datetime containers will always use NaT.

For object containers, pandas will use the value given:

In [23]: s = pd.Series(["a", "b", "c"])

In [24]: s.loc[0] = None
(continues on next page)

814 Chapter 15. Working with missing data

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

In [25]: s.loc[1] = np.nan

In [26]: s
Out[26]:
0 None
1 NaN
2 c
dtype: object

15.4 Calculations with missing data

Missing values propagate naturally through arithmetic operations between pandas objects.

In [27]: a
Out[27]:

one two
a NaN 0.501113
c NaN 0.580967
e 0.057802 0.761948
f -0.443160 -0.974602
h -0.443160 -1.053898

In [28]: b
\\Out[28]:
→˓

one two three
a NaN 0.501113 -0.355322
c NaN 0.580967 0.983801
e 0.057802 0.761948 -0.712964
f -0.443160 -0.974602 1.047704
h NaN -1.053898 -0.019369

In [29]: a + b
\\Out[29]:
→˓

one three two
a NaN NaN 1.002226
c NaN NaN 1.161935
e 0.115604 NaN 1.523896
f -0.886321 NaN -1.949205
h NaN NaN -2.107796

The descriptive statistics and computational methods discussed in the data structure overview (and listed here and
here) are all written to account for missing data. For example:

• When summing data, NA (missing) values will be treated as zero.

• If the data are all NA, the result will be 0.

• Cumulative methods like cumsum() and cumprod() ignore NA values by default, but preserve them in the
resulting arrays. To override this behaviour and include NA values, use skipna=False.

In [30]: df
Out[30]:

(continues on next page)

15.4. Calculations with missing data 815

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

one two three
a NaN 0.501113 -0.355322
c NaN 0.580967 0.983801
e 0.057802 0.761948 -0.712964
f -0.443160 -0.974602 1.047704
h NaN -1.053898 -0.019369

In [31]: df['one'].sum()
\\Out[31]:
→˓-0.38535826528461409

In [32]: df.mean(1)
\\Out[32]:
→˓

a 0.072895
c 0.782384
e 0.035595
f -0.123353
h -0.536633
dtype: float64

In [33]: df.cumsum()
\\\Out[33]:
→˓

one two three
a NaN 0.501113 -0.355322
c NaN 1.082080 0.628479
e 0.057802 1.844028 -0.084485
f -0.385358 0.869426 0.963219
h NaN -0.184472 0.943850

In [34]: df.cumsum(skipna=False)
\\\Out[34]:
→˓

one two three
a NaN 0.501113 -0.355322
c NaN 1.082080 0.628479
e NaN 1.844028 -0.084485
f NaN 0.869426 0.963219
h NaN -0.184472 0.943850

15.4.1 Sum/Prod of Empties/Nans

Warning: This behavior is now standard as of v0.22.0 and is consistent with the default in numpy; previously
sum/prod of all-NA or empty Series/DataFrames would return NaN. See v0.22.0 whatsnew for more.

The sum of an empty or all-NA Series or column of a DataFrame is 0.

In [35]: pd.Series([np.nan]).sum()
Out[35]: 0.0

In [36]: pd.Series([]).sum()
\\\\\\\\\\\\\Out[36]: 0.0

816 Chapter 15. Working with missing data

pandas: powerful Python data analysis toolkit, Release 0.23.4

The product of an empty or all-NA Series or column of a DataFrame is 1.

In [37]: pd.Series([np.nan]).prod()
Out[37]: 1.0

In [38]: pd.Series([]).prod()
\\\\\\\\\\\\\Out[38]: 1.0

15.4.2 NA values in GroupBy

NA groups in GroupBy are automatically excluded. This behavior is consistent with R, for example:

In [39]: df
Out[39]:

one two three
a NaN 0.501113 -0.355322
c NaN 0.580967 0.983801
e 0.057802 0.761948 -0.712964
f -0.443160 -0.974602 1.047704
h NaN -1.053898 -0.019369

In [40]: df.groupby('one').mean()
\\Out[40]:
→˓

two three
one
-0.443160 -0.974602 1.047704
0.057802 0.761948 -0.712964

See the groupby section here for more information.

15.5 Cleaning / filling missing data

pandas objects are equipped with various data manipulation methods for dealing with missing data.

15.5.1 Filling missing values: fillna

fillna() can “fill in” NA values with non-NA data in a couple of ways, which we illustrate:

Replace NA with a scalar value

In [41]: df2
Out[41]:

one two three four five timestamp
a NaN 0.501113 -0.355322 bar False NaT
c NaN 0.580967 0.983801 bar False NaT
e 0.057802 0.761948 -0.712964 bar True 2012-01-01
f -0.443160 -0.974602 1.047704 bar False 2012-01-01
h NaN -1.053898 -0.019369 bar False NaT

In [42]: df2.fillna(0)
\\Out[42]:
→˓

(continues on next page)

15.5. Cleaning / filling missing data 817

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

one two three four five timestamp
a 0.000000 0.501113 -0.355322 bar False 0
c 0.000000 0.580967 0.983801 bar False 0
e 0.057802 0.761948 -0.712964 bar True 2012-01-01 00:00:00
f -0.443160 -0.974602 1.047704 bar False 2012-01-01 00:00:00
h 0.000000 -1.053898 -0.019369 bar False 0

In [43]: df2['one'].fillna('missing')
\\Out[43]:
→˓

a missing
c missing
e 0.057802
f -0.44316
h missing
Name: one, dtype: object

Fill gaps forward or backward

Using the same filling arguments as reindexing, we can propagate non-NA values forward or backward:

In [44]: df
Out[44]:

one two three
a NaN 0.501113 -0.355322
c NaN 0.580967 0.983801
e 0.057802 0.761948 -0.712964
f -0.443160 -0.974602 1.047704
h NaN -1.053898 -0.019369

In [45]: df.fillna(method='pad')
\\Out[45]:
→˓

one two three
a NaN 0.501113 -0.355322
c NaN 0.580967 0.983801
e 0.057802 0.761948 -0.712964
f -0.443160 -0.974602 1.047704
h -0.443160 -1.053898 -0.019369

Limit the amount of filling

If we only want consecutive gaps filled up to a certain number of data points, we can use the limit keyword:

In [46]: df
Out[46]:

one two three
a NaN 0.501113 -0.355322
c NaN 0.580967 0.983801
e NaN NaN NaN
f NaN NaN NaN
h NaN -1.053898 -0.019369

In [47]: df.fillna(method='pad', limit=1)
\\Out[47]:
→˓

one two three

(continues on next page)

818 Chapter 15. Working with missing data

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

a NaN 0.501113 -0.355322
c NaN 0.580967 0.983801
e NaN 0.580967 0.983801
f NaN NaN NaN
h NaN -1.053898 -0.019369

To remind you, these are the available filling methods:

Method Action
pad / ffill Fill values forward
bfill / backfill Fill values backward

With time series data, using pad/ffill is extremely common so that the “last known value” is available at every time
point.

ffill() is equivalent to fillna(method='ffill') and bfill() is equivalent to
fillna(method='bfill')

15.5.2 Filling with a PandasObject

You can also fillna using a dict or Series that is alignable. The labels of the dict or index of the Series must match the
columns of the frame you wish to fill. The use case of this is to fill a DataFrame with the mean of that column.

In [48]: dff = pd.DataFrame(np.random.randn(10,3), columns=list('ABC'))

In [49]: dff.iloc[3:5,0] = np.nan

In [50]: dff.iloc[4:6,1] = np.nan

In [51]: dff.iloc[5:8,2] = np.nan

In [52]: dff
Out[52]:

A B C
0 0.758887 2.340598 0.219039
1 -1.235583 0.031785 0.701683
2 -1.557016 -0.636986 -1.238610
3 NaN -1.002278 0.654052
4 NaN NaN 1.053999
5 0.651981 NaN NaN
6 0.109001 -0.533294 NaN
7 -1.037831 -1.150016 NaN
8 -0.687693 1.921056 -0.121113
9 -0.258742 -0.706329 0.402547

In [53]: dff.fillna(dff.mean())
\\Out[53]:
→˓

A B C
0 0.758887 2.340598 0.219039
1 -1.235583 0.031785 0.701683
2 -1.557016 -0.636986 -1.238610
3 -0.407125 -1.002278 0.654052
4 -0.407125 0.033067 1.053999

(continues on next page)

15.5. Cleaning / filling missing data 819

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

5 0.651981 0.033067 0.238800
6 0.109001 -0.533294 0.238800
7 -1.037831 -1.150016 0.238800
8 -0.687693 1.921056 -0.121113
9 -0.258742 -0.706329 0.402547

In [54]: dff.fillna(dff.mean()['B':'C'])
\\Out[54]:
→˓

A B C
0 0.758887 2.340598 0.219039
1 -1.235583 0.031785 0.701683
2 -1.557016 -0.636986 -1.238610
3 NaN -1.002278 0.654052
4 NaN 0.033067 1.053999
5 0.651981 0.033067 0.238800
6 0.109001 -0.533294 0.238800
7 -1.037831 -1.150016 0.238800
8 -0.687693 1.921056 -0.121113
9 -0.258742 -0.706329 0.402547

Same result as above, but is aligning the ‘fill’ value which is a Series in this case.

In [55]: dff.where(pd.notna(dff), dff.mean(), axis='columns')
Out[55]:

A B C
0 0.758887 2.340598 0.219039
1 -1.235583 0.031785 0.701683
2 -1.557016 -0.636986 -1.238610
3 -0.407125 -1.002278 0.654052
4 -0.407125 0.033067 1.053999
5 0.651981 0.033067 0.238800
6 0.109001 -0.533294 0.238800
7 -1.037831 -1.150016 0.238800
8 -0.687693 1.921056 -0.121113
9 -0.258742 -0.706329 0.402547

15.5.3 Dropping axis labels with missing data: dropna

You may wish to simply exclude labels from a data set which refer to missing data. To do this, use dropna():

In [56]: df
Out[56]:

one two three
a NaN 0.501113 -0.355322
c NaN 0.580967 0.983801
e NaN 0.000000 0.000000
f NaN 0.000000 0.000000
h NaN -1.053898 -0.019369

In [57]: df.dropna(axis=0)
\\Out[57]:
→˓

Empty DataFrame
Columns: [one, two, three]

(continues on next page)

820 Chapter 15. Working with missing data

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

Index: []

In [58]: df.dropna(axis=1)
\\\Out[58]:
→˓

two three
a 0.501113 -0.355322
c 0.580967 0.983801
e 0.000000 0.000000
f 0.000000 0.000000
h -1.053898 -0.019369

In [59]: df['one'].dropna()
\\\Out[59]:
→˓Series([], Name: one, dtype: float64)

An equivalent dropna() is available for Series. DataFrame.dropna has considerably more options than Se-
ries.dropna, which can be examined in the API.

15.5.4 Interpolation

New in version 0.21.0: The limit_area keyword argument was added.

Both Series and DataFrame objects have interpolate() that, by default, performs linear interpolation at missing
datapoints.

In [60]: ts
Out[60]:
2000-01-31 0.469112
2000-02-29 NaN
2000-03-31 NaN
2000-04-28 NaN
2000-05-31 NaN
2000-06-30 NaN
2000-07-31 NaN

...
2007-10-31 -3.305259
2007-11-30 -5.485119
2007-12-31 -6.854968
2008-01-31 -7.809176
2008-02-29 -6.346480
2008-03-31 -8.089641
2008-04-30 -8.916232
Freq: BM, Length: 100, dtype: float64

In [61]: ts.count()
\\\Out[61]:
→˓61

In [62]: ts.interpolate().count()
\\\Out[62]:
→˓100

In [63]: ts.interpolate().plot()
\\Out[63]:
→˓<matplotlib.axes._subplots.AxesSubplot at 0x7f20cf59ca58>

15.5. Cleaning / filling missing data 821

pandas: powerful Python data analysis toolkit, Release 0.23.4

Index aware interpolation is available via the method keyword:

In [64]: ts2
Out[64]:
2000-01-31 0.469112
2000-02-29 NaN
2002-07-31 -5.689738
2005-01-31 NaN
2008-04-30 -8.916232
dtype: float64

In [65]: ts2.interpolate()
\\Out[65]:
→˓

2000-01-31 0.469112
2000-02-29 -2.610313
2002-07-31 -5.689738
2005-01-31 -7.302985
2008-04-30 -8.916232
dtype: float64

In [66]: ts2.interpolate(method='time')
\\Out[66]:
→˓

2000-01-31 0.469112
2000-02-29 0.273272

(continues on next page)

822 Chapter 15. Working with missing data

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

2002-07-31 -5.689738
2005-01-31 -7.095568
2008-04-30 -8.916232
dtype: float64

For a floating-point index, use method='values':

In [67]: ser
Out[67]:
0.0 0.0
1.0 NaN
10.0 10.0
dtype: float64

In [68]: ser.interpolate()
\\Out[68]:
0.0 0.0
1.0 5.0
10.0 10.0
dtype: float64

In [69]: ser.interpolate(method='values')
\\Out[69]:
→˓

0.0 0.0
1.0 1.0
10.0 10.0
dtype: float64

You can also interpolate with a DataFrame:

In [70]: df = pd.DataFrame({'A': [1, 2.1, np.nan, 4.7, 5.6, 6.8],
....: 'B': [.25, np.nan, np.nan, 4, 12.2, 14.4]})
....:

In [71]: df
Out[71]:

A B
0 1.0 0.25
1 2.1 NaN
2 NaN NaN
3 4.7 4.00
4 5.6 12.20
5 6.8 14.40

In [72]: df.interpolate()
\\Out[72]:
→˓

A B
0 1.0 0.25
1 2.1 1.50
2 3.4 2.75
3 4.7 4.00
4 5.6 12.20
5 6.8 14.40

The method argument gives access to fancier interpolation methods. If you have scipy installed, you can pass the

15.5. Cleaning / filling missing data 823

http://www.scipy.org

pandas: powerful Python data analysis toolkit, Release 0.23.4

name of a 1-d interpolation routine to method. You’ll want to consult the full scipy interpolation documentation and
reference guide for details. The appropriate interpolation method will depend on the type of data you are working
with.

• If you are dealing with a time series that is growing at an increasing rate, method='quadratic' may be
appropriate.

• If you have values approximating a cumulative distribution function, then method='pchip' should work
well.

• To fill missing values with goal of smooth plotting, consider method='akima'.

Warning: These methods require scipy.

In [73]: df.interpolate(method='barycentric')
Out[73]:

A B
0 1.00 0.250
1 2.10 -7.660
2 3.53 -4.515
3 4.70 4.000
4 5.60 12.200
5 6.80 14.400

In [74]: df.interpolate(method='pchip')
\\Out[74]:
→˓

A B
0 1.00000 0.250000
1 2.10000 0.672808
2 3.43454 1.928950
3 4.70000 4.000000
4 5.60000 12.200000
5 6.80000 14.400000

In [75]: df.interpolate(method='akima')
\\Out[75]:
→˓

A B
0 1.000000 0.250000
1 2.100000 -0.873316
2 3.406667 0.320034
3 4.700000 4.000000
4 5.600000 12.200000
5 6.800000 14.400000

When interpolating via a polynomial or spline approximation, you must also specify the degree or order of the approx-
imation:

In [76]: df.interpolate(method='spline', order=2)
Out[76]:

A B
0 1.000000 0.250000
1 2.100000 -0.428598
2 3.404545 1.206900
3 4.700000 4.000000

(continues on next page)

824 Chapter 15. Working with missing data

http://docs.scipy.org/doc/scipy/reference/interpolate.html#univariate-interpolation
http://docs.scipy.org/doc/scipy/reference/tutorial/interpolate.html

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

4 5.600000 12.200000
5 6.800000 14.400000

In [77]: df.interpolate(method='polynomial', order=2)
\\\Out[77]:
→˓

A B
0 1.000000 0.250000
1 2.100000 -2.703846
2 3.451351 -1.453846
3 4.700000 4.000000
4 5.600000 12.200000
5 6.800000 14.400000

Compare several methods:

In [78]: np.random.seed(2)

In [79]: ser = pd.Series(np.arange(1, 10.1, .25)**2 + np.random.randn(37))

In [80]: bad = np.array([4, 13, 14, 15, 16, 17, 18, 20, 29])

In [81]: ser[bad] = np.nan

In [82]: methods = ['linear', 'quadratic', 'cubic']

In [83]: df = pd.DataFrame({m: ser.interpolate(method=m) for m in methods})

In [84]: df.plot()
Out[84]: <matplotlib.axes._subplots.AxesSubplot at 0x7f20cf573fd0>

15.5. Cleaning / filling missing data 825

pandas: powerful Python data analysis toolkit, Release 0.23.4

Another use case is interpolation at new values. Suppose you have 100 observations from some distribution. And let’s
suppose that you’re particularly interested in what’s happening around the middle. You can mix pandas’ reindex
and interpolate methods to interpolate at the new values.

In [85]: ser = pd.Series(np.sort(np.random.uniform(size=100)))

interpolate at new_index
In [86]: new_index = ser.index | pd.Index([49.25, 49.5, 49.75, 50.25, 50.5, 50.75])

In [87]: interp_s = ser.reindex(new_index).interpolate(method='pchip')

In [88]: interp_s[49:51]
Out[88]:
49.00 0.471410
49.25 0.476841
49.50 0.481780
49.75 0.485998
50.00 0.489266
50.25 0.491814
50.50 0.493995
50.75 0.495763
51.00 0.497074
dtype: float64

826 Chapter 15. Working with missing data

pandas: powerful Python data analysis toolkit, Release 0.23.4

15.5.4.1 Interpolation Limits

Like other pandas fill methods, interpolate() accepts a limit keyword argument. Use this argument to limit
the number of consecutive NaN values filled since the last valid observation:

In [89]: ser = pd.Series([np.nan, np.nan, 5, np.nan, np.nan, np.nan, 13, np.nan, np.
→˓nan])

fill all consecutive values in a forward direction
In [90]: ser.interpolate()
Out[90]:
0 NaN
1 NaN
2 5.0
3 7.0
4 9.0
5 11.0
6 13.0
7 13.0
8 13.0
dtype: float64

fill one consecutive value in a forward direction
In [91]: ser.interpolate(limit=1)
\\\Out[91]:
→˓

0 NaN
1 NaN
2 5.0
3 7.0
4 NaN
5 NaN
6 13.0
7 13.0
8 NaN
dtype: float64

By default, NaN values are filled in a forward direction. Use limit_direction parameter to fill backward or
from both directions.

fill one consecutive value backwards
In [92]: ser.interpolate(limit=1, limit_direction='backward')
Out[92]:
0 NaN
1 5.0
2 5.0
3 NaN
4 NaN
5 11.0
6 13.0
7 NaN
8 NaN
dtype: float64

fill one consecutive value in both directions
In [93]: ser.interpolate(limit=1, limit_direction='both')
\\\Out[93]:
→˓

(continues on next page)

15.5. Cleaning / filling missing data 827

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

0 NaN
1 5.0
2 5.0
3 7.0
4 NaN
5 11.0
6 13.0
7 13.0
8 NaN
dtype: float64

fill all consecutive values in both directions
In [94]: ser.interpolate(limit_direction='both')
\\Out[94]:
→˓

0 5.0
1 5.0
2 5.0
3 7.0
4 9.0
5 11.0
6 13.0
7 13.0
8 13.0
dtype: float64

By default, NaN values are filled whether they are inside (surrounded by) existing valid values, or outside existing
valid values. Introduced in v0.23 the limit_area parameter restricts filling to either inside or outside values.

fill one consecutive inside value in both directions
In [95]: ser.interpolate(limit_direction='both', limit_area='inside', limit=1)
Out[95]:
0 NaN
1 NaN
2 5.0
3 7.0
4 NaN
5 11.0
6 13.0
7 NaN
8 NaN
dtype: float64

fill all consecutive outside values backward
In [96]: ser.interpolate(limit_direction='backward', limit_area='outside')
\\\Out[96]:
→˓

0 5.0
1 5.0
2 5.0
3 NaN
4 NaN
5 NaN
6 13.0
7 NaN
8 NaN

(continues on next page)

828 Chapter 15. Working with missing data

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

dtype: float64

fill all consecutive outside values in both directions
In [97]: ser.interpolate(limit_direction='both', limit_area='outside')
\\Out[97]:
→˓

0 5.0
1 5.0
2 5.0
3 NaN
4 NaN
5 NaN
6 13.0
7 13.0
8 13.0
dtype: float64

15.5.5 Replacing Generic Values

Often times we want to replace arbitrary values with other values.

replace() in Series and replace() in DataFrame provides an efficient yet flexible way to perform such replace-
ments.

For a Series, you can replace a single value or a list of values by another value:

In [98]: ser = pd.Series([0., 1., 2., 3., 4.])

In [99]: ser.replace(0, 5)
Out[99]:
0 5.0
1 1.0
2 2.0
3 3.0
4 4.0
dtype: float64

You can replace a list of values by a list of other values:

In [100]: ser.replace([0, 1, 2, 3, 4], [4, 3, 2, 1, 0])
Out[100]:
0 4.0
1 3.0
2 2.0
3 1.0
4 0.0
dtype: float64

You can also specify a mapping dict:

In [101]: ser.replace({0: 10, 1: 100})
Out[101]:
0 10.0
1 100.0
2 2.0

(continues on next page)

15.5. Cleaning / filling missing data 829

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

3 3.0
4 4.0
dtype: float64

For a DataFrame, you can specify individual values by column:

In [102]: df = pd.DataFrame({'a': [0, 1, 2, 3, 4], 'b': [5, 6, 7, 8, 9]})

In [103]: df.replace({'a': 0, 'b': 5}, 100)
Out[103]:

a b
0 100 100
1 1 6
2 2 7
3 3 8
4 4 9

Instead of replacing with specified values, you can treat all given values as missing and interpolate over them:

In [104]: ser.replace([1, 2, 3], method='pad')
Out[104]:
0 0.0
1 0.0
2 0.0
3 0.0
4 4.0
dtype: float64

15.5.6 String/Regular Expression Replacement

Note: Python strings prefixed with the r character such as r'hello world' are so-called “raw” strings. They
have different semantics regarding backslashes than strings without this prefix. Backslashes in raw strings will be
interpreted as an escaped backslash, e.g., r'\' == '\\'. You should read about them if this is unclear.

Replace the ‘.’ with NaN (str -> str):

In [105]: d = {'a': list(range(4)), 'b': list('ab..'), 'c': ['a', 'b', np.nan, 'd']}

In [106]: df = pd.DataFrame(d)

In [107]: df.replace('.', np.nan)
Out[107]:

a b c
0 0 a a
1 1 b b
2 2 NaN NaN
3 3 NaN d

Now do it with a regular expression that removes surrounding whitespace (regex -> regex):

In [108]: df.replace(r'\s*\.\s*', np.nan, regex=True)
Out[108]:

a b c

(continues on next page)

830 Chapter 15. Working with missing data

https://docs.python.org/3/reference/lexical_analysis.html#string-literals

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

0 0 a a
1 1 b b
2 2 NaN NaN
3 3 NaN d

Replace a few different values (list -> list):

In [109]: df.replace(['a', '.'], ['b', np.nan])
Out[109]:

a b c
0 0 b b
1 1 b b
2 2 NaN NaN
3 3 NaN d

list of regex -> list of regex:

In [110]: df.replace([r'\.', r'(a)'], ['dot', '\1stuff'], regex=True)
Out[110]:

a b c
0 0 {stuff {stuff
1 1 b b
2 2 dot NaN
3 3 dot d

Only search in column 'b' (dict -> dict):

In [111]: df.replace({'b': '.'}, {'b': np.nan})
Out[111]:

a b c
0 0 a a
1 1 b b
2 2 NaN NaN
3 3 NaN d

Same as the previous example, but use a regular expression for searching instead (dict of regex -> dict):

In [112]: df.replace({'b': r'\s*\.\s*'}, {'b': np.nan}, regex=True)
Out[112]:

a b c
0 0 a a
1 1 b b
2 2 NaN NaN
3 3 NaN d

You can pass nested dictionaries of regular expressions that use regex=True:

In [113]: df.replace({'b': {'b': r''}}, regex=True)
Out[113]:

a b c
0 0 a a
1 1 b
2 2 . NaN
3 3 . d

Alternatively, you can pass the nested dictionary like so:

15.5. Cleaning / filling missing data 831

pandas: powerful Python data analysis toolkit, Release 0.23.4

In [114]: df.replace(regex={'b': {r'\s*\.\s*': np.nan}})
Out[114]:

a b c
0 0 a a
1 1 b b
2 2 NaN NaN
3 3 NaN d

You can also use the group of a regular expression match when replacing (dict of regex -> dict of regex), this works
for lists as well.

In [115]: df.replace({'b': r'\s*(\.)\s*'}, {'b': r'\1ty'}, regex=True)
Out[115]:

a b c
0 0 a a
1 1 b b
2 2 .ty NaN
3 3 .ty d

You can pass a list of regular expressions, of which those that match will be replaced with a scalar (list of regex ->
regex).

In [116]: df.replace([r'\s*\.\s*', r'a|b'], np.nan, regex=True)
Out[116]:

a b c
0 0 NaN NaN
1 1 NaN NaN
2 2 NaN NaN
3 3 NaN d

All of the regular expression examples can also be passed with the to_replace argument as the regex argument.
In this case the value argument must be passed explicitly by name or regex must be a nested dictionary. The
previous example, in this case, would then be:

In [117]: df.replace(regex=[r'\s*\.\s*', r'a|b'], value=np.nan)
Out[117]:

a b c
0 0 NaN NaN
1 1 NaN NaN
2 2 NaN NaN
3 3 NaN d

This can be convenient if you do not want to pass regex=True every time you want to use a regular expression.

Note: Anywhere in the above replace examples that you see a regular expression a compiled regular expression is
valid as well.

15.5.7 Numeric Replacement

replace() is similar to fillna().

In [118]: df = pd.DataFrame(np.random.randn(10, 2))

In [119]: df[np.random.rand(df.shape[0]) > 0.5] = 1.5

(continues on next page)

832 Chapter 15. Working with missing data

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

In [120]: df.replace(1.5, np.nan)
Out[120]:

0 1
0 -0.844214 -1.021415
1 0.432396 -0.323580
2 0.423825 0.799180
3 1.262614 0.751965
4 NaN NaN
5 NaN NaN
6 -0.498174 -1.060799
7 0.591667 -0.183257
8 1.019855 -1.482465
9 NaN NaN

Replacing more than one value is possible by passing a list.

In [121]: df00 = df.values[0, 0]

In [122]: df.replace([1.5, df00], [np.nan, 'a'])
Out[122]:

0 1
0 a -1.02141
1 0.432396 -0.32358
2 0.423825 0.79918
3 1.26261 0.751965
4 NaN NaN
5 NaN NaN
6 -0.498174 -1.0608
7 0.591667 -0.183257
8 1.01985 -1.48247
9 NaN NaN

In [123]: df[1].dtype
\\\Out[123]:
→˓dtype('float64')

You can also operate on the DataFrame in place:

In [124]: df.replace(1.5, np.nan, inplace=True)

Warning: When replacing multiple bool or datetime64 objects, the first argument to replace
(to_replace) must match the type of the value being replaced. For example,

s = pd.Series([True, False, True])
s.replace({'a string': 'new value', True: False}) # raises

TypeError: Cannot compare types 'ndarray(dtype=bool)' and 'str'

will raise a TypeError because one of the dict keys is not of the correct type for replacement.

However, when replacing a single object such as,

15.5. Cleaning / filling missing data 833

pandas: powerful Python data analysis toolkit, Release 0.23.4

In [125]: s = pd.Series([True, False, True])

In [126]: s.replace('a string', 'another string')
Out[126]:
0 True
1 False
2 True
dtype: bool

the original NDFrame object will be returned untouched. We’re working on unifying this API, but for backwards
compatibility reasons we cannot break the latter behavior. See GH6354 for more details.

15.6 Missing data casting rules and indexing

While pandas supports storing arrays of integer and boolean type, these types are not capable of storing missing data.
Until we can switch to using a native NA type in NumPy, we’ve established some “casting rules”. When a reindexing
operation introduces missing data, the Series will be cast according to the rules introduced in the table below.

data type Cast to
integer float
boolean object
float no cast
object no cast

For example:

In [127]: s = pd.Series(np.random.randn(5), index=[0, 2, 4, 6, 7])

In [128]: s > 0
Out[128]:
0 True
2 True
4 True
6 True
7 True
dtype: bool

In [129]: (s > 0).dtype
\\\Out[129]:
→˓dtype('bool')

In [130]: crit = (s > 0).reindex(list(range(8)))

In [131]: crit
Out[131]:
0 True
1 NaN
2 True
3 NaN
4 True
5 NaN
6 True

(continues on next page)

834 Chapter 15. Working with missing data

https://github.com/pandas-dev/pandas/issues/6354

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

7 True
dtype: object

In [132]: crit.dtype
\\\Out[132]:
→˓dtype('O')

Ordinarily NumPy will complain if you try to use an object array (even if it contains boolean values) instead of a
boolean array to get or set values from an ndarray (e.g. selecting values based on some criteria). If a boolean vector
contains NAs, an exception will be generated:

In [133]: reindexed = s.reindex(list(range(8))).fillna(0)

In [134]: reindexed[crit]

ValueError Traceback (most recent call last)
<ipython-input-134-0dac417a4890> in <module>()
----> 1 reindexed[crit]

/pandas/pandas/core/series.py in __getitem__(self, key)
805 key = list(key)
806

--> 807 if com.is_bool_indexer(key):
808 key = check_bool_indexer(self.index, key)
809

/pandas/pandas/core/common.py in is_bool_indexer(key)
105 if not lib.is_bool_array(key):
106 if isna(key).any():

--> 107 raise ValueError('cannot index with vector containing '
108 'NA / NaN values')
109 return False

ValueError: cannot index with vector containing NA / NaN values

However, these can be filled in using fillna() and it will work fine:

In [135]: reindexed[crit.fillna(False)]
Out[135]:
0 0.126504
2 0.696198
4 0.697416
6 0.601516
7 0.003659
dtype: float64

In [136]: reindexed[crit.fillna(True)]
\\Out[136]:
→˓

0 0.126504
1 0.000000
2 0.696198
3 0.000000
4 0.697416
5 0.000000
6 0.601516

(continues on next page)

15.6. Missing data casting rules and indexing 835

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

7 0.003659
dtype: float64

836 Chapter 15. Working with missing data

CHAPTER

SIXTEEN

GROUP BY: SPLIT-APPLY-COMBINE

By “group by” we are referring to a process involving one or more of the following steps:

• Splitting the data into groups based on some criteria.

• Applying a function to each group independently.

• Combining the results into a data structure.

Out of these, the split step is the most straightforward. In fact, in many situations we may wish to split the data set into
groups and do something with those groups. In the apply step, we might wish to one of the following:

• Aggregation: compute a summary statistic (or statistics) for each group. Some examples:

– Compute group sums or means.

– Compute group sizes / counts.

• Transformation: perform some group-specific computations and return a like-indexed object. Some examples:

– Standardize data (zscore) within a group.

– Filling NAs within groups with a value derived from each group.

• Filtration: discard some groups, according to a group-wise computation that evaluates True or False. Some
examples:

– Discard data that belongs to groups with only a few members.

– Filter out data based on the group sum or mean.

• Some combination of the above: GroupBy will examine the results of the apply step and try to return a sensibly
combined result if it doesn’t fit into either of the above two categories.

Since the set of object instance methods on pandas data structures are generally rich and expressive, we often simply
want to invoke, say, a DataFrame function on each group. The name GroupBy should be quite familiar to those who
have used a SQL-based tool (or itertools), in which you can write code like:

SELECT Column1, Column2, mean(Column3), sum(Column4)
FROM SomeTable
GROUP BY Column1, Column2

We aim to make operations like this natural and easy to express using pandas. We’ll address each area of GroupBy
functionality then provide some non-trivial examples / use cases.

See the cookbook for some advanced strategies.

837

pandas: powerful Python data analysis toolkit, Release 0.23.4

16.1 Splitting an object into groups

pandas objects can be split on any of their axes. The abstract definition of grouping is to provide a mapping of labels
to group names. To create a GroupBy object (more on what the GroupBy object is later), you may do the following:

default is axis=0
>>> grouped = obj.groupby(key)
>>> grouped = obj.groupby(key, axis=1)
>>> grouped = obj.groupby([key1, key2])

The mapping can be specified many different ways:

• A Python function, to be called on each of the axis labels.

• A list or NumPy array of the same length as the selected axis.

• A dict or Series, providing a label -> group name mapping.

• For DataFrame objects, a string indicating a column to be used to group. Of course df.groupby('A') is
just syntactic sugar for df.groupby(df['A']), but it makes life simpler.

• For DataFrame objects, a string indicating an index level to be used to group.

• A list of any of the above things.

Collectively we refer to the grouping objects as the keys. For example, consider the following DataFrame:

Note: New in version 0.20.

A string passed to groupby may refer to either a column or an index level. If a string matches both a column name
and an index level name then a warning is issued and the column takes precedence. This will result in an ambiguity
error in a future version.

In [1]: df = pd.DataFrame({'A' : ['foo', 'bar', 'foo', 'bar',
...: 'foo', 'bar', 'foo', 'foo'],
...: 'B' : ['one', 'one', 'two', 'three',
...: 'two', 'two', 'one', 'three'],
...: 'C' : np.random.randn(8),
...: 'D' : np.random.randn(8)})
...:

In [2]: df
Out[2]:

A B C D
0 foo one 0.469112 -0.861849
1 bar one -0.282863 -2.104569
2 foo two -1.509059 -0.494929
3 bar three -1.135632 1.071804
4 foo two 1.212112 0.721555
5 bar two -0.173215 -0.706771
6 foo one 0.119209 -1.039575
7 foo three -1.044236 0.271860

On a DataFrame, we obtain a GroupBy object by calling groupby(). We could naturally group by either the A or B
columns, or both:

838 Chapter 16. Group By: split-apply-combine

pandas: powerful Python data analysis toolkit, Release 0.23.4

In [3]: grouped = df.groupby('A')

In [4]: grouped = df.groupby(['A', 'B'])

These will split the DataFrame on its index (rows). We could also split by the columns:

In [5]: def get_letter_type(letter):
...: if letter.lower() in 'aeiou':
...: return 'vowel'
...: else:
...: return 'consonant'
...:

In [6]: grouped = df.groupby(get_letter_type, axis=1)

pandas Index objects support duplicate values. If a non-unique index is used as the group key in a groupby operation,
all values for the same index value will be considered to be in one group and thus the output of aggregation functions
will only contain unique index values:

In [7]: lst = [1, 2, 3, 1, 2, 3]

In [8]: s = pd.Series([1, 2, 3, 10, 20, 30], lst)

In [9]: grouped = s.groupby(level=0)

In [10]: grouped.first()
Out[10]:
1 1
2 2
3 3
dtype: int64

In [11]: grouped.last()
\\Out[11]:
1 10
2 20
3 30
dtype: int64

In [12]: grouped.sum()
\\\Out[12]:
→˓

1 11
2 22
3 33
dtype: int64

Note that no splitting occurs until it’s needed. Creating the GroupBy object only verifies that you’ve passed a valid
mapping.

Note: Many kinds of complicated data manipulations can be expressed in terms of GroupBy operations (though can’t
be guaranteed to be the most efficient). You can get quite creative with the label mapping functions.

16.1. Splitting an object into groups 839

pandas: powerful Python data analysis toolkit, Release 0.23.4

16.1.1 GroupBy sorting

By default the group keys are sorted during the groupby operation. You may however pass sort=False for
potential speedups:

In [13]: df2 = pd.DataFrame({'X' : ['B', 'B', 'A', 'A'], 'Y' : [1, 2, 3, 4]})

In [14]: df2.groupby(['X']).sum()
Out[14]:

Y
X
A 7
B 3

In [15]: df2.groupby(['X'], sort=False).sum()
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\Out[15]:

Y
X
B 3
A 7

Note that groupby will preserve the order in which observations are sorted within each group. For example, the
groups created by groupby() below are in the order they appeared in the original DataFrame:

In [16]: df3 = pd.DataFrame({'X' : ['A', 'B', 'A', 'B'], 'Y' : [1, 4, 3, 2]})

In [17]: df3.groupby(['X']).get_group('A')
Out[17]:

X Y
0 A 1
2 A 3

In [18]: df3.groupby(['X']).get_group('B')
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\Out[18]:

X Y
1 B 4
3 B 2

16.1.2 GroupBy object attributes

The groups attribute is a dict whose keys are the computed unique groups and corresponding values being the axis
labels belonging to each group. In the above example we have:

In [19]: df.groupby('A').groups
Out[19]:
{'bar': Int64Index([1, 3, 5], dtype='int64'),
'foo': Int64Index([0, 2, 4, 6, 7], dtype='int64')}

In [20]: df.groupby(get_letter_type, axis=1).groups
\\Out[20]:
→˓

{'consonant': Index(['B', 'C', 'D'], dtype='object'),
'vowel': Index(['A'], dtype='object')}

Calling the standard Python len function on the GroupBy object just returns the length of the groups dict, so it is
largely just a convenience:

840 Chapter 16. Group By: split-apply-combine

pandas: powerful Python data analysis toolkit, Release 0.23.4

In [21]: grouped = df.groupby(['A', 'B'])

In [22]: grouped.groups
Out[22]:
{('bar', 'one'): Int64Index([1], dtype='int64'),
('bar', 'three'): Int64Index([3], dtype='int64'),
('bar', 'two'): Int64Index([5], dtype='int64'),
('foo', 'one'): Int64Index([0, 6], dtype='int64'),
('foo', 'three'): Int64Index([7], dtype='int64'),
('foo', 'two'): Int64Index([2, 4], dtype='int64')}

In [23]: len(grouped)
\\Out[23]:
→˓6

GroupBy will tab complete column names (and other attributes):

In [24]: df
Out[24]:

height weight gender
2000-01-01 42.849980 157.500553 male
2000-01-02 49.607315 177.340407 male
2000-01-03 56.293531 171.524640 male
2000-01-04 48.421077 144.251986 female
2000-01-05 46.556882 152.526206 male
2000-01-06 68.448851 168.272968 female
2000-01-07 70.757698 136.431469 male
2000-01-08 58.909500 176.499753 female
2000-01-09 76.435631 174.094104 female
2000-01-10 45.306120 177.540920 male

In [25]: gb = df.groupby('gender')

In [26]: gb.<TAB>
gb.agg gb.boxplot gb.cummin gb.describe gb.filter gb.get_group
→˓gb.height gb.last gb.median gb.ngroups gb.plot gb.rank
→˓gb.std gb.transform
gb.aggregate gb.count gb.cumprod gb.dtype gb.first gb.groups
→˓gb.hist gb.max gb.min gb.nth gb.prod gb.resample
→˓gb.sum gb.var
gb.apply gb.cummax gb.cumsum gb.fillna gb.gender gb.head
→˓gb.indices gb.mean gb.name gb.ohlc gb.quantile gb.size
→˓gb.tail gb.weight

16.1.3 GroupBy with MultiIndex

With hierarchically-indexed data, it’s quite natural to group by one of the levels of the hierarchy.

Let’s create a Series with a two-level MultiIndex.

In [27]: arrays = [['bar', 'bar', 'baz', 'baz', 'foo', 'foo', 'qux', 'qux'],
....: ['one', 'two', 'one', 'two', 'one', 'two', 'one', 'two']]
....:

In [28]: index = pd.MultiIndex.from_arrays(arrays, names=['first', 'second'])

(continues on next page)

16.1. Splitting an object into groups 841

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

In [29]: s = pd.Series(np.random.randn(8), index=index)

In [30]: s
Out[30]:
first second
bar one -0.919854

two -0.042379
baz one 1.247642

two -0.009920
foo one 0.290213

two 0.495767
qux one 0.362949

two 1.548106
dtype: float64

We can then group by one of the levels in s.

In [31]: grouped = s.groupby(level=0)

In [32]: grouped.sum()
Out[32]:
first
bar -0.962232
baz 1.237723
foo 0.785980
qux 1.911055
dtype: float64

If the MultiIndex has names specified, these can be passed instead of the level number:

In [33]: s.groupby(level='second').sum()
Out[33]:
second
one 0.980950
two 1.991575
dtype: float64

The aggregation functions such as sum will take the level parameter directly. Additionally, the resulting index will be
named according to the chosen level:

In [34]: s.sum(level='second')
Out[34]:
second
one 0.980950
two 1.991575
dtype: float64

Grouping with multiple levels is supported.

In [35]: s
Out[35]:
first second third
bar doo one -1.131345

two -0.089329
baz bee one 0.337863

two -0.945867

(continues on next page)

842 Chapter 16. Group By: split-apply-combine

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

foo bop one -0.932132
two 1.956030

qux bop one 0.017587
two -0.016692

dtype: float64

In [36]: s.groupby(level=['first', 'second']).sum()
\\Out[36]:
→˓

first second
bar doo -1.220674
baz bee -0.608004
foo bop 1.023898
qux bop 0.000895
dtype: float64

New in version 0.20.

Index level names may be supplied as keys.

In [37]: s.groupby(['first', 'second']).sum()
Out[37]:
first second
bar doo -1.220674
baz bee -0.608004
foo bop 1.023898
qux bop 0.000895
dtype: float64

More on the sum function and aggregation later.

16.1.4 Grouping DataFrame with Index Levels and Columns

A DataFrame may be grouped by a combination of columns and index levels by specifying the column names as
strings and the index levels as pd.Grouper objects.

In [38]: arrays = [['bar', 'bar', 'baz', 'baz', 'foo', 'foo', 'qux', 'qux'],
....: ['one', 'two', 'one', 'two', 'one', 'two', 'one', 'two']]
....:

In [39]: index = pd.MultiIndex.from_arrays(arrays, names=['first', 'second'])

In [40]: df = pd.DataFrame({'A': [1, 1, 1, 1, 2, 2, 3, 3],
....: 'B': np.arange(8)},
....: index=index)
....:

In [41]: df
Out[41]:

A B
first second
bar one 1 0

two 1 1
baz one 1 2

two 1 3

(continues on next page)

16.1. Splitting an object into groups 843

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

foo one 2 4
two 2 5

qux one 3 6
two 3 7

The following example groups df by the second index level and the A column.

In [42]: df.groupby([pd.Grouper(level=1), 'A']).sum()
Out[42]:

B
second A
one 1 2

2 4
3 6

two 1 4
2 5
3 7

Index levels may also be specified by name.

In [43]: df.groupby([pd.Grouper(level='second'), 'A']).sum()
Out[43]:

B
second A
one 1 2

2 4
3 6

two 1 4
2 5
3 7

New in version 0.20.

Index level names may be specified as keys directly to groupby.

In [44]: df.groupby(['second', 'A']).sum()
Out[44]:

B
second A
one 1 2

2 4
3 6

two 1 4
2 5
3 7

16.1.5 DataFrame column selection in GroupBy

Once you have created the GroupBy object from a DataFrame, you might want to do something different for each of
the columns. Thus, using [] similar to getting a column from a DataFrame, you can do:

In [45]: grouped = df.groupby(['A'])

In [46]: grouped_C = grouped['C']

In [47]: grouped_D = grouped['D']

844 Chapter 16. Group By: split-apply-combine

pandas: powerful Python data analysis toolkit, Release 0.23.4

This is mainly syntactic sugar for the alternative and much more verbose:

In [48]: df['C'].groupby(df['A'])
Out[48]: <pandas.core.groupby.groupby.SeriesGroupBy object at 0x7f21344f5b70>

Additionally this method avoids recomputing the internal grouping information derived from the passed key.

16.2 Iterating through groups

With the GroupBy object in hand, iterating through the grouped data is very natural and functions similarly to
itertools.groupby():

In [49]: grouped = df.groupby('A')

In [50]: for name, group in grouped:
....: print(name)
....: print(group)
....:

bar
A B C D

1 bar one 0.254161 1.511763
3 bar three 0.215897 -0.990582
5 bar two -0.077118 1.211526
foo

A B C D
0 foo one -0.575247 1.346061
2 foo two -1.143704 1.627081
4 foo two 1.193555 -0.441652
6 foo one -0.408530 0.268520
7 foo three -0.862495 0.024580

In the case of grouping by multiple keys, the group name will be a tuple:

In [51]: for name, group in df.groupby(['A', 'B']):
....: print(name)
....: print(group)
....:

('bar', 'one')
A B C D

1 bar one 0.254161 1.511763
('bar', 'three')

A B C D
3 bar three 0.215897 -0.990582
('bar', 'two')

A B C D
5 bar two -0.077118 1.211526
('foo', 'one')

A B C D
0 foo one -0.575247 1.346061
6 foo one -0.408530 0.268520
('foo', 'three')

A B C D
7 foo three -0.862495 0.02458
('foo', 'two')

A B C D

(continues on next page)

16.2. Iterating through groups 845

https://docs.python.org/3/library/itertools.html#itertools.groupby

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

2 foo two -1.143704 1.627081
4 foo two 1.193555 -0.441652

It’s standard Python-fu but remember you can unpack the tuple in the for loop statement if you wish: for (k1,
k2), group in grouped:.

16.3 Selecting a group

A single group can be selected using get_group():

In [52]: grouped.get_group('bar')
Out[52]:

A B C D
1 bar one 0.254161 1.511763
3 bar three 0.215897 -0.990582
5 bar two -0.077118 1.211526

Or for an object grouped on multiple columns:

In [53]: df.groupby(['A', 'B']).get_group(('bar', 'one'))
Out[53]:

A B C D
1 bar one 0.254161 1.511763

16.4 Aggregation

Once the GroupBy object has been created, several methods are available to perform a computation on the grouped
data. These operations are similar to the aggregating API, window functions API, and resample API.

An obvious one is aggregation via the aggregate() or equivalently agg() method:

In [54]: grouped = df.groupby('A')

In [55]: grouped.aggregate(np.sum)
Out[55]:

C D
A
bar 0.392940 1.732707
foo -1.796421 2.824590

In [56]: grouped = df.groupby(['A', 'B'])

In [57]: grouped.aggregate(np.sum)
Out[57]:

C D
A B
bar one 0.254161 1.511763

three 0.215897 -0.990582
two -0.077118 1.211526

foo one -0.983776 1.614581
three -0.862495 0.024580
two 0.049851 1.185429

846 Chapter 16. Group By: split-apply-combine

pandas: powerful Python data analysis toolkit, Release 0.23.4

As you can see, the result of the aggregation will have the group names as the new index along the grouped axis. In
the case of multiple keys, the result is a MultiIndex by default, though this can be changed by using the as_index
option:

In [58]: grouped = df.groupby(['A', 'B'], as_index=False)

In [59]: grouped.aggregate(np.sum)
Out[59]:

A B C D
0 bar one 0.254161 1.511763
1 bar three 0.215897 -0.990582
2 bar two -0.077118 1.211526
3 foo one -0.983776 1.614581
4 foo three -0.862495 0.024580
5 foo two 0.049851 1.185429

In [60]: df.groupby('A', as_index=False).sum()
\\Out[60]:
→˓

A C D
0 bar 0.392940 1.732707
1 foo -1.796421 2.824590

Note that you could use the reset_index DataFrame function to achieve the same result as the column names are
stored in the resulting MultiIndex:

In [61]: df.groupby(['A', 'B']).sum().reset_index()
Out[61]:

A B C D
0 bar one 0.254161 1.511763
1 bar three 0.215897 -0.990582
2 bar two -0.077118 1.211526
3 foo one -0.983776 1.614581
4 foo three -0.862495 0.024580
5 foo two 0.049851 1.185429

Another simple aggregation example is to compute the size of each group. This is included in GroupBy as the size
method. It returns a Series whose index are the group names and whose values are the sizes of each group.

In [62]: grouped.size()
Out[62]:
A B
bar one 1

three 1
two 1

foo one 2
three 1
two 2

dtype: int64

In [63]: grouped.describe()
Out[63]:

C D
→˓

count mean std min 25% 50% 75% max count
→˓ mean std min 25% 50% 75% max
0 1.0 0.254161 NaN 0.254161 0.254161 0.254161 0.254161 0.254161 1.0
→˓1.511763 NaN 1.511763 1.511763 1.511763 1.511763 1.511763

(continues on next page)

16.4. Aggregation 847

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

1 1.0 0.215897 NaN 0.215897 0.215897 0.215897 0.215897 0.215897 1.0 -
→˓0.990582 NaN -0.990582 -0.990582 -0.990582 -0.990582 -0.990582
2 1.0 -0.077118 NaN -0.077118 -0.077118 -0.077118 -0.077118 -0.077118 1.0
→˓1.211526 NaN 1.211526 1.211526 1.211526 1.211526 1.211526
3 2.0 -0.491888 0.117887 -0.575247 -0.533567 -0.491888 -0.450209 -0.408530 2.0
→˓0.807291 0.761937 0.268520 0.537905 0.807291 1.076676 1.346061
4 1.0 -0.862495 NaN -0.862495 -0.862495 -0.862495 -0.862495 -0.862495 1.0
→˓0.024580 NaN 0.024580 0.024580 0.024580 0.024580 0.024580
5 2.0 0.024925 1.652692 -1.143704 -0.559389 0.024925 0.609240 1.193555 2.0
→˓0.592714 1.462816 -0.441652 0.075531 0.592714 1.109898 1.627081

Note: Aggregation functions will not return the groups that you are aggregating over if they are named columns,
when as_index=True, the default. The grouped columns will be the indices of the returned object.

Passing as_index=False will return the groups that you are aggregating over, if they are named columns.

Aggregating functions are the ones that reduce the dimension of the returned objects. Some common aggregating
functions are tabulated below:

Function Description
mean() Compute mean of groups
sum() Compute sum of group values
size() Compute group sizes
count() Compute count of group
std() Standard deviation of groups
var() Compute variance of groups
sem() Standard error of the mean of groups
describe() Generates descriptive statistics
first() Compute first of group values
last() Compute last of group values
nth() Take nth value, or a subset if n is a list
min() Compute min of group values
max() Compute max of group values

The aggregating functions above will exclude NA values. Any function which reduces a Series to a scalar value is
an aggregation function and will work, a trivial example is df.groupby('A').agg(lambda ser: 1). Note
that nth() can act as a reducer or a filter, see here.

16.4.1 Applying multiple functions at once

With grouped Series you can also pass a list or dict of functions to do aggregation with, outputting a DataFrame:

In [64]: grouped = df.groupby('A')

In [65]: grouped['C'].agg([np.sum, np.mean, np.std])
Out[65]:

sum mean std
A
bar 0.392940 0.130980 0.181231
foo -1.796421 -0.359284 0.912265

848 Chapter 16. Group By: split-apply-combine

pandas: powerful Python data analysis toolkit, Release 0.23.4

On a grouped DataFrame, you can pass a list of functions to apply to each column, which produces an aggregated
result with a hierarchical index:

In [66]: grouped.agg([np.sum, np.mean, np.std])
Out[66]:

C D
sum mean std sum mean std

A
bar 0.392940 0.130980 0.181231 1.732707 0.577569 1.366330
foo -1.796421 -0.359284 0.912265 2.824590 0.564918 0.884785

The resulting aggregations are named for the functions themselves. If you need to rename, then you can add in a
chained operation for a Series like this:

In [67]: (grouped['C'].agg([np.sum, np.mean, np.std])
....: .rename(columns={'sum': 'foo',
....: 'mean': 'bar',
....: 'std': 'baz'})
....:)
....:

Out[67]:
foo bar baz

A
bar 0.392940 0.130980 0.181231
foo -1.796421 -0.359284 0.912265

For a grouped DataFrame, you can rename in a similar manner:

In [68]: (grouped.agg([np.sum, np.mean, np.std])
....: .rename(columns={'sum': 'foo',
....: 'mean': 'bar',
....: 'std': 'baz'})
....:)
....:

Out[68]:
C D

foo bar baz foo bar baz
A
bar 0.392940 0.130980 0.181231 1.732707 0.577569 1.366330
foo -1.796421 -0.359284 0.912265 2.824590 0.564918 0.884785

16.4.2 Applying different functions to DataFrame columns

By passing a dict to aggregate you can apply a different aggregation to the columns of a DataFrame:

In [69]: grouped.agg({'C' : np.sum,
....: 'D' : lambda x: np.std(x, ddof=1)})
....:

Out[69]:
C D

A
bar 0.392940 1.366330
foo -1.796421 0.884785

The function names can also be strings. In order for a string to be valid it must be either implemented on GroupBy or
available via dispatching:

16.4. Aggregation 849

pandas: powerful Python data analysis toolkit, Release 0.23.4

In [70]: grouped.agg({'C' : 'sum', 'D' : 'std'})
Out[70]:

C D
A
bar 0.392940 1.366330
foo -1.796421 0.884785

Note: If you pass a dict to aggregate, the ordering of the output columns is non-deterministic. If you want to
be sure the output columns will be in a specific order, you can use an OrderedDict. Compare the output of the
following two commands:

In [71]: grouped.agg({'D': 'std', 'C': 'mean'})
Out[71]:

D C
A
bar 1.366330 0.130980
foo 0.884785 -0.359284

In [72]: grouped.agg(OrderedDict([('D', 'std'), ('C', 'mean')]))
\\Out[72]:
→˓

D C
A
bar 1.366330 0.130980
foo 0.884785 -0.359284

16.4.3 Cython-optimized aggregation functions

Some common aggregations, currently only sum, mean, std, and sem, have optimized Cython implementations:

In [73]: df.groupby('A').sum()
Out[73]:

C D
A
bar 0.392940 1.732707
foo -1.796421 2.824590

In [74]: df.groupby(['A', 'B']).mean()
\\Out[74]:
→˓

C D
A B
bar one 0.254161 1.511763

three 0.215897 -0.990582
two -0.077118 1.211526

foo one -0.491888 0.807291
three -0.862495 0.024580
two 0.024925 0.592714

Of course sum and mean are implemented on pandas objects, so the above code would work even without the special
versions via dispatching (see below).

850 Chapter 16. Group By: split-apply-combine

pandas: powerful Python data analysis toolkit, Release 0.23.4

16.5 Transformation

The transform method returns an object that is indexed the same (same size) as the one being grouped. The
transform function must:

• Return a result that is either the same size as the group chunk or broadcastable to the size of the group chunk
(e.g., a scalar, grouped.transform(lambda x: x.iloc[-1])).

• Operate column-by-column on the group chunk. The transform is applied to the first group chunk using
chunk.apply.

• Not perform in-place operations on the group chunk. Group chunks should be treated as immutable, and changes
to a group chunk may produce unexpected results. For example, when using fillna, inplace must be
False (grouped.transform(lambda x: x.fillna(inplace=False))).

• (Optionally) operates on the entire group chunk. If this is supported, a fast path is used starting from the second
chunk.

For example, suppose we wished to standardize the data within each group:

In [75]: index = pd.date_range('10/1/1999', periods=1100)

In [76]: ts = pd.Series(np.random.normal(0.5, 2, 1100), index)

In [77]: ts = ts.rolling(window=100,min_periods=100).mean().dropna()

In [78]: ts.head()
Out[78]:
2000-01-08 0.779333
2000-01-09 0.778852
2000-01-10 0.786476
2000-01-11 0.782797
2000-01-12 0.798110
Freq: D, dtype: float64

In [79]: ts.tail()
\\\Out[79]:
→˓

2002-09-30 0.660294
2002-10-01 0.631095
2002-10-02 0.673601
2002-10-03 0.709213
2002-10-04 0.719369
Freq: D, dtype: float64

In [80]: key = lambda x: x.year

In [81]: zscore = lambda x: (x - x.mean()) / x.std()

In [82]: transformed = ts.groupby(key).transform(zscore)

We would expect the result to now have mean 0 and standard deviation 1 within each group, which we can easily
check:

Original Data
In [83]: grouped = ts.groupby(key)

In [84]: grouped.mean()

(continues on next page)

16.5. Transformation 851

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

Out[84]:
2000 0.442441
2001 0.526246
2002 0.459365
dtype: float64

In [85]: grouped.std()
\\Out[85]:
2000 0.131752
2001 0.210945
2002 0.128753
dtype: float64

Transformed Data
In [86]: grouped_trans = transformed.groupby(key)

In [87]: grouped_trans.mean()
Out[87]:
2000 1.168208e-15
2001 1.454544e-15
2002 1.726657e-15
dtype: float64

In [88]: grouped_trans.std()
\\Out[88]:
→˓

2000 1.0
2001 1.0
2002 1.0
dtype: float64

We can also visually compare the original and transformed data sets.

In [89]: compare = pd.DataFrame({'Original': ts, 'Transformed': transformed})

In [90]: compare.plot()
Out[90]: <matplotlib.axes._subplots.AxesSubplot at 0x7f21345fcb00>

852 Chapter 16. Group By: split-apply-combine

pandas: powerful Python data analysis toolkit, Release 0.23.4

Transformation functions that have lower dimension outputs are broadcast to match the shape of the input array.

In [91]: data_range = lambda x: x.max() - x.min()

In [92]: ts.groupby(key).transform(data_range)
Out[92]:
2000-01-08 0.623893
2000-01-09 0.623893
2000-01-10 0.623893
2000-01-11 0.623893
2000-01-12 0.623893
2000-01-13 0.623893
2000-01-14 0.623893

...
2002-09-28 0.558275
2002-09-29 0.558275
2002-09-30 0.558275
2002-10-01 0.558275
2002-10-02 0.558275
2002-10-03 0.558275
2002-10-04 0.558275
Freq: D, Length: 1001, dtype: float64

Alternatively the built-in methods can be could be used to produce the same outputs

16.5. Transformation 853

pandas: powerful Python data analysis toolkit, Release 0.23.4

In [93]: ts.groupby(key).transform('max') - ts.groupby(key).transform('min')
Out[93]:
2000-01-08 0.623893
2000-01-09 0.623893
2000-01-10 0.623893
2000-01-11 0.623893
2000-01-12 0.623893
2000-01-13 0.623893
2000-01-14 0.623893

...
2002-09-28 0.558275
2002-09-29 0.558275
2002-09-30 0.558275
2002-10-01 0.558275
2002-10-02 0.558275
2002-10-03 0.558275
2002-10-04 0.558275
Freq: D, Length: 1001, dtype: float64

Another common data transform is to replace missing data with the group mean.

In [94]: data_df
Out[94]:

A B C
0 1.539708 -1.166480 0.533026
1 1.302092 -0.505754 NaN
2 -0.371983 1.104803 -0.651520
3 -1.309622 1.118697 -1.161657
4 -1.924296 0.396437 0.812436
5 0.815643 0.367816 -0.469478
6 -0.030651 1.376106 -0.645129
..
993 0.012359 0.554602 -1.976159
994 0.042312 -1.628835 1.013822
995 -0.093110 0.683847 -0.774753
996 -0.185043 1.438572 NaN
997 -0.394469 -0.642343 0.011374
998 -1.174126 1.857148 NaN
999 0.234564 0.517098 0.393534

[1000 rows x 3 columns]

In [95]: countries = np.array(['US', 'UK', 'GR', 'JP'])

In [96]: key = countries[np.random.randint(0, 4, 1000)]

In [97]: grouped = data_df.groupby(key)

Non-NA count in each group
In [98]: grouped.count()
Out[98]:

A B C
GR 209 217 189
JP 240 255 217
UK 216 231 193
US 239 250 217

(continues on next page)

854 Chapter 16. Group By: split-apply-combine

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

In [99]: f = lambda x: x.fillna(x.mean())

In [100]: transformed = grouped.transform(f)

We can verify that the group means have not changed in the transformed data and that the transformed data contains
no NAs.

In [101]: grouped_trans = transformed.groupby(key)

In [102]: grouped.mean() # original group means
Out[102]:

A B C
GR -0.098371 -0.015420 0.068053
JP 0.069025 0.023100 -0.077324
UK 0.034069 -0.052580 -0.116525
US 0.058664 -0.020399 0.028603

In [103]: grouped_trans.mean() # transformation did not change group means
\\Out[103]:
→˓

A B C
GR -0.098371 -0.015420 0.068053
JP 0.069025 0.023100 -0.077324
UK 0.034069 -0.052580 -0.116525
US 0.058664 -0.020399 0.028603

In [104]: grouped.count() # original has some missing data points
\\Out[104]:
→˓

A B C
GR 209 217 189
JP 240 255 217
UK 216 231 193
US 239 250 217

In [105]: grouped_trans.count() # counts after transformation
\\\Out[105]:
→˓

A B C
GR 228 228 228
JP 267 267 267
UK 247 247 247
US 258 258 258

In [106]: grouped_trans.size() # Verify non-NA count equals group size
\\Out[106]:
→˓

GR 228
JP 267
UK 247
US 258
dtype: int64

Note: Some functions will automatically transform the input when applied to a GroupBy object, but returning an
object of the same shape as the original. Passing as_index=False will not affect these transformation methods.

16.5. Transformation 855

pandas: powerful Python data analysis toolkit, Release 0.23.4

For example: fillna, ffill, bfill, shift..

In [107]: grouped.ffill()
Out[107]:

NaN A B C
0 US 1.539708 -1.166480 0.533026
1 US 1.302092 -0.505754 0.533026
2 US -0.371983 1.104803 -0.651520
3 JP -1.309622 1.118697 -1.161657
4 JP -1.924296 0.396437 0.812436
5 US 0.815643 0.367816 -0.469478
6 GR -0.030651 1.376106 -0.645129
..
993 US 0.012359 0.554602 -1.976159
994 GR 0.042312 -1.628835 1.013822
995 JP -0.093110 0.683847 -0.774753
996 JP -0.185043 1.438572 -0.774753
997 GR -0.394469 -0.642343 0.011374
998 JP -1.174126 1.857148 -0.774753
999 UK 0.234564 0.517098 0.393534

[1000 rows x 4 columns]

16.5.1 New syntax to window and resample operations

New in version 0.18.1.

Working with the resample, expanding or rolling operations on the groupby level used to require the application of
helper functions. However, now it is possible to use resample(), expanding() and rolling() as methods
on groupbys.

The example below will apply the rolling() method on the samples of the column B based on the groups of
column A.

In [108]: df_re = pd.DataFrame({'A': [1] * 10 + [5] * 10,
.....: 'B': np.arange(20)})
.....:

In [109]: df_re
Out[109]:

A B
0 1 0
1 1 1
2 1 2
3 1 3
4 1 4
5 1 5
6 1 6
..
13 5 13
14 5 14
15 5 15
16 5 16
17 5 17
18 5 18
19 5 19

(continues on next page)

856 Chapter 16. Group By: split-apply-combine

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

[20 rows x 2 columns]

In [110]: df_re.groupby('A').rolling(4).B.mean()
\\Out[110]:
→˓

A
1 0 NaN

1 NaN
2 NaN
3 1.5
4 2.5
5 3.5
6 4.5

...
5 13 11.5

14 12.5
15 13.5
16 14.5
17 15.5
18 16.5
19 17.5

Name: B, Length: 20, dtype: float64

The expanding() method will accumulate a given operation (sum() in the example) for all the members of each
particular group.

In [111]: df_re.groupby('A').expanding().sum()
Out[111]:

A B
A
1 0 1.0 0.0

1 2.0 1.0
2 3.0 3.0
3 4.0 6.0
4 5.0 10.0
5 6.0 15.0
6 7.0 21.0

...
5 13 20.0 46.0

14 25.0 60.0
15 30.0 75.0
16 35.0 91.0
17 40.0 108.0
18 45.0 126.0
19 50.0 145.0

[20 rows x 2 columns]

Suppose you want to use the resample() method to get a daily frequency in each group of your dataframe and wish
to complete the missing values with the ffill() method.

In [112]: df_re = pd.DataFrame({'date': pd.date_range(start='2016-01-01',
.....: periods=4,
.....: freq='W'),
.....: 'group': [1, 1, 2, 2],

(continues on next page)

16.5. Transformation 857

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

.....: 'val': [5, 6, 7, 8]}).set_index('date')

.....:

In [113]: df_re
Out[113]:

group val
date
2016-01-03 1 5
2016-01-10 1 6
2016-01-17 2 7
2016-01-24 2 8

In [114]: df_re.groupby('group').resample('1D').ffill()
\\\Out[114]:
→˓

group val
group date
1 2016-01-03 1 5

2016-01-04 1 5
2016-01-05 1 5
2016-01-06 1 5
2016-01-07 1 5
2016-01-08 1 5
2016-01-09 1 5

...
2 2016-01-18 2 7

2016-01-19 2 7
2016-01-20 2 7
2016-01-21 2 7
2016-01-22 2 7
2016-01-23 2 7
2016-01-24 2 8

[16 rows x 2 columns]

16.6 Filtration

The filter method returns a subset of the original object. Suppose we want to take only elements that belong to
groups with a group sum greater than 2.

In [115]: sf = pd.Series([1, 1, 2, 3, 3, 3])

In [116]: sf.groupby(sf).filter(lambda x: x.sum() > 2)
Out[116]:
3 3
4 3
5 3
dtype: int64

The argument of filter must be a function that, applied to the group as a whole, returns True or False.

Another useful operation is filtering out elements that belong to groups with only a couple members.

858 Chapter 16. Group By: split-apply-combine

pandas: powerful Python data analysis toolkit, Release 0.23.4

In [117]: dff = pd.DataFrame({'A': np.arange(8), 'B': list('aabbbbcc')})

In [118]: dff.groupby('B').filter(lambda x: len(x) > 2)
Out[118]:

A B
2 2 b
3 3 b
4 4 b
5 5 b

Alternatively, instead of dropping the offending groups, we can return a like-indexed objects where the groups that do
not pass the filter are filled with NaNs.

In [119]: dff.groupby('B').filter(lambda x: len(x) > 2, dropna=False)
Out[119]:

A B
0 NaN NaN
1 NaN NaN
2 2.0 b
3 3.0 b
4 4.0 b
5 5.0 b
6 NaN NaN
7 NaN NaN

For DataFrames with multiple columns, filters should explicitly specify a column as the filter criterion.

In [120]: dff['C'] = np.arange(8)

In [121]: dff.groupby('B').filter(lambda x: len(x['C']) > 2)
Out[121]:

A B C
2 2 b 2
3 3 b 3
4 4 b 4
5 5 b 5

Note: Some functions when applied to a groupby object will act as a filter on the input, returning a reduced shape of
the original (and potentially eliminating groups), but with the index unchanged. Passing as_index=False will not
affect these transformation methods.

For example: head, tail.

In [122]: dff.groupby('B').head(2)
Out[122]:

A B C
0 0 a 0
1 1 a 1
2 2 b 2
3 3 b 3
6 6 c 6
7 7 c 7

16.6. Filtration 859

pandas: powerful Python data analysis toolkit, Release 0.23.4

16.7 Dispatching to instance methods

When doing an aggregation or transformation, you might just want to call an instance method on each data group.
This is pretty easy to do by passing lambda functions:

In [123]: grouped = df.groupby('A')

In [124]: grouped.agg(lambda x: x.std())
Out[124]:

C D
A
bar 0.181231 1.366330
foo 0.912265 0.884785

But, it’s rather verbose and can be untidy if you need to pass additional arguments. Using a bit of metaprogramming
cleverness, GroupBy now has the ability to “dispatch” method calls to the groups:

In [125]: grouped.std()
Out[125]:

C D
A
bar 0.181231 1.366330
foo 0.912265 0.884785

What is actually happening here is that a function wrapper is being generated. When invoked, it takes any passed
arguments and invokes the function with any arguments on each group (in the above example, the std function). The
results are then combined together much in the style of agg and transform (it actually uses apply to infer the
gluing, documented next). This enables some operations to be carried out rather succinctly:

In [126]: tsdf = pd.DataFrame(np.random.randn(1000, 3),
.....: index=pd.date_range('1/1/2000', periods=1000),
.....: columns=['A', 'B', 'C'])
.....:

In [127]: tsdf.iloc[::2] = np.nan

In [128]: grouped = tsdf.groupby(lambda x: x.year)

In [129]: grouped.fillna(method='pad')
Out[129]:

A B C
2000-01-01 NaN NaN NaN
2000-01-02 -0.353501 -0.080957 -0.876864
2000-01-03 -0.353501 -0.080957 -0.876864
2000-01-04 0.050976 0.044273 -0.559849
2000-01-05 0.050976 0.044273 -0.559849
2000-01-06 0.030091 0.186460 -0.680149
2000-01-07 0.030091 0.186460 -0.680149
...
2002-09-20 2.310215 0.157482 -0.064476
2002-09-21 2.310215 0.157482 -0.064476
2002-09-22 0.005011 0.053897 -1.026922
2002-09-23 0.005011 0.053897 -1.026922
2002-09-24 -0.456542 -1.849051 1.559856
2002-09-25 -0.456542 -1.849051 1.559856
2002-09-26 1.123162 0.354660 1.128135

(continues on next page)

860 Chapter 16. Group By: split-apply-combine

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

[1000 rows x 3 columns]

In this example, we chopped the collection of time series into yearly chunks then independently called fillna on the
groups.

The nlargest and nsmallest methods work on Series style groupbys:

In [130]: s = pd.Series([9, 8, 7, 5, 19, 1, 4.2, 3.3])

In [131]: g = pd.Series(list('abababab'))

In [132]: gb = s.groupby(g)

In [133]: gb.nlargest(3)
Out[133]:
a 4 19.0

0 9.0
2 7.0

b 1 8.0
3 5.0
7 3.3

dtype: float64

In [134]: gb.nsmallest(3)
\\Out[134]:
→˓

a 6 4.2
2 7.0
0 9.0

b 5 1.0
7 3.3
3 5.0

dtype: float64

16.8 Flexible apply

Some operations on the grouped data might not fit into either the aggregate or transform categories. Or, you may simply
want GroupBy to infer how to combine the results. For these, use the apply function, which can be substituted for
both aggregate and transform in many standard use cases. However, apply can handle some exceptional use
cases, for example:

In [135]: df
Out[135]:

A B C D
0 foo one -0.575247 1.346061
1 bar one 0.254161 1.511763
2 foo two -1.143704 1.627081
3 bar three 0.215897 -0.990582
4 foo two 1.193555 -0.441652
5 bar two -0.077118 1.211526
6 foo one -0.408530 0.268520
7 foo three -0.862495 0.024580

(continues on next page)

16.8. Flexible apply 861

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

In [136]: grouped = df.groupby('A')

could also just call .describe()
In [137]: grouped['C'].apply(lambda x: x.describe())
Out[137]:
A
bar count 3.000000

mean 0.130980
std 0.181231
min -0.077118
25% 0.069390
50% 0.215897
75% 0.235029

...
foo mean -0.359284

std 0.912265
min -1.143704
25% -0.862495
50% -0.575247
75% -0.408530
max 1.193555

Name: C, Length: 16, dtype: float64

The dimension of the returned result can also change:

In [138]: grouped = df.groupby('A')['C']

In [139]: def f(group):
.....: return pd.DataFrame({'original' : group,
.....: 'demeaned' : group - group.mean()})
.....:

In [140]: grouped.apply(f)
Out[140]:

original demeaned
0 -0.575247 -0.215962
1 0.254161 0.123181
2 -1.143704 -0.784420
3 0.215897 0.084917
4 1.193555 1.552839
5 -0.077118 -0.208098
6 -0.408530 -0.049245
7 -0.862495 -0.503211

apply on a Series can operate on a returned value from the applied function, that is itself a series, and possibly upcast
the result to a DataFrame:

In [141]: def f(x):
.....: return pd.Series([x, x**2], index = ['x', 'x^2'])
.....:

In [142]: s
Out[142]:
0 9.0
1 8.0
2 7.0

(continues on next page)

862 Chapter 16. Group By: split-apply-combine

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

3 5.0
4 19.0
5 1.0
6 4.2
7 3.3
dtype: float64

In [143]: s.apply(f)
\\Out[143]:
→˓

x x^2
0 9.0 81.00
1 8.0 64.00
2 7.0 49.00
3 5.0 25.00
4 19.0 361.00
5 1.0 1.00
6 4.2 17.64
7 3.3 10.89

Note: apply can act as a reducer, transformer, or filter function, depending on exactly what is passed to it. So
depending on the path taken, and exactly what you are grouping. Thus the grouped columns(s) may be included in the
output as well as set the indices.

Warning: In the current implementation apply calls func twice on the first group to decide whether it can take a
fast or slow code path. This can lead to unexpected behavior if func has side-effects, as they will take effect twice
for the first group.

In [144]: d = pd.DataFrame({"a":["x", "y"], "b":[1,2]})

In [145]: def identity(df):
.....: print(df)
.....: return df
.....:

In [146]: d.groupby("a").apply(identity)
a b

0 x 1
a b

0 x 1
a b

1 y 2
Out[146]:

a b
0 x 1
1 y 2

16.8. Flexible apply 863

pandas: powerful Python data analysis toolkit, Release 0.23.4

16.9 Other useful features

16.9.1 Automatic exclusion of “nuisance” columns

Again consider the example DataFrame we’ve been looking at:

In [147]: df
Out[147]:

A B C D
0 foo one -0.575247 1.346061
1 bar one 0.254161 1.511763
2 foo two -1.143704 1.627081
3 bar three 0.215897 -0.990582
4 foo two 1.193555 -0.441652
5 bar two -0.077118 1.211526
6 foo one -0.408530 0.268520
7 foo three -0.862495 0.024580

Suppose we wish to compute the standard deviation grouped by the A column. There is a slight problem, namely that
we don’t care about the data in column B. We refer to this as a “nuisance” column. If the passed aggregation function
can’t be applied to some columns, the troublesome columns will be (silently) dropped. Thus, this does not pose any
problems:

In [148]: df.groupby('A').std()
Out[148]:

C D
A
bar 0.181231 1.366330
foo 0.912265 0.884785

Note that df.groupby('A').colname.std(). is more efficient than df.groupby('A').std().
colname, so if the result of an aggregation function is only interesting over one column (here colname), it may be
filtered before applying the aggregation function.

16.9.2 Handling of (un)observed Categorical values

When using a Categorical grouper (as a single grouper, or as part of multipler groupers), the observed keyword
controls whether to return a cartesian product of all possible groupers values (observed=False) or only those that
are observed groupers (observed=True).

Show all values:

In [149]: pd.Series([1, 1, 1]).groupby(pd.Categorical(['a', 'a', 'a'], categories=['a
→˓', 'b']), observed=False).count()
Out[149]:
a 3
b 0
dtype: int64

Show only the observed values:

In [150]: pd.Series([1, 1, 1]).groupby(pd.Categorical(['a', 'a', 'a'], categories=['a
→˓', 'b']), observed=True).count()
Out[150]:

(continues on next page)

864 Chapter 16. Group By: split-apply-combine

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

a 3
dtype: int64

The returned dtype of the grouped will always include all of the catergories that were grouped.

In [151]: s = pd.Series([1, 1, 1]).groupby(pd.Categorical(['a', 'a', 'a'],
→˓categories=['a', 'b']), observed=False).count()

In [152]: s.index.dtype
Out[152]: CategoricalDtype(categories=['a', 'b'], ordered=False)

16.9.3 NA and NaT group handling

If there are any NaN or NaT values in the grouping key, these will be automatically excluded. In other words, there will
never be an “NA group” or “NaT group”. This was not the case in older versions of pandas, but users were generally
discarding the NA group anyway (and supporting it was an implementation headache).

16.9.4 Grouping with ordered factors

Categorical variables represented as instance of pandas’s Categorical class can be used as group keys. If so, the
order of the levels will be preserved:

In [153]: data = pd.Series(np.random.randn(100))

In [154]: factor = pd.qcut(data, [0, .25, .5, .75, 1.])

In [155]: data.groupby(factor).mean()
Out[155]:
(-2.618, -0.684] -1.331461
(-0.684, -0.0232] -0.272816
(-0.0232, 0.541] 0.263607
(0.541, 2.369] 1.166038
dtype: float64

16.9.5 Grouping with a Grouper specification

You may need to specify a bit more data to properly group. You can use the pd.Grouper to provide this local
control.

In [156]: import datetime

In [157]: df = pd.DataFrame({
.....: 'Branch' : 'A A A A A A A B'.split(),
.....: 'Buyer': 'Carl Mark Carl Carl Joe Joe Joe Carl'.split(),
.....: 'Quantity': [1,3,5,1,8,1,9,3],
.....: 'Date' : [
.....: datetime.datetime(2013,1,1,13,0),
.....: datetime.datetime(2013,1,1,13,5),
.....: datetime.datetime(2013,10,1,20,0),
.....: datetime.datetime(2013,10,2,10,0),
.....: datetime.datetime(2013,10,1,20,0),

(continues on next page)

16.9. Other useful features 865

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

.....: datetime.datetime(2013,10,2,10,0),

.....: datetime.datetime(2013,12,2,12,0),

.....: datetime.datetime(2013,12,2,14,0),

.....:]

.....: })

.....:

In [158]: df
Out[158]:

Branch Buyer Quantity Date
0 A Carl 1 2013-01-01 13:00:00
1 A Mark 3 2013-01-01 13:05:00
2 A Carl 5 2013-10-01 20:00:00
3 A Carl 1 2013-10-02 10:00:00
4 A Joe 8 2013-10-01 20:00:00
5 A Joe 1 2013-10-02 10:00:00
6 A Joe 9 2013-12-02 12:00:00
7 B Carl 3 2013-12-02 14:00:00

Groupby a specific column with the desired frequency. This is like resampling.

In [159]: df.groupby([pd.Grouper(freq='1M',key='Date'),'Buyer']).sum()
Out[159]:

Quantity
Date Buyer
2013-01-31 Carl 1

Mark 3
2013-10-31 Carl 6

Joe 9
2013-12-31 Carl 3

Joe 9

You have an ambiguous specification in that you have a named index and a column that could be potential groupers.

In [160]: df = df.set_index('Date')

In [161]: df['Date'] = df.index + pd.offsets.MonthEnd(2)

In [162]: df.groupby([pd.Grouper(freq='6M',key='Date'),'Buyer']).sum()
Out[162]:

Quantity
Date Buyer
2013-02-28 Carl 1

Mark 3
2014-02-28 Carl 9

Joe 18

In [163]: df.groupby([pd.Grouper(freq='6M',level='Date'),'Buyer']).sum()
\\\Out[163]:
→˓

Quantity
Date Buyer
2013-01-31 Carl 1

Mark 3
2014-01-31 Carl 9

Joe 18

866 Chapter 16. Group By: split-apply-combine

pandas: powerful Python data analysis toolkit, Release 0.23.4

16.9.6 Taking the first rows of each group

Just like for a DataFrame or Series you can call head and tail on a groupby:

In [164]: df = pd.DataFrame([[1, 2], [1, 4], [5, 6]], columns=['A', 'B'])

In [165]: df
Out[165]:

A B
0 1 2
1 1 4
2 5 6

In [166]: g = df.groupby('A')

In [167]: g.head(1)
Out[167]:

A B
0 1 2
2 5 6

In [168]: g.tail(1)
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\Out[168]:

A B
1 1 4
2 5 6

This shows the first or last n rows from each group.

16.9.7 Taking the nth row of each group

To select from a DataFrame or Series the nth item, use nth(). This is a reduction method, and will return a single
row (or no row) per group if you pass an int for n:

In [169]: df = pd.DataFrame([[1, np.nan], [1, 4], [5, 6]], columns=['A', 'B'])

In [170]: g = df.groupby('A')

In [171]: g.nth(0)
Out[171]:

B
A
1 NaN
5 6.0

In [172]: g.nth(-1)
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\Out[172]:

B
A
1 4.0
5 6.0

In [173]: g.nth(1)
\\Out[173]:
→˓

B

(continues on next page)

16.9. Other useful features 867

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

A
1 4.0

If you want to select the nth not-null item, use the dropna kwarg. For a DataFrame this should be either 'any' or
'all' just like you would pass to dropna:

nth(0) is the same as g.first()
In [174]: g.nth(0, dropna='any')
Out[174]:

B
A
1 4.0
5 6.0

In [175]: g.first()
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\Out[175]:

B
A
1 4.0
5 6.0

nth(-1) is the same as g.last()
In [176]: g.nth(-1, dropna='any') # NaNs denote group exhausted when using dropna
\\Out[176]:
→˓

B
A
1 4.0
5 6.0

In [177]: g.last()
\\\Out[177]:
→˓

B
A
1 4.0
5 6.0

In [178]: g.B.nth(0, dropna='all')
\\Out[178]:
→˓

A
1 4.0
5 6.0
Name: B, dtype: float64

As with other methods, passing as_index=False, will achieve a filtration, which returns the grouped row.

In [179]: df = pd.DataFrame([[1, np.nan], [1, 4], [5, 6]], columns=['A', 'B'])

In [180]: g = df.groupby('A',as_index=False)

In [181]: g.nth(0)
Out[181]:

A B
0 1 NaN

(continues on next page)

868 Chapter 16. Group By: split-apply-combine

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

2 5 6.0

In [182]: g.nth(-1)
\\\Out[182]:

A B
1 1 4.0
2 5 6.0

You can also select multiple rows from each group by specifying multiple nth values as a list of ints.

In [183]: business_dates = pd.date_range(start='4/1/2014', end='6/30/2014', freq='B')

In [184]: df = pd.DataFrame(1, index=business_dates, columns=['a', 'b'])

get the first, 4th, and last date index for each month
In [185]: df.groupby([df.index.year, df.index.month]).nth([0, 3, -1])
Out[185]:

a b
2014 4 1 1

4 1 1
4 1 1
5 1 1
5 1 1
5 1 1
6 1 1
6 1 1
6 1 1

16.9.8 Enumerate group items

To see the order in which each row appears within its group, use the cumcount method:

In [186]: dfg = pd.DataFrame(list('aaabba'), columns=['A'])

In [187]: dfg
Out[187]:

A
0 a
1 a
2 a
3 b
4 b
5 a

In [188]: dfg.groupby('A').cumcount()
\\Out[188]:
0 0
1 1
2 2
3 0
4 1
5 3
dtype: int64

In [189]: dfg.groupby('A').cumcount(ascending=False)

(continues on next page)

16.9. Other useful features 869

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

\\Out[189]:
→˓

0 3
1 2
2 1
3 1
4 0
5 0
dtype: int64

16.9.9 Enumerate groups

New in version 0.20.2.

To see the ordering of the groups (as opposed to the order of rows within a group given by cumcount) you can use
ngroup().

Note that the numbers given to the groups match the order in which the groups would be seen when iterating over the
groupby object, not the order they are first observed.

In [190]: dfg = pd.DataFrame(list('aaabba'), columns=['A'])

In [191]: dfg
Out[191]:

A
0 a
1 a
2 a
3 b
4 b
5 a

In [192]: dfg.groupby('A').ngroup()
\\Out[192]:
0 0
1 0
2 0
3 1
4 1
5 0
dtype: int64

In [193]: dfg.groupby('A').ngroup(ascending=False)
\\Out[193]:
→˓

0 1
1 1
2 1
3 0
4 0
5 1
dtype: int64

870 Chapter 16. Group By: split-apply-combine

pandas: powerful Python data analysis toolkit, Release 0.23.4

16.9.10 Plotting

Groupby also works with some plotting methods. For example, suppose we suspect that some features in a DataFrame
may differ by group, in this case, the values in column 1 where the group is “B” are 3 higher on average.

In [194]: np.random.seed(1234)

In [195]: df = pd.DataFrame(np.random.randn(50, 2))

In [196]: df['g'] = np.random.choice(['A', 'B'], size=50)

In [197]: df.loc[df['g'] == 'B', 1] += 3

We can easily visualize this with a boxplot:

In [198]: df.groupby('g').boxplot()
Out[198]:
A AxesSubplot(0.1,0.15;0.363636x0.75)
B AxesSubplot(0.536364,0.15;0.363636x0.75)
dtype: object

The result of calling boxplot is a dictionary whose keys are the values of our grouping column g (“A” and “B”).
The values of the resulting dictionary can be controlled by the return_type keyword of boxplot. See the
visualization documentation for more.

16.9. Other useful features 871

pandas: powerful Python data analysis toolkit, Release 0.23.4

Warning: For historical reasons, df.groupby("g").boxplot() is not equivalent to df.
boxplot(by="g"). See here for an explanation.

16.9.11 Piping function calls

New in version 0.21.0.

Similar to the functionality provided by DataFrame and Series, functions that take GroupBy objects can be
chained together using a pipe method to allow for a cleaner, more readable syntax. To read about .pipe in general
terms, see here.

Combining .groupby and .pipe is often useful when you need to reuse GroupBy objects.

As an example, imagine having a DataFrame with columns for stores, products, revenue and quantity sold. We’d
like to do a groupwise calculation of prices (i.e. revenue/quantity) per store and per product. We could do this in a
multi-step operation, but expressing it in terms of piping can make the code more readable. First we set the data:

In [199]: import numpy as np

In [200]: n = 1000

In [201]: df = pd.DataFrame({'Store': np.random.choice(['Store_1', 'Store_2'], n),
.....: 'Product': np.random.choice(['Product_1',
.....: 'Product_2'], n),
.....: 'Revenue': (np.random.random(n)*50+10).round(2),
.....: 'Quantity': np.random.randint(1, 10, size=n)})
.....:

In [202]: df.head(2)
Out[202]:

Store Product Revenue Quantity
0 Store_2 Product_1 26.12 1
1 Store_2 Product_1 28.86 1

Now, to find prices per store/product, we can simply do:

In [203]: (df.groupby(['Store', 'Product'])
.....: .pipe(lambda grp: grp.Revenue.sum()/grp.Quantity.sum())
.....: .unstack().round(2))
.....:

Out[203]:
Product Product_1 Product_2
Store
Store_1 6.82 7.05
Store_2 6.30 6.64

Piping can also be expressive when you want to deliver a grouped object to some arbitrary function, for example:

(df.groupby(['Store', 'Product']).pipe(report_func)

where report_func takes a GroupBy object and creates a report from that.

872 Chapter 16. Group By: split-apply-combine

pandas: powerful Python data analysis toolkit, Release 0.23.4

16.10 Examples

16.10.1 Regrouping by factor

Regroup columns of a DataFrame according to their sum, and sum the aggregated ones.

In [204]: df = pd.DataFrame({'a':[1,0,0], 'b':[0,1,0], 'c':[1,0,0], 'd':[2,3,4]})

In [205]: df
Out[205]:

a b c d
0 1 0 1 2
1 0 1 0 3
2 0 0 0 4

In [206]: df.groupby(df.sum(), axis=1).sum()
\\\Out[206]:

1 9
0 2 2
1 1 3
2 0 4

16.10.2 Multi-column factorization

By using ngroup(), we can extract information about the groups in a way similar to factorize() (as described
further in the reshaping API) but which applies naturally to multiple columns of mixed type and different sources.
This can be useful as an intermediate categorical-like step in processing, when the relationships between the group
rows are more important than their content, or as input to an algorithm which only accepts the integer encoding.
(For more information about support in pandas for full categorical data, see the Categorical introduction and the API
documentation.)

In [207]: dfg = pd.DataFrame({"A": [1, 1, 2, 3, 2], "B": list("aaaba")})

In [208]: dfg
Out[208]:

A B
0 1 a
1 1 a
2 2 a
3 3 b
4 2 a

In [209]: dfg.groupby(["A", "B"]).ngroup()
\\\Out[209]:
0 0
1 0
2 1
3 2
4 1
dtype: int64

In [210]: dfg.groupby(["A", [0, 0, 0, 1, 1]]).ngroup()
\\Out[210]:
→˓

0 0
(continues on next page)

16.10. Examples 873

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

1 0
2 1
3 3
4 2
dtype: int64

16.10.3 Groupby by Indexer to ‘resample’ data

Resampling produces new hypothetical samples (resamples) from already existing observed data or from a model that
generates data. These new samples are similar to the pre-existing samples.

In order to resample to work on indices that are non-datetimelike, the following procedure can be utilized.

In the following examples, df.index // 5 returns a binary array which is used to determine what gets selected for the
groupby operation.

Note: The below example shows how we can downsample by consolidation of samples into fewer samples. Here by
using df.index // 5, we are aggregating the samples in bins. By applying std() function, we aggregate the information
contained in many samples into a small subset of values which is their standard deviation thereby reducing the number
of samples.

In [211]: df = pd.DataFrame(np.random.randn(10,2))

In [212]: df
Out[212]:

0 1
0 -0.793893 0.321153
1 0.342250 1.618906
2 -0.975807 1.918201
3 -0.810847 -1.405919
4 -1.977759 0.461659
5 0.730057 -1.316938
6 -0.751328 0.528290
7 -0.257759 -1.081009
8 0.505895 -1.701948
9 -1.006349 0.020208

In [213]: df.index // 5
\\\Out[213]:
→˓Int64Index([0, 0, 0, 0, 0, 1, 1, 1, 1, 1], dtype='int64')

In [214]: df.groupby(df.index // 5).std()
\\\Out[214]:
→˓

0 1
0 0.823647 1.312912
1 0.760109 0.942941

16.10.4 Returning a Series to propagate names

Group DataFrame columns, compute a set of metrics and return a named Series. The Series name is used as the name
for the column index. This is especially useful in conjunction with reshaping operations such as stacking in which the

874 Chapter 16. Group By: split-apply-combine

pandas: powerful Python data analysis toolkit, Release 0.23.4

column index name will be used as the name of the inserted column:

In [215]: df = pd.DataFrame({
.....: 'a': [0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2],
.....: 'b': [0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1],
.....: 'c': [1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0],
.....: 'd': [0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1],
.....: })
.....:

In [216]: def compute_metrics(x):
.....: result = {'b_sum': x['b'].sum(), 'c_mean': x['c'].mean()}
.....: return pd.Series(result, name='metrics')
.....:

In [217]: result = df.groupby('a').apply(compute_metrics)

In [218]: result
Out[218]:
metrics b_sum c_mean
a
0 2.0 0.5
1 2.0 0.5
2 2.0 0.5

In [219]: result.stack()
\\Out[219]:
→˓

a metrics
0 b_sum 2.0

c_mean 0.5
1 b_sum 2.0

c_mean 0.5
2 b_sum 2.0

c_mean 0.5
dtype: float64

16.10. Examples 875

pandas: powerful Python data analysis toolkit, Release 0.23.4

876 Chapter 16. Group By: split-apply-combine

CHAPTER

SEVENTEEN

MERGE, JOIN, AND CONCATENATE

pandas provides various facilities for easily combining together Series, DataFrame, and Panel objects with various
kinds of set logic for the indexes and relational algebra functionality in the case of join / merge-type operations.

17.1 Concatenating objects

The concat() function (in the main pandas namespace) does all of the heavy lifting of performing concatenation
operations along an axis while performing optional set logic (union or intersection) of the indexes (if any) on the other
axes. Note that I say “if any” because there is only a single possible axis of concatenation for Series.

Before diving into all of the details of concat and what it can do, here is a simple example:

In [1]: df1 = pd.DataFrame({'A': ['A0', 'A1', 'A2', 'A3'],
...: 'B': ['B0', 'B1', 'B2', 'B3'],
...: 'C': ['C0', 'C1', 'C2', 'C3'],
...: 'D': ['D0', 'D1', 'D2', 'D3']},
...: index=[0, 1, 2, 3])
...:

In [2]: df2 = pd.DataFrame({'A': ['A4', 'A5', 'A6', 'A7'],
...: 'B': ['B4', 'B5', 'B6', 'B7'],
...: 'C': ['C4', 'C5', 'C6', 'C7'],
...: 'D': ['D4', 'D5', 'D6', 'D7']},
...: index=[4, 5, 6, 7])
...:

In [3]: df3 = pd.DataFrame({'A': ['A8', 'A9', 'A10', 'A11'],
...: 'B': ['B8', 'B9', 'B10', 'B11'],
...: 'C': ['C8', 'C9', 'C10', 'C11'],
...: 'D': ['D8', 'D9', 'D10', 'D11']},
...: index=[8, 9, 10, 11])
...:

In [4]: frames = [df1, df2, df3]

In [5]: result = pd.concat(frames)

877

pandas: powerful Python data analysis toolkit, Release 0.23.4

Like its sibling function on ndarrays, numpy.concatenate, pandas.concat takes a list or dict of
homogeneously-typed objects and concatenates them with some configurable handling of “what to do with the other
axes”:

pd.concat(objs, axis=0, join='outer', join_axes=None, ignore_index=False,
keys=None, levels=None, names=None, verify_integrity=False,
copy=True)

• objs : a sequence or mapping of Series, DataFrame, or Panel objects. If a dict is passed, the sorted keys will be
used as the keys argument, unless it is passed, in which case the values will be selected (see below). Any None
objects will be dropped silently unless they are all None in which case a ValueError will be raised.

• axis : {0, 1, . . . }, default 0. The axis to concatenate along.

• join : {‘inner’, ‘outer’}, default ‘outer’. How to handle indexes on other axis(es). Outer for union and inner
for intersection.

• ignore_index : boolean, default False. If True, do not use the index values on the concatenation axis. The
resulting axis will be labeled 0, . . . , n - 1. This is useful if you are concatenating objects where the concatenation
axis does not have meaningful indexing information. Note the index values on the other axes are still respected
in the join.

• join_axes : list of Index objects. Specific indexes to use for the other n - 1 axes instead of performing
inner/outer set logic.

• keys : sequence, default None. Construct hierarchical index using the passed keys as the outermost level. If
multiple levels passed, should contain tuples.

• levels : list of sequences, default None. Specific levels (unique values) to use for constructing a MultiIndex.
Otherwise they will be inferred from the keys.

• names : list, default None. Names for the levels in the resulting hierarchical index.

• verify_integrity : boolean, default False. Check whether the new concatenated axis contains duplicates.
This can be very expensive relative to the actual data concatenation.

878 Chapter 17. Merge, join, and concatenate

pandas: powerful Python data analysis toolkit, Release 0.23.4

• copy : boolean, default True. If False, do not copy data unnecessarily.

Without a little bit of context many of these arguments don’t make much sense. Let’s revisit the above example.
Suppose we wanted to associate specific keys with each of the pieces of the chopped up DataFrame. We can do this
using the keys argument:

In [6]: result = pd.concat(frames, keys=['x', 'y', 'z'])

As you can see (if you’ve read the rest of the documentation), the resulting object’s index has a hierarchical index.
This means that we can now select out each chunk by key:

In [7]: result.loc['y']
Out[7]:

A B C D
4 A4 B4 C4 D4
5 A5 B5 C5 D5
6 A6 B6 C6 D6
7 A7 B7 C7 D7

It’s not a stretch to see how this can be very useful. More detail on this functionality below.

Note: It is worth noting that concat() (and therefore append()) makes a full copy of the data, and that constantly
reusing this function can create a significant performance hit. If you need to use the operation over several datasets,
use a list comprehension.

frames = [process_your_file(f) for f in files]
result = pd.concat(frames)

17.1. Concatenating objects 879

pandas: powerful Python data analysis toolkit, Release 0.23.4

17.1.1 Set logic on the other axes

When gluing together multiple DataFrames, you have a choice of how to handle the other axes (other than the one
being concatenated). This can be done in the following three ways:

• Take the union of them all, join='outer'. This is the default option as it results in zero information loss.

• Take the intersection, join='inner'.

• Use a specific index, as passed to the join_axes argument.

Here is an example of each of these methods. First, the default join='outer' behavior:

In [8]: df4 = pd.DataFrame({'B': ['B2', 'B3', 'B6', 'B7'],
...: 'D': ['D2', 'D3', 'D6', 'D7'],
...: 'F': ['F2', 'F3', 'F6', 'F7']},
...: index=[2, 3, 6, 7])
...:

In [9]: result = pd.concat([df1, df4], axis=1, sort=False)

Warning: Changed in version 0.23.0.

The default behavior with join='outer' is to sort the other axis (columns in this case). In a future version of
pandas, the default will be to not sort. We specified sort=False to opt in to the new behavior now.

Here is the same thing with join='inner':

In [10]: result = pd.concat([df1, df4], axis=1, join='inner')

Lastly, suppose we just wanted to reuse the exact index from the original DataFrame:

880 Chapter 17. Merge, join, and concatenate

pandas: powerful Python data analysis toolkit, Release 0.23.4

In [11]: result = pd.concat([df1, df4], axis=1, join_axes=[df1.index])

17.1.2 Concatenating using append

A useful shortcut to concat() are the append() instance methods on Series and DataFrame. These methods
actually predated concat. They concatenate along axis=0, namely the index:

In [12]: result = df1.append(df2)

In the case of DataFrame, the indexes must be disjoint but the columns do not need to be:

In [13]: result = df1.append(df4)

17.1. Concatenating objects 881

pandas: powerful Python data analysis toolkit, Release 0.23.4

append may take multiple objects to concatenate:

In [14]: result = df1.append([df2, df3])

Note: Unlike the append() method, which appends to the original list and returns None, append() here does
not modify df1 and returns its copy with df2 appended.

882 Chapter 17. Merge, join, and concatenate

pandas: powerful Python data analysis toolkit, Release 0.23.4

17.1.3 Ignoring indexes on the concatenation axis

For DataFrame s which don’t have a meaningful index, you may wish to append them and ignore the fact that they
may have overlapping indexes. To do this, use the ignore_index argument:

In [15]: result = pd.concat([df1, df4], ignore_index=True)

This is also a valid argument to DataFrame.append():

In [16]: result = df1.append(df4, ignore_index=True)

17.1.4 Concatenating with mixed ndims

You can concatenate a mix of Series and DataFrame s. The Series will be transformed to DataFrame with
the column name as the name of the Series.

17.1. Concatenating objects 883

pandas: powerful Python data analysis toolkit, Release 0.23.4

In [17]: s1 = pd.Series(['X0', 'X1', 'X2', 'X3'], name='X')

In [18]: result = pd.concat([df1, s1], axis=1)

Note: Since we’re concatenating a Series to a DataFrame, we could have achieved the same result with
DataFrame.assign(). To concatenate an arbitrary number of pandas objects (DataFrame or Series), use
concat.

If unnamed Series are passed they will be numbered consecutively.

In [19]: s2 = pd.Series(['_0', '_1', '_2', '_3'])

In [20]: result = pd.concat([df1, s2, s2, s2], axis=1)

Passing ignore_index=True will drop all name references.

In [21]: result = pd.concat([df1, s1], axis=1, ignore_index=True)

884 Chapter 17. Merge, join, and concatenate

pandas: powerful Python data analysis toolkit, Release 0.23.4

17.1.5 More concatenating with group keys

A fairly common use of the keys argument is to override the column names when creating a new DataFrame based
on existing Series. Notice how the default behaviour consists on letting the resulting DataFrame inherit the parent
Series’ name, when these existed.

In [22]: s3 = pd.Series([0, 1, 2, 3], name='foo')

In [23]: s4 = pd.Series([0, 1, 2, 3])

In [24]: s5 = pd.Series([0, 1, 4, 5])

In [25]: pd.concat([s3, s4, s5], axis=1)
Out[25]:

foo 0 1
0 0 0 0
1 1 1 1
2 2 2 4
3 3 3 5

Through the keys argument we can override the existing column names.

In [26]: pd.concat([s3, s4, s5], axis=1, keys=['red','blue','yellow'])
Out[26]:

red blue yellow
0 0 0 0
1 1 1 1
2 2 2 4
3 3 3 5

Let’s consider a variation of the very first example presented:

In [27]: result = pd.concat(frames, keys=['x', 'y', 'z'])

17.1. Concatenating objects 885

pandas: powerful Python data analysis toolkit, Release 0.23.4

You can also pass a dict to concat in which case the dict keys will be used for the keys argument (unless other keys
are specified):

In [28]: pieces = {'x': df1, 'y': df2, 'z': df3}

In [29]: result = pd.concat(pieces)

886 Chapter 17. Merge, join, and concatenate

pandas: powerful Python data analysis toolkit, Release 0.23.4

In [30]: result = pd.concat(pieces, keys=['z', 'y'])

The MultiIndex created has levels that are constructed from the passed keys and the index of the DataFrame pieces:

17.1. Concatenating objects 887

pandas: powerful Python data analysis toolkit, Release 0.23.4

In [31]: result.index.levels
Out[31]: FrozenList([['z', 'y'], [4, 5, 6, 7, 8, 9, 10, 11]])

If you wish to specify other levels (as will occasionally be the case), you can do so using the levels argument:

In [32]: result = pd.concat(pieces, keys=['x', 'y', 'z'],
....: levels=[['z', 'y', 'x', 'w']],
....: names=['group_key'])
....:

In [33]: result.index.levels
Out[33]: FrozenList([['z', 'y', 'x', 'w'], [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]])

This is fairly esoteric, but it is actually necessary for implementing things like GroupBy where the order of a categorical
variable is meaningful.

17.1.6 Appending rows to a DataFrame

While not especially efficient (since a new object must be created), you can append a single row to a DataFrame by
passing a Series or dict to append, which returns a new DataFrame as above.

In [34]: s2 = pd.Series(['X0', 'X1', 'X2', 'X3'], index=['A', 'B', 'C', 'D'])

In [35]: result = df1.append(s2, ignore_index=True)

888 Chapter 17. Merge, join, and concatenate

pandas: powerful Python data analysis toolkit, Release 0.23.4

You should use ignore_index with this method to instruct DataFrame to discard its index. If you wish to preserve
the index, you should construct an appropriately-indexed DataFrame and append or concatenate those objects.

You can also pass a list of dicts or Series:

In [36]: dicts = [{'A': 1, 'B': 2, 'C': 3, 'X': 4},
....: {'A': 5, 'B': 6, 'C': 7, 'Y': 8}]
....:

In [37]: result = df1.append(dicts, ignore_index=True)

17.2 Database-style DataFrame joining/merging

pandas has full-featured, high performance in-memory join operations idiomatically very similar to relational
databases like SQL. These methods perform significantly better (in some cases well over an order of magnitude better)
than other open source implementations (like base::merge.data.frame in R). The reason for this is careful
algorithmic design and the internal layout of the data in DataFrame.

See the cookbook for some advanced strategies.

Users who are familiar with SQL but new to pandas might be interested in a comparison with SQL.

pandas provides a single function, merge(), as the entry point for all standard database join operations between
DataFrame objects:

17.2. Database-style DataFrame joining/merging 889

pandas: powerful Python data analysis toolkit, Release 0.23.4

pd.merge(left, right, how='inner', on=None, left_on=None, right_on=None,
left_index=False, right_index=False, sort=True,
suffixes=('_x', '_y'), copy=True, indicator=False,
validate=None)

• left: A DataFrame object.

• right: Another DataFrame object.

• on: Column or index level names to join on. Must be found in both the left and right DataFrame objects. If not
passed and left_index and right_index are False, the intersection of the columns in the DataFrames
will be inferred to be the join keys.

• left_on: Columns or index levels from the left DataFrame to use as keys. Can either be column names, index
level names, or arrays with length equal to the length of the DataFrame.

• right_on: Columns or index levels from the right DataFrame to use as keys. Can either be column names,
index level names, or arrays with length equal to the length of the DataFrame.

• left_index: If True, use the index (row labels) from the left DataFrame as its join key(s). In the case of a
DataFrame with a MultiIndex (hierarchical), the number of levels must match the number of join keys from the
right DataFrame.

• right_index: Same usage as left_index for the right DataFrame

• how: One of 'left', 'right', 'outer', 'inner'. Defaults to inner. See below for more detailed
description of each method.

• sort: Sort the result DataFrame by the join keys in lexicographical order. Defaults to True, setting to False
will improve performance substantially in many cases.

• suffixes: A tuple of string suffixes to apply to overlapping columns. Defaults to ('_x', '_y').

• copy: Always copy data (default True) from the passed DataFrame objects, even when reindexing is not
necessary. Cannot be avoided in many cases but may improve performance / memory usage. The cases where
copying can be avoided are somewhat pathological but this option is provided nonetheless.

• indicator: Add a column to the output DataFrame called _merge with information on the source of each
row. _merge is Categorical-type and takes on a value of left_only for observations whose merge key only
appears in 'left' DataFrame, right_only for observations whose merge key only appears in 'right'
DataFrame, and both if the observation’s merge key is found in both.

• validate : string, default None. If specified, checks if merge is of specified type.

– “one_to_one” or “1:1”: checks if merge keys are unique in both left and right datasets.

– “one_to_many” or “1:m”: checks if merge keys are unique in left dataset.

– “many_to_one” or “m:1”: checks if merge keys are unique in right dataset.

– “many_to_many” or “m:m”: allowed, but does not result in checks.

New in version 0.21.0.

Note: Support for specifying index levels as the on, left_on, and right_on parameters was added in version
0.23.0.

The return type will be the same as left. If left is a DataFrame and right is a subclass of DataFrame, the
return type will still be DataFrame.

merge is a function in the pandas namespace, and it is also available as a DataFrame instance method merge(),
with the calling DataFrame being implicitly considered the left object in the join.

890 Chapter 17. Merge, join, and concatenate

pandas: powerful Python data analysis toolkit, Release 0.23.4

The related join() method, uses merge internally for the index-on-index (by default) and column(s)-on-index join.
If you are joining on index only, you may wish to use DataFrame.join to save yourself some typing.

17.2.1 Brief primer on merge methods (relational algebra)

Experienced users of relational databases like SQL will be familiar with the terminology used to describe join oper-
ations between two SQL-table like structures (DataFrame objects). There are several cases to consider which are
very important to understand:

• one-to-one joins: for example when joining two DataFrame objects on their indexes (which must contain
unique values).

• many-to-one joins: for example when joining an index (unique) to one or more columns in a different
DataFrame.

• many-to-many joins: joining columns on columns.

Note: When joining columns on columns (potentially a many-to-many join), any indexes on the passed DataFrame
objects will be discarded.

It is worth spending some time understanding the result of the many-to-many join case. In SQL / standard relational
algebra, if a key combination appears more than once in both tables, the resulting table will have the Cartesian
product of the associated data. Here is a very basic example with one unique key combination:

In [38]: left = pd.DataFrame({'key': ['K0', 'K1', 'K2', 'K3'],
....: 'A': ['A0', 'A1', 'A2', 'A3'],
....: 'B': ['B0', 'B1', 'B2', 'B3']})
....:

In [39]: right = pd.DataFrame({'key': ['K0', 'K1', 'K2', 'K3'],
....: 'C': ['C0', 'C1', 'C2', 'C3'],
....: 'D': ['D0', 'D1', 'D2', 'D3']})
....:

In [40]: result = pd.merge(left, right, on='key')

Here is a more complicated example with multiple join keys. Only the keys appearing in left and right are present
(the intersection), since how='inner' by default.

In [41]: left = pd.DataFrame({'key1': ['K0', 'K0', 'K1', 'K2'],
....: 'key2': ['K0', 'K1', 'K0', 'K1'],
....: 'A': ['A0', 'A1', 'A2', 'A3'],
....: 'B': ['B0', 'B1', 'B2', 'B3']})
....:

(continues on next page)

17.2. Database-style DataFrame joining/merging 891

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

In [42]: right = pd.DataFrame({'key1': ['K0', 'K1', 'K1', 'K2'],
....: 'key2': ['K0', 'K0', 'K0', 'K0'],
....: 'C': ['C0', 'C1', 'C2', 'C3'],
....: 'D': ['D0', 'D1', 'D2', 'D3']})
....:

In [43]: result = pd.merge(left, right, on=['key1', 'key2'])

The how argument to merge specifies how to determine which keys are to be included in the resulting table. If a
key combination does not appear in either the left or right tables, the values in the joined table will be NA. Here is a
summary of the how options and their SQL equivalent names:

Merge method SQL Join Name Description
left LEFT OUTER

JOIN
Use keys from left frame only

right RIGHT OUTER
JOIN

Use keys from right frame only

outer FULL OUTER
JOIN

Use union of keys from both frames

inner INNER JOIN Use intersection of keys from both frames

In [44]: result = pd.merge(left, right, how='left', on=['key1', 'key2'])

In [45]: result = pd.merge(left, right, how='right', on=['key1', 'key2'])

892 Chapter 17. Merge, join, and concatenate

pandas: powerful Python data analysis toolkit, Release 0.23.4

In [46]: result = pd.merge(left, right, how='outer', on=['key1', 'key2'])

In [47]: result = pd.merge(left, right, how='inner', on=['key1', 'key2'])

Here is another example with duplicate join keys in DataFrames:

In [48]: left = pd.DataFrame({'A' : [1,2], 'B' : [2, 2]})

In [49]: right = pd.DataFrame({'A' : [4,5,6], 'B': [2,2,2]})

In [50]: result = pd.merge(left, right, on='B', how='outer')

17.2. Database-style DataFrame joining/merging 893

pandas: powerful Python data analysis toolkit, Release 0.23.4

Warning: Joining / merging on duplicate keys can cause a returned frame that is the multiplication of the row
dimensions, which may result in memory overflow. It is the user’ s responsibility to manage duplicate values in
keys before joining large DataFrames.

17.2.2 Checking for duplicate keys

New in version 0.21.0.

Users can use the validate argument to automatically check whether there are unexpected duplicates in their merge
keys. Key uniqueness is checked before merge operations and so should protect against memory overflows. Checking
key uniqueness is also a good way to ensure user data structures are as expected.

In the following example, there are duplicate values of B in the right DataFrame. As this is not a one-to-one merge
– as specified in the validate argument – an exception will be raised.

In [51]: left = pd.DataFrame({'A' : [1,2], 'B' : [1, 2]})

In [52]: right = pd.DataFrame({'A' : [4,5,6], 'B': [2, 2, 2]})

In [53]: result = pd.merge(left, right, on='B', how='outer', validate="one_to_one")
...
MergeError: Merge keys are not unique in right dataset; not a one-to-one merge

If the user is aware of the duplicates in the right DataFrame but wants to ensure there are no duplicates in the left
DataFrame, one can use the validate='one_to_many' argument instead, which will not raise an exception.

In [53]: pd.merge(left, right, on='B', how='outer', validate="one_to_many")
Out[53]:

A_x B A_y
0 1 1 NaN
1 2 2 4.0
2 2 2 5.0
3 2 2 6.0

17.2.3 The merge indicator

merge() accepts the argument indicator. If True, a Categorical-type column called _merge will be added to
the output object that takes on values:

894 Chapter 17. Merge, join, and concatenate

pandas: powerful Python data analysis toolkit, Release 0.23.4

Observation Origin _merge value
Merge key only in 'left' frame left_only
Merge key only in 'right' frame right_only
Merge key in both frames both

In [54]: df1 = pd.DataFrame({'col1': [0, 1], 'col_left':['a', 'b']})

In [55]: df2 = pd.DataFrame({'col1': [1, 2, 2],'col_right':[2, 2, 2]})

In [56]: pd.merge(df1, df2, on='col1', how='outer', indicator=True)
Out[56]:

col1 col_left col_right _merge
0 0 a NaN left_only
1 1 b 2.0 both
2 2 NaN 2.0 right_only
3 2 NaN 2.0 right_only

The indicator argument will also accept string arguments, in which case the indicator function will use the value
of the passed string as the name for the indicator column.

In [57]: pd.merge(df1, df2, on='col1', how='outer', indicator='indicator_column')
Out[57]:

col1 col_left col_right indicator_column
0 0 a NaN left_only
1 1 b 2.0 both
2 2 NaN 2.0 right_only
3 2 NaN 2.0 right_only

17.2.4 Merge Dtypes

New in version 0.19.0.

Merging will preserve the dtype of the join keys.

In [58]: left = pd.DataFrame({'key': [1], 'v1': [10]})

In [59]: left
Out[59]:

key v1
0 1 10

In [60]: right = pd.DataFrame({'key': [1, 2], 'v1': [20, 30]})

In [61]: right
Out[61]:

key v1
0 1 20
1 2 30

We are able to preserve the join keys:

In [62]: pd.merge(left, right, how='outer')
Out[62]:

key v1

(continues on next page)

17.2. Database-style DataFrame joining/merging 895

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

0 1 10
1 1 20
2 2 30

In [63]: pd.merge(left, right, how='outer').dtypes
\\Out[63]:
key int64
v1 int64
dtype: object

Of course if you have missing values that are introduced, then the resulting dtype will be upcast.

In [64]: pd.merge(left, right, how='outer', on='key')
Out[64]:

key v1_x v1_y
0 1 10.0 20
1 2 NaN 30

In [65]: pd.merge(left, right, how='outer', on='key').dtypes
\\\Out[65]:
key int64
v1_x float64
v1_y int64
dtype: object

New in version 0.20.0.

Merging will preserve category dtypes of the mergands. See also the section on categoricals.

The left frame.

In [66]: from pandas.api.types import CategoricalDtype

In [67]: X = pd.Series(np.random.choice(['foo', 'bar'], size=(10,)))

In [68]: X = X.astype(CategoricalDtype(categories=['foo', 'bar']))

In [69]: left = pd.DataFrame({'X': X,
....: 'Y': np.random.choice(['one', 'two', 'three'], size=(10,

→˓))})
....:

In [70]: left
Out[70]:

X Y
0 bar one
1 foo one
2 foo three
3 bar three
4 foo one
5 bar one
6 bar three
7 bar three
8 bar three
9 foo three

In [71]: left.dtypes

(continues on next page)

896 Chapter 17. Merge, join, and concatenate

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

\\Out[71]:
→˓

X category
Y object
dtype: object

The right frame.

In [72]: right = pd.DataFrame({
....: 'X': pd.Series(['foo', 'bar'],
....: dtype=CategoricalDtype(['foo', 'bar'])),
....: 'Z': [1, 2]
....: })
....:

In [73]: right
Out[73]:

X Z
0 foo 1
1 bar 2

In [74]: right.dtypes
\\Out[74]:
X category
Z int64
dtype: object

The merged result:

In [75]: result = pd.merge(left, right, how='outer')

In [76]: result
Out[76]:

X Y Z
0 bar one 2
1 bar three 2
2 bar one 2
3 bar three 2
4 bar three 2
5 bar three 2
6 foo one 1
7 foo three 1
8 foo one 1
9 foo three 1

In [77]: result.dtypes
\\\Out[77]:
→˓

X category
Y object
Z int64
dtype: object

Note: The category dtypes must be exactly the same, meaning the same categories and the ordered attribute. Other-
wise the result will coerce to object dtype.

17.2. Database-style DataFrame joining/merging 897

pandas: powerful Python data analysis toolkit, Release 0.23.4

Note: Merging on category dtypes that are the same can be quite performant compared to object dtype merging.

17.2.5 Joining on index

DataFrame.join() is a convenient method for combining the columns of two potentially differently-indexed
DataFrames into a single result DataFrame. Here is a very basic example:

In [78]: left = pd.DataFrame({'A': ['A0', 'A1', 'A2'],
....: 'B': ['B0', 'B1', 'B2']},
....: index=['K0', 'K1', 'K2'])
....:

In [79]: right = pd.DataFrame({'C': ['C0', 'C2', 'C3'],
....: 'D': ['D0', 'D2', 'D3']},
....: index=['K0', 'K2', 'K3'])
....:

In [80]: result = left.join(right)

In [81]: result = left.join(right, how='outer')

The same as above, but with how='inner'.

In [82]: result = left.join(right, how='inner')

898 Chapter 17. Merge, join, and concatenate

pandas: powerful Python data analysis toolkit, Release 0.23.4

The data alignment here is on the indexes (row labels). This same behavior can be achieved using merge plus
additional arguments instructing it to use the indexes:

In [83]: result = pd.merge(left, right, left_index=True, right_index=True, how='outer
→˓')

In [84]: result = pd.merge(left, right, left_index=True, right_index=True, how='inner
→˓');

17.2.6 Joining key columns on an index

join() takes an optional on argument which may be a column or multiple column names, which specifies that the
passed DataFrame is to be aligned on that column in the DataFrame. These two function calls are completely
equivalent:

left.join(right, on=key_or_keys)
pd.merge(left, right, left_on=key_or_keys, right_index=True,

how='left', sort=False)

Obviously you can choose whichever form you find more convenient. For many-to-one joins (where one of the
DataFrame’s is already indexed by the join key), using join may be more convenient. Here is a simple example:

In [85]: left = pd.DataFrame({'A': ['A0', 'A1', 'A2', 'A3'],
....: 'B': ['B0', 'B1', 'B2', 'B3'],
....: 'key': ['K0', 'K1', 'K0', 'K1']})
....:

In [86]: right = pd.DataFrame({'C': ['C0', 'C1'],
....: 'D': ['D0', 'D1']},
....: index=['K0', 'K1'])
....:

In [87]: result = left.join(right, on='key')

17.2. Database-style DataFrame joining/merging 899

pandas: powerful Python data analysis toolkit, Release 0.23.4

In [88]: result = pd.merge(left, right, left_on='key', right_index=True,
....: how='left', sort=False);
....:

To join on multiple keys, the
passed DataFrame must have a MultiIndex:

In [89]: left = pd.DataFrame({'A': ['A0', 'A1', 'A2', 'A3'],
....: 'B': ['B0', 'B1', 'B2', 'B3'],
....: 'key1': ['K0', 'K0', 'K1', 'K2'],
....: 'key2': ['K0', 'K1', 'K0', 'K1']})
....:

In [90]: index = pd.MultiIndex.from_tuples([('K0', 'K0'), ('K1', 'K0'),
....: ('K2', 'K0'), ('K2', 'K1')])
....:

In [91]: right = pd.DataFrame({'C': ['C0', 'C1', 'C2', 'C3'],
....: 'D': ['D0', 'D1', 'D2', 'D3']},
....: index=index)
....:

Now this can be joined by passing the two key column names:

In [92]: result = left.join(right, on=['key1', 'key2'])

The de-
fault for DataFrame.join is to perform a left join (essentially a “VLOOKUP” operation, for Excel users), which

900 Chapter 17. Merge, join, and concatenate

pandas: powerful Python data analysis toolkit, Release 0.23.4

uses only the keys found in the calling DataFrame. Other join types, for example inner join, can be just as easily
performed:

In [93]: result = left.join(right, on=['key1', 'key2'], how='inner')

As you can see, this drops any rows where there was no match.

17.2.7 Joining a single Index to a Multi-index

You can join a singly-indexed DataFrame with a level of a multi-indexed DataFrame. The level will match on the
name of the index of the singly-indexed frame against a level name of the multi-indexed frame.

In [94]: left = pd.DataFrame({'A': ['A0', 'A1', 'A2'],
....: 'B': ['B0', 'B1', 'B2']},
....: index=pd.Index(['K0', 'K1', 'K2'], name='key'))
....:

In [95]: index = pd.MultiIndex.from_tuples([('K0', 'Y0'), ('K1', 'Y1'),
....: ('K2', 'Y2'), ('K2', 'Y3')],
....: names=['key', 'Y'])
....:

In [96]: right = pd.DataFrame({'C': ['C0', 'C1', 'C2', 'C3'],
....: 'D': ['D0', 'D1', 'D2', 'D3']},
....: index=index)
....:

In [97]: result = left.join(right, how='inner')

This is equivalent but less verbose and more memory efficient / faster than this.

In [98]: result = pd.merge(left.reset_index(), right.reset_index(),
....: on=['key'], how='inner').set_index(['key','Y'])
....:

17.2. Database-style DataFrame joining/merging 901

pandas: powerful Python data analysis toolkit, Release 0.23.4

17.2.8 Joining with two multi-indexes

This is not implemented via join at-the-moment, however it can be done using the following code.

In [99]: index = pd.MultiIndex.from_tuples([('K0', 'X0'), ('K0', 'X1'),
....: ('K1', 'X2')],
....: names=['key', 'X'])
....:

In [100]: left = pd.DataFrame({'A': ['A0', 'A1', 'A2'],
.....: 'B': ['B0', 'B1', 'B2']},
.....: index=index)
.....:

In [101]: result = pd.merge(left.reset_index(), right.reset_index(),
.....: on=['key'], how='inner').set_index(['key','X','Y'])
.....:

17.2.9 Merging on a combination of columns and index levels

New in version 0.22.

Strings passed as the on, left_on, and right_on parameters may refer to either column names or index level
names. This enables merging DataFrame instances on a combination of index levels and columns without resetting
indexes.

In [102]: left_index = pd.Index(['K0', 'K0', 'K1', 'K2'], name='key1')

In [103]: left = pd.DataFrame({'A': ['A0', 'A1', 'A2', 'A3'],
.....: 'B': ['B0', 'B1', 'B2', 'B3'],
.....: 'key2': ['K0', 'K1', 'K0', 'K1']},
.....: index=left_index)

(continues on next page)

902 Chapter 17. Merge, join, and concatenate

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

.....:

In [104]: right_index = pd.Index(['K0', 'K1', 'K2', 'K2'], name='key1')

In [105]: right = pd.DataFrame({'C': ['C0', 'C1', 'C2', 'C3'],
.....: 'D': ['D0', 'D1', 'D2', 'D3'],
.....: 'key2': ['K0', 'K0', 'K0', 'K1']},
.....: index=right_index)
.....:

In [106]: result = left.merge(right, on=['key1', 'key2'])

Note: When DataFrames are merged on a string that matches an index level in both frames, the index level is
preserved as an index level in the resulting DataFrame.

Note: If a string matches both a column name and an index level name, then a warning is issued and the column takes
precedence. This will result in an ambiguity error in a future version.

17.2.10 Overlapping value columns

The merge suffixes argument takes a tuple of list of strings to append to overlapping column names in the input
DataFrames to disambiguate the result columns:

In [107]: left = pd.DataFrame({'k': ['K0', 'K1', 'K2'], 'v': [1, 2, 3]})

In [108]: right = pd.DataFrame({'k': ['K0', 'K0', 'K3'], 'v': [4, 5, 6]})

In [109]: result = pd.merge(left, right, on='k')

17.2. Database-style DataFrame joining/merging 903

pandas: powerful Python data analysis toolkit, Release 0.23.4

In [110]: result = pd.merge(left, right, on='k', suffixes=['_l', '_r'])

DataFrame.join() has lsuffix and rsuffix arguments which behave similarly.

In [111]: left = left.set_index('k')

In [112]: right = right.set_index('k')

In [113]: result = left.join(right, lsuffix='_l', rsuffix='_r')

17.2.11 Joining multiple DataFrame or Panel objects

A list or tuple of DataFrames can also be passed to join() to join them together on their indexes.

In [114]: right2 = pd.DataFrame({'v': [7, 8, 9]}, index=['K1', 'K1', 'K2'])

In [115]: result = left.join([right, right2])

904 Chapter 17. Merge, join, and concatenate

pandas: powerful Python data analysis toolkit, Release 0.23.4

17.2.12 Merging together values within Series or DataFrame columns

Another fairly common situation is to have two like-indexed (or similarly indexed) Series or DataFrame objects
and wanting to “patch” values in one object from values for matching indices in the other. Here is an example:

In [116]: df1 = pd.DataFrame([[np.nan, 3., 5.], [-4.6, np.nan, np.nan],
.....: [np.nan, 7., np.nan]])
.....:

In [117]: df2 = pd.DataFrame([[-42.6, np.nan, -8.2], [-5., 1.6, 4]],
.....: index=[1, 2])
.....:

For this, use the combine_first() method:

In [118]: result = df1.combine_first(df2)

Note that this method only takes values from the right DataFrame if they are missing in the left DataFrame. A
related method, update(), alters non-NA values inplace:

In [119]: df1.update(df2)

17.3 Timeseries friendly merging

17.3.1 Merging Ordered Data

A merge_ordered() function allows combining time series and other ordered data. In particular it has an optional
fill_method keyword to fill/interpolate missing data:

In [120]: left = pd.DataFrame({'k': ['K0', 'K1', 'K1', 'K2'],
.....: 'lv': [1, 2, 3, 4],
.....: 's': ['a', 'b', 'c', 'd']})
.....:

In [121]: right = pd.DataFrame({'k': ['K1', 'K2', 'K4'],

(continues on next page)

17.3. Timeseries friendly merging 905

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

.....: 'rv': [1, 2, 3]})

.....:

In [122]: pd.merge_ordered(left, right, fill_method='ffill', left_by='s')
Out[122]:

k lv s rv
0 K0 1.0 a NaN
1 K1 1.0 a 1.0
2 K2 1.0 a 2.0
3 K4 1.0 a 3.0
4 K1 2.0 b 1.0
5 K2 2.0 b 2.0
6 K4 2.0 b 3.0
7 K1 3.0 c 1.0
8 K2 3.0 c 2.0
9 K4 3.0 c 3.0
10 K1 NaN d 1.0
11 K2 4.0 d 2.0
12 K4 4.0 d 3.0

17.3.2 Merging AsOf

New in version 0.19.0.

A merge_asof() is similar to an ordered left-join except that we match on nearest key rather than equal keys. For
each row in the left DataFrame, we select the last row in the right DataFrame whose on key is less than the
left’s key. Both DataFrames must be sorted by the key.

Optionally an asof merge can perform a group-wise merge. This matches the by key equally, in addition to the nearest
match on the on key.

For example; we might have trades and quotes and we want to asof merge them.

In [123]: trades = pd.DataFrame({
.....: 'time': pd.to_datetime(['20160525 13:30:00.023',
.....: '20160525 13:30:00.038',
.....: '20160525 13:30:00.048',
.....: '20160525 13:30:00.048',
.....: '20160525 13:30:00.048']),
.....: 'ticker': ['MSFT', 'MSFT',
.....: 'GOOG', 'GOOG', 'AAPL'],
.....: 'price': [51.95, 51.95,
.....: 720.77, 720.92, 98.00],
.....: 'quantity': [75, 155,
.....: 100, 100, 100]},
.....: columns=['time', 'ticker', 'price', 'quantity'])
.....:

In [124]: quotes = pd.DataFrame({
.....: 'time': pd.to_datetime(['20160525 13:30:00.023',
.....: '20160525 13:30:00.023',
.....: '20160525 13:30:00.030',
.....: '20160525 13:30:00.041',
.....: '20160525 13:30:00.048',
.....: '20160525 13:30:00.049',
.....: '20160525 13:30:00.072',

(continues on next page)

906 Chapter 17. Merge, join, and concatenate

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

.....: '20160525 13:30:00.075']),

.....: 'ticker': ['GOOG', 'MSFT', 'MSFT',

.....: 'MSFT', 'GOOG', 'AAPL', 'GOOG',

.....: 'MSFT'],

.....: 'bid': [720.50, 51.95, 51.97, 51.99,

.....: 720.50, 97.99, 720.50, 52.01],

.....: 'ask': [720.93, 51.96, 51.98, 52.00,

.....: 720.93, 98.01, 720.88, 52.03]},

.....: columns=['time', 'ticker', 'bid', 'ask'])

.....:

In [125]: trades
Out[125]:

time ticker price quantity
0 2016-05-25 13:30:00.023 MSFT 51.95 75
1 2016-05-25 13:30:00.038 MSFT 51.95 155
2 2016-05-25 13:30:00.048 GOOG 720.77 100
3 2016-05-25 13:30:00.048 GOOG 720.92 100
4 2016-05-25 13:30:00.048 AAPL 98.00 100

In [126]: quotes
\\\Out[126]:
→˓

time ticker bid ask
0 2016-05-25 13:30:00.023 GOOG 720.50 720.93
1 2016-05-25 13:30:00.023 MSFT 51.95 51.96
2 2016-05-25 13:30:00.030 MSFT 51.97 51.98
3 2016-05-25 13:30:00.041 MSFT 51.99 52.00
4 2016-05-25 13:30:00.048 GOOG 720.50 720.93
5 2016-05-25 13:30:00.049 AAPL 97.99 98.01
6 2016-05-25 13:30:00.072 GOOG 720.50 720.88
7 2016-05-25 13:30:00.075 MSFT 52.01 52.03

By default we are taking the asof of the quotes.

In [127]: pd.merge_asof(trades, quotes,
.....: on='time',
.....: by='ticker')
.....:

Out[127]:
time ticker price quantity bid ask

0 2016-05-25 13:30:00.023 MSFT 51.95 75 51.95 51.96
1 2016-05-25 13:30:00.038 MSFT 51.95 155 51.97 51.98
2 2016-05-25 13:30:00.048 GOOG 720.77 100 720.50 720.93
3 2016-05-25 13:30:00.048 GOOG 720.92 100 720.50 720.93
4 2016-05-25 13:30:00.048 AAPL 98.00 100 NaN NaN

We only asof within 2ms between the quote time and the trade time.

In [128]: pd.merge_asof(trades, quotes,
.....: on='time',
.....: by='ticker',
.....: tolerance=pd.Timedelta('2ms'))
.....:

Out[128]:
time ticker price quantity bid ask

(continues on next page)

17.3. Timeseries friendly merging 907

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

0 2016-05-25 13:30:00.023 MSFT 51.95 75 51.95 51.96
1 2016-05-25 13:30:00.038 MSFT 51.95 155 NaN NaN
2 2016-05-25 13:30:00.048 GOOG 720.77 100 720.50 720.93
3 2016-05-25 13:30:00.048 GOOG 720.92 100 720.50 720.93
4 2016-05-25 13:30:00.048 AAPL 98.00 100 NaN NaN

We only asof within 10ms between the quote time and the trade time and we exclude exact matches on time. Note
that though we exclude the exact matches (of the quotes), prior quotes do propagate to that point in time.

In [129]: pd.merge_asof(trades, quotes,
.....: on='time',
.....: by='ticker',
.....: tolerance=pd.Timedelta('10ms'),
.....: allow_exact_matches=False)
.....:

Out[129]:
time ticker price quantity bid ask

0 2016-05-25 13:30:00.023 MSFT 51.95 75 NaN NaN
1 2016-05-25 13:30:00.038 MSFT 51.95 155 51.97 51.98
2 2016-05-25 13:30:00.048 GOOG 720.77 100 NaN NaN
3 2016-05-25 13:30:00.048 GOOG 720.92 100 NaN NaN
4 2016-05-25 13:30:00.048 AAPL 98.00 100 NaN NaN

908 Chapter 17. Merge, join, and concatenate

CHAPTER

EIGHTEEN

RESHAPING AND PIVOT TABLES

18.1 Reshaping by pivoting DataFrame objects

Data is often stored in CSV files or databases in so-called “stacked” or “record” format:

In [1]: df
Out[1]:

date variable value
0 2000-01-03 A 0.469112
1 2000-01-04 A -0.282863
2 2000-01-05 A -1.509059
3 2000-01-03 B -1.135632
4 2000-01-04 B 1.212112
5 2000-01-05 B -0.173215
6 2000-01-03 C 0.119209
7 2000-01-04 C -1.044236
8 2000-01-05 C -0.861849
9 2000-01-03 D -2.104569
10 2000-01-04 D -0.494929
11 2000-01-05 D 1.071804

For the curious here is how the above DataFrame was created:

import pandas.util.testing as tm; tm.N = 3
def unpivot(frame):

N, K = frame.shape
data = {'value' : frame.values.ravel('F'),

'variable' : np.asarray(frame.columns).repeat(N),
'date' : np.tile(np.asarray(frame.index), K)}

return pd.DataFrame(data, columns=['date', 'variable', 'value'])
df = unpivot(tm.makeTimeDataFrame())

To select out everything for variable A we could do:

In [2]: df[df['variable'] == 'A']
Out[2]:

date variable value
0 2000-01-03 A 0.469112
1 2000-01-04 A -0.282863
2 2000-01-05 A -1.509059

909

pandas: powerful Python data analysis toolkit, Release 0.23.4

But suppose we wish to do time series operations with the variables. A better representation would be where the
columns are the unique variables and an index of dates identifies individual observations. To reshape the data into
this form, we use the DataFrame.pivot() method (also implemented as a top level function pivot()):

In [3]: df.pivot(index='date', columns='variable', values='value')
Out[3]:
variable A B C D
date
2000-01-03 0.469112 -1.135632 0.119209 -2.104569
2000-01-04 -0.282863 1.212112 -1.044236 -0.494929
2000-01-05 -1.509059 -0.173215 -0.861849 1.071804

If the values argument is omitted, and the input DataFrame has more than one column of values which are not
used as column or index inputs to pivot, then the resulting “pivoted” DataFrame will have hierarchical columns
whose topmost level indicates the respective value column:

In [4]: df['value2'] = df['value'] * 2

In [5]: pivoted = df.pivot('date', 'variable')

In [6]: pivoted
Out[6]:

value value2
→˓

variable A B C D A B C
→˓ D
date
→˓

2000-01-03 0.469112 -1.135632 0.119209 -2.104569 0.938225 -2.271265 0.238417 -4.
→˓209138
2000-01-04 -0.282863 1.212112 -1.044236 -0.494929 -0.565727 2.424224 -2.088472 -0.
→˓989859
2000-01-05 -1.509059 -0.173215 -0.861849 1.071804 -3.018117 -0.346429 -1.723698 2.
→˓143608

You can then select subsets from the pivoted DataFrame:

910 Chapter 18. Reshaping and Pivot Tables

pandas: powerful Python data analysis toolkit, Release 0.23.4

In [7]: pivoted['value2']
Out[7]:
variable A B C D
date
2000-01-03 0.938225 -2.271265 0.238417 -4.209138
2000-01-04 -0.565727 2.424224 -2.088472 -0.989859
2000-01-05 -3.018117 -0.346429 -1.723698 2.143608

Note that this returns a view on the underlying data in the case where the data are homogeneously-typed.

18.2 Reshaping by stacking and unstacking

Closely related to the pivot() method are the related stack() and unstack() methods available on Series
and DataFrame. These methods are designed to work together with MultiIndex objects (see the section on
hierarchical indexing). Here are essentially what these methods do:

• stack: “pivot” a level of the (possibly hierarchical) column labels, returning a DataFrame with an index
with a new inner-most level of row labels.

• unstack: (inverse operation of stack) “pivot” a level of the (possibly hierarchical) row index to the column
axis, producing a reshaped DataFrame with a new inner-most level of column labels.

18.2. Reshaping by stacking and unstacking 911

pandas: powerful Python data analysis toolkit, Release 0.23.4

The clearest way to explain is by example. Let’s take a prior example data set from the hierarchical indexing section:

In [8]: tuples = list(zip(*[['bar', 'bar', 'baz', 'baz',
...: 'foo', 'foo', 'qux', 'qux'],
...: ['one', 'two', 'one', 'two',
...: 'one', 'two', 'one', 'two']]))
...:

In [9]: index = pd.MultiIndex.from_tuples(tuples, names=['first', 'second'])

In [10]: df = pd.DataFrame(np.random.randn(8, 2), index=index, columns=['A', 'B'])

In [11]: df2 = df[:4]

In [12]: df2
Out[12]:

A B
first second
bar one 0.721555 -0.706771

two -1.039575 0.271860
baz one -0.424972 0.567020

two 0.276232 -1.087401

The stack function “compresses” a level in the DataFrame’s columns to produce either:

• A Series, in the case of a simple column Index.

• A DataFrame, in the case of a MultiIndex in the columns.

If the columns have a MultiIndex, you can choose which level to stack. The stacked level becomes the new lowest
level in a MultiIndex on the columns:

912 Chapter 18. Reshaping and Pivot Tables

pandas: powerful Python data analysis toolkit, Release 0.23.4

In [13]: stacked = df2.stack()

In [14]: stacked
Out[14]:
first second
bar one A 0.721555

B -0.706771
two A -1.039575

B 0.271860
baz one A -0.424972

B 0.567020
two A 0.276232

B -1.087401
dtype: float64

With a “stacked” DataFrame or Series (having a MultiIndex as the index), the inverse operation of stack
is unstack, which by default unstacks the last level:

In [15]: stacked.unstack()
Out[15]:

A B
first second
bar one 0.721555 -0.706771

two -1.039575 0.271860
baz one -0.424972 0.567020

two 0.276232 -1.087401

In [16]: stacked.unstack(1)
\\Out[16]:
→˓

second one two
first
bar A 0.721555 -1.039575

B -0.706771 0.271860
baz A -0.424972 0.276232

B 0.567020 -1.087401

In [17]: stacked.unstack(0)
\\Out[17]:
→˓

first bar baz
second
one A 0.721555 -0.424972

B -0.706771 0.567020
two A -1.039575 0.276232

B 0.271860 -1.087401

18.2. Reshaping by stacking and unstacking 913

pandas: powerful Python data analysis toolkit, Release 0.23.4

If the indexes have names, you can use the level names instead of specifying the level numbers:

In [18]: stacked.unstack('second')
Out[18]:
second one two
first
bar A 0.721555 -1.039575

B -0.706771 0.271860
baz A -0.424972 0.276232

B 0.567020 -1.087401

914 Chapter 18. Reshaping and Pivot Tables

pandas: powerful Python data analysis toolkit, Release 0.23.4

Notice that the stack and unstack methods implicitly sort the index levels involved. Hence a call to stack and
then unstack, or vice versa, will result in a sorted copy of the original DataFrame or Series:

In [19]: index = pd.MultiIndex.from_product([[2,1], ['a', 'b']])

In [20]: df = pd.DataFrame(np.random.randn(4), index=index, columns=['A'])

In [21]: df
Out[21]:

A
2 a -0.370647

b -1.157892
1 a -1.344312

b 0.844885

In [22]: all(df.unstack().stack() == df.sort_index())
\\Out[22]:
→˓True

The above code will raise a TypeError if the call to sort_index is removed.

18.2.1 Multiple Levels

You may also stack or unstack more than one level at a time by passing a list of levels, in which case the end result is
as if each level in the list were processed individually.

In [23]: columns = pd.MultiIndex.from_tuples([
....: ('A', 'cat', 'long'), ('B', 'cat', 'long'),
....: ('A', 'dog', 'short'), ('B', 'dog', 'short')
....:],
....: names=['exp', 'animal', 'hair_length']

(continues on next page)

18.2. Reshaping by stacking and unstacking 915

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

....:)

....:

In [24]: df = pd.DataFrame(np.random.randn(4, 4), columns=columns)

In [25]: df
Out[25]:
exp A B A B
animal cat cat dog dog
hair_length long long short short
0 1.075770 -0.109050 1.643563 -1.469388
1 0.357021 -0.674600 -1.776904 -0.968914
2 -1.294524 0.413738 0.276662 -0.472035
3 -0.013960 -0.362543 -0.006154 -0.923061

In [26]: df.stack(level=['animal', 'hair_length'])
\\Out[26]:
→˓

exp A B
animal hair_length

0 cat long 1.075770 -0.109050
dog short 1.643563 -1.469388

1 cat long 0.357021 -0.674600
dog short -1.776904 -0.968914

2 cat long -1.294524 0.413738
dog short 0.276662 -0.472035

3 cat long -0.013960 -0.362543
dog short -0.006154 -0.923061

The list of levels can contain either level names or level numbers (but not a mixture of the two).

df.stack(level=['animal', 'hair_length'])
from above is equivalent to:
In [27]: df.stack(level=[1, 2])
Out[27]:
exp A B

animal hair_length
0 cat long 1.075770 -0.109050

dog short 1.643563 -1.469388
1 cat long 0.357021 -0.674600

dog short -1.776904 -0.968914
2 cat long -1.294524 0.413738

dog short 0.276662 -0.472035
3 cat long -0.013960 -0.362543

dog short -0.006154 -0.923061

18.2.2 Missing Data

These functions are intelligent about handling missing data and do not expect each subgroup within the hierarchical
index to have the same set of labels. They also can handle the index being unsorted (but you can make it sorted by
calling sort_index, of course). Here is a more complex example:

In [28]: columns = pd.MultiIndex.from_tuples([('A', 'cat'), ('B', 'dog'),
....: ('B', 'cat'), ('A', 'dog')],
....: names=['exp', 'animal'])

(continues on next page)

916 Chapter 18. Reshaping and Pivot Tables

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

....:

In [29]: index = pd.MultiIndex.from_product([('bar', 'baz', 'foo', 'qux'),
....: ('one', 'two')],
....: names=['first', 'second'])
....:

In [30]: df = pd.DataFrame(np.random.randn(8, 4), index=index, columns=columns)

In [31]: df2 = df.iloc[[0, 1, 2, 4, 5, 7]]

In [32]: df2
Out[32]:
exp A B A
animal cat dog cat dog
first second
bar one 0.895717 0.805244 -1.206412 2.565646

two 1.431256 1.340309 -1.170299 -0.226169
baz one 0.410835 0.813850 0.132003 -0.827317
foo one -1.413681 1.607920 1.024180 0.569605

two 0.875906 -2.211372 0.974466 -2.006747
qux two -1.226825 0.769804 -1.281247 -0.727707

As mentioned above, stack can be called with a level argument to select which level in the columns to stack:

In [33]: df2.stack('exp')
Out[33]:
animal cat dog
first second exp
bar one A 0.895717 2.565646

B -1.206412 0.805244
two A 1.431256 -0.226169

B -1.170299 1.340309
baz one A 0.410835 -0.827317

B 0.132003 0.813850
foo one A -1.413681 0.569605

B 1.024180 1.607920
two A 0.875906 -2.006747

B 0.974466 -2.211372
qux two A -1.226825 -0.727707

B -1.281247 0.769804

In [34]: df2.stack('animal')
\\Out[34]:
→˓

exp A B
first second animal
bar one cat 0.895717 -1.206412

dog 2.565646 0.805244
two cat 1.431256 -1.170299

dog -0.226169 1.340309
baz one cat 0.410835 0.132003

dog -0.827317 0.813850
foo one cat -1.413681 1.024180

dog 0.569605 1.607920
two cat 0.875906 0.974466

dog -2.006747 -2.211372
(continues on next page)

18.2. Reshaping by stacking and unstacking 917

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

qux two cat -1.226825 -1.281247
dog -0.727707 0.769804

Unstacking can result in missing values if subgroups do not have the same set of labels. By default, missing values
will be replaced with the default fill value for that data type, NaN for float, NaT for datetimelike, etc. For integer types,
by default data will converted to float and missing values will be set to NaN.

In [35]: df3 = df.iloc[[0, 1, 4, 7], [1, 2]]

In [36]: df3
Out[36]:
exp B
animal dog cat
first second
bar one 0.805244 -1.206412

two 1.340309 -1.170299
foo one 1.607920 1.024180
qux two 0.769804 -1.281247

In [37]: df3.unstack()
\\\Out[37]:
→˓

exp B
animal dog cat
second one two one two
first
bar 0.805244 1.340309 -1.206412 -1.170299
foo 1.607920 NaN 1.024180 NaN
qux NaN 0.769804 NaN -1.281247

New in version 0.18.0.

Alternatively, unstack takes an optional fill_value argument, for specifying the value of missing data.

In [38]: df3.unstack(fill_value=-1e9)
Out[38]:
exp B
animal dog cat
second one two one two
first
bar 8.052440e-01 1.340309e+00 -1.206412e+00 -1.170299e+00
foo 1.607920e+00 -1.000000e+09 1.024180e+00 -1.000000e+09
qux -1.000000e+09 7.698036e-01 -1.000000e+09 -1.281247e+00

18.2.3 With a MultiIndex

Unstacking when the columns are a MultiIndex is also careful about doing the right thing:

In [39]: df[:3].unstack(0)
Out[39]:
exp A B A
animal cat dog cat dog
first bar baz bar baz bar baz bar baz
second
one 0.895717 0.410835 0.805244 0.81385 -1.206412 0.132003 2.565646 -0.827317

(continues on next page)

918 Chapter 18. Reshaping and Pivot Tables

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

two 1.431256 NaN 1.340309 NaN -1.170299 NaN -0.226169 NaN

In [40]: df2.unstack(1)
\\Out[40]:
→˓

exp A B A
animal cat dog cat dog
second one two one two one two one two
first
bar 0.895717 1.431256 0.805244 1.340309 -1.206412 -1.170299 2.565646 -0.226169
baz 0.410835 NaN 0.813850 NaN 0.132003 NaN -0.827317 NaN
foo -1.413681 0.875906 1.607920 -2.211372 1.024180 0.974466 0.569605 -2.006747
qux NaN -1.226825 NaN 0.769804 NaN -1.281247 NaN -0.727707

18.3 Reshaping by Melt

The top-level melt() function and the corresponding DataFrame.melt() are useful to massage a DataFrame
into a format where one or more columns are identifier variables, while all other columns, considered measured
variables, are “unpivoted” to the row axis, leaving just two non-identifier columns, “variable” and “value”. The names
of those columns can be customized by supplying the var_name and value_name parameters.

For instance,

In [41]: cheese = pd.DataFrame({'first' : ['John', 'Mary'],
....: 'last' : ['Doe', 'Bo'],
....: 'height' : [5.5, 6.0],
....: 'weight' : [130, 150]})
....:

In [42]: cheese
Out[42]:

(continues on next page)

18.3. Reshaping by Melt 919

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

first last height weight
0 John Doe 5.5 130
1 Mary Bo 6.0 150

In [43]: cheese.melt(id_vars=['first', 'last'])
\\\Out[43]:
→˓

first last variable value
0 John Doe height 5.5
1 Mary Bo height 6.0
2 John Doe weight 130.0
3 Mary Bo weight 150.0

In [44]: cheese.melt(id_vars=['first', 'last'], var_name='quantity')
\\Out[44]:
→˓

first last quantity value
0 John Doe height 5.5
1 Mary Bo height 6.0
2 John Doe weight 130.0
3 Mary Bo weight 150.0

Another way to transform is to use the wide_to_long() panel data convenience function. It is less flexible than
melt(), but more user-friendly.

In [45]: dft = pd.DataFrame({"A1970" : {0 : "a", 1 : "b", 2 : "c"},
....: "A1980" : {0 : "d", 1 : "e", 2 : "f"},
....: "B1970" : {0 : 2.5, 1 : 1.2, 2 : .7},
....: "B1980" : {0 : 3.2, 1 : 1.3, 2 : .1},
....: "X" : dict(zip(range(3), np.random.randn(3)))
....: })
....:

In [46]: dft["id"] = dft.index

In [47]: dft
Out[47]:

A1970 A1980 B1970 B1980 X id
0 a d 2.5 3.2 -0.121306 0
1 b e 1.2 1.3 -0.097883 1
2 c f 0.7 0.1 0.695775 2

In [48]: pd.wide_to_long(dft, ["A", "B"], i="id", j="year")
\\Out[48]:
→˓

X A B
id year
0 1970 -0.121306 a 2.5
1 1970 -0.097883 b 1.2
2 1970 0.695775 c 0.7
0 1980 -0.121306 d 3.2
1 1980 -0.097883 e 1.3
2 1980 0.695775 f 0.1

920 Chapter 18. Reshaping and Pivot Tables

pandas: powerful Python data analysis toolkit, Release 0.23.4

18.4 Combining with stats and GroupBy

It should be no shock that combining pivot / stack / unstack with GroupBy and the basic Series and DataFrame
statistical functions can produce some very expressive and fast data manipulations.

In [49]: df
Out[49]:
exp A B A
animal cat dog cat dog
first second
bar one 0.895717 0.805244 -1.206412 2.565646

two 1.431256 1.340309 -1.170299 -0.226169
baz one 0.410835 0.813850 0.132003 -0.827317

two -0.076467 -1.187678 1.130127 -1.436737
foo one -1.413681 1.607920 1.024180 0.569605

two 0.875906 -2.211372 0.974466 -2.006747
qux one -0.410001 -0.078638 0.545952 -1.219217

two -1.226825 0.769804 -1.281247 -0.727707

In [50]: df.stack().mean(1).unstack()
\\\Out[50]:
→˓

animal cat dog
first second
bar one -0.155347 1.685445

two 0.130479 0.557070
baz one 0.271419 -0.006733

two 0.526830 -1.312207
foo one -0.194750 1.088763

two 0.925186 -2.109060
qux one 0.067976 -0.648927

two -1.254036 0.021048

same result, another way
In [51]: df.groupby(level=1, axis=1).mean()
\\\Out[51]:
→˓

animal cat dog
first second
bar one -0.155347 1.685445

two 0.130479 0.557070
baz one 0.271419 -0.006733

two 0.526830 -1.312207
foo one -0.194750 1.088763

two 0.925186 -2.109060
qux one 0.067976 -0.648927

two -1.254036 0.021048

In [52]: df.stack().groupby(level=1).mean()
\\\Out[52]:
→˓

exp A B
second
one 0.071448 0.455513
two -0.424186 -0.204486

In [53]: df.mean().unstack(0)

(continues on next page)

18.4. Combining with stats and GroupBy 921

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

\\\Out[53]:
→˓

exp A B
animal
cat 0.060843 0.018596
dog -0.413580 0.232430

18.5 Pivot tables

While pivot() provides general purpose pivoting with various data types (strings, numerics, etc.), pandas also
provides pivot_table() for pivoting with aggregation of numeric data.

The function pivot_table() can be used to create spreadsheet-style pivot tables. See the cookbook for some
advanced strategies.

It takes a number of arguments:

• data: a DataFrame object.

• values: a column or a list of columns to aggregate.

• index: a column, Grouper, array which has the same length as data, or list of them. Keys to group by on the
pivot table index. If an array is passed, it is being used as the same manner as column values.

• columns: a column, Grouper, array which has the same length as data, or list of them. Keys to group by on
the pivot table column. If an array is passed, it is being used as the same manner as column values.

• aggfunc: function to use for aggregation, defaulting to numpy.mean.

Consider a data set like this:

In [54]: import datetime

In [55]: df = pd.DataFrame({'A': ['one', 'one', 'two', 'three'] * 6,
....: 'B': ['A', 'B', 'C'] * 8,
....: 'C': ['foo', 'foo', 'foo', 'bar', 'bar', 'bar'] * 4,
....: 'D': np.random.randn(24),
....: 'E': np.random.randn(24),
....: 'F': [datetime.datetime(2013, i, 1) for i in range(1,

→˓13)] +
....: [datetime.datetime(2013, i, 15) for i in range(1,

→˓13)]})
....:

In [56]: df
Out[56]:

A B C D E F
0 one A foo 0.341734 -0.317441 2013-01-01
1 one B foo 0.959726 -1.236269 2013-02-01
2 two C foo -1.110336 0.896171 2013-03-01
3 three A bar -0.619976 -0.487602 2013-04-01
4 one B bar 0.149748 -0.082240 2013-05-01
5 one C bar -0.732339 -2.182937 2013-06-01
6 two A foo 0.687738 0.380396 2013-07-01
..
17 one C bar -0.345352 0.206053 2013-06-15
18 two A foo 1.314232 -0.251905 2013-07-15

(continues on next page)

922 Chapter 18. Reshaping and Pivot Tables

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

19 three B foo 0.690579 -2.213588 2013-08-15
20 one C foo 0.995761 1.063327 2013-09-15
21 one A bar 2.396780 1.266143 2013-10-15
22 two B bar 0.014871 0.299368 2013-11-15
23 three C bar 3.357427 -0.863838 2013-12-15

[24 rows x 6 columns]

We can produce pivot tables from this data very easily:

In [57]: pd.pivot_table(df, values='D', index=['A', 'B'], columns=['C'])
Out[57]:
C bar foo
A B
one A 1.120915 -0.514058

B -0.338421 0.002759
C -0.538846 0.699535

three A -1.181568 NaN
B NaN 0.433512
C 0.588783 NaN

two A NaN 1.000985
B 0.158248 NaN
C NaN 0.176180

In [58]: pd.pivot_table(df, values='D', index=['B'], columns=['A', 'C'], aggfunc=np.
→˓sum)
\\Out[58]:
→˓

A one three two
C bar foo bar foo bar foo
B
A 2.241830 -1.028115 -2.363137 NaN NaN 2.001971
B -0.676843 0.005518 NaN 0.867024 0.316495 NaN
C -1.077692 1.399070 1.177566 NaN NaN 0.352360

In [59]: pd.pivot_table(df, values=['D','E'], index=['B'], columns=['A', 'C'],
→˓aggfunc=np.sum)
\\Out[59]:
→˓

D E
→˓

A one three two one
→˓three two
C bar foo bar foo bar foo bar foo
→˓ bar foo bar foo
B
→˓

A 2.241830 -1.028115 -2.363137 NaN NaN 2.001971 2.786113 -0.043211 1.
→˓922577 NaN NaN 0.128491
B -0.676843 0.005518 NaN 0.867024 0.316495 NaN 1.368280 -1.103384
→˓ NaN -2.128743 -0.194294 NaN
C -1.077692 1.399070 1.177566 NaN NaN 0.352360 -1.976883 1.495717 -0.
→˓263660 NaN NaN 0.872482

The result object is a DataFrame having potentially hierarchical indexes on the rows and columns. If the values
column name is not given, the pivot table will include all of the data that can be aggregated in an additional level of
hierarchy in the columns:

18.5. Pivot tables 923

pandas: powerful Python data analysis toolkit, Release 0.23.4

In [60]: pd.pivot_table(df, index=['A', 'B'], columns=['C'])
Out[60]:

D E
C bar foo bar foo
A B
one A 1.120915 -0.514058 1.393057 -0.021605

B -0.338421 0.002759 0.684140 -0.551692
C -0.538846 0.699535 -0.988442 0.747859

three A -1.181568 NaN 0.961289 NaN
B NaN 0.433512 NaN -1.064372
C 0.588783 NaN -0.131830 NaN

two A NaN 1.000985 NaN 0.064245
B 0.158248 NaN -0.097147 NaN
C NaN 0.176180 NaN 0.436241

Also, you can use Grouper for index and columns keywords. For detail of Grouper, see Grouping with a
Grouper specification.

In [61]: pd.pivot_table(df, values='D', index=pd.Grouper(freq='M', key='F'), columns=
→˓'C')
Out[61]:
C bar foo
F
2013-01-31 NaN -0.514058
2013-02-28 NaN 0.002759
2013-03-31 NaN 0.176180
2013-04-30 -1.181568 NaN
2013-05-31 -0.338421 NaN
2013-06-30 -0.538846 NaN
2013-07-31 NaN 1.000985
2013-08-31 NaN 0.433512
2013-09-30 NaN 0.699535
2013-10-31 1.120915 NaN
2013-11-30 0.158248 NaN
2013-12-31 0.588783 NaN

You can render a nice output of the table omitting the missing values by calling to_string if you wish:

In [62]: table = pd.pivot_table(df, index=['A', 'B'], columns=['C'])

In [63]: print(table.to_string(na_rep=''))
D E

C bar foo bar foo
A B
one A 1.120915 -0.514058 1.393057 -0.021605

B -0.338421 0.002759 0.684140 -0.551692
C -0.538846 0.699535 -0.988442 0.747859

three A -1.181568 0.961289
B 0.433512 -1.064372
C 0.588783 -0.131830

two A 1.000985 0.064245
B 0.158248 -0.097147
C 0.176180 0.436241

Note that pivot_table is also available as an instance method on DataFrame, i.e. DataFrame.
pivot_table().

924 Chapter 18. Reshaping and Pivot Tables

pandas: powerful Python data analysis toolkit, Release 0.23.4

18.5.1 Adding margins

If you pass margins=True to pivot_table, special All columns and rows will be added with partial group
aggregates across the categories on the rows and columns:

In [64]: df.pivot_table(index=['A', 'B'], columns='C', margins=True, aggfunc=np.std)
Out[64]:

D E
C bar foo All bar foo All
A B
one A 1.804346 1.210272 1.569879 0.179483 0.418374 0.858005

B 0.690376 1.353355 0.898998 1.083825 0.968138 1.101401
C 0.273641 0.418926 0.771139 1.689271 0.446140 1.422136

three A 0.794212 NaN 0.794212 2.049040 NaN 2.049040
B NaN 0.363548 0.363548 NaN 1.625237 1.625237
C 3.915454 NaN 3.915454 1.035215 NaN 1.035215

two A NaN 0.442998 0.442998 NaN 0.447104 0.447104
B 0.202765 NaN 0.202765 0.560757 NaN 0.560757
C NaN 1.819408 1.819408 NaN 0.650439 0.650439

All 1.556686 0.952552 1.246608 1.250924 0.899904 1.059389

18.6 Cross tabulations

Use crosstab() to compute a cross-tabulation of two (or more) factors. By default crosstab computes a fre-
quency table of the factors unless an array of values and an aggregation function are passed.

It takes a number of arguments

• index: array-like, values to group by in the rows.

• columns: array-like, values to group by in the columns.

• values: array-like, optional, array of values to aggregate according to the factors.

• aggfunc: function, optional, If no values array is passed, computes a frequency table.

• rownames: sequence, default None, must match number of row arrays passed.

• colnames: sequence, default None, if passed, must match number of column arrays passed.

• margins: boolean, default False, Add row/column margins (subtotals)

• normalize: boolean, {‘all’, ‘index’, ‘columns’}, or {0,1}, default False. Normalize by dividing all values
by the sum of values.

Any Series passed will have their name attributes used unless row or column names for the cross-tabulation are
specified

For example:

In [65]: foo, bar, dull, shiny, one, two = 'foo', 'bar', 'dull', 'shiny', 'one', 'two'

In [66]: a = np.array([foo, foo, bar, bar, foo, foo], dtype=object)

In [67]: b = np.array([one, one, two, one, two, one], dtype=object)

In [68]: c = np.array([dull, dull, shiny, dull, dull, shiny], dtype=object)

In [69]: pd.crosstab(a, [b, c], rownames=['a'], colnames=['b', 'c'])

(continues on next page)

18.6. Cross tabulations 925

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

Out[69]:
b one two
c dull shiny dull shiny
a
bar 1 0 0 1
foo 2 1 1 0

If crosstab receives only two Series, it will provide a frequency table.

In [70]: df = pd.DataFrame({'A': [1, 2, 2, 2, 2], 'B': [3, 3, 4, 4, 4],
....: 'C': [1, 1, np.nan, 1, 1]})
....:

In [71]: df
Out[71]:

A B C
0 1 3 1.0
1 2 3 1.0
2 2 4 NaN
3 2 4 1.0
4 2 4 1.0

In [72]: pd.crosstab(df.A, df.B)
\\Out[72]:
→˓

B 3 4
A
1 1 0
2 1 3

Any input passed containing Categorical data will have all of its categories included in the cross-tabulation, even
if the actual data does not contain any instances of a particular category.

In [73]: foo = pd.Categorical(['a', 'b'], categories=['a', 'b', 'c'])

In [74]: bar = pd.Categorical(['d', 'e'], categories=['d', 'e', 'f'])

In [75]: pd.crosstab(foo, bar)
Out[75]:
col_0 d e
row_0
a 1 0
b 0 1

18.6.1 Normalization

New in version 0.18.1.

Frequency tables can also be normalized to show percentages rather than counts using the normalize argument:

In [76]: pd.crosstab(df.A, df.B, normalize=True)
Out[76]:
B 3 4
A
1 0.2 0.0
2 0.2 0.6

926 Chapter 18. Reshaping and Pivot Tables

pandas: powerful Python data analysis toolkit, Release 0.23.4

normalize can also normalize values within each row or within each column:

In [77]: pd.crosstab(df.A, df.B, normalize='columns')
Out[77]:
B 3 4
A
1 0.5 0.0
2 0.5 1.0

crosstab can also be passed a third Series and an aggregation function (aggfunc) that will be applied to the
values of the third Series within each group defined by the first two Series:

In [78]: pd.crosstab(df.A, df.B, values=df.C, aggfunc=np.sum)
Out[78]:
B 3 4
A
1 1.0 NaN
2 1.0 2.0

18.6.2 Adding Margins

Finally, one can also add margins or normalize this output.

In [79]: pd.crosstab(df.A, df.B, values=df.C, aggfunc=np.sum, normalize=True,
....: margins=True)
....:

Out[79]:
B 3 4 All
A
1 0.25 0.0 0.25
2 0.25 0.5 0.75
All 0.50 0.5 1.00

18.7 Tiling

The cut() function computes groupings for the values of the input array and is often used to transform continuous
variables to discrete or categorical variables:

In [80]: ages = np.array([10, 15, 13, 12, 23, 25, 28, 59, 60])

In [81]: pd.cut(ages, bins=3)
Out[81]:
[(9.95, 26.667], (9.95, 26.667], (9.95, 26.667], (9.95, 26.667], (9.95, 26.667], (9.
→˓95, 26.667], (26.667, 43.333], (43.333, 60.0], (43.333, 60.0]]
Categories (3, interval[float64]): [(9.95, 26.667] < (26.667, 43.333] < (43.333, 60.
→˓0]]

If the bins keyword is an integer, then equal-width bins are formed. Alternatively we can specify custom bin-edges:

In [82]: c = pd.cut(ages, bins=[0, 18, 35, 70])

In [83]: c
Out[83]:

(continues on next page)

18.7. Tiling 927

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

[(0, 18], (0, 18], (0, 18], (0, 18], (18, 35], (18, 35], (18, 35], (35, 70], (35, 70]]
Categories (3, interval[int64]): [(0, 18] < (18, 35] < (35, 70]]

New in version 0.20.0.

If the bins keyword is an IntervalIndex, then these will be used to bin the passed data.:

pd.cut([25, 20, 50], bins=c.categories)

18.8 Computing indicator / dummy variables

To convert a categorical variable into a “dummy” or “indicator” DataFrame, for example a column in a DataFrame
(a Series) which has k distinct values, can derive a DataFrame containing k columns of 1s and 0s using
get_dummies():

In [84]: df = pd.DataFrame({'key': list('bbacab'), 'data1': range(6)})

In [85]: pd.get_dummies(df['key'])
Out[85]:

a b c
0 0 1 0
1 0 1 0
2 1 0 0
3 0 0 1
4 1 0 0
5 0 1 0

Sometimes it’s useful to prefix the column names, for example when merging the result with the original DataFrame:

In [86]: dummies = pd.get_dummies(df['key'], prefix='key')

In [87]: dummies
Out[87]:

key_a key_b key_c
0 0 1 0
1 0 1 0
2 1 0 0
3 0 0 1
4 1 0 0
5 0 1 0

In [88]: df[['data1']].join(dummies)
\\\Out[88]:
→˓

data1 key_a key_b key_c
0 0 0 1 0
1 1 0 1 0
2 2 1 0 0
3 3 0 0 1
4 4 1 0 0
5 5 0 1 0

This function is often used along with discretization functions like cut:

928 Chapter 18. Reshaping and Pivot Tables

pandas: powerful Python data analysis toolkit, Release 0.23.4

In [89]: values = np.random.randn(10)

In [90]: values
Out[90]:
array([0.4082, -1.0481, -0.0257, -0.9884, 0.0941, 1.2627, 1.29 ,

0.0824, -0.0558, 0.5366])

In [91]: bins = [0, 0.2, 0.4, 0.6, 0.8, 1]

In [92]: pd.get_dummies(pd.cut(values, bins))
Out[92]:

(0.0, 0.2] (0.2, 0.4] (0.4, 0.6] (0.6, 0.8] (0.8, 1.0]
0 0 0 1 0 0
1 0 0 0 0 0
2 0 0 0 0 0
3 0 0 0 0 0
4 1 0 0 0 0
5 0 0 0 0 0
6 0 0 0 0 0
7 1 0 0 0 0
8 0 0 0 0 0
9 0 0 1 0 0

See also Series.str.get_dummies.

get_dummies() also accepts a DataFrame. By default all categorical variables (categorical in the statistical
sense, those with object or categorical dtype) are encoded as dummy variables.

In [93]: df = pd.DataFrame({'A': ['a', 'b', 'a'], 'B': ['c', 'c', 'b'],
....: 'C': [1, 2, 3]})
....:

In [94]: pd.get_dummies(df)
Out[94]:

C A_a A_b B_b B_c
0 1 1 0 0 1
1 2 0 1 0 1
2 3 1 0 1 0

All non-object columns are included untouched in the output. You can control the columns that are encoded with the
columns keyword.

In [95]: pd.get_dummies(df, columns=['A'])
Out[95]:

B C A_a A_b
0 c 1 1 0
1 c 2 0 1
2 b 3 1 0

Notice that the B column is still included in the output, it just hasn’t been encoded. You can drop B before calling
get_dummies if you don’t want to include it in the output.

As with the Series version, you can pass values for the prefix and prefix_sep. By default the column name
is used as the prefix, and ‘_’ as the prefix separator. You can specify prefix and prefix_sep in 3 ways:

• string: Use the same value for prefix or prefix_sep for each column to be encoded.

• list: Must be the same length as the number of columns being encoded.

• dict: Mapping column name to prefix.

18.8. Computing indicator / dummy variables 929

pandas: powerful Python data analysis toolkit, Release 0.23.4

In [96]: simple = pd.get_dummies(df, prefix='new_prefix')

In [97]: simple
Out[97]:

C new_prefix_a new_prefix_b new_prefix_b new_prefix_c
0 1 1 0 0 1
1 2 0 1 0 1
2 3 1 0 1 0

In [98]: from_list = pd.get_dummies(df, prefix=['from_A', 'from_B'])

In [99]: from_list
Out[99]:

C from_A_a from_A_b from_B_b from_B_c
0 1 1 0 0 1
1 2 0 1 0 1
2 3 1 0 1 0

In [100]: from_dict = pd.get_dummies(df, prefix={'B': 'from_B', 'A': 'from_A'})

In [101]: from_dict
Out[101]:

C from_A_a from_A_b from_B_b from_B_c
0 1 1 0 0 1
1 2 0 1 0 1
2 3 1 0 1 0

New in version 0.18.0.

Sometimes it will be useful to only keep k-1 levels of a categorical variable to avoid collinearity when feeding the
result to statistical models. You can switch to this mode by turn on drop_first.

In [102]: s = pd.Series(list('abcaa'))

In [103]: pd.get_dummies(s)
Out[103]:

a b c
0 1 0 0
1 0 1 0
2 0 0 1
3 1 0 0
4 1 0 0

In [104]: pd.get_dummies(s, drop_first=True)
\\\Out[104]:
→˓

b c
0 0 0
1 1 0
2 0 1
3 0 0
4 0 0

When a column contains only one level, it will be omitted in the result.

In [105]: df = pd.DataFrame({'A':list('aaaaa'),'B':list('ababc')})

In [106]: pd.get_dummies(df)
(continues on next page)

930 Chapter 18. Reshaping and Pivot Tables

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

Out[106]:
A_a B_a B_b B_c

0 1 1 0 0
1 1 0 1 0
2 1 1 0 0
3 1 0 1 0
4 1 0 0 1

In [107]: pd.get_dummies(df, drop_first=True)
\\\Out[107]:
→˓

B_b B_c
0 0 0
1 1 0
2 0 0
3 1 0
4 0 1

By default new columns will have np.uint8 dtype. To choose another dtype, use the‘‘dtype‘‘ argument:

In [108]: df = pd.DataFrame({'A': list('abc'), 'B': [1.1, 2.2, 3.3]})

In [109]: pd.get_dummies(df, dtype=bool).dtypes
Out[109]:
B float64
A_a bool
A_b bool
A_c bool
dtype: object

New in version 0.23.0.

18.9 Factorizing values

To encode 1-d values as an enumerated type use factorize():

In [110]: x = pd.Series(['A', 'A', np.nan, 'B', 3.14, np.inf])

In [111]: x
Out[111]:
0 A
1 A
2 NaN
3 B
4 3.14
5 inf
dtype: object

In [112]: labels, uniques = pd.factorize(x)

In [113]: labels
Out[113]: array([0, 0, -1, 1, 2, 3])

In [114]: uniques

(continues on next page)

18.9. Factorizing values 931

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

\\Out[114]: Index(['A', 'B', 3.14, inf],
→˓dtype='object')

Note that factorize is similar to numpy.unique, but differs in its handling of NaN:

Note: The following numpy.unique will fail under Python 3 with a TypeError because of an ordering bug. See
also here.

In [2]: pd.factorize(x, sort=True)
Out[2]:
(array([2, 2, -1, 3, 0, 1]),
Index([3.14, inf, u'A', u'B'], dtype='object'))

In [3]: np.unique(x, return_inverse=True)[::-1]
Out[3]: (array([3, 3, 0, 4, 1, 2]), array([nan, 3.14, inf, 'A', 'B'], dtype=object))

Note: If you just want to handle one column as a categorical variable (like R’s factor), you can use df["cat_col"]
= pd.Categorical(df["col"]) or df["cat_col"] = df["col"].astype("category"). For
full docs on Categorical, see the Categorical introduction and the API documentation.

932 Chapter 18. Reshaping and Pivot Tables

https://github.com/numpy/numpy/issues/641

CHAPTER

NINETEEN

TIME SERIES / DATE FUNCTIONALITY

pandas has proven very successful as a tool for working with time series data, especially in the financial data anal-
ysis space. Using the NumPy datetime64 and timedelta64 dtypes, we have consolidated a large number of
features from other Python libraries like scikits.timeseries as well as created a tremendous amount of new
functionality for manipulating time series data.

In working with time series data, we will frequently seek to:

• generate sequences of fixed-frequency dates and time spans

• conform or convert time series to a particular frequency

• compute “relative” dates based on various non-standard time increments (e.g. 5 business days before the last
business day of the year), or “roll” dates forward or backward

pandas provides a relatively compact and self-contained set of tools for performing the above tasks.

Create a range of dates:

72 hours starting with midnight Jan 1st, 2011
In [1]: rng = pd.date_range('1/1/2011', periods=72, freq='H')

In [2]: rng[:5]
Out[2]:
DatetimeIndex(['2011-01-01 00:00:00', '2011-01-01 01:00:00',

'2011-01-01 02:00:00', '2011-01-01 03:00:00',
'2011-01-01 04:00:00'],

dtype='datetime64[ns]', freq='H')

Index pandas objects with dates:

In [3]: ts = pd.Series(np.random.randn(len(rng)), index=rng)

In [4]: ts.head()
Out[4]:
2011-01-01 00:00:00 0.469112
2011-01-01 01:00:00 -0.282863
2011-01-01 02:00:00 -1.509059
2011-01-01 03:00:00 -1.135632
2011-01-01 04:00:00 1.212112
Freq: H, dtype: float64

Change frequency and fill gaps:

to 45 minute frequency and forward fill
In [5]: converted = ts.asfreq('45Min', method='pad')

(continues on next page)

933

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

In [6]: converted.head()
Out[6]:
2011-01-01 00:00:00 0.469112
2011-01-01 00:45:00 0.469112
2011-01-01 01:30:00 -0.282863
2011-01-01 02:15:00 -1.509059
2011-01-01 03:00:00 -1.135632
Freq: 45T, dtype: float64

Resample the series to a daily frequency:

Daily means
In [7]: ts.resample('D').mean()
Out[7]:
2011-01-01 -0.319569
2011-01-02 -0.337703
2011-01-03 0.117258
Freq: D, dtype: float64

19.1 Overview

The following table shows the type of time-related classes pandas can handle and how to create them.

Class Remarks How to create
Timestamp Represents a single times-

tamp
to_datetime, Timestamp

DatetimeIndex Index of Timestamp to_datetime, date_range, bdate_range,
DatetimeIndex

Period Represents a single time
span

Period

PeriodIndex Index of Period period_range, PeriodIndex

19.2 Timestamps vs. Time Spans

Timestamped data is the most basic type of time series data that associates values with points in time. For pandas
objects it means using the points in time.

In [8]: pd.Timestamp(datetime(2012, 5, 1))
Out[8]: Timestamp('2012-05-01 00:00:00')

In [9]: pd.Timestamp('2012-05-01')
\\\Out[9]: Timestamp('2012-05-01 00:00:00')

In [10]: pd.Timestamp(2012, 5, 1)
\\Out[10]:
→˓Timestamp('2012-05-01 00:00:00')

However, in many cases it is more natural to associate things like change variables with a time span instead. The span
represented by Period can be specified explicitly, or inferred from datetime string format.

For example:

934 Chapter 19. Time Series / Date functionality

pandas: powerful Python data analysis toolkit, Release 0.23.4

In [11]: pd.Period('2011-01')
Out[11]: Period('2011-01', 'M')

In [12]: pd.Period('2012-05', freq='D')
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\Out[12]: Period('2012-05-01', 'D')

Timestamp and Period can serve as an index. Lists of Timestamp and Period are automatically coerced to
DatetimeIndex and PeriodIndex respectively.

In [13]: dates = [pd.Timestamp('2012-05-01'), pd.Timestamp('2012-05-02'), pd.
→˓Timestamp('2012-05-03')]

In [14]: ts = pd.Series(np.random.randn(3), dates)

In [15]: type(ts.index)
Out[15]: pandas.core.indexes.datetimes.DatetimeIndex

In [16]: ts.index
\\\Out[16]: DatetimeIndex(['2012-05-
→˓01', '2012-05-02', '2012-05-03'], dtype='datetime64[ns]', freq=None)

In [17]: ts
\\\Out[17]:
→˓

2012-05-01 -0.410001
2012-05-02 -0.078638
2012-05-03 0.545952
dtype: float64

In [18]: periods = [pd.Period('2012-01'), pd.Period('2012-02'), pd.Period('2012-03')]

In [19]: ts = pd.Series(np.random.randn(3), periods)

In [20]: type(ts.index)
Out[20]: pandas.core.indexes.period.PeriodIndex

In [21]: ts.index
\\Out[21]: PeriodIndex(['2012-01',
→˓'2012-02', '2012-03'], dtype='period[M]', freq='M')

In [22]: ts
\\\Out[22]:
→˓

2012-01 -1.219217
2012-02 -1.226825
2012-03 0.769804
Freq: M, dtype: float64

pandas allows you to capture both representations and convert between them. Under the hood, pandas represents
timestamps using instances of Timestamp and sequences of timestamps using instances of DatetimeIndex. For
regular time spans, pandas uses Period objects for scalar values and PeriodIndex for sequences of spans. Better
support for irregular intervals with arbitrary start and end points are forth-coming in future releases.

19.2. Timestamps vs. Time Spans 935

pandas: powerful Python data analysis toolkit, Release 0.23.4

19.3 Converting to Timestamps

To convert a Series or list-like object of date-like objects e.g. strings, epochs, or a mixture, you can use the
to_datetime function. When passed a Series, this returns a Series (with the same index), while a list-like is
converted to a DatetimeIndex:

In [23]: pd.to_datetime(pd.Series(['Jul 31, 2009', '2010-01-10', None]))
Out[23]:
0 2009-07-31
1 2010-01-10
2 NaT
dtype: datetime64[ns]

In [24]: pd.to_datetime(['2005/11/23', '2010.12.31'])
\\\Out[24]:
→˓DatetimeIndex(['2005-11-23', '2010-12-31'], dtype='datetime64[ns]', freq=None)

If you use dates which start with the day first (i.e. European style), you can pass the dayfirst flag:

In [25]: pd.to_datetime(['04-01-2012 10:00'], dayfirst=True)
Out[25]: DatetimeIndex(['2012-01-04 10:00:00'], dtype='datetime64[ns]', freq=None)

In [26]: pd.to_datetime(['14-01-2012', '01-14-2012'], dayfirst=True)
\\\Out[26]:
→˓DatetimeIndex(['2012-01-14', '2012-01-14'], dtype='datetime64[ns]', freq=None)

Warning: You see in the above example that dayfirst isn’t strict, so if a date can’t be parsed with the day
being first it will be parsed as if dayfirst were False.

If you pass a single string to to_datetime, it returns a single Timestamp. Timestamp can also accept string
input, but it doesn’t accept string parsing options like dayfirst or format, so use to_datetime if these are
required.

In [27]: pd.to_datetime('2010/11/12')
Out[27]: Timestamp('2010-11-12 00:00:00')

In [28]: pd.Timestamp('2010/11/12')
\\Out[28]: Timestamp('2010-11-12 00:00:00')

19.3.1 Providing a Format Argument

In addition to the required datetime string, a format argument can be passed to ensure specific parsing. This could
also potentially speed up the conversion considerably.

In [29]: pd.to_datetime('2010/11/12', format='%Y/%m/%d')
Out[29]: Timestamp('2010-11-12 00:00:00')

In [30]: pd.to_datetime('12-11-2010 00:00', format='%d-%m-%Y %H:%M')
\\Out[30]: Timestamp('2010-11-12 00:00:00')

For more information on the choices available when specifying the format option, see the Python datetime docu-
mentation.

936 Chapter 19. Time Series / Date functionality

https://docs.python.org/3/library/datetime.html#strftime-and-strptime-behavior
https://docs.python.org/3/library/datetime.html#strftime-and-strptime-behavior

pandas: powerful Python data analysis toolkit, Release 0.23.4

19.3.2 Assembling Datetime from Multiple DataFrame Columns

New in version 0.18.1.

You can also pass a DataFrame of integer or string columns to assemble into a Series of Timestamps.

In [31]: df = pd.DataFrame({'year': [2015, 2016],
....: 'month': [2, 3],
....: 'day': [4, 5],
....: 'hour': [2, 3]})
....:

In [32]: pd.to_datetime(df)
Out[32]:
0 2015-02-04 02:00:00
1 2016-03-05 03:00:00
dtype: datetime64[ns]

You can pass only the columns that you need to assemble.

In [33]: pd.to_datetime(df[['year', 'month', 'day']])
Out[33]:
0 2015-02-04
1 2016-03-05
dtype: datetime64[ns]

pd.to_datetime looks for standard designations of the datetime component in the column names, including:

• required: year, month, day

• optional: hour, minute, second, millisecond, microsecond, nanosecond

19.3.3 Invalid Data

The default behavior, errors='raise', is to raise when unparseable:

In [2]: pd.to_datetime(['2009/07/31', 'asd'], errors='raise')
ValueError: Unknown string format

Pass errors='ignore' to return the original input when unparseable:

In [34]: pd.to_datetime(['2009/07/31', 'asd'], errors='ignore')
Out[34]: array(['2009/07/31', 'asd'], dtype=object)

Pass errors='coerce' to convert unparseable data to NaT (not a time):

In [35]: pd.to_datetime(['2009/07/31', 'asd'], errors='coerce')
Out[35]: DatetimeIndex(['2009-07-31', 'NaT'], dtype='datetime64[ns]', freq=None)

19.3.4 Epoch Timestamps

pandas supports converting integer or float epoch times to Timestamp and DatetimeIndex. The default unit is
nanoseconds, since that is how Timestamp objects are stored internally. However, epochs are often stored in another
unit which can be specified. These are computed from the starting point specified by the origin parameter.

19.3. Converting to Timestamps 937

pandas: powerful Python data analysis toolkit, Release 0.23.4

In [36]: pd.to_datetime([1349720105, 1349806505, 1349892905,
....: 1349979305, 1350065705], unit='s')
....:

Out[36]:
DatetimeIndex(['2012-10-08 18:15:05', '2012-10-09 18:15:05',

'2012-10-10 18:15:05', '2012-10-11 18:15:05',
'2012-10-12 18:15:05'],

dtype='datetime64[ns]', freq=None)

In [37]: pd.to_datetime([1349720105100, 1349720105200, 1349720105300,
....: 1349720105400, 1349720105500], unit='ms')
....:

\\Out[37]:
→˓

DatetimeIndex(['2012-10-08 18:15:05.100000', '2012-10-08 18:15:05.200000',
'2012-10-08 18:15:05.300000', '2012-10-08 18:15:05.400000',
'2012-10-08 18:15:05.500000'],

dtype='datetime64[ns]', freq=None)

Note: Epoch times will be rounded to the nearest nanosecond.

Warning: Conversion of float epoch times can lead to inaccurate and unexpected results. Python floats have
about 15 digits precision in decimal. Rounding during conversion from float to high precision Timestamp is
unavoidable. The only way to achieve exact precision is to use a fixed-width types (e.g. an int64).

In [38]: pd.to_datetime([1490195805.433, 1490195805.433502912], unit='s')
Out[38]: DatetimeIndex(['2017-03-22 15:16:45.433000088', '2017-03-22 15:16:45.
→˓433502913'], dtype='datetime64[ns]', freq=None)

In [39]: pd.to_datetime(1490195805433502912, unit='ns')
\\Out[39]:
→˓Timestamp('2017-03-22 15:16:45.433502912')

See also:

Using the origin Parameter

19.3.5 From Timestamps to Epoch

To invert the operation from above, namely, to convert from a Timestamp to a ‘unix’ epoch:

In [40]: stamps = pd.date_range('2012-10-08 18:15:05', periods=4, freq='D')

In [41]: stamps
Out[41]:
DatetimeIndex(['2012-10-08 18:15:05', '2012-10-09 18:15:05',

'2012-10-10 18:15:05', '2012-10-11 18:15:05'],
dtype='datetime64[ns]', freq='D')

We subtract the epoch (midnight at January 1, 1970 UTC) and then floor divide by the “unit” (1 second).

In [42]: (stamps - pd.Timestamp("1970-01-01")) // pd.Timedelta('1s')
Out[42]: Int64Index([1349720105, 1349806505, 1349892905, 1349979305], dtype='int64')

938 Chapter 19. Time Series / Date functionality

https://docs.python.org/3/tutorial/floatingpoint.html#tut-fp-issues

pandas: powerful Python data analysis toolkit, Release 0.23.4

19.3.6 Using the origin Parameter

New in version 0.20.0.

Using the origin parameter, one can specify an alternative starting point for creation of a DatetimeIndex. For
example, to use 1960-01-01 as the starting date:

In [43]: pd.to_datetime([1, 2, 3], unit='D', origin=pd.Timestamp('1960-01-01'))
Out[43]: DatetimeIndex(['1960-01-02', '1960-01-03', '1960-01-04'], dtype=
→˓'datetime64[ns]', freq=None)

The default is set at origin='unix', which defaults to 1970-01-01 00:00:00. Commonly called ‘unix
epoch’ or POSIX time.

In [44]: pd.to_datetime([1, 2, 3], unit='D')
Out[44]: DatetimeIndex(['1970-01-02', '1970-01-03', '1970-01-04'], dtype=
→˓'datetime64[ns]', freq=None)

19.4 Generating Ranges of Timestamps

To generate an index with timestamps, you can use either the DatetimeIndex or Index constructor and pass in a
list of datetime objects:

In [45]: dates = [datetime(2012, 5, 1), datetime(2012, 5, 2), datetime(2012, 5, 3)]

Note the frequency information
In [46]: index = pd.DatetimeIndex(dates)

In [47]: index
Out[47]: DatetimeIndex(['2012-05-01', '2012-05-02', '2012-05-03'], dtype=
→˓'datetime64[ns]', freq=None)

Automatically converted to DatetimeIndex
In [48]: index = pd.Index(dates)

In [49]: index
Out[49]: DatetimeIndex(['2012-05-01', '2012-05-02', '2012-05-03'], dtype=
→˓'datetime64[ns]', freq=None)

In practice this becomes very cumbersome because we often need a very long index with a large number of timestamps.
If we need timestamps on a regular frequency, we can use the date_range() and bdate_range() functions
to create a DatetimeIndex. The default frequency for date_range is a calendar day while the default for
bdate_range is a business day:

In [50]: start = datetime(2011, 1, 1)

In [51]: end = datetime(2012, 1, 1)

In [52]: index = pd.date_range(start, end)

In [53]: index
Out[53]:
DatetimeIndex(['2011-01-01', '2011-01-02', '2011-01-03', '2011-01-04',

'2011-01-05', '2011-01-06', '2011-01-07', '2011-01-08',
'2011-01-09', '2011-01-10',

(continues on next page)

19.4. Generating Ranges of Timestamps 939

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

...
'2011-12-23', '2011-12-24', '2011-12-25', '2011-12-26',
'2011-12-27', '2011-12-28', '2011-12-29', '2011-12-30',
'2011-12-31', '2012-01-01'],

dtype='datetime64[ns]', length=366, freq='D')

In [54]: index = pd.bdate_range(start, end)

In [55]: index
Out[55]:
DatetimeIndex(['2011-01-03', '2011-01-04', '2011-01-05', '2011-01-06',

'2011-01-07', '2011-01-10', '2011-01-11', '2011-01-12',
'2011-01-13', '2011-01-14',
...
'2011-12-19', '2011-12-20', '2011-12-21', '2011-12-22',
'2011-12-23', '2011-12-26', '2011-12-27', '2011-12-28',
'2011-12-29', '2011-12-30'],

dtype='datetime64[ns]', length=260, freq='B')

Convenience functions like date_range and bdate_range can utilize a variety of frequency aliases:

In [56]: pd.date_range(start, periods=1000, freq='M')
Out[56]:
DatetimeIndex(['2011-01-31', '2011-02-28', '2011-03-31', '2011-04-30',

'2011-05-31', '2011-06-30', '2011-07-31', '2011-08-31',
'2011-09-30', '2011-10-31',
...
'2093-07-31', '2093-08-31', '2093-09-30', '2093-10-31',
'2093-11-30', '2093-12-31', '2094-01-31', '2094-02-28',
'2094-03-31', '2094-04-30'],

dtype='datetime64[ns]', length=1000, freq='M')

In [57]: pd.bdate_range(start, periods=250, freq='BQS')
\\\Out[57]:
→˓

DatetimeIndex(['2011-01-03', '2011-04-01', '2011-07-01', '2011-10-03',
'2012-01-02', '2012-04-02', '2012-07-02', '2012-10-01',
'2013-01-01', '2013-04-01',
...
'2071-01-01', '2071-04-01', '2071-07-01', '2071-10-01',
'2072-01-01', '2072-04-01', '2072-07-01', '2072-10-03',
'2073-01-02', '2073-04-03'],

dtype='datetime64[ns]', length=250, freq='BQS-JAN')

date_range and bdate_range make it easy to generate a range of dates using various combinations of parame-
ters like start, end, periods, and freq. The start and end dates are strictly inclusive, so dates outside of those
specified will not be generated:

In [58]: pd.date_range(start, end, freq='BM')
Out[58]:
DatetimeIndex(['2011-01-31', '2011-02-28', '2011-03-31', '2011-04-29',

'2011-05-31', '2011-06-30', '2011-07-29', '2011-08-31',
'2011-09-30', '2011-10-31', '2011-11-30', '2011-12-30'],

dtype='datetime64[ns]', freq='BM')

In [59]: pd.date_range(start, end, freq='W')

(continues on next page)

940 Chapter 19. Time Series / Date functionality

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

\\\Out[59]:
→˓

DatetimeIndex(['2011-01-02', '2011-01-09', '2011-01-16', '2011-01-23',
'2011-01-30', '2011-02-06', '2011-02-13', '2011-02-20',
'2011-02-27', '2011-03-06', '2011-03-13', '2011-03-20',
'2011-03-27', '2011-04-03', '2011-04-10', '2011-04-17',
'2011-04-24', '2011-05-01', '2011-05-08', '2011-05-15',
'2011-05-22', '2011-05-29', '2011-06-05', '2011-06-12',
'2011-06-19', '2011-06-26', '2011-07-03', '2011-07-10',
'2011-07-17', '2011-07-24', '2011-07-31', '2011-08-07',
'2011-08-14', '2011-08-21', '2011-08-28', '2011-09-04',
'2011-09-11', '2011-09-18', '2011-09-25', '2011-10-02',
'2011-10-09', '2011-10-16', '2011-10-23', '2011-10-30',
'2011-11-06', '2011-11-13', '2011-11-20', '2011-11-27',
'2011-12-04', '2011-12-11', '2011-12-18', '2011-12-25',
'2012-01-01'],

dtype='datetime64[ns]', freq='W-SUN')

In [60]: pd.bdate_range(end=end, periods=20)
\\Out[60]:
→˓

DatetimeIndex(['2011-12-05', '2011-12-06', '2011-12-07', '2011-12-08',
'2011-12-09', '2011-12-12', '2011-12-13', '2011-12-14',
'2011-12-15', '2011-12-16', '2011-12-19', '2011-12-20',
'2011-12-21', '2011-12-22', '2011-12-23', '2011-12-26',
'2011-12-27', '2011-12-28', '2011-12-29', '2011-12-30'],

dtype='datetime64[ns]', freq='B')

In [61]: pd.bdate_range(start=start, periods=20)
\\Out[61]:
→˓

DatetimeIndex(['2011-01-03', '2011-01-04', '2011-01-05', '2011-01-06',
'2011-01-07', '2011-01-10', '2011-01-11', '2011-01-12',
'2011-01-13', '2011-01-14', '2011-01-17', '2011-01-18',
'2011-01-19', '2011-01-20', '2011-01-21', '2011-01-24',
'2011-01-25', '2011-01-26', '2011-01-27', '2011-01-28'],

dtype='datetime64[ns]', freq='B')

New in version 0.23.0.

Specifying start, end, and periods will generate a range of evenly spaced dates from start to end inclusively,
with periods number of elements in the resulting DatetimeIndex:

In [62]: pd.date_range('2018-01-01', '2018-01-05', periods=5)
Out[62]:
DatetimeIndex(['2018-01-01', '2018-01-02', '2018-01-03', '2018-01-04',

'2018-01-05'],
dtype='datetime64[ns]', freq=None)

In [63]: pd.date_range('2018-01-01', '2018-01-05', periods=10)
\\Out[63]:
→˓

DatetimeIndex(['2018-01-01 00:00:00', '2018-01-01 10:40:00',
'2018-01-01 21:20:00', '2018-01-02 08:00:00',
'2018-01-02 18:40:00', '2018-01-03 05:20:00',
'2018-01-03 16:00:00', '2018-01-04 02:40:00',
'2018-01-04 13:20:00', '2018-01-05 00:00:00'],

(continues on next page)

19.4. Generating Ranges of Timestamps 941

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

dtype='datetime64[ns]', freq=None)

19.4.1 Custom Frequency Ranges

Warning: This functionality was originally exclusive to cdate_range, which is deprecated as of version 0.21.0
in favor of bdate_range. Note that cdate_range only utilizes the weekmask and holidays parameters
when custom business day, ‘C’, is passed as the frequency string. Support has been expanded with bdate_range
to work with any custom frequency string.

New in version 0.21.0.

bdate_range can also generate a range of custom frequency dates by using the weekmask and holidays pa-
rameters. These parameters will only be used if a custom frequency string is passed.

In [64]: weekmask = 'Mon Wed Fri'

In [65]: holidays = [datetime(2011, 1, 5), datetime(2011, 3, 14)]

In [66]: pd.bdate_range(start, end, freq='C', weekmask=weekmask, holidays=holidays)
Out[66]:
DatetimeIndex(['2011-01-03', '2011-01-07', '2011-01-10', '2011-01-12',

'2011-01-14', '2011-01-17', '2011-01-19', '2011-01-21',
'2011-01-24', '2011-01-26',
...
'2011-12-09', '2011-12-12', '2011-12-14', '2011-12-16',
'2011-12-19', '2011-12-21', '2011-12-23', '2011-12-26',
'2011-12-28', '2011-12-30'],

dtype='datetime64[ns]', length=154, freq='C')

In [67]: pd.bdate_range(start, end, freq='CBMS', weekmask=weekmask)
\\Out[67]:
→˓

DatetimeIndex(['2011-01-03', '2011-02-02', '2011-03-02', '2011-04-01',
'2011-05-02', '2011-06-01', '2011-07-01', '2011-08-01',
'2011-09-02', '2011-10-03', '2011-11-02', '2011-12-02'],

dtype='datetime64[ns]', freq='CBMS')

See also:

Custom Business Days

19.5 Timestamp Limitations

Since pandas represents timestamps in nanosecond resolution, the time span that can be represented using a 64-bit
integer is limited to approximately 584 years:

In [68]: pd.Timestamp.min
Out[68]: Timestamp('1677-09-21 00:12:43.145225')

In [69]: pd.Timestamp.max
\\\Out[69]: Timestamp('2262-04-11
→˓23:47:16.854775807') (continues on next page)

942 Chapter 19. Time Series / Date functionality

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

See also:

Representing Out-of-Bounds Spans

19.6 Indexing

One of the main uses for DatetimeIndex is as an index for pandas objects. The DatetimeIndex class contains
many time series related optimizations:

• A large range of dates for various offsets are pre-computed and cached under the hood in order to make gener-
ating subsequent date ranges very fast (just have to grab a slice).

• Fast shifting using the shift and tshift method on pandas objects.

• Unioning of overlapping DatetimeIndex objects with the same frequency is very fast (important for fast
data alignment).

• Quick access to date fields via properties such as year, month, etc.

• Regularization functions like snap and very fast asof logic.

DatetimeIndex objects have all the basic functionality of regular Index objects, and a smorgasbord of advanced
time series specific methods for easy frequency processing.

See also:

Reindexing methods

Note: While pandas does not force you to have a sorted date index, some of these methods may have unexpected or
incorrect behavior if the dates are unsorted.

DatetimeIndex can be used like a regular index and offers all of its intelligent functionality like selection, slicing,
etc.

In [70]: rng = pd.date_range(start, end, freq='BM')

In [71]: ts = pd.Series(np.random.randn(len(rng)), index=rng)

In [72]: ts.index
Out[72]:
DatetimeIndex(['2011-01-31', '2011-02-28', '2011-03-31', '2011-04-29',

'2011-05-31', '2011-06-30', '2011-07-29', '2011-08-31',
'2011-09-30', '2011-10-31', '2011-11-30', '2011-12-30'],

dtype='datetime64[ns]', freq='BM')

In [73]: ts[:5].index
\\\Out[73]:
→˓

DatetimeIndex(['2011-01-31', '2011-02-28', '2011-03-31', '2011-04-29',
'2011-05-31'],

dtype='datetime64[ns]', freq='BM')

In [74]: ts[::2].index
\\\Out[74]:
→˓ (continues on next page)

19.6. Indexing 943

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

DatetimeIndex(['2011-01-31', '2011-03-31', '2011-05-31', '2011-07-29',
'2011-09-30', '2011-11-30'],

dtype='datetime64[ns]', freq='2BM')

19.6.1 Partial String Indexing

Dates and strings that parse to timestamps can be passed as indexing parameters:

In [75]: ts['1/31/2011']
Out[75]: -1.2812473076599531

In [76]: ts[datetime(2011, 12, 25):]
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\Out[76]:
2011-12-30 0.687738
Freq: BM, dtype: float64

In [77]: ts['10/31/2011':'12/31/2011']
\\\Out[77]:
→˓

2011-10-31 0.149748
2011-11-30 -0.732339
2011-12-30 0.687738
Freq: BM, dtype: float64

To provide convenience for accessing longer time series, you can also pass in the year or year and month as strings:

In [78]: ts['2011']
Out[78]:
2011-01-31 -1.281247
2011-02-28 -0.727707
2011-03-31 -0.121306
2011-04-29 -0.097883
2011-05-31 0.695775
2011-06-30 0.341734
2011-07-29 0.959726
2011-08-31 -1.110336
2011-09-30 -0.619976
2011-10-31 0.149748
2011-11-30 -0.732339
2011-12-30 0.687738
Freq: BM, dtype: float64

In [79]: ts['2011-6']
\\\Out[79]:
→˓

2011-06-30 0.341734
Freq: BM, dtype: float64

This type of slicing will work on a DataFrame with a DatetimeIndex as well. Since the partial string selection
is a form of label slicing, the endpoints will be included. This would include matching times on an included date:

In [80]: dft = pd.DataFrame(randn(100000,1),
....: columns=['A'],
....: index=pd.date_range('20130101',periods=100000,freq='T'))
....:

(continues on next page)

944 Chapter 19. Time Series / Date functionality

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

In [81]: dft
Out[81]:

A
2013-01-01 00:00:00 0.176444
2013-01-01 00:01:00 0.403310
2013-01-01 00:02:00 -0.154951
2013-01-01 00:03:00 0.301624
2013-01-01 00:04:00 -2.179861
2013-01-01 00:05:00 -1.369849
2013-01-01 00:06:00 -0.954208
... ...
2013-03-11 10:33:00 -0.293083
2013-03-11 10:34:00 -0.059881
2013-03-11 10:35:00 1.252450
2013-03-11 10:36:00 0.046611
2013-03-11 10:37:00 0.059478
2013-03-11 10:38:00 -0.286539
2013-03-11 10:39:00 0.841669

[100000 rows x 1 columns]

In [82]: dft['2013']
\\\Out[82]:
→˓

A
2013-01-01 00:00:00 0.176444
2013-01-01 00:01:00 0.403310
2013-01-01 00:02:00 -0.154951
2013-01-01 00:03:00 0.301624
2013-01-01 00:04:00 -2.179861
2013-01-01 00:05:00 -1.369849
2013-01-01 00:06:00 -0.954208
... ...
2013-03-11 10:33:00 -0.293083
2013-03-11 10:34:00 -0.059881
2013-03-11 10:35:00 1.252450
2013-03-11 10:36:00 0.046611
2013-03-11 10:37:00 0.059478
2013-03-11 10:38:00 -0.286539
2013-03-11 10:39:00 0.841669

[100000 rows x 1 columns]

This starts on the very first time in the month, and includes the last date and time for the month:

In [83]: dft['2013-1':'2013-2']
Out[83]:

A
2013-01-01 00:00:00 0.176444
2013-01-01 00:01:00 0.403310
2013-01-01 00:02:00 -0.154951
2013-01-01 00:03:00 0.301624
2013-01-01 00:04:00 -2.179861
2013-01-01 00:05:00 -1.369849
2013-01-01 00:06:00 -0.954208
... ...

(continues on next page)

19.6. Indexing 945

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

2013-02-28 23:53:00 0.103114
2013-02-28 23:54:00 -1.303422
2013-02-28 23:55:00 0.451943
2013-02-28 23:56:00 0.220534
2013-02-28 23:57:00 -1.624220
2013-02-28 23:58:00 0.093915
2013-02-28 23:59:00 -1.087454

[84960 rows x 1 columns]

This specifies a stop time that includes all of the times on the last day:

In [84]: dft['2013-1':'2013-2-28']
Out[84]:

A
2013-01-01 00:00:00 0.176444
2013-01-01 00:01:00 0.403310
2013-01-01 00:02:00 -0.154951
2013-01-01 00:03:00 0.301624
2013-01-01 00:04:00 -2.179861
2013-01-01 00:05:00 -1.369849
2013-01-01 00:06:00 -0.954208
... ...
2013-02-28 23:53:00 0.103114
2013-02-28 23:54:00 -1.303422
2013-02-28 23:55:00 0.451943
2013-02-28 23:56:00 0.220534
2013-02-28 23:57:00 -1.624220
2013-02-28 23:58:00 0.093915
2013-02-28 23:59:00 -1.087454

[84960 rows x 1 columns]

This specifies an exact stop time (and is not the same as the above):

In [85]: dft['2013-1':'2013-2-28 00:00:00']
Out[85]:

A
2013-01-01 00:00:00 0.176444
2013-01-01 00:01:00 0.403310
2013-01-01 00:02:00 -0.154951
2013-01-01 00:03:00 0.301624
2013-01-01 00:04:00 -2.179861
2013-01-01 00:05:00 -1.369849
2013-01-01 00:06:00 -0.954208
... ...
2013-02-27 23:54:00 0.897051
2013-02-27 23:55:00 -0.309230
2013-02-27 23:56:00 1.944713
2013-02-27 23:57:00 0.369265
2013-02-27 23:58:00 0.053071
2013-02-27 23:59:00 -0.019734
2013-02-28 00:00:00 1.388189

[83521 rows x 1 columns]

We are stopping on the included end-point as it is part of the index:

946 Chapter 19. Time Series / Date functionality

pandas: powerful Python data analysis toolkit, Release 0.23.4

In [86]: dft['2013-1-15':'2013-1-15 12:30:00']
Out[86]:

A
2013-01-15 00:00:00 0.501288
2013-01-15 00:01:00 -0.605198
2013-01-15 00:02:00 0.215146
2013-01-15 00:03:00 0.924732
2013-01-15 00:04:00 -2.228519
2013-01-15 00:05:00 1.517331
2013-01-15 00:06:00 -1.188774
... ...
2013-01-15 12:24:00 1.358314
2013-01-15 12:25:00 -0.737727
2013-01-15 12:26:00 1.838323
2013-01-15 12:27:00 -0.774090
2013-01-15 12:28:00 0.622261
2013-01-15 12:29:00 -0.631649
2013-01-15 12:30:00 0.193284

[751 rows x 1 columns]

New in version 0.18.0.

DatetimeIndex partial string indexing also works on a DataFrame with a MultiIndex:

In [87]: dft2 = pd.DataFrame(np.random.randn(20, 1),
....: columns=['A'],
....: index=pd.MultiIndex.from_product([pd.date_range('20130101

→˓',
....:

→˓periods=10,
....: freq='12H

→˓'),
....: ['a', 'b']]))
....:

In [88]: dft2
Out[88]:

A
2013-01-01 00:00:00 a -0.659574

b 1.494522
2013-01-01 12:00:00 a -0.778425

b -0.253355
2013-01-02 00:00:00 a -2.816159

b -1.210929
2013-01-02 12:00:00 a 0.144669
... ...
2013-01-04 00:00:00 b -1.624463
2013-01-04 12:00:00 a 0.056912

b 0.149867
2013-01-05 00:00:00 a -1.256173

b 2.324544
2013-01-05 12:00:00 a -1.067396

b -0.660996

[20 rows x 1 columns]

In [89]: dft2.loc['2013-01-05']
(continues on next page)

19.6. Indexing 947

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

\\\Out[89]:
→˓

A
2013-01-05 00:00:00 a -1.256173

b 2.324544
2013-01-05 12:00:00 a -1.067396

b -0.660996

In [90]: idx = pd.IndexSlice

In [91]: dft2 = dft2.swaplevel(0, 1).sort_index()

In [92]: dft2.loc[idx[:, '2013-01-05'], :]
Out[92]:

A
a 2013-01-05 00:00:00 -1.256173

2013-01-05 12:00:00 -1.067396
b 2013-01-05 00:00:00 2.324544

2013-01-05 12:00:00 -0.660996

19.6.2 Slice vs. Exact Match

Changed in version 0.20.0.

The same string used as an indexing parameter can be treated either as a slice or as an exact match depending on the
resolution of the index. If the string is less accurate than the index, it will be treated as a slice, otherwise as an exact
match.

Consider a Series object with a minute resolution index:

In [93]: series_minute = pd.Series([1, 2, 3],
....: pd.DatetimeIndex(['2011-12-31 23:59:00',
....: '2012-01-01 00:00:00',
....: '2012-01-01 00:02:00']))
....:

In [94]: series_minute.index.resolution
Out[94]: 'minute'

A timestamp string less accurate than a minute gives a Series object.

In [95]: series_minute['2011-12-31 23']
Out[95]:
2011-12-31 23:59:00 1
dtype: int64

A timestamp string with minute resolution (or more accurate), gives a scalar instead, i.e. it is not casted to a slice.

In [96]: series_minute['2011-12-31 23:59']
Out[96]: 1

In [97]: series_minute['2011-12-31 23:59:00']
\\\\\\\\\\\Out[97]: 1

If index resolution is second, then the minute-accurate timestamp gives a Series.

948 Chapter 19. Time Series / Date functionality

pandas: powerful Python data analysis toolkit, Release 0.23.4

In [98]: series_second = pd.Series([1, 2, 3],
....: pd.DatetimeIndex(['2011-12-31 23:59:59',
....: '2012-01-01 00:00:00',
....: '2012-01-01 00:00:01']))
....:

In [99]: series_second.index.resolution
Out[99]: 'second'

In [100]: series_second['2011-12-31 23:59']
\\\\\\\\\\\\\\\\\\Out[100]:
2011-12-31 23:59:59 1
dtype: int64

If the timestamp string is treated as a slice, it can be used to index DataFrame with [] as well.

In [101]: dft_minute = pd.DataFrame({'a': [1, 2, 3], 'b': [4, 5, 6]},
.....: index=series_minute.index)
.....:

In [102]: dft_minute['2011-12-31 23']
Out[102]:

a b
2011-12-31 23:59:00 1 4

Warning: However, if the string is treated as an exact match, the selection in DataFrame’s [] will be column-
wise and not row-wise, see Indexing Basics. For example dft_minute['2011-12-31 23:59'] will raise
KeyError as '2012-12-31 23:59' has the same resolution as the index and there is no column with such
name:

To always have unambiguous selection, whether the row is treated as a slice or a single selection, use .loc.

In [103]: dft_minute.loc['2011-12-31 23:59']
Out[103]:
a 1
b 4
Name: 2011-12-31 23:59:00, dtype: int64

Note also that DatetimeIndex resolution cannot be less precise than day.

In [104]: series_monthly = pd.Series([1, 2, 3],
.....: pd.DatetimeIndex(['2011-12',
.....: '2012-01',
.....: '2012-02']))
.....:

In [105]: series_monthly.index.resolution
Out[105]: 'day'

In [106]: series_monthly['2011-12'] # returns Series
\\\\\\\\\\\\\\\\Out[106]:
2011-12-01 1
dtype: int64

19.6. Indexing 949

pandas: powerful Python data analysis toolkit, Release 0.23.4

19.6.3 Exact Indexing

As discussed in previous section, indexing a DatetimeIndex with a partial string depends on the “accuracy” of the
period, in other words how specific the interval is in relation to the resolution of the index. In contrast, indexing with
Timestamp or datetime objects is exact, because the objects have exact meaning. These also follow the semantics
of including both endpoints.

These Timestamp and datetime objects have exact hours, minutes, and seconds, even though they were
not explicitly specified (they are 0).

In [107]: dft[datetime(2013, 1, 1):datetime(2013,2,28)]
Out[107]:

A
2013-01-01 00:00:00 0.176444
2013-01-01 00:01:00 0.403310
2013-01-01 00:02:00 -0.154951
2013-01-01 00:03:00 0.301624
2013-01-01 00:04:00 -2.179861
2013-01-01 00:05:00 -1.369849
2013-01-01 00:06:00 -0.954208
... ...
2013-02-27 23:54:00 0.897051
2013-02-27 23:55:00 -0.309230
2013-02-27 23:56:00 1.944713
2013-02-27 23:57:00 0.369265
2013-02-27 23:58:00 0.053071
2013-02-27 23:59:00 -0.019734
2013-02-28 00:00:00 1.388189

[83521 rows x 1 columns]

With no defaults.

In [108]: dft[datetime(2013, 1, 1, 10, 12, 0):datetime(2013, 2, 28, 10, 12, 0)]
Out[108]:

A
2013-01-01 10:12:00 -0.246733
2013-01-01 10:13:00 -1.429225
2013-01-01 10:14:00 -1.265339
2013-01-01 10:15:00 0.710986
2013-01-01 10:16:00 -0.818200
2013-01-01 10:17:00 0.543542
2013-01-01 10:18:00 1.577713
... ...
2013-02-28 10:06:00 0.311249
2013-02-28 10:07:00 2.366080
2013-02-28 10:08:00 -0.490372
2013-02-28 10:09:00 0.373340
2013-02-28 10:10:00 0.638442
2013-02-28 10:11:00 1.330135
2013-02-28 10:12:00 -0.945450

[83521 rows x 1 columns]

950 Chapter 19. Time Series / Date functionality

pandas: powerful Python data analysis toolkit, Release 0.23.4

19.6.4 Truncating & Fancy Indexing

A truncate() convenience function is provided that is similar to slicing. Note that truncate assumes a 0 value
for any unspecified date component in a DatetimeIndex in contrast to slicing which returns any partially matching
dates:

In [109]: rng2 = pd.date_range('2011-01-01', '2012-01-01', freq='W')

In [110]: ts2 = pd.Series(np.random.randn(len(rng2)), index=rng2)

In [111]: ts2.truncate(before='2011-11', after='2011-12')
Out[111]:
2011-11-06 -0.773743
2011-11-13 0.247216
2011-11-20 0.591308
2011-11-27 2.228500
Freq: W-SUN, dtype: float64

In [112]: ts2['2011-11':'2011-12']
\\\Out[112]:
→˓

2011-11-06 -0.773743
2011-11-13 0.247216
2011-11-20 0.591308
2011-11-27 2.228500
2011-12-04 0.838769
2011-12-11 0.658538
2011-12-18 0.567353
2011-12-25 -1.076735
Freq: W-SUN, dtype: float64

Even complicated fancy indexing that breaks the DatetimeIndex frequency regularity will result in a
DatetimeIndex, although frequency is lost:

In [113]: ts2[[0, 2, 6]].index
Out[113]: DatetimeIndex(['2011-01-02', '2011-01-16', '2011-02-13'], dtype=
→˓'datetime64[ns]', freq=None)

19.7 Time/Date Components

There are several time/date properties that one can access from Timestamp or a collection of timestamps like a
DatetimeIndex.

19.7. Time/Date Components 951

pandas: powerful Python data analysis toolkit, Release 0.23.4

Property Description
year The year of the datetime
month The month of the datetime
day The days of the datetime
hour The hour of the datetime
minute The minutes of the datetime
second The seconds of the datetime
microsecond The microseconds of the datetime
nanosecond The nanoseconds of the datetime
date Returns datetime.date (does not contain timezone information)
time Returns datetime.time (does not contain timezone information)
dayofyear The ordinal day of year
weekofyear The week ordinal of the year
week The week ordinal of the year
dayofweek The number of the day of the week with Monday=0, Sunday=6
weekday The number of the day of the week with Monday=0, Sunday=6
weekday_name The name of the day in a week (ex: Friday)
quarter Quarter of the date: Jan-Mar = 1, Apr-Jun = 2, etc.
days_in_month The number of days in the month of the datetime
is_month_start Logical indicating if first day of month (defined by frequency)
is_month_end Logical indicating if last day of month (defined by frequency)
is_quarter_start Logical indicating if first day of quarter (defined by frequency)
is_quarter_end Logical indicating if last day of quarter (defined by frequency)
is_year_start Logical indicating if first day of year (defined by frequency)
is_year_end Logical indicating if last day of year (defined by frequency)
is_leap_year Logical indicating if the date belongs to a leap year

Furthermore, if you have a Series with datetimelike values, then you can access these properties via the .dt
accessor, as detailed in the section on .dt accessors.

19.8 DateOffset Objects

In the preceding examples, we created DatetimeIndex objects at various frequencies by passing in frequency
strings like ‘M’, ‘W’, and ‘BM’ to the freq keyword. Under the hood, these frequency strings are being translated
into an instance of DateOffset, which represents a regular frequency increment. Specific offset logic like “month”,
“business day”, or “one hour” is represented in its various subclasses.

Class name Description
DateOffset Generic offset class, defaults to 1 calendar day
BDay business day (weekday)
CDay custom business day
Week one week, optionally anchored on a day of the week
WeekOfMonth the x-th day of the y-th week of each month
LastWeekOfMonth the x-th day of the last week of each month
MonthEnd calendar month end
MonthBegin calendar month begin
BMonthEnd business month end
BMonthBegin business month begin
CBMonthEnd custom business month end

Continued on next page

952 Chapter 19. Time Series / Date functionality

pandas: powerful Python data analysis toolkit, Release 0.23.4

Table 1 – continued from previous page
Class name Description
CBMonthBegin custom business month begin
SemiMonthEnd 15th (or other day_of_month) and calendar month end
SemiMonthBegin 15th (or other day_of_month) and calendar month begin
QuarterEnd calendar quarter end
QuarterBegin calendar quarter begin
BQuarterEnd business quarter end
BQuarterBegin business quarter begin
FY5253Quarter retail (aka 52-53 week) quarter
YearEnd calendar year end
YearBegin calendar year begin
BYearEnd business year end
BYearBegin business year begin
FY5253 retail (aka 52-53 week) year
BusinessHour business hour
CustomBusinessHourcustom business hour
Hour one hour
Minute one minute
Second one second
Milli one millisecond
Micro one microsecond
Nano one nanosecond

The basic DateOffset takes the same arguments as dateutil.relativedelta, which works as follows:

In [114]: d = datetime(2008, 8, 18, 9, 0)

In [115]: d + relativedelta(months=4, days=5)
Out[115]: datetime.datetime(2008, 12, 23, 9, 0)

We could have done the same thing with DateOffset:

In [116]: from pandas.tseries.offsets import *

In [117]: d + DateOffset(months=4, days=5)
Out[117]: Timestamp('2008-12-23 09:00:00')

The key features of a DateOffset object are:

• It can be added / subtracted to/from a datetime object to obtain a shifted date.

• It can be multiplied by an integer (positive or negative) so that the increment will be applied multiple times.

• It has rollforward() and rollback() methods for moving a date forward or backward to the next or
previous “offset date”.

Subclasses of DateOffset define the apply function which dictates custom date increment logic, such as adding
business days:

class BDay(DateOffset):
"""DateOffset increments between business days"""
def apply(self, other):

...

19.8. DateOffset Objects 953

pandas: powerful Python data analysis toolkit, Release 0.23.4

In [118]: d - 5 * BDay()
Out[118]: Timestamp('2008-08-11 09:00:00')

In [119]: d + BMonthEnd()
\\\Out[119]: Timestamp('2008-08-29 09:00:00')

The rollforward and rollback methods do exactly what you would expect:

In [120]: d
Out[120]: datetime.datetime(2008, 8, 18, 9, 0)

In [121]: offset = BMonthEnd()

In [122]: offset.rollforward(d)
Out[122]: Timestamp('2008-08-29 09:00:00')

In [123]: offset.rollback(d)
\\\Out[123]: Timestamp('2008-07-31 09:00:00')

It’s definitely worth exploring the pandas.tseries.offsets module and the various docstrings for the classes.

These operations (apply, rollforward and rollback) preserve time (hour, minute, etc) information by de-
fault. To reset time, use normalize=True when creating the offset instance. If normalize=True, the result is
normalized after the function is applied.

In [124]: day = Day()

In [125]: day.apply(pd.Timestamp('2014-01-01 09:00'))
Out[125]: Timestamp('2014-01-02 09:00:00')

In [126]: day = Day(normalize=True)

In [127]: day.apply(pd.Timestamp('2014-01-01 09:00'))
Out[127]: Timestamp('2014-01-02 00:00:00')

In [128]: hour = Hour()

In [129]: hour.apply(pd.Timestamp('2014-01-01 22:00'))
Out[129]: Timestamp('2014-01-01 23:00:00')

In [130]: hour = Hour(normalize=True)

In [131]: hour.apply(pd.Timestamp('2014-01-01 22:00'))
Out[131]: Timestamp('2014-01-01 00:00:00')

In [132]: hour.apply(pd.Timestamp('2014-01-01 23:00'))
\\\Out[132]: Timestamp('2014-01-02 00:00:00')

19.8.1 Parametric Offsets

Some of the offsets can be “parameterized” when created to result in different behaviors. For example, the Week
offset for generating weekly data accepts a weekday parameter which results in the generated dates always lying on
a particular day of the week:

In [133]: d
Out[133]: datetime.datetime(2008, 8, 18, 9, 0)

(continues on next page)

954 Chapter 19. Time Series / Date functionality

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

In [134]: d + Week()
\\\Out[134]: Timestamp('2008-08-25
→˓09:00:00')

In [135]: d + Week(weekday=4)
\\Out[135]:
→˓Timestamp('2008-08-22 09:00:00')

In [136]: (d + Week(weekday=4)).weekday()
\\\Out[136]:
→˓4

In [137]: d - Week()
\\\Out[137]:
→˓Timestamp('2008-08-11 09:00:00')

The normalize option will be effective for addition and subtraction.

In [138]: d + Week(normalize=True)
Out[138]: Timestamp('2008-08-25 00:00:00')

In [139]: d - Week(normalize=True)
\\\Out[139]: Timestamp('2008-08-11 00:00:00')

Another example is parameterizing YearEnd with the specific ending month:

In [140]: d + YearEnd()
Out[140]: Timestamp('2008-12-31 09:00:00')

In [141]: d + YearEnd(month=6)
\\\Out[141]: Timestamp('2009-06-30 09:00:00')

19.8.2 Using Offsets with Series / DatetimeIndex

Offsets can be used with either a Series or DatetimeIndex to apply the offset to each element.

In [142]: rng = pd.date_range('2012-01-01', '2012-01-03')

In [143]: s = pd.Series(rng)

In [144]: rng
Out[144]: DatetimeIndex(['2012-01-01', '2012-01-02', '2012-01-03'], dtype=
→˓'datetime64[ns]', freq='D')

In [145]: rng + DateOffset(months=2)
\\Out[145]:
→˓DatetimeIndex(['2012-03-01', '2012-03-02', '2012-03-03'], dtype='datetime64[ns]',
→˓freq='D')

In [146]: s + DateOffset(months=2)
\\Out[146]:
→˓

0 2012-03-01
1 2012-03-02

(continues on next page)

19.8. DateOffset Objects 955

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

2 2012-03-03
dtype: datetime64[ns]

In [147]: s - DateOffset(months=2)
\\Out[147]:
→˓

0 2011-11-01
1 2011-11-02
2 2011-11-03
dtype: datetime64[ns]

If the offset class maps directly to a Timedelta (Day, Hour, Minute, Second, Micro, Milli, Nano) it can be
used exactly like a Timedelta - see the Timedelta section for more examples.

In [148]: s - Day(2)
Out[148]:
0 2011-12-30
1 2011-12-31
2 2012-01-01
dtype: datetime64[ns]

In [149]: td = s - pd.Series(pd.date_range('2011-12-29', '2011-12-31'))

In [150]: td
Out[150]:
0 3 days
1 3 days
2 3 days
dtype: timedelta64[ns]

In [151]: td + Minute(15)
\\\Out[151]:
0 3 days 00:15:00
1 3 days 00:15:00
2 3 days 00:15:00
dtype: timedelta64[ns]

Note that some offsets (such as BQuarterEnd) do not have a vectorized implementation. They can still be used but
may calculate significantly slower and will show a PerformanceWarning

In [152]: rng + BQuarterEnd()
Out[152]: DatetimeIndex(['2012-03-30', '2012-03-30', '2012-03-30'], dtype=
→˓'datetime64[ns]', freq='D')

19.8.3 Custom Business Days

The CDay or CustomBusinessDay class provides a parametric BusinessDay class which can be used to create
customized business day calendars which account for local holidays and local weekend conventions.

As an interesting example, let’s look at Egypt where a Friday-Saturday weekend is observed.

In [153]: from pandas.tseries.offsets import CustomBusinessDay

In [154]: weekmask_egypt = 'Sun Mon Tue Wed Thu'

(continues on next page)

956 Chapter 19. Time Series / Date functionality

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

They also observe International Workers' Day so let's
add that for a couple of years
In [155]: holidays = ['2012-05-01', datetime(2013, 5, 1), np.datetime64('2014-05-01')]

In [156]: bday_egypt = CustomBusinessDay(holidays=holidays, weekmask=weekmask_egypt)

In [157]: dt = datetime(2013, 4, 30)

In [158]: dt + 2 * bday_egypt
Out[158]: Timestamp('2013-05-05 00:00:00')

Let’s map to the weekday names:

In [159]: dts = pd.date_range(dt, periods=5, freq=bday_egypt)

In [160]: pd.Series(dts.weekday, dts).map(pd.Series('Mon Tue Wed Thu Fri Sat Sun'.
→˓split()))
Out[160]:
2013-04-30 Tue
2013-05-02 Thu
2013-05-05 Sun
2013-05-06 Mon
2013-05-07 Tue
Freq: C, dtype: object

Holiday calendars can be used to provide the list of holidays. See the holiday calendar section for more information.

In [161]: from pandas.tseries.holiday import USFederalHolidayCalendar

In [162]: bday_us = CustomBusinessDay(calendar=USFederalHolidayCalendar())

Friday before MLK Day
In [163]: dt = datetime(2014, 1, 17)

Tuesday after MLK Day (Monday is skipped because it's a holiday)
In [164]: dt + bday_us
Out[164]: Timestamp('2014-01-21 00:00:00')

Monthly offsets that respect a certain holiday calendar can be defined in the usual way.

In [165]: from pandas.tseries.offsets import CustomBusinessMonthBegin

In [166]: bmth_us = CustomBusinessMonthBegin(calendar=USFederalHolidayCalendar())

Skip new years
In [167]: dt = datetime(2013, 12, 17)

In [168]: dt + bmth_us
Out[168]: Timestamp('2014-01-02 00:00:00')

Define date index with custom offset
In [169]: pd.DatetimeIndex(start='20100101',end='20120101',freq=bmth_us)
\\\Out[169]:
DatetimeIndex(['2010-01-04', '2010-02-01', '2010-03-01', '2010-04-01',

'2010-05-03', '2010-06-01', '2010-07-01', '2010-08-02',
'2010-09-01', '2010-10-01', '2010-11-01', '2010-12-01',
'2011-01-03', '2011-02-01', '2011-03-01', '2011-04-01',

(continues on next page)

19.8. DateOffset Objects 957

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

'2011-05-02', '2011-06-01', '2011-07-01', '2011-08-01',
'2011-09-01', '2011-10-03', '2011-11-01', '2011-12-01'],

dtype='datetime64[ns]', freq='CBMS')

Note: The frequency string ‘C’ is used to indicate that a CustomBusinessDay DateOffset is used, it is important to
note that since CustomBusinessDay is a parameterised type, instances of CustomBusinessDay may differ and this is
not detectable from the ‘C’ frequency string. The user therefore needs to ensure that the ‘C’ frequency string is used
consistently within the user’s application.

19.8.4 Business Hour

The BusinessHour class provides a business hour representation on BusinessDay, allowing to use specific start
and end times.

By default, BusinessHour uses 9:00 - 17:00 as business hours. Adding BusinessHour will increment
Timestamp by hourly frequency. If target Timestamp is out of business hours, move to the next business hour
then increment it. If the result exceeds the business hours end, the remaining hours are added to the next business day.

In [170]: bh = BusinessHour()

In [171]: bh
Out[171]: <BusinessHour: BH=09:00-17:00>

2014-08-01 is Friday
In [172]: pd.Timestamp('2014-08-01 10:00').weekday()
\\\Out[172]: 4

In [173]: pd.Timestamp('2014-08-01 10:00') + bh
\\\Out[173]: Timestamp('2014-08-01
→˓11:00:00')

Below example is the same as: pd.Timestamp('2014-08-01 09:00') + bh
In [174]: pd.Timestamp('2014-08-01 08:00') + bh
\\Out[174]:
→˓Timestamp('2014-08-01 10:00:00')

If the results is on the end time, move to the next business day
In [175]: pd.Timestamp('2014-08-01 16:00') + bh
\\\Out[175]:
→˓Timestamp('2014-08-04 09:00:00')

Remainings are added to the next day
In [176]: pd.Timestamp('2014-08-01 16:30') + bh
\\Out[176]:
→˓Timestamp('2014-08-04 09:30:00')

Adding 2 business hours
In [177]: pd.Timestamp('2014-08-01 10:00') + BusinessHour(2)
\\\Out[177]:
→˓Timestamp('2014-08-01 12:00:00')

Subtracting 3 business hours

(continues on next page)

958 Chapter 19. Time Series / Date functionality

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

In [178]: pd.Timestamp('2014-08-01 10:00') + BusinessHour(-3)
\\Out[178]:
→˓Timestamp('2014-07-31 15:00:00')

You can also specify start and end time by keywords. The argument must be a str with an hour:minute
representation or a datetime.time instance. Specifying seconds, microseconds and nanoseconds as business hour
results in ValueError.

In [179]: bh = BusinessHour(start='11:00', end=time(20, 0))

In [180]: bh
Out[180]: <BusinessHour: BH=11:00-20:00>

In [181]: pd.Timestamp('2014-08-01 13:00') + bh
\\\Out[181]: Timestamp('2014-08-01 14:00:00')

In [182]: pd.Timestamp('2014-08-01 09:00') + bh
\\Out[182]:
→˓Timestamp('2014-08-01 12:00:00')

In [183]: pd.Timestamp('2014-08-01 18:00') + bh
\\\Out[183]:
→˓Timestamp('2014-08-01 19:00:00')

Passing start time later than end represents midnight business hour. In this case, business hour exceeds midnight
and overlap to the next day. Valid business hours are distinguished by whether it started from valid BusinessDay.

In [184]: bh = BusinessHour(start='17:00', end='09:00')

In [185]: bh
Out[185]: <BusinessHour: BH=17:00-09:00>

In [186]: pd.Timestamp('2014-08-01 17:00') + bh
\\\Out[186]: Timestamp('2014-08-01 18:00:00')

In [187]: pd.Timestamp('2014-08-01 23:00') + bh
\\Out[187]:
→˓Timestamp('2014-08-02 00:00:00')

Although 2014-08-02 is Satuaday,
it is valid because it starts from 08-01 (Friday).
In [188]: pd.Timestamp('2014-08-02 04:00') + bh
\\\Out[188]:
→˓Timestamp('2014-08-02 05:00:00')

Although 2014-08-04 is Monday,
it is out of business hours because it starts from 08-03 (Sunday).
In [189]: pd.Timestamp('2014-08-04 04:00') + bh
\\Out[189]:
→˓Timestamp('2014-08-04 18:00:00')

Applying BusinessHour.rollforward and rollback to out of business hours results in the next business
hour start or previous day’s end. Different from other offsets, BusinessHour.rollforwardmay output different
results from apply by definition.

This is because one day’s business hour end is equal to next day’s business hour start. For example, under the de-
fault business hours (9:00 - 17:00), there is no gap (0 minutes) between 2014-08-01 17:00 and 2014-08-04

19.8. DateOffset Objects 959

pandas: powerful Python data analysis toolkit, Release 0.23.4

09:00.

This adjusts a Timestamp to business hour edge
In [190]: BusinessHour().rollback(pd.Timestamp('2014-08-02 15:00'))
Out[190]: Timestamp('2014-08-01 17:00:00')

In [191]: BusinessHour().rollforward(pd.Timestamp('2014-08-02 15:00'))
\\\Out[191]: Timestamp('2014-08-04 09:00:00')

It is the same as BusinessHour().apply(pd.Timestamp('2014-08-01 17:00')).
And it is the same as BusinessHour().apply(pd.Timestamp('2014-08-04 09:00'))
In [192]: BusinessHour().apply(pd.Timestamp('2014-08-02 15:00'))
\\Out[192]:
→˓Timestamp('2014-08-04 10:00:00')

BusinessDay results (for reference)
In [193]: BusinessHour().rollforward(pd.Timestamp('2014-08-02'))
\\\Out[193]:
→˓Timestamp('2014-08-04 09:00:00')

It is the same as BusinessDay().apply(pd.Timestamp('2014-08-01'))
The result is the same as rollworward because BusinessDay never overlap.
In [194]: BusinessHour().apply(pd.Timestamp('2014-08-02'))
\\Out[194]:
→˓Timestamp('2014-08-04 10:00:00')

BusinessHour regards Saturday and Sunday as holidays. To use arbitrary holidays, you can use
CustomBusinessHour offset, as explained in the following subsection.

19.8.5 Custom Business Hour

New in version 0.18.1.

The CustomBusinessHour is a mixture of BusinessHour and CustomBusinessDay which allows you to
specify arbitrary holidays. CustomBusinessHour works as the same as BusinessHour except that it skips
specified custom holidays.

In [195]: from pandas.tseries.holiday import USFederalHolidayCalendar

In [196]: bhour_us = CustomBusinessHour(calendar=USFederalHolidayCalendar())

Friday before MLK Day
In [197]: dt = datetime(2014, 1, 17, 15)

In [198]: dt + bhour_us
Out[198]: Timestamp('2014-01-17 16:00:00')

Tuesday after MLK Day (Monday is skipped because it's a holiday)
In [199]: dt + bhour_us * 2
\\\Out[199]: Timestamp('2014-01-21 09:00:00')

You can use keyword arguments supported by either BusinessHour and CustomBusinessDay.

In [200]: bhour_mon = CustomBusinessHour(start='10:00', weekmask='Tue Wed Thu Fri')

Monday is skipped because it's a holiday, business hour starts from 10:00

(continues on next page)

960 Chapter 19. Time Series / Date functionality

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

In [201]: dt + bhour_mon * 2
Out[201]: Timestamp('2014-01-21 10:00:00')

19.8.6 Offset Aliases

A number of string aliases are given to useful common time series frequencies. We will refer to these aliases as offset
aliases.

Alias Description
B business day frequency
C custom business day frequency
D calendar day frequency
W weekly frequency
M month end frequency
SM semi-month end frequency (15th and end of month)
BM business month end frequency
CBM custom business month end frequency
MS month start frequency
SMS semi-month start frequency (1st and 15th)
BMS business month start frequency
CBMS custom business month start frequency
Q quarter end frequency
BQ business quarter end frequency
QS quarter start frequency
BQS business quarter start frequency
A, Y year end frequency
BA, BY business year end frequency
AS, YS year start frequency
BAS, BYS business year start frequency
BH business hour frequency
H hourly frequency
T, min minutely frequency
S secondly frequency
L, ms milliseconds
U, us microseconds
N nanoseconds

19.8.7 Combining Aliases

As we have seen previously, the alias and the offset instance are fungible in most functions:

In [202]: pd.date_range(start, periods=5, freq='B')
Out[202]:
DatetimeIndex(['2011-01-03', '2011-01-04', '2011-01-05', '2011-01-06',

'2011-01-07'],
dtype='datetime64[ns]', freq='B')

In [203]: pd.date_range(start, periods=5, freq=BDay())
\\Out[203]:
→˓

(continues on next page)

19.8. DateOffset Objects 961

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

DatetimeIndex(['2011-01-03', '2011-01-04', '2011-01-05', '2011-01-06',
'2011-01-07'],

dtype='datetime64[ns]', freq='B')

You can combine together day and intraday offsets:

In [204]: pd.date_range(start, periods=10, freq='2h20min')
Out[204]:
DatetimeIndex(['2011-01-01 00:00:00', '2011-01-01 02:20:00',

'2011-01-01 04:40:00', '2011-01-01 07:00:00',
'2011-01-01 09:20:00', '2011-01-01 11:40:00',
'2011-01-01 14:00:00', '2011-01-01 16:20:00',
'2011-01-01 18:40:00', '2011-01-01 21:00:00'],

dtype='datetime64[ns]', freq='140T')

In [205]: pd.date_range(start, periods=10, freq='1D10U')
\\Out[205]:
→˓

DatetimeIndex(['2011-01-01 00:00:00', '2011-01-02 00:00:00.000010',
'2011-01-03 00:00:00.000020', '2011-01-04 00:00:00.000030',
'2011-01-05 00:00:00.000040', '2011-01-06 00:00:00.000050',
'2011-01-07 00:00:00.000060', '2011-01-08 00:00:00.000070',
'2011-01-09 00:00:00.000080', '2011-01-10 00:00:00.000090'],

dtype='datetime64[ns]', freq='86400000010U')

19.8.8 Anchored Offsets

For some frequencies you can specify an anchoring suffix:

Alias Description
W-SUN weekly frequency (Sundays). Same as ‘W’
W-MON weekly frequency (Mondays)
W-TUE weekly frequency (Tuesdays)
W-WED weekly frequency (Wednesdays)
W-THU weekly frequency (Thursdays)
W-FRI weekly frequency (Fridays)
W-SAT weekly frequency (Saturdays)
(B)Q(S)-
DEC

quarterly frequency, year ends in December. Same as ‘Q’

(B)Q(S)-
JAN

quarterly frequency, year ends in January

(B)Q(S)-
FEB

quarterly frequency, year ends in February

(B)Q(S)-
MAR

quarterly frequency, year ends in March

(B)Q(S)-
APR

quarterly frequency, year ends in April

(B)Q(S)-
MAY

quarterly frequency, year ends in May

(B)Q(S)-
JUN

quarterly frequency, year ends in June

Continued on next page

962 Chapter 19. Time Series / Date functionality

pandas: powerful Python data analysis toolkit, Release 0.23.4

Table 2 – continued from previous page
Alias Description
(B)Q(S)-
JUL

quarterly frequency, year ends in July

(B)Q(S)-
AUG

quarterly frequency, year ends in August

(B)Q(S)-
SEP

quarterly frequency, year ends in September

(B)Q(S)-
OCT

quarterly frequency, year ends in October

(B)Q(S)-
NOV

quarterly frequency, year ends in November

(B)A(S)-
DEC

annual frequency, anchored end of December. Same as ‘A’

(B)A(S)-
JAN

annual frequency, anchored end of January

(B)A(S)-
FEB

annual frequency, anchored end of February

(B)A(S)-
MAR

annual frequency, anchored end of March

(B)A(S)-
APR

annual frequency, anchored end of April

(B)A(S)-
MAY

annual frequency, anchored end of May

(B)A(S)-
JUN

annual frequency, anchored end of June

(B)A(S)-
JUL

annual frequency, anchored end of July

(B)A(S)-
AUG

annual frequency, anchored end of August

(B)A(S)-
SEP

annual frequency, anchored end of September

(B)A(S)-
OCT

annual frequency, anchored end of October

(B)A(S)-
NOV

annual frequency, anchored end of November

These can be used as arguments to date_range, bdate_range, constructors for DatetimeIndex, as well as
various other timeseries-related functions in pandas.

19.8.9 Anchored Offset Semantics

For those offsets that are anchored to the start or end of specific frequency (MonthEnd, MonthBegin, WeekEnd,
etc), the following rules apply to rolling forward and backwards.

When n is not 0, if the given date is not on an anchor point, it snapped to the next(previous) anchor point, and moved
|n|-1 additional steps forwards or backwards.

In [206]: pd.Timestamp('2014-01-02') + MonthBegin(n=1)
Out[206]: Timestamp('2014-02-01 00:00:00')

In [207]: pd.Timestamp('2014-01-02') + MonthEnd(n=1)
\\\Out[207]: Timestamp('2014-01-31 00:00:00')

(continues on next page)

19.8. DateOffset Objects 963

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

In [208]: pd.Timestamp('2014-01-02') - MonthBegin(n=1)
\\Out[208]:
→˓Timestamp('2014-01-01 00:00:00')

In [209]: pd.Timestamp('2014-01-02') - MonthEnd(n=1)
\\\Out[209]:
→˓Timestamp('2013-12-31 00:00:00')

In [210]: pd.Timestamp('2014-01-02') + MonthBegin(n=4)
\\Out[210]:
→˓Timestamp('2014-05-01 00:00:00')

In [211]: pd.Timestamp('2014-01-02') - MonthBegin(n=4)
\\\Out[211]:
→˓Timestamp('2013-10-01 00:00:00')

If the given date is on an anchor point, it is moved |n| points forwards or backwards.

In [212]: pd.Timestamp('2014-01-01') + MonthBegin(n=1)
Out[212]: Timestamp('2014-02-01 00:00:00')

In [213]: pd.Timestamp('2014-01-31') + MonthEnd(n=1)
\\\Out[213]: Timestamp('2014-02-28 00:00:00')

In [214]: pd.Timestamp('2014-01-01') - MonthBegin(n=1)
\\Out[214]:
→˓Timestamp('2013-12-01 00:00:00')

In [215]: pd.Timestamp('2014-01-31') - MonthEnd(n=1)
\\\Out[215]:
→˓Timestamp('2013-12-31 00:00:00')

In [216]: pd.Timestamp('2014-01-01') + MonthBegin(n=4)
\\Out[216]:
→˓Timestamp('2014-05-01 00:00:00')

In [217]: pd.Timestamp('2014-01-31') - MonthBegin(n=4)
\\\Out[217]:
→˓Timestamp('2013-10-01 00:00:00')

For the case when n=0, the date is not moved if on an anchor point, otherwise it is rolled forward to the next anchor
point.

In [218]: pd.Timestamp('2014-01-02') + MonthBegin(n=0)
Out[218]: Timestamp('2014-02-01 00:00:00')

In [219]: pd.Timestamp('2014-01-02') + MonthEnd(n=0)
\\\Out[219]: Timestamp('2014-01-31 00:00:00')

In [220]: pd.Timestamp('2014-01-01') + MonthBegin(n=0)
\\Out[220]:
→˓Timestamp('2014-01-01 00:00:00')

In [221]: pd.Timestamp('2014-01-31') + MonthEnd(n=0)
\\\Out[221]:
→˓Timestamp('2014-01-31 00:00:00')

964 Chapter 19. Time Series / Date functionality

pandas: powerful Python data analysis toolkit, Release 0.23.4

19.8.10 Holidays / Holiday Calendars

Holidays and calendars provide a simple way to define holiday rules to be used with CustomBusinessDay or
in other analysis that requires a predefined set of holidays. The AbstractHolidayCalendar class provides all
the necessary methods to return a list of holidays and only rules need to be defined in a specific holiday calendar
class. Furthermore, the start_date and end_date class attributes determine over what date range holidays are
generated. These should be overwritten on the AbstractHolidayCalendar class to have the range apply to all
calendar subclasses. USFederalHolidayCalendar is the only calendar that exists and primarily serves as an
example for developing other calendars.

For holidays that occur on fixed dates (e.g., US Memorial Day or July 4th) an observance rule determines when that
holiday is observed if it falls on a weekend or some other non-observed day. Defined observance rules are:

Rule Description
nearest_workday move Saturday to Friday and Sunday to Monday
sunday_to_monday move Sunday to following Monday
next_monday_or_tuesdaymove Saturday to Monday and Sunday/Monday to Tuesday
previous_friday move Saturday and Sunday to previous Friday”
next_monday move Saturday and Sunday to following Monday

An example of how holidays and holiday calendars are defined:

In [222]: from pandas.tseries.holiday import Holiday, USMemorialDay,\
.....: AbstractHolidayCalendar, nearest_workday, MO
.....:

In [223]: class ExampleCalendar(AbstractHolidayCalendar):
.....: rules = [
.....: USMemorialDay,
.....: Holiday('July 4th', month=7, day=4, observance=nearest_workday),
.....: Holiday('Columbus Day', month=10, day=1,
.....: offset=DateOffset(weekday=MO(2))), #same as 2*Week(weekday=2)
.....:]
.....:

In [224]: cal = ExampleCalendar()

In [225]: cal.holidays(datetime(2012, 1, 1), datetime(2012, 12, 31))
Out[225]: DatetimeIndex(['2012-05-28', '2012-07-04', '2012-10-08'], dtype=
→˓'datetime64[ns]', freq=None)

Using this calendar, creating an index or doing offset arithmetic skips weekends and holidays (i.e., Memorial Day/July
4th). For example, the below defines a custom business day offset using the ExampleCalendar. Like any other
offset, it can be used to create a DatetimeIndex or added to datetime or Timestamp objects.

In [226]: from pandas.tseries.offsets import CDay

In [227]: pd.DatetimeIndex(start='7/1/2012', end='7/10/2012',
.....: freq=CDay(calendar=cal)).to_pydatetime()
.....:

Out[227]:
array([datetime.datetime(2012, 7, 2, 0, 0),

datetime.datetime(2012, 7, 3, 0, 0),
datetime.datetime(2012, 7, 5, 0, 0),
datetime.datetime(2012, 7, 6, 0, 0),
datetime.datetime(2012, 7, 9, 0, 0),

(continues on next page)

19.8. DateOffset Objects 965

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

datetime.datetime(2012, 7, 10, 0, 0)], dtype=object)

In [228]: offset = CustomBusinessDay(calendar=cal)

In [229]: datetime(2012, 5, 25) + offset
Out[229]: Timestamp('2012-05-29 00:00:00')

In [230]: datetime(2012, 7, 3) + offset
\\\Out[230]: Timestamp('2012-07-05 00:00:00')

In [231]: datetime(2012, 7, 3) + 2 * offset
\\Out[231]:
→˓Timestamp('2012-07-06 00:00:00')

In [232]: datetime(2012, 7, 6) + offset
\\\Out[232]:
→˓Timestamp('2012-07-09 00:00:00')

Ranges are defined by the start_date and end_date class attributes of AbstractHolidayCalendar. The
defaults are shown below.

In [233]: AbstractHolidayCalendar.start_date
Out[233]: Timestamp('1970-01-01 00:00:00')

In [234]: AbstractHolidayCalendar.end_date
\\\Out[234]: Timestamp('2030-12-31 00:00:00')

These dates can be overwritten by setting the attributes as datetime/Timestamp/string.

In [235]: AbstractHolidayCalendar.start_date = datetime(2012, 1, 1)

In [236]: AbstractHolidayCalendar.end_date = datetime(2012, 12, 31)

In [237]: cal.holidays()
Out[237]: DatetimeIndex(['2012-05-28', '2012-07-04', '2012-10-08'], dtype=
→˓'datetime64[ns]', freq=None)

Every calendar class is accessible by name using the get_calendar function which returns a holiday class instance.
Any imported calendar class will automatically be available by this function. Also, HolidayCalendarFactory
provides an easy interface to create calendars that are combinations of calendars or calendars with additional rules.

In [238]: from pandas.tseries.holiday import get_calendar, HolidayCalendarFactory,\
.....: USLaborDay
.....:

In [239]: cal = get_calendar('ExampleCalendar')

In [240]: cal.rules
Out[240]:
[Holiday: MemorialDay (month=5, day=31, offset=<DateOffset: weekday=MO(-1)>),
Holiday: July 4th (month=7, day=4, observance=<function nearest_workday at
→˓0x7f20d5b40f28>),
Holiday: Columbus Day (month=10, day=1, offset=<DateOffset: weekday=MO(+2)>)]

In [241]: new_cal = HolidayCalendarFactory('NewExampleCalendar', cal, USLaborDay)

(continues on next page)

966 Chapter 19. Time Series / Date functionality

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

In [242]: new_cal.rules
Out[242]:
[Holiday: Labor Day (month=9, day=1, offset=<DateOffset: weekday=MO(+1)>),
Holiday: MemorialDay (month=5, day=31, offset=<DateOffset: weekday=MO(-1)>),
Holiday: July 4th (month=7, day=4, observance=<function nearest_workday at
→˓0x7f20d5b40f28>),
Holiday: Columbus Day (month=10, day=1, offset=<DateOffset: weekday=MO(+2)>)]

19.9 Time Series-Related Instance Methods

19.9.1 Shifting / Lagging

One may want to shift or lag the values in a time series back and forward in time. The method for this is shift(),
which is available on all of the pandas objects.

In [243]: ts = ts[:5]

In [244]: ts.shift(1)
Out[244]:
2011-01-31 NaN
2011-02-28 -1.281247
2011-03-31 -0.727707
2011-04-29 -0.121306
2011-05-31 -0.097883
Freq: BM, dtype: float64

The shift method accepts an freq argument which can accept a DateOffset class or other timedelta-like
object or also an offset alias:

In [245]: ts.shift(5, freq=offsets.BDay())
Out[245]:
2011-02-07 -1.281247
2011-03-07 -0.727707
2011-04-07 -0.121306
2011-05-06 -0.097883
2011-06-07 0.695775
dtype: float64

In [246]: ts.shift(5, freq='BM')
\\\Out[246]:
→˓

2011-06-30 -1.281247
2011-07-29 -0.727707
2011-08-31 -0.121306
2011-09-30 -0.097883
2011-10-31 0.695775
Freq: BM, dtype: float64

Rather than changing the alignment of the data and the index, DataFrame and Series objects also have a
tshift() convenience method that changes all the dates in the index by a specified number of offsets:

In [247]: ts.tshift(5, freq='D')
Out[247]:

(continues on next page)

19.9. Time Series-Related Instance Methods 967

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

2011-02-05 -1.281247
2011-03-05 -0.727707
2011-04-05 -0.121306
2011-05-04 -0.097883
2011-06-05 0.695775
dtype: float64

Note that with tshift, the leading entry is no longer NaN because the data is not being realigned.

19.9.2 Frequency Conversion

The primary function for changing frequencies is the asfreq() method. For a DatetimeIndex, this is basically
just a thin, but convenient wrapper around reindex() which generates a date_range and calls reindex.

In [248]: dr = pd.date_range('1/1/2010', periods=3, freq=3 * offsets.BDay())

In [249]: ts = pd.Series(randn(3), index=dr)

In [250]: ts
Out[250]:
2010-01-01 0.155932
2010-01-06 1.486218
2010-01-11 -2.148675
Freq: 3B, dtype: float64

In [251]: ts.asfreq(BDay())
\\\Out[251]:
→˓

2010-01-01 0.155932
2010-01-04 NaN
2010-01-05 NaN
2010-01-06 1.486218
2010-01-07 NaN
2010-01-08 NaN
2010-01-11 -2.148675
Freq: B, dtype: float64

asfreq provides a further convenience so you can specify an interpolation method for any gaps that may appear after
the frequency conversion.

In [252]: ts.asfreq(BDay(), method='pad')
Out[252]:
2010-01-01 0.155932
2010-01-04 0.155932
2010-01-05 0.155932
2010-01-06 1.486218
2010-01-07 1.486218
2010-01-08 1.486218
2010-01-11 -2.148675
Freq: B, dtype: float64

19.9.3 Filling Forward / Backward

Related to asfreq and reindex is fillna(), which is documented in the missing data section.

968 Chapter 19. Time Series / Date functionality

pandas: powerful Python data analysis toolkit, Release 0.23.4

19.9.4 Converting to Python Datetimes

DatetimeIndex can be converted to an array of Python native datetime.datetime objects using the
to_pydatetime method.

19.10 Resampling

Warning: The interface to .resample has changed in 0.18.0 to be more groupby-like and hence more flexible.
See the whatsnew docs for a comparison with prior versions.

Pandas has a simple, powerful, and efficient functionality for performing resampling operations during frequency
conversion (e.g., converting secondly data into 5-minutely data). This is extremely common in, but not limited to,
financial applications.

resample() is a time-based groupby, followed by a reduction method on each of its groups. See some cookbook
examples for some advanced strategies.

Starting in version 0.18.1, the resample() function can be used directly from DataFrameGroupBy objects, see
the groupby docs.

Note: .resample() is similar to using a rolling() operation with a time-based offset, see a discussion here.

19.10.1 Basics

In [253]: rng = pd.date_range('1/1/2012', periods=100, freq='S')

In [254]: ts = pd.Series(np.random.randint(0, 500, len(rng)), index=rng)

In [255]: ts.resample('5Min').sum()
Out[255]:
2012-01-01 25653
Freq: 5T, dtype: int64

The resample function is very flexible and allows you to specify many different parameters to control the frequency
conversion and resampling operation.

Any function available via dispatching is available as a method of the returned object, including sum, mean, std,
sem, max, min, median, first, last, ohlc:

In [256]: ts.resample('5Min').mean()
Out[256]:
2012-01-01 256.53
Freq: 5T, dtype: float64

In [257]: ts.resample('5Min').ohlc()
\\\Out[257]:

open high low close
2012-01-01 296 496 6 449

In [258]: ts.resample('5Min').max()

(continues on next page)

19.10. Resampling 969

https://docs.python.org/3/library/datetime.html#datetime.datetime

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

\\Out[258]:
→˓

2012-01-01 496
Freq: 5T, dtype: int64

For downsampling, closed can be set to ‘left’ or ‘right’ to specify which end of the interval is closed:

In [259]: ts.resample('5Min', closed='right').mean()
Out[259]:
2011-12-31 23:55:00 296.000000
2012-01-01 00:00:00 256.131313
Freq: 5T, dtype: float64

In [260]: ts.resample('5Min', closed='left').mean()
\\Out[260]:
→˓

2012-01-01 256.53
Freq: 5T, dtype: float64

Parameters like label and loffset are used to manipulate the resulting labels. label specifies whether the result
is labeled with the beginning or the end of the interval. loffset performs a time adjustment on the output labels.

In [261]: ts.resample('5Min').mean() # by default label='left'
Out[261]:
2012-01-01 256.53
Freq: 5T, dtype: float64

In [262]: ts.resample('5Min', label='left').mean()
\\\Out[262]:
2012-01-01 256.53
Freq: 5T, dtype: float64

In [263]: ts.resample('5Min', label='left', loffset='1s').mean()
\\Out[263]:
→˓

2012-01-01 00:00:01 256.53
dtype: float64

Note: The default values for label and closed is ‘left’ for all frequency offsets except for ‘M’, ‘A’, ‘Q’, ‘BM’,
‘BA’, ‘BQ’, and ‘W’ which all have a default of ‘right’.

In [264]: rng2 = pd.date_range('1/1/2012', end='3/31/2012', freq='D')

In [265]: ts2 = pd.Series(range(len(rng2)), index=rng2)

default: label='right', closed='right'
In [266]: ts2.resample('M').max()
Out[266]:
2012-01-31 30
2012-02-29 59
2012-03-31 90
Freq: M, dtype: int64

default: label='left', closed='left'
In [267]: ts2.resample('SM').max()

(continues on next page)

970 Chapter 19. Time Series / Date functionality

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

\\Out[267]:
→˓

2011-12-31 13
2012-01-15 29
2012-01-31 44
2012-02-15 58
2012-02-29 73
2012-03-15 89
2012-03-31 90
Freq: SM-15, dtype: int64

In [268]: ts2.resample('SM', label='right', closed='right').max()
\\Out[268]:
→˓

2012-01-15 14.0
2012-01-31 30.0
2012-02-15 45.0
2012-02-29 59.0
2012-03-15 74.0
2012-03-31 90.0
2012-04-15 NaN
Freq: SM-15, dtype: float64

The axis parameter can be set to 0 or 1 and allows you to resample the specified axis for a DataFrame.

kind can be set to ‘timestamp’ or ‘period’ to convert the resulting index to/from timestamp and time span represen-
tations. By default resample retains the input representation.

convention can be set to ‘start’ or ‘end’ when resampling period data (detail below). It specifies how low frequency
periods are converted to higher frequency periods.

19.10.2 Upsampling

For upsampling, you can specify a way to upsample and the limit parameter to interpolate over the gaps that are
created:

from secondly to every 250 milliseconds
In [269]: ts[:2].resample('250L').asfreq()
Out[269]:
2012-01-01 00:00:00.000 296.0
2012-01-01 00:00:00.250 NaN
2012-01-01 00:00:00.500 NaN
2012-01-01 00:00:00.750 NaN
2012-01-01 00:00:01.000 199.0
Freq: 250L, dtype: float64

In [270]: ts[:2].resample('250L').ffill()
\\\Out[270]:
→˓

2012-01-01 00:00:00.000 296
2012-01-01 00:00:00.250 296
2012-01-01 00:00:00.500 296
2012-01-01 00:00:00.750 296
2012-01-01 00:00:01.000 199
Freq: 250L, dtype: int64

(continues on next page)

19.10. Resampling 971

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

In [271]: ts[:2].resample('250L').ffill(limit=2)
\\Out[271]:
→˓

2012-01-01 00:00:00.000 296.0
2012-01-01 00:00:00.250 296.0
2012-01-01 00:00:00.500 296.0
2012-01-01 00:00:00.750 NaN
2012-01-01 00:00:01.000 199.0
Freq: 250L, dtype: float64

19.10.3 Sparse Resampling

Sparse timeseries are the ones where you have a lot fewer points relative to the amount of time you are looking to
resample. Naively upsampling a sparse series can potentially generate lots of intermediate values. When you don’t
want to use a method to fill these values, e.g. fill_method is None, then intermediate values will be filled with
NaN.

Since resample is a time-based groupby, the following is a method to efficiently resample only the groups that are
not all NaN.

In [272]: rng = pd.date_range('2014-1-1', periods=100, freq='D') + pd.Timedelta('1s')

In [273]: ts = pd.Series(range(100), index=rng)

If we want to resample to the full range of the series:

In [274]: ts.resample('3T').sum()
Out[274]:
2014-01-01 00:00:00 0
2014-01-01 00:03:00 0
2014-01-01 00:06:00 0
2014-01-01 00:09:00 0
2014-01-01 00:12:00 0
2014-01-01 00:15:00 0
2014-01-01 00:18:00 0

..
2014-04-09 23:42:00 0
2014-04-09 23:45:00 0
2014-04-09 23:48:00 0
2014-04-09 23:51:00 0
2014-04-09 23:54:00 0
2014-04-09 23:57:00 0
2014-04-10 00:00:00 99
Freq: 3T, Length: 47521, dtype: int64

We can instead only resample those groups where we have points as follows:

In [275]: from functools import partial

In [276]: from pandas.tseries.frequencies import to_offset

In [277]: def round(t, freq):
.....: freq = to_offset(freq)
.....: return pd.Timestamp((t.value // freq.delta.value) * freq.delta.value)

(continues on next page)

972 Chapter 19. Time Series / Date functionality

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

.....:

In [278]: ts.groupby(partial(round, freq='3T')).sum()
Out[278]:
2014-01-01 0
2014-01-02 1
2014-01-03 2
2014-01-04 3
2014-01-05 4
2014-01-06 5
2014-01-07 6

..
2014-04-04 93
2014-04-05 94
2014-04-06 95
2014-04-07 96
2014-04-08 97
2014-04-09 98
2014-04-10 99
Length: 100, dtype: int64

19.10.4 Aggregation

Similar to the aggregating API, groupby API, and the window functions API, a Resampler can be selectively resam-
pled.

Resampling a DataFrame, the default will be to act on all columns with the same function.

In [279]: df = pd.DataFrame(np.random.randn(1000, 3),
.....: index=pd.date_range('1/1/2012', freq='S', periods=1000),
.....: columns=['A', 'B', 'C'])
.....:

In [280]: r = df.resample('3T')

In [281]: r.mean()
Out[281]:

A B C
2012-01-01 00:00:00 -0.038580 -0.085117 -0.024750
2012-01-01 00:03:00 0.052387 -0.061477 0.029548
2012-01-01 00:06:00 0.121377 -0.010630 -0.043691
2012-01-01 00:09:00 -0.106814 -0.053819 0.097222
2012-01-01 00:12:00 0.032560 0.080543 0.167380
2012-01-01 00:15:00 0.060486 -0.057602 -0.106213

We can select a specific column or columns using standard getitem.

In [282]: r['A'].mean()
Out[282]:
2012-01-01 00:00:00 -0.038580
2012-01-01 00:03:00 0.052387
2012-01-01 00:06:00 0.121377
2012-01-01 00:09:00 -0.106814
2012-01-01 00:12:00 0.032560
2012-01-01 00:15:00 0.060486

(continues on next page)

19.10. Resampling 973

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

Freq: 3T, Name: A, dtype: float64

In [283]: r[['A','B']].mean()
\\\Out[283]:
→˓

A B
2012-01-01 00:00:00 -0.038580 -0.085117
2012-01-01 00:03:00 0.052387 -0.061477
2012-01-01 00:06:00 0.121377 -0.010630
2012-01-01 00:09:00 -0.106814 -0.053819
2012-01-01 00:12:00 0.032560 0.080543
2012-01-01 00:15:00 0.060486 -0.057602

You can pass a list or dict of functions to do aggregation with, outputting a DataFrame:

In [284]: r['A'].agg([np.sum, np.mean, np.std])
Out[284]:

sum mean std
2012-01-01 00:00:00 -6.944481 -0.038580 0.985150
2012-01-01 00:03:00 9.429707 0.052387 1.078022
2012-01-01 00:06:00 21.847876 0.121377 0.996365
2012-01-01 00:09:00 -19.226593 -0.106814 0.914070
2012-01-01 00:12:00 5.860874 0.032560 1.100055
2012-01-01 00:15:00 6.048588 0.060486 1.001532

On a resampled DataFrame, you can pass a list of functions to apply to each column, which produces an aggregated
result with a hierarchical index:

In [285]: r.agg([np.sum, np.mean])
Out[285]:

A B C
sum mean sum mean sum mean

2012-01-01 00:00:00 -6.944481 -0.038580 -15.320993 -0.085117 -4.454941 -0.024750
2012-01-01 00:03:00 9.429707 0.052387 -11.065916 -0.061477 5.318688 0.029548
2012-01-01 00:06:00 21.847876 0.121377 -1.913420 -0.010630 -7.864429 -0.043691
2012-01-01 00:09:00 -19.226593 -0.106814 -9.687468 -0.053819 17.499920 0.097222
2012-01-01 00:12:00 5.860874 0.032560 14.497725 0.080543 30.128432 0.167380
2012-01-01 00:15:00 6.048588 0.060486 -5.760208 -0.057602 -10.621260 -0.106213

By passing a dict to aggregate you can apply a different aggregation to the columns of a DataFrame:

In [286]: r.agg({'A' : np.sum,
.....: 'B' : lambda x: np.std(x, ddof=1)})
.....:

Out[286]:
A B

2012-01-01 00:00:00 -6.944481 1.087752
2012-01-01 00:03:00 9.429707 1.014552
2012-01-01 00:06:00 21.847876 0.954588
2012-01-01 00:09:00 -19.226593 1.027990
2012-01-01 00:12:00 5.860874 1.021503
2012-01-01 00:15:00 6.048588 1.004984

The function names can also be strings. In order for a string to be valid it must be implemented on the resampled
object:

974 Chapter 19. Time Series / Date functionality

pandas: powerful Python data analysis toolkit, Release 0.23.4

In [287]: r.agg({'A' : 'sum', 'B' : 'std'})
Out[287]:

A B
2012-01-01 00:00:00 -6.944481 1.087752
2012-01-01 00:03:00 9.429707 1.014552
2012-01-01 00:06:00 21.847876 0.954588
2012-01-01 00:09:00 -19.226593 1.027990
2012-01-01 00:12:00 5.860874 1.021503
2012-01-01 00:15:00 6.048588 1.004984

Furthermore, you can also specify multiple aggregation functions for each column separately.

In [288]: r.agg({'A' : ['sum','std'], 'B' : ['mean','std'] })
Out[288]:

A B
sum std mean std

2012-01-01 00:00:00 -6.944481 0.985150 -0.085117 1.087752
2012-01-01 00:03:00 9.429707 1.078022 -0.061477 1.014552
2012-01-01 00:06:00 21.847876 0.996365 -0.010630 0.954588
2012-01-01 00:09:00 -19.226593 0.914070 -0.053819 1.027990
2012-01-01 00:12:00 5.860874 1.100055 0.080543 1.021503
2012-01-01 00:15:00 6.048588 1.001532 -0.057602 1.004984

If a DataFrame does not have a datetimelike index, but instead you want to resample based on datetimelike column
in the frame, it can passed to the on keyword.

In [289]: df = pd.DataFrame({'date': pd.date_range('2015-01-01', freq='W', periods=5),
.....: 'a': np.arange(5)},
.....: index=pd.MultiIndex.from_arrays([
.....: [1,2,3,4,5],
.....: pd.date_range('2015-01-01', freq='W',

→˓periods=5)],
.....: names=['v','d']))
.....:

In [290]: df
Out[290]:

date a
v d
1 2015-01-04 2015-01-04 0
2 2015-01-11 2015-01-11 1
3 2015-01-18 2015-01-18 2
4 2015-01-25 2015-01-25 3
5 2015-02-01 2015-02-01 4

In [291]: df.resample('M', on='date').sum()
\\Out[291]:
→˓

a
date
2015-01-31 6
2015-02-28 4

Similarly, if you instead want to resample by a datetimelike level of MultiIndex, its name or location can be passed
to the level keyword.

In [292]: df.resample('M', level='d').sum()

(continues on next page)

19.10. Resampling 975

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

Out[292]:
a

d
2015-01-31 6
2015-02-28 4

19.11 Time Span Representation

Regular intervals of time are represented by Period objects in pandas while sequences of Period objects are
collected in a PeriodIndex, which can be created with the convenience function period_range.

19.11.1 Period

A Period represents a span of time (e.g., a day, a month, a quarter, etc). You can specify the span via freq keyword
using a frequency alias like below. Because freq represents a span of Period, it cannot be negative like “-3D”.

In [293]: pd.Period('2012', freq='A-DEC')
Out[293]: Period('2012', 'A-DEC')

In [294]: pd.Period('2012-1-1', freq='D')
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\Out[294]: Period('2012-01-01', 'D')

In [295]: pd.Period('2012-1-1 19:00', freq='H')
\\Out[295]:
→˓Period('2012-01-01 19:00', 'H')

In [296]: pd.Period('2012-1-1 19:00', freq='5H')
\\Out[296]:
→˓Period('2012-01-01 19:00', '5H')

Adding and subtracting integers from periods shifts the period by its own frequency. Arithmetic is not allowed between
Period with different freq (span).

In [297]: p = pd.Period('2012', freq='A-DEC')

In [298]: p + 1
Out[298]: Period('2013', 'A-DEC')

In [299]: p - 3
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\Out[299]: Period('2009', 'A-DEC')

In [300]: p = pd.Period('2012-01', freq='2M')

In [301]: p + 2
Out[301]: Period('2012-05', '2M')

In [302]: p - 1
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\Out[302]: Period('2011-11', '2M')

In [303]: p == pd.Period('2012-01', freq='3M')
\\------------------
→˓---
IncompatibleFrequency Traceback (most recent call last)

(continues on next page)

976 Chapter 19. Time Series / Date functionality

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

<ipython-input-303-4b67dc0b596c> in <module>()
----> 1 p == pd.Period('2012-01', freq='3M')

/pandas/pandas/_libs/tslibs/period.pyx in pandas._libs.tslibs.period._Period.__
→˓richcmp__()

IncompatibleFrequency: Input has different freq=3M from Period(freq=2M)

If Period freq is daily or higher (D, H, T, S, L, U, N), offsets and timedelta-like can be added if the result can
have the same freq. Otherwise, ValueError will be raised.

In [304]: p = pd.Period('2014-07-01 09:00', freq='H')

In [305]: p + Hour(2)
Out[305]: Period('2014-07-01 11:00', 'H')

In [306]: p + timedelta(minutes=120)
\\Out[306]: Period('2014-07-01 11:00', 'H')

In [307]: p + np.timedelta64(7200, 's')
\\Out[307]:
→˓Period('2014-07-01 11:00', 'H')

In [1]: p + Minute(5)
Traceback

...
ValueError: Input has different freq from Period(freq=H)

If Period has other freqs, only the same offsets can be added. Otherwise, ValueError will be raised.

In [308]: p = pd.Period('2014-07', freq='M')

In [309]: p + MonthEnd(3)
Out[309]: Period('2014-10', 'M')

In [1]: p + MonthBegin(3)
Traceback

...
ValueError: Input has different freq from Period(freq=M)

Taking the difference of Period instances with the same frequency will return the number of frequency units between
them:

In [310]: pd.Period('2012', freq='A-DEC') - pd.Period('2002', freq='A-DEC')
Out[310]: 10

19.11.2 PeriodIndex and period_range

Regular sequences of Period objects can be collected in a PeriodIndex, which can be constructed using the
period_range convenience function:

In [311]: prng = pd.period_range('1/1/2011', '1/1/2012', freq='M')

In [312]: prng

(continues on next page)

19.11. Time Span Representation 977

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

Out[312]:
PeriodIndex(['2011-01', '2011-02', '2011-03', '2011-04', '2011-05', '2011-06',

'2011-07', '2011-08', '2011-09', '2011-10', '2011-11', '2011-12',
'2012-01'],

dtype='period[M]', freq='M')

The PeriodIndex constructor can also be used directly:

In [313]: pd.PeriodIndex(['2011-1', '2011-2', '2011-3'], freq='M')
Out[313]: PeriodIndex(['2011-01', '2011-02', '2011-03'], dtype='period[M]', freq='M')

Passing multiplied frequency outputs a sequence of Period which has multiplied span.

In [314]: pd.PeriodIndex(start='2014-01', freq='3M', periods=4)
Out[314]: PeriodIndex(['2014-01', '2014-04', '2014-07', '2014-10'], dtype='period[3M]
→˓', freq='3M')

If start or end are Period objects, they will be used as anchor endpoints for a PeriodIndex with frequency
matching that of the PeriodIndex constructor.

In [315]: pd.PeriodIndex(start=pd.Period('2017Q1', freq='Q'),
.....: end=pd.Period('2017Q2', freq='Q'), freq='M')
.....:

Out[315]: PeriodIndex(['2017-03', '2017-04', '2017-05', '2017-06'], dtype='period[M]',
→˓ freq='M')

Just like DatetimeIndex, a PeriodIndex can also be used to index pandas objects:

In [316]: ps = pd.Series(np.random.randn(len(prng)), prng)

In [317]: ps
Out[317]:
2011-01 0.258318
2011-02 -2.503700
2011-03 -0.303053
2011-04 0.270509
2011-05 1.004841
2011-06 -0.129044
2011-07 -1.406335
2011-08 -1.310412
2011-09 0.769439
2011-10 -0.542325
2011-11 2.010541
2011-12 1.001558
2012-01 -0.087453
Freq: M, dtype: float64

PeriodIndex supports addition and subtraction with the same rule as Period.

In [318]: idx = pd.period_range('2014-07-01 09:00', periods=5, freq='H')

In [319]: idx
Out[319]:
PeriodIndex(['2014-07-01 09:00', '2014-07-01 10:00', '2014-07-01 11:00',

'2014-07-01 12:00', '2014-07-01 13:00'],
dtype='period[H]', freq='H')

(continues on next page)

978 Chapter 19. Time Series / Date functionality

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

In [320]: idx + Hour(2)
\\\Out[320]:
→˓

PeriodIndex(['2014-07-01 11:00', '2014-07-01 12:00', '2014-07-01 13:00',
'2014-07-01 14:00', '2014-07-01 15:00'],

dtype='period[H]', freq='H')

In [321]: idx = pd.period_range('2014-07', periods=5, freq='M')

In [322]: idx
Out[322]: PeriodIndex(['2014-07', '2014-08', '2014-09', '2014-10', '2014-11'], dtype=
→˓'period[M]', freq='M')

In [323]: idx + MonthEnd(3)
\\Out[323]:
→˓PeriodIndex(['2014-10', '2014-11', '2014-12', '2015-01', '2015-02'], dtype=
→˓'period[M]', freq='M')

PeriodIndex has its own dtype named period, refer to Period Dtypes.

19.11.3 Period Dtypes

New in version 0.19.0.

PeriodIndex has a custom period dtype. This is a pandas extension dtype similar to the timezone aware dtype
(datetime64[ns, tz]).

The period dtype holds the freq attribute and is represented with period[freq] like period[D] or
period[M], using frequency strings.

In [324]: pi = pd.period_range('2016-01-01', periods=3, freq='M')

In [325]: pi
Out[325]: PeriodIndex(['2016-01', '2016-02', '2016-03'], dtype='period[M]', freq='M')

In [326]: pi.dtype
\\Out[326]:
→˓period[M]

The period dtype can be used in .astype(...). It allows one to change the freq of a PeriodIndex like
.asfreq() and convert a DatetimeIndex to PeriodIndex like to_period():

change monthly freq to daily freq
In [327]: pi.astype('period[D]')
Out[327]: PeriodIndex(['2016-01-31', '2016-02-29', '2016-03-31'], dtype='period[D]',
→˓freq='D')

convert to DatetimeIndex
In [328]: pi.astype('datetime64[ns]')
\\\Out[328]:
→˓DatetimeIndex(['2016-01-01', '2016-02-01', '2016-03-01'], dtype='datetime64[ns]',
→˓freq='MS')

convert to PeriodIndex
In [329]: dti = pd.date_range('2011-01-01', freq='M', periods=3)

(continues on next page)

19.11. Time Span Representation 979

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

In [330]: dti
Out[330]: DatetimeIndex(['2011-01-31', '2011-02-28', '2011-03-31'], dtype=
→˓'datetime64[ns]', freq='M')

In [331]: dti.astype('period[M]')
\\Out[331]:
→˓PeriodIndex(['2011-01', '2011-02', '2011-03'], dtype='period[M]', freq='M')

19.11.4 PeriodIndex Partial String Indexing

You can pass in dates and strings to Series and DataFrame with PeriodIndex, in the same manner as
DatetimeIndex. For details, refer to DatetimeIndex Partial String Indexing.

In [332]: ps['2011-01']
Out[332]: 0.25831819727391592

In [333]: ps[datetime(2011, 12, 25):]
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\Out[333]:
2011-12 1.001558
2012-01 -0.087453
Freq: M, dtype: float64

In [334]: ps['10/31/2011':'12/31/2011']
\\\Out[334]:
→˓

2011-10 -0.542325
2011-11 2.010541
2011-12 1.001558
Freq: M, dtype: float64

Passing a string representing a lower frequency than PeriodIndex returns partial sliced data.

In [335]: ps['2011']
Out[335]:
2011-01 0.258318
2011-02 -2.503700
2011-03 -0.303053
2011-04 0.270509
2011-05 1.004841
2011-06 -0.129044
2011-07 -1.406335
2011-08 -1.310412
2011-09 0.769439
2011-10 -0.542325
2011-11 2.010541
2011-12 1.001558
Freq: M, dtype: float64

In [336]: dfp = pd.DataFrame(np.random.randn(600,1),
.....: columns=['A'],
.....: index=pd.period_range('2013-01-01 9:00', periods=600,

→˓freq='T'))
.....:

(continues on next page)

980 Chapter 19. Time Series / Date functionality

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

In [337]: dfp
Out[337]:

A
2013-01-01 09:00 0.005210
2013-01-01 09:01 -0.014385
2013-01-01 09:02 -0.212404
2013-01-01 09:03 -1.227760
2013-01-01 09:04 -0.809722
2013-01-01 09:05 -1.719723
2013-01-01 09:06 -0.808486
... ...
2013-01-01 18:53 -0.783098
2013-01-01 18:54 0.755005
2013-01-01 18:55 -1.116732
2013-01-01 18:56 -0.940692
2013-01-01 18:57 0.228536
2013-01-01 18:58 0.109472
2013-01-01 18:59 0.235414

[600 rows x 1 columns]

In [338]: dfp['2013-01-01 10H']
\\\Out[338]:
→˓

A
2013-01-01 10:00 -0.148998
2013-01-01 10:01 2.154810
2013-01-01 10:02 -1.605646
2013-01-01 10:03 0.021024
2013-01-01 10:04 -0.623737
2013-01-01 10:05 1.451612
2013-01-01 10:06 1.062463
... ...
2013-01-01 10:53 0.273119
2013-01-01 10:54 -0.994071
2013-01-01 10:55 -1.222179
2013-01-01 10:56 -1.167118
2013-01-01 10:57 0.262822
2013-01-01 10:58 -0.283786
2013-01-01 10:59 1.190726

[60 rows x 1 columns]

As with DatetimeIndex, the endpoints will be included in the result. The example below slices data starting from
10:00 to 11:59.

In [339]: dfp['2013-01-01 10H':'2013-01-01 11H']
Out[339]:

A
2013-01-01 10:00 -0.148998
2013-01-01 10:01 2.154810
2013-01-01 10:02 -1.605646
2013-01-01 10:03 0.021024
2013-01-01 10:04 -0.623737
2013-01-01 10:05 1.451612
2013-01-01 10:06 1.062463

(continues on next page)

19.11. Time Span Representation 981

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

... ...
2013-01-01 11:53 -1.477914
2013-01-01 11:54 0.594465
2013-01-01 11:55 -0.903243
2013-01-01 11:56 1.182131
2013-01-01 11:57 0.621345
2013-01-01 11:58 -0.996113
2013-01-01 11:59 -0.191659

[120 rows x 1 columns]

19.11.5 Frequency Conversion and Resampling with PeriodIndex

The frequency of Period and PeriodIndex can be converted via the asfreq method. Let’s start with the fiscal
year 2011, ending in December:

In [340]: p = pd.Period('2011', freq='A-DEC')

In [341]: p
Out[341]: Period('2011', 'A-DEC')

We can convert it to a monthly frequency. Using the how parameter, we can specify whether to return the starting or
ending month:

In [342]: p.asfreq('M', how='start')
Out[342]: Period('2011-01', 'M')

In [343]: p.asfreq('M', how='end')
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\Out[343]: Period('2011-12', 'M')

The shorthands ‘s’ and ‘e’ are provided for convenience:

In [344]: p.asfreq('M', 's')
Out[344]: Period('2011-01', 'M')

In [345]: p.asfreq('M', 'e')
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\Out[345]: Period('2011-12', 'M')

Converting to a “super-period” (e.g., annual frequency is a super-period of quarterly frequency) automatically returns
the super-period that includes the input period:

In [346]: p = pd.Period('2011-12', freq='M')

In [347]: p.asfreq('A-NOV')
Out[347]: Period('2012', 'A-NOV')

Note that since we converted to an annual frequency that ends the year in November, the monthly period of December
2011 is actually in the 2012 A-NOV period.

Period conversions with anchored frequencies are particularly useful for working with various quarterly data common
to economics, business, and other fields. Many organizations define quarters relative to the month in which their
fiscal year starts and ends. Thus, first quarter of 2011 could start in 2010 or a few months into 2011. Via anchored
frequencies, pandas works for all quarterly frequencies Q-JAN through Q-DEC.

Q-DEC define regular calendar quarters:

982 Chapter 19. Time Series / Date functionality

pandas: powerful Python data analysis toolkit, Release 0.23.4

In [348]: p = pd.Period('2012Q1', freq='Q-DEC')

In [349]: p.asfreq('D', 's')
Out[349]: Period('2012-01-01', 'D')

In [350]: p.asfreq('D', 'e')
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\Out[350]: Period('2012-03-31', 'D')

Q-MAR defines fiscal year end in March:

In [351]: p = pd.Period('2011Q4', freq='Q-MAR')

In [352]: p.asfreq('D', 's')
Out[352]: Period('2011-01-01', 'D')

In [353]: p.asfreq('D', 'e')
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\Out[353]: Period('2011-03-31', 'D')

19.12 Converting Between Representations

Timestamped data can be converted to PeriodIndex-ed data using to_period and vice-versa using
to_timestamp:

In [354]: rng = pd.date_range('1/1/2012', periods=5, freq='M')

In [355]: ts = pd.Series(np.random.randn(len(rng)), index=rng)

In [356]: ts
Out[356]:
2012-01-31 -0.898547
2012-02-29 -1.332247
2012-03-31 -0.741645
2012-04-30 0.094321
2012-05-31 -0.438813
Freq: M, dtype: float64

In [357]: ps = ts.to_period()

In [358]: ps
Out[358]:
2012-01 -0.898547
2012-02 -1.332247
2012-03 -0.741645
2012-04 0.094321
2012-05 -0.438813
Freq: M, dtype: float64

In [359]: ps.to_timestamp()
\\\Out[359]:
→˓

2012-01-01 -0.898547
2012-02-01 -1.332247
2012-03-01 -0.741645
2012-04-01 0.094321

(continues on next page)

19.12. Converting Between Representations 983

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

2012-05-01 -0.438813
Freq: MS, dtype: float64

Remember that ‘s’ and ‘e’ can be used to return the timestamps at the start or end of the period:

In [360]: ps.to_timestamp('D', how='s')
Out[360]:
2012-01-01 -0.898547
2012-02-01 -1.332247
2012-03-01 -0.741645
2012-04-01 0.094321
2012-05-01 -0.438813
Freq: MS, dtype: float64

Converting between period and timestamp enables some convenient arithmetic functions to be used. In the following
example, we convert a quarterly frequency with year ending in November to 9am of the end of the month following
the quarter end:

In [361]: prng = pd.period_range('1990Q1', '2000Q4', freq='Q-NOV')

In [362]: ts = pd.Series(np.random.randn(len(prng)), prng)

In [363]: ts.index = (prng.asfreq('M', 'e') + 1).asfreq('H', 's') + 9

In [364]: ts.head()
Out[364]:
1990-03-01 09:00 -0.564874
1990-06-01 09:00 -1.426510
1990-09-01 09:00 1.295437
1990-12-01 09:00 1.124017
1991-03-01 09:00 0.840428
Freq: H, dtype: float64

19.13 Representing Out-of-Bounds Spans

If you have data that is outside of the Timestamp bounds, see Timestamp limitations, then you can use a
PeriodIndex and/or Series of Periods to do computations.

In [365]: span = pd.period_range('1215-01-01', '1381-01-01', freq='D')

In [366]: span
Out[366]:
PeriodIndex(['1215-01-01', '1215-01-02', '1215-01-03', '1215-01-04',

'1215-01-05', '1215-01-06', '1215-01-07', '1215-01-08',
'1215-01-09', '1215-01-10',
...
'1380-12-23', '1380-12-24', '1380-12-25', '1380-12-26',
'1380-12-27', '1380-12-28', '1380-12-29', '1380-12-30',
'1380-12-31', '1381-01-01'],

dtype='period[D]', length=60632, freq='D')

To convert from an int64 based YYYYMMDD representation.

984 Chapter 19. Time Series / Date functionality

pandas: powerful Python data analysis toolkit, Release 0.23.4

In [367]: s = pd.Series([20121231, 20141130, 99991231])

In [368]: s
Out[368]:
0 20121231
1 20141130
2 99991231
dtype: int64

In [369]: def conv(x):
.....: return pd.Period(year = x // 10000, month = x//100 % 100, day = x%100,

→˓freq='D')
.....:

In [370]: s.apply(conv)
Out[370]:
0 2012-12-31
1 2014-11-30
2 9999-12-31
dtype: object

In [371]: s.apply(conv)[2]
\\Out[371]:
→˓Period('9999-12-31', 'D')

These can easily be converted to a PeriodIndex:

In [372]: span = pd.PeriodIndex(s.apply(conv))

In [373]: span
Out[373]: PeriodIndex(['2012-12-31', '2014-11-30', '9999-12-31'], dtype='period[D]',
→˓freq='D')

19.14 Time Zone Handling

Pandas provides rich support for working with timestamps in different time zones using pytz and dateutil li-
braries. dateutil currently is only supported for fixed offset and tzfile zones. The default library is pytz. Support
for dateutil is provided for compatibility with other applications e.g. if you use dateutil in other Python
packages.

19.14.1 Working with Time Zones

By default, pandas objects are time zone unaware:

In [374]: rng = pd.date_range('3/6/2012 00:00', periods=15, freq='D')

In [375]: rng.tz is None
Out[375]: True

To supply the time zone, you can use the tz keyword to date_range and other functions. Dateutil time zone strings
are distinguished from pytz time zones by starting with dateutil/.

• In pytz you can find a list of common (and less common) time zones using from pytz import
common_timezones, all_timezones.

19.14. Time Zone Handling 985

pandas: powerful Python data analysis toolkit, Release 0.23.4

• dateutil uses the OS timezones so there isn’t a fixed list available. For common zones, the names are the
same as pytz.

pytz
In [376]: rng_pytz = pd.date_range('3/6/2012 00:00', periods=10, freq='D',

.....: tz='Europe/London')

.....:

In [377]: rng_pytz.tz
Out[377]: <DstTzInfo 'Europe/London' LMT-1 day, 23:59:00 STD>

dateutil
In [378]: rng_dateutil = pd.date_range('3/6/2012 00:00', periods=10, freq='D',

.....: tz='dateutil/Europe/London')

.....:

In [379]: rng_dateutil.tz
Out[379]: tzfile('/usr/share/zoneinfo/Europe/London')

dateutil - utc special case
In [380]: rng_utc = pd.date_range('3/6/2012 00:00', periods=10, freq='D',

.....: tz=dateutil.tz.tzutc())

.....:

In [381]: rng_utc.tz
Out[381]: tzutc()

Note that the UTC timezone is a special case in dateutil and should be constructed explicitly as an instance of
dateutil.tz.tzutc. You can also construct other timezones explicitly first, which gives you more control over
which time zone is used:

pytz
In [382]: tz_pytz = pytz.timezone('Europe/London')

In [383]: rng_pytz = pd.date_range('3/6/2012 00:00', periods=10, freq='D',
.....: tz=tz_pytz)
.....:

In [384]: rng_pytz.tz == tz_pytz
Out[384]: True

dateutil
In [385]: tz_dateutil = dateutil.tz.gettz('Europe/London')

In [386]: rng_dateutil = pd.date_range('3/6/2012 00:00', periods=10, freq='D',
.....: tz=tz_dateutil)
.....:

In [387]: rng_dateutil.tz == tz_dateutil
Out[387]: True

Timestamps, like Python’s datetime.datetime object can be either time zone naive or time zone aware. Naive
time series and DatetimeIndex objects can be localized using tz_localize:

In [388]: ts = pd.Series(np.random.randn(len(rng)), rng)

In [389]: ts_utc = ts.tz_localize('UTC')

(continues on next page)

986 Chapter 19. Time Series / Date functionality

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

In [390]: ts_utc
Out[390]:
2012-03-06 00:00:00+00:00 0.037206
2012-03-07 00:00:00+00:00 2.313998
2012-03-08 00:00:00+00:00 1.458296
2012-03-09 00:00:00+00:00 -0.620431
2012-03-10 00:00:00+00:00 -0.000111
2012-03-11 00:00:00+00:00 -0.342783
2012-03-12 00:00:00+00:00 -0.664322
2012-03-13 00:00:00+00:00 0.654814
2012-03-14 00:00:00+00:00 1.550680
2012-03-15 00:00:00+00:00 0.174511
2012-03-16 00:00:00+00:00 1.360491
2012-03-17 00:00:00+00:00 0.799737
2012-03-18 00:00:00+00:00 0.449149
2012-03-19 00:00:00+00:00 0.111346
2012-03-20 00:00:00+00:00 -0.435531
Freq: D, dtype: float64

Again, you can explicitly construct the timezone object first. You can use the tz_convert method to convert pandas
objects to convert tz-aware data to another time zone:

In [391]: ts_utc.tz_convert('US/Eastern')
Out[391]:
2012-03-05 19:00:00-05:00 0.037206
2012-03-06 19:00:00-05:00 2.313998
2012-03-07 19:00:00-05:00 1.458296
2012-03-08 19:00:00-05:00 -0.620431
2012-03-09 19:00:00-05:00 -0.000111
2012-03-10 19:00:00-05:00 -0.342783
2012-03-11 20:00:00-04:00 -0.664322
2012-03-12 20:00:00-04:00 0.654814
2012-03-13 20:00:00-04:00 1.550680
2012-03-14 20:00:00-04:00 0.174511
2012-03-15 20:00:00-04:00 1.360491
2012-03-16 20:00:00-04:00 0.799737
2012-03-17 20:00:00-04:00 0.449149
2012-03-18 20:00:00-04:00 0.111346
2012-03-19 20:00:00-04:00 -0.435531
Freq: D, dtype: float64

Warning: Be wary of conversions between libraries. For some zones pytz and dateutil have different
definitions of the zone. This is more of a problem for unusual timezones than for ‘standard’ zones like US/
Eastern.

Warning: Be aware that a timezone definition across versions of timezone libraries may not be considered equal.
This may cause problems when working with stored data that is localized using one version and operated on with
a different version. See here for how to handle such a situation.

Warning: It is incorrect to pass a timezone directly into the datetime.datetime constructor (e.g.,
datetime.datetime(2011, 1, 1, tz=timezone('US/Eastern')). Instead, the datetime needs

19.14. Time Zone Handling 987

pandas: powerful Python data analysis toolkit, Release 0.23.4

to be localized using the localize method on the timezone.

Under the hood, all timestamps are stored in UTC. Scalar values from a DatetimeIndex with a time zone will have
their fields (day, hour, minute) localized to the time zone. However, timestamps with the same UTC value are still
considered to be equal even if they are in different time zones:

In [392]: rng_eastern = rng_utc.tz_convert('US/Eastern')

In [393]: rng_berlin = rng_utc.tz_convert('Europe/Berlin')

In [394]: rng_eastern[5]
Out[394]: Timestamp('2012-03-10 19:00:00-0500', tz='US/Eastern', freq='D')

In [395]: rng_berlin[5]
\\\Out[395]:
→˓Timestamp('2012-03-11 01:00:00+0100', tz='Europe/Berlin', freq='D')

In [396]: rng_eastern[5] == rng_berlin[5]
\\\Out[396]:
→˓True

Like Series, DataFrame, and DatetimeIndex, Timestamp``s can be converted to other
time zones using ``tz_convert:

In [397]: rng_eastern[5]
Out[397]: Timestamp('2012-03-10 19:00:00-0500', tz='US/Eastern', freq='D')

In [398]: rng_berlin[5]
\\\Out[398]:
→˓Timestamp('2012-03-11 01:00:00+0100', tz='Europe/Berlin', freq='D')

In [399]: rng_eastern[5].tz_convert('Europe/Berlin')
\\\Out[399]:
→˓Timestamp('2012-03-11 01:00:00+0100', tz='Europe/Berlin')

Localization of Timestamp functions just like DatetimeIndex and Series:

In [400]: rng[5]
Out[400]: Timestamp('2012-03-11 00:00:00', freq='D')

In [401]: rng[5].tz_localize('Asia/Shanghai')
\\\Out[401]: Timestamp('2012-03-11
→˓00:00:00+0800', tz='Asia/Shanghai')

Operations between Series in different time zones will yield UTC Series, aligning the data on the UTC times-
tamps:

In [402]: eastern = ts_utc.tz_convert('US/Eastern')

In [403]: berlin = ts_utc.tz_convert('Europe/Berlin')

In [404]: result = eastern + berlin

In [405]: result
Out[405]:
2012-03-06 00:00:00+00:00 0.074412

(continues on next page)

988 Chapter 19. Time Series / Date functionality

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

2012-03-07 00:00:00+00:00 4.627997
2012-03-08 00:00:00+00:00 2.916592
2012-03-09 00:00:00+00:00 -1.240863
2012-03-10 00:00:00+00:00 -0.000221
2012-03-11 00:00:00+00:00 -0.685566
2012-03-12 00:00:00+00:00 -1.328643
2012-03-13 00:00:00+00:00 1.309628
2012-03-14 00:00:00+00:00 3.101359
2012-03-15 00:00:00+00:00 0.349022
2012-03-16 00:00:00+00:00 2.720983
2012-03-17 00:00:00+00:00 1.599475
2012-03-18 00:00:00+00:00 0.898297
2012-03-19 00:00:00+00:00 0.222691
2012-03-20 00:00:00+00:00 -0.871062
Freq: D, dtype: float64

In [406]: result.index
\\\Out[406]:
→˓

DatetimeIndex(['2012-03-06', '2012-03-07', '2012-03-08', '2012-03-09',
'2012-03-10', '2012-03-11', '2012-03-12', '2012-03-13',
'2012-03-14', '2012-03-15', '2012-03-16', '2012-03-17',
'2012-03-18', '2012-03-19', '2012-03-20'],

dtype='datetime64[ns, UTC]', freq='D')

To remove timezone from tz-aware DatetimeIndex, use tz_localize(None) or tz_convert(None).
tz_localize(None) will remove timezone holding local time representations. tz_convert(None) will re-
move timezone after converting to UTC time.

In [407]: didx = pd.DatetimeIndex(start='2014-08-01 09:00', freq='H', periods=10, tz=
→˓'US/Eastern')

In [408]: didx
Out[408]:
DatetimeIndex(['2014-08-01 09:00:00-04:00', '2014-08-01 10:00:00-04:00',

'2014-08-01 11:00:00-04:00', '2014-08-01 12:00:00-04:00',
'2014-08-01 13:00:00-04:00', '2014-08-01 14:00:00-04:00',
'2014-08-01 15:00:00-04:00', '2014-08-01 16:00:00-04:00',
'2014-08-01 17:00:00-04:00', '2014-08-01 18:00:00-04:00'],

dtype='datetime64[ns, US/Eastern]', freq='H')

In [409]: didx.tz_localize(None)
\\\Out[409]:
→˓

DatetimeIndex(['2014-08-01 09:00:00', '2014-08-01 10:00:00',
'2014-08-01 11:00:00', '2014-08-01 12:00:00',
'2014-08-01 13:00:00', '2014-08-01 14:00:00',
'2014-08-01 15:00:00', '2014-08-01 16:00:00',
'2014-08-01 17:00:00', '2014-08-01 18:00:00'],

dtype='datetime64[ns]', freq='H')

In [410]: didx.tz_convert(None)
\\Out[410]:
→˓

DatetimeIndex(['2014-08-01 13:00:00', '2014-08-01 14:00:00',
'2014-08-01 15:00:00', '2014-08-01 16:00:00',

(continues on next page)

19.14. Time Zone Handling 989

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

'2014-08-01 17:00:00', '2014-08-01 18:00:00',
'2014-08-01 19:00:00', '2014-08-01 20:00:00',
'2014-08-01 21:00:00', '2014-08-01 22:00:00'],

dtype='datetime64[ns]', freq='H')

tz_convert(None) is identical with tz_convert('UTC').tz_localize(None)
In [411]: didx.tz_convert('UCT').tz_localize(None)
\\\Out[411]:
→˓

DatetimeIndex(['2014-08-01 13:00:00', '2014-08-01 14:00:00',
'2014-08-01 15:00:00', '2014-08-01 16:00:00',
'2014-08-01 17:00:00', '2014-08-01 18:00:00',
'2014-08-01 19:00:00', '2014-08-01 20:00:00',
'2014-08-01 21:00:00', '2014-08-01 22:00:00'],

dtype='datetime64[ns]', freq='H')

19.14.2 Ambiguous Times when Localizing

In some cases, localize cannot determine the DST and non-DST hours when there are duplicates. This often hap-
pens when reading files or database records that simply duplicate the hours. Passing ambiguous='infer' into
tz_localize will attempt to determine the right offset. Below the top example will fail as it contains ambiguous
times and the bottom will infer the right offset.

In [412]: rng_hourly = pd.DatetimeIndex(['11/06/2011 00:00', '11/06/2011 01:00',
.....: '11/06/2011 01:00', '11/06/2011 02:00',
.....: '11/06/2011 03:00'])
.....:

This will fail as there are ambiguous times

In [2]: rng_hourly.tz_localize('US/Eastern')
AmbiguousTimeError: Cannot infer dst time from Timestamp('2011-11-06 01:00:00'), try
→˓using the 'ambiguous' argument

Infer the ambiguous times

In [413]: rng_hourly_eastern = rng_hourly.tz_localize('US/Eastern', ambiguous='infer')

In [414]: rng_hourly_eastern.tolist()
Out[414]:
[Timestamp('2011-11-06 00:00:00-0400', tz='US/Eastern'),
Timestamp('2011-11-06 01:00:00-0400', tz='US/Eastern'),
Timestamp('2011-11-06 01:00:00-0500', tz='US/Eastern'),
Timestamp('2011-11-06 02:00:00-0500', tz='US/Eastern'),
Timestamp('2011-11-06 03:00:00-0500', tz='US/Eastern')]

In addition to ‘infer’, there are several other arguments supported. Passing an array-like of bools or 0s/1s where True
represents a DST hour and False a non-DST hour, allows for distinguishing more than one DST transition (e.g., if you
have multiple records in a database each with their own DST transition). Or passing ‘NaT’ will fill in transition times
with not-a-time values. These methods are available in the DatetimeIndex constructor as well as tz_localize.

In [415]: rng_hourly_dst = np.array([1, 1, 0, 0, 0])

In [416]: rng_hourly.tz_localize('US/Eastern', ambiguous=rng_hourly_dst).tolist()

(continues on next page)

990 Chapter 19. Time Series / Date functionality

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

Out[416]:
[Timestamp('2011-11-06 00:00:00-0400', tz='US/Eastern'),
Timestamp('2011-11-06 01:00:00-0400', tz='US/Eastern'),
Timestamp('2011-11-06 01:00:00-0500', tz='US/Eastern'),
Timestamp('2011-11-06 02:00:00-0500', tz='US/Eastern'),
Timestamp('2011-11-06 03:00:00-0500', tz='US/Eastern')]

In [417]: rng_hourly.tz_localize('US/Eastern', ambiguous='NaT').tolist()
\\Out[417]:
→˓

[Timestamp('2011-11-06 00:00:00-0400', tz='US/Eastern'),
NaT,
NaT,
Timestamp('2011-11-06 02:00:00-0500', tz='US/Eastern'),
Timestamp('2011-11-06 03:00:00-0500', tz='US/Eastern')]

In [418]: didx = pd.DatetimeIndex(start='2014-08-01 09:00', freq='H', periods=10, tz=
→˓'US/Eastern')

In [419]: didx
Out[419]:
DatetimeIndex(['2014-08-01 09:00:00-04:00', '2014-08-01 10:00:00-04:00',

'2014-08-01 11:00:00-04:00', '2014-08-01 12:00:00-04:00',
'2014-08-01 13:00:00-04:00', '2014-08-01 14:00:00-04:00',
'2014-08-01 15:00:00-04:00', '2014-08-01 16:00:00-04:00',
'2014-08-01 17:00:00-04:00', '2014-08-01 18:00:00-04:00'],

dtype='datetime64[ns, US/Eastern]', freq='H')

In [420]: didx.tz_localize(None)
\\\Out[420]:
→˓

DatetimeIndex(['2014-08-01 09:00:00', '2014-08-01 10:00:00',
'2014-08-01 11:00:00', '2014-08-01 12:00:00',
'2014-08-01 13:00:00', '2014-08-01 14:00:00',
'2014-08-01 15:00:00', '2014-08-01 16:00:00',
'2014-08-01 17:00:00', '2014-08-01 18:00:00'],

dtype='datetime64[ns]', freq='H')

In [421]: didx.tz_convert(None)
\\Out[421]:
→˓

DatetimeIndex(['2014-08-01 13:00:00', '2014-08-01 14:00:00',
'2014-08-01 15:00:00', '2014-08-01 16:00:00',
'2014-08-01 17:00:00', '2014-08-01 18:00:00',
'2014-08-01 19:00:00', '2014-08-01 20:00:00',
'2014-08-01 21:00:00', '2014-08-01 22:00:00'],

dtype='datetime64[ns]', freq='H')

tz_convert(None) is identical with tz_convert('UTC').tz_localize(None)
In [422]: didx.tz_convert('UCT').tz_localize(None)
\\\Out[422]:
→˓

DatetimeIndex(['2014-08-01 13:00:00', '2014-08-01 14:00:00',
'2014-08-01 15:00:00', '2014-08-01 16:00:00',
'2014-08-01 17:00:00', '2014-08-01 18:00:00',
'2014-08-01 19:00:00', '2014-08-01 20:00:00',
'2014-08-01 21:00:00', '2014-08-01 22:00:00'],

(continues on next page)

19.14. Time Zone Handling 991

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

dtype='datetime64[ns]', freq='H')

19.14.3 TZ Aware Dtypes

Series/DatetimeIndex with a timezone naive value are represented with a dtype of datetime64[ns].

In [423]: s_naive = pd.Series(pd.date_range('20130101',periods=3))

In [424]: s_naive
Out[424]:
0 2013-01-01
1 2013-01-02
2 2013-01-03
dtype: datetime64[ns]

Series/DatetimeIndex with a timezone aware value are represented with a dtype of datetime64[ns,
tz].

In [425]: s_aware = pd.Series(pd.date_range('20130101',periods=3,tz='US/Eastern'))

In [426]: s_aware
Out[426]:
0 2013-01-01 00:00:00-05:00
1 2013-01-02 00:00:00-05:00
2 2013-01-03 00:00:00-05:00
dtype: datetime64[ns, US/Eastern]

Both of these Series can be manipulated via the .dt accessor, see here.

For example, to localize and convert a naive stamp to timezone aware.

In [427]: s_naive.dt.tz_localize('UTC').dt.tz_convert('US/Eastern')
Out[427]:
0 2012-12-31 19:00:00-05:00
1 2013-01-01 19:00:00-05:00
2 2013-01-02 19:00:00-05:00
dtype: datetime64[ns, US/Eastern]

Further more you can .astype(...) timezone aware (and naive). This operation is effectively a localize AND
convert on a naive stamp, and a convert on an aware stamp.

localize and convert a naive timezone
In [428]: s_naive.astype('datetime64[ns, US/Eastern]')
Out[428]:
0 2012-12-31 19:00:00-05:00
1 2013-01-01 19:00:00-05:00
2 2013-01-02 19:00:00-05:00
dtype: datetime64[ns, US/Eastern]

make an aware tz naive
In [429]: s_aware.astype('datetime64[ns]')
\\\Out[429]:
→˓

0 2013-01-01 05:00:00
1 2013-01-02 05:00:00

(continues on next page)

992 Chapter 19. Time Series / Date functionality

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

2 2013-01-03 05:00:00
dtype: datetime64[ns]

convert to a new timezone
In [430]: s_aware.astype('datetime64[ns, CET]')
\\Out[430]:
→˓

0 2013-01-01 06:00:00+01:00
1 2013-01-02 06:00:00+01:00
2 2013-01-03 06:00:00+01:00
dtype: datetime64[ns, CET]

Note: Using the .values accessor on a Series, returns an NumPy array of the data. These values are converted
to UTC, as NumPy does not currently support timezones (even though it is printing in the local timezone!).

In [431]: s_naive.values
Out[431]:
array(['2013-01-01T00:00:00.000000000', '2013-01-02T00:00:00.000000000',

'2013-01-03T00:00:00.000000000'], dtype='datetime64[ns]')

In [432]: s_aware.values
\\\Out[432]:
→˓

array(['2013-01-01T05:00:00.000000000', '2013-01-02T05:00:00.000000000',
'2013-01-03T05:00:00.000000000'], dtype='datetime64[ns]')

Further note that once converted to a NumPy array these would lose the tz tenor.

In [433]: pd.Series(s_aware.values)
Out[433]:
0 2013-01-01 05:00:00
1 2013-01-02 05:00:00
2 2013-01-03 05:00:00
dtype: datetime64[ns]

However, these can be easily converted:

In [434]: pd.Series(s_aware.values).dt.tz_localize('UTC').dt.tz_convert('US/Eastern')
Out[434]:
0 2013-01-01 00:00:00-05:00
1 2013-01-02 00:00:00-05:00
2 2013-01-03 00:00:00-05:00
dtype: datetime64[ns, US/Eastern]

19.14. Time Zone Handling 993

pandas: powerful Python data analysis toolkit, Release 0.23.4

994 Chapter 19. Time Series / Date functionality

CHAPTER

TWENTY

TIME DELTAS

Timedeltas are differences in times, expressed in difference units, e.g. days, hours, minutes, seconds. They can be
both positive and negative.

Timedelta is a subclass of datetime.timedelta, and behaves in a similar manner, but allows compatibility
with np.timedelta64 types as well as a host of custom representation, parsing, and attributes.

20.1 Parsing

You can construct a Timedelta scalar through various arguments:

strings
In [1]: pd.Timedelta('1 days')
Out[1]: Timedelta('1 days 00:00:00')

In [2]: pd.Timedelta('1 days 00:00:00')
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\Out[2]: Timedelta('1 days 00:00:00')

In [3]: pd.Timedelta('1 days 2 hours')
\\Out[3]:
→˓Timedelta('1 days 02:00:00')

In [4]: pd.Timedelta('-1 days 2 min 3us')
\\\Out[4]:
→˓Timedelta('-2 days +23:57:59.999997')

like datetime.timedelta
note: these MUST be specified as keyword arguments
In [5]: pd.Timedelta(days=1, seconds=1)
\\\Out[5]:
→˓Timedelta('1 days 00:00:01')

integers with a unit
In [6]: pd.Timedelta(1, unit='d')
\\Out[6]:
→˓Timedelta('1 days 00:00:00')

from a datetime.timedelta/np.timedelta64
In [7]: pd.Timedelta(datetime.timedelta(days=1, seconds=1))
\\\Out[7]:
→˓Timedelta('1 days 00:00:01')

In [8]: pd.Timedelta(np.timedelta64(1, 'ms'))

(continues on next page)

995

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

\\Out[8]:
→˓Timedelta('0 days 00:00:00.001000')

negative Timedeltas have this string repr
to be more consistent with datetime.timedelta conventions
In [9]: pd.Timedelta('-1us')
\\Out[9]:
→˓Timedelta('-1 days +23:59:59.999999')

a NaT
In [10]: pd.Timedelta('nan')
\\Out[10]:
→˓NaT

In [11]: pd.Timedelta('nat')
\\\Out[11]:
→˓NaT

ISO 8601 Duration strings
In [12]: pd.Timedelta('P0DT0H1M0S')
\\Out[12]:
→˓Timedelta('0 days 00:01:00')

In [13]: pd.Timedelta('P0DT0H0M0.000000123S')
\\Out[13]:
→˓Timedelta('0 days 00:00:00.000000')

New in version 0.23.0: Added constructor for ISO 8601 Duration strings

DateOffsets (Day, Hour, Minute, Second, Milli, Micro, Nano) can also be used in construction.

In [14]: pd.Timedelta(Second(2))
Out[14]: Timedelta('0 days 00:00:02')

Further, operations among the scalars yield another scalar Timedelta.

In [15]: pd.Timedelta(Day(2)) + pd.Timedelta(Second(2)) + pd.Timedelta('00:00:00.
→˓000123')
Out[15]: Timedelta('2 days 00:00:02.000123')

20.1.1 to_timedelta

Using the top-level pd.to_timedelta, you can convert a scalar, array, list, or Series from a recognized timedelta
format / value into a Timedelta type. It will construct Series if the input is a Series, a scalar if the input is scalar-like,
otherwise it will output a TimedeltaIndex.

You can parse a single string to a Timedelta:

In [16]: pd.to_timedelta('1 days 06:05:01.00003')
Out[16]: Timedelta('1 days 06:05:01.000030')

In [17]: pd.to_timedelta('15.5us')
\\\Out[17]: Timedelta('0 days 00:00:00.
→˓000015')

or a list/array of strings:

996 Chapter 20. Time Deltas

https://en.wikipedia.org/wiki/ISO_8601#Durations

pandas: powerful Python data analysis toolkit, Release 0.23.4

In [18]: pd.to_timedelta(['1 days 06:05:01.00003', '15.5us', 'nan'])
Out[18]: TimedeltaIndex(['1 days 06:05:01.000030', '0 days 00:00:00.000015', NaT],
→˓dtype='timedelta64[ns]', freq=None)

The unit keyword argument specifies the unit of the Timedelta:

In [19]: pd.to_timedelta(np.arange(5), unit='s')
Out[19]: TimedeltaIndex(['00:00:00', '00:00:01', '00:00:02', '00:00:03', '00:00:04'],
→˓dtype='timedelta64[ns]', freq=None)

In [20]: pd.to_timedelta(np.arange(5), unit='d')
\\Out[20]:
→˓TimedeltaIndex(['0 days', '1 days', '2 days', '3 days', '4 days'], dtype=
→˓'timedelta64[ns]', freq=None)

20.1.2 Timedelta limitations

Pandas represents Timedeltas in nanosecond resolution using 64 bit integers. As such, the 64 bit integer limits
determine the Timedelta limits.

In [21]: pd.Timedelta.min
Out[21]: Timedelta('-106752 days +00:12:43.145224')

In [22]: pd.Timedelta.max
\\Out[22]: Timedelta('106751 days
→˓23:47:16.854775')

20.2 Operations

You can operate on Series/DataFrames and construct timedelta64[ns] Series through subtraction operations on
datetime64[ns] Series, or Timestamps.

In [23]: s = pd.Series(pd.date_range('2012-1-1', periods=3, freq='D'))

In [24]: td = pd.Series([pd.Timedelta(days=i) for i in range(3)])

In [25]: df = pd.DataFrame(dict(A = s, B = td))

In [26]: df
Out[26]:

A B
0 2012-01-01 0 days
1 2012-01-02 1 days
2 2012-01-03 2 days

In [27]: df['C'] = df['A'] + df['B']

In [28]: df
Out[28]:

A B C
0 2012-01-01 0 days 2012-01-01
1 2012-01-02 1 days 2012-01-03
2 2012-01-03 2 days 2012-01-05

(continues on next page)

20.2. Operations 997

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

In [29]: df.dtypes
\\Out[29]:
→˓

A datetime64[ns]
B timedelta64[ns]
C datetime64[ns]
dtype: object

In [30]: s - s.max()
\\\Out[30]:
→˓

0 -2 days
1 -1 days
2 0 days
dtype: timedelta64[ns]

In [31]: s - datetime.datetime(2011, 1, 1, 3, 5)
\\Out[31]:
→˓

0 364 days 20:55:00
1 365 days 20:55:00
2 366 days 20:55:00
dtype: timedelta64[ns]

In [32]: s + datetime.timedelta(minutes=5)
\\\Out[32]:
→˓

0 2012-01-01 00:05:00
1 2012-01-02 00:05:00
2 2012-01-03 00:05:00
dtype: datetime64[ns]

In [33]: s + Minute(5)
\\\Out[33]:
→˓

0 2012-01-01 00:05:00
1 2012-01-02 00:05:00
2 2012-01-03 00:05:00
dtype: datetime64[ns]

In [34]: s + Minute(5) + Milli(5)
\\\Out[34]:
→˓

0 2012-01-01 00:05:00.005
1 2012-01-02 00:05:00.005
2 2012-01-03 00:05:00.005
dtype: datetime64[ns]

Operations with scalars from a timedelta64[ns] series:

In [35]: y = s - s[0]

In [36]: y
Out[36]:
0 0 days
1 1 days

(continues on next page)

998 Chapter 20. Time Deltas

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

2 2 days
dtype: timedelta64[ns]

Series of timedeltas with NaT values are supported:

In [37]: y = s - s.shift()

In [38]: y
Out[38]:
0 NaT
1 1 days
2 1 days
dtype: timedelta64[ns]

Elements can be set to NaT using np.nan analogously to datetimes:

In [39]: y[1] = np.nan

In [40]: y
Out[40]:
0 NaT
1 NaT
2 1 days
dtype: timedelta64[ns]

Operands can also appear in a reversed order (a singular object operated with a Series):

In [41]: s.max() - s
Out[41]:
0 2 days
1 1 days
2 0 days
dtype: timedelta64[ns]

In [42]: datetime.datetime(2011, 1, 1, 3, 5) - s
\\Out[42]:
0 -365 days +03:05:00
1 -366 days +03:05:00
2 -367 days +03:05:00
dtype: timedelta64[ns]

In [43]: datetime.timedelta(minutes=5) + s
\\\Out[43]:
→˓

0 2012-01-01 00:05:00
1 2012-01-02 00:05:00
2 2012-01-03 00:05:00
dtype: datetime64[ns]

min, max and the corresponding idxmin, idxmax operations are supported on frames:

In [44]: A = s - pd.Timestamp('20120101') - pd.Timedelta('00:05:05')

In [45]: B = s - pd.Series(pd.date_range('2012-1-2', periods=3, freq='D'))

In [46]: df = pd.DataFrame(dict(A=A, B=B))

(continues on next page)

20.2. Operations 999

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

In [47]: df
Out[47]:

A B
0 -1 days +23:54:55 -1 days
1 0 days 23:54:55 -1 days
2 1 days 23:54:55 -1 days

In [48]: df.min()
\\Out[48]:
→˓

A -1 days +23:54:55
B -1 days +00:00:00
dtype: timedelta64[ns]

In [49]: df.min(axis=1)
\\\Out[49]:
→˓

0 -1 days
1 -1 days
2 -1 days
dtype: timedelta64[ns]

In [50]: df.idxmin()
\\Out[50]:
→˓

A 0
B 0
dtype: int64

In [51]: df.idxmax()
\\\Out[51]:
→˓

A 2
B 0
dtype: int64

min, max, idxmin, idxmax operations are supported on Series as well. A scalar result will be a Timedelta.

In [52]: df.min().max()
Out[52]: Timedelta('-1 days +23:54:55')

In [53]: df.min(axis=1).min()
\\Out[53]: Timedelta('-1 days +00:00:00')

In [54]: df.min().idxmax()
\\Out[54]:
→˓'A'

In [55]: df.min(axis=1).idxmin()
\\\Out[55]:
→˓0

You can fillna on timedeltas. Integers will be interpreted as seconds. You can pass a timedelta to get a particular value.

In [56]: y.fillna(0)
Out[56]:

(continues on next page)

1000 Chapter 20. Time Deltas

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

0 0 days
1 0 days
2 1 days
dtype: timedelta64[ns]

In [57]: y.fillna(10)
\\Out[57]:
0 0 days 00:00:10
1 0 days 00:00:10
2 1 days 00:00:00
dtype: timedelta64[ns]

In [58]: y.fillna(pd.Timedelta('-1 days, 00:00:05'))
\\\Out[58]:
→˓

0 -1 days +00:00:05
1 -1 days +00:00:05
2 1 days 00:00:00
dtype: timedelta64[ns]

You can also negate, multiply and use abs on Timedeltas:

In [59]: td1 = pd.Timedelta('-1 days 2 hours 3 seconds')

In [60]: td1
Out[60]: Timedelta('-2 days +21:59:57')

In [61]: -1 * td1
\\Out[61]: Timedelta('1 days 02:00:03')

In [62]: - td1
\\Out[62]:
→˓Timedelta('1 days 02:00:03')

In [63]: abs(td1)
\\Out[63]:
→˓Timedelta('1 days 02:00:03')

20.3 Reductions

Numeric reduction operation for timedelta64[ns] will return Timedelta objects. As usual NaT are skipped
during evaluation.

In [64]: y2 = pd.Series(pd.to_timedelta(['-1 days +00:00:05', 'nat', '-1 days
→˓+00:00:05', '1 days']))

In [65]: y2
Out[65]:
0 -1 days +00:00:05
1 NaT
2 -1 days +00:00:05
3 1 days 00:00:00
dtype: timedelta64[ns]

(continues on next page)

20.3. Reductions 1001

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

In [66]: y2.mean()
\\\Out[66]:
→˓Timedelta('-1 days +16:00:03.333333')

In [67]: y2.median()
\\Out[67]:
→˓Timedelta('-1 days +00:00:05')

In [68]: y2.quantile(.1)
\\Out[68]:
→˓Timedelta('-1 days +00:00:05')

In [69]: y2.sum()
\\Out[69]:
→˓Timedelta('-1 days +00:00:10')

20.4 Frequency Conversion

Timedelta Series, TimedeltaIndex, and Timedelta scalars can be converted to other ‘frequencies’ by dividing
by another timedelta, or by astyping to a specific timedelta type. These operations yield Series and propagate NaT ->
nan. Note that division by the NumPy scalar is true division, while astyping is equivalent of floor division.

In [70]: td = pd.Series(pd.date_range('20130101', periods=4)) - \
....: pd.Series(pd.date_range('20121201', periods=4))
....:

In [71]: td[2] += datetime.timedelta(minutes=5, seconds=3)

In [72]: td[3] = np.nan

In [73]: td
Out[73]:
0 31 days 00:00:00
1 31 days 00:00:00
2 31 days 00:05:03
3 NaT
dtype: timedelta64[ns]

to days
In [74]: td / np.timedelta64(1, 'D')
\\\Out[74]:
→˓

0 31.000000
1 31.000000
2 31.003507
3 NaN
dtype: float64

In [75]: td.astype('timedelta64[D]')
\\Out[75]:
→˓

0 31.0
1 31.0
2 31.0

(continues on next page)

1002 Chapter 20. Time Deltas

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

3 NaN
dtype: float64

to seconds
In [76]: td / np.timedelta64(1, 's')
\\\Out[76]:
→˓

0 2678400.0
1 2678400.0
2 2678703.0
3 NaN
dtype: float64

In [77]: td.astype('timedelta64[s]')
\\Out[77]:
→˓

0 2678400.0
1 2678400.0
2 2678703.0
3 NaN
dtype: float64

to months (these are constant months)
In [78]: td / np.timedelta64(1, 'M')
\\\Out[78]:
→˓

0 1.018501
1 1.018501
2 1.018617
3 NaN
dtype: float64

Dividing or multiplying a timedelta64[ns] Series by an integer or integer Series yields another
timedelta64[ns] dtypes Series.

In [79]: td * -1
Out[79]:
0 -31 days +00:00:00
1 -31 days +00:00:00
2 -32 days +23:54:57
3 NaT
dtype: timedelta64[ns]

In [80]: td * pd.Series([1, 2, 3, 4])
\\\Out[80]:
→˓

0 31 days 00:00:00
1 62 days 00:00:00
2 93 days 00:15:09
3 NaT
dtype: timedelta64[ns]

Rounded division (floor-division) of a timedelta64[ns] Series by a scalar Timedelta gives a series of integers.

In [81]: td // pd.Timedelta(days=3, hours=4)
Out[81]:

(continues on next page)

20.4. Frequency Conversion 1003

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

0 9.0
1 9.0
2 9.0
3 NaN
dtype: float64

In [82]: pd.Timedelta(days=3, hours=4) // td
\\\Out[82]:
0 0.0
1 0.0
2 0.0
3 NaN
dtype: float64

The mod (%) and divmod operations are defined for Timedelta when operating with another timedelta-like or with
a numeric argument.

In [83]: pd.Timedelta(hours=37) % datetime.timedelta(hours=2)
Out[83]: Timedelta('0 days 01:00:00')

divmod against a timedelta-like returns a pair (int, Timedelta)
In [84]: divmod(datetime.timedelta(hours=2), pd.Timedelta(minutes=11))
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\Out[84]: (10, Timedelta('0 days 00:10:00'))

divmod against a numeric returns a pair (Timedelta, Timedelta)
In [85]: divmod(pd.Timedelta(hours=25), 86400000000000)
\\Out[85]:
→˓(Timedelta('0 days 00:00:00.000000'), Timedelta('0 days 01:00:00'))

20.5 Attributes

You can access various components of the Timedelta or TimedeltaIndex directly using the attributes
days,seconds,microseconds,nanoseconds. These are identical to the values returned by datetime.
timedelta, in that, for example, the .seconds attribute represents the number of seconds >= 0 and < 1 day.
These are signed according to whether the Timedelta is signed.

These operations can also be directly accessed via the .dt property of the Series as well.

Note: Note that the attributes are NOT the displayed values of the Timedelta. Use .components to retrieve the
displayed values.

For a Series:

In [86]: td.dt.days
Out[86]:
0 31.0
1 31.0
2 31.0
3 NaN
dtype: float64

In [87]: td.dt.seconds

(continues on next page)

1004 Chapter 20. Time Deltas

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

\\\Out[87]:
0 0.0
1 0.0
2 303.0
3 NaN
dtype: float64

You can access the value of the fields for a scalar Timedelta directly.

In [88]: tds = pd.Timedelta('31 days 5 min 3 sec')

In [89]: tds.days
Out[89]: 31

In [90]: tds.seconds
\\\\\\\\\\\\Out[90]: 303

In [91]: (-tds).seconds
\\\\\\\\\\\\\\\\\\\\\\\\\Out[91]: 86097

You can use the .components property to access a reduced form of the timedelta. This returns a DataFrame
indexed similarly to the Series. These are the displayed values of the Timedelta.

In [92]: td.dt.components
Out[92]:

days hours minutes seconds milliseconds microseconds nanoseconds
0 31.0 0.0 0.0 0.0 0.0 0.0 0.0
1 31.0 0.0 0.0 0.0 0.0 0.0 0.0
2 31.0 0.0 5.0 3.0 0.0 0.0 0.0
3 NaN NaN NaN NaN NaN NaN NaN

In [93]: td.dt.components.seconds
\\Out[93]:
→˓

0 0.0
1 0.0
2 3.0
3 NaN
Name: seconds, dtype: float64

You can convert a Timedelta to an ISO 8601 Duration string with the .isoformat method

New in version 0.20.0.

In [94]: pd.Timedelta(days=6, minutes=50, seconds=3,
....: milliseconds=10, microseconds=10,
....: nanoseconds=12).isoformat()
....:

Out[94]: 'P6DT0H50M3.010010012S'

20.6 TimedeltaIndex

To generate an index with time delta, you can use either the TimedeltaIndex or the timedelta_range()
constructor.

20.6. TimedeltaIndex 1005

https://en.wikipedia.org/wiki/ISO_8601#Durations

pandas: powerful Python data analysis toolkit, Release 0.23.4

Using TimedeltaIndex you can pass string-like, Timedelta, timedelta, or np.timedelta64 objects.
Passing np.nan/pd.NaT/nat will represent missing values.

In [95]: pd.TimedeltaIndex(['1 days', '1 days, 00:00:05',
....: np.timedelta64(2,'D'), datetime.timedelta(days=2,

→˓seconds=2)])
....:

Out[95]:
TimedeltaIndex(['1 days 00:00:00', '1 days 00:00:05', '2 days 00:00:00',

'2 days 00:00:02'],
dtype='timedelta64[ns]', freq=None)

20.6.1 Generating Ranges of Time Deltas

Similar to date_range(), you can construct regular ranges of a TimedeltaIndex using
timedelta_range(). The default frequency for timedelta_range is calendar day:

In [96]: pd.timedelta_range(start='1 days', periods=5)
Out[96]: TimedeltaIndex(['1 days', '2 days', '3 days', '4 days', '5 days'], dtype=
→˓'timedelta64[ns]', freq='D')

Various combinations of start, end, and periods can be used with timedelta_range:

In [97]: pd.timedelta_range(start='1 days', end='5 days')
Out[97]: TimedeltaIndex(['1 days', '2 days', '3 days', '4 days', '5 days'], dtype=
→˓'timedelta64[ns]', freq='D')

In [98]: pd.timedelta_range(end='10 days', periods=4)
\\\Out[98]:
→˓TimedeltaIndex(['7 days', '8 days', '9 days', '10 days'], dtype='timedelta64[ns]',
→˓freq='D')

The freq parameter can passed a variety of frequency aliases:

In [99]: pd.timedelta_range(start='1 days', end='2 days', freq='30T')
Out[99]:
TimedeltaIndex(['1 days 00:00:00', '1 days 00:30:00', '1 days 01:00:00',

'1 days 01:30:00', '1 days 02:00:00', '1 days 02:30:00',
'1 days 03:00:00', '1 days 03:30:00', '1 days 04:00:00',
'1 days 04:30:00', '1 days 05:00:00', '1 days 05:30:00',
'1 days 06:00:00', '1 days 06:30:00', '1 days 07:00:00',
'1 days 07:30:00', '1 days 08:00:00', '1 days 08:30:00',
'1 days 09:00:00', '1 days 09:30:00', '1 days 10:00:00',
'1 days 10:30:00', '1 days 11:00:00', '1 days 11:30:00',
'1 days 12:00:00', '1 days 12:30:00', '1 days 13:00:00',
'1 days 13:30:00', '1 days 14:00:00', '1 days 14:30:00',
'1 days 15:00:00', '1 days 15:30:00', '1 days 16:00:00',
'1 days 16:30:00', '1 days 17:00:00', '1 days 17:30:00',
'1 days 18:00:00', '1 days 18:30:00', '1 days 19:00:00',
'1 days 19:30:00', '1 days 20:00:00', '1 days 20:30:00',
'1 days 21:00:00', '1 days 21:30:00', '1 days 22:00:00',
'1 days 22:30:00', '1 days 23:00:00', '1 days 23:30:00',
'2 days 00:00:00'],

dtype='timedelta64[ns]', freq='30T')

In [100]: pd.timedelta_range(start='1 days', periods=5, freq='2D5H')

(continues on next page)

1006 Chapter 20. Time Deltas

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

\\Out[100]:
→˓

TimedeltaIndex(['1 days 00:00:00', '3 days 05:00:00', '5 days 10:00:00',
'7 days 15:00:00', '9 days 20:00:00'],

dtype='timedelta64[ns]', freq='53H')

New in version 0.23.0.

Specifying start, end, and periods will generate a range of evenly spaced timedeltas from start to end
inclusively, with periods number of elements in the resulting TimedeltaIndex:

In [101]: pd.timedelta_range('0 days', '4 days', periods=5)
Out[101]: TimedeltaIndex(['0 days', '1 days', '2 days', '3 days', '4 days'], dtype=
→˓'timedelta64[ns]', freq=None)

In [102]: pd.timedelta_range('0 days', '4 days', periods=10)
\\\Out[102]:
→˓

TimedeltaIndex(['0 days 00:00:00', '0 days 10:40:00', '0 days 21:20:00',
'1 days 08:00:00', '1 days 18:40:00', '2 days 05:20:00',
'2 days 16:00:00', '3 days 02:40:00', '3 days 13:20:00',
'4 days 00:00:00'],

dtype='timedelta64[ns]', freq=None)

20.6.2 Using the TimedeltaIndex

Similarly to other of the datetime-like indices, DatetimeIndex and PeriodIndex, you can use
TimedeltaIndex as the index of pandas objects.

In [103]: s = pd.Series(np.arange(100),
.....: index=pd.timedelta_range('1 days', periods=100, freq='h'))
.....:

In [104]: s
Out[104]:
1 days 00:00:00 0
1 days 01:00:00 1
1 days 02:00:00 2
1 days 03:00:00 3
1 days 04:00:00 4
1 days 05:00:00 5
1 days 06:00:00 6

..
4 days 21:00:00 93
4 days 22:00:00 94
4 days 23:00:00 95
5 days 00:00:00 96
5 days 01:00:00 97
5 days 02:00:00 98
5 days 03:00:00 99
Freq: H, Length: 100, dtype: int64

Selections work similarly, with coercion on string-likes and slices:

20.6. TimedeltaIndex 1007

pandas: powerful Python data analysis toolkit, Release 0.23.4

In [105]: s['1 day':'2 day']
Out[105]:
1 days 00:00:00 0
1 days 01:00:00 1
1 days 02:00:00 2
1 days 03:00:00 3
1 days 04:00:00 4
1 days 05:00:00 5
1 days 06:00:00 6

..
2 days 17:00:00 41
2 days 18:00:00 42
2 days 19:00:00 43
2 days 20:00:00 44
2 days 21:00:00 45
2 days 22:00:00 46
2 days 23:00:00 47
Freq: H, Length: 48, dtype: int64

In [106]: s['1 day 01:00:00']
\\\Out[106]:
→˓1

In [107]: s[pd.Timedelta('1 day 1h')]
\\\Out[107]:
→˓1

Furthermore you can use partial string selection and the range will be inferred:

In [108]: s['1 day':'1 day 5 hours']
Out[108]:
1 days 00:00:00 0
1 days 01:00:00 1
1 days 02:00:00 2
1 days 03:00:00 3
1 days 04:00:00 4
1 days 05:00:00 5
Freq: H, dtype: int64

20.6.3 Operations

Finally, the combination of TimedeltaIndex with DatetimeIndex allow certain combination operations that
are NaT preserving:

In [109]: tdi = pd.TimedeltaIndex(['1 days', pd.NaT, '2 days'])

In [110]: tdi.tolist()
Out[110]: [Timedelta('1 days 00:00:00'), NaT, Timedelta('2 days 00:00:00')]

In [111]: dti = pd.date_range('20130101', periods=3)

In [112]: dti.tolist()
Out[112]:
[Timestamp('2013-01-01 00:00:00', freq='D'),
Timestamp('2013-01-02 00:00:00', freq='D'),
Timestamp('2013-01-03 00:00:00', freq='D')]

(continues on next page)

1008 Chapter 20. Time Deltas

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

In [113]: (dti + tdi).tolist()
\\Out[113]:
→˓[Timestamp('2013-01-02 00:00:00'), NaT, Timestamp('2013-01-05 00:00:00')]

In [114]: (dti - tdi).tolist()
\\Out[114]:
→˓[Timestamp('2012-12-31 00:00:00'), NaT, Timestamp('2013-01-01 00:00:00')]

20.6.4 Conversions

Similarly to frequency conversion on a Series above, you can convert these indices to yield another Index.

In [115]: tdi / np.timedelta64(1,'s')
Out[115]: Float64Index([86400.0, nan, 172800.0], dtype='float64')

In [116]: tdi.astype('timedelta64[s]')
\\Out[116]:
→˓Float64Index([86400.0, nan, 172800.0], dtype='float64')

Scalars type ops work as well. These can potentially return a different type of index.

adding or timedelta and date -> datelike
In [117]: tdi + pd.Timestamp('20130101')
Out[117]: DatetimeIndex(['2013-01-02', 'NaT', '2013-01-03'], dtype='datetime64[ns]',
→˓freq=None)

subtraction of a date and a timedelta -> datelike
note that trying to subtract a date from a Timedelta will raise an exception
In [118]: (pd.Timestamp('20130101') - tdi).tolist()
\\Out[118]:
→˓[Timestamp('2012-12-31 00:00:00'), NaT, Timestamp('2012-12-30 00:00:00')]

timedelta + timedelta -> timedelta
In [119]: tdi + pd.Timedelta('10 days')
\\Out[119]:
→˓TimedeltaIndex(['11 days', NaT, '12 days'], dtype='timedelta64[ns]', freq=None)

division can result in a Timedelta if the divisor is an integer
In [120]: tdi / 2
\\Out[120]:
→˓TimedeltaIndex(['0 days 12:00:00', NaT, '1 days 00:00:00'], dtype='timedelta64[ns]',
→˓ freq=None)

or a Float64Index if the divisor is a Timedelta
In [121]: tdi / tdi[0]
\\Out[121]:
→˓Float64Index([1.0, nan, 2.0], dtype='float64')

20.7 Resampling

Similar to timeseries resampling, we can resample with a TimedeltaIndex.

20.7. Resampling 1009

pandas: powerful Python data analysis toolkit, Release 0.23.4

In [122]: s.resample('D').mean()
Out[122]:
1 days 11.5
2 days 35.5
3 days 59.5
4 days 83.5
5 days 97.5
Freq: D, dtype: float64

1010 Chapter 20. Time Deltas

CHAPTER

TWENTYONE

CATEGORICAL DATA

This is an introduction to pandas categorical data type, including a short comparison with R’s factor.

Categoricals are a pandas data type corresponding to categorical variables in statistics. A categorical variable takes
on a limited, and usually fixed, number of possible values (categories; levels in R). Examples are gender, social class,
blood type, country affiliation, observation time or rating via Likert scales.

In contrast to statistical categorical variables, categorical data might have an order (e.g. ‘strongly agree’ vs ‘agree’ or
‘first observation’ vs. ‘second observation’), but numerical operations (additions, divisions, . . .) are not possible.

All values of categorical data are either in categories or np.nan. Order is defined by the order of categories, not lexical
order of the values. Internally, the data structure consists of a categories array and an integer array of codes which
point to the real value in the categories array.

The categorical data type is useful in the following cases:

• A string variable consisting of only a few different values. Converting such a string variable to a categorical
variable will save some memory, see here.

• The lexical order of a variable is not the same as the logical order (“one”, “two”, “three”). By converting to a
categorical and specifying an order on the categories, sorting and min/max will use the logical order instead of
the lexical order, see here.

• As a signal to other Python libraries that this column should be treated as a categorical variable (e.g. to use
suitable statistical methods or plot types).

See also the API docs on categoricals.

21.1 Object Creation

21.1.1 Series Creation

Categorical Series or columns in a DataFrame can be created in several ways:

By specifying dtype="category" when constructing a Series:

In [1]: s = pd.Series(["a","b","c","a"], dtype="category")

In [2]: s
Out[2]:
0 a
1 b
2 c
3 a

(continues on next page)

1011

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

dtype: category
Categories (3, object): [a, b, c]

By converting an existing Series or column to a category dtype:

In [3]: df = pd.DataFrame({"A":["a","b","c","a"]})

In [4]: df["B"] = df["A"].astype('category')

In [5]: df
Out[5]:

A B
0 a a
1 b b
2 c c
3 a a

By using special functions, such as cut(), which groups data into discrete bins. See the example on tiling in the
docs.

In [6]: df = pd.DataFrame({'value': np.random.randint(0, 100, 20)})

In [7]: labels = ["{0} - {1}".format(i, i + 9) for i in range(0, 100, 10)]

In [8]: df['group'] = pd.cut(df.value, range(0, 105, 10), right=False, labels=labels)

In [9]: df.head(10)
Out[9]:

value group
0 65 60 - 69
1 49 40 - 49
2 56 50 - 59
3 43 40 - 49
4 43 40 - 49
5 91 90 - 99
6 32 30 - 39
7 87 80 - 89
8 36 30 - 39
9 8 0 - 9

By passing a pandas.Categorical object to a Series or assigning it to a DataFrame.

In [10]: raw_cat = pd.Categorical(["a","b","c","a"], categories=["b","c","d"],
....: ordered=False)
....:

In [11]: s = pd.Series(raw_cat)

In [12]: s
Out[12]:
0 NaN
1 b
2 c
3 NaN
dtype: category
Categories (3, object): [b, c, d]

(continues on next page)

1012 Chapter 21. Categorical Data

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

In [13]: df = pd.DataFrame({"A":["a","b","c","a"]})

In [14]: df["B"] = raw_cat

In [15]: df
Out[15]:

A B
0 a NaN
1 b b
2 c c
3 a NaN

Categorical data has a specific category dtype:

In [16]: df.dtypes
Out[16]:
A object
B category
dtype: object

21.1.2 DataFrame Creation

Similar to the previous section where a single column was converted to categorical, all columns in a DataFrame can
be batch converted to categorical either during or after construction.

This can be done during construction by specifying dtype="category" in the DataFrame constructor:

In [17]: df = pd.DataFrame({'A': list('abca'), 'B': list('bccd')}, dtype="category")

In [18]: df.dtypes
Out[18]:
A category
B category
dtype: object

Note that the categories present in each column differ; the conversion is done column by column, so only labels present
in a given column are categories:

In [19]: df['A']
Out[19]:
0 a
1 b
2 c
3 a
Name: A, dtype: category
Categories (3, object): [a, b, c]

In [20]: df['B']
\\\Out[20]:
→˓

0 b
1 c
2 c
3 d

(continues on next page)

21.1. Object Creation 1013

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

Name: B, dtype: category
Categories (3, object): [b, c, d]

New in version 0.23.0.

Analogously, all columns in an existing DataFrame can be batch converted using DataFrame.astype():

In [21]: df = pd.DataFrame({'A': list('abca'), 'B': list('bccd')})

In [22]: df_cat = df.astype('category')

In [23]: df_cat.dtypes
Out[23]:
A category
B category
dtype: object

This conversion is likewise done column by column:

In [24]: df_cat['A']
Out[24]:
0 a
1 b
2 c
3 a
Name: A, dtype: category
Categories (3, object): [a, b, c]

In [25]: df_cat['B']
\\\Out[25]:
→˓

0 b
1 c
2 c
3 d
Name: B, dtype: category
Categories (3, object): [b, c, d]

21.1.3 Controlling Behavior

In the examples above where we passed dtype='category', we used the default behavior:

1. Categories are inferred from the data.

2. Categories are unordered.

To control those behaviors, instead of passing 'category', use an instance of CategoricalDtype.

In [26]: from pandas.api.types import CategoricalDtype

In [27]: s = pd.Series(["a", "b", "c", "a"])

In [28]: cat_type = CategoricalDtype(categories=["b", "c", "d"],
....: ordered=True)
....:

(continues on next page)

1014 Chapter 21. Categorical Data

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

In [29]: s_cat = s.astype(cat_type)

In [30]: s_cat
Out[30]:
0 NaN
1 b
2 c
3 NaN
dtype: category
Categories (3, object): [b < c < d]

Similarly, a CategoricalDtype can be used with a DataFrame to ensure that categories are consistent among
all columns.

In [31]: df = pd.DataFrame({'A': list('abca'), 'B': list('bccd')})

In [32]: cat_type = CategoricalDtype(categories=list('abcd'),
....: ordered=True)
....:

In [33]: df_cat = df.astype(cat_type)

In [34]: df_cat['A']
Out[34]:
0 a
1 b
2 c
3 a
Name: A, dtype: category
Categories (4, object): [a < b < c < d]

In [35]: df_cat['B']
\\\Out[35]:
→˓

0 b
1 c
2 c
3 d
Name: B, dtype: category
Categories (4, object): [a < b < c < d]

Note: To perform table-wise conversion, where all labels in the entire DataFrame are used as categories for each
column, the categories parameter can be determined programmatically by categories = pd.unique(df.
values.ravel()).

If you already have codes and categories, you can use the from_codes() constructor to save the factorize
step during normal constructor mode:

In [36]: splitter = np.random.choice([0,1], 5, p=[0.5,0.5])

In [37]: s = pd.Series(pd.Categorical.from_codes(splitter, categories=["train", "test
→˓"]))

21.1. Object Creation 1015

pandas: powerful Python data analysis toolkit, Release 0.23.4

21.1.4 Regaining Original Data

To get back to the original Series or NumPy array, use Series.astype(original_dtype) or np.
asarray(categorical):

In [38]: s = pd.Series(["a","b","c","a"])

In [39]: s
Out[39]:
0 a
1 b
2 c
3 a
dtype: object

In [40]: s2 = s.astype('category')

In [41]: s2
Out[41]:
0 a
1 b
2 c
3 a
dtype: category
Categories (3, object): [a, b, c]

In [42]: s2.astype(str)
\\Out[42]:
→˓

0 a
1 b
2 c
3 a
dtype: object

In [43]: np.asarray(s2)
\\Out[43]:
→˓array(['a', 'b', 'c', 'a'], dtype=object)

Note: In contrast to R’s factor function, categorical data is not converting input values to strings; categories will end
up the same data type as the original values.

Note: In contrast to R’s factor function, there is currently no way to assign/change labels at creation time. Use
categories to change the categories after creation time.

21.2 CategoricalDtype

Changed in version 0.21.0.

A categorical’s type is fully described by

1. categories: a sequence of unique values and no missing values

1016 Chapter 21. Categorical Data

pandas: powerful Python data analysis toolkit, Release 0.23.4

2. ordered: a boolean

This information can be stored in a CategoricalDtype. The categories argument is optional, which implies
that the actual categories should be inferred from whatever is present in the data when the pandas.Categorical
is created. The categories are assumed to be unordered by default.

In [44]: from pandas.api.types import CategoricalDtype

In [45]: CategoricalDtype(['a', 'b', 'c'])
Out[45]: CategoricalDtype(categories=['a', 'b', 'c'], ordered=None)

In [46]: CategoricalDtype(['a', 'b', 'c'], ordered=True)
\\Out[46]:
→˓CategoricalDtype(categories=['a', 'b', 'c'], ordered=True)

In [47]: CategoricalDtype()
\\Out[47]:
→˓CategoricalDtype(categories=None, ordered=None)

A CategoricalDtype can be used in any place pandas expects a dtype. For example pandas.read_csv(),
pandas.DataFrame.astype(), or in the Series constructor.

Note: As a convenience, you can use the string 'category' in place of a CategoricalDtype when you want
the default behavior of the categories being unordered, and equal to the set values present in the array. In other words,
dtype='category' is equivalent to dtype=CategoricalDtype().

21.2.1 Equality Semantics

Two instances of CategoricalDtype compare equal whenever they have the same categories and order. When
comparing two unordered categoricals, the order of the categories is not considered.

In [48]: c1 = CategoricalDtype(['a', 'b', 'c'], ordered=False)

Equal, since order is not considered when ordered=False
In [49]: c1 == CategoricalDtype(['b', 'c', 'a'], ordered=False)
Out[49]: True

Unequal, since the second CategoricalDtype is ordered
In [50]: c1 == CategoricalDtype(['a', 'b', 'c'], ordered=True)
\\\\\\\\\\\\\\Out[50]: False

All instances of CategoricalDtype compare equal to the string 'category'.

In [51]: c1 == 'category'
Out[51]: True

Warning: Since dtype='category' is essentially CategoricalDtype(None, False), and since
all instances CategoricalDtype compare equal to 'category', all instances of CategoricalDtype
compare equal to a CategoricalDtype(None, False), regardless of categories or ordered.

21.2. CategoricalDtype 1017

pandas: powerful Python data analysis toolkit, Release 0.23.4

21.3 Description

Using describe() on categorical data will produce similar output to a Series or DataFrame of type string.

In [52]: cat = pd.Categorical(["a", "c", "c", np.nan], categories=["b", "a", "c"])

In [53]: df = pd.DataFrame({"cat":cat, "s":["a", "c", "c", np.nan]})

In [54]: df.describe()
Out[54]:

cat s
count 3 3
unique 2 2
top c c
freq 2 2

In [55]: df["cat"].describe()
\\Out[55]:
→˓

count 3
unique 2
top c
freq 2
Name: cat, dtype: object

21.4 Working with categories

Categorical data has a categories and a ordered property, which list their possible values and whether the ordering
matters or not. These properties are exposed as s.cat.categories and s.cat.ordered. If you don’t manually
specify categories and ordering, they are inferred from the passed arguments.

In [56]: s = pd.Series(["a","b","c","a"], dtype="category")

In [57]: s.cat.categories
Out[57]: Index(['a', 'b', 'c'], dtype='object')

In [58]: s.cat.ordered
\\Out[58]: False

It’s also possible to pass in the categories in a specific order:

In [59]: s = pd.Series(pd.Categorical(["a","b","c","a"], categories=["c","b","a"]))

In [60]: s.cat.categories
Out[60]: Index(['c', 'b', 'a'], dtype='object')

In [61]: s.cat.ordered
\\Out[61]: False

Note: New categorical data are not automatically ordered. You must explicitly pass ordered=True to indicate an
ordered Categorical.

1018 Chapter 21. Categorical Data

pandas: powerful Python data analysis toolkit, Release 0.23.4

Note: The result of unique() is not always the same as Series.cat.categories, because Series.
unique() has a couple of guarantees, namely that it returns categories in the order of appearance, and it only
includes values that are actually present.

In [62]: s = pd.Series(list('babc')).astype(CategoricalDtype(list('abcd')))

In [63]: s
Out[63]:
0 b
1 a
2 b
3 c
dtype: category
Categories (4, object): [a, b, c, d]

categories
In [64]: s.cat.categories
\\\Out[64]:
→˓Index(['a', 'b', 'c', 'd'], dtype='object')

uniques
In [65]: s.unique()
\\Out[65]:
→˓

[b, a, c]
Categories (3, object): [b, a, c]

21.4.1 Renaming categories

Renaming categories is done by assigning new values to the Series.cat.categories property or by using the
rename_categories() method:

In [66]: s = pd.Series(["a","b","c","a"], dtype="category")

In [67]: s
Out[67]:
0 a
1 b
2 c
3 a
dtype: category
Categories (3, object): [a, b, c]

In [68]: s.cat.categories = ["Group %s" % g for g in s.cat.categories]

In [69]: s
Out[69]:
0 Group a
1 Group b
2 Group c
3 Group a
dtype: category
Categories (3, object): [Group a, Group b, Group c]

(continues on next page)

21.4. Working with categories 1019

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

In [70]: s.cat.rename_categories([1,2,3])
\\Out[70]:
→˓

0 1
1 2
2 3
3 1
dtype: category
Categories (3, int64): [1, 2, 3]

In [71]: s
\\\Out[71]:
→˓

0 Group a
1 Group b
2 Group c
3 Group a
dtype: category
Categories (3, object): [Group a, Group b, Group c]

You can also pass a dict-like object to map the renaming
In [72]: s.cat.rename_categories({1: 'x', 2: 'y', 3: 'z'})
\\\Out[72]:
→˓

0 Group a
1 Group b
2 Group c
3 Group a
dtype: category
Categories (3, object): [Group a, Group b, Group c]

In [73]: s
\\\Out[73]:
→˓

0 Group a
1 Group b
2 Group c
3 Group a
dtype: category
Categories (3, object): [Group a, Group b, Group c]

Note: In contrast to R’s factor, categorical data can have categories of other types than string.

Note: Be aware that assigning new categories is an inplace operation, while most other operations under Series.
cat per default return a new Series of dtype category.

Categories must be unique or a ValueError is raised:

In [74]: try:
....: s.cat.categories = [1,1,1]
....: except ValueError as e:
....: print("ValueError: " + str(e))
....:

(continues on next page)

1020 Chapter 21. Categorical Data

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

ValueError: Categorical categories must be unique

Categories must also not be NaN or a ValueError is raised:

In [75]: try:
....: s.cat.categories = [1,2,np.nan]
....: except ValueError as e:
....: print("ValueError: " + str(e))
....:

ValueError: Categorial categories cannot be null

21.4.2 Appending new categories

Appending categories can be done by using the add_categories() method:

In [76]: s = s.cat.add_categories([4])

In [77]: s.cat.categories
Out[77]: Index(['Group a', 'Group b', 'Group c', 4], dtype='object')

In [78]: s
\\\Out[78]:
0 Group a
1 Group b
2 Group c
3 Group a
dtype: category
Categories (4, object): [Group a, Group b, Group c, 4]

21.4.3 Removing categories

Removing categories can be done by using the remove_categories() method. Values which are removed are
replaced by np.nan.:

In [79]: s = s.cat.remove_categories([4])

In [80]: s
Out[80]:
0 Group a
1 Group b
2 Group c
3 Group a
dtype: category
Categories (3, object): [Group a, Group b, Group c]

21.4.4 Removing unused categories

Removing unused categories can also be done:

In [81]: s = pd.Series(pd.Categorical(["a","b","a"], categories=["a","b","c","d"]))

(continues on next page)

21.4. Working with categories 1021

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

In [82]: s
Out[82]:
0 a
1 b
2 a
dtype: category
Categories (4, object): [a, b, c, d]

In [83]: s.cat.remove_unused_categories()
\\Out[83]:
→˓

0 a
1 b
2 a
dtype: category
Categories (2, object): [a, b]

21.4.5 Setting categories

If you want to do remove and add new categories in one step (which has some speed advantage), or simply set the
categories to a predefined scale, use set_categories().

In [84]: s = pd.Series(["one","two","four", "-"], dtype="category")

In [85]: s
Out[85]:
0 one
1 two
2 four
3 -
dtype: category
Categories (4, object): [-, four, one, two]

In [86]: s = s.cat.set_categories(["one","two","three","four"])

In [87]: s
Out[87]:
0 one
1 two
2 four
3 NaN
dtype: category
Categories (4, object): [one, two, three, four]

Note: Be aware that Categorical.set_categories() cannot know whether some category is omitted in-
tentionally or because it is misspelled or (under Python3) due to a type difference (e.g., NumPy S1 dtype and Python
strings). This can result in surprising behaviour!

1022 Chapter 21. Categorical Data

pandas: powerful Python data analysis toolkit, Release 0.23.4

21.5 Sorting and Order

If categorical data is ordered (s.cat.ordered == True), then the order of the categories has a meaning and
certain operations are possible. If the categorical is unordered, .min()/.max() will raise a TypeError.

In [88]: s = pd.Series(pd.Categorical(["a","b","c","a"], ordered=False))

In [89]: s.sort_values(inplace=True)

In [90]: s = pd.Series(["a","b","c","a"]).astype(
....: CategoricalDtype(ordered=True)
....:)
....:

In [91]: s.sort_values(inplace=True)

In [92]: s
Out[92]:
0 a
3 a
1 b
2 c
dtype: category
Categories (3, object): [a < b < c]

In [93]: s.min(), s.max()
\\Out[93]:
→˓('a', 'c')

You can set categorical data to be ordered by using as_ordered() or unordered by using as_unordered().
These will by default return a new object.

In [94]: s.cat.as_ordered()
Out[94]:
0 a
3 a
1 b
2 c
dtype: category
Categories (3, object): [a < b < c]

In [95]: s.cat.as_unordered()
\\Out[95]:
→˓

0 a
3 a
1 b
2 c
dtype: category
Categories (3, object): [a, b, c]

Sorting will use the order defined by categories, not any lexical order present on the data type. This is even true for
strings and numeric data:

In [96]: s = pd.Series([1,2,3,1], dtype="category")

In [97]: s = s.cat.set_categories([2,3,1], ordered=True)

(continues on next page)

21.5. Sorting and Order 1023

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

In [98]: s
Out[98]:
0 1
1 2
2 3
3 1
dtype: category
Categories (3, int64): [2 < 3 < 1]

In [99]: s.sort_values(inplace=True)

In [100]: s
Out[100]:
1 2
2 3
0 1
3 1
dtype: category
Categories (3, int64): [2 < 3 < 1]

In [101]: s.min(), s.max()
\\Out[101]:
→˓(2, 1)

21.5.1 Reordering

Reordering the categories is possible via the Categorical.reorder_categories() and the
Categorical.set_categories() methods. For Categorical.reorder_categories(), all old
categories must be included in the new categories and no new categories are allowed. This will necessarily make the
sort order the same as the categories order.

In [102]: s = pd.Series([1,2,3,1], dtype="category")

In [103]: s = s.cat.reorder_categories([2,3,1], ordered=True)

In [104]: s
Out[104]:
0 1
1 2
2 3
3 1
dtype: category
Categories (3, int64): [2 < 3 < 1]

In [105]: s.sort_values(inplace=True)

In [106]: s
Out[106]:
1 2
2 3
0 1
3 1
dtype: category
Categories (3, int64): [2 < 3 < 1]

(continues on next page)

1024 Chapter 21. Categorical Data

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

In [107]: s.min(), s.max()
\\Out[107]:
→˓(2, 1)

Note: Note the difference between assigning new categories and reordering the categories: the first renames categories
and therefore the individual values in the Series, but if the first position was sorted last, the renamed value will still
be sorted last. Reordering means that the way values are sorted is different afterwards, but not that individual values
in the Series are changed.

Note: If the Categorical is not ordered, Series.min() and Series.max() will raise TypeError. Nu-
meric operations like +, -, *, / and operations based on them (e.g. Series.median(), which would need to
compute the mean between two values if the length of an array is even) do not work and raise a TypeError.

21.5.2 Multi Column Sorting

A categorical dtyped column will participate in a multi-column sort in a similar manner to other columns. The ordering
of the categorical is determined by the categories of that column.

In [108]: dfs = pd.DataFrame({'A' : pd.Categorical(list('bbeebbaa'), categories=['e',
→˓'a','b'], ordered=True),

.....: 'B' : [1,2,1,2,2,1,2,1] })

.....:

In [109]: dfs.sort_values(by=['A', 'B'])
Out[109]:

A B
2 e 1
3 e 2
7 a 1
6 a 2
0 b 1
5 b 1
1 b 2
4 b 2

Reordering the categories changes a future sort.

In [110]: dfs['A'] = dfs['A'].cat.reorder_categories(['a','b','e'])

In [111]: dfs.sort_values(by=['A','B'])
Out[111]:

A B
7 a 1
6 a 2
0 b 1
5 b 1
1 b 2
4 b 2
2 e 1
3 e 2

21.5. Sorting and Order 1025

pandas: powerful Python data analysis toolkit, Release 0.23.4

21.6 Comparisons

Comparing categorical data with other objects is possible in three cases:

• Comparing equality (== and !=) to a list-like object (list, Series, array, . . .) of the same length as the categorical
data.

• All comparisons (==, !=, >, >=, <, and <=) of categorical data to another categorical Series, when
ordered==True and the categories are the same.

• All comparisons of a categorical data to a scalar.

All other comparisons, especially “non-equality” comparisons of two categoricals with different categories or a cate-
gorical with any list-like object, will raise a TypeError.

Note: Any “non-equality” comparisons of categorical data with a Series, np.array, list or categorical data
with different categories or ordering will raise a TypeError because custom categories ordering could be interpreted
in two ways: one with taking into account the ordering and one without.

In [112]: cat = pd.Series([1,2,3]).astype(
.....: CategoricalDtype([3, 2, 1], ordered=True)
.....:)
.....:

In [113]: cat_base = pd.Series([2,2,2]).astype(
.....: CategoricalDtype([3, 2, 1], ordered=True)
.....:)
.....:

In [114]: cat_base2 = pd.Series([2,2,2]).astype(
.....: CategoricalDtype(ordered=True)
.....:)
.....:

In [115]: cat
Out[115]:
0 1
1 2
2 3
dtype: category
Categories (3, int64): [3 < 2 < 1]

In [116]: cat_base
\\\Out[116]:
→˓

0 2
1 2
2 2
dtype: category
Categories (3, int64): [3 < 2 < 1]

In [117]: cat_base2
\\Out[117]:
→˓

0 2
1 2

(continues on next page)

1026 Chapter 21. Categorical Data

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

2 2
dtype: category
Categories (1, int64): [2]

Comparing to a categorical with the same categories and ordering or to a scalar works:

In [118]: cat > cat_base
Out[118]:
0 True
1 False
2 False
dtype: bool

In [119]: cat > 2
\\Out[119]:
0 True
1 False
2 False
dtype: bool

Equality comparisons work with any list-like object of same length and scalars:

In [120]: cat == cat_base
Out[120]:
0 False
1 True
2 False
dtype: bool

In [121]: cat == np.array([1,2,3])
\\Out[121]:
0 True
1 True
2 True
dtype: bool

In [122]: cat == 2
\\\Out[122]:
→˓

0 False
1 True
2 False
dtype: bool

This doesn’t work because the categories are not the same:

In [123]: try:
.....: cat > cat_base2
.....: except TypeError as e:
.....: print("TypeError: " + str(e))
.....:

TypeError: Categoricals can only be compared if 'categories' are the same. Categories
→˓are different lengths

If you want to do a “non-equality” comparison of a categorical series with a list-like object which is not categorical
data, you need to be explicit and convert the categorical data back to the original values:

21.6. Comparisons 1027

pandas: powerful Python data analysis toolkit, Release 0.23.4

In [124]: base = np.array([1,2,3])

In [125]: try:
.....: cat > base
.....: except TypeError as e:
.....: print("TypeError: " + str(e))
.....:

TypeError: Cannot compare a Categorical for op __gt__ with type <class 'numpy.ndarray
→˓'>.
If you want to compare values, use 'np.asarray(cat) <op> other'.

In [126]: np.asarray(cat) > base
\\Out[126]:
→˓array([False, False, False], dtype=bool)

When you compare two unordered categoricals with the same categories, the order is not considered:

In [127]: c1 = pd.Categorical(['a', 'b'], categories=['a', 'b'], ordered=False)

In [128]: c2 = pd.Categorical(['a', 'b'], categories=['b', 'a'], ordered=False)

In [129]: c1 == c2
Out[129]: array([True, True], dtype=bool)

21.7 Operations

Apart from Series.min(), Series.max() and Series.mode(), the following operations are possible with
categorical data:

Series methods like Series.value_counts() will use all categories, even if some categories are not present
in the data:

In [130]: s = pd.Series(pd.Categorical(["a","b","c","c"], categories=["c","a","b","d
→˓"]))

In [131]: s.value_counts()
Out[131]:
c 2
b 1
a 1
d 0
dtype: int64

Groupby will also show “unused” categories:

In [132]: cats = pd.Categorical(["a","b","b","b","c","c","c"], categories=["a","b","c
→˓","d"])

In [133]: df = pd.DataFrame({"cats":cats,"values":[1,2,2,2,3,4,5]})

In [134]: df.groupby("cats").mean()
Out[134]:

values
cats
a 1.0

(continues on next page)

1028 Chapter 21. Categorical Data

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

b 2.0
c 4.0
d NaN

In [135]: cats2 = pd.Categorical(["a","a","b","b"], categories=["a","b","c"])

In [136]: df2 = pd.DataFrame({"cats":cats2,"B":["c","d","c","d"], "values":[1,2,3,4]})

In [137]: df2.groupby(["cats","B"]).mean()
Out[137]:

values
cats B
a c 1.0

d 2.0
b c 3.0

d 4.0
c c NaN

d NaN

Pivot tables:

In [138]: raw_cat = pd.Categorical(["a","a","b","b"], categories=["a","b","c"])

In [139]: df = pd.DataFrame({"A":raw_cat,"B":["c","d","c","d"], "values":[1,2,3,4]})

In [140]: pd.pivot_table(df, values='values', index=['A', 'B'])
Out[140]:

values
A B
a c 1

d 2
b c 3

d 4

21.8 Data munging

The optimized pandas data access methods .loc, .iloc, .at, and .iat, work as normal. The only difference is
the return type (for getting) and that only values already in categories can be assigned.

21.8.1 Getting

If the slicing operation returns either a DataFrame or a column of type Series, the category dtype is preserved.

In [141]: idx = pd.Index(["h","i","j","k","l","m","n",])

In [142]: cats = pd.Series(["a","b","b","b","c","c","c"], dtype="category", index=idx)

In [143]: values= [1,2,2,2,3,4,5]

In [144]: df = pd.DataFrame({"cats":cats,"values":values}, index=idx)

In [145]: df.iloc[2:4,:]
Out[145]:

(continues on next page)

21.8. Data munging 1029

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

cats values
j b 2
k b 2

In [146]: df.iloc[2:4,:].dtypes
\\Out[146]:
cats category
values int64
dtype: object

In [147]: df.loc["h":"j","cats"]
\\\Out[147]:
→˓

h a
i b
j b
Name: cats, dtype: category
Categories (3, object): [a, b, c]

In [148]: df[df["cats"] == "b"]
\\\Out[148]:
→˓

cats values
i b 2
j b 2
k b 2

An example where the category type is not preserved is if you take one single row: the resulting Series is of dtype
object:

get the complete "h" row as a Series
In [149]: df.loc["h", :]
Out[149]:
cats a
values 1
Name: h, dtype: object

Returning a single item from categorical data will also return the value, not a categorical of length “1”.

In [150]: df.iat[0,0]
Out[150]: 'a'

In [151]: df["cats"].cat.categories = ["x","y","z"]

In [152]: df.at["h","cats"] # returns a string
Out[152]: 'x'

Note: The is in contrast to R’s factor function, where factor(c(1,2,3))[1] returns a single value factor.

To get a single value Series of type category, you pass in a list with a single value:

In [153]: df.loc[["h"],"cats"]
Out[153]:
h x

(continues on next page)

1030 Chapter 21. Categorical Data

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

Name: cats, dtype: category
Categories (3, object): [x, y, z]

21.8.2 String and datetime accessors

The accessors .dt and .str will work if the s.cat.categories are of an appropriate type:

In [154]: str_s = pd.Series(list('aabb'))

In [155]: str_cat = str_s.astype('category')

In [156]: str_cat
Out[156]:
0 a
1 a
2 b
3 b
dtype: category
Categories (2, object): [a, b]

In [157]: str_cat.str.contains("a")
\\Out[157]:
→˓

0 True
1 True
2 False
3 False
dtype: bool

In [158]: date_s = pd.Series(pd.date_range('1/1/2015', periods=5))

In [159]: date_cat = date_s.astype('category')

In [160]: date_cat
Out[160]:
0 2015-01-01
1 2015-01-02
2 2015-01-03
3 2015-01-04
4 2015-01-05
dtype: category
Categories (5, datetime64[ns]): [2015-01-01, 2015-01-02, 2015-01-03, 2015-01-04, 2015-
→˓01-05]

In [161]: date_cat.dt.day
\\\Out[161]:
→˓

0 1
1 2
2 3
3 4
4 5
dtype: int64

Note: The returned Series (or DataFrame) is of the same type as if you used the .str.<method> / .dt.

21.8. Data munging 1031

pandas: powerful Python data analysis toolkit, Release 0.23.4

<method> on a Series of that type (and not of type category!).

That means, that the returned values from methods and properties on the accessors of a Series and the returned
values from methods and properties on the accessors of this Series transformed to one of type category will be
equal:

In [162]: ret_s = str_s.str.contains("a")

In [163]: ret_cat = str_cat.str.contains("a")

In [164]: ret_s.dtype == ret_cat.dtype
Out[164]: True

In [165]: ret_s == ret_cat
\\\\\\\\\\\\\\\Out[165]:
0 True
1 True
2 True
3 True
dtype: bool

Note: The work is done on the categories and then a new Series is constructed. This has some performance
implication if you have a Series of type string, where lots of elements are repeated (i.e. the number of unique
elements in the Series is a lot smaller than the length of the Series). In this case it can be faster to convert the
original Series to one of type category and use .str.<method> or .dt.<property> on that.

21.8.3 Setting

Setting values in a categorical column (or Series) works as long as the value is included in the categories:

In [166]: idx = pd.Index(["h","i","j","k","l","m","n"])

In [167]: cats = pd.Categorical(["a","a","a","a","a","a","a"], categories=["a","b"])

In [168]: values = [1,1,1,1,1,1,1]

In [169]: df = pd.DataFrame({"cats":cats,"values":values}, index=idx)

In [170]: df.iloc[2:4,:] = [["b",2],["b",2]]

In [171]: df
Out[171]:

cats values
h a 1
i a 1
j b 2
k b 2
l a 1
m a 1
n a 1

In [172]: try:
.....: df.iloc[2:4,:] = [["c",3],["c",3]]

(continues on next page)

1032 Chapter 21. Categorical Data

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

.....: except ValueError as e:

.....: print("ValueError: " + str(e))

.....:
\\\ValueError:
→˓Cannot setitem on a Categorical with a new category, set the categories first

Setting values by assigning categorical data will also check that the categories match:

In [173]: df.loc["j":"k","cats"] = pd.Categorical(["a","a"], categories=["a","b"])

In [174]: df
Out[174]:

cats values
h a 1
i a 1
j a 2
k a 2
l a 1
m a 1
n a 1

In [175]: try:
.....: df.loc["j":"k","cats"] = pd.Categorical(["b","b"], categories=["a","b",

→˓"c"])
.....: except ValueError as e:
.....: print("ValueError: " + str(e))
.....:

\\\ValueError:
→˓Cannot set a Categorical with another, without identical categories

Assigning a Categorical to parts of a column of other types will use the values:

In [176]: df = pd.DataFrame({"a":[1,1,1,1,1], "b":["a","a","a","a","a"]})

In [177]: df.loc[1:2,"a"] = pd.Categorical(["b","b"], categories=["a","b"])

In [178]: df.loc[2:3,"b"] = pd.Categorical(["b","b"], categories=["a","b"])

In [179]: df
Out[179]:

a b
0 1 a
1 b a
2 b b
3 1 b
4 1 a

In [180]: df.dtypes
\\\Out[180]:
a object
b object
dtype: object

21.8. Data munging 1033

pandas: powerful Python data analysis toolkit, Release 0.23.4

21.8.4 Merging

You can concat two DataFrames containing categorical data together, but the categories of these categoricals need
to be the same:

In [181]: cat = pd.Series(["a","b"], dtype="category")

In [182]: vals = [1,2]

In [183]: df = pd.DataFrame({"cats":cat, "vals":vals})

In [184]: res = pd.concat([df,df])

In [185]: res
Out[185]:

cats vals
0 a 1
1 b 2
0 a 1
1 b 2

In [186]: res.dtypes
\\Out[186]:
cats category
vals int64
dtype: object

In this case the categories are not the same, and therefore an error is raised:

In [187]: df_different = df.copy()

In [188]: df_different["cats"].cat.categories = ["c","d"]

In [189]: try:
.....: pd.concat([df,df_different])
.....: except ValueError as e:
.....: print("ValueError: " + str(e))
.....:

The same applies to df.append(df_different).

See also the section on merge dtypes for notes about preserving merge dtypes and performance.

21.8.5 Unioning

New in version 0.19.0.

If you want to combine categoricals that do not necessarily have the same categories, the union_categoricals()
function will combine a list-like of categoricals. The new categories will be the union of the categories being combined.

In [190]: from pandas.api.types import union_categoricals

In [191]: a = pd.Categorical(["b", "c"])

In [192]: b = pd.Categorical(["a", "b"])

In [193]: union_categoricals([a, b])

(continues on next page)

1034 Chapter 21. Categorical Data

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

Out[193]:
[b, c, a, b]
Categories (3, object): [b, c, a]

By default, the resulting categories will be ordered as they appear in the data. If you want the categories to be lexsorted,
use sort_categories=True argument.

In [194]: union_categoricals([a, b], sort_categories=True)
Out[194]:
[b, c, a, b]
Categories (3, object): [a, b, c]

union_categoricals also works with the “easy” case of combining two categoricals of the same categories and
order information (e.g. what you could also append for).

In [195]: a = pd.Categorical(["a", "b"], ordered=True)

In [196]: b = pd.Categorical(["a", "b", "a"], ordered=True)

In [197]: union_categoricals([a, b])
Out[197]:
[a, b, a, b, a]
Categories (2, object): [a < b]

The below raises TypeError because the categories are ordered and not identical.

In [1]: a = pd.Categorical(["a", "b"], ordered=True)
In [2]: b = pd.Categorical(["a", "b", "c"], ordered=True)
In [3]: union_categoricals([a, b])
Out[3]:
TypeError: to union ordered Categoricals, all categories must be the same

New in version 0.20.0.

Ordered categoricals with different categories or orderings can be combined by using the ignore_ordered=True
argument.

In [198]: a = pd.Categorical(["a", "b", "c"], ordered=True)

In [199]: b = pd.Categorical(["c", "b", "a"], ordered=True)

In [200]: union_categoricals([a, b], ignore_order=True)
Out[200]:
[a, b, c, c, b, a]
Categories (3, object): [a, b, c]

union_categoricals() also works with a CategoricalIndex, or Series containing categorical data, but
note that the resulting array will always be a plain Categorical:

In [201]: a = pd.Series(["b", "c"], dtype='category')

In [202]: b = pd.Series(["a", "b"], dtype='category')

In [203]: union_categoricals([a, b])
Out[203]:
[b, c, a, b]
Categories (3, object): [b, c, a]

21.8. Data munging 1035

pandas: powerful Python data analysis toolkit, Release 0.23.4

Note: union_categoricals may recode the integer codes for categories when combining categoricals. This is
likely what you want, but if you are relying on the exact numbering of the categories, be aware.

In [204]: c1 = pd.Categorical(["b", "c"])

In [205]: c2 = pd.Categorical(["a", "b"])

In [206]: c1
Out[206]:
[b, c]
Categories (2, object): [b, c]

"b" is coded to 0
In [207]: c1.codes
\\\Out[207]: array([0, 1], dtype=int8)

In [208]: c2
\\\Out[208]:
→˓

[a, b]
Categories (2, object): [a, b]

"b" is coded to 1
In [209]: c2.codes
\\Out[209]:
→˓array([0, 1], dtype=int8)

In [210]: c = union_categoricals([c1, c2])

In [211]: c
Out[211]:
[b, c, a, b]
Categories (3, object): [b, c, a]

"b" is coded to 0 throughout, same as c1, different from c2
In [212]: c.codes
\\Out[212]: array([0, 1, 2,
→˓0], dtype=int8)

21.8.6 Concatenation

This section describes concatenations specific to category dtype. See Concatenating objects for general description.

By default, Series or DataFrame concatenation which contains the same categories results in category dtype,
otherwise results in object dtype. Use .astype or union_categoricals to get category result.

same categories
In [213]: s1 = pd.Series(['a', 'b'], dtype='category')

In [214]: s2 = pd.Series(['a', 'b', 'a'], dtype='category')

In [215]: pd.concat([s1, s2])
Out[215]:
0 a

(continues on next page)

1036 Chapter 21. Categorical Data

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

1 b
0 a
1 b
2 a
dtype: category
Categories (2, object): [a, b]

different categories
In [216]: s3 = pd.Series(['b', 'c'], dtype='category')

In [217]: pd.concat([s1, s3])
Out[217]:
0 a
1 b
0 b
1 c
dtype: object

In [218]: pd.concat([s1, s3]).astype('category')
\\\Out[218]:
0 a
1 b
0 b
1 c
dtype: category
Categories (3, object): [a, b, c]

In [219]: union_categoricals([s1.values, s3.values])
\\Out[219]:
→˓

[a, b, b, c]
Categories (3, object): [a, b, c]

Following table summarizes the results of Categoricals related concatenations.

arg1 arg2 result
category category (identical categories) category
category category (different categories, both not ordered) object (dtype is inferred)
category category (different categories, either one is ordered) object (dtype is inferred)
category not category object (dtype is inferred)

21.9 Getting Data In/Out

You can write data that contains category dtypes to a HDFStore. See here for an example and caveats.

It is also possible to write data to and reading data from Stata format files. See here for an example and caveats.

Writing to a CSV file will convert the data, effectively removing any information about the categorical (categories and
ordering). So if you read back the CSV file you have to convert the relevant columns back to category and assign the
right categories and categories ordering.

In [220]: s = pd.Series(pd.Categorical(['a', 'b', 'b', 'a', 'a', 'd']))

rename the categories
(continues on next page)

21.9. Getting Data In/Out 1037

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

In [221]: s.cat.categories = ["very good", "good", "bad"]

reorder the categories and add missing categories
In [222]: s = s.cat.set_categories(["very bad", "bad", "medium", "good", "very good"])

In [223]: df = pd.DataFrame({"cats":s, "vals":[1,2,3,4,5,6]})

In [224]: csv = StringIO()

In [225]: df.to_csv(csv)

In [226]: df2 = pd.read_csv(StringIO(csv.getvalue()))

In [227]: df2.dtypes
Out[227]:
Unnamed: 0 int64
cats object
vals int64
dtype: object

In [228]: df2["cats"]
\\Out[228]:
→˓

0 very good
1 good
2 good
3 very good
4 very good
5 bad
Name: cats, dtype: object

Redo the category
In [229]: df2["cats"] = df2["cats"].astype("category")

In [230]: df2["cats"].cat.set_categories(["very bad", "bad", "medium", "good", "very
→˓good"],

.....: inplace=True)

.....:

In [231]: df2.dtypes
Out[231]:
Unnamed: 0 int64
cats category
vals int64
dtype: object

In [232]: df2["cats"]
\\Out[232]:
→˓

0 very good
1 good
2 good
3 very good
4 very good
5 bad
Name: cats, dtype: category
Categories (5, object): [very bad, bad, medium, good, very good]

1038 Chapter 21. Categorical Data

pandas: powerful Python data analysis toolkit, Release 0.23.4

The same holds for writing to a SQL database with to_sql.

21.10 Missing Data

pandas primarily uses the value np.nan to represent missing data. It is by default not included in computations. See
the Missing Data section.

Missing values should not be included in the Categorical’s categories, only in the values. Instead, it is under-
stood that NaN is different, and is always a possibility. When working with the Categorical’s codes, missing values
will always have a code of -1.

In [233]: s = pd.Series(["a", "b", np.nan, "a"], dtype="category")

only two categories
In [234]: s
Out[234]:
0 a
1 b
2 NaN
3 a
dtype: category
Categories (2, object): [a, b]

In [235]: s.cat.codes
\\Out[235]:
→˓

0 0
1 1
2 -1
3 0
dtype: int8

Methods for working with missing data, e.g. isna(), fillna(), dropna(), all work normally:

In [236]: s = pd.Series(["a", "b", np.nan], dtype="category")

In [237]: s
Out[237]:
0 a
1 b
2 NaN
dtype: category
Categories (2, object): [a, b]

In [238]: pd.isna(s)
\\\Out[238]:
→˓

0 False
1 False
2 True
dtype: bool

In [239]: s.fillna("a")
\\\Out[239]:
→˓

0 a

(continues on next page)

21.10. Missing Data 1039

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

1 b
2 a
dtype: category
Categories (2, object): [a, b]

21.11 Differences to R’s factor

The following differences to R’s factor functions can be observed:

• R’s levels are named categories.

• R’s levels are always of type string, while categories in pandas can be of any dtype.

• It’s not possible to specify labels at creation time. Use s.cat.rename_categories(new_labels)
afterwards.

• In contrast to R’s factor function, using categorical data as the sole input to create a new categorical series will
not remove unused categories but create a new categorical series which is equal to the passed in one!

• R allows for missing values to be included in its levels (pandas’ categories). Pandas does not allow NaN
categories, but missing values can still be in the values.

21.12 Gotchas

21.12.1 Memory Usage

The memory usage of a Categorical is proportional to the number of categories plus the length of the data. In
contrast, an object dtype is a constant times the length of the data.

In [240]: s = pd.Series(['foo','bar']*1000)

object dtype
In [241]: s.nbytes
Out[241]: 16000

category dtype
In [242]: s.astype('category').nbytes
\\\\\\\\\\\\\\\\Out[242]: 2016

Note: If the number of categories approaches the length of the data, the Categorical will use nearly the same or
more memory than an equivalent object dtype representation.

In [243]: s = pd.Series(['foo%04d' % i for i in range(2000)])

object dtype
In [244]: s.nbytes
Out[244]: 16000

category dtype
In [245]: s.astype('category').nbytes
\\\\\\\\\\\\\\\\Out[245]: 20000

1040 Chapter 21. Categorical Data

pandas: powerful Python data analysis toolkit, Release 0.23.4

21.12.2 Categorical is not a numpy array

Currently, categorical data and the underlying Categorical is implemented as a Python object and not as a low-
level NumPy array dtype. This leads to some problems.

NumPy itself doesn’t know about the new dtype:

In [246]: try:
.....: np.dtype("category")
.....: except TypeError as e:
.....: print("TypeError: " + str(e))
.....:

TypeError: data type "category" not understood

In [247]: dtype = pd.Categorical(["a"]).dtype

In [248]: try:
.....: np.dtype(dtype)
.....: except TypeError as e:
.....: print("TypeError: " + str(e))
.....:

TypeError: data type not understood

Dtype comparisons work:

In [249]: dtype == np.str_
Out[249]: False

In [250]: np.str_ == dtype
\\\\\\\\\\\\\\\\Out[250]: False

To check if a Series contains Categorical data, use hasattr(s, 'cat'):

In [251]: hasattr(pd.Series(['a'], dtype='category'), 'cat')
Out[251]: True

In [252]: hasattr(pd.Series(['a']), 'cat')
\\\\\\\\\\\\\\\Out[252]: False

Using NumPy functions on a Series of type category should not work as Categoricals are not numeric data (even
in the case that .categories is numeric).

In [253]: s = pd.Series(pd.Categorical([1,2,3,4]))

In [254]: try:
.....: np.sum(s)
.....: except TypeError as e:
.....: print("TypeError: " + str(e))
.....:

TypeError: Categorical cannot perform the operation sum

Note: If such a function works, please file a bug at https://github.com/pandas-dev/pandas!

21.12. Gotchas 1041

https://github.com/pandas-dev/pandas

pandas: powerful Python data analysis toolkit, Release 0.23.4

21.12.3 dtype in apply

Pandas currently does not preserve the dtype in apply functions: If you apply along rows you get a Series of object
dtype (same as getting a row -> getting one element will return a basic type) and applying along columns will also
convert to object.

In [255]: df = pd.DataFrame({"a":[1,2,3,4],
.....: "b":["a","b","c","d"],
.....: "cats":pd.Categorical([1,2,3,2])})
.....:

In [256]: df.apply(lambda row: type(row["cats"]), axis=1)
Out[256]:
0 <class 'int'>
1 <class 'int'>
2 <class 'int'>
3 <class 'int'>
dtype: object

In [257]: df.apply(lambda col: col.dtype, axis=0)
\\\Out[257]:
→˓

a int64
b object
cats category
dtype: object

21.12.4 Categorical Index

CategoricalIndex is a type of index that is useful for supporting indexing with duplicates. This is a container
around a Categorical and allows efficient indexing and storage of an index with a large number of duplicated
elements. See the advanced indexing docs for a more detailed explanation.

Setting the index will create a CategoricalIndex:

In [258]: cats = pd.Categorical([1,2,3,4], categories=[4,2,3,1])

In [259]: strings = ["a","b","c","d"]

In [260]: values = [4,2,3,1]

In [261]: df = pd.DataFrame({"strings":strings, "values":values}, index=cats)

In [262]: df.index
Out[262]: CategoricalIndex([1, 2, 3, 4], categories=[4, 2, 3, 1], ordered=False,
→˓dtype='category')

This now sorts by the categories order
In [263]: df.sort_index()
\\\Out[263]:
→˓

strings values
4 d 1
2 b 2
3 c 3
1 a 4

1042 Chapter 21. Categorical Data

pandas: powerful Python data analysis toolkit, Release 0.23.4

21.12.5 Side Effects

Constructing a Series from a Categorical will not copy the input Categorical. This means that changes to
the Series will in most cases change the original Categorical:

In [264]: cat = pd.Categorical([1,2,3,10], categories=[1,2,3,4,10])

In [265]: s = pd.Series(cat, name="cat")

In [266]: cat
Out[266]:
[1, 2, 3, 10]
Categories (5, int64): [1, 2, 3, 4, 10]

In [267]: s.iloc[0:2] = 10

In [268]: cat
Out[268]:
[10, 10, 3, 10]
Categories (5, int64): [1, 2, 3, 4, 10]

In [269]: df = pd.DataFrame(s)

In [270]: df["cat"].cat.categories = [1,2,3,4,5]

In [271]: cat
Out[271]:
[5, 5, 3, 5]
Categories (5, int64): [1, 2, 3, 4, 5]

Use copy=True to prevent such a behaviour or simply don’t reuse Categoricals:

In [272]: cat = pd.Categorical([1,2,3,10], categories=[1,2,3,4,10])

In [273]: s = pd.Series(cat, name="cat", copy=True)

In [274]: cat
Out[274]:
[1, 2, 3, 10]
Categories (5, int64): [1, 2, 3, 4, 10]

In [275]: s.iloc[0:2] = 10

In [276]: cat
Out[276]:
[1, 2, 3, 10]
Categories (5, int64): [1, 2, 3, 4, 10]

Note: This also happens in some cases when you supply a NumPy array instead of a Categorical: using an
int array (e.g. np.array([1,2,3,4])) will exhibit the same behavior, while using a string array (e.g. np.
array(["a","b","c","a"])) will not.

21.12. Gotchas 1043

pandas: powerful Python data analysis toolkit, Release 0.23.4

1044 Chapter 21. Categorical Data

CHAPTER

TWENTYTWO

VISUALIZATION

We use the standard convention for referencing the matplotlib API:

In [1]: import matplotlib.pyplot as plt

We provide the basics in pandas to easily create decent looking plots. See the ecosystem section for visualization
libraries that go beyond the basics documented here.

Note: All calls to np.random are seeded with 123456.

22.1 Basic Plotting: plot

We will demonstrate the basics, see the cookbook for some advanced strategies.

The plot method on Series and DataFrame is just a simple wrapper around plt.plot():

In [2]: ts = pd.Series(np.random.randn(1000), index=pd.date_range('1/1/2000',
→˓periods=1000))

In [3]: ts = ts.cumsum()

In [4]: ts.plot()
Out[4]: <matplotlib.axes._subplots.AxesSubplot at 0x7f20d5690710>

1045

https://matplotlib.org/api/_as_gen/matplotlib.axes.Axes.plot.html#matplotlib.axes.Axes.plot

pandas: powerful Python data analysis toolkit, Release 0.23.4

If the index consists of dates, it calls gcf().autofmt_xdate() to try to format the x-axis nicely as per above.

On DataFrame, plot() is a convenience to plot all of the columns with labels:

In [5]: df = pd.DataFrame(np.random.randn(1000, 4), index=ts.index, columns=list('ABCD
→˓'))

In [6]: df = df.cumsum()

In [7]: plt.figure(); df.plot();

1046 Chapter 22. Visualization

https://matplotlib.org/api/_as_gen/matplotlib.figure.Figure.html#matplotlib.figure.Figure.autofmt_xdate

pandas: powerful Python data analysis toolkit, Release 0.23.4

You can plot one column versus another using the x and y keywords in plot():

In [8]: df3 = pd.DataFrame(np.random.randn(1000, 2), columns=['B', 'C']).cumsum()

In [9]: df3['A'] = pd.Series(list(range(len(df))))

In [10]: df3.plot(x='A', y='B')
Out[10]: <matplotlib.axes._subplots.AxesSubplot at 0x7f20d5aabf28>

22.1. Basic Plotting: plot 1047

pandas: powerful Python data analysis toolkit, Release 0.23.4

Note: For more formatting and styling options, see formatting below.

22.2 Other Plots

Plotting methods allow for a handful of plot styles other than the default line plot. These methods can be provided as
the kind keyword argument to plot(), and include:

• ‘bar’ or ‘barh’ for bar plots

• ‘hist’ for histogram

• ‘box’ for boxplot

• ‘kde’ or ‘density’ for density plots

• ‘area’ for area plots

• ‘scatter’ for scatter plots

• ‘hexbin’ for hexagonal bin plots

• ‘pie’ for pie plots

For example, a bar plot can be created the following way:

1048 Chapter 22. Visualization

pandas: powerful Python data analysis toolkit, Release 0.23.4

In [11]: plt.figure();

In [12]: df.iloc[5].plot(kind='bar');

You can also create these other plots using the methods DataFrame.plot.<kind> instead of providing the kind
keyword argument. This makes it easier to discover plot methods and the specific arguments they use:

In [13]: df = pd.DataFrame()

In [14]: df.plot.<TAB>
df.plot.area df.plot.barh df.plot.density df.plot.hist df.plot.line
→˓df.plot.scatter
df.plot.bar df.plot.box df.plot.hexbin df.plot.kde df.plot.pie

In addition to these kind s, there are the DataFrame.hist(), and DataFrame.boxplot() methods, which use a separate
interface.

Finally, there are several plotting functions in pandas.plotting that take a Series or DataFrame as an argu-
ment. These include:

• Scatter Matrix

• Andrews Curves

• Parallel Coordinates

• Lag Plot

22.2. Other Plots 1049

pandas: powerful Python data analysis toolkit, Release 0.23.4

• Autocorrelation Plot

• Bootstrap Plot

• RadViz

Plots may also be adorned with errorbars or tables.

22.2.1 Bar plots

For labeled, non-time series data, you may wish to produce a bar plot:

In [15]: plt.figure();

In [16]: df.iloc[5].plot.bar(); plt.axhline(0, color='k')
Out[16]: <matplotlib.lines.Line2D at 0x7f20d46a4358>

Calling a DataFrame’s plot.bar() method produces a multiple bar plot:

In [17]: df2 = pd.DataFrame(np.random.rand(10, 4), columns=['a', 'b', 'c', 'd'])

In [18]: df2.plot.bar();

1050 Chapter 22. Visualization

pandas: powerful Python data analysis toolkit, Release 0.23.4

To produce a stacked bar plot, pass stacked=True:

In [19]: df2.plot.bar(stacked=True);

22.2. Other Plots 1051

pandas: powerful Python data analysis toolkit, Release 0.23.4

To get horizontal bar plots, use the barh method:

In [20]: df2.plot.barh(stacked=True);

1052 Chapter 22. Visualization

pandas: powerful Python data analysis toolkit, Release 0.23.4

22.2.2 Histograms

Histograms can be drawn by using the DataFrame.plot.hist() and Series.plot.hist() methods.

In [21]: df4 = pd.DataFrame({'a': np.random.randn(1000) + 1, 'b': np.random.
→˓randn(1000),

....: 'c': np.random.randn(1000) - 1}, columns=['a', 'b', 'c'])

....:

In [22]: plt.figure();

In [23]: df4.plot.hist(alpha=0.5)
Out[23]: <matplotlib.axes._subplots.AxesSubplot at 0x7f20cf918908>

22.2. Other Plots 1053

pandas: powerful Python data analysis toolkit, Release 0.23.4

A histogram can be stacked using stacked=True. Bin size can be changed using the bins keyword.

In [24]: plt.figure();

In [25]: df4.plot.hist(stacked=True, bins=20)
Out[25]: <matplotlib.axes._subplots.AxesSubplot at 0x7f20cf909a58>

1054 Chapter 22. Visualization

pandas: powerful Python data analysis toolkit, Release 0.23.4

You can pass other keywords supported by matplotlib hist. For example, horizontal and cumulative histograms can
be drawn by orientation='horizontal' and cumulative=True.

In [26]: plt.figure();

In [27]: df4['a'].plot.hist(orientation='horizontal', cumulative=True)
Out[27]: <matplotlib.axes._subplots.AxesSubplot at 0x7f20cfbceba8>

22.2. Other Plots 1055

pandas: powerful Python data analysis toolkit, Release 0.23.4

See the hist method and the matplotlib hist documentation for more.

The existing interface DataFrame.hist to plot histogram still can be used.

In [28]: plt.figure();

In [29]: df['A'].diff().hist()
Out[29]: <matplotlib.axes._subplots.AxesSubplot at 0x7f20d550efd0>

1056 Chapter 22. Visualization

https://matplotlib.org/api/_as_gen/matplotlib.axes.Axes.hist.html#matplotlib.axes.Axes.hist
http://matplotlib.org/api/pyplot_api.html#matplotlib.pyplot.hist

pandas: powerful Python data analysis toolkit, Release 0.23.4

DataFrame.hist() plots the histograms of the columns on multiple subplots:

In [30]: plt.figure()
Out[30]: <Figure size 640x480 with 0 Axes>

In [31]: df.diff().hist(color='k', alpha=0.5, bins=50)
\\\Out[31]:
array([[<matplotlib.axes._subplots.AxesSubplot object at 0x7f20d47d7b38>,

<matplotlib.axes._subplots.AxesSubplot object at 0x7f20d490e978>],
[<matplotlib.axes._subplots.AxesSubplot object at 0x7f20d4924c88>,
<matplotlib.axes._subplots.AxesSubplot object at 0x7f20d41aff98>]],

→˓dtype=object)

22.2. Other Plots 1057

pandas: powerful Python data analysis toolkit, Release 0.23.4

The by keyword can be specified to plot grouped histograms:

In [32]: data = pd.Series(np.random.randn(1000))

In [33]: data.hist(by=np.random.randint(0, 4, 1000), figsize=(6, 4))
Out[33]:
array([[<matplotlib.axes._subplots.AxesSubplot object at 0x7f20d51d9e48>,

<matplotlib.axes._subplots.AxesSubplot object at 0x7f20d5763c50>],
[<matplotlib.axes._subplots.AxesSubplot object at 0x7f20d576af60>,
<matplotlib.axes._subplots.AxesSubplot object at 0x7f20d5a012b0>]],

→˓dtype=object)

1058 Chapter 22. Visualization

pandas: powerful Python data analysis toolkit, Release 0.23.4

22.2.3 Box Plots

Boxplot can be drawn calling Series.plot.box() and DataFrame.plot.box(), or DataFrame.
boxplot() to visualize the distribution of values within each column.

For instance, here is a boxplot representing five trials of 10 observations of a uniform random variable on [0,1).

In [34]: df = pd.DataFrame(np.random.rand(10, 5), columns=['A', 'B', 'C', 'D', 'E'])

In [35]: df.plot.box()
Out[35]: <matplotlib.axes._subplots.AxesSubplot at 0x7f20cf9400f0>

22.2. Other Plots 1059

pandas: powerful Python data analysis toolkit, Release 0.23.4

Boxplot can be colorized by passing color keyword. You can pass a dict whose keys are boxes, whiskers,
medians and caps. If some keys are missing in the dict, default colors are used for the corresponding artists.
Also, boxplot has sym keyword to specify fliers style.

When you pass other type of arguments via color keyword, it will be directly passed to matplotlib for all the boxes,
whiskers, medians and caps colorization.

The colors are applied to every boxes to be drawn. If you want more complicated colorization, you can get each drawn
artists by passing return_type.

In [36]: color = dict(boxes='DarkGreen', whiskers='DarkOrange',
....: medians='DarkBlue', caps='Gray')
....:

In [37]: df.plot.box(color=color, sym='r+')
Out[37]: <matplotlib.axes._subplots.AxesSubplot at 0x7f20d5907828>

1060 Chapter 22. Visualization

pandas: powerful Python data analysis toolkit, Release 0.23.4

Also, you can pass other keywords supported by matplotlib boxplot. For example, horizontal and custom-positioned
boxplot can be drawn by vert=False and positions keywords.

In [38]: df.plot.box(vert=False, positions=[1, 4, 5, 6, 8])
Out[38]: <matplotlib.axes._subplots.AxesSubplot at 0x7f20d5be8198>

22.2. Other Plots 1061

pandas: powerful Python data analysis toolkit, Release 0.23.4

See the boxplot method and the matplotlib boxplot documentation for more.

The existing interface DataFrame.boxplot to plot boxplot still can be used.

In [39]: df = pd.DataFrame(np.random.rand(10,5))

In [40]: plt.figure();

In [41]: bp = df.boxplot()

1062 Chapter 22. Visualization

https://matplotlib.org/api/_as_gen/matplotlib.axes.Axes.boxplot.html#matplotlib.axes.Axes.boxplot
http://matplotlib.org/api/pyplot_api.html#matplotlib.pyplot.boxplot

pandas: powerful Python data analysis toolkit, Release 0.23.4

You can create a stratified boxplot using the by keyword argument to create groupings. For instance,

In [42]: df = pd.DataFrame(np.random.rand(10,2), columns=['Col1', 'Col2'])

In [43]: df['X'] = pd.Series(['A','A','A','A','A','B','B','B','B','B'])

In [44]: plt.figure();

In [45]: bp = df.boxplot(by='X')

22.2. Other Plots 1063

pandas: powerful Python data analysis toolkit, Release 0.23.4

You can also pass a subset of columns to plot, as well as group by multiple columns:

In [46]: df = pd.DataFrame(np.random.rand(10,3), columns=['Col1', 'Col2', 'Col3'])

In [47]: df['X'] = pd.Series(['A','A','A','A','A','B','B','B','B','B'])

In [48]: df['Y'] = pd.Series(['A','B','A','B','A','B','A','B','A','B'])

In [49]: plt.figure();

In [50]: bp = df.boxplot(column=['Col1','Col2'], by=['X','Y'])

1064 Chapter 22. Visualization

pandas: powerful Python data analysis toolkit, Release 0.23.4

Warning: The default changed from 'dict' to 'axes' in version 0.19.0.

In boxplot, the return type can be controlled by the return_type, keyword. The valid choices are {"axes",
"dict", "both", None}. Faceting, created by DataFrame.boxplot with the by keyword, will affect the
output type as well:

return_type= Faceted Output type
None No axes
None Yes 2-D ndarray of axes
'axes' No axes
'axes' Yes Series of axes
'dict' No dict of artists
'dict' Yes Series of dicts of artists
'both' No namedtuple
'both' Yes Series of namedtuples

Groupby.boxplot always returns a Series of return_type.

In [51]: np.random.seed(1234)

In [52]: df_box = pd.DataFrame(np.random.randn(50, 2))

(continues on next page)

22.2. Other Plots 1065

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

In [53]: df_box['g'] = np.random.choice(['A', 'B'], size=50)

In [54]: df_box.loc[df_box['g'] == 'B', 1] += 3

In [55]: bp = df_box.boxplot(by='g')

The subplots above are split by the numeric columns first, then the value of the g column. Below the subplots are first
split by the value of g, then by the numeric columns.

In [56]: bp = df_box.groupby('g').boxplot()

1066 Chapter 22. Visualization

pandas: powerful Python data analysis toolkit, Release 0.23.4

22.2.4 Area Plot

You can create area plots with Series.plot.area() and DataFrame.plot.area(). Area plots are stacked
by default. To produce stacked area plot, each column must be either all positive or all negative values.

When input data contains NaN, it will be automatically filled by 0. If you want to drop or fill by different values, use
dataframe.dropna() or dataframe.fillna() before calling plot.

In [57]: df = pd.DataFrame(np.random.rand(10, 4), columns=['a', 'b', 'c', 'd'])

In [58]: df.plot.area();

22.2. Other Plots 1067

pandas: powerful Python data analysis toolkit, Release 0.23.4

To produce an unstacked plot, pass stacked=False. Alpha value is set to 0.5 unless otherwise specified:

In [59]: df.plot.area(stacked=False);

1068 Chapter 22. Visualization

pandas: powerful Python data analysis toolkit, Release 0.23.4

22.2.5 Scatter Plot

Scatter plot can be drawn by using the DataFrame.plot.scatter() method. Scatter plot requires numeric
columns for the x and y axes. These can be specified by the x and y keywords.

In [60]: df = pd.DataFrame(np.random.rand(50, 4), columns=['a', 'b', 'c', 'd'])

In [61]: df.plot.scatter(x='a', y='b');

22.2. Other Plots 1069

pandas: powerful Python data analysis toolkit, Release 0.23.4

To plot multiple column groups in a single axes, repeat plot method specifying target ax. It is recommended to
specify color and label keywords to distinguish each groups.

In [62]: ax = df.plot.scatter(x='a', y='b', color='DarkBlue', label='Group 1');

In [63]: df.plot.scatter(x='c', y='d', color='DarkGreen', label='Group 2', ax=ax);

1070 Chapter 22. Visualization

pandas: powerful Python data analysis toolkit, Release 0.23.4

The keyword c may be given as the name of a column to provide colors for each point:

In [64]: df.plot.scatter(x='a', y='b', c='c', s=50);

22.2. Other Plots 1071

pandas: powerful Python data analysis toolkit, Release 0.23.4

You can pass other keywords supported by matplotlib scatter. The example below shows a bubble chart using a
column of the DataFrame as the bubble size.

In [65]: df.plot.scatter(x='a', y='b', s=df['c']*200);

1072 Chapter 22. Visualization

https://matplotlib.org/api/_as_gen/matplotlib.axes.Axes.scatter.html#matplotlib.axes.Axes.scatter

pandas: powerful Python data analysis toolkit, Release 0.23.4

See the scatter method and the matplotlib scatter documentation for more.

22.2.6 Hexagonal Bin Plot

You can create hexagonal bin plots with DataFrame.plot.hexbin(). Hexbin plots can be a useful alternative
to scatter plots if your data are too dense to plot each point individually.

In [66]: df = pd.DataFrame(np.random.randn(1000, 2), columns=['a', 'b'])

In [67]: df['b'] = df['b'] + np.arange(1000)

In [68]: df.plot.hexbin(x='a', y='b', gridsize=25)
Out[68]: <matplotlib.axes._subplots.AxesSubplot at 0x7f20c0e53b70>

22.2. Other Plots 1073

https://matplotlib.org/api/_as_gen/matplotlib.axes.Axes.scatter.html#matplotlib.axes.Axes.scatter
http://matplotlib.org/api/pyplot_api.html#matplotlib.pyplot.scatter

pandas: powerful Python data analysis toolkit, Release 0.23.4

A useful keyword argument is gridsize; it controls the number of hexagons in the x-direction, and defaults to 100.
A larger gridsize means more, smaller bins.

By default, a histogram of the counts around each (x, y) point is computed. You can specify alternative aggregations
by passing values to the C and reduce_C_function arguments. C specifies the value at each (x, y) point and
reduce_C_function is a function of one argument that reduces all the values in a bin to a single number (e.g.
mean, max, sum, std). In this example the positions are given by columns a and b, while the value is given by
column z. The bins are aggregated with NumPy’s max function.

In [69]: df = pd.DataFrame(np.random.randn(1000, 2), columns=['a', 'b'])

In [70]: df['b'] = df['b'] = df['b'] + np.arange(1000)

In [71]: df['z'] = np.random.uniform(0, 3, 1000)

In [72]: df.plot.hexbin(x='a', y='b', C='z', reduce_C_function=np.max,
....: gridsize=25)
....:

Out[72]: <matplotlib.axes._subplots.AxesSubplot at 0x7f20c0df8f98>

1074 Chapter 22. Visualization

pandas: powerful Python data analysis toolkit, Release 0.23.4

See the hexbin method and the matplotlib hexbin documentation for more.

22.2.7 Pie plot

You can create a pie plot with DataFrame.plot.pie() or Series.plot.pie(). If your data includes any
NaN, they will be automatically filled with 0. A ValueError will be raised if there are any negative values in your
data.

In [73]: series = pd.Series(3 * np.random.rand(4), index=['a', 'b', 'c', 'd'], name=
→˓'series')

In [74]: series.plot.pie(figsize=(6, 6))
Out[74]: <matplotlib.axes._subplots.AxesSubplot at 0x7f20c0d15908>

22.2. Other Plots 1075

https://matplotlib.org/api/_as_gen/matplotlib.axes.Axes.hexbin.html#matplotlib.axes.Axes.hexbin
http://matplotlib.org/api/pyplot_api.html#matplotlib.pyplot.hexbin

pandas: powerful Python data analysis toolkit, Release 0.23.4

For pie plots it’s best to use square figures, i.e. a figure aspect ratio 1. You can create the figure with equal width and
height, or force the aspect ratio to be equal after plotting by calling ax.set_aspect('equal') on the returned
axes object.

Note that pie plot with DataFrame requires that you either specify a target column by the y argument or
subplots=True. When y is specified, pie plot of selected column will be drawn. If subplots=True is spec-
ified, pie plots for each column are drawn as subplots. A legend will be drawn in each pie plots by default; specify
legend=False to hide it.

In [75]: df = pd.DataFrame(3 * np.random.rand(4, 2), index=['a', 'b', 'c', 'd'],
→˓columns=['x', 'y'])

In [76]: df.plot.pie(subplots=True, figsize=(8, 4))
Out[76]:
array([<matplotlib.axes._subplots.AxesSubplot object at 0x7f20c0cfdb00>,

<matplotlib.axes._subplots.AxesSubplot object at 0x7f20c0ca3ef0>],
→˓dtype=object)

1076 Chapter 22. Visualization

pandas: powerful Python data analysis toolkit, Release 0.23.4

You can use the labels and colors keywords to specify the labels and colors of each wedge.

Warning: Most pandas plots use the label and color arguments (note the lack of “s” on those). To be
consistent with matplotlib.pyplot.pie() you must use labels and colors.

If you want to hide wedge labels, specify labels=None. If fontsize is specified, the value will be applied to
wedge labels. Also, other keywords supported by matplotlib.pyplot.pie() can be used.

In [77]: series.plot.pie(labels=['AA', 'BB', 'CC', 'DD'], colors=['r', 'g', 'b', 'c'],
....: autopct='%.2f', fontsize=20, figsize=(6, 6))
....:

Out[77]: <matplotlib.axes._subplots.AxesSubplot at 0x7f20c0c25668>

22.2. Other Plots 1077

https://matplotlib.org/api/_as_gen/matplotlib.pyplot.pie.html#matplotlib.pyplot.pie
https://matplotlib.org/api/_as_gen/matplotlib.pyplot.pie.html#matplotlib.pyplot.pie

pandas: powerful Python data analysis toolkit, Release 0.23.4

If you pass values whose sum total is less than 1.0, matplotlib draws a semicircle.

In [78]: series = pd.Series([0.1] * 4, index=['a', 'b', 'c', 'd'], name='series2')

In [79]: series.plot.pie(figsize=(6, 6))
Out[79]: <matplotlib.axes._subplots.AxesSubplot at 0x7f20c0be6630>

1078 Chapter 22. Visualization

pandas: powerful Python data analysis toolkit, Release 0.23.4

See the matplotlib pie documentation for more.

22.3 Plotting with Missing Data

Pandas tries to be pragmatic about plotting DataFrames or Series that contain missing data. Missing values are
dropped, left out, or filled depending on the plot type.

22.3. Plotting with Missing Data 1079

http://matplotlib.org/api/pyplot_api.html#matplotlib.pyplot.pie

pandas: powerful Python data analysis toolkit, Release 0.23.4

Plot Type NaN Handling
Line Leave gaps at NaNs
Line (stacked) Fill 0’s
Bar Fill 0’s
Scatter Drop NaNs
Histogram Drop NaNs (column-wise)
Box Drop NaNs (column-wise)
Area Fill 0’s
KDE Drop NaNs (column-wise)
Hexbin Drop NaNs
Pie Fill 0’s

If any of these defaults are not what you want, or if you want to be explicit about how missing values are handled,
consider using fillna() or dropna() before plotting.

22.4 Plotting Tools

These functions can be imported from pandas.plotting and take a Series or DataFrame as an argument.

22.4.1 Scatter Matrix Plot

You can create a scatter plot matrix using the scatter_matrix method in pandas.plotting:

In [80]: from pandas.plotting import scatter_matrix

In [81]: df = pd.DataFrame(np.random.randn(1000, 4), columns=['a', 'b', 'c', 'd'])

In [82]: scatter_matrix(df, alpha=0.2, figsize=(6, 6), diagonal='kde')
Out[82]:
array([[<matplotlib.axes._subplots.AxesSubplot object at 0x7f20c0e8b978>,

<matplotlib.axes._subplots.AxesSubplot object at 0x7f20c0fe6390>,
<matplotlib.axes._subplots.AxesSubplot object at 0x7f20c0f42b00>,
<matplotlib.axes._subplots.AxesSubplot object at 0x7f20c10072b0>],

[<matplotlib.axes._subplots.AxesSubplot object at 0x7f20c10a7b38>,
<matplotlib.axes._subplots.AxesSubplot object at 0x7f20c10a7ac8>,
<matplotlib.axes._subplots.AxesSubplot object at 0x7f20c12d90b8>,
<matplotlib.axes._subplots.AxesSubplot object at 0x7f20c1284be0>],

[<matplotlib.axes._subplots.AxesSubplot object at 0x7f20c13d3e10>,
<matplotlib.axes._subplots.AxesSubplot object at 0x7f20d43fc470>,
<matplotlib.axes._subplots.AxesSubplot object at 0x7f20d42dec88>,
<matplotlib.axes._subplots.AxesSubplot object at 0x7f20d4a5a780>],

[<matplotlib.axes._subplots.AxesSubplot object at 0x7f20cf927b70>,
<matplotlib.axes._subplots.AxesSubplot object at 0x7f20d48d3ac8>,
<matplotlib.axes._subplots.AxesSubplot object at 0x7f20d4fe8898>,
<matplotlib.axes._subplots.AxesSubplot object at 0x7f20d4e20780>]],

→˓dtype=object)

1080 Chapter 22. Visualization

pandas: powerful Python data analysis toolkit, Release 0.23.4

22.4.2 Density Plot

You can create density plots using the Series.plot.kde() and DataFrame.plot.kde() methods.

In [83]: ser = pd.Series(np.random.randn(1000))

In [84]: ser.plot.kde()
Out[84]: <matplotlib.axes._subplots.AxesSubplot at 0x7f20d5961a20>

22.4. Plotting Tools 1081

pandas: powerful Python data analysis toolkit, Release 0.23.4

22.4.3 Andrews Curves

Andrews curves allow one to plot multivariate data as a large number of curves that are created using the attributes
of samples as coefficients for Fourier series, see the Wikipedia entry for more information. By coloring these curves
differently for each class it is possible to visualize data clustering. Curves belonging to samples of the same class will
usually be closer together and form larger structures.

Note: The “Iris” dataset is available here.

In [85]: from pandas.plotting import andrews_curves

In [86]: data = pd.read_csv('data/iris.data')

In [87]: plt.figure()
Out[87]: <Figure size 640x480 with 0 Axes>

In [88]: andrews_curves(data, 'Name')
\\\Out[88]: <matplotlib.axes._subplots.
→˓AxesSubplot at 0x7f20d4021e48>

1082 Chapter 22. Visualization

https://en.wikipedia.org/wiki/Andrews_plot
https://raw.github.com/pandas-dev/pandas/master/pandas/tests/data/iris.csv

pandas: powerful Python data analysis toolkit, Release 0.23.4

22.4.4 Parallel Coordinates

Parallel coordinates is a plotting technique for plotting multivariate data, see the Wikipedia entry for an introduction.
Parallel coordinates allows one to see clusters in data and to estimate other statistics visually. Using parallel coordinates
points are represented as connected line segments. Each vertical line represents one attribute. One set of connected
line segments represents one data point. Points that tend to cluster will appear closer together.

In [89]: from pandas.plotting import parallel_coordinates

In [90]: data = pd.read_csv('data/iris.data')

In [91]: plt.figure()
Out[91]: <Figure size 640x480 with 0 Axes>

In [92]: parallel_coordinates(data, 'Name')
\\\Out[92]: <matplotlib.axes._subplots.
→˓AxesSubplot at 0x7f20d85102e8>

22.4. Plotting Tools 1083

https://en.wikipedia.org/wiki/Parallel_coordinates

pandas: powerful Python data analysis toolkit, Release 0.23.4

22.4.5 Lag Plot

Lag plots are used to check if a data set or time series is random. Random data should not exhibit any structure in the
lag plot. Non-random structure implies that the underlying data are not random. The lag argument may be passed,
and when lag=1 the plot is essentially data[:-1] vs. data[1:].

In [93]: from pandas.plotting import lag_plot

In [94]: plt.figure()
Out[94]: <Figure size 640x480 with 0 Axes>

In [95]: data = pd.Series(0.1 * np.random.rand(1000) +
....: 0.9 * np.sin(np.linspace(-99 * np.pi, 99 * np.pi, num=1000)))
....:

In [96]: lag_plot(data)
Out[96]: <matplotlib.axes._subplots.AxesSubplot at 0x7f20f78a5278>

1084 Chapter 22. Visualization

pandas: powerful Python data analysis toolkit, Release 0.23.4

22.4.6 Autocorrelation Plot

Autocorrelation plots are often used for checking randomness in time series. This is done by computing autocorrela-
tions for data values at varying time lags. If time series is random, such autocorrelations should be near zero for any
and all time-lag separations. If time series is non-random then one or more of the autocorrelations will be significantly
non-zero. The horizontal lines displayed in the plot correspond to 95% and 99% confidence bands. The dashed line is
99% confidence band. See the Wikipedia entry for more about autocorrelation plots.

In [97]: from pandas.plotting import autocorrelation_plot

In [98]: plt.figure()
Out[98]: <Figure size 640x480 with 0 Axes>

In [99]: data = pd.Series(0.7 * np.random.rand(1000) +
....: 0.3 * np.sin(np.linspace(-9 * np.pi, 9 * np.pi, num=1000)))
....:

In [100]: autocorrelation_plot(data)
Out[100]: <matplotlib.axes._subplots.AxesSubplot at 0x7f21345fc080>

22.4. Plotting Tools 1085

https://en.wikipedia.org/wiki/Correlogram

pandas: powerful Python data analysis toolkit, Release 0.23.4

22.4.7 Bootstrap Plot

Bootstrap plots are used to visually assess the uncertainty of a statistic, such as mean, median, midrange, etc. A
random subset of a specified size is selected from a data set, the statistic in question is computed for this subset and
the process is repeated a specified number of times. Resulting plots and histograms are what constitutes the bootstrap
plot.

In [101]: from pandas.plotting import bootstrap_plot

In [102]: data = pd.Series(np.random.rand(1000))

In [103]: bootstrap_plot(data, size=50, samples=500, color='grey')
Out[103]: <Figure size 640x480 with 6 Axes>

1086 Chapter 22. Visualization

pandas: powerful Python data analysis toolkit, Release 0.23.4

22.4.8 RadViz

RadViz is a way of visualizing multi-variate data. It is based on a simple spring tension minimization algorithm.
Basically you set up a bunch of points in a plane. In our case they are equally spaced on a unit circle. Each point
represents a single attribute. You then pretend that each sample in the data set is attached to each of these points
by a spring, the stiffness of which is proportional to the numerical value of that attribute (they are normalized to
unit interval). The point in the plane, where our sample settles to (where the forces acting on our sample are at an
equilibrium) is where a dot representing our sample will be drawn. Depending on which class that sample belongs it
will be colored differently. See the R package Radviz for more information.

Note: The “Iris” dataset is available here.

In [104]: from pandas.plotting import radviz

In [105]: data = pd.read_csv('data/iris.data')

In [106]: plt.figure()
Out[106]: <Figure size 640x480 with 0 Axes>

In [107]: radviz(data, 'Name')
\\Out[107]: <matplotlib.axes._subplots.
→˓AxesSubplot at 0x7f20cfd56080>

22.4. Plotting Tools 1087

https://cran.r-project.org/web/packages/Radviz/
https://raw.github.com/pandas-dev/pandas/master/pandas/tests/data/iris.csv

pandas: powerful Python data analysis toolkit, Release 0.23.4

22.5 Plot Formatting

22.5.1 Setting the plot style

From version 1.5 and up, matplotlib offers a range of preconfigured plotting styles. Setting the style can be
used to easily give plots the general look that you want. Setting the style is as easy as calling matplotlib.
style.use(my_plot_style) before creating your plot. For example you could write matplotlib.style.
use('ggplot') for ggplot-style plots.

You can see the various available style names at matplotlib.style.available and it’s very easy to try them
out.

22.5.2 General plot style arguments

Most plotting methods have a set of keyword arguments that control the layout and formatting of the returned plot:

In [108]: plt.figure(); ts.plot(style='k--', label='Series');

1088 Chapter 22. Visualization

pandas: powerful Python data analysis toolkit, Release 0.23.4

For each kind of plot (e.g. line, bar, scatter) any additional arguments keywords are passed along to the corresponding
matplotlib function (ax.plot(), ax.bar(), ax.scatter()). These can be used to control additional styling,
beyond what pandas provides.

22.5.3 Controlling the Legend

You may set the legend argument to False to hide the legend, which is shown by default.

In [109]: df = pd.DataFrame(np.random.randn(1000, 4), index=ts.index, columns=list(
→˓'ABCD'))

In [110]: df = df.cumsum()

In [111]: df.plot(legend=False)
Out[111]: <matplotlib.axes._subplots.AxesSubplot at 0x7f20cf7f5c88>

22.5. Plot Formatting 1089

https://matplotlib.org/api/_as_gen/matplotlib.axes.Axes.plot.html#matplotlib.axes.Axes.plot
https://matplotlib.org/api/_as_gen/matplotlib.axes.Axes.bar.html#matplotlib.axes.Axes.bar
https://matplotlib.org/api/_as_gen/matplotlib.axes.Axes.scatter.html#matplotlib.axes.Axes.scatter

pandas: powerful Python data analysis toolkit, Release 0.23.4

22.5.4 Scales

You may pass logy to get a log-scale Y axis.

In [112]: ts = pd.Series(np.random.randn(1000), index=pd.date_range('1/1/2000',
→˓periods=1000))

In [113]: ts = np.exp(ts.cumsum())

In [114]: ts.plot(logy=True)
Out[114]: <matplotlib.axes._subplots.AxesSubplot at 0x7f20d4b82438>

1090 Chapter 22. Visualization

pandas: powerful Python data analysis toolkit, Release 0.23.4

See also the logx and loglog keyword arguments.

22.5.5 Plotting on a Secondary Y-axis

To plot data on a secondary y-axis, use the secondary_y keyword:

In [115]: df.A.plot()
Out[115]: <matplotlib.axes._subplots.AxesSubplot at 0x7f20d48e9c50>

In [116]: df.B.plot(secondary_y=True, style='g')
\\Out[116]:
→˓<matplotlib.axes._subplots.AxesSubplot at 0x7f20cfe89ba8>

22.5. Plot Formatting 1091

pandas: powerful Python data analysis toolkit, Release 0.23.4

To plot some columns in a DataFrame, give the column names to the secondary_y keyword:

In [117]: plt.figure()
Out[117]: <Figure size 640x480 with 0 Axes>

In [118]: ax = df.plot(secondary_y=['A', 'B'])

In [119]: ax.set_ylabel('CD scale')
Out[119]: Text(0,0.5,'CD scale')

In [120]: ax.right_ax.set_ylabel('AB scale')
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\Out[120]: Text(0,0.5,'AB scale')

1092 Chapter 22. Visualization

pandas: powerful Python data analysis toolkit, Release 0.23.4

Note that the columns plotted on the secondary y-axis is automatically marked with “(right)” in the legend. To turn off
the automatic marking, use the mark_right=False keyword:

In [121]: plt.figure()
Out[121]: <Figure size 640x480 with 0 Axes>

In [122]: df.plot(secondary_y=['A', 'B'], mark_right=False)
\\Out[122]: <matplotlib.axes._subplots.
→˓AxesSubplot at 0x7f20c0b82ba8>

22.5. Plot Formatting 1093

pandas: powerful Python data analysis toolkit, Release 0.23.4

22.5.6 Suppressing Tick Resolution Adjustment

pandas includes automatic tick resolution adjustment for regular frequency time-series data. For limited cases where
pandas cannot infer the frequency information (e.g., in an externally created twinx), you can choose to suppress this
behavior for alignment purposes.

Here is the default behavior, notice how the x-axis tick labeling is performed:

In [123]: plt.figure()
Out[123]: <Figure size 640x480 with 0 Axes>

In [124]: df.A.plot()
\\Out[124]: <matplotlib.axes._subplots.
→˓AxesSubplot at 0x7f20c09d86d8>

1094 Chapter 22. Visualization

pandas: powerful Python data analysis toolkit, Release 0.23.4

Using the x_compat parameter, you can suppress this behavior:

In [125]: plt.figure()
Out[125]: <Figure size 640x480 with 0 Axes>

In [126]: df.A.plot(x_compat=True)
\\Out[126]: <matplotlib.axes._subplots.
→˓AxesSubplot at 0x7f20c0909e48>

22.5. Plot Formatting 1095

pandas: powerful Python data analysis toolkit, Release 0.23.4

If you have more than one plot that needs to be suppressed, the use method in pandas.plotting.
plot_params can be used in a with statement:

In [127]: plt.figure()
Out[127]: <Figure size 640x480 with 0 Axes>

In [128]: with pd.plotting.plot_params.use('x_compat', True):
.....: df.A.plot(color='r')
.....: df.B.plot(color='g')
.....: df.C.plot(color='b')
.....:

1096 Chapter 22. Visualization

pandas: powerful Python data analysis toolkit, Release 0.23.4

22.5.7 Automatic Date Tick Adjustment

New in version 0.20.0.

TimedeltaIndex now uses the native matplotlib tick locator methods, it is useful to call the automatic date tick
adjustment from matplotlib for figures whose ticklabels overlap.

See the autofmt_xdate method and the matplotlib documentation for more.

22.5.8 Subplots

Each Series in a DataFrame can be plotted on a different axis with the subplots keyword:

In [129]: df.plot(subplots=True, figsize=(6, 6));

22.5. Plot Formatting 1097

http://matplotlib.org/users/recipes.html#fixing-common-date-annoyances

pandas: powerful Python data analysis toolkit, Release 0.23.4

22.5.9 Using Layout and Targeting Multiple Axes

The layout of subplots can be specified by the layout keyword. It can accept (rows, columns). The layout
keyword can be used in hist and boxplot also. If the input is invalid, a ValueError will be raised.

The number of axes which can be contained by rows x columns specified by layout must be larger than the number
of required subplots. If layout can contain more axes than required, blank axes are not drawn. Similar to a NumPy
array’s reshapemethod, you can use -1 for one dimension to automatically calculate the number of rows or columns
needed, given the other.

In [130]: df.plot(subplots=True, layout=(2, 3), figsize=(6, 6), sharex=False);

1098 Chapter 22. Visualization

pandas: powerful Python data analysis toolkit, Release 0.23.4

The above example is identical to using:

In [131]: df.plot(subplots=True, layout=(2, -1), figsize=(6, 6), sharex=False);

The required number of columns (3) is inferred from the number of series to plot and the given number of rows (2).

You can pass multiple axes created beforehand as list-like via ax keyword. This allows more complicated layouts.
The passed axes must be the same number as the subplots being drawn.

When multiple axes are passed via the ax keyword, layout, sharex and sharey keywords don’t affect to the
output. You should explicitly pass sharex=False and sharey=False, otherwise you will see a warning.

In [132]: fig, axes = plt.subplots(4, 4, figsize=(6, 6));

In [133]: plt.subplots_adjust(wspace=0.5, hspace=0.5);

In [134]: target1 = [axes[0][0], axes[1][1], axes[2][2], axes[3][3]]

(continues on next page)

22.5. Plot Formatting 1099

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

In [135]: target2 = [axes[3][0], axes[2][1], axes[1][2], axes[0][3]]

In [136]: df.plot(subplots=True, ax=target1, legend=False, sharex=False,
→˓sharey=False);

In [137]: (-df).plot(subplots=True, ax=target2, legend=False, sharex=False,
→˓sharey=False);

Another option is passing an ax argument to Series.plot() to plot on a particular axis:

In [138]: fig, axes = plt.subplots(nrows=2, ncols=2)

In [139]: df['A'].plot(ax=axes[0,0]); axes[0,0].set_title('A');

In [140]: df['B'].plot(ax=axes[0,1]); axes[0,1].set_title('B');

(continues on next page)

1100 Chapter 22. Visualization

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

In [141]: df['C'].plot(ax=axes[1,0]); axes[1,0].set_title('C');

In [142]: df['D'].plot(ax=axes[1,1]); axes[1,1].set_title('D');

22.5.10 Plotting With Error Bars

Plotting with error bars is supported in DataFrame.plot() and Series.plot().

Horizontal and vertical error bars can be supplied to the xerr and yerr keyword arguments to plot(). The error
values can be specified using a variety of formats:

• As a DataFrame or dict of errors with column names matching the columns attribute of the plotting
DataFrame or matching the name attribute of the Series.

• As a str indicating which of the columns of plotting DataFrame contain the error values.

• As raw values (list, tuple, or np.ndarray). Must be the same length as the plotting
DataFrame/Series.

Asymmetrical error bars are also supported, however raw error values must be provided in this case. For a M
length Series, a Mx2 array should be provided indicating lower and upper (or left and right) errors. For a MxN
DataFrame, asymmetrical errors should be in a Mx2xN array.

Here is an example of one way to easily plot group means with standard deviations from the raw data.

22.5. Plot Formatting 1101

pandas: powerful Python data analysis toolkit, Release 0.23.4

Generate the data
In [143]: ix3 = pd.MultiIndex.from_arrays([['a', 'a', 'a', 'a', 'b', 'b', 'b', 'b'], [
→˓'foo', 'foo', 'bar', 'bar', 'foo', 'foo', 'bar', 'bar']], names=['letter', 'word'])

In [144]: df3 = pd.DataFrame({'data1': [3, 2, 4, 3, 2, 4, 3, 2], 'data2': [6, 5, 7, 5,
→˓ 4, 5, 6, 5]}, index=ix3)

Group by index labels and take the means and standard deviations for each group
In [145]: gp3 = df3.groupby(level=('letter', 'word'))

In [146]: means = gp3.mean()

In [147]: errors = gp3.std()

In [148]: means
Out[148]:

data1 data2
letter word
a bar 3.5 6.0

foo 2.5 5.5
b bar 2.5 5.5

foo 3.0 4.5

In [149]: errors
\\\Out[149]:
→˓

data1 data2
letter word
a bar 0.707107 1.414214

foo 0.707107 0.707107
b bar 0.707107 0.707107

foo 1.414214 0.707107

Plot
In [150]: fig, ax = plt.subplots()

In [151]: means.plot.bar(yerr=errors, ax=ax)
Out[151]: <matplotlib.axes._subplots.AxesSubplot at 0x7f20bb5f5860>

1102 Chapter 22. Visualization

pandas: powerful Python data analysis toolkit, Release 0.23.4

22.5.11 Plotting Tables

Plotting with matplotlib table is now supported in DataFrame.plot() and Series.plot() with a table
keyword. The table keyword can accept bool, DataFrame or Series. The simple way to draw a table is to
specify table=True. Data will be transposed to meet matplotlib’s default layout.

In [152]: fig, ax = plt.subplots(1, 1)

In [153]: df = pd.DataFrame(np.random.rand(5, 3), columns=['a', 'b', 'c'])

In [154]: ax.get_xaxis().set_visible(False) # Hide Ticks

In [155]: df.plot(table=True, ax=ax)
Out[155]: <matplotlib.axes._subplots.AxesSubplot at 0x7f20bb5d6048>

22.5. Plot Formatting 1103

pandas: powerful Python data analysis toolkit, Release 0.23.4

Also, you can pass a different DataFrame or Series to the table keyword. The data will be drawn as displayed
in print method (not transposed automatically). If required, it should be transposed manually as seen in the example
below.

In [156]: fig, ax = plt.subplots(1, 1)

In [157]: ax.get_xaxis().set_visible(False) # Hide Ticks

In [158]: df.plot(table=np.round(df.T, 2), ax=ax)
Out[158]: <matplotlib.axes._subplots.AxesSubplot at 0x7f20c031c128>

1104 Chapter 22. Visualization

pandas: powerful Python data analysis toolkit, Release 0.23.4

There also exists a helper function pandas.plotting.table, which creates a table from DataFrame or
Series, and adds it to an matplotlib.Axes instance. This function can accept keywords which the matplotlib
table has.

In [159]: from pandas.plotting import table

In [160]: fig, ax = plt.subplots(1, 1)

In [161]: table(ax, np.round(df.describe(), 2),
.....: loc='upper right', colWidths=[0.2, 0.2, 0.2])
.....:

Out[161]: <matplotlib.table.Table at 0x7f20c08f9f60>

In [162]: df.plot(ax=ax, ylim=(0, 2), legend=None)
\\\Out[162]: <matplotlib.axes._
→˓subplots.AxesSubplot at 0x7f20c0595a58>

22.5. Plot Formatting 1105

http://matplotlib.org/api/axes_api.html#matplotlib.axes.Axes.table

pandas: powerful Python data analysis toolkit, Release 0.23.4

Note: You can get table instances on the axes using axes.tables property for further decorations. See the mat-
plotlib table documentation for more.

22.5.12 Colormaps

A potential issue when plotting a large number of columns is that it can be difficult to distinguish some series due to
repetition in the default colors. To remedy this, DataFrame plotting supports the use of the colormap argument,
which accepts either a Matplotlib colormap or a string that is a name of a colormap registered with Matplotlib. A
visualization of the default matplotlib colormaps is available here.

As matplotlib does not directly support colormaps for line-based plots, the colors are selected based on an even spacing
determined by the number of columns in the DataFrame. There is no consideration made for background color, so
some colormaps will produce lines that are not easily visible.

To use the cubehelix colormap, we can pass colormap='cubehelix'.

In [163]: df = pd.DataFrame(np.random.randn(1000, 10), index=ts.index)

In [164]: df = df.cumsum()

In [165]: plt.figure()
Out[165]: <Figure size 640x480 with 0 Axes>

In [166]: df.plot(colormap='cubehelix')
\\Out[166]: <matplotlib.axes._subplots.
→˓AxesSubplot at 0x7f20d573bd30> (continues on next page)

1106 Chapter 22. Visualization

http://matplotlib.org/api/axes_api.html#matplotlib.axes.Axes.table
http://matplotlib.org/api/axes_api.html#matplotlib.axes.Axes.table
http://matplotlib.org/api/cm_api.html
https://matplotlib.org/examples/color/colormaps_reference.html

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

Alternatively, we can pass the colormap itself:

In [167]: from matplotlib import cm

In [168]: plt.figure()
Out[168]: <Figure size 640x480 with 0 Axes>

In [169]: df.plot(colormap=cm.cubehelix)
\\Out[169]: <matplotlib.axes._subplots.
→˓AxesSubplot at 0x7f20c029e3c8>

22.5. Plot Formatting 1107

pandas: powerful Python data analysis toolkit, Release 0.23.4

Colormaps can also be used other plot types, like bar charts:

In [170]: dd = pd.DataFrame(np.random.randn(10, 10)).applymap(abs)

In [171]: dd = dd.cumsum()

In [172]: plt.figure()
Out[172]: <Figure size 640x480 with 0 Axes>

In [173]: dd.plot.bar(colormap='Greens')
\\Out[173]: <matplotlib.axes._subplots.
→˓AxesSubplot at 0x7f20c02d2e10>

1108 Chapter 22. Visualization

pandas: powerful Python data analysis toolkit, Release 0.23.4

Parallel coordinates charts:

In [174]: plt.figure()
Out[174]: <Figure size 640x480 with 0 Axes>

In [175]: parallel_coordinates(data, 'Name', colormap='gist_rainbow')
\\Out[175]: <matplotlib.axes._subplots.
→˓AxesSubplot at 0x7f20c035a518>

22.5. Plot Formatting 1109

pandas: powerful Python data analysis toolkit, Release 0.23.4

Andrews curves charts:

In [176]: plt.figure()
Out[176]: <Figure size 640x480 with 0 Axes>

In [177]: andrews_curves(data, 'Name', colormap='winter')
\\Out[177]: <matplotlib.axes._subplots.
→˓AxesSubplot at 0x7f20c074d358>

1110 Chapter 22. Visualization

pandas: powerful Python data analysis toolkit, Release 0.23.4

22.6 Plotting directly with matplotlib

In some situations it may still be preferable or necessary to prepare plots directly with matplotlib, for instance when a
certain type of plot or customization is not (yet) supported by pandas. Series and DataFrame objects behave like
arrays and can therefore be passed directly to matplotlib functions without explicit casts.

pandas also automatically registers formatters and locators that recognize date indices, thereby extending date and
time support to practically all plot types available in matplotlib. Although this formatting does not provide the same
level of refinement you would get when plotting via pandas, it can be faster when plotting a large number of points.

In [178]: price = pd.Series(np.random.randn(150).cumsum(),
.....: index=pd.date_range('2000-1-1', periods=150, freq='B'))
.....:

In [179]: ma = price.rolling(20).mean()

In [180]: mstd = price.rolling(20).std()

In [181]: plt.figure()
Out[181]: <Figure size 640x480 with 0 Axes>

In [182]: plt.plot(price.index, price, 'k')
\\Out[182]: [<matplotlib.lines.Line2D at
→˓0x7f20c04949e8>]

(continues on next page)

22.6. Plotting directly with matplotlib 1111

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

In [183]: plt.plot(ma.index, ma, 'b')
\\Out[183]:
→˓[<matplotlib.lines.Line2D at 0x7f20c04ba208>]

In [184]: plt.fill_between(mstd.index, ma-2*mstd, ma+2*mstd, color='b', alpha=0.2)
\\Out[184]:
→˓<matplotlib.collections.PolyCollection at 0x7f20c04bad30>

22.7 Trellis plotting interface

Warning: The rplot trellis plotting interface has been removed. Please use external packages like seaborn for
similar but more refined functionality and refer to our 0.18.1 documentation here for how to convert to using it.

1112 Chapter 22. Visualization

https://github.com/mwaskom/seaborn
http://pandas.pydata.org/pandas-docs/version/0.18.1/visualization.html

CHAPTER

TWENTYTHREE

STYLING

New in version 0.17.1

Provisional: This is a new feature and still under development. We’ll be adding features and possibly making breaking
changes in future releases. We’d love to hear your feedback.

This document is written as a Jupyter Notebook, and can be viewed or downloaded here.

You can apply conditional formatting, the visual styling of a DataFrame depending on the data within, by using
the DataFrame.style property. This is a property that returns a Styler object, which has useful methods for
formatting and displaying DataFrames.

The styling is accomplished using CSS. You write “style functions” that take scalars, DataFrames or Series, and
return like-indexed DataFrames or Series with CSS "attribute: value" pairs for the values. These functions
can be incrementally passed to the Styler which collects the styles before rendering.

23.1 Building Styles

Pass your style functions into one of the following methods:

• Styler.applymap: elementwise

• Styler.apply: column-/row-/table-wise

Both of those methods take a function (and some other keyword arguments) and applies your function to the DataFrame
in a certain way. Styler.applymap works through the DataFrame elementwise. Styler.apply passes each
column or row into your DataFrame one-at-a-time or the entire table at once, depending on the axis keyword argu-
ment. For columnwise use axis=0, rowwise use axis=1, and for the entire table at once use axis=None.

For Styler.applymap your function should take a scalar and return a single string with the CSS attribute-value
pair.

For Styler.apply your function should take a Series or DataFrame (depending on the axis parameter), and return
a Series or DataFrame with an identical shape where each value is a string with a CSS attribute-value pair.

Let’s see some examples.

In [2]: import pandas as pd
import numpy as np

np.random.seed(24)
df = pd.DataFrame({'A': np.linspace(1, 10, 10)})
df = pd.concat([df, pd.DataFrame(np.random.randn(10, 4), columns=list('BCDE'))],

axis=1)
df.iloc[0, 2] = np.nan

Here’s a boring example of rendering a DataFrame, without any (visible) styles:

1113

http://nbviewer.ipython.org/github/pandas-dev/pandas/blob/master/doc/source/style.ipynb

pandas: powerful Python data analysis toolkit, Release 0.23.4

In [3]: df.style

Out[3]: <pandas.io.formats.style.Styler at 0x7f05cb19e240>

Note: The DataFrame.style attribute is a property that returns a Styler object. Styler has a _repr_html_
method defined on it so they are rendered automatically. If you want the actual HTML back for further processing or
for writing to file call the .render() method which returns a string.

The above output looks very similar to the standard DataFrame HTML representation. But we’ve done some work
behind the scenes to attach CSS classes to each cell. We can view these by calling the .render method.

In [4]: df.style.highlight_null().render().split('\n')[:10]

Out[4]: ['<style type="text/css" >',
' #T_4c0fa58e_98a7_11e8_9d82_ff3af6a67056row0_col2 {',
' background-color: red;',
' }</style> ',
'<table id="T_4c0fa58e_98a7_11e8_9d82_ff3af6a67056" > ',
'<thead> <tr> ',
' <th class="blank level0" ></th> ',
' <th class="col_heading level0 col0" >A</th> ',
' <th class="col_heading level0 col1" >B</th> ',
' <th class="col_heading level0 col2" >C</th> ']

The row0_col2 is the identifier for that particular cell. We’ve also prepended each row/column identifier with a
UUID unique to each DataFrame so that the style from one doesn’t collide with the styling from another within the
same notebook or page (you can set the uuid if you’d like to tie together the styling of two DataFrames).

When writing style functions, you take care of producing the CSS attribute / value pairs you want. Pandas matches
those up with the CSS classes that identify each cell.

Let’s write a simple style function that will color negative numbers red and positive numbers black.

In [5]: def color_negative_red(val):
"""
Takes a scalar and returns a string with
the css property `'color: red'` for negative
strings, black otherwise.
"""
color = 'red' if val < 0 else 'black'
return 'color: %s' % color

In this case, the cell’s style depends only on it’s own value. That means we should use the Styler.applymap
method which works elementwise.

In [6]: s = df.style.applymap(color_negative_red)
s

Out[6]: <pandas.io.formats.style.Styler at 0x7f05c3697cc0>

Notice the similarity with the standard df.applymap, which operates on DataFrames elementwise. We want you to
be able to reuse your existing knowledge of how to interact with DataFrames.

Notice also that our function returned a string containing the CSS attribute and value, separated by a colon just like in
a <style> tag. This will be a common theme.

Finally, the input shapes matched. Styler.applymap calls the function on each scalar input, and the function
returns a scalar output.

Now suppose you wanted to highlight the maximum value in each column. We can’t use .applymap anymore since
that operated elementwise. Instead, we’ll turn to .apply which operates columnwise (or rowwise using the axis
keyword). Later on we’ll see that something like highlight_max is already defined on Styler so you wouldn’t
need to write this yourself.

1114 Chapter 23. Styling

pandas: powerful Python data analysis toolkit, Release 0.23.4

In [7]: def highlight_max(s):
'''
highlight the maximum in a Series yellow.
'''
is_max = s == s.max()
return ['background-color: yellow' if v else '' for v in is_max]

In [8]: df.style.apply(highlight_max)

Out[8]: <pandas.io.formats.style.Styler at 0x7f05c36c56d8>

In this case the input is a Series, one column at a time. Notice that the output shape of highlight_max matches
the input shape, an array with len(s) items.

We encourage you to use method chains to build up a style piecewise, before finally rending at the end of the chain.

In [9]: df.style.\
applymap(color_negative_red).\
apply(highlight_max)

Out[9]: <pandas.io.formats.style.Styler at 0x7f05c36c5320>

Above we used Styler.apply to pass in each column one at a time.

Debugging Tip: If you’re having trouble writing your style function, try just passing it into DataFrame.apply. Inter-
nally, Styler.apply uses DataFrame.apply so the result should be the same.

What if you wanted to highlight just the maximum value in the entire table? Use .apply(function,
axis=None) to indicate that your function wants the entire table, not one column or row at a time. Let’s try that
next.

We’ll rewrite our highlight-max to handle either Series (from .apply(axis=0 or 1)) or DataFrames (from
.apply(axis=None)). We’ll also allow the color to be adjustable, to demonstrate that .apply, and .applymap
pass along keyword arguments.

In [10]: def highlight_max(data, color='yellow'):
'''
highlight the maximum in a Series or DataFrame
'''
attr = 'background-color: {}'.format(color)
if data.ndim == 1: # Series from .apply(axis=0) or axis=1

is_max = data == data.max()
return [attr if v else '' for v in is_max]

else: # from .apply(axis=None)
is_max = data == data.max().max()
return pd.DataFrame(np.where(is_max, attr, ''),

index=data.index, columns=data.columns)

When using Styler.apply(func, axis=None), the function must return a DataFrame with the same index
and column labels.

In [11]: df.style.apply(highlight_max, color='darkorange', axis=None)

Out[11]: <pandas.io.formats.style.Styler at 0x7f05c3680eb8>

23.1.1 Building Styles Summary

Style functions should return strings with one or more CSS attribute: value delimited by semicolons. Use

• Styler.applymap(func) for elementwise styles

• Styler.apply(func, axis=0) for columnwise styles

• Styler.apply(func, axis=1) for rowwise styles

23.1. Building Styles 1115

pandas: powerful Python data analysis toolkit, Release 0.23.4

• Styler.apply(func, axis=None) for tablewise styles

And crucially the input and output shapes of func must match. If x is the input then func(x).shape == x.
shape.

23.2 Finer Control: Slicing

Both Styler.apply, and Styler.applymap accept a subset keyword. This allows you to apply styles to
specific rows or columns, without having to code that logic into your style function.

The value passed to subset behaves similar to slicing a DataFrame.

• A scalar is treated as a column label

• A list (or series or numpy array)

• A tuple is treated as (row_indexer, column_indexer)

Consider using pd.IndexSlice to construct the tuple for the last one.

In [12]: df.style.apply(highlight_max, subset=['B', 'C', 'D'])

Out[12]: <pandas.io.formats.style.Styler at 0x7f05c3680fd0>

For row and column slicing, any valid indexer to .loc will work.

In [13]: df.style.applymap(color_negative_red,
subset=pd.IndexSlice[2:5, ['B', 'D']])

Out[13]: <pandas.io.formats.style.Styler at 0x7f05c3680c50>

Only label-based slicing is supported right now, not positional.

If your style function uses a subset or axis keyword argument, consider wrapping your function in a
functools.partial, partialing out that keyword.

my_func2 = functools.partial(my_func, subset=42)

23.3 Finer Control: Display Values

We distinguish the display value from the actual value in Styler. To control the display value, the text is printed in
each cell, use Styler.format. Cells can be formatted according to a format spec string or a callable that takes a
single value and returns a string.

In [14]: df.style.format("{:.2%}")

Out[14]: <pandas.io.formats.style.Styler at 0x7f05cb19e0b8>

Use a dictionary to format specific columns.

In [15]: df.style.format({'B': "{:0<4.0f}", 'D': '{:+.2f}'})

Out[15]: <pandas.io.formats.style.Styler at 0x7f05c3680da0>

Or pass in a callable (or dictionary of callables) for more flexible handling.

In [16]: df.style.format({"B": lambda x: "±{:.2f}".format(abs(x))})

Out[16]: <pandas.io.formats.style.Styler at 0x7f05c36c5710>

1116 Chapter 23. Styling

https://docs.python.org/3/library/string.html#format-specification-mini-language

pandas: powerful Python data analysis toolkit, Release 0.23.4

23.4 Builtin Styles

Finally, we expect certain styling functions to be common enough that we’ve included a few “built-in” to the Styler,
so you don’t have to write them yourself.

In [17]: df.style.highlight_null(null_color='red')

Out[17]: <pandas.io.formats.style.Styler at 0x7f05c36c5550>

You can create “heatmaps” with the background_gradient method. These require matplotlib, and we’ll use
Seaborn to get a nice colormap.

In [18]: import seaborn as sns

cm = sns.light_palette("green", as_cmap=True)

s = df.style.background_gradient(cmap=cm)
s

/opt/conda/envs/pandas/lib/python3.6/site-packages/matplotlib/colors.py:504: RuntimeWarning: invalid value encountered in less
xa[xa < 0] = -1

Out[18]: <pandas.io.formats.style.Styler at 0x7f05c3653160>

Styler.background_gradient takes the keyword arguments low and high. Roughly speaking these extend
the range of your data by low and high percent so that when we convert the colors, the colormap’s entire range isn’t
used. This is useful so that you can actually read the text still.

In [19]: # Uses the full color range
df.loc[:4].style.background_gradient(cmap='viridis')

/opt/conda/envs/pandas/lib/python3.6/site-packages/matplotlib/colors.py:504: RuntimeWarning: invalid value encountered in less
xa[xa < 0] = -1

Out[19]: <pandas.io.formats.style.Styler at 0x7f05c36c5390>

In [20]: # Compress the color range
(df.loc[:4]

.style

.background_gradient(cmap='viridis', low=.5, high=0)

.highlight_null('red'))

/opt/conda/envs/pandas/lib/python3.6/site-packages/matplotlib/colors.py:504: RuntimeWarning: invalid value encountered in less
xa[xa < 0] = -1

Out[20]: <pandas.io.formats.style.Styler at 0x7f05ba1fd320>

There’s also .highlight_min and .highlight_max.

In [21]: df.style.highlight_max(axis=0)

Out[21]: <pandas.io.formats.style.Styler at 0x7f05c36c5a90>

Use Styler.set_properties when the style doesn’t actually depend on the values.

In [22]: df.style.set_properties(**{'background-color': 'black',
'color': 'lawngreen',
'border-color': 'white'})

Out[22]: <pandas.io.formats.style.Styler at 0x7f05ba1fdd68>

23.4.1 Bar charts

You can include “bar charts” in your DataFrame.

23.4. Builtin Styles 1117

http://stanford.edu/~mwaskom/software/seaborn/

pandas: powerful Python data analysis toolkit, Release 0.23.4

In [23]: df.style.bar(subset=['A', 'B'], color='#d65f5f')

Out[23]: <pandas.io.formats.style.Styler at 0x7f05ba1d0048>

New in version 0.20.0 is the ability to customize further the bar chart: You can now have the df.style.bar be
centered on zero or midpoint value (in addition to the already existing way of having the min value at the left side of
the cell), and you can pass a list of [color_negative, color_positive].

Here’s how you can change the above with the new align='mid' option:

In [24]: df.style.bar(subset=['A', 'B'], align='mid', color=['#d65f5f', '#5fba7d'])

Out[24]: <pandas.io.formats.style.Styler at 0x7f05b9f57748>

The following example aims to give a highlight of the behavior of the new align options:

In [25]: import pandas as pd
from IPython.display import HTML

Test series
test1 = pd.Series([-100,-60,-30,-20], name='All Negative')
test2 = pd.Series([10,20,50,100], name='All Positive')
test3 = pd.Series([-10,-5,0,90], name='Both Pos and Neg')

head = """
<table>

<thead>
<th>Align</th>
<th>All Negative</th>
<th>All Positive</th>
<th>Both Neg and Pos</th>

</thead>
</tbody>

"""

aligns = ['left','zero','mid']
for align in aligns:

row = "<tr><th>{}</th>".format(align)
for serie in [test1,test2,test3]:

s = serie.copy()
s.name=''
row += "<td>{}</td>".format(s.to_frame().style.bar(align=align,

color=['#d65f5f', '#5fba7d'],
width=100).render()) #testn['width']

row += '</tr>'
head += row

head+= """
</tbody>
</table>"""

HTML(head)

Out[25]: <IPython.core.display.HTML object>

1118 Chapter 23. Styling

pandas: powerful Python data analysis toolkit, Release 0.23.4

23.5 Sharing Styles

Say you have a lovely style built up for a DataFrame, and now you want to apply the same style to a second DataFrame.
Export the style with df1.style.export, and import it on the second DataFrame with df1.style.set

In [26]: df2 = -df
style1 = df.style.applymap(color_negative_red)
style1

Out[26]: <pandas.io.formats.style.Styler at 0x7f05affda0f0>

In [27]: style2 = df2.style
style2.use(style1.export())
style2

Out[27]: <pandas.io.formats.style.Styler at 0x7f05ba1d09b0>

Notice that you’re able share the styles even though they’re data aware. The styles are re-evaluated on the new
DataFrame they’ve been used upon.

23.6 Other Options

You’ve seen a few methods for data-driven styling. Styler also provides a few other options for styles that don’t
depend on the data.

• precision

• captions

• table-wide styles

• hiding the index or columns

Each of these can be specified in two ways:

• A keyword argument to Styler.__init__

• A call to one of the .set_ or .hide_ methods, e.g. .set_caption or .hide_columns

The best method to use depends on the context. Use the Styler constructor when building many styled DataFrames
that should all share the same properties. For interactive use, the.set_ and .hide_ methods are more convenient.

23.6.1 Precision

You can control the precision of floats using pandas’ regular display.precision option.

In [28]: with pd.option_context('display.precision', 2):
html = (df.style

.applymap(color_negative_red)

.apply(highlight_max))
html

Out[28]: <pandas.io.formats.style.Styler at 0x7f05affda940>

Or through a set_precision method.

In [29]: df.style\
.applymap(color_negative_red)\
.apply(highlight_max)\
.set_precision(2)

23.5. Sharing Styles 1119

pandas: powerful Python data analysis toolkit, Release 0.23.4

Out[29]: <pandas.io.formats.style.Styler at 0x7f05ba1d02b0>

Setting the precision only affects the printed number; the full-precision values are always passed to your style func-
tions. You can always use df.round(2).style if you’d prefer to round from the start.

23.6.2 Captions

Regular table captions can be added in a few ways.

In [30]: df.style.set_caption('Colormaps, with a caption.')\
.background_gradient(cmap=cm)

/opt/conda/envs/pandas/lib/python3.6/site-packages/matplotlib/colors.py:504: RuntimeWarning: invalid value encountered in less
xa[xa < 0] = -1

Out[30]: <pandas.io.formats.style.Styler at 0x7f05ba1d0908>

23.6.3 Table Styles

The next option you have are “table styles”. These are styles that apply to the table as a whole, but don’t look at the
data. Certain sytlings, including pseudo-selectors like :hover can only be used this way.

In [31]: from IPython.display import HTML

def hover(hover_color="#ffff99"):
return dict(selector="tr:hover",

props=[("background-color", "%s" % hover_color)])

styles = [
hover(),
dict(selector="th", props=[("font-size", "150%"),

("text-align", "center")]),
dict(selector="caption", props=[("caption-side", "bottom")])

]
html = (df.style.set_table_styles(styles)

.set_caption("Hover to highlight."))
html

Out[31]: <pandas.io.formats.style.Styler at 0x7f05affdae10>

table_styles should be a list of dictionaries. Each dictionary should have the selector and props keys.
The value for selector should be a valid CSS selector. Recall that all the styles are already attached to an id,
unique to each Styler. This selector is in addition to that id. The value for props should be a list of tuples of
('attribute', 'value').

table_styles are extremely flexible, but not as fun to type out by hand. We hope to collect some useful ones
either in pandas, or preferable in a new package that builds on top the tools here.

23.6.4 Hiding the Index or Columns

The index can be hidden from rendering by calling Styler.hide_index. Columns can be hidden from rendering
by calling Styler.hide_columns and passing in the name of a column, or a slice of columns.

In [32]: df.style.hide_index()

Out[32]: <pandas.io.formats.style.Styler at 0x7f05afff1c18>

In [33]: df.style.hide_columns(['C','D'])

1120 Chapter 23. Styling

pandas: powerful Python data analysis toolkit, Release 0.23.4

Out[33]: <pandas.io.formats.style.Styler at 0x7f05afff1278>

23.6.5 CSS Classes

Certain CSS classes are attached to cells.

• Index and Column names include index_name and level<k> where k is its level in a MultiIndex

• Index label cells include

– row_heading

– row<n> where n is the numeric position of the row

– level<k> where k is the level in a MultiIndex

• Column label cells include

– col_heading

– col<n> where n is the numeric position of the column

– level<k> where k is the level in a MultiIndex

• Blank cells include blank

• Data cells include data

23.6.6 Limitations

• DataFrame only (use Series.to_frame().style)

• The index and columns must be unique

• No large repr, and performance isn’t great; this is intended for summary DataFrames

• You can only style the values, not the index or columns

• You can only apply styles, you can’t insert new HTML entities

Some of these will be addressed in the future.

23.6.7 Terms

• Style function: a function that’s passed into Styler.apply or Styler.applymap and returns values like
'css attribute: value'

• Builtin style functions: style functions that are methods on Styler

• table style: a dictionary with the two keys selector and props. selector is the CSS selector that props
will apply to. props is a list of (attribute, value) tuples. A list of table styles passed into Styler.

23.7 Fun stuff

Here are a few interesting examples.

Styler interacts pretty well with widgets. If you’re viewing this online instead of running the notebook yourself,
you’re missing out on interactively adjusting the color palette.

23.7. Fun stuff 1121

pandas: powerful Python data analysis toolkit, Release 0.23.4

In [34]: from IPython.html import widgets
@widgets.interact
def f(h_neg=(0, 359, 1), h_pos=(0, 359), s=(0., 99.9), l=(0., 99.9)):

return df.style.background_gradient(
cmap=sns.palettes.diverging_palette(h_neg=h_neg, h_pos=h_pos, s=s, l=l,

as_cmap=True)
)

/opt/conda/envs/pandas/lib/python3.6/site-packages/matplotlib/colors.py:504: RuntimeWarning: invalid value encountered in less
xa[xa < 0] = -1

<pandas.io.formats.style.Styler at 0x7f05b9f61d30>

In [35]: def magnify():
return [dict(selector="th",

props=[("font-size", "4pt")]),
dict(selector="td",

props=[('padding', "0em 0em")]),
dict(selector="th:hover",

props=[("font-size", "12pt")]),
dict(selector="tr:hover td:hover",

props=[('max-width', '200px'),
('font-size', '12pt')])

]

In [36]: np.random.seed(25)
cmap = cmap=sns.diverging_palette(5, 250, as_cmap=True)
bigdf = pd.DataFrame(np.random.randn(20, 25)).cumsum()

bigdf.style.background_gradient(cmap, axis=1)\
.set_properties(**{'max-width': '80px', 'font-size': '1pt'})\
.set_caption("Hover to magnify")\
.set_precision(2)\
.set_table_styles(magnify())

Out[36]: <pandas.io.formats.style.Styler at 0x7f05affdaeb8>

23.8 Export to Excel

New in version 0.20.0

Experimental: This is a new feature and still under development. We’ll be adding features and possibly making
breaking changes in future releases. We’d love to hear your feedback.

Some support is available for exporting styled DataFrames to Excel worksheets using the OpenPyXL or
XlsxWriter engines. CSS2.2 properties handled include:

• background-color

• border-style, border-width, border-color and their {top, right, bottom, left variants}

• color

• font-family

• font-style

• font-weight

• text-align

• text-decoration

1122 Chapter 23. Styling

pandas: powerful Python data analysis toolkit, Release 0.23.4

• vertical-align

• white-space: nowrap

Only CSS2 named colors and hex colors of the form #rgb or #rrggbb are currently supported.

In [37]: df.style.\
applymap(color_negative_red).\
apply(highlight_max).\
to_excel('styled.xlsx', engine='openpyxl')

A screenshot of the output:

Fig. 1: Excel spreadsheet with styled DataFrame

23.9 Extensibility

The core of pandas is, and will remain, its “high-performance, easy-to-use data structures”. With that in mind, we
hope that DataFrame.style accomplishes two goals

• Provide an API that is pleasing to use interactively and is “good enough” for many tasks

• Provide the foundations for dedicated libraries to build on

If you build a great library on top of this, let us know and we’ll link to it.

23.9.1 Subclassing

If the default template doesn’t quite suit your needs, you can subclass Styler and extend or override the template. We’ll
show an example of extending the default template to insert a custom header before each table.

In [38]: from jinja2 import Environment, ChoiceLoader, FileSystemLoader
from IPython.display import HTML
from pandas.io.formats.style import Styler

23.9. Extensibility 1123

http://pandas.pydata.org/pandas-docs/stable/ecosystem.html

pandas: powerful Python data analysis toolkit, Release 0.23.4

In [39]: %mkdir templates

mkdir: cannot create directory ‘templates’: File exists

This next cell writes the custom template. We extend the template html.tpl, which comes with pandas.

In [40]: %%file templates/myhtml.tpl
{% extends "html.tpl" %}
{% block table %}
<h1>{{ table_title|default("My Table") }}</h1>
{{ super() }}
{% endblock table %}

Overwriting templates/myhtml.tpl

Now that we’ve created a template, we need to set up a subclass of Styler that knows about it.

In [41]: class MyStyler(Styler):
env = Environment(

loader=ChoiceLoader([
FileSystemLoader("templates"), # contains ours
Styler.loader, # the default

])
)
template = env.get_template("myhtml.tpl")

Notice that we include the original loader in our environment’s loader. That’s because we extend the original template,
so the Jinja environment needs to be able to find it.

Now we can use that custom styler. It’s __init__ takes a DataFrame.

In [42]: MyStyler(df)

Out[42]: <__main__.MyStyler at 0x7f05affda438>

Our custom template accepts a table_title keyword. We can provide the value in the .render method.

In [43]: HTML(MyStyler(df).render(table_title="Extending Example"))

Out[43]: <IPython.core.display.HTML object>

For convenience, we provide the Styler.from_custom_template method that does the same as the custom
subclass.

In [44]: EasyStyler = Styler.from_custom_template("templates", "myhtml.tpl")
EasyStyler(df)

Out[44]: <pandas.io.formats.style.Styler.from_custom_template.<locals>.MyStyler at 0x7f05ac918f60>

Here’s the template structure:

In [45]: with open("template_structure.html") as f:
structure = f.read()

HTML(structure)

Out[45]: <IPython.core.display.HTML object>

See the template in the GitHub repo for more details.

1124 Chapter 23. Styling

https://github.com/pandas-dev/pandas

CHAPTER

TWENTYFOUR

IO TOOLS (TEXT, CSV, HDF5, . . .)

The pandas I/O API is a set of top level reader functions accessed like pandas.read_csv() that generally
return a pandas object. The corresponding writer functions are object methods that are accessed like DataFrame.
to_csv(). Below is a table containing available readers and writers.

Format
Type

Data Description Reader Writer

text CSV read_csv to_csv
text JSON read_json to_json
text HTML read_html to_html
text Local clipboard read_clipboard to_clipboard
binary MS Excel read_excel to_excel
binary HDF5 Format read_hdf to_hdf
binary Feather Format read_feather to_feather
binary Parquet Format read_parquet to_parquet
binary Msgpack read_msgpack to_msgpack
binary Stata read_stata to_stata
binary SAS read_sas
binary Python Pickle Format read_pickle to_pickle
SQL SQL read_sql to_sql
SQL Google Big Query read_gbq to_gbq

Here is an informal performance comparison for some of these IO methods.

Note: For examples that use the StringIO class, make sure you import it according to your Python version, i.e.
from StringIO import StringIO for Python 2 and from io import StringIO for Python 3.

24.1 CSV & Text files

The two workhorse functions for reading text files (a.k.a. flat files) are read_csv() and read_table(). They
both use the same parsing code to intelligently convert tabular data into a DataFrame object. See the cookbook for
some advanced strategies.

24.1.1 Parsing options

The functions read_csv() and read_table() accept the following common arguments:

1125

https://en.wikipedia.org/wiki/Comma-separated_values
http://www.json.org/
https://en.wikipedia.org/wiki/HTML
https://en.wikipedia.org/wiki/Microsoft_Excel
https://support.hdfgroup.org/HDF5/whatishdf5.html
https://github.com/wesm/feather
https://parquet.apache.org/
http://msgpack.org/index.html
https://en.wikipedia.org/wiki/Stata
https://en.wikipedia.org/wiki/SAS_(software)
https://docs.python.org/3/library/pickle.html
https://en.wikipedia.org/wiki/SQL
https://en.wikipedia.org/wiki/BigQuery

pandas: powerful Python data analysis toolkit, Release 0.23.4

24.1.1.1 Basic

filepath_or_buffer [various] Either a path to a file (a str, pathlib.Path, or py._path.local.
LocalPath), URL (including http, ftp, and S3 locations), or any object with a read() method (such as
an open file or StringIO).

sep [str, defaults to ',' for read_csv(), \t for read_table()] Delimiter to use. If sep is None, the C engine
cannot automatically detect the separator, but the Python parsing engine can, meaning the latter will be used
and automatically detect the separator by Python’s builtin sniffer tool, csv.Sniffer. In addition, separators
longer than 1 character and different from '\s+' will be interpreted as regular expressions and will also force
the use of the Python parsing engine. Note that regex delimiters are prone to ignoring quoted data. Regex
example: '\\r\\t'.

delimiter [str, default None] Alternative argument name for sep.

delim_whitespace [boolean, default False] Specifies whether or not whitespace (e.g. ' ' or '\t') will be used as
the delimiter. Equivalent to setting sep='\s+'. If this option is set to True, nothing should be passed in for
the delimiter parameter.

New in version 0.18.1: support for the Python parser.

24.1.1.2 Column and Index Locations and Names

header [int or list of ints, default 'infer'] Row number(s) to use as the column names, and the start of the data.
Default behavior is to infer the column names: if no names are passed the behavior is identical to header=0
and column names are inferred from the first line of the file, if column names are passed explicitly then the
behavior is identical to header=None. Explicitly pass header=0 to be able to replace existing names.

The header can be a list of ints that specify row locations for a multi-index on the columns e.g. [0,1,3].
Intervening rows that are not specified will be skipped (e.g. 2 in this example is skipped). Note that this
parameter ignores commented lines and empty lines if skip_blank_lines=True, so header=0 denotes the
first line of data rather than the first line of the file.

names [array-like, default None] List of column names to use. If file contains no header row, then you should
explicitly pass header=None. Duplicates in this list will cause a UserWarning to be issued.

index_col [int or sequence or False, default None] Column to use as the row labels of the DataFrame. If a
sequence is given, a MultiIndex is used. If you have a malformed file with delimiters at the end of each line,
you might consider index_col=False to force pandas to not use the first column as the index (row names).

usecols [list-like or callable, default None] Return a subset of the columns. If list-like, all elements must either be
positional (i.e. integer indices into the document columns) or strings that correspond to column names provided
either by the user in names or inferred from the document header row(s). For example, a valid list-like usecols
parameter would be [0, 1, 2] or ['foo', 'bar', 'baz'].

Element order is ignored, so usecols=[0, 1] is the same as [1, 0]. To instantiate a
DataFrame from data with element order preserved use pd.read_csv(data, usecols=['foo',
'bar'])[['foo', 'bar']] for columns in ['foo', 'bar'] order or pd.read_csv(data,
usecols=['foo', 'bar'])[['bar', 'foo']] for ['bar', 'foo'] order.

If callable, the callable function will be evaluated against the column names, returning names where the callable
function evaluates to True:

In [1]: data = 'col1,col2,col3\na,b,1\na,b,2\nc,d,3'

In [2]: pd.read_csv(StringIO(data))
Out[2]:
col1 col2 col3

(continues on next page)

1126 Chapter 24. IO Tools (Text, CSV, HDF5, . . .)

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/io.html#io.StringIO
https://docs.python.org/3/library/csv.html#csv.Sniffer

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

0 a b 1
1 a b 2
2 c d 3

In [3]: pd.read_csv(StringIO(data), usecols=lambda x: x.upper() in ['COL1', 'COL3
→˓'])
\\\Out[3]:
→˓

col1 col3
0 a 1
1 a 2
2 c 3

Using this parameter results in much faster parsing time and lower memory usage.

squeeze [boolean, default False] If the parsed data only contains one column then return a Series.

prefix [str, default None] Prefix to add to column numbers when no header, e.g. ‘X’ for X0, X1, . . .

mangle_dupe_cols [boolean, default True] Duplicate columns will be specified as ‘X’, ‘X.1’. . . ’X.N’, rather than
‘X’. . . ’X’. Passing in False will cause data to be overwritten if there are duplicate names in the columns.

24.1.1.3 General Parsing Configuration

dtype [Type name or dict of column -> type, default None] Data type for data or columns. E.g. {'a': np.
float64, 'b': np.int32} (unsupported with engine='python'). Use str or object together with
suitable na_values settings to preserve and not interpret dtype.

New in version 0.20.0: support for the Python parser.

engine [{'c', 'python'}] Parser engine to use. The C engine is faster while the Python engine is currently more
feature-complete.

converters [dict, default None] Dict of functions for converting values in certain columns. Keys can either be integers
or column labels.

true_values [list, default None] Values to consider as True.

false_values [list, default None] Values to consider as False.

skipinitialspace [boolean, default False] Skip spaces after delimiter.

skiprows [list-like or integer, default None] Line numbers to skip (0-indexed) or number of lines to skip (int) at the
start of the file.

If callable, the callable function will be evaluated against the row indices, returning True if the row should be
skipped and False otherwise:

In [4]: data = 'col1,col2,col3\na,b,1\na,b,2\nc,d,3'

In [5]: pd.read_csv(StringIO(data))
Out[5]:
col1 col2 col3

0 a b 1
1 a b 2
2 c d 3

In [6]: pd.read_csv(StringIO(data), skiprows=lambda x: x % 2 != 0)
\\\Out[6]:
→˓ (continues on next page)

24.1. CSV & Text files 1127

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

col1 col2 col3
0 a b 2

skipfooter [int, default 0] Number of lines at bottom of file to skip (unsupported with engine=’c’).

nrows [int, default None] Number of rows of file to read. Useful for reading pieces of large files.

low_memory [boolean, default True] Internally process the file in chunks, resulting in lower memory use while
parsing, but possibly mixed type inference. To ensure no mixed types either set False, or specify the type with
the dtype parameter. Note that the entire file is read into a single DataFrame regardless, use the chunksize
or iterator parameter to return the data in chunks. (Only valid with C parser)

memory_map [boolean, default False] If a filepath is provided for filepath_or_buffer, map the file object
directly onto memory and access the data directly from there. Using this option can improve performance
because there is no longer any I/O overhead.

24.1.1.4 NA and Missing Data Handling

na_values [scalar, str, list-like, or dict, default None] Additional strings to recognize as NA/NaN. If dict passed,
specific per-column NA values. See na values const below for a list of the values interpreted as NaN by default.

keep_default_na [boolean, default True] Whether or not to include the default NaN values when parsing the data.
Depending on whether na_values is passed in, the behavior is as follows:

• If keep_default_na is True, and na_values are specified, na_values is appended to the default NaN values
used for parsing.

• If keep_default_na is True, and na_values are not specified, only the default NaN values are used for
parsing.

• If keep_default_na is False, and na_values are specified, only the NaN values specified na_values are
used for parsing.

• If keep_default_na is False, and na_values are not specified, no strings will be parsed as NaN.

Note that if na_filter is passed in as False, the keep_default_na and na_values parameters will be ignored.

na_filter [boolean, default True] Detect missing value markers (empty strings and the value of na_values). In data
without any NAs, passing na_filter=False can improve the performance of reading a large file.

verbose [boolean, default False] Indicate number of NA values placed in non-numeric columns.

skip_blank_lines [boolean, default True] If True, skip over blank lines rather than interpreting as NaN values.

24.1.1.5 Datetime Handling

parse_dates [boolean or list of ints or names or list of lists or dict, default False.]

• If True -> try parsing the index.

• If [1, 2, 3] -> try parsing columns 1, 2, 3 each as a separate date column.

• If [[1, 3]] -> combine columns 1 and 3 and parse as a single date column.

• If {'foo': [1, 3]} -> parse columns 1, 3 as date and call result ‘foo’. A fast-path exists for iso8601-
formatted dates.

infer_datetime_format [boolean, default False] If True and parse_dates is enabled for a column, attempt to infer
the datetime format to speed up the processing.

1128 Chapter 24. IO Tools (Text, CSV, HDF5, . . .)

pandas: powerful Python data analysis toolkit, Release 0.23.4

keep_date_col [boolean, default False] If True and parse_dates specifies combining multiple columns then keep
the original columns.

date_parser [function, default None] Function to use for converting a sequence of string columns to an array of
datetime instances. The default uses dateutil.parser.parser to do the conversion. Pandas will try to
call date_parser in three different ways, advancing to the next if an exception occurs: 1) Pass one or more arrays
(as defined by parse_dates) as arguments; 2) concatenate (row-wise) the string values from the columns defined
by parse_dates into a single array and pass that; and 3) call date_parser once for each row using one or more
strings (corresponding to the columns defined by parse_dates) as arguments.

dayfirst [boolean, default False] DD/MM format dates, international and European format.

24.1.1.6 Iteration

iterator [boolean, default False] Return TextFileReader object for iteration or getting chunks with get_chunk().

chunksize [int, default None] Return TextFileReader object for iteration. See iterating and chunking below.

24.1.1.7 Quoting, Compression, and File Format

compression [{'infer', 'gzip', 'bz2', 'zip', 'xz', None}, default 'infer'] For on-the-fly decompres-
sion of on-disk data. If ‘infer’, then use gzip, bz2, zip, or xz if filepath_or_buffer is a string ending in ‘.gz’,
‘.bz2’, ‘.zip’, or ‘.xz’, respectively, and no decompression otherwise. If using ‘zip’, the ZIP file must contain
only one data file to be read in. Set to None for no decompression.

New in version 0.18.1: support for ‘zip’ and ‘xz’ compression.

thousands [str, default None] Thousands separator.

decimal [str, default '.'] Character to recognize as decimal point. E.g. use ',' for European data.

float_precision [string, default None] Specifies which converter the C engine should use for floating-point values.
The options are None for the ordinary converter, high for the high-precision converter, and round_trip for
the round-trip converter.

lineterminator [str (length 1), default None] Character to break file into lines. Only valid with C parser.

quotechar [str (length 1)] The character used to denote the start and end of a quoted item. Quoted items can include
the delimiter and it will be ignored.

quoting [int or csv.QUOTE_* instance, default 0] Control field quoting behavior per csv.QUOTE_* constants.
Use one of QUOTE_MINIMAL (0), QUOTE_ALL (1), QUOTE_NONNUMERIC (2) or QUOTE_NONE (3).

doublequote [boolean, default True] When quotechar is specified and quoting is not QUOTE_NONE, indi-
cate whether or not to interpret two consecutive quotechar elements inside a field as a single quotechar
element.

escapechar [str (length 1), default None] One-character string used to escape delimiter when quoting is
QUOTE_NONE.

comment [str, default None] Indicates remainder of line should not be parsed. If found at the beginning of a line,
the line will be ignored altogether. This parameter must be a single character. Like empty lines (as long
as skip_blank_lines=True), fully commented lines are ignored by the parameter header but not by
skiprows. For example, if comment='#', parsing ‘#empty\na,b,c\n1,2,3’ with header=0 will result in ‘a,b,c’
being treated as the header.

encoding [str, default None] Encoding to use for UTF when reading/writing (e.g. 'utf-8'). List of Python standard
encodings.

24.1. CSV & Text files 1129

https://docs.python.org/3/library/codecs.html#standard-encodings
https://docs.python.org/3/library/codecs.html#standard-encodings

pandas: powerful Python data analysis toolkit, Release 0.23.4

dialect [str or csv.Dialect instance, default None] If provided, this parameter will override values (default or
not) for the following parameters: delimiter, doublequote, escapechar, skipinitialspace, quotechar, and quoting.
If it is necessary to override values, a ParserWarning will be issued. See csv.Dialect documentation for
more details.

tupleize_cols [boolean, default False]

Deprecated since version 0.21.0.

This argument will be removed and will always convert to MultiIndex

Leave a list of tuples on columns as is (default is to convert to a MultiIndex on the columns).

24.1.1.8 Error Handling

error_bad_lines [boolean, default True] Lines with too many fields (e.g. a csv line with too many commas) will by
default cause an exception to be raised, and no DataFrame will be returned. If False, then these “bad lines”
will dropped from the DataFrame that is returned. See bad lines below.

warn_bad_lines [boolean, default True] If error_bad_lines is False, and warn_bad_lines is True, a warning for
each “bad line” will be output.

24.1.2 Specifying column data types

You can indicate the data type for the whole DataFrame or individual columns:

In [7]: data = 'a,b,c\n1,2,3\n4,5,6\n7,8,9'

In [8]: print(data)
a,b,c
1,2,3
4,5,6
7,8,9

In [9]: df = pd.read_csv(StringIO(data), dtype=object)

In [10]: df
Out[10]:

a b c
0 1 2 3
1 4 5 6
2 7 8 9

In [11]: df['a'][0]
\\Out[11]: '1'

In [12]: df = pd.read_csv(StringIO(data), dtype={'b': object, 'c': np.float64})

In [13]: df.dtypes
Out[13]:
a int64
b object
c float64
dtype: object

Fortunately, pandas offers more than one way to ensure that your column(s) contain only one dtype. If you’re
unfamiliar with these concepts, you can see here to learn more about dtypes, and here to learn more about object
conversion in pandas.

1130 Chapter 24. IO Tools (Text, CSV, HDF5, . . .)

https://docs.python.org/3/library/csv.html#csv.Dialect
https://docs.python.org/3/library/csv.html#csv.Dialect

pandas: powerful Python data analysis toolkit, Release 0.23.4

For instance, you can use the converters argument of read_csv():

In [14]: data = "col_1\n1\n2\n'A'\n4.22"

In [15]: df = pd.read_csv(StringIO(data), converters={'col_1': str})

In [16]: df
Out[16]:

col_1
0 1
1 2
2 'A'
3 4.22

In [17]: df['col_1'].apply(type).value_counts()
\\Out[17]:
<class 'str'> 4
Name: col_1, dtype: int64

Or you can use the to_numeric() function to coerce the dtypes after reading in the data,

In [18]: df2 = pd.read_csv(StringIO(data))

In [19]: df2['col_1'] = pd.to_numeric(df2['col_1'], errors='coerce')

In [20]: df2
Out[20]:

col_1
0 1.00
1 2.00
2 NaN
3 4.22

In [21]: df2['col_1'].apply(type).value_counts()
\\\Out[21]:
<class 'float'> 4
Name: col_1, dtype: int64

which will convert all valid parsing to floats, leaving the invalid parsing as NaN.

Ultimately, how you deal with reading in columns containing mixed dtypes depends on your specific needs. In the case
above, if you wanted to NaN out the data anomalies, then to_numeric() is probably your best option. However, if
you wanted for all the data to be coerced, no matter the type, then using the converters argument of read_csv()
would certainly be worth trying.

New in version 0.20.0: support for the Python parser.

The dtype option is supported by the ‘python’ engine.

Note: In some cases, reading in abnormal data with columns containing mixed dtypes will result in an inconsistent
dataset. If you rely on pandas to infer the dtypes of your columns, the parsing engine will go and infer the dtypes for
different chunks of the data, rather than the whole dataset at once. Consequently, you can end up with column(s) with
mixed dtypes. For example,

In [22]: df = pd.DataFrame({'col_1': list(range(500000)) + ['a', 'b'] +
→˓list(range(500000))})

In [23]: df.to_csv('foo.csv')

(continues on next page)

24.1. CSV & Text files 1131

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

In [24]: mixed_df = pd.read_csv('foo.csv')

In [25]: mixed_df['col_1'].apply(type).value_counts()
Out[25]:
<class 'int'> 737858
<class 'str'> 262144
Name: col_1, dtype: int64

In [26]: mixed_df['col_1'].dtype
\\Out[26]:
→˓dtype('O')

will result with mixed_df containing an int dtype for certain chunks of the column, and str for others due to the
mixed dtypes from the data that was read in. It is important to note that the overall column will be marked with a
dtype of object, which is used for columns with mixed dtypes.

24.1.3 Specifying Categorical dtype

New in version 0.19.0.

Categorical columns can be parsed directly by specifying dtype='category' or
dtype=CategoricalDtype(categories, ordered).

In [27]: data = 'col1,col2,col3\na,b,1\na,b,2\nc,d,3'

In [28]: pd.read_csv(StringIO(data))
Out[28]:

col1 col2 col3
0 a b 1
1 a b 2
2 c d 3

In [29]: pd.read_csv(StringIO(data)).dtypes
\\Out[29]:
→˓

col1 object
col2 object
col3 int64
dtype: object

In [30]: pd.read_csv(StringIO(data), dtype='category').dtypes
\\\Out[30]:
→˓

col1 category
col2 category
col3 category
dtype: object

Individual columns can be parsed as a Categorical using a dict specification:

In [31]: pd.read_csv(StringIO(data), dtype={'col1': 'category'}).dtypes
Out[31]:
col1 category

(continues on next page)

1132 Chapter 24. IO Tools (Text, CSV, HDF5, . . .)

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

col2 object
col3 int64
dtype: object

New in version 0.21.0.

Specifying dtype='cateogry' will result in an unordered Categorical whose categories are the unique
values observed in the data. For more control on the categories and order, create a CategoricalDtype ahead of
time, and pass that for that column’s dtype.

In [32]: from pandas.api.types import CategoricalDtype

In [33]: dtype = CategoricalDtype(['d', 'c', 'b', 'a'], ordered=True)

In [34]: pd.read_csv(StringIO(data), dtype={'col1': dtype}).dtypes
Out[34]:
col1 category
col2 object
col3 int64
dtype: object

When using dtype=CategoricalDtype, “unexpected” values outside of dtype.categories are treated as
missing values.

In [35]: dtype = CategoricalDtype(['a', 'b', 'd']) # No 'c'

In [36]: pd.read_csv(StringIO(data), dtype={'col1': dtype}).col1
Out[36]:
0 a
1 a
2 NaN
Name: col1, dtype: category
Categories (3, object): [a, b, d]

This matches the behavior of Categorical.set_categories().

Note: With dtype='category', the resulting categories will always be parsed as strings (object dtype). If the
categories are numeric they can be converted using the to_numeric() function, or as appropriate, another converter
such as to_datetime().

When dtype is a CategoricalDtype with homogenous categories (all numeric, all datetimes, etc.), the
conversion is done automatically.

In [37]: df = pd.read_csv(StringIO(data), dtype='category')

In [38]: df.dtypes
Out[38]:
col1 category
col2 category
col3 category
dtype: object

In [39]: df['col3']
\\\Out[39]:
0 1
1 2

(continues on next page)

24.1. CSV & Text files 1133

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

2 3
Name: col3, dtype: category
Categories (3, object): [1, 2, 3]

In [40]: df['col3'].cat.categories = pd.to_numeric(df['col3'].cat.categories)

In [41]: df['col3']
Out[41]:
0 1
1 2
2 3
Name: col3, dtype: category
Categories (3, int64): [1, 2, 3]

24.1.4 Naming and Using Columns

24.1.4.1 Handling column names

A file may or may not have a header row. pandas assumes the first row should be used as the column names:

In [42]: data = 'a,b,c\n1,2,3\n4,5,6\n7,8,9'

In [43]: print(data)
a,b,c
1,2,3
4,5,6
7,8,9

In [44]: pd.read_csv(StringIO(data))
\\\\\\\\\\\\\\\\\\\\\\\\Out[44]:

a b c
0 1 2 3
1 4 5 6
2 7 8 9

By specifying the names argument in conjunction with header you can indicate other names to use and whether or
not to throw away the header row (if any):

In [45]: print(data)
a,b,c
1,2,3
4,5,6
7,8,9

In [46]: pd.read_csv(StringIO(data), names=['foo', 'bar', 'baz'], header=0)
\\\\\\\\\\\\\\\\\\\\\\\\Out[46]:

foo bar baz
0 1 2 3
1 4 5 6
2 7 8 9

In [47]: pd.read_csv(StringIO(data), names=['foo', 'bar', 'baz'], header=None)
\\Out[47]:
→˓

(continues on next page)

1134 Chapter 24. IO Tools (Text, CSV, HDF5, . . .)

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

foo bar baz
0 a b c
1 1 2 3
2 4 5 6
3 7 8 9

If the header is in a row other than the first, pass the row number to header. This will skip the preceding rows:

In [48]: data = 'skip this skip it\na,b,c\n1,2,3\n4,5,6\n7,8,9'

In [49]: pd.read_csv(StringIO(data), header=1)
Out[49]:

a b c
0 1 2 3
1 4 5 6
2 7 8 9

Note: Default behavior is to infer the column names: if no names are passed the behavior is identical to header=0
and column names are inferred from the first nonblank line of the file, if column names are passed explicitly then the
behavior is identical to header=None.

24.1.5 Duplicate names parsing

If the file or header contains duplicate names, pandas will by default distinguish between them so as to prevent
overwriting data:

In [50]: data = 'a,b,a\n0,1,2\n3,4,5'

In [51]: pd.read_csv(StringIO(data))
Out[51]:

a b a.1
0 0 1 2
1 3 4 5

There is no more duplicate data because mangle_dupe_cols=True by default, which modifies a series of dupli-
cate columns ‘X’, . . . , ‘X’ to become ‘X’, ‘X.1’, . . . , ‘X.N’. If mangle_dupe_cols=False, duplicate data can
arise:

In [2]: data = 'a,b,a\n0,1,2\n3,4,5'
In [3]: pd.read_csv(StringIO(data), mangle_dupe_cols=False)
Out[3]:

a b a
0 2 1 2
1 5 4 5

To prevent users from encountering this problem with duplicate data, a ValueError exception is raised if
mangle_dupe_cols != True:

In [2]: data = 'a,b,a\n0,1,2\n3,4,5'
In [3]: pd.read_csv(StringIO(data), mangle_dupe_cols=False)
...
ValueError: Setting mangle_dupe_cols=False is not supported yet

24.1. CSV & Text files 1135

pandas: powerful Python data analysis toolkit, Release 0.23.4

24.1.5.1 Filtering columns (usecols)

The usecols argument allows you to select any subset of the columns in a file, either using the column names,
position numbers or a callable:

New in version 0.20.0: support for callable usecols arguments

In [52]: data = 'a,b,c,d\n1,2,3,foo\n4,5,6,bar\n7,8,9,baz'

In [53]: pd.read_csv(StringIO(data))
Out[53]:

a b c d
0 1 2 3 foo
1 4 5 6 bar
2 7 8 9 baz

In [54]: pd.read_csv(StringIO(data), usecols=['b', 'd'])
\\Out[54]:

b d
0 2 foo
1 5 bar
2 8 baz

In [55]: pd.read_csv(StringIO(data), usecols=[0, 2, 3])
\\Out[55]:
→˓

a c d
0 1 3 foo
1 4 6 bar
2 7 9 baz

In [56]: pd.read_csv(StringIO(data), usecols=lambda x: x.upper() in ['A', 'C'])
\\Out[56]:
→˓

a c
0 1 3
1 4 6
2 7 9

The usecols argument can also be used to specify which columns not to use in the final result:

In [57]: pd.read_csv(StringIO(data), usecols=lambda x: x not in ['a', 'c'])
Out[57]:

b d
0 2 foo
1 5 bar
2 8 baz

In this case, the callable is specifying that we exclude the “a” and “c” columns from the output.

24.1.6 Comments and Empty Lines

24.1.6.1 Ignoring line comments and empty lines

If the comment parameter is specified, then completely commented lines will be ignored. By default, completely
blank lines will be ignored as well.

1136 Chapter 24. IO Tools (Text, CSV, HDF5, . . .)

pandas: powerful Python data analysis toolkit, Release 0.23.4

In [58]: data = '\na,b,c\n \n# commented line\n1,2,3\n\n4,5,6'

In [59]: print(data)

a,b,c

commented line
1,2,3

4,5,6

In [60]: pd.read_csv(StringIO(data), comment='#')
\\Out[60]:

a b c
0 1 2 3
1 4 5 6

If skip_blank_lines=False, then read_csv will not ignore blank lines:

In [61]: data = 'a,b,c\n\n1,2,3\n\n\n4,5,6'

In [62]: pd.read_csv(StringIO(data), skip_blank_lines=False)
Out[62]:

a b c
0 NaN NaN NaN
1 1.0 2.0 3.0
2 NaN NaN NaN
3 NaN NaN NaN
4 4.0 5.0 6.0

Warning: The presence of ignored lines might create ambiguities involving line numbers; the parameter header
uses row numbers (ignoring commented/empty lines), while skiprows uses line numbers (including com-
mented/empty lines):

In [63]: data = '#comment\na,b,c\nA,B,C\n1,2,3'

In [64]: pd.read_csv(StringIO(data), comment='#', header=1)
Out[64]:

A B C
0 1 2 3

In [65]: data = 'A,B,C\n#comment\na,b,c\n1,2,3'

In [66]: pd.read_csv(StringIO(data), comment='#', skiprows=2)
Out[66]:

a b c
0 1 2 3

If both header and skiprows are specified, header will be relative to the end of skiprows. For example:

24.1. CSV & Text files 1137

pandas: powerful Python data analysis toolkit, Release 0.23.4

In [67]: data = '# empty\n# second empty line\n# third empty' \

In [67]: 'line\nX,Y,Z\n1,2,3\nA,B,C\n1,2.,4.\n5.,NaN,10.0'

In [68]: print(data)
empty
second empty line
third emptyline
X,Y,Z
1,2,3
A,B,C
1,2.,4.
5.,NaN,10.0

In [69]: pd.read_csv(StringIO(data), comment='#', skiprows=4, header=1)
\\Out[69]:
→˓

A B C
0 1.0 2.0 4.0
1 5.0 NaN 10.0

24.1.6.2 Comments

Sometimes comments or meta data may be included in a file:

In [70]: print(open('tmp.csv').read())
ID,level,category
Patient1,123000,x # really unpleasant
Patient2,23000,y # wouldn't take his medicine
Patient3,1234018,z # awesome

By default, the parser includes the comments in the output:

In [71]: df = pd.read_csv('tmp.csv')

In [72]: df
Out[72]:

ID level category
0 Patient1 123000 x # really unpleasant
1 Patient2 23000 y # wouldn't take his medicine
2 Patient3 1234018 z # awesome

We can suppress the comments using the comment keyword:

In [73]: df = pd.read_csv('tmp.csv', comment='#')

In [74]: df
Out[74]:

ID level category
0 Patient1 123000 x
1 Patient2 23000 y
2 Patient3 1234018 z

1138 Chapter 24. IO Tools (Text, CSV, HDF5, . . .)

pandas: powerful Python data analysis toolkit, Release 0.23.4

24.1.7 Dealing with Unicode Data

The encoding argument should be used for encoded unicode data, which will result in byte strings being decoded
to unicode in the result:

In [75]: data = b'word,length\nTr\xc3\xa4umen,7\nGr\xc3\xbc\xc3\x9fe,5'.decode('utf8
→˓').encode('latin-1')

In [76]: df = pd.read_csv(BytesIO(data), encoding='latin-1')

In [77]: df
Out[77]:

word length
0 Träumen 7
1 Grüße 5

In [78]: df['word'][1]
\\\Out[78]: 'Grüße'

Some formats which encode all characters as multiple bytes, like UTF-16, won’t parse correctly at all without speci-
fying the encoding. Full list of Python standard encodings.

24.1.8 Index columns and trailing delimiters

If a file has one more column of data than the number of column names, the first column will be used as the
DataFrame’s row names:

In [79]: data = 'a,b,c\n4,apple,bat,5.7\n8,orange,cow,10'

In [80]: pd.read_csv(StringIO(data))
Out[80]:

a b c
4 apple bat 5.7
8 orange cow 10.0

In [81]: data = 'index,a,b,c\n4,apple,bat,5.7\n8,orange,cow,10'

In [82]: pd.read_csv(StringIO(data), index_col=0)
Out[82]:

a b c
index
4 apple bat 5.7
8 orange cow 10.0

Ordinarily, you can achieve this behavior using the index_col option.

There are some exception cases when a file has been prepared with delimiters at the end of each data line, confusing
the parser. To explicitly disable the index column inference and discard the last column, pass index_col=False:

In [83]: data = 'a,b,c\n4,apple,bat,\n8,orange,cow,'

In [84]: print(data)
a,b,c
4,apple,bat,
8,orange,cow,

(continues on next page)

24.1. CSV & Text files 1139

https://docs.python.org/3/library/codecs.html#standard-encodings

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

In [85]: pd.read_csv(StringIO(data))
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\Out[85]:

a b c
4 apple bat NaN
8 orange cow NaN

In [86]: pd.read_csv(StringIO(data), index_col=False)
\\Out[86]:
→˓

a b c
0 4 apple bat
1 8 orange cow

If a subset of data is being parsed using the usecols option, the index_col specification is based on that subset,
not the original data.

In [87]: data = 'a,b,c\n4,apple,bat,\n8,orange,cow,'

In [88]: print(data)
a,b,c
4,apple,bat,
8,orange,cow,

In [89]: pd.read_csv(StringIO(data), usecols=['b', 'c'])
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\Out[89]:

b c
4 bat NaN
8 cow NaN

In [90]: pd.read_csv(StringIO(data), usecols=['b', 'c'], index_col=0)
\\Out[90]:

b c
4 bat NaN
8 cow NaN

24.1.9 Date Handling

24.1.9.1 Specifying Date Columns

To better facilitate working with datetime data, read_csv() and read_table() use the keyword arguments
parse_dates and date_parser to allow users to specify a variety of columns and date/time formats to turn the
input text data into datetime objects.

The simplest case is to just pass in parse_dates=True:

Use a column as an index, and parse it as dates.
In [91]: df = pd.read_csv('foo.csv', index_col=0, parse_dates=True)

In [92]: df
Out[92]:

A B C
date
2009-01-01 a 1 2
2009-01-02 b 3 4
2009-01-03 c 4 5

(continues on next page)

1140 Chapter 24. IO Tools (Text, CSV, HDF5, . . .)

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

These are Python datetime objects
In [93]: df.index
\\Out[93]:
→˓DatetimeIndex(['2009-01-01', '2009-01-02', '2009-01-03'], dtype='datetime64[ns]',
→˓name='date', freq=None)

It is often the case that we may want to store date and time data separately, or store various date fields separately. the
parse_dates keyword can be used to specify a combination of columns to parse the dates and/or times from.

You can specify a list of column lists to parse_dates, the resulting date columns will be prepended to the output
(so as to not affect the existing column order) and the new column names will be the concatenation of the component
column names:

In [94]: print(open('tmp.csv').read())
KORD,19990127, 19:00:00, 18:56:00, 0.8100
KORD,19990127, 20:00:00, 19:56:00, 0.0100
KORD,19990127, 21:00:00, 20:56:00, -0.5900
KORD,19990127, 21:00:00, 21:18:00, -0.9900
KORD,19990127, 22:00:00, 21:56:00, -0.5900
KORD,19990127, 23:00:00, 22:56:00, -0.5900

In [95]: df = pd.read_csv('tmp.csv', header=None, parse_dates=[[1, 2], [1, 3]])

In [96]: df
Out[96]:

1_2 1_3 0 4
0 1999-01-27 19:00:00 1999-01-27 18:56:00 KORD 0.81
1 1999-01-27 20:00:00 1999-01-27 19:56:00 KORD 0.01
2 1999-01-27 21:00:00 1999-01-27 20:56:00 KORD -0.59
3 1999-01-27 21:00:00 1999-01-27 21:18:00 KORD -0.99
4 1999-01-27 22:00:00 1999-01-27 21:56:00 KORD -0.59
5 1999-01-27 23:00:00 1999-01-27 22:56:00 KORD -0.59

By default the parser removes the component date columns, but you can choose to retain them via the
keep_date_col keyword:

In [97]: df = pd.read_csv('tmp.csv', header=None, parse_dates=[[1, 2], [1, 3]],
....: keep_date_col=True)
....:

In [98]: df
Out[98]:

1_2 1_3 0 1 2 3 4
0 1999-01-27 19:00:00 1999-01-27 18:56:00 KORD 19990127 19:00:00 18:56:00 0.81
1 1999-01-27 20:00:00 1999-01-27 19:56:00 KORD 19990127 20:00:00 19:56:00 0.01
2 1999-01-27 21:00:00 1999-01-27 20:56:00 KORD 19990127 21:00:00 20:56:00 -0.59
3 1999-01-27 21:00:00 1999-01-27 21:18:00 KORD 19990127 21:00:00 21:18:00 -0.99
4 1999-01-27 22:00:00 1999-01-27 21:56:00 KORD 19990127 22:00:00 21:56:00 -0.59
5 1999-01-27 23:00:00 1999-01-27 22:56:00 KORD 19990127 23:00:00 22:56:00 -0.59

Note that if you wish to combine multiple columns into a single date column, a nested list must be used. In other
words, parse_dates=[1, 2] indicates that the second and third columns should each be parsed as separate date
columns while parse_dates=[[1, 2]] means the two columns should be parsed into a single column.

You can also use a dict to specify custom name columns:

24.1. CSV & Text files 1141

pandas: powerful Python data analysis toolkit, Release 0.23.4

In [99]: date_spec = {'nominal': [1, 2], 'actual': [1, 3]}

In [100]: df = pd.read_csv('tmp.csv', header=None, parse_dates=date_spec)

In [101]: df
Out[101]:

nominal actual 0 4
0 1999-01-27 19:00:00 1999-01-27 18:56:00 KORD 0.81
1 1999-01-27 20:00:00 1999-01-27 19:56:00 KORD 0.01
2 1999-01-27 21:00:00 1999-01-27 20:56:00 KORD -0.59
3 1999-01-27 21:00:00 1999-01-27 21:18:00 KORD -0.99
4 1999-01-27 22:00:00 1999-01-27 21:56:00 KORD -0.59
5 1999-01-27 23:00:00 1999-01-27 22:56:00 KORD -0.59

It is important to remember that if multiple text columns are to be parsed into a single date column, then a new column
is prepended to the data. The index_col specification is based off of this new set of columns rather than the original
data columns:

In [102]: date_spec = {'nominal': [1, 2], 'actual': [1, 3]}

In [103]: df = pd.read_csv('tmp.csv', header=None, parse_dates=date_spec,
.....: index_col=0) # index is the nominal column
.....:

In [104]: df
Out[104]:

actual 0 4
nominal
1999-01-27 19:00:00 1999-01-27 18:56:00 KORD 0.81
1999-01-27 20:00:00 1999-01-27 19:56:00 KORD 0.01
1999-01-27 21:00:00 1999-01-27 20:56:00 KORD -0.59
1999-01-27 21:00:00 1999-01-27 21:18:00 KORD -0.99
1999-01-27 22:00:00 1999-01-27 21:56:00 KORD -0.59
1999-01-27 23:00:00 1999-01-27 22:56:00 KORD -0.59

Note: If a column or index contains an unparseable date, the entire column or index will be returned unaltered as an
object data type. For non-standard datetime parsing, use to_datetime() after pd.read_csv.

Note: read_csv has a fast_path for parsing datetime strings in iso8601 format, e.g “2000-01-01T00:01:02+00:00” and
similar variations. If you can arrange for your data to store datetimes in this format, load times will be significantly
faster, ~20x has been observed.

Note: When passing a dict as the parse_dates argument, the order of the columns prepended is not guaranteed,
because dict objects do not impose an ordering on their keys. On Python 2.7+ you may use collections.OrderedDict
instead of a regular dict if this matters to you. Because of this, when using a dict for ‘parse_dates’ in conjunction with
the index_col argument, it’s best to specify index_col as a column label rather then as an index on the resulting frame.

1142 Chapter 24. IO Tools (Text, CSV, HDF5, . . .)

pandas: powerful Python data analysis toolkit, Release 0.23.4

24.1.9.2 Date Parsing Functions

Finally, the parser allows you to specify a custom date_parser function to take full advantage of the flexibility of
the date parsing API:

In [105]: import pandas.io.date_converters as conv

In [106]: df = pd.read_csv('tmp.csv', header=None, parse_dates=date_spec,
.....: date_parser=conv.parse_date_time)
.....:

In [107]: df
Out[107]:

nominal actual 0 4
0 1999-01-27 19:00:00 1999-01-27 18:56:00 KORD 0.81
1 1999-01-27 20:00:00 1999-01-27 19:56:00 KORD 0.01
2 1999-01-27 21:00:00 1999-01-27 20:56:00 KORD -0.59
3 1999-01-27 21:00:00 1999-01-27 21:18:00 KORD -0.99
4 1999-01-27 22:00:00 1999-01-27 21:56:00 KORD -0.59
5 1999-01-27 23:00:00 1999-01-27 22:56:00 KORD -0.59

Pandas will try to call the date_parser function in three different ways. If an exception is raised, the next one is
tried:

1. date_parser is first called with one or more arrays as arguments, as defined using parse_dates (e.g.,
date_parser(['2013', '2013'], ['1', '2'])).

2. If #1 fails, date_parser is called with all the columns concatenated row-wise into a single array (e.g.,
date_parser(['2013 1', '2013 2'])).

3. If #2 fails, date_parser is called once for every row with one or more string arguments from
the columns indicated with parse_dates (e.g., date_parser('2013', '1') for the first row,
date_parser('2013', '2') for the second, etc.).

Note that performance-wise, you should try these methods of parsing dates in order:

1. Try to infer the format using infer_datetime_format=True (see section below).

2. If you know the format, use pd.to_datetime(): date_parser=lambda x: pd.
to_datetime(x, format=...).

3. If you have a really non-standard format, use a custom date_parser function. For optimal performance, this
should be vectorized, i.e., it should accept arrays as arguments.

You can explore the date parsing functionality in date_converters.py and add your own. We would love to turn this
module into a community supported set of date/time parsers. To get you started, date_converters.py contains
functions to parse dual date and time columns, year/month/day columns, and year/month/day/hour/minute/second
columns. It also contains a generic_parser function so you can curry it with a function that deals with a single
date rather than the entire array.

24.1.9.3 Inferring Datetime Format

If you have parse_dates enabled for some or all of your columns, and your datetime strings are all formatted the
same way, you may get a large speed up by setting infer_datetime_format=True. If set, pandas will attempt
to guess the format of your datetime strings, and then use a faster means of parsing the strings. 5-10x parsing speeds
have been observed. pandas will fallback to the usual parsing if either the format cannot be guessed or the format that
was guessed cannot properly parse the entire column of strings. So in general, infer_datetime_format should
not have any negative consequences if enabled.

24.1. CSV & Text files 1143

https://github.com/pandas-dev/pandas/blob/master/pandas/io/date_converters.py

pandas: powerful Python data analysis toolkit, Release 0.23.4

Here are some examples of datetime strings that can be guessed (All representing December 30th, 2011 at 00:00:00):

• “20111230”

• “2011/12/30”

• “20111230 00:00:00”

• “12/30/2011 00:00:00”

• “30/Dec/2011 00:00:00”

• “30/December/2011 00:00:00”

Note that infer_datetime_format is sensitive to dayfirst. With dayfirst=True, it will guess
“01/12/2011” to be December 1st. With dayfirst=False (default) it will guess “01/12/2011” to be January
12th.

Try to infer the format for the index column
In [108]: df = pd.read_csv('foo.csv', index_col=0, parse_dates=True,

.....: infer_datetime_format=True)

.....:

In [109]: df
Out[109]:

A B C
date
2009-01-01 a 1 2
2009-01-02 b 3 4
2009-01-03 c 4 5

24.1.9.4 International Date Formats

While US date formats tend to be MM/DD/YYYY, many international formats use DD/MM/YYYY instead. For
convenience, a dayfirst keyword is provided:

In [110]: print(open('tmp.csv').read())
date,value,cat
1/6/2000,5,a
2/6/2000,10,b
3/6/2000,15,c

In [111]: pd.read_csv('tmp.csv', parse_dates=[0])
\\Out[111]:

date value cat
0 2000-01-06 5 a
1 2000-02-06 10 b
2 2000-03-06 15 c

In [112]: pd.read_csv('tmp.csv', dayfirst=True, parse_dates=[0])
\\\Out[112]:
→˓

date value cat
0 2000-06-01 5 a
1 2000-06-02 10 b
2 2000-06-03 15 c

1144 Chapter 24. IO Tools (Text, CSV, HDF5, . . .)

pandas: powerful Python data analysis toolkit, Release 0.23.4

24.1.10 Specifying method for floating-point conversion

The parameter float_precision can be specified in order to use a specific floating-point converter during parsing
with the C engine. The options are the ordinary converter, the high-precision converter, and the round-trip converter
(which is guaranteed to round-trip values after writing to a file). For example:

In [113]: val = '0.3066101993807095471566981359501369297504425048828125'

In [114]: data = 'a,b,c\n1,2,{0}'.format(val)

In [115]: abs(pd.read_csv(StringIO(data), engine='c', float_precision=None)['c'][0] -
→˓float(val))
Out[115]: 1.1102230246251565e-16

In [116]: abs(pd.read_csv(StringIO(data), engine='c', float_precision='high')['c'][0]
→˓- float(val))
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\Out[116]: 5.5511151231257827e-17

In [117]: abs(pd.read_csv(StringIO(data), engine='c', float_precision='round_trip')['c
→˓'][0] - float(val))
\\Out[117]: 0.0

24.1.11 Thousand Separators

For large numbers that have been written with a thousands separator, you can set the thousands keyword to a string
of length 1 so that integers will be parsed correctly:

By default, numbers with a thousands separator will be parsed as strings:

In [118]: print(open('tmp.csv').read())
ID|level|category
Patient1|123,000|x
Patient2|23,000|y
Patient3|1,234,018|z

In [119]: df = pd.read_csv('tmp.csv', sep='|')

In [120]: df
Out[120]:

ID level category
0 Patient1 123,000 x
1 Patient2 23,000 y
2 Patient3 1,234,018 z

In [121]: df.level.dtype
\\\Out[121]:
→˓dtype('O')

The thousands keyword allows integers to be parsed correctly:

In [122]: print(open('tmp.csv').read())
ID|level|category
Patient1|123,000|x
Patient2|23,000|y
Patient3|1,234,018|z

(continues on next page)

24.1. CSV & Text files 1145

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

In [123]: df = pd.read_csv('tmp.csv', sep='|', thousands=',')

In [124]: df
Out[124]:

ID level category
0 Patient1 123000 x
1 Patient2 23000 y
2 Patient3 1234018 z

In [125]: df.level.dtype
\\\Out[125]:
→˓dtype('int64')

24.1.12 NA Values

To control which values are parsed as missing values (which are signified by NaN), specify a string in na_values.
If you specify a list of strings, then all values in it are considered to be missing values. If you specify a number (a
float, like 5.0 or an integer like 5), the corresponding equivalent values will also imply a missing value (in this
case effectively [5.0, 5] are recognized as NaN).

To completely override the default values that are recognized as missing, specify keep_default_na=False.

The default NaN recognized values are ['-1.#IND', '1.#QNAN', '1.#IND', '-1.#QNAN', '#N/A
N/A', '#N/A', 'N/A', 'n/a', 'NA', '#NA', 'NULL', 'null', 'NaN', '-NaN', 'nan',
'-nan', ''].

Let us consider some examples:

read_csv(path, na_values=[5])

In the example above 5 and 5.0will be recognized as NaN, in addition to the defaults. A string will first be interpreted
as a numerical 5, then as a NaN.

read_csv(path, keep_default_na=False, na_values=[""])

Above, only an empty field will be recognized as NaN.

read_csv(path, keep_default_na=False, na_values=["NA", "0"])

Above, both NA and 0 as strings are NaN.

read_csv(path, na_values=["Nope"])

The default values, in addition to the string "Nope" are recognized as NaN.

24.1.13 Infinity

inf like values will be parsed as np.inf (positive infinity), and -inf as -np.inf (negative infinity). These will
ignore the case of the value, meaning Inf, will also be parsed as np.inf.

24.1.14 Returning Series

Using the squeeze keyword, the parser will return output with a single column as a Series:

1146 Chapter 24. IO Tools (Text, CSV, HDF5, . . .)

pandas: powerful Python data analysis toolkit, Release 0.23.4

In [126]: print(open('tmp.csv').read())
level
Patient1,123000
Patient2,23000
Patient3,1234018

In [127]: output = pd.read_csv('tmp.csv', squeeze=True)

In [128]: output
Out[128]:
Patient1 123000
Patient2 23000
Patient3 1234018
Name: level, dtype: int64

In [129]: type(output)
\\\Out[129]:
→˓pandas.core.series.Series

24.1.15 Boolean values

The common values True, False, TRUE, and FALSE are all recognized as boolean. Occasionally you might want to
recognize other values as being boolean. To do this, use the true_values and false_values options as follows:

In [130]: data= 'a,b,c\n1,Yes,2\n3,No,4'

In [131]: print(data)
a,b,c
1,Yes,2
3,No,4

In [132]: pd.read_csv(StringIO(data))
\\\\\\\\\\\\\\\\\\\\\Out[132]:

a b c
0 1 Yes 2
1 3 No 4

In [133]: pd.read_csv(StringIO(data), true_values=['Yes'], false_values=['No'])
\\\Out[133]:

a b c
0 1 True 2
1 3 False 4

24.1.16 Handling “bad” lines

Some files may have malformed lines with too few fields or too many. Lines with too few fields will have NA values
filled in the trailing fields. Lines with too many fields will raise an error by default:

In [27]: data = 'a,b,c\n1,2,3\n4,5,6,7\n8,9,10'

In [28]: pd.read_csv(StringIO(data))

ParserError Traceback (most recent call last)
ParserError: Error tokenizing data. C error: Expected 3 fields in line 3, saw 4

24.1. CSV & Text files 1147

pandas: powerful Python data analysis toolkit, Release 0.23.4

You can elect to skip bad lines:

In [29]: pd.read_csv(StringIO(data), error_bad_lines=False)
Skipping line 3: expected 3 fields, saw 4

Out[29]:
a b c

0 1 2 3
1 8 9 10

You can also use the usecols parameter to eliminate extraneous column data that appear in some lines but not others:

In [30]: pd.read_csv(StringIO(data), usecols=[0, 1, 2])

Out[30]:
a b c

0 1 2 3
1 4 5 6
2 8 9 10

24.1.17 Dialect

The dialect keyword gives greater flexibility in specifying the file format. By default it uses the Excel dialect but
you can specify either the dialect name or a csv.Dialect instance.

Suppose you had data with unenclosed quotes:

In [134]: print(data)
label1,label2,label3
index1,"a,c,e
index2,b,d,f

By default, read_csv uses the Excel dialect and treats the double quote as the quote character, which causes it to
fail when it finds a newline before it finds the closing double quote.

We can get around this using dialect:

In [135]: dia = csv.excel()

In [136]: dia.quoting = csv.QUOTE_NONE

In [137]: pd.read_csv(StringIO(data), dialect=dia)
Out[137]:

label1 label2 label3
index1 "a c e
index2 b d f

All of the dialect options can be specified separately by keyword arguments:

In [138]: data = 'a,b,c~1,2,3~4,5,6'

In [139]: pd.read_csv(StringIO(data), lineterminator='~')
Out[139]:

a b c
0 1 2 3
1 4 5 6

Another common dialect option is skipinitialspace, to skip any whitespace after a delimiter:

1148 Chapter 24. IO Tools (Text, CSV, HDF5, . . .)

https://docs.python.org/3/library/csv.html#csv.Dialect

pandas: powerful Python data analysis toolkit, Release 0.23.4

In [140]: data = 'a, b, c\n1, 2, 3\n4, 5, 6'

In [141]: print(data)
a, b, c
1, 2, 3
4, 5, 6

In [142]: pd.read_csv(StringIO(data), skipinitialspace=True)
\\\\\\\\\\\\\\\\\\\\\\\\Out[142]:

a b c
0 1 2 3
1 4 5 6

The parsers make every attempt to “do the right thing” and not be fragile. Type inference is a pretty big deal. If a
column can be coerced to integer dtype without altering the contents, the parser will do so. Any non-numeric columns
will come through as object dtype as with the rest of pandas objects.

24.1.18 Quoting and Escape Characters

Quotes (and other escape characters) in embedded fields can be handled in any number of ways. One way is to use
backslashes; to properly parse this data, you should pass the escapechar option:

In [143]: data = 'a,b\n"hello, \\"Bob\\", nice to see you",5'

In [144]: print(data)
a,b
"hello, \"Bob\", nice to see you",5

In [145]: pd.read_csv(StringIO(data), escapechar='\\')
\\Out[145]:

a b
0 hello, "Bob", nice to see you 5

24.1.19 Files with Fixed Width Columns

While read_csv() reads delimited data, the read_fwf() function works with data files that have known and fixed
column widths. The function parameters to read_fwf are largely the same as read_csv with two extra parameters,
and a different usage of the delimiter parameter:

• colspecs: A list of pairs (tuples) giving the extents of the fixed-width fields of each line as half-open intervals
(i.e., [from, to[). String value ‘infer’ can be used to instruct the parser to try detecting the column specifications
from the first 100 rows of the data. Default behavior, if not specified, is to infer.

• widths: A list of field widths which can be used instead of ‘colspecs’ if the intervals are contiguous.

• delimiter: Characters to consider as filler characters in the fixed-width file. Can be used to specify the filler
character of the fields if it is not spaces (e.g., ‘~’).

Consider a typical fixed-width data file:

In [146]: print(open('bar.csv').read())
id8141 360.242940 149.910199 11950.7
id1594 444.953632 166.985655 11788.4
id1849 364.136849 183.628767 11806.2
id1230 413.836124 184.375703 11916.8
id1948 502.953953 173.237159 12468.3

24.1. CSV & Text files 1149

pandas: powerful Python data analysis toolkit, Release 0.23.4

In order to parse this file into a DataFrame, we simply need to supply the column specifications to the read_fwf
function along with the file name:

Column specifications are a list of half-intervals
In [147]: colspecs = [(0, 6), (8, 20), (21, 33), (34, 43)]

In [148]: df = pd.read_fwf('bar.csv', colspecs=colspecs, header=None, index_col=0)

In [149]: df
Out[149]:

1 2 3
0
id8141 360.242940 149.910199 11950.7
id1594 444.953632 166.985655 11788.4
id1849 364.136849 183.628767 11806.2
id1230 413.836124 184.375703 11916.8
id1948 502.953953 173.237159 12468.3

Note how the parser automatically picks column names X.<column number> when header=None argument is spec-
ified. Alternatively, you can supply just the column widths for contiguous columns:

Widths are a list of integers
In [150]: widths = [6, 14, 13, 10]

In [151]: df = pd.read_fwf('bar.csv', widths=widths, header=None)

In [152]: df
Out[152]:

0 1 2 3
0 id8141 360.242940 149.910199 11950.7
1 id1594 444.953632 166.985655 11788.4
2 id1849 364.136849 183.628767 11806.2
3 id1230 413.836124 184.375703 11916.8
4 id1948 502.953953 173.237159 12468.3

The parser will take care of extra white spaces around the columns so it’s ok to have extra separation between the
columns in the file.

By default, read_fwf will try to infer the file’s colspecs by using the first 100 rows of the file. It can do it
only in cases when the columns are aligned and correctly separated by the provided delimiter (default delimiter is
whitespace).

In [153]: df = pd.read_fwf('bar.csv', header=None, index_col=0)

In [154]: df
Out[154]:

1 2 3
0
id8141 360.242940 149.910199 11950.7
id1594 444.953632 166.985655 11788.4
id1849 364.136849 183.628767 11806.2
id1230 413.836124 184.375703 11916.8
id1948 502.953953 173.237159 12468.3

New in version 0.20.0.

read_fwf supports the dtype parameter for specifying the types of parsed columns to be different from the inferred
type.

1150 Chapter 24. IO Tools (Text, CSV, HDF5, . . .)

pandas: powerful Python data analysis toolkit, Release 0.23.4

In [155]: pd.read_fwf('bar.csv', header=None, index_col=0).dtypes
Out[155]:
1 float64
2 float64
3 float64
dtype: object

In [156]: pd.read_fwf('bar.csv', header=None, dtype={2: 'object'}).dtypes
\\Out[156]:
0 object
1 float64
2 object
3 float64
dtype: object

24.1.20 Indexes

24.1.20.1 Files with an “implicit” index column

Consider a file with one less entry in the header than the number of data column:

In [157]: print(open('foo.csv').read())
A,B,C
20090101,a,1,2
20090102,b,3,4
20090103,c,4,5

In this special case, read_csv assumes that the first column is to be used as the index of the DataFrame:

In [158]: pd.read_csv('foo.csv')
Out[158]:

A B C
20090101 a 1 2
20090102 b 3 4
20090103 c 4 5

Note that the dates weren’t automatically parsed. In that case you would need to do as before:

In [159]: df = pd.read_csv('foo.csv', parse_dates=True)

In [160]: df.index
Out[160]: DatetimeIndex(['2009-01-01', '2009-01-02', '2009-01-03'], dtype=
→˓'datetime64[ns]', freq=None)

24.1.20.2 Reading an index with a MultiIndex

Suppose you have data indexed by two columns:

In [161]: print(open('data/mindex_ex.csv').read())
year,indiv,zit,xit
1977,"A",1.2,.6
1977,"B",1.5,.5
1977,"C",1.7,.8
1978,"A",.2,.06

(continues on next page)

24.1. CSV & Text files 1151

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

1978,"B",.7,.2
1978,"C",.8,.3
1978,"D",.9,.5
1978,"E",1.4,.9
1979,"C",.2,.15
1979,"D",.14,.05
1979,"E",.5,.15
1979,"F",1.2,.5
1979,"G",3.4,1.9
1979,"H",5.4,2.7
1979,"I",6.4,1.2

The index_col argument to read_csv and read_table can take a list of column numbers to turn multiple
columns into a MultiIndex for the index of the returned object:

In [162]: df = pd.read_csv("data/mindex_ex.csv", index_col=[0,1])

In [163]: df
Out[163]:

zit xit
year indiv
1977 A 1.20 0.60

B 1.50 0.50
C 1.70 0.80

1978 A 0.20 0.06
B 0.70 0.20
C 0.80 0.30
D 0.90 0.50
E 1.40 0.90

1979 C 0.20 0.15
D 0.14 0.05
E 0.50 0.15
F 1.20 0.50
G 3.40 1.90
H 5.40 2.70
I 6.40 1.20

In [164]: df.loc[1978]
\\Out[164]:
→˓

zit xit
indiv
A 0.2 0.06
B 0.7 0.20
C 0.8 0.30
D 0.9 0.50
E 1.4 0.90

24.1.20.3 Reading columns with a MultiIndex

By specifying list of row locations for the header argument, you can read in a MultiIndex for the columns.
Specifying non-consecutive rows will skip the intervening rows.

In [165]: from pandas.util.testing import makeCustomDataframe as mkdf

(continues on next page)

1152 Chapter 24. IO Tools (Text, CSV, HDF5, . . .)

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

In [166]: df = mkdf(5, 3, r_idx_nlevels=2, c_idx_nlevels=4)

In [167]: df.to_csv('mi.csv')

In [168]: print(open('mi.csv').read())
C0,,C_l0_g0,C_l0_g1,C_l0_g2
C1,,C_l1_g0,C_l1_g1,C_l1_g2
C2,,C_l2_g0,C_l2_g1,C_l2_g2
C3,,C_l3_g0,C_l3_g1,C_l3_g2
R0,R1,,,
R_l0_g0,R_l1_g0,R0C0,R0C1,R0C2
R_l0_g1,R_l1_g1,R1C0,R1C1,R1C2
R_l0_g2,R_l1_g2,R2C0,R2C1,R2C2
R_l0_g3,R_l1_g3,R3C0,R3C1,R3C2
R_l0_g4,R_l1_g4,R4C0,R4C1,R4C2

In [169]: pd.read_csv('mi.csv', header=[0, 1, 2, 3], index_col=[0, 1])
\\\Out[169]:
→˓

C0 C_l0_g0 C_l0_g1 C_l0_g2
C1 C_l1_g0 C_l1_g1 C_l1_g2
C2 C_l2_g0 C_l2_g1 C_l2_g2
C3 C_l3_g0 C_l3_g1 C_l3_g2
R0 R1
R_l0_g0 R_l1_g0 R0C0 R0C1 R0C2
R_l0_g1 R_l1_g1 R1C0 R1C1 R1C2
R_l0_g2 R_l1_g2 R2C0 R2C1 R2C2
R_l0_g3 R_l1_g3 R3C0 R3C1 R3C2
R_l0_g4 R_l1_g4 R4C0 R4C1 R4C2

read_csv is also able to interpret a more common format of multi-columns indices.

In [170]: print(open('mi2.csv').read())
,a,a,a,b,c,c
,q,r,s,t,u,v
one,1,2,3,4,5,6
two,7,8,9,10,11,12

In [171]: pd.read_csv('mi2.csv', header=[0, 1], index_col=0)
\\\Out[171]:

a b c
q r s t u v

one 1 2 3 4 5 6
two 7 8 9 10 11 12

Note: If an index_col is not specified (e.g. you don’t have an index, or wrote it with df.to_csv(...,
index=False), then any names on the columns index will be lost.

24.1.21 Automatically “sniffing” the delimiter

read_csv is capable of inferring delimited (not necessarily comma-separated) files, as pandas uses the csv.
Sniffer class of the csv module. For this, you have to specify sep=None.

24.1. CSV & Text files 1153

https://docs.python.org/3/library/csv.html#csv.Sniffer
https://docs.python.org/3/library/csv.html#csv.Sniffer

pandas: powerful Python data analysis toolkit, Release 0.23.4

In [172]: print(open('tmp2.sv').read())
:0:1:2:3
0:0.4691122999071863:-0.2828633443286633:-1.5090585031735124:-1.1356323710171934
1:1.2121120250208506:-0.17321464905330858:0.11920871129693428:-1.0442359662799567
2:-0.8618489633477999:-2.1045692188948086:-0.4949292740687813:1.071803807037338
3:0.7215551622443669:-0.7067711336300845:-1.0395749851146963:0.27185988554282986
4:-0.42497232978883753:0.567020349793672:0.27623201927771873:-1.0874006912859915
5:-0.6736897080883706:0.1136484096888855:-1.4784265524372235:0.5249876671147047
6:0.4047052186802365:0.5770459859204836:-1.7150020161146375:-1.0392684835147725
7:-0.3706468582364464:-1.1578922506419993:-1.344311812731667:0.8448851414248841
8:1.0757697837155533:-0.10904997528022223:1.6435630703622064:-1.4693879595399115
9:0.35702056413309086:-0.6746001037299882:-1.776903716971867:-0.9689138124473498

In [173]: pd.read_csv('tmp2.sv', sep=None, engine='python')
\\\Out[173]:
→˓

Unnamed: 0 0 1 2 3
0 0 0.469112 -0.282863 -1.509059 -1.135632
1 1 1.212112 -0.173215 0.119209 -1.044236
2 2 -0.861849 -2.104569 -0.494929 1.071804
3 3 0.721555 -0.706771 -1.039575 0.271860
4 4 -0.424972 0.567020 0.276232 -1.087401
5 5 -0.673690 0.113648 -1.478427 0.524988
6 6 0.404705 0.577046 -1.715002 -1.039268
7 7 -0.370647 -1.157892 -1.344312 0.844885
8 8 1.075770 -0.109050 1.643563 -1.469388
9 9 0.357021 -0.674600 -1.776904 -0.968914

24.1.22 Reading multiple files to create a single DataFrame

It’s best to use concat() to combine multiple files. See the cookbook for an example.

24.1.23 Iterating through files chunk by chunk

Suppose you wish to iterate through a (potentially very large) file lazily rather than reading the entire file into memory,
such as the following:

In [174]: print(open('tmp.sv').read())
|0|1|2|3
0|0.4691122999071863|-0.2828633443286633|-1.5090585031735124|-1.1356323710171934
1|1.2121120250208506|-0.17321464905330858|0.11920871129693428|-1.0442359662799567
2|-0.8618489633477999|-2.1045692188948086|-0.4949292740687813|1.071803807037338
3|0.7215551622443669|-0.7067711336300845|-1.0395749851146963|0.27185988554282986
4|-0.42497232978883753|0.567020349793672|0.27623201927771873|-1.0874006912859915
5|-0.6736897080883706|0.1136484096888855|-1.4784265524372235|0.5249876671147047
6|0.4047052186802365|0.5770459859204836|-1.7150020161146375|-1.0392684835147725
7|-0.3706468582364464|-1.1578922506419993|-1.344311812731667|0.8448851414248841
8|1.0757697837155533|-0.10904997528022223|1.6435630703622064|-1.4693879595399115
9|0.35702056413309086|-0.6746001037299882|-1.776903716971867|-0.9689138124473498

In [175]: table = pd.read_table('tmp.sv', sep='|')

(continues on next page)

1154 Chapter 24. IO Tools (Text, CSV, HDF5, . . .)

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

In [176]: table
Out[176]:

Unnamed: 0 0 1 2 3
0 0 0.469112 -0.282863 -1.509059 -1.135632
1 1 1.212112 -0.173215 0.119209 -1.044236
2 2 -0.861849 -2.104569 -0.494929 1.071804
3 3 0.721555 -0.706771 -1.039575 0.271860
4 4 -0.424972 0.567020 0.276232 -1.087401
5 5 -0.673690 0.113648 -1.478427 0.524988
6 6 0.404705 0.577046 -1.715002 -1.039268
7 7 -0.370647 -1.157892 -1.344312 0.844885
8 8 1.075770 -0.109050 1.643563 -1.469388
9 9 0.357021 -0.674600 -1.776904 -0.968914

By specifying a chunksize to read_csv or read_table, the return value will be an iterable object of type
TextFileReader:

In [177]: reader = pd.read_table('tmp.sv', sep='|', chunksize=4)

In [178]: reader
Out[178]: <pandas.io.parsers.TextFileReader at 0x7f212235a518>

In [179]: for chunk in reader:
.....: print(chunk)
.....:

\\\ Unnamed: 0
→˓0 1 2 3
0 0 0.469112 -0.282863 -1.509059 -1.135632
1 1 1.212112 -0.173215 0.119209 -1.044236
2 2 -0.861849 -2.104569 -0.494929 1.071804
3 3 0.721555 -0.706771 -1.039575 0.271860

Unnamed: 0 0 1 2 3
4 4 -0.424972 0.567020 0.276232 -1.087401
5 5 -0.673690 0.113648 -1.478427 0.524988
6 6 0.404705 0.577046 -1.715002 -1.039268
7 7 -0.370647 -1.157892 -1.344312 0.844885

Unnamed: 0 0 1 2 3
8 8 1.075770 -0.10905 1.643563 -1.469388
9 9 0.357021 -0.67460 -1.776904 -0.968914

Specifying iterator=True will also return the TextFileReader object:

In [180]: reader = pd.read_table('tmp.sv', sep='|', iterator=True)

In [181]: reader.get_chunk(5)
Out[181]:

Unnamed: 0 0 1 2 3
0 0 0.469112 -0.282863 -1.509059 -1.135632
1 1 1.212112 -0.173215 0.119209 -1.044236
2 2 -0.861849 -2.104569 -0.494929 1.071804
3 3 0.721555 -0.706771 -1.039575 0.271860
4 4 -0.424972 0.567020 0.276232 -1.087401

24.1. CSV & Text files 1155

pandas: powerful Python data analysis toolkit, Release 0.23.4

24.1.24 Specifying the parser engine

Under the hood pandas uses a fast and efficient parser implemented in C as well as a Python implementation which is
currently more feature-complete. Where possible pandas uses the C parser (specified as engine='c'), but may fall
back to Python if C-unsupported options are specified. Currently, C-unsupported options include:

• sep other than a single character (e.g. regex separators)

• skipfooter

• sep=None with delim_whitespace=False

Specifying any of the above options will produce a ParserWarning unless the python engine is selected explicitly
using engine='python'.

24.1.25 Reading remote files

You can pass in a URL to a CSV file:

df = pd.read_csv('https://download.bls.gov/pub/time.series/cu/cu.item',
sep='\t')

S3 URLs are handled as well:

df = pd.read_csv('s3://pandas-test/tips.csv')

24.1.26 Writing out Data

24.1.26.1 Writing to CSV format

The Series and DataFrame objects have an instance method to_csv which allows storing the contents of the
object as a comma-separated-values file. The function takes a number of arguments. Only the first is required.

• path_or_buf: A string path to the file to write or a StringIO

• sep : Field delimiter for the output file (default “,”)

• na_rep: A string representation of a missing value (default ‘’)

• float_format: Format string for floating point numbers

• cols: Columns to write (default None)

• header: Whether to write out the column names (default True)

• index: whether to write row (index) names (default True)

• index_label: Column label(s) for index column(s) if desired. If None (default), and header and index are
True, then the index names are used. (A sequence should be given if the DataFrame uses MultiIndex).

• mode : Python write mode, default ‘w’

• encoding: a string representing the encoding to use if the contents are non-ASCII, for Python versions prior
to 3

• line_terminator: Character sequence denoting line end (default ‘\n’)

• quoting: Set quoting rules as in csv module (default csv.QUOTE_MINIMAL). Note that if you have set
a float_format then floats are converted to strings and csv.QUOTE_NONNUMERIC will treat them as non-
numeric

1156 Chapter 24. IO Tools (Text, CSV, HDF5, . . .)

pandas: powerful Python data analysis toolkit, Release 0.23.4

• quotechar: Character used to quote fields (default ‘”’)

• doublequote: Control quoting of quotechar in fields (default True)

• escapechar: Character used to escape sep and quotechar when appropriate (default None)

• chunksize: Number of rows to write at a time

• tupleize_cols: If False (default), write as a list of tuples, otherwise write in an expanded line format
suitable for read_csv

• date_format: Format string for datetime objects

24.1.26.2 Writing a formatted string

The DataFrame object has an instance method to_string which allows control over the string representation of
the object. All arguments are optional:

• buf default None, for example a StringIO object

• columns default None, which columns to write

• col_space default None, minimum width of each column.

• na_rep default NaN, representation of NA value

• formatters default None, a dictionary (by column) of functions each of which takes a single argument and
returns a formatted string

• float_format default None, a function which takes a single (float) argument and returns a formatted string;
to be applied to floats in the DataFrame.

• sparsify default True, set to False for a DataFrame with a hierarchical index to print every multiindex key
at each row.

• index_names default True, will print the names of the indices

• index default True, will print the index (ie, row labels)

• header default True, will print the column labels

• justify default left, will print column headers left- or right-justified

The Series object also has a to_string method, but with only the buf, na_rep, float_format arguments.
There is also a length argument which, if set to True, will additionally output the length of the Series.

24.2 JSON

Read and write JSON format files and strings.

24.2.1 Writing JSON

A Series or DataFrame can be converted to a valid JSON string. Use to_json with optional parameters:

• path_or_buf : the pathname or buffer to write the output This can be None in which case a JSON string is
returned

• orient :

Series:

24.2. JSON 1157

pandas: powerful Python data analysis toolkit, Release 0.23.4

– default is index

– allowed values are {split, records, index}

DataFrame:

– default is columns

– allowed values are {split, records, index, columns, values, table}

The format of the JSON string

split dict like {index -> [index], columns -> [columns], data -> [values]}
records list like [{column -> value}, . . . , {column -> value}]
index dict like {index -> {column -> value}}
columns dict like {column -> {index -> value}}
values just the values array

• date_format : string, type of date conversion, ‘epoch’ for timestamp, ‘iso’ for ISO8601.

• double_precision : The number of decimal places to use when encoding floating point values, default 10.

• force_ascii : force encoded string to be ASCII, default True.

• date_unit : The time unit to encode to, governs timestamp and ISO8601 precision. One of ‘s’, ‘ms’, ‘us’ or
‘ns’ for seconds, milliseconds, microseconds and nanoseconds respectively. Default ‘ms’.

• default_handler : The handler to call if an object cannot otherwise be converted to a suitable format for
JSON. Takes a single argument, which is the object to convert, and returns a serializable object.

• lines : If records orient, then will write each record per line as json.

Note NaN’s, NaT’s and None will be converted to null and datetime objects will be converted based on the
date_format and date_unit parameters.

In [182]: dfj = pd.DataFrame(randn(5, 2), columns=list('AB'))

In [183]: json = dfj.to_json()

In [184]: json
Out[184]: '{"A":{"0":-1.2945235903,"1":0.2766617129,"2":-0.0139597524,"3":-0.
→˓0061535699,"4":0.8957173022},"B":{"0":0.4137381054,"1":-0.472034511,"2":-0.
→˓3625429925,"3":-0.923060654,"4":0.8052440254}}'

24.2.1.1 Orient Options

There are a number of different options for the format of the resulting JSON file / string. Consider the following
DataFrame and Series:

In [185]: dfjo = pd.DataFrame(dict(A=range(1, 4), B=range(4, 7), C=range(7, 10)),
.....: columns=list('ABC'), index=list('xyz'))
.....:

In [186]: dfjo
Out[186]:

A B C
x 1 4 7
y 2 5 8
z 3 6 9

(continues on next page)

1158 Chapter 24. IO Tools (Text, CSV, HDF5, . . .)

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

In [187]: sjo = pd.Series(dict(x=15, y=16, z=17), name='D')

In [188]: sjo
Out[188]:
x 15
y 16
z 17
Name: D, dtype: int64

Column oriented (the default for DataFrame) serializes the data as nested JSON objects with column labels acting
as the primary index:

In [189]: dfjo.to_json(orient="columns")
Out[189]: '{"A":{"x":1,"y":2,"z":3},"B":{"x":4,"y":5,"z":6},"C":{"x":7,"y":8,"z":9}}'

Not available for Series

Index oriented (the default for Series) similar to column oriented but the index labels are now primary:

In [190]: dfjo.to_json(orient="index")
Out[190]: '{"x":{"A":1,"B":4,"C":7},"y":{"A":2,"B":5,"C":8},"z":{"A":3,"B":6,"C":9}}'

In [191]: sjo.to_json(orient="index")
\\Out[191]:
→˓'{"x":15,"y":16,"z":17}'

Record oriented serializes the data to a JSON array of column -> value records, index labels are not included. This is
useful for passing DataFrame data to plotting libraries, for example the JavaScript library d3.js:

In [192]: dfjo.to_json(orient="records")
Out[192]: '[{"A":1,"B":4,"C":7},{"A":2,"B":5,"C":8},{"A":3,"B":6,"C":9}]'

In [193]: sjo.to_json(orient="records")
\\Out[193]:
→˓'[15,16,17]'

Value oriented is a bare-bones option which serializes to nested JSON arrays of values only, column and index labels
are not included:

In [194]: dfjo.to_json(orient="values")
Out[194]: '[[1,4,7],[2,5,8],[3,6,9]]'

Not available for Series

Split oriented serializes to a JSON object containing separate entries for values, index and columns. Name is also
included for Series:

In [195]: dfjo.to_json(orient="split")
Out[195]: '{"columns":["A","B","C"],"index":["x","y","z"],"data":[[1,4,7],[2,5,8],[3,
→˓6,9]]}'

In [196]: sjo.to_json(orient="split")
\\\Out[196]:
→˓'{"name":"D","index":["x","y","z"],"data":[15,16,17]}'

24.2. JSON 1159

pandas: powerful Python data analysis toolkit, Release 0.23.4

Table oriented serializes to the JSON Table Schema, allowing for the preservation of metadata including but not
limited to dtypes and index names.

Note: Any orient option that encodes to a JSON object will not preserve the ordering of index and column labels
during round-trip serialization. If you wish to preserve label ordering use the split option as it uses ordered containers.

24.2.1.2 Date Handling

Writing in ISO date format:

In [197]: dfd = pd.DataFrame(randn(5, 2), columns=list('AB'))

In [198]: dfd['date'] = pd.Timestamp('20130101')

In [199]: dfd = dfd.sort_index(1, ascending=False)

In [200]: json = dfd.to_json(date_format='iso')

In [201]: json
Out[201]: '{"date":{"0":"2013-01-01T00:00:00.000Z","1":"2013-01-01T00:00:00.000Z","2":
→˓"2013-01-01T00:00:00.000Z","3":"2013-01-01T00:00:00.000Z","4":"2013-01-01T00:00:00.
→˓000Z"},"B":{"0":2.5656459463,"1":1.3403088498,"2":-0.2261692849,"3":0.8138502857,"4
→˓":-0.8273169356},"A":{"0":-1.2064117817,"1":1.4312559863,"2":-1.1702987971,"3":0.
→˓4108345112,"4":0.1320031703}}'

Writing in ISO date format, with microseconds:

In [202]: json = dfd.to_json(date_format='iso', date_unit='us')

In [203]: json
Out[203]: '{"date":{"0":"2013-01-01T00:00:00.000000Z","1":"2013-01-01T00:00:00.000000Z
→˓","2":"2013-01-01T00:00:00.000000Z","3":"2013-01-01T00:00:00.000000Z","4":"2013-01-
→˓01T00:00:00.000000Z"},"B":{"0":2.5656459463,"1":1.3403088498,"2":-0.2261692849,"3
→˓":0.8138502857,"4":-0.8273169356},"A":{"0":-1.2064117817,"1":1.4312559863,"2":-1.
→˓1702987971,"3":0.4108345112,"4":0.1320031703}}'

Epoch timestamps, in seconds:

In [204]: json = dfd.to_json(date_format='epoch', date_unit='s')

In [205]: json
Out[205]: '{"date":{"0":1356998400,"1":1356998400,"2":1356998400,"3":1356998400,"4
→˓":1356998400},"B":{"0":2.5656459463,"1":1.3403088498,"2":-0.2261692849,"3":0.
→˓8138502857,"4":-0.8273169356},"A":{"0":-1.2064117817,"1":1.4312559863,"2":-1.
→˓1702987971,"3":0.4108345112,"4":0.1320031703}}'

Writing to a file, with a date index and a date column:

In [206]: dfj2 = dfj.copy()

In [207]: dfj2['date'] = pd.Timestamp('20130101')

In [208]: dfj2['ints'] = list(range(5))

In [209]: dfj2['bools'] = True

(continues on next page)

1160 Chapter 24. IO Tools (Text, CSV, HDF5, . . .)

http://specs.frictionlessdata.io/json-table-schema/

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

In [210]: dfj2.index = pd.date_range('20130101', periods=5)

In [211]: dfj2.to_json('test.json')

In [212]: open('test.json').read()
Out[212]: '{"A":{"1356998400000":-1.2945235903,"1357084800000":0.2766617129,
→˓"1357171200000":-0.0139597524,"1357257600000":-0.0061535699,"1357344000000":0.
→˓8957173022},"B":{"1356998400000":0.4137381054,"1357084800000":-0.472034511,
→˓"1357171200000":-0.3625429925,"1357257600000":-0.923060654,"1357344000000":0.
→˓8052440254},"date":{"1356998400000":1356998400000,"1357084800000":1356998400000,
→˓"1357171200000":1356998400000,"1357257600000":1356998400000,"1357344000000
→˓":1356998400000},"ints":{"1356998400000":0,"1357084800000":1,"1357171200000":2,
→˓"1357257600000":3,"1357344000000":4},"bools":{"1356998400000":true,"1357084800000
→˓":true,"1357171200000":true,"1357257600000":true,"1357344000000":true}}'

24.2.1.3 Fallback Behavior

If the JSON serializer cannot handle the container contents directly it will fall back in the following manner:

• if the dtype is unsupported (e.g. np.complex) then the default_handler, if provided, will be called for
each value, otherwise an exception is raised.

• if an object is unsupported it will attempt the following:

– check if the object has defined a toDict method and call it. A toDict method should return a dict
which will then be JSON serialized.

– invoke the default_handler if one was provided.

– convert the object to a dict by traversing its contents. However this will often fail with an
OverflowError or give unexpected results.

In general the best approach for unsupported objects or dtypes is to provide a default_handler. For example:

DataFrame([1.0, 2.0, complex(1.0, 2.0)]).to_json() # raises

RuntimeError: Unhandled numpy dtype 15

can be dealt with by specifying a simple default_handler:

In [213]: pd.DataFrame([1.0, 2.0, complex(1.0, 2.0)]).to_json(default_handler=str)
Out[213]: '{"0":{"0":"(1+0j)","1":"(2+0j)","2":"(1+2j)"}}'

24.2.2 Reading JSON

Reading a JSON string to pandas object can take a number of parameters. The parser will try to parse a DataFrame
if typ is not supplied or is None. To explicitly force Series parsing, pass typ=series

• filepath_or_buffer : a VALID JSON string or file handle / StringIO. The string could be a URL. Valid
URL schemes include http, ftp, S3, and file. For file URLs, a host is expected. For instance, a local file could be
file ://localhost/path/to/table.json

• typ : type of object to recover (series or frame), default ‘frame’

• orient :

24.2. JSON 1161

pandas: powerful Python data analysis toolkit, Release 0.23.4

Series :

– default is index

– allowed values are {split, records, index}

DataFrame

– default is columns

– allowed values are {split, records, index, columns, values, table}

The format of the JSON string

split dict like {index -> [index], columns -> [columns], data -> [values]}
records list like [{column -> value}, . . . , {column -> value}]
index dict like {index -> {column -> value}}
columns dict like {column -> {index -> value}}
values just the values array
table adhering to the JSON Table Schema

• dtype : if True, infer dtypes, if a dict of column to dtype, then use those, if False, then don’t infer dtypes at
all, default is True, apply only to the data.

• convert_axes : boolean, try to convert the axes to the proper dtypes, default is True

• convert_dates : a list of columns to parse for dates; If True, then try to parse date-like columns, default
is True.

• keep_default_dates : boolean, default True. If parsing dates, then parse the default date-like columns.

• numpy : direct decoding to NumPy arrays. default is False; Supports numeric data only, although labels may
be non-numeric. Also note that the JSON ordering MUST be the same for each term if numpy=True.

• precise_float : boolean, default False. Set to enable usage of higher precision (strtod) function when
decoding string to double values. Default (False) is to use fast but less precise builtin functionality.

• date_unit : string, the timestamp unit to detect if converting dates. Default None. By default the timestamp
precision will be detected, if this is not desired then pass one of ‘s’, ‘ms’, ‘us’ or ‘ns’ to force timestamp
precision to seconds, milliseconds, microseconds or nanoseconds respectively.

• lines : reads file as one json object per line.

• encoding : The encoding to use to decode py3 bytes.

• chunksize : when used in combination with lines=True, return a JsonReader which reads in chunksize
lines per iteration.

The parser will raise one of ValueError/TypeError/AssertionError if the JSON is not parseable.

If a non-default orient was used when encoding to JSON be sure to pass the same option here so that decoding
produces sensible results, see Orient Options for an overview.

24.2.2.1 Data Conversion

The default of convert_axes=True, dtype=True, and convert_dates=Truewill try to parse the axes, and
all of the data into appropriate types, including dates. If you need to override specific dtypes, pass a dict to dtype.
convert_axes should only be set to False if you need to preserve string-like numbers (e.g. ‘1’, ‘2’) in an axes.

1162 Chapter 24. IO Tools (Text, CSV, HDF5, . . .)

http://specs.frictionlessdata.io/json-table-schema/

pandas: powerful Python data analysis toolkit, Release 0.23.4

Note: Large integer values may be converted to dates if convert_dates=True and the data and / or column labels
appear ‘date-like’. The exact threshold depends on the date_unit specified. ‘date-like’ means that the column label
meets one of the following criteria:

• it ends with '_at'

• it ends with '_time'

• it begins with 'timestamp'

• it is 'modified'

• it is 'date'

Warning: When reading JSON data, automatic coercing into dtypes has some quirks:

• an index can be reconstructed in a different order from serialization, that is, the returned order is not guaran-
teed to be the same as before serialization

• a column that was float data will be converted to integer if it can be done safely, e.g. a column of 1.

• bool columns will be converted to integer on reconstruction

Thus there are times where you may want to specify specific dtypes via the dtype keyword argument.

Reading from a JSON string:

In [214]: pd.read_json(json)
Out[214]:

date B A
0 2013-01-01 2.565646 -1.206412
1 2013-01-01 1.340309 1.431256
2 2013-01-01 -0.226169 -1.170299
3 2013-01-01 0.813850 0.410835
4 2013-01-01 -0.827317 0.132003

Reading from a file:

In [215]: pd.read_json('test.json')
Out[215]:

A B date ints bools
2013-01-01 -1.294524 0.413738 2013-01-01 0 True
2013-01-02 0.276662 -0.472035 2013-01-01 1 True
2013-01-03 -0.013960 -0.362543 2013-01-01 2 True
2013-01-04 -0.006154 -0.923061 2013-01-01 3 True
2013-01-05 0.895717 0.805244 2013-01-01 4 True

Don’t convert any data (but still convert axes and dates):

In [216]: pd.read_json('test.json', dtype=object).dtypes
Out[216]:
A object
B object
date object
ints object
bools object
dtype: object

24.2. JSON 1163

pandas: powerful Python data analysis toolkit, Release 0.23.4

Specify dtypes for conversion:

In [217]: pd.read_json('test.json', dtype={'A': 'float32', 'bools': 'int8'}).dtypes
Out[217]:
A float32
B float64
date datetime64[ns]
ints int64
bools int8
dtype: object

Preserve string indices:

In [218]: si = pd.DataFrame(np.zeros((4, 4)),
.....: columns=list(range(4)),
.....: index=[str(i) for i in range(4)])
.....:

In [219]: si
Out[219]:

0 1 2 3
0 0.0 0.0 0.0 0.0
1 0.0 0.0 0.0 0.0
2 0.0 0.0 0.0 0.0
3 0.0 0.0 0.0 0.0

In [220]: si.index
\\\Out[220]:
→˓Index(['0', '1', '2', '3'], dtype='object')

In [221]: si.columns
\\\Out[221]:
→˓Int64Index([0, 1, 2, 3], dtype='int64')

In [222]: json = si.to_json()

In [223]: sij = pd.read_json(json, convert_axes=False)

In [224]: sij
Out[224]:

0 1 2 3
0 0 0 0 0
1 0 0 0 0
2 0 0 0 0
3 0 0 0 0

In [225]: sij.index
\\\Out[225]:
→˓Index(['0', '1', '2', '3'], dtype='object')

In [226]: sij.columns
\\\Out[226]:
→˓Index(['0', '1', '2', '3'], dtype='object')

Dates written in nanoseconds need to be read back in nanoseconds:

In [227]: json = dfj2.to_json(date_unit='ns')

(continues on next page)

1164 Chapter 24. IO Tools (Text, CSV, HDF5, . . .)

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

Try to parse timestamps as millseconds -> Won't Work
In [228]: dfju = pd.read_json(json, date_unit='ms')

In [229]: dfju
Out[229]:

A B date ints bools
1356998400000000000 -1.294524 0.413738 1356998400000000000 0 True
1357084800000000000 0.276662 -0.472035 1356998400000000000 1 True
1357171200000000000 -0.013960 -0.362543 1356998400000000000 2 True
1357257600000000000 -0.006154 -0.923061 1356998400000000000 3 True
1357344000000000000 0.895717 0.805244 1356998400000000000 4 True

Let pandas detect the correct precision
In [230]: dfju = pd.read_json(json)

In [231]: dfju
Out[231]:

A B date ints bools
2013-01-01 -1.294524 0.413738 2013-01-01 0 True
2013-01-02 0.276662 -0.472035 2013-01-01 1 True
2013-01-03 -0.013960 -0.362543 2013-01-01 2 True
2013-01-04 -0.006154 -0.923061 2013-01-01 3 True
2013-01-05 0.895717 0.805244 2013-01-01 4 True

Or specify that all timestamps are in nanoseconds
In [232]: dfju = pd.read_json(json, date_unit='ns')

In [233]: dfju
Out[233]:

A B date ints bools
2013-01-01 -1.294524 0.413738 2013-01-01 0 True
2013-01-02 0.276662 -0.472035 2013-01-01 1 True
2013-01-03 -0.013960 -0.362543 2013-01-01 2 True
2013-01-04 -0.006154 -0.923061 2013-01-01 3 True
2013-01-05 0.895717 0.805244 2013-01-01 4 True

24.2.2.2 The Numpy Parameter

Note: This supports numeric data only. Index and columns labels may be non-numeric, e.g. strings, dates etc.

If numpy=True is passed to read_json an attempt will be made to sniff an appropriate dtype during deserialization
and to subsequently decode directly to NumPy arrays, bypassing the need for intermediate Python objects.

This can provide speedups if you are deserialising a large amount of numeric data:

In [234]: randfloats = np.random.uniform(-100, 1000, 10000)

In [235]: randfloats.shape = (1000, 10)

In [236]: dffloats = pd.DataFrame(randfloats, columns=list('ABCDEFGHIJ'))

In [237]: jsonfloats = dffloats.to_json()

24.2. JSON 1165

pandas: powerful Python data analysis toolkit, Release 0.23.4

In [238]: timeit pd.read_json(jsonfloats)
10.3 ms +- 682 us per loop (mean +- std. dev. of 7 runs, 100 loops each)

In [239]: timeit pd.read_json(jsonfloats, numpy=True)
6.54 ms +- 200 us per loop (mean +- std. dev. of 7 runs, 100 loops each)

The speedup is less noticeable for smaller datasets:

In [240]: jsonfloats = dffloats.head(100).to_json()

In [241]: timeit pd.read_json(jsonfloats)
6.06 ms +- 303 us per loop (mean +- std. dev. of 7 runs, 100 loops each)

In [242]: timeit pd.read_json(jsonfloats, numpy=True)
5.15 ms +- 268 us per loop (mean +- std. dev. of 7 runs, 100 loops each)

Warning: Direct NumPy decoding makes a number of assumptions and may fail or produce unexpected output if
these assumptions are not satisfied:

• data is numeric.

• data is uniform. The dtype is sniffed from the first value decoded. A ValueError may be raised, or
incorrect output may be produced if this condition is not satisfied.

• labels are ordered. Labels are only read from the first container, it is assumed that each subsequent row /
column has been encoded in the same order. This should be satisfied if the data was encoded using to_json
but may not be the case if the JSON is from another source.

24.2.3 Normalization

pandas provides a utility function to take a dict or list of dicts and normalize this semi-structured data into a flat table.

In [243]: from pandas.io.json import json_normalize

In [244]: data = [{'id': 1, 'name': {'first': 'Coleen', 'last': 'Volk'}},
.....: {'name': {'given': 'Mose', 'family': 'Regner'}},
.....: {'id': 2, 'name': 'Faye Raker'}]
.....:

In [245]: json_normalize(data)
Out[245]:

id name name.family name.first name.given name.last
0 1.0 NaN NaN Coleen NaN Volk
1 NaN NaN Regner NaN Mose NaN
2 2.0 Faye Raker NaN NaN NaN NaN

In [246]: data = [{'state': 'Florida',
.....: 'shortname': 'FL',
.....: 'info': {
.....: 'governor': 'Rick Scott'
.....: },
.....: 'counties': [{'name': 'Dade', 'population': 12345},
.....: {'name': 'Broward', 'population': 40000},

(continues on next page)

1166 Chapter 24. IO Tools (Text, CSV, HDF5, . . .)

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

.....: {'name': 'Palm Beach', 'population': 60000}]},

.....: {'state': 'Ohio',

.....: 'shortname': 'OH',

.....: 'info': {

.....: 'governor': 'John Kasich'

.....: },

.....: 'counties': [{'name': 'Summit', 'population': 1234},

.....: {'name': 'Cuyahoga', 'population': 1337}]}]

.....:

In [247]: json_normalize(data, 'counties', ['state', 'shortname', ['info', 'governor
→˓']])
Out[247]:

name population state shortname info.governor
0 Dade 12345 Florida FL Rick Scott
1 Broward 40000 Florida FL Rick Scott
2 Palm Beach 60000 Florida FL Rick Scott
3 Summit 1234 Ohio OH John Kasich
4 Cuyahoga 1337 Ohio OH John Kasich

24.2.4 Line delimited json

New in version 0.19.0.

pandas is able to read and write line-delimited json files that are common in data processing pipelines using Hadoop
or Spark.

New in version 0.21.0.

For line-delimited json files, pandas can also return an iterator which reads in chunksize lines at a time. This can
be useful for large files or to read from a stream.

In [248]: jsonl = '''
.....: {"a": 1, "b": 2}
.....: {"a": 3, "b": 4}
.....: '''
.....:

In [249]: df = pd.read_json(jsonl, lines=True)

In [250]: df
Out[250]:

a b
0 1 2
1 3 4

In [251]: df.to_json(orient='records', lines=True)
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\Out[251]: '{"a":1,"b":2}\n{"a":3,"b":4}'

reader is an iterator that returns `chunksize` lines each iteration
In [252]: reader = pd.read_json(StringIO(jsonl), lines=True, chunksize=1)

In [253]: reader
Out[253]: <pandas.io.json.json.JsonReader at 0x7f20fb0bc588>

In [254]: for chunk in reader:

(continues on next page)

24.2. JSON 1167

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

.....: print(chunk)

.....:
\\\Empty DataFrame
Columns: []
Index: []

a b
0 1 2

a b
1 3 4

24.2.5 Table Schema

New in version 0.20.0.

Table Schema is a spec for describing tabular datasets as a JSON object. The JSON includes information on the field
names, types, and other attributes. You can use the orient table to build a JSON string with two fields, schema and
data.

In [255]: df = pd.DataFrame(
.....: {'A': [1, 2, 3],
.....: 'B': ['a', 'b', 'c'],
.....: 'C': pd.date_range('2016-01-01', freq='d', periods=3),
.....: }, index=pd.Index(range(3), name='idx'))
.....:

In [256]: df
Out[256]:

A B C
idx
0 1 a 2016-01-01
1 2 b 2016-01-02
2 3 c 2016-01-03

In [257]: df.to_json(orient='table', date_format="iso")
\\Out[257]:
→˓'{"schema": {"fields":[{"name":"idx","type":"integer"},{"name":"A","type":"integer"}
→˓,{"name":"B","type":"string"},{"name":"C","type":"datetime"}],"primaryKey":["idx"],
→˓"pandas_version":"0.20.0"}, "data": [{"idx":0,"A":1,"B":"a","C":"2016-01-
→˓01T00:00:00.000Z"},{"idx":1,"A":2,"B":"b","C":"2016-01-02T00:00:00.000Z"},{"idx":2,
→˓"A":3,"B":"c","C":"2016-01-03T00:00:00.000Z"}]}'

The schema field contains the fields key, which itself contains a list of column name to type pairs, including the
Index or MultiIndex (see below for a list of types). The schema field also contains a primaryKey field if the
(Multi)index is unique.

The second field, data, contains the serialized data with the records orient. The index is included, and any
datetimes are ISO 8601 formatted, as required by the Table Schema spec.

The full list of types supported are described in the Table Schema spec. This table shows the mapping from pandas
types:

1168 Chapter 24. IO Tools (Text, CSV, HDF5, . . .)

http://specs.frictionlessdata.io/json-table-schema/

pandas: powerful Python data analysis toolkit, Release 0.23.4

Pandas type Table Schema type
int64 integer
float64 number
bool boolean
datetime64[ns] datetime
timedelta64[ns] duration
categorical any
object str

A few notes on the generated table schema:

• The schema object contains a pandas_version field. This contains the version of pandas’ dialect of the
schema, and will be incremented with each revision.

• All dates are converted to UTC when serializing. Even timezone naïve values, which are treated as UTC with
an offset of 0.

In [258]: from pandas.io.json import build_table_schema

In [259]: s = pd.Series(pd.date_range('2016', periods=4))

In [260]: build_table_schema(s)
Out[260]:
{'fields': [{'name': 'index', 'type': 'integer'},
{'name': 'values', 'type': 'datetime'}],

'primaryKey': ['index'],
'pandas_version': '0.20.0'}

• datetimes with a timezone (before serializing), include an additional field tz with the time zone name (e.g.
'US/Central').

In [261]: s_tz = pd.Series(pd.date_range('2016', periods=12,
.....: tz='US/Central'))
.....:

In [262]: build_table_schema(s_tz)
Out[262]:
{'fields': [{'name': 'index', 'type': 'integer'},
{'name': 'values', 'type': 'datetime', 'tz': 'US/Central'}],

'primaryKey': ['index'],
'pandas_version': '0.20.0'}

• Periods are converted to timestamps before serialization, and so have the same behavior of being converted to
UTC. In addition, periods will contain and additional field freq with the period’s frequency, e.g. 'A-DEC'.

In [263]: s_per = pd.Series(1, index=pd.period_range('2016', freq='A-DEC',
.....: periods=4))
.....:

In [264]: build_table_schema(s_per)
Out[264]:
{'fields': [{'name': 'index', 'type': 'datetime', 'freq': 'A-DEC'},
{'name': 'values', 'type': 'integer'}],

'primaryKey': ['index'],
'pandas_version': '0.20.0'}

24.2. JSON 1169

pandas: powerful Python data analysis toolkit, Release 0.23.4

• Categoricals use the any type and an enum constraint listing the set of possible values. Additionally, an
ordered field is included:

In [265]: s_cat = pd.Series(pd.Categorical(['a', 'b', 'a']))

In [266]: build_table_schema(s_cat)
Out[266]:
{'fields': [{'name': 'index', 'type': 'integer'},
{'name': 'values',
'type': 'any',
'constraints': {'enum': ['a', 'b']},
'ordered': False}],

'primaryKey': ['index'],
'pandas_version': '0.20.0'}

• A primaryKey field, containing an array of labels, is included if the index is unique:

In [267]: s_dupe = pd.Series([1, 2], index=[1, 1])

In [268]: build_table_schema(s_dupe)
Out[268]:
{'fields': [{'name': 'index', 'type': 'integer'},
{'name': 'values', 'type': 'integer'}],

'pandas_version': '0.20.0'}

• The primaryKey behavior is the same with MultiIndexes, but in this case the primaryKey is an array:

In [269]: s_multi = pd.Series(1, index=pd.MultiIndex.from_product([('a', 'b'),
.....: (0, 1)]))
.....:

In [270]: build_table_schema(s_multi)
Out[270]:
{'fields': [{'name': 'level_0', 'type': 'string'},
{'name': 'level_1', 'type': 'integer'},
{'name': 'values', 'type': 'integer'}],

'primaryKey': FrozenList(['level_0', 'level_1']),
'pandas_version': '0.20.0'}

• The default naming roughly follows these rules:

– For series, the object.name is used. If that’s none, then the name is values

– For DataFrames, the stringified version of the column name is used

– For Index (not MultiIndex), index.name is used, with a fallback to index if that is None.

– For MultiIndex, mi.names is used. If any level has no name, then level_<i> is used.

New in version 0.23.0.

read_json also accepts orient='table' as an argument. This allows for the preserveration of metadata such
as dtypes and index names in a round-trippable manner.

In [271]: df = pd.DataFrame({'foo': [1, 2, 3, 4],
.....: 'bar': ['a', 'b', 'c', 'd'],
.....: 'baz': pd.date_range('2018-01-01', freq='d',

→˓periods=4),
.....: 'qux': pd.Categorical(['a', 'b', 'c', 'c'])
.....: }, index=pd.Index(range(4), name='idx'))

(continues on next page)

1170 Chapter 24. IO Tools (Text, CSV, HDF5, . . .)

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

.....:

In [272]: df
Out[272]:

foo bar baz qux
idx
0 1 a 2018-01-01 a
1 2 b 2018-01-02 b
2 3 c 2018-01-03 c
3 4 d 2018-01-04 c

In [273]: df.dtypes
\\\Out[273]:
→˓

foo int64
bar object
baz datetime64[ns]
qux category
dtype: object

In [274]: df.to_json('test.json', orient='table')

In [275]: new_df = pd.read_json('test.json', orient='table')

In [276]: new_df
Out[276]:

foo bar baz qux
idx
0 1 a 2018-01-01 a
1 2 b 2018-01-02 b
2 3 c 2018-01-03 c
3 4 d 2018-01-04 c

In [277]: new_df.dtypes
\\\Out[277]:
→˓

foo int64
bar object
baz datetime64[ns]
qux category
dtype: object

Please note that the literal string ‘index’ as the name of an Index is not round-trippable, nor are any names begin-
ning with 'level_' within a MultiIndex. These are used by default in DataFrame.to_json() to indicate
missing values and the subsequent read cannot distinguish the intent.

In [278]: df.index.name = 'index'

In [279]: df.to_json('test.json', orient='table')

In [280]: new_df = pd.read_json('test.json', orient='table')

In [281]: print(new_df.index.name)
None

24.2. JSON 1171

pandas: powerful Python data analysis toolkit, Release 0.23.4

24.3 HTML

24.3.1 Reading HTML Content

Warning: We highly encourage you to read the HTML Table Parsing gotchas below regarding the issues sur-
rounding the BeautifulSoup4/html5lib/lxml parsers.

The top-level read_html() function can accept an HTML string/file/URL and will parse HTML tables into list of
pandas DataFrames. Let’s look at a few examples.

Note: read_html returns a list of DataFrame objects, even if there is only a single table contained in the
HTML content.

Read a URL with no options:

In [282]: url = 'http://www.fdic.gov/bank/individual/failed/banklist.html'

In [283]: dfs = pd.read_html(url)

In [284]: dfs
Out[284]:
[Bank Name City ..
→˓. Closing Date Updated Date
0 Washington Federal Bank for Savings Chicago ..
→˓. December 15, 2017 February 21, 2018
1 The Farmers and Merchants State Bank of Argonia Argonia ..
→˓. October 13, 2017 February 21, 2018
2 Fayette County Bank Saint Elmo ..
→˓. May 26, 2017 July 26, 2017
3 Guaranty Bank, (d/b/a BestBank in Georgia & Mi... Milwaukee ..
→˓. May 5, 2017 March 22, 2018
4 First NBC Bank New Orleans ..
→˓. April 28, 2017 December 5, 2017
5 Proficio Bank Cottonwood Heights ..
→˓. March 3, 2017 March 7, 2018
6 Seaway Bank and Trust Company Chicago ..
→˓. January 27, 2017 May 18, 2017
..
→˓.
548 Hamilton Bank, NA En Espanol Miami ..
→˓. January 11, 2002 September 21, 2015
549 Sinclair National Bank Gravette ..
→˓. September 7, 2001 October 6, 2017
550 Superior Bank, FSB Hinsdale ..
→˓. July 27, 2001 August 19, 2014
551 Malta National Bank Malta ..
→˓. May 3, 2001 November 18, 2002
552 First Alliance Bank & Trust Co. Manchester ..
→˓. February 2, 2001 February 18, 2003
553 National State Bank of Metropolis Metropolis ..
→˓. December 14, 2000 March 17, 2005
554 Bank of Honolulu Honolulu ..
→˓. October 13, 2000 March 17, 2005

(continues on next page)

1172 Chapter 24. IO Tools (Text, CSV, HDF5, . . .)

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

[555 rows x 7 columns]]

Note: The data from the above URL changes every Monday so the resulting data above and the data below may be
slightly different.

Read in the content of the file from the above URL and pass it to read_html as a string:

In [285]: with open(file_path, 'r') as f:
.....: dfs = pd.read_html(f.read())
.....:

In [286]: dfs
Out[286]:
[Bank Name City ST CERT
→˓ Acquiring Institution Closing Date Updated Date
0 Banks of Wisconsin d/b/a Bank of Kenosha Kenosha WI 35386
→˓ North Shore Bank, FSB May 31, 2013 May 31, 2013
1 Central Arizona Bank Scottsdale AZ 34527
→˓ Western State Bank May 14, 2013 May 20, 2013
2 Sunrise Bank Valdosta GA 58185
→˓ Synovus Bank May 10, 2013 May 21, 2013
3 Pisgah Community Bank Asheville NC 58701
→˓ Capital Bank, N.A. May 10, 2013 May 14, 2013
4 Douglas County Bank Douglasville GA 21649
→˓ Hamilton State Bank April 26, 2013 May 16, 2013
5 Parkway Bank Lenoir NC 57158
→˓CertusBank, National Association April 26, 2013 May 17, 2013
6 Chipola Community Bank Marianna FL 58034 First
→˓Federal Bank of Florida April 19, 2013 May 16, 2013
..
→˓
498 Hamilton Bank, NAEn Espanol Miami FL 24382 Israel
→˓Discount Bank of New York January 11, 2002 June 5, 2012
499 Sinclair National Bank Gravette AR 34248
→˓ Delta Trust & Bank September 7, 2001 February 10, 2004
500 Superior Bank, FSB Hinsdale IL 32646
→˓ Superior Federal, FSB July 27, 2001 June 5, 2012
501 Malta National Bank Malta OH 6629
→˓ North Valley Bank May 3, 2001 November 18, 2002
502 First Alliance Bank & Trust Co. Manchester NH 34264 Southern New
→˓Hampshire Bank & Trust February 2, 2001 February 18, 2003
503 National State Bank of Metropolis Metropolis IL 3815
→˓Banterra Bank of Marion December 14, 2000 March 17, 2005
504 Bank of Honolulu Honolulu HI 21029
→˓ Bank of the Orient October 13, 2000 March 17, 2005

[505 rows x 7 columns]]

You can even pass in an instance of StringIO if you so desire:

In [287]: with open(file_path, 'r') as f:
.....: sio = StringIO(f.read())
.....:

(continues on next page)

24.3. HTML 1173

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

In [288]: dfs = pd.read_html(sio)

In [289]: dfs
Out[289]:
[Bank Name City ST CERT
→˓ Acquiring Institution Closing Date Updated Date
0 Banks of Wisconsin d/b/a Bank of Kenosha Kenosha WI 35386
→˓ North Shore Bank, FSB May 31, 2013 May 31, 2013
1 Central Arizona Bank Scottsdale AZ 34527
→˓ Western State Bank May 14, 2013 May 20, 2013
2 Sunrise Bank Valdosta GA 58185
→˓ Synovus Bank May 10, 2013 May 21, 2013
3 Pisgah Community Bank Asheville NC 58701
→˓ Capital Bank, N.A. May 10, 2013 May 14, 2013
4 Douglas County Bank Douglasville GA 21649
→˓ Hamilton State Bank April 26, 2013 May 16, 2013
5 Parkway Bank Lenoir NC 57158
→˓CertusBank, National Association April 26, 2013 May 17, 2013
6 Chipola Community Bank Marianna FL 58034 First
→˓Federal Bank of Florida April 19, 2013 May 16, 2013
..
→˓
498 Hamilton Bank, NAEn Espanol Miami FL 24382 Israel
→˓Discount Bank of New York January 11, 2002 June 5, 2012
499 Sinclair National Bank Gravette AR 34248
→˓ Delta Trust & Bank September 7, 2001 February 10, 2004
500 Superior Bank, FSB Hinsdale IL 32646
→˓ Superior Federal, FSB July 27, 2001 June 5, 2012
501 Malta National Bank Malta OH 6629
→˓ North Valley Bank May 3, 2001 November 18, 2002
502 First Alliance Bank & Trust Co. Manchester NH 34264 Southern New
→˓Hampshire Bank & Trust February 2, 2001 February 18, 2003
503 National State Bank of Metropolis Metropolis IL 3815
→˓Banterra Bank of Marion December 14, 2000 March 17, 2005
504 Bank of Honolulu Honolulu HI 21029
→˓ Bank of the Orient October 13, 2000 March 17, 2005

[505 rows x 7 columns]]

Note: The following examples are not run by the IPython evaluator due to the fact that having so many network-
accessing functions slows down the documentation build. If you spot an error or an example that doesn’t run, please
do not hesitate to report it over on pandas GitHub issues page.

Read a URL and match a table that contains specific text:

match = 'Metcalf Bank'
df_list = pd.read_html(url, match=match)

Specify a header row (by default <th> or <td> elements located within a <thead> are used to form the column
index, if multiple rows are contained within <thead> then a multiindex is created); if specified, the header row is
taken from the data minus the parsed header elements (<th> elements).

dfs = pd.read_html(url, header=0)

Specify an index column:

1174 Chapter 24. IO Tools (Text, CSV, HDF5, . . .)

http://www.github.com/pandas-dev/pandas/issues

pandas: powerful Python data analysis toolkit, Release 0.23.4

dfs = pd.read_html(url, index_col=0)

Specify a number of rows to skip:

dfs = pd.read_html(url, skiprows=0)

Specify a number of rows to skip using a list (xrange (Python 2 only) works as well):

dfs = pd.read_html(url, skiprows=range(2))

Specify an HTML attribute:

dfs1 = pd.read_html(url, attrs={'id': 'table'})
dfs2 = pd.read_html(url, attrs={'class': 'sortable'})
print(np.array_equal(dfs1[0], dfs2[0])) # Should be True

Specify values that should be converted to NaN:

dfs = pd.read_html(url, na_values=['No Acquirer'])

New in version 0.19.

Specify whether to keep the default set of NaN values:

dfs = pd.read_html(url, keep_default_na=False)

New in version 0.19.

Specify converters for columns. This is useful for numerical text data that has leading zeros. By default columns that
are numerical are cast to numeric types and the leading zeros are lost. To avoid this, we can convert these columns to
strings.

url_mcc = 'https://en.wikipedia.org/wiki/Mobile_country_code'
dfs = pd.read_html(url_mcc, match='Telekom Albania', header=0, converters={'MNC':
str})

New in version 0.19.

Use some combination of the above:

dfs = pd.read_html(url, match='Metcalf Bank', index_col=0)

Read in pandas to_html output (with some loss of floating point precision):

df = pd.DataFrame(randn(2, 2))
s = df.to_html(float_format='{0:.40g}'.format)
dfin = pd.read_html(s, index_col=0)

The lxml backend will raise an error on a failed parse if that is the only parser you provide. If you only have a single
parser you can provide just a string, but it is considered good practice to pass a list with one string if, for example, the
function expects a sequence of strings. You may use:

dfs = pd.read_html(url, 'Metcalf Bank', index_col=0, flavor=['lxml'])

Or you could pass flavor='lxml' without a list:

dfs = pd.read_html(url, 'Metcalf Bank', index_col=0, flavor='lxml')

24.3. HTML 1175

pandas: powerful Python data analysis toolkit, Release 0.23.4

However, if you have bs4 and html5lib installed and pass None or ['lxml', 'bs4'] then the parse will most
likely succeed. Note that as soon as a parse succeeds, the function will return.

dfs = pd.read_html(url, 'Metcalf Bank', index_col=0, flavor=['lxml', 'bs4'])

24.3.2 Writing to HTML files

DataFrame objects have an instance method to_html which renders the contents of the DataFrame as an HTML
table. The function arguments are as in the method to_string described above.

Note: Not all of the possible options for DataFrame.to_html are shown here for brevity’s sake. See
to_html() for the full set of options.

In [290]: df = pd.DataFrame(randn(2, 2))

In [291]: df
Out[291]:

0 1
0 -0.184744 0.496971
1 -0.856240 1.857977

In [292]: print(df.to_html()) # raw html
\\\<table
→˓border="1" class="dataframe">
<thead>
<tr style="text-align: right;">

<th></th>
<th>0</th>
<th>1</th>

</tr>
</thead>
<tbody>
<tr>

<th>0</th>
<td>-0.184744</td>
<td>0.496971</td>

</tr>
<tr>

<th>1</th>
<td>-0.856240</td>
<td>1.857977</td>

</tr>
</tbody>

</table>

HTML:

The columns argument will limit the columns shown:

In [293]: print(df.to_html(columns=[0]))
<table border="1" class="dataframe">

<thead>
<tr style="text-align: right;">

<th></th>
<th>0</th>

(continues on next page)

1176 Chapter 24. IO Tools (Text, CSV, HDF5, . . .)

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

</tr>
</thead>
<tbody>
<tr>

<th>0</th>
<td>-0.184744</td>

</tr>
<tr>

<th>1</th>
<td>-0.856240</td>

</tr>
</tbody>

</table>

HTML:

float_format takes a Python callable to control the precision of floating point values:

In [294]: print(df.to_html(float_format='{0:.10f}'.format))
<table border="1" class="dataframe">

<thead>
<tr style="text-align: right;">

<th></th>
<th>0</th>
<th>1</th>

</tr>
</thead>
<tbody>
<tr>

<th>0</th>
<td>-0.1847438576</td>
<td>0.4969711327</td>

</tr>
<tr>

<th>1</th>
<td>-0.8562396763</td>
<td>1.8579766508</td>

</tr>
</tbody>

</table>

HTML:

bold_rows will make the row labels bold by default, but you can turn that off:

In [295]: print(df.to_html(bold_rows=False))
<table border="1" class="dataframe">

<thead>
<tr style="text-align: right;">

<th></th>
<th>0</th>
<th>1</th>

</tr>
</thead>
<tbody>
<tr>

<td>0</td>

(continues on next page)

24.3. HTML 1177

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

<td>-0.184744</td>
<td>0.496971</td>

</tr>
<tr>

<td>1</td>
<td>-0.856240</td>
<td>1.857977</td>

</tr>
</tbody>

</table>

The classes argument provides the ability to give the resulting HTML table CSS classes. Note that these classes
are appended to the existing 'dataframe' class.

In [296]: print(df.to_html(classes=['awesome_table_class', 'even_more_awesome_class
→˓']))
<table border="1" class="dataframe awesome_table_class even_more_awesome_class">

<thead>
<tr style="text-align: right;">

<th></th>
<th>0</th>
<th>1</th>

</tr>
</thead>
<tbody>
<tr>

<th>0</th>
<td>-0.184744</td>
<td>0.496971</td>

</tr>
<tr>

<th>1</th>
<td>-0.856240</td>
<td>1.857977</td>

</tr>
</tbody>

</table>

Finally, the escape argument allows you to control whether the “<”, “>” and “&” characters escaped in the resulting
HTML (by default it is True). So to get the HTML without escaped characters pass escape=False

In [297]: df = pd.DataFrame({'a': list('&<>'), 'b': randn(3)})

Escaped:

In [298]: print(df.to_html())
<table border="1" class="dataframe">

<thead>
<tr style="text-align: right;">

<th></th>
<th>a</th>
<th>b</th>

</tr>
</thead>
<tbody>
<tr>

(continues on next page)

1178 Chapter 24. IO Tools (Text, CSV, HDF5, . . .)

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

<th>0</th>
<td>&</td>
<td>-0.474063</td>

</tr>
<tr>

<th>1</th>
<td><</td>
<td>-0.230305</td>

</tr>
<tr>

<th>2</th>
<td>></td>
<td>-0.400654</td>

</tr>
</tbody>

</table>

Not escaped:

In [299]: print(df.to_html(escape=False))
<table border="1" class="dataframe">

<thead>
<tr style="text-align: right;">

<th></th>
<th>a</th>
<th>b</th>

</tr>
</thead>
<tbody>
<tr>

<th>0</th>
<td>&</td>
<td>-0.474063</td>

</tr>
<tr>

<th>1</th>
<td><</td>
<td>-0.230305</td>

</tr>
<tr>

<th>2</th>
<td>></td>
<td>-0.400654</td>

</tr>
</tbody>

</table>

Note: Some browsers may not show a difference in the rendering of the previous two HTML tables.

24.3.3 HTML Table Parsing Gotchas

There are some versioning issues surrounding the libraries that are used to parse HTML tables in the top-level pandas
io function read_html.

24.3. HTML 1179

pandas: powerful Python data analysis toolkit, Release 0.23.4

Issues with lxml

• Benefits

– lxml is very fast.

– lxml requires Cython to install correctly.

• Drawbacks

– lxml does not make any guarantees about the results of its parse unless it is given strictly valid markup.

– In light of the above, we have chosen to allow you, the user, to use the lxml backend, but this backend
will use html5lib if lxml fails to parse

– It is therefore highly recommended that you install both BeautifulSoup4 and html5lib, so that you will
still get a valid result (provided everything else is valid) even if lxml fails.

Issues with BeautifulSoup4 using lxml as a backend

• The above issues hold here as well since BeautifulSoup4 is essentially just a wrapper around a parser backend.

Issues with BeautifulSoup4 using html5lib as a backend

• Benefits

– html5lib is far more lenient than lxml and consequently deals with real-life markup in a much saner way
rather than just, e.g., dropping an element without notifying you.

– html5lib generates valid HTML5 markup from invalid markup automatically. This is extremely important
for parsing HTML tables, since it guarantees a valid document. However, that does NOT mean that it is
“correct”, since the process of fixing markup does not have a single definition.

– html5lib is pure Python and requires no additional build steps beyond its own installation.

• Drawbacks

– The biggest drawback to using html5lib is that it is slow as molasses. However consider the fact that many
tables on the web are not big enough for the parsing algorithm runtime to matter. It is more likely that the
bottleneck will be in the process of reading the raw text from the URL over the web, i.e., IO (input-output).
For very large tables, this might not be true.

24.4 Excel files

The read_excel() method can read Excel 2003 (.xls) and Excel 2007+ (.xlsx) files using the xlrd Python
module. The to_excel() instance method is used for saving a DataFrame to Excel. Generally the semantics are
similar to working with csv data. See the cookbook for some advanced strategies.

24.4.1 Reading Excel Files

In the most basic use-case, read_excel takes a path to an Excel file, and the sheet_name indicating which sheet
to parse.

Returns a DataFrame
read_excel('path_to_file.xls', sheet_name='Sheet1')

1180 Chapter 24. IO Tools (Text, CSV, HDF5, . . .)

http://lxml.de
http://lxml.de
http://lxml.de
http://lxml.de
http://validator.w3.org/docs/help.html#validation_basics
http://lxml.de
https://github.com/html5lib/html5lib-python
http://lxml.de
http://www.crummy.com/software/BeautifulSoup
https://github.com/html5lib/html5lib-python
http://lxml.de
http://www.crummy.com/software/BeautifulSoup
http://lxml.de
http://www.crummy.com/software/BeautifulSoup
http://www.crummy.com/software/BeautifulSoup
https://github.com/html5lib/html5lib-python
https://github.com/html5lib/html5lib-python
http://lxml.de
https://github.com/html5lib/html5lib-python
https://github.com/html5lib/html5lib-python
https://github.com/html5lib/html5lib-python

pandas: powerful Python data analysis toolkit, Release 0.23.4

24.4.1.1 ExcelFile class

To facilitate working with multiple sheets from the same file, the ExcelFile class can be used to wrap the file and
can be passed into read_excel There will be a performance benefit for reading multiple sheets as the file is read
into memory only once.

xlsx = pd.ExcelFile('path_to_file.xls')
df = pd.read_excel(xlsx, 'Sheet1')

The ExcelFile class can also be used as a context manager.

with pd.ExcelFile('path_to_file.xls') as xls:
df1 = pd.read_excel(xls, 'Sheet1')
df2 = pd.read_excel(xls, 'Sheet2')

The sheet_names property will generate a list of the sheet names in the file.

The primary use-case for an ExcelFile is parsing multiple sheets with different parameters:

data = {}
For when Sheet1's format differs from Sheet2
with pd.ExcelFile('path_to_file.xls') as xls:

data['Sheet1'] = pd.read_excel(xls, 'Sheet1', index_col=None, na_values=['NA'])
data['Sheet2'] = pd.read_excel(xls, 'Sheet2', index_col=1)

Note that if the same parsing parameters are used for all sheets, a list of sheet names can simply be passed to
read_excel with no loss in performance.

using the ExcelFile class
data = {}
with pd.ExcelFile('path_to_file.xls') as xls:

data['Sheet1'] = read_excel(xls, 'Sheet1', index_col=None, na_values=['NA'])
data['Sheet2'] = read_excel(xls, 'Sheet2', index_col=None, na_values=['NA'])

equivalent using the read_excel function
data = read_excel('path_to_file.xls', ['Sheet1', 'Sheet2'], index_col=None, na_
→˓values=['NA'])

24.4.1.2 Specifying Sheets

Note: The second argument is sheet_name, not to be confused with ExcelFile.sheet_names.

Note: An ExcelFile’s attribute sheet_names provides access to a list of sheets.

• The arguments sheet_name allows specifying the sheet or sheets to read.

• The default value for sheet_name is 0, indicating to read the first sheet

• Pass a string to refer to the name of a particular sheet in the workbook.

• Pass an integer to refer to the index of a sheet. Indices follow Python convention, beginning at 0.

• Pass a list of either strings or integers, to return a dictionary of specified sheets.

• Pass a None to return a dictionary of all available sheets.

24.4. Excel files 1181

pandas: powerful Python data analysis toolkit, Release 0.23.4

Returns a DataFrame
read_excel('path_to_file.xls', 'Sheet1', index_col=None, na_values=['NA'])

Using the sheet index:

Returns a DataFrame
read_excel('path_to_file.xls', 0, index_col=None, na_values=['NA'])

Using all default values:

Returns a DataFrame
read_excel('path_to_file.xls')

Using None to get all sheets:

Returns a dictionary of DataFrames
read_excel('path_to_file.xls', sheet_name=None)

Using a list to get multiple sheets:

Returns the 1st and 4th sheet, as a dictionary of DataFrames.
read_excel('path_to_file.xls', sheet_name=['Sheet1', 3])

read_excel can read more than one sheet, by setting sheet_name to either a list of sheet names, a list of sheet
positions, or None to read all sheets. Sheets can be specified by sheet index or sheet name, using an integer or string,
respectively.

24.4.1.3 Reading a MultiIndex

read_excel can read a MultiIndex index, by passing a list of columns to index_col and a MultiIndex
column by passing a list of rows to header. If either the index or columns have serialized level names those will
be read in as well by specifying the rows/columns that make up the levels.

For example, to read in a MultiIndex index without names:

In [300]: df = pd.DataFrame({'a':[1, 2, 3, 4], 'b':[5, 6, 7, 8]},
.....: index=pd.MultiIndex.from_product([['a', 'b'],['c', 'd']]))
.....:

In [301]: df.to_excel('path_to_file.xlsx')

In [302]: df = pd.read_excel('path_to_file.xlsx', index_col=[0, 1])

In [303]: df
Out[303]:

a b
a c 1 5

d 2 6
b c 3 7

d 4 8

If the index has level names, they will parsed as well, using the same parameters.

In [304]: df.index = df.index.set_names(['lvl1', 'lvl2'])

In [305]: df.to_excel('path_to_file.xlsx')

(continues on next page)

1182 Chapter 24. IO Tools (Text, CSV, HDF5, . . .)

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

In [306]: df = pd.read_excel('path_to_file.xlsx', index_col=[0, 1])

In [307]: df
Out[307]:

a b
lvl1 lvl2
a c 1 5

d 2 6
b c 3 7

d 4 8

If the source file has both MultiIndex index and columns, lists specifying each should be passed to index_col
and header:

In [308]: df.columns = pd.MultiIndex.from_product([['a'], ['b', 'd']], names=['c1',
→˓'c2'])

In [309]: df.to_excel('path_to_file.xlsx')

In [310]: df = pd.read_excel('path_to_file.xlsx', index_col=[0, 1], header=[0, 1])

In [311]: df
Out[311]:
c1 a
c2 b d
lvl1 lvl2
a c 1 5

d 2 6
b c 3 7

d 4 8

24.4.1.4 Parsing Specific Columns

It is often the case that users will insert columns to do temporary computations in Excel and you may not want to read
in those columns. read_excel takes a usecols keyword to allow you to specify a subset of columns to parse.

If usecols is an integer, then it is assumed to indicate the last column to be parsed.

read_excel('path_to_file.xls', 'Sheet1', usecols=2)

If usecols is a list of integers, then it is assumed to be the file column indices to be parsed.

read_excel('path_to_file.xls', 'Sheet1', usecols=[0, 2, 3])

Element order is ignored, so usecols=[0, 1] is the same as [1, 0].

24.4.1.5 Parsing Dates

Datetime-like values are normally automatically converted to the appropriate dtype when reading the excel file. But
if you have a column of strings that look like dates (but are not actually formatted as dates in excel), you can use the
parse_dates keyword to parse those strings to datetimes:

24.4. Excel files 1183

pandas: powerful Python data analysis toolkit, Release 0.23.4

read_excel('path_to_file.xls', 'Sheet1', parse_dates=['date_strings'])

24.4.1.6 Cell Converters

It is possible to transform the contents of Excel cells via the converters option. For instance, to convert a column
to boolean:

read_excel('path_to_file.xls', 'Sheet1', converters={'MyBools': bool})

This options handles missing values and treats exceptions in the converters as missing data. Transformations are
applied cell by cell rather than to the column as a whole, so the array dtype is not guaranteed. For instance, a column
of integers with missing values cannot be transformed to an array with integer dtype, because NaN is strictly a float.
You can manually mask missing data to recover integer dtype:

cfun = lambda x: int(x) if x else -1
read_excel('path_to_file.xls', 'Sheet1', converters={'MyInts': cfun})

24.4.1.7 dtype Specifications

New in version 0.20.

As an alternative to converters, the type for an entire column can be specified using the dtype keyword, which takes a
dictionary mapping column names to types. To interpret data with no type inference, use the type str or object.

read_excel('path_to_file.xls', dtype={'MyInts': 'int64', 'MyText': str})

24.4.2 Writing Excel Files

24.4.2.1 Writing Excel Files to Disk

To write a DataFrame object to a sheet of an Excel file, you can use the to_excel instance method. The arguments
are largely the same as to_csv described above, the first argument being the name of the excel file, and the optional
second argument the name of the sheet to which the DataFrame should be written. For example:

df.to_excel('path_to_file.xlsx', sheet_name='Sheet1')

Files with a .xls extension will be written using xlwt and those with a .xlsx extension will be written using
xlsxwriter (if available) or openpyxl.

The DataFrame will be written in a way that tries to mimic the REPL output. The index_label will be placed
in the second row instead of the first. You can place it in the first row by setting the merge_cells option in
to_excel() to False:

df.to_excel('path_to_file.xlsx', index_label='label', merge_cells=False)

In order to write separate DataFrames to separate sheets in a single Excel file, one can pass an ExcelWriter.

with ExcelWriter('path_to_file.xlsx') as writer:
df1.to_excel(writer, sheet_name='Sheet1')
df2.to_excel(writer, sheet_name='Sheet2')

1184 Chapter 24. IO Tools (Text, CSV, HDF5, . . .)

pandas: powerful Python data analysis toolkit, Release 0.23.4

Note: Wringing a little more performance out of read_excel Internally, Excel stores all numeric data as floats.
Because this can produce unexpected behavior when reading in data, pandas defaults to trying to convert integers to
floats if it doesn’t lose information (1.0 --> 1). You can pass convert_float=False to disable this behavior,
which may give a slight performance improvement.

24.4.2.2 Writing Excel Files to Memory

Pandas supports writing Excel files to buffer-like objects such as StringIO or BytesIO using ExcelWriter.

Safe import for either Python 2.x or 3.x
try:

from io import BytesIO
except ImportError:

from cStringIO import StringIO as BytesIO

bio = BytesIO()

By setting the 'engine' in the ExcelWriter constructor.
writer = ExcelWriter(bio, engine='xlsxwriter')
df.to_excel(writer, sheet_name='Sheet1')

Save the workbook
writer.save()

Seek to the beginning and read to copy the workbook to a variable in memory
bio.seek(0)
workbook = bio.read()

Note: engine is optional but recommended. Setting the engine determines the version of workbook produced.
Setting engine='xlrd' will produce an Excel 2003-format workbook (xls). Using either 'openpyxl' or
'xlsxwriter'will produce an Excel 2007-format workbook (xlsx). If omitted, an Excel 2007-formatted workbook
is produced.

24.4.3 Excel writer engines

Pandas chooses an Excel writer via two methods:

1. the engine keyword argument

2. the filename extension (via the default specified in config options)

By default, pandas uses the XlsxWriter for .xlsx, openpyxl for .xlsm, and xlwt for .xls files. If you have multiple
engines installed, you can set the default engine through setting the config options io.excel.xlsx.writer and
io.excel.xls.writer. pandas will fall back on openpyxl for .xlsx files if Xlsxwriter is not available.

To specify which writer you want to use, you can pass an engine keyword argument to to_excel and to
ExcelWriter. The built-in engines are:

• openpyxl: version 2.4 or higher is required

• xlsxwriter

• xlwt

24.4. Excel files 1185

https://xlsxwriter.readthedocs.io
https://openpyxl.readthedocs.io/
http://www.python-excel.org
https://openpyxl.readthedocs.io/
https://xlsxwriter.readthedocs.io

pandas: powerful Python data analysis toolkit, Release 0.23.4

By setting the 'engine' in the DataFrame and Panel 'to_excel()' methods.
df.to_excel('path_to_file.xlsx', sheet_name='Sheet1', engine='xlsxwriter')

By setting the 'engine' in the ExcelWriter constructor.
writer = ExcelWriter('path_to_file.xlsx', engine='xlsxwriter')

Or via pandas configuration.
from pandas import options
options.io.excel.xlsx.writer = 'xlsxwriter'

df.to_excel('path_to_file.xlsx', sheet_name='Sheet1')

24.4.4 Style and Formatting

The look and feel of Excel worksheets created from pandas can be modified using the following parameters on the
DataFrame’s to_excel method.

• float_format : Format string for floating point numbers (default None).

• freeze_panes : A tuple of two integers representing the bottommost row and rightmost column to freeze.
Each of these parameters is one-based, so (1, 1) will freeze the first row and first column (default None).

24.5 Clipboard

A handy way to grab data is to use the read_clipboard() method, which takes the contents of the clipboard
buffer and passes them to the read_table method. For instance, you can copy the following text to the clipboard
(CTRL-C on many operating systems):

A B C
x 1 4 p
y 2 5 q
z 3 6 r

And then import the data directly to a DataFrame by calling:

clipdf = pd.read_clipboard()

In [312]: clipdf
Out[312]:

A B C
x 1 4 p
y 2 5 q
z 3 6 r

The to_clipboard method can be used to write the contents of a DataFrame to the clipboard. Following which
you can paste the clipboard contents into other applications (CTRL-V on many operating systems). Here we illustrate
writing a DataFrame into clipboard and reading it back.

In [313]: df = pd.DataFrame(randn(5, 3))

In [314]: df
Out[314]:

0 1 2

(continues on next page)

1186 Chapter 24. IO Tools (Text, CSV, HDF5, . . .)

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

0 -0.288267 -0.084905 0.004772
1 1.382989 0.343635 -1.253994
2 -0.124925 0.212244 0.496654
3 0.525417 1.238640 -1.210543
4 -1.175743 -0.172372 -0.734129

In [315]: df.to_clipboard()
\\\-
→˓--
PyperclipException Traceback (most recent call last)
<ipython-input-315-d9e762ebf7d3> in <module>()
----> 1 df.to_clipboard()

/pandas/pandas/core/generic.py in to_clipboard(self, excel, sep, **kwargs)
2247 """
2248 from pandas.io import clipboards

-> 2249 clipboards.to_clipboard(self, excel=excel, sep=sep, **kwargs)
2250
2251 def to_xarray(self):

/pandas/pandas/io/clipboards.py in to_clipboard(obj, excel, sep, **kwargs)
124 if PY2:
125 text = text.decode('utf-8')

--> 126 clipboard_set(text)
127 return
128 except TypeError:

/pandas/pandas/io/clipboard/clipboards.py in __call__(self, *args, **kwargs)
132
133 def __call__(self, *args, **kwargs):

--> 134 raise PyperclipException(EXCEPT_MSG)
135
136 if PY2:

PyperclipException:
Pyperclip could not find a copy/paste mechanism for your system.
For more information, please visit https://pyperclip.readthedocs.org

In [316]: pd.read_clipboard()
\\\-
→˓--
PyperclipException Traceback (most recent call last)
<ipython-input-316-8cbad928c47b> in <module>()
----> 1 pd.read_clipboard()

/pandas/pandas/io/clipboards.py in read_clipboard(sep, **kwargs)
30 from pandas.io.clipboard import clipboard_get
31 from pandas.io.parsers import read_table

---> 32 text = clipboard_get()
33
34 # try to decode (if needed on PY3)

/pandas/pandas/io/clipboard/clipboards.py in __call__(self, *args, **kwargs)
132
133 def __call__(self, *args, **kwargs):

--> 134 raise PyperclipException(EXCEPT_MSG)
135

(continues on next page)

24.5. Clipboard 1187

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

136 if PY2:

PyperclipException:
Pyperclip could not find a copy/paste mechanism for your system.
For more information, please visit https://pyperclip.readthedocs.org

We can see that we got the same content back, which we had earlier written to the clipboard.

Note: You may need to install xclip or xsel (with gtk, PyQt5, PyQt4 or qtpy) on Linux to use these methods.

24.6 Pickling

All pandas objects are equipped with to_pickle methods which use Python’s cPickle module to save data
structures to disk using the pickle format.

In [317]: df
Out[317]:

0 1 2
0 -0.288267 -0.084905 0.004772
1 1.382989 0.343635 -1.253994
2 -0.124925 0.212244 0.496654
3 0.525417 1.238640 -1.210543
4 -1.175743 -0.172372 -0.734129

In [318]: df.to_pickle('foo.pkl')

The read_pickle function in the pandas namespace can be used to load any pickled pandas object (or any other
pickled object) from file:

In [319]: pd.read_pickle('foo.pkl')
Out[319]:

0 1 2
0 -0.288267 -0.084905 0.004772
1 1.382989 0.343635 -1.253994
2 -0.124925 0.212244 0.496654
3 0.525417 1.238640 -1.210543
4 -1.175743 -0.172372 -0.734129

Warning: Loading pickled data received from untrusted sources can be unsafe.

See: https://docs.python.org/3/library/pickle.html

Warning: Several internal refactorings have been done while still preserving compatibility with pickles created
with older versions of pandas. However, for such cases, pickled DataFrames, Series etc, must be read with
pd.read_pickle, rather than pickle.load.

See here and here for some examples of compatibility-breaking changes. See this question for a detailed explana-
tion.

1188 Chapter 24. IO Tools (Text, CSV, HDF5, . . .)

https://docs.python.org/3/library/pickle.html
http://pandas.pydata.org/pandas-docs/stable/whatsnew.html#whatsnew-0130-refactoring
http://pandas.pydata.org/pandas-docs/stable/whatsnew.html#whatsnew-0150-refactoring
http://stackoverflow.com/questions/20444593/pandas-compiled-from-source-default-pickle-behavior-changed

pandas: powerful Python data analysis toolkit, Release 0.23.4

24.6.1 Compressed pickle files

New in version 0.20.0.

read_pickle(), DataFrame.to_pickle() and Series.to_pickle() can read and write compressed
pickle files. The compression types of gzip, bz2, xz are supported for reading and writing. The zip file format
only supports reading and must contain only one data file to be read.

The compression type can be an explicit parameter or be inferred from the file extension. If ‘infer’, then use gzip,
bz2, zip, or xz if filename ends in '.gz', '.bz2', '.zip', or '.xz', respectively.

In [320]: df = pd.DataFrame({
.....: 'A': np.random.randn(1000),
.....: 'B': 'foo',
.....: 'C': pd.date_range('20130101', periods=1000, freq='s')})
.....:

In [321]: df
Out[321]:

A B C
0 0.478412 foo 2013-01-01 00:00:00
1 -0.783748 foo 2013-01-01 00:00:01
2 1.403558 foo 2013-01-01 00:00:02
3 -0.539282 foo 2013-01-01 00:00:03
4 -1.651012 foo 2013-01-01 00:00:04
5 0.692072 foo 2013-01-01 00:00:05
6 1.022171 foo 2013-01-01 00:00:06
..
993 -1.613932 foo 2013-01-01 00:16:33
994 1.088104 foo 2013-01-01 00:16:34
995 -0.632963 foo 2013-01-01 00:16:35
996 -0.585314 foo 2013-01-01 00:16:36
997 -0.275038 foo 2013-01-01 00:16:37
998 -0.937512 foo 2013-01-01 00:16:38
999 0.632369 foo 2013-01-01 00:16:39

[1000 rows x 3 columns]

Using an explicit compression type:

In [322]: df.to_pickle("data.pkl.compress", compression="gzip")

In [323]: rt = pd.read_pickle("data.pkl.compress", compression="gzip")

In [324]: rt
Out[324]:

A B C
0 0.478412 foo 2013-01-01 00:00:00
1 -0.783748 foo 2013-01-01 00:00:01
2 1.403558 foo 2013-01-01 00:00:02
3 -0.539282 foo 2013-01-01 00:00:03
4 -1.651012 foo 2013-01-01 00:00:04
5 0.692072 foo 2013-01-01 00:00:05
6 1.022171 foo 2013-01-01 00:00:06
..
993 -1.613932 foo 2013-01-01 00:16:33
994 1.088104 foo 2013-01-01 00:16:34
995 -0.632963 foo 2013-01-01 00:16:35

(continues on next page)

24.6. Pickling 1189

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

996 -0.585314 foo 2013-01-01 00:16:36
997 -0.275038 foo 2013-01-01 00:16:37
998 -0.937512 foo 2013-01-01 00:16:38
999 0.632369 foo 2013-01-01 00:16:39

[1000 rows x 3 columns]

Inferring compression type from the extension:

In [325]: df.to_pickle("data.pkl.xz", compression="infer")

In [326]: rt = pd.read_pickle("data.pkl.xz", compression="infer")

In [327]: rt
Out[327]:

A B C
0 0.478412 foo 2013-01-01 00:00:00
1 -0.783748 foo 2013-01-01 00:00:01
2 1.403558 foo 2013-01-01 00:00:02
3 -0.539282 foo 2013-01-01 00:00:03
4 -1.651012 foo 2013-01-01 00:00:04
5 0.692072 foo 2013-01-01 00:00:05
6 1.022171 foo 2013-01-01 00:00:06
..
993 -1.613932 foo 2013-01-01 00:16:33
994 1.088104 foo 2013-01-01 00:16:34
995 -0.632963 foo 2013-01-01 00:16:35
996 -0.585314 foo 2013-01-01 00:16:36
997 -0.275038 foo 2013-01-01 00:16:37
998 -0.937512 foo 2013-01-01 00:16:38
999 0.632369 foo 2013-01-01 00:16:39

[1000 rows x 3 columns]

The default is to ‘infer’:

In [328]: df.to_pickle("data.pkl.gz")

In [329]: rt = pd.read_pickle("data.pkl.gz")

In [330]: rt
Out[330]:

A B C
0 0.478412 foo 2013-01-01 00:00:00
1 -0.783748 foo 2013-01-01 00:00:01
2 1.403558 foo 2013-01-01 00:00:02
3 -0.539282 foo 2013-01-01 00:00:03
4 -1.651012 foo 2013-01-01 00:00:04
5 0.692072 foo 2013-01-01 00:00:05
6 1.022171 foo 2013-01-01 00:00:06
..
993 -1.613932 foo 2013-01-01 00:16:33
994 1.088104 foo 2013-01-01 00:16:34
995 -0.632963 foo 2013-01-01 00:16:35
996 -0.585314 foo 2013-01-01 00:16:36
997 -0.275038 foo 2013-01-01 00:16:37
998 -0.937512 foo 2013-01-01 00:16:38

(continues on next page)

1190 Chapter 24. IO Tools (Text, CSV, HDF5, . . .)

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

999 0.632369 foo 2013-01-01 00:16:39

[1000 rows x 3 columns]

In [331]: df["A"].to_pickle("s1.pkl.bz2")

In [332]: rt = pd.read_pickle("s1.pkl.bz2")

In [333]: rt
Out[333]:
0 0.478412
1 -0.783748
2 1.403558
3 -0.539282
4 -1.651012
5 0.692072
6 1.022171

...
993 -1.613932
994 1.088104
995 -0.632963
996 -0.585314
997 -0.275038
998 -0.937512
999 0.632369
Name: A, Length: 1000, dtype: float64

24.7 msgpack

pandas supports the msgpack format for object serialization. This is a lightweight portable binary format, similar
to binary JSON, that is highly space efficient, and provides good performance both on the writing (serialization), and
reading (deserialization).

Warning: This is a very new feature of pandas. We intend to provide certain optimizations in the io of the
msgpack data. Since this is marked as an EXPERIMENTAL LIBRARY, the storage format may not be stable
until a future release.

In [334]: df = pd.DataFrame(np.random.rand(5, 2), columns=list('AB'))

In [335]: df.to_msgpack('foo.msg')

In [336]: pd.read_msgpack('foo.msg')
Out[336]:

A B
0 0.170801 0.895366
1 0.838238 0.052592
2 0.664140 0.289750
3 0.449593 0.872087
4 0.983618 0.744359

In [337]: s = pd.Series(np.random.rand(5), index=pd.date_range('20130101', periods=5))

24.7. msgpack 1191

pandas: powerful Python data analysis toolkit, Release 0.23.4

You can pass a list of objects and you will receive them back on deserialization.

In [338]: pd.to_msgpack('foo.msg', df, 'foo', np.array([1, 2, 3]), s)

In [339]: pd.read_msgpack('foo.msg')
Out[339]:
[A B
0 0.170801 0.895366
1 0.838238 0.052592
2 0.664140 0.289750
3 0.449593 0.872087
4 0.983618 0.744359, 'foo', array([1, 2, 3]), 2013-01-01 0.548134
2013-01-02 0.503447
2013-01-03 0.348438
2013-01-04 0.707267
2013-01-05 0.261656
Freq: D, dtype: float64]

You can pass iterator=True to iterate over the unpacked results:

In [340]: for o in pd.read_msgpack('foo.msg', iterator=True):
.....: print(o)
.....:

A B
0 0.170801 0.895366
1 0.838238 0.052592
2 0.664140 0.289750
3 0.449593 0.872087
4 0.983618 0.744359
foo
[1 2 3]
2013-01-01 0.548134
2013-01-02 0.503447
2013-01-03 0.348438
2013-01-04 0.707267
2013-01-05 0.261656
Freq: D, dtype: float64

You can pass append=True to the writer to append to an existing pack:

In [341]: df.to_msgpack('foo.msg', append=True)

In [342]: pd.read_msgpack('foo.msg')
Out[342]:
[A B
0 0.170801 0.895366
1 0.838238 0.052592
2 0.664140 0.289750
3 0.449593 0.872087
4 0.983618 0.744359, 'foo', array([1, 2, 3]), 2013-01-01 0.548134
2013-01-02 0.503447
2013-01-03 0.348438
2013-01-04 0.707267
2013-01-05 0.261656
Freq: D, dtype: float64, A B
0 0.170801 0.895366
1 0.838238 0.052592
2 0.664140 0.289750

(continues on next page)

1192 Chapter 24. IO Tools (Text, CSV, HDF5, . . .)

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

3 0.449593 0.872087
4 0.983618 0.744359]

Unlike other io methods, to_msgpack is available on both a per-object basis, df.to_msgpack() and using the
top-level pd.to_msgpack(...) where you can pack arbitrary collections of Python lists, dicts, scalars, while
intermixing pandas objects.

In [343]: pd.to_msgpack('foo2.msg', {'dict': [{ 'df': df }, {'string': 'foo'},
.....: {'scalar': 1.}, {'s': s}]})
.....:

In [344]: pd.read_msgpack('foo2.msg')
Out[344]:
{'dict': ({'df': A B

0 0.170801 0.895366
1 0.838238 0.052592
2 0.664140 0.289750
3 0.449593 0.872087
4 0.983618 0.744359},
{'string': 'foo'},
{'scalar': 1.0},
{'s': 2013-01-01 0.548134
2013-01-02 0.503447
2013-01-03 0.348438
2013-01-04 0.707267
2013-01-05 0.261656
Freq: D, dtype: float64})}

24.7.1 Read/Write API

Msgpacks can also be read from and written to strings.

In [345]: df.to_msgpack()
Out[345]: b'\x84\xa3typ\xadblock_
→˓manager\xa5klass\xa9DataFrame\xa4axes\x92\x86\xa3typ\xa5index\xa5klass\xa5Index\xa4name\xc0\xa5dtype\xa6object\xa4data\x92\xa1A\xa1B\xa8compress\xc0\x86\xa3typ\xabrange_
→˓index\xa5klass\xaaRangeIndex\xa4name\xc0\xa5start\x00\xa4stop\x05\xa4step\x01\xa6blocks\x91\x86\xa4locs\x86\xa3typ\xa7ndarray\xa5shape\x91\x02\xa4ndim\x01\xa5dtype\xa5int64\xa4data\xd8\x00\x00\x00\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00\xa8compress\xc0\xa6values\xc7P\x00
→˓<\xfd\xd2f\xcf\xdc\xc5?0\x15\xebN\xd9\xd2\xea?,\x9c\x16A\xa2@\xe5?\xd8/\xdd\xf4
→˓"\xc6\xdc?\x11\x1e\x97\x1b\xcdy\xef?&\x1e<\xee\xd6\xa6\xec?p\xd3;\xb2N\xed\xaa?
→˓h\xcb\xb1\xbdB\x8b\xd2?\xaf4\x01r"\xe8\xeb?)G6\xd9\xc9\xd1\xe7?
→˓\xa5shape\x92\x02\x05\xa5dtype\xa7float64\xa5klass\xaaFloatBlock\xa8compress\xc0'

Furthermore you can concatenate the strings to produce a list of the original objects.

In [346]: pd.read_msgpack(df.to_msgpack() + s.to_msgpack())
Out[346]:
[A B
0 0.170801 0.895366
1 0.838238 0.052592
2 0.664140 0.289750
3 0.449593 0.872087
4 0.983618 0.744359, 2013-01-01 0.548134
2013-01-02 0.503447
2013-01-03 0.348438
2013-01-04 0.707267

(continues on next page)

24.7. msgpack 1193

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

2013-01-05 0.261656
Freq: D, dtype: float64]

24.8 HDF5 (PyTables)

HDFStore is a dict-like object which reads and writes pandas using the high performance HDF5 format using the
excellent PyTables library. See the cookbook for some advanced strategies

Warning: pandas requires PyTables >= 3.0.0. There is a indexing bug in PyTables < 3.2 which may appear
when querying stores using an index. If you see a subset of results being returned, upgrade to PyTables >= 3.2.
Stores created previously will need to be rewritten using the updated version.

In [347]: store = pd.HDFStore('store.h5')

In [348]: print(store)
<class 'pandas.io.pytables.HDFStore'>
File path: store.h5

Objects can be written to the file just like adding key-value pairs to a dict:

In [349]: np.random.seed(1234)

In [350]: index = pd.date_range('1/1/2000', periods=8)

In [351]: s = pd.Series(randn(5), index=['a', 'b', 'c', 'd', 'e'])

In [352]: df = pd.DataFrame(randn(8, 3), index=index,
.....: columns=['A', 'B', 'C'])
.....:

In [353]: wp = pd.Panel(randn(2, 5, 4), items=['Item1', 'Item2'],
.....: major_axis=pd.date_range('1/1/2000', periods=5),
.....: minor_axis=['A', 'B', 'C', 'D'])
.....:

store.put('s', s) is an equivalent method
In [354]: store['s'] = s

In [355]: store['df'] = df

In [356]: store['wp'] = wp

the type of stored data
In [357]: store.root.wp._v_attrs.pandas_type
Out[357]: 'wide'

In [358]: store
\\\\\\\\\\\\\\\\\Out[358]:
<class 'pandas.io.pytables.HDFStore'>
File path: store.h5

In a current or later Python session, you can retrieve stored objects:

1194 Chapter 24. IO Tools (Text, CSV, HDF5, . . .)

http://www.pytables.org/

pandas: powerful Python data analysis toolkit, Release 0.23.4

store.get('df') is an equivalent method
In [359]: store['df']
Out[359]:

A B C
2000-01-01 0.887163 0.859588 -0.636524
2000-01-02 0.015696 -2.242685 1.150036
2000-01-03 0.991946 0.953324 -2.021255
2000-01-04 -0.334077 0.002118 0.405453
2000-01-05 0.289092 1.321158 -1.546906
2000-01-06 -0.202646 -0.655969 0.193421
2000-01-07 0.553439 1.318152 -0.469305
2000-01-08 0.675554 -1.817027 -0.183109

dotted (attribute) access provides get as well
In [360]: store.df
\\Out[360]:
→˓

A B C
2000-01-01 0.887163 0.859588 -0.636524
2000-01-02 0.015696 -2.242685 1.150036
2000-01-03 0.991946 0.953324 -2.021255
2000-01-04 -0.334077 0.002118 0.405453
2000-01-05 0.289092 1.321158 -1.546906
2000-01-06 -0.202646 -0.655969 0.193421
2000-01-07 0.553439 1.318152 -0.469305
2000-01-08 0.675554 -1.817027 -0.183109

Deletion of the object specified by the key:

store.remove('wp') is an equivalent method
In [361]: del store['wp']

In [362]: store
Out[362]:
<class 'pandas.io.pytables.HDFStore'>
File path: store.h5

Closing a Store and using a context manager:

In [363]: store.close()

In [364]: store
Out[364]:
<class 'pandas.io.pytables.HDFStore'>
File path: store.h5

In [365]: store.is_open
\\\Out[365]: False

Working with, and automatically closing the store using a context manager
In [366]: with pd.HDFStore('store.h5') as store:

.....: store.keys()

.....:

24.8. HDF5 (PyTables) 1195

pandas: powerful Python data analysis toolkit, Release 0.23.4

24.8.1 Read/Write API

HDFStore supports an top-level API using read_hdf for reading and to_hdf for writing, similar to how
read_csv and to_csv work.

In [367]: df_tl = pd.DataFrame(dict(A=list(range(5)), B=list(range(5))))

In [368]: df_tl.to_hdf('store_tl.h5','table', append=True)

In [369]: pd.read_hdf('store_tl.h5', 'table', where=['index>2'])
Out[369]:

A B
3 3 3
4 4 4

HDFStore will by default not drop rows that are all missing. This behavior can be changed by setting dropna=True.

In [370]: df_with_missing = pd.DataFrame({'col1': [0, np.nan, 2],
.....: 'col2': [1, np.nan, np.nan]})
.....:

In [371]: df_with_missing
Out[371]:

col1 col2
0 0.0 1.0
1 NaN NaN
2 2.0 NaN

In [372]: df_with_missing.to_hdf('file.h5', 'df_with_missing',
.....: format='table', mode='w')
.....:

In [373]: pd.read_hdf('file.h5', 'df_with_missing')
Out[373]:

col1 col2
0 0.0 1.0
1 NaN NaN
2 2.0 NaN

In [374]: df_with_missing.to_hdf('file.h5', 'df_with_missing',
.....: format='table', mode='w', dropna=True)
.....:

In [375]: pd.read_hdf('file.h5', 'df_with_missing')
Out[375]:

col1 col2
0 0.0 1.0
2 2.0 NaN

This is also true for the major axis of a Panel:

In [376]: matrix = [[[np.nan, np.nan, np.nan], [1, np.nan, np.nan]],
.....: [[np.nan, np.nan, np.nan], [np.nan, 5, 6]],
.....: [[np.nan, np.nan, np.nan], [np.nan, 3, np.nan]]]
.....:

In [377]: panel_with_major_axis_all_missing=pd.Panel(matrix,
.....: items=['Item1', 'Item2', 'Item3'],

(continues on next page)

1196 Chapter 24. IO Tools (Text, CSV, HDF5, . . .)

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

.....: major_axis=[1, 2],

.....: minor_axis=['A', 'B', 'C'])

.....:

In [378]: panel_with_major_axis_all_missing
Out[378]:
<class 'pandas.core.panel.Panel'>
Dimensions: 3 (items) x 2 (major_axis) x 3 (minor_axis)
Items axis: Item1 to Item3
Major_axis axis: 1 to 2
Minor_axis axis: A to C

In [379]: panel_with_major_axis_all_missing.to_hdf('file.h5', 'panel',
.....: dropna=True,
.....: format='table',
.....: mode='w')
.....:

In [380]: reloaded = pd.read_hdf('file.h5', 'panel')

In [381]: reloaded
Out[381]:
<class 'pandas.core.panel.Panel'>
Dimensions: 3 (items) x 1 (major_axis) x 3 (minor_axis)
Items axis: Item1 to Item3
Major_axis axis: 2 to 2
Minor_axis axis: A to C

24.8.2 Fixed Format

The examples above show storing using put, which write the HDF5 to PyTables in a fixed array format, called
the fixed format. These types of stores are not appendable once written (though you can simply remove them and
rewrite). Nor are they queryable; they must be retrieved in their entirety. They also do not support dataframes with
non-unique column names. The fixed format stores offer very fast writing and slightly faster reading than table
stores. This format is specified by default when using put or to_hdf or by format='fixed' or format='f'.

Warning: A fixed format will raise a TypeError if you try to retrieve using a where:

pd.DataFrame(randn(10, 2)).to_hdf('test_fixed.h5', 'df')

pd.read_hdf('test_fixed.h5', 'df', where='index>5')
TypeError: cannot pass a where specification when reading a fixed format.

this store must be selected in its entirety

24.8.3 Table Format

HDFStore supports another PyTables format on disk, the table format. Conceptually a table is shaped very
much like a DataFrame, with rows and columns. A table may be appended to in the same or other sessions.
In addition, delete and query type operations are supported. This format is specified by format='table' or
format='t' to append or put or to_hdf.

24.8. HDF5 (PyTables) 1197

pandas: powerful Python data analysis toolkit, Release 0.23.4

This format can be set as an option as well pd.set_option('io.hdf.default_format','table') to
enable put/append/to_hdf to by default store in the table format.

In [382]: store = pd.HDFStore('store.h5')

In [383]: df1 = df[0:4]

In [384]: df2 = df[4:]

append data (creates a table automatically)
In [385]: store.append('df', df1)

In [386]: store.append('df', df2)

In [387]: store
Out[387]:
<class 'pandas.io.pytables.HDFStore'>
File path: store.h5

select the entire object
In [388]: store.select('df')
\\\Out[388]:

A B C
2000-01-01 0.887163 0.859588 -0.636524
2000-01-02 0.015696 -2.242685 1.150036
2000-01-03 0.991946 0.953324 -2.021255
2000-01-04 -0.334077 0.002118 0.405453
2000-01-05 0.289092 1.321158 -1.546906
2000-01-06 -0.202646 -0.655969 0.193421
2000-01-07 0.553439 1.318152 -0.469305
2000-01-08 0.675554 -1.817027 -0.183109

the type of stored data
In [389]: store.root.df._v_attrs.pandas_type
\\\Out[389]:
→˓'frame_table'

Note: You can also create a table by passing format='table' or format='t' to a put operation.

24.8.4 Hierarchical Keys

Keys to a store can be specified as a string. These can be in a hierarchical path-name like format (e.g. foo/bar/
bah), which will generate a hierarchy of sub-stores (or Groups in PyTables parlance). Keys can be specified with
out the leading ‘/’ and are always absolute (e.g. ‘foo’ refers to ‘/foo’). Removal operations can remove everything in
the sub-store and below, so be careful.

In [390]: store.put('foo/bar/bah', df)

In [391]: store.append('food/orange', df)

In [392]: store.append('food/apple', df)

In [393]: store
Out[393]:

(continues on next page)

1198 Chapter 24. IO Tools (Text, CSV, HDF5, . . .)

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

<class 'pandas.io.pytables.HDFStore'>
File path: store.h5

a list of keys are returned
In [394]: store.keys()
\\\Out[394]: ['/df',
→˓ '/food/apple', '/food/orange', '/foo/bar/bah']

remove all nodes under this level
In [395]: store.remove('food')

In [396]: store
Out[396]:
<class 'pandas.io.pytables.HDFStore'>
File path: store.h5

Warning: Hierarchical keys cannot be retrieved as dotted (attribute) access as described above for items stored
under the root node.

In [8]: store.foo.bar.bah
AttributeError: 'HDFStore' object has no attribute 'foo'

you can directly access the actual PyTables node but using the root node
In [9]: store.root.foo.bar.bah
Out[9]:
/foo/bar/bah (Group) ''

children := ['block0_items' (Array), 'block0_values' (Array), 'axis0' (Array),
→˓'axis1' (Array)]

Instead, use explicit string based keys:

In [397]: store['foo/bar/bah']
Out[397]:

A B C
2000-01-01 0.887163 0.859588 -0.636524
2000-01-02 0.015696 -2.242685 1.150036
2000-01-03 0.991946 0.953324 -2.021255
2000-01-04 -0.334077 0.002118 0.405453
2000-01-05 0.289092 1.321158 -1.546906
2000-01-06 -0.202646 -0.655969 0.193421
2000-01-07 0.553439 1.318152 -0.469305
2000-01-08 0.675554 -1.817027 -0.183109

24.8.5 Storing Types

24.8.5.1 Storing Mixed Types in a Table

Storing mixed-dtype data is supported. Strings are stored as a fixed-width using the maximum size of the appended
column. Subsequent attempts at appending longer strings will raise a ValueError.

Passing min_itemsize={`values`: size} as a parameter to append will set a larger minimum for the string
columns. Storing floats, strings, ints, bools, datetime64 are currently supported. For string
columns, passing nan_rep = 'nan' to append will change the default nan representation on disk (which con-
verts to/from np.nan), this defaults to nan.

24.8. HDF5 (PyTables) 1199

pandas: powerful Python data analysis toolkit, Release 0.23.4

In [398]: df_mixed = pd.DataFrame({'A': randn(8),
.....: 'B': randn(8),
.....: 'C': np.array(randn(8), dtype='float32'),
.....: 'string':'string',
.....: 'int': 1,
.....: 'bool': True,
.....: 'datetime64': pd.Timestamp('20010102')},
.....: index=list(range(8)))
.....:

In [399]: df_mixed.loc[df_mixed.index[3:5], ['A', 'B', 'string', 'datetime64']] = np.
→˓nan

In [400]: store.append('df_mixed', df_mixed, min_itemsize = {'values': 50})

In [401]: df_mixed1 = store.select('df_mixed')

In [402]: df_mixed1
Out[402]:

A B C string int bool datetime64
0 0.704721 -1.152659 -0.430096 string 1 True 2001-01-02
1 -0.785435 0.631979 0.767369 string 1 True 2001-01-02
2 0.462060 0.039513 0.984920 string 1 True 2001-01-02
3 NaN NaN 0.270836 NaN 1 True NaT
4 NaN NaN 1.391986 NaN 1 True NaT
5 -0.926254 1.321106 0.079842 string 1 True 2001-01-02
6 2.007843 0.152631 -0.399965 string 1 True 2001-01-02
7 0.226963 0.164530 -1.027851 string 1 True 2001-01-02

In [403]: df_mixed1.get_dtype_counts()
\\\Out[403]:
→˓

float64 2
float32 1
object 1
int64 1
bool 1
datetime64[ns] 1
dtype: int64

we have provided a minimum string column size
In [404]: store.root.df_mixed.table
\\\Out[404]:
→˓

/df_mixed/table (Table(8,)) ''
description := {
"index": Int64Col(shape=(), dflt=0, pos=0),
"values_block_0": Float64Col(shape=(2,), dflt=0.0, pos=1),
"values_block_1": Float32Col(shape=(1,), dflt=0.0, pos=2),
"values_block_2": Int64Col(shape=(1,), dflt=0, pos=3),
"values_block_3": Int64Col(shape=(1,), dflt=0, pos=4),
"values_block_4": BoolCol(shape=(1,), dflt=False, pos=5),
"values_block_5": StringCol(itemsize=50, shape=(1,), dflt=b'', pos=6)}
byteorder := 'little'
chunkshape := (689,)
autoindex := True
colindexes := {
"index": Index(6, medium, shuffle, zlib(1)).is_csi=False}

1200 Chapter 24. IO Tools (Text, CSV, HDF5, . . .)

pandas: powerful Python data analysis toolkit, Release 0.23.4

24.8.5.2 Storing Multi-Index DataFrames

Storing multi-index DataFrames as tables is very similar to storing/selecting from homogeneous index
DataFrames.

In [405]: index = pd.MultiIndex(levels=[['foo', 'bar', 'baz', 'qux'],
.....: ['one', 'two', 'three']],
.....: labels=[[0, 0, 0, 1, 1, 2, 2, 3, 3, 3],
.....: [0, 1, 2, 0, 1, 1, 2, 0, 1, 2]],
.....: names=['foo', 'bar'])
.....:

In [406]: df_mi = pd.DataFrame(np.random.randn(10, 3), index=index,
.....: columns=['A', 'B', 'C'])
.....:

In [407]: df_mi
Out[407]:

A B C
foo bar
foo one -0.584718 0.816594 -0.081947

two -0.344766 0.528288 -1.068989
three -0.511881 0.291205 0.566534

bar one 0.503592 0.285296 0.484288
two 1.363482 -0.781105 -0.468018

baz two 1.224574 -1.281108 0.875476
three -1.710715 -0.450765 0.749164

qux one -0.203933 -0.182175 0.680656
two -1.818499 0.047072 0.394844
three -0.248432 -0.617707 -0.682884

In [408]: store.append('df_mi', df_mi)

In [409]: store.select('df_mi')
Out[409]:

A B C
foo bar
foo one -0.584718 0.816594 -0.081947

two -0.344766 0.528288 -1.068989
three -0.511881 0.291205 0.566534

bar one 0.503592 0.285296 0.484288
two 1.363482 -0.781105 -0.468018

baz two 1.224574 -1.281108 0.875476
three -1.710715 -0.450765 0.749164

qux one -0.203933 -0.182175 0.680656
two -1.818499 0.047072 0.394844
three -0.248432 -0.617707 -0.682884

the levels are automatically included as data columns
In [410]: store.select('df_mi', 'foo=bar')
\\\Out[410]:
→˓

A B C
foo bar
bar one 0.503592 0.285296 0.484288

two 1.363482 -0.781105 -0.468018

24.8. HDF5 (PyTables) 1201

pandas: powerful Python data analysis toolkit, Release 0.23.4

24.8.6 Querying

24.8.6.1 Querying a Table

select and delete operations have an optional criterion that can be specified to select/delete only a subset of the
data. This allows one to have a very large on-disk table and retrieve only a portion of the data.

A query is specified using the Term class under the hood, as a boolean expression.

• index and columns are supported indexers of a DataFrames.

• major_axis, minor_axis, and items are supported indexers of the Panel.

• if data_columns are specified, these can be used as additional indexers.

Valid comparison operators are:

=, ==, !=, >, >=, <, <=

Valid boolean expressions are combined with:

• | : or

• & : and

• (and) : for grouping

These rules are similar to how boolean expressions are used in pandas for indexing.

Note:

• = will be automatically expanded to the comparison operator ==

• ~ is the not operator, but can only be used in very limited circumstances

• If a list/tuple of expressions is passed they will be combined via &

The following are valid expressions:

• 'index >= date'

• "columns = ['A', 'D']"

• "columns in ['A', 'D']"

• 'columns = A'

• 'columns == A'

• "~(columns = ['A', 'B'])"

• 'index > df.index[3] & string = "bar"'

• '(index > df.index[3] & index <= df.index[6]) | string = "bar"'

• "ts >= Timestamp('2012-02-01')"

• "major_axis>=20130101"

The indexers are on the left-hand side of the sub-expression:

columns, major_axis, ts

The right-hand side of the sub-expression (after a comparison operator) can be:

• functions that will be evaluated, e.g. Timestamp('2012-02-01')

1202 Chapter 24. IO Tools (Text, CSV, HDF5, . . .)

pandas: powerful Python data analysis toolkit, Release 0.23.4

• strings, e.g. "bar"

• date-like, e.g. 20130101, or "20130101"

• lists, e.g. "['A', 'B']"

• variables that are defined in the local names space, e.g. date

Note: Passing a string to a query by interpolating it into the query expression is not recommended. Simply assign the
string of interest to a variable and use that variable in an expression. For example, do this

string = "HolyMoly'"
store.select('df', 'index == string')

instead of this

string = "HolyMoly'"
store.select('df', 'index == %s' % string)

The latter will not work and will raise a SyntaxError.Note that there’s a single quote followed by a double quote
in the string variable.

If you must interpolate, use the '%r' format specifier

store.select('df', 'index == %r' % string)

which will quote string.

Here are some examples:

In [411]: dfq = pd.DataFrame(randn(10, 4), columns=list('ABCD'),
.....: index=pd.date_range('20130101', periods=10))
.....:

In [412]: store.append('dfq', dfq, format='table', data_columns=True)

Use boolean expressions, with in-line function evaluation.

In [413]: store.select('dfq', "index>pd.Timestamp('20130104') & columns=['A', 'B']")
Out[413]:

A B
2013-01-05 1.210384 0.797435
2013-01-06 -0.850346 1.176812
2013-01-07 0.984188 -0.121728
2013-01-08 0.796595 -0.474021
2013-01-09 -0.804834 -2.123620
2013-01-10 0.334198 0.536784

Use and inline column reference

In [414]: store.select('dfq', where="A>0 or C>0")
Out[414]:

A B C D
2013-01-01 0.436258 -1.703013 0.393711 -0.479324
2013-01-02 -0.299016 0.694103 0.678630 0.239556
2013-01-03 0.151227 0.816127 1.893534 0.639633
2013-01-04 -0.962029 -2.085266 1.930247 -1.735349
2013-01-05 1.210384 0.797435 -0.379811 0.702562

(continues on next page)

24.8. HDF5 (PyTables) 1203

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

2013-01-07 0.984188 -0.121728 2.365769 0.496143
2013-01-08 0.796595 -0.474021 -0.056696 1.357797
2013-01-10 0.334198 0.536784 -0.743830 -0.320204

Works with a Panel as well.

In [415]: store.append('wp', wp)

In [416]: store
Out[416]:
<class 'pandas.io.pytables.HDFStore'>
File path: store.h5

In [417]: store.select('wp', "major_axis>pd.Timestamp('20000102') & minor_axis=['A',
→˓'B']")
\\\Out[417]:
<class 'pandas.core.panel.Panel'>
Dimensions: 2 (items) x 3 (major_axis) x 2 (minor_axis)
Items axis: Item1 to Item2
Major_axis axis: 2000-01-03 00:00:00 to 2000-01-05 00:00:00
Minor_axis axis: A to B

The columns keyword can be supplied to select a list of columns to be returned, this is equivalent to passing a
'columns=list_of_columns_to_filter':

In [418]: store.select('df', "columns=['A', 'B']")
Out[418]:

A B
2000-01-01 0.887163 0.859588
2000-01-02 0.015696 -2.242685
2000-01-03 0.991946 0.953324
2000-01-04 -0.334077 0.002118
2000-01-05 0.289092 1.321158
2000-01-06 -0.202646 -0.655969
2000-01-07 0.553439 1.318152
2000-01-08 0.675554 -1.817027

start and stop parameters can be specified to limit the total search space. These are in terms of the total number
of rows in a table.

this is effectively what the storage of a Panel looks like
In [419]: wp.to_frame()
Out[419]:

Item1 Item2
major minor
2000-01-01 A 1.058969 0.215269

B -0.397840 0.841009
C 0.337438 -1.445810
D 1.047579 -1.401973

2000-01-02 A 1.045938 -0.100918
B 0.863717 -0.548242
C -0.122092 -0.144620

...
2000-01-04 B 0.036142 0.307969

C -2.074978 -0.208499
D 0.247792 1.033801

(continues on next page)

1204 Chapter 24. IO Tools (Text, CSV, HDF5, . . .)

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

2000-01-05 A -0.897157 -2.400454
B -0.136795 2.030604
C 0.018289 -1.142631
D 0.755414 0.211883

[20 rows x 2 columns]

limiting the search
In [420]: store.select('wp', "major_axis>20000102 & minor_axis=['A', 'B']",

.....: start=0, stop=10)

.....:
\\\Out[420]:
→˓

<class 'pandas.core.panel.Panel'>
Dimensions: 2 (items) x 1 (major_axis) x 2 (minor_axis)
Items axis: Item1 to Item2
Major_axis axis: 2000-01-03 00:00:00 to 2000-01-03 00:00:00
Minor_axis axis: A to B

Note: select will raise a ValueError if the query expression has an unknown variable reference. Usually this
means that you are trying to select on a column that is not a data_column.

select will raise a SyntaxError if the query expression is not valid.

24.8.6.2 Using timedelta64[ns]

You can store and query using the timedelta64[ns] type. Terms can be specified in the format:
<float>(<unit>), where float may be signed (and fractional), and unit can be D,s,ms,us,ns for the timedelta.
Here’s an example:

In [421]: from datetime import timedelta

In [422]: dftd = pd.DataFrame(dict(A = pd.Timestamp('20130101'), B = [pd.Timestamp(
→˓'20130101') + timedelta(days=i, seconds=10) for i in range(10)]))

In [423]: dftd['C'] = dftd['A'] - dftd['B']

In [424]: dftd
Out[424]:

A B C
0 2013-01-01 2013-01-01 00:00:10 -1 days +23:59:50
1 2013-01-01 2013-01-02 00:00:10 -2 days +23:59:50
2 2013-01-01 2013-01-03 00:00:10 -3 days +23:59:50
3 2013-01-01 2013-01-04 00:00:10 -4 days +23:59:50
4 2013-01-01 2013-01-05 00:00:10 -5 days +23:59:50
5 2013-01-01 2013-01-06 00:00:10 -6 days +23:59:50
6 2013-01-01 2013-01-07 00:00:10 -7 days +23:59:50
7 2013-01-01 2013-01-08 00:00:10 -8 days +23:59:50
8 2013-01-01 2013-01-09 00:00:10 -9 days +23:59:50
9 2013-01-01 2013-01-10 00:00:10 -10 days +23:59:50

In [425]: store.append('dftd', dftd, data_columns=True)

(continues on next page)

24.8. HDF5 (PyTables) 1205

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

In [426]: store.select('dftd', "C<'-3.5D'")
Out[426]:

A B C
4 2013-01-01 2013-01-05 00:00:10 -5 days +23:59:50
5 2013-01-01 2013-01-06 00:00:10 -6 days +23:59:50
6 2013-01-01 2013-01-07 00:00:10 -7 days +23:59:50
7 2013-01-01 2013-01-08 00:00:10 -8 days +23:59:50
8 2013-01-01 2013-01-09 00:00:10 -9 days +23:59:50
9 2013-01-01 2013-01-10 00:00:10 -10 days +23:59:50

24.8.6.3 Indexing

You can create/modify an index for a table with create_table_index after data is already in the table (after and
append/put operation). Creating a table index is highly encouraged. This will speed your queries a great deal
when you use a select with the indexed dimension as the where.

Note: Indexes are automagically created on the indexables and any data columns you specify. This behavior can be
turned off by passing index=False to append.

we have automagically already created an index (in the first section)
In [427]: i = store.root.df.table.cols.index.index

In [428]: i.optlevel, i.kind
Out[428]: (6, 'medium')

change an index by passing new parameters
In [429]: store.create_table_index('df', optlevel=9, kind='full')

In [430]: i = store.root.df.table.cols.index.index

In [431]: i.optlevel, i.kind
Out[431]: (9, 'full')

Oftentimes when appending large amounts of data to a store, it is useful to turn off index creation for each append,
then recreate at the end.

In [432]: df_1 = pd.DataFrame(randn(10, 2), columns=list('AB'))

In [433]: df_2 = pd.DataFrame(randn(10, 2), columns=list('AB'))

In [434]: st = pd.HDFStore('appends.h5', mode='w')

In [435]: st.append('df', df_1, data_columns=['B'], index=False)

In [436]: st.append('df', df_2, data_columns=['B'], index=False)

In [437]: st.get_storer('df').table
Out[437]:
/df/table (Table(20,)) ''

description := {
"index": Int64Col(shape=(), dflt=0, pos=0),
"values_block_0": Float64Col(shape=(1,), dflt=0.0, pos=1),
"B": Float64Col(shape=(), dflt=0.0, pos=2)}

(continues on next page)

1206 Chapter 24. IO Tools (Text, CSV, HDF5, . . .)

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

byteorder := 'little'
chunkshape := (2730,)

Then create the index when finished appending.

In [438]: st.create_table_index('df', columns=['B'], optlevel=9, kind='full')

In [439]: st.get_storer('df').table
Out[439]:
/df/table (Table(20,)) ''

description := {
"index": Int64Col(shape=(), dflt=0, pos=0),
"values_block_0": Float64Col(shape=(1,), dflt=0.0, pos=1),
"B": Float64Col(shape=(), dflt=0.0, pos=2)}
byteorder := 'little'
chunkshape := (2730,)
autoindex := True
colindexes := {
"B": Index(9, full, shuffle, zlib(1)).is_csi=True}

In [440]: st.close()

See here for how to create a completely-sorted-index (CSI) on an existing store.

24.8.6.4 Query via Data Columns

You can designate (and index) certain columns that you want to be able to perform queries (other than the indexable
columns, which you can always query). For instance say you want to perform this common operation, on-disk, and
return just the frame that matches this query. You can specify data_columns = True to force all columns to be
data_columns.

In [441]: df_dc = df.copy()

In [442]: df_dc['string'] = 'foo'

In [443]: df_dc.loc[df_dc.index[4: 6], 'string'] = np.nan

In [444]: df_dc.loc[df_dc.index[7: 9], 'string'] = 'bar'

In [445]: df_dc['string2'] = 'cool'

In [446]: df_dc.loc[df_dc.index[1: 3], ['B', 'C']] = 1.0

In [447]: df_dc
Out[447]:

A B C string string2
2000-01-01 0.887163 0.859588 -0.636524 foo cool
2000-01-02 0.015696 1.000000 1.000000 foo cool
2000-01-03 0.991946 1.000000 1.000000 foo cool
2000-01-04 -0.334077 0.002118 0.405453 foo cool
2000-01-05 0.289092 1.321158 -1.546906 NaN cool
2000-01-06 -0.202646 -0.655969 0.193421 NaN cool
2000-01-07 0.553439 1.318152 -0.469305 foo cool
2000-01-08 0.675554 -1.817027 -0.183109 bar cool

(continues on next page)

24.8. HDF5 (PyTables) 1207

http://stackoverflow.com/questions/17893370/ptrepack-sortby-needs-full-index

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

on-disk operations
In [448]: store.append('df_dc', df_dc, data_columns = ['B', 'C', 'string', 'string2'])

In [449]: store.select('df_dc', where='B > 0')
Out[449]:

A B C string string2
2000-01-01 0.887163 0.859588 -0.636524 foo cool
2000-01-02 0.015696 1.000000 1.000000 foo cool
2000-01-03 0.991946 1.000000 1.000000 foo cool
2000-01-04 -0.334077 0.002118 0.405453 foo cool
2000-01-05 0.289092 1.321158 -1.546906 NaN cool
2000-01-07 0.553439 1.318152 -0.469305 foo cool

getting creative
In [450]: store.select('df_dc', 'B > 0 & C > 0 & string == foo')
\\\Out[450]:
→˓

A B C string string2
2000-01-02 0.015696 1.000000 1.000000 foo cool
2000-01-03 0.991946 1.000000 1.000000 foo cool
2000-01-04 -0.334077 0.002118 0.405453 foo cool

this is in-memory version of this type of selection
In [451]: df_dc[(df_dc.B > 0) & (df_dc.C > 0) & (df_dc.string == 'foo')]
\\Out[451]:
→˓

A B C string string2
2000-01-02 0.015696 1.000000 1.000000 foo cool
2000-01-03 0.991946 1.000000 1.000000 foo cool
2000-01-04 -0.334077 0.002118 0.405453 foo cool

we have automagically created this index and the B/C/string/string2
columns are stored separately as ``PyTables`` columns
In [452]: store.root.df_dc.table
\\\Out[452]:
→˓

/df_dc/table (Table(8,)) ''
description := {
"index": Int64Col(shape=(), dflt=0, pos=0),
"values_block_0": Float64Col(shape=(1,), dflt=0.0, pos=1),
"B": Float64Col(shape=(), dflt=0.0, pos=2),
"C": Float64Col(shape=(), dflt=0.0, pos=3),
"string": StringCol(itemsize=3, shape=(), dflt=b'', pos=4),
"string2": StringCol(itemsize=4, shape=(), dflt=b'', pos=5)}
byteorder := 'little'
chunkshape := (1680,)
autoindex := True
colindexes := {
"index": Index(6, medium, shuffle, zlib(1)).is_csi=False,
"B": Index(6, medium, shuffle, zlib(1)).is_csi=False,
"C": Index(6, medium, shuffle, zlib(1)).is_csi=False,
"string": Index(6, medium, shuffle, zlib(1)).is_csi=False,
"string2": Index(6, medium, shuffle, zlib(1)).is_csi=False}

There is some performance degradation by making lots of columns into data columns, so it is up to the user to designate
these. In addition, you cannot change data columns (nor indexables) after the first append/put operation (Of course
you can simply read in the data and create a new table!).

1208 Chapter 24. IO Tools (Text, CSV, HDF5, . . .)

pandas: powerful Python data analysis toolkit, Release 0.23.4

24.8.6.5 Iterator

You can pass iterator=True or chunksize=number_in_a_chunk to select and
select_as_multiple to return an iterator on the results. The default is 50,000 rows returned in a chunk.

In [453]: for df in store.select('df', chunksize=3):
.....: print(df)
.....:

A B C
2000-01-01 0.887163 0.859588 -0.636524
2000-01-02 0.015696 -2.242685 1.150036
2000-01-03 0.991946 0.953324 -2.021255

A B C
2000-01-04 -0.334077 0.002118 0.405453
2000-01-05 0.289092 1.321158 -1.546906
2000-01-06 -0.202646 -0.655969 0.193421

A B C
2000-01-07 0.553439 1.318152 -0.469305
2000-01-08 0.675554 -1.817027 -0.183109

Note: You can also use the iterator with read_hdfwhich will open, then automatically close the store when finished
iterating.

for df in pd.read_hdf('store.h5','df', chunksize=3):
print(df)

Note, that the chunksize keyword applies to the source rows. So if you are doing a query, then the chunksize will
subdivide the total rows in the table and the query applied, returning an iterator on potentially unequal sized chunks.

Here is a recipe for generating a query and using it to create equal sized return chunks.

In [454]: dfeq = pd.DataFrame({'number': np.arange(1, 11)})

In [455]: dfeq
Out[455]:

number
0 1
1 2
2 3
3 4
4 5
5 6
6 7
7 8
8 9
9 10

In [456]: store.append('dfeq', dfeq, data_columns=['number'])

In [457]: def chunks(l, n):
.....: return [l[i: i+n] for i in range(0, len(l), n)]
.....:

In [458]: evens = [2, 4, 6, 8, 10]

In [459]: coordinates = store.select_as_coordinates('dfeq', 'number=evens')
(continues on next page)

24.8. HDF5 (PyTables) 1209

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

In [460]: for c in chunks(coordinates, 2):
.....: print(store.select('dfeq', where=c))
.....:
number

1 2
3 4

number
5 6
7 8

number
9 10

24.8.6.6 Advanced Queries

Select a Single Column

To retrieve a single indexable or data column, use the method select_column. This will, for example, enable you
to get the index very quickly. These return a Series of the result, indexed by the row number. These do not currently
accept the where selector.

In [461]: store.select_column('df_dc', 'index')
Out[461]:
0 2000-01-01
1 2000-01-02
2 2000-01-03
3 2000-01-04
4 2000-01-05
5 2000-01-06
6 2000-01-07
7 2000-01-08
Name: index, dtype: datetime64[ns]

In [462]: store.select_column('df_dc', 'string')
\\Out[462]:
→˓

0 foo
1 foo
2 foo
3 foo
4 NaN
5 NaN
6 foo
7 bar
Name: string, dtype: object

Selecting coordinates

Sometimes you want to get the coordinates (a.k.a the index locations) of your query. This returns an Int64Index
of the resulting locations. These coordinates can also be passed to subsequent where operations.

1210 Chapter 24. IO Tools (Text, CSV, HDF5, . . .)

pandas: powerful Python data analysis toolkit, Release 0.23.4

In [463]: df_coord = pd.DataFrame(np.random.randn(1000, 2),
.....: index=pd.date_range('20000101', periods=1000))
.....:

In [464]: store.append('df_coord', df_coord)

In [465]: c = store.select_as_coordinates('df_coord', 'index > 20020101')

In [466]: c
Out[466]:
Int64Index([732, 733, 734, 735, 736, 737, 738, 739, 740, 741,

...
990, 991, 992, 993, 994, 995, 996, 997, 998, 999],

dtype='int64', length=268)

In [467]: store.select('df_coord', where=c)
\\Out[467]:
→˓

0 1
2002-01-02 -0.178266 -0.064638
2002-01-03 -1.204956 -3.880898
2002-01-04 0.974470 0.415160
2002-01-05 1.751967 0.485011
2002-01-06 -0.170894 0.748870
2002-01-07 0.629793 0.811053
2002-01-08 2.133776 0.238459
...
2002-09-20 -0.181434 0.612399
2002-09-21 -0.763324 -0.354962
2002-09-22 -0.261776 0.812126
2002-09-23 0.482615 -0.886512
2002-09-24 -0.037757 -0.562953
2002-09-25 0.897706 0.383232
2002-09-26 -1.324806 1.139269

[268 rows x 2 columns]

Selecting using a where mask

Sometime your query can involve creating a list of rows to select. Usually this mask would be a resulting index
from an indexing operation. This example selects the months of a datetimeindex which are 5.

In [468]: df_mask = pd.DataFrame(np.random.randn(1000, 2),
.....: index=pd.date_range('20000101', periods=1000))
.....:

In [469]: store.append('df_mask', df_mask)

In [470]: c = store.select_column('df_mask', 'index')

In [471]: where = c[pd.DatetimeIndex(c).month == 5].index

In [472]: store.select('df_mask', where=where)
Out[472]:

0 1

(continues on next page)

24.8. HDF5 (PyTables) 1211

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

2000-05-01 -1.006245 -0.616759
2000-05-02 0.218940 0.717838
2000-05-03 0.013333 1.348060
2000-05-04 0.662176 -1.050645
2000-05-05 -1.034870 -0.243242
2000-05-06 -0.753366 -1.454329
2000-05-07 -1.022920 -0.476989
...
2002-05-25 -0.509090 -0.389376
2002-05-26 0.150674 1.164337
2002-05-27 -0.332944 0.115181
2002-05-28 -1.048127 -0.605733
2002-05-29 1.418754 -0.442835
2002-05-30 -0.433200 0.835001
2002-05-31 -1.041278 1.401811

[93 rows x 2 columns]

Storer Object

If you want to inspect the stored object, retrieve via get_storer. You could use this programmatically to say get
the number of rows in an object.

In [473]: store.get_storer('df_dc').nrows
Out[473]: 8

24.8.6.7 Multiple Table Queries

The methods append_to_multiple and select_as_multiple can perform appending/selecting from mul-
tiple tables at once. The idea is to have one table (call it the selector table) that you index most/all of the columns, and
perform your queries. The other table(s) are data tables with an index matching the selector table’s index. You can
then perform a very fast query on the selector table, yet get lots of data back. This method is similar to having a very
wide table, but enables more efficient queries.

The append_to_multiple method splits a given single DataFrame into multiple tables according to d, a dictio-
nary that maps the table names to a list of ‘columns’ you want in that table. If None is used in place of a list, that
table will have the remaining unspecified columns of the given DataFrame. The argument selector defines which
table is the selector table (which you can make queries from). The argument dropna will drop rows from the input
DataFrame to ensure tables are synchronized. This means that if a row for one of the tables being written to is
entirely np.NaN, that row will be dropped from all tables.

If dropna is False, THE USER IS RESPONSIBLE FOR SYNCHRONIZING THE TABLES. Remember that
entirely np.Nan rows are not written to the HDFStore, so if you choose to call dropna=False, some tables may
have more rows than others, and therefore select_as_multiple may not work or it may return unexpected
results.

In [474]: df_mt = pd.DataFrame(randn(8, 6), index=pd.date_range('1/1/2000',
→˓periods=8),

.....: columns=['A', 'B', 'C', 'D', 'E', 'F'])

.....:

In [475]: df_mt['foo'] = 'bar'

(continues on next page)

1212 Chapter 24. IO Tools (Text, CSV, HDF5, . . .)

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

In [476]: df_mt.loc[df_mt.index[1], ('A', 'B')] = np.nan

you can also create the tables individually
In [477]: store.append_to_multiple({'df1_mt': ['A', 'B'], 'df2_mt': None },

.....: df_mt, selector='df1_mt')

.....:

In [478]: store
Out[478]:
<class 'pandas.io.pytables.HDFStore'>
File path: store.h5

individual tables were created
In [479]: store.select('df1_mt')
\\\Out[479]:

A B
2000-01-01 0.714697 0.318215
2000-01-02 NaN NaN
2000-01-03 -0.086919 0.416905
2000-01-04 0.489131 -0.253340
2000-01-05 -0.382952 -0.397373
2000-01-06 0.538116 0.226388
2000-01-07 -2.073479 -0.115926
2000-01-08 -0.695400 0.402493

In [480]: store.select('df2_mt')
\\\Out[480]:
→˓

C D E F foo
2000-01-01 0.607460 0.790907 0.852225 0.096696 bar
2000-01-02 0.811031 -0.356817 1.047085 0.664705 bar
2000-01-03 -0.764381 -0.287229 -0.089351 -1.035115 bar
2000-01-04 -1.948100 -0.116556 0.800597 -0.796154 bar
2000-01-05 -0.717627 0.156995 -0.344718 -0.171208 bar
2000-01-06 1.541729 0.205256 1.998065 0.953591 bar
2000-01-07 1.391070 0.303013 1.093347 -0.101000 bar
2000-01-08 -1.507639 0.089575 0.658822 -1.037627 bar

as a multiple
In [481]: store.select_as_multiple(['df1_mt', 'df2_mt'], where=['A>0', 'B>0'],

.....: selector = 'df1_mt')

.....:
\\Out[481]:
→˓

A B C D E F foo
2000-01-01 0.714697 0.318215 0.607460 0.790907 0.852225 0.096696 bar
2000-01-06 0.538116 0.226388 1.541729 0.205256 1.998065 0.953591 bar

24.8.7 Delete from a Table

You can delete from a table selectively by specifying a where. In deleting rows, it is important to understand the
PyTables deletes rows by erasing the rows, then moving the following data. Thus deleting can potentially be a very
expensive operation depending on the orientation of your data. This is especially true in higher dimensional objects
(Panel and Panel4D). To get optimal performance, it’s worthwhile to have the dimension you are deleting be the
first of the indexables.

24.8. HDF5 (PyTables) 1213

pandas: powerful Python data analysis toolkit, Release 0.23.4

Data is ordered (on the disk) in terms of the indexables. Here’s a simple use case. You store panel-type data, with
dates in the major_axis and ids in the minor_axis. The data is then interleaved like this:

• date_1 - id_1 - id_2 - . - id_n

• date_2 - id_1 - . - id_n

It should be clear that a delete operation on the major_axis will be fairly quick, as one chunk is removed, then the
following data moved. On the other hand a delete operation on the minor_axis will be very expensive. In this case
it would almost certainly be faster to rewrite the table using a where that selects all but the missing data.

returns the number of rows deleted
In [482]: store.remove('wp', 'major_axis > 20000102')
Out[482]: 12

In [483]: store.select('wp')
\\\\\\\\\\\\\Out[483]:
<class 'pandas.core.panel.Panel'>
Dimensions: 2 (items) x 2 (major_axis) x 4 (minor_axis)
Items axis: Item1 to Item2
Major_axis axis: 2000-01-01 00:00:00 to 2000-01-02 00:00:00
Minor_axis axis: A to D

Warning: Please note that HDF5 DOES NOT RECLAIM SPACE in the h5 files automatically. Thus, repeatedly
deleting (or removing nodes) and adding again, WILL TEND TO INCREASE THE FILE SIZE.

To repack and clean the file, use ptrepack.

24.8.8 Notes & Caveats

24.8.8.1 Compression

PyTables allows the stored data to be compressed. This applies to all kinds of stores, not just tables. Two parameters
are used to control compression: complevel and complib.

complevel specifies if and how hard data is to be compressed. complevel=0 and complevel=None dis-
ables compression and 0<complevel<10 enables compression.

complib specifies which compression library to use. If nothing is specified the default library zlib is used. A
compression library usually optimizes for either good compression rates or speed and the results will depend
on the type of data. Which type of compression to choose depends on your specific needs and data. The list of
supported compression libraries:

• zlib: The default compression library. A classic in terms of compression, achieves good com-
pression rates but is somewhat slow.

• lzo: Fast compression and decompression.

• bzip2: Good compression rates.

• blosc: Fast compression and decompression.

New in version 0.20.2: Support for alternative blosc compressors:

• blosc:blosclz This is the default compressor for blosc

• blosc:lz4: A compact, very popular and fast compressor.

1214 Chapter 24. IO Tools (Text, CSV, HDF5, . . .)

http://zlib.net/
http://www.oberhumer.com/opensource/lzo/
http://bzip.org/
http://www.blosc.org/
http://www.blosc.org/
https://fastcompression.blogspot.dk/p/lz4.html

pandas: powerful Python data analysis toolkit, Release 0.23.4

• blosc:lz4hc: A tweaked version of LZ4, produces better compression ratios at the expense of
speed.

• blosc:snappy: A popular compressor used in many places.

• blosc:zlib: A classic; somewhat slower than the previous ones, but achieving better compression
ratios.

• blosc:zstd: An extremely well balanced codec; it provides the best compression ratios among
the others above, and at reasonably fast speed.

If complib is defined as something other than the listed libraries a ValueError exception is
issued.

Note: If the library specified with the complib option is missing on your platform, compression defaults to zlib
without further ado.

Enable compression for all objects within the file:

store_compressed = pd.HDFStore('store_compressed.h5', complevel=9,
complib='blosc:blosclz')

Or on-the-fly compression (this only applies to tables) in stores where compression is not enabled:

store.append('df', df, complib='zlib', complevel=5)

24.8.8.2 ptrepack

PyTables offers better write performance when tables are compressed after they are written, as opposed to turning on
compression at the very beginning. You can use the supplied PyTables utility ptrepack. In addition, ptrepack
can change compression levels after the fact.

ptrepack --chunkshape=auto --propindexes --complevel=9 --complib=blosc in.h5 out.h5

Furthermore ptrepack in.h5 out.h5 will repack the file to allow you to reuse previously deleted space. Alter-
natively, one can simply remove the file and write again, or use the copy method.

24.8.8.3 Caveats

Warning: HDFStore is not-threadsafe for writing. The underlying PyTables only supports concurrent
reads (via threading or processes). If you need reading and writing at the same time, you need to serialize these
operations in a single thread in a single process. You will corrupt your data otherwise. See the (GH2397) for more
information.

• If you use locks to manage write access between multiple processes, you may want to use fsync() before
releasing write locks. For convenience you can use store.flush(fsync=True) to do this for you.

• Once a table is created its items (Panel) / columns (DataFrame) are fixed; only exactly the same columns can
be appended

• Be aware that timezones (e.g., pytz.timezone('US/Eastern')) are not necessarily equal across time-
zone versions. So if data is localized to a specific timezone in the HDFStore using one version of a timezone
library and that data is updated with another version, the data will be converted to UTC since these timezones

24.8. HDF5 (PyTables) 1215

https://fastcompression.blogspot.dk/p/lz4.html
https://google.github.io/snappy/
http://zlib.net/
https://facebook.github.io/zstd/
https://github.com/pandas-dev/pandas/issues/2397
https://docs.python.org/3/library/os.html#os.fsync

pandas: powerful Python data analysis toolkit, Release 0.23.4

are not considered equal. Either use the same version of timezone library or use tz_convert with the updated
timezone definition.

Warning: PyTables will show a NaturalNameWarning if a column name cannot be used as an attribute
selector. Natural identifiers contain only letters, numbers, and underscores, and may not begin with a number.
Other identifiers cannot be used in a where clause and are generally a bad idea.

24.8.9 DataTypes

HDFStore will map an object dtype to the PyTables underlying dtype. This means the following types are known
to work:

Type Represents missing values
floating : float64, float32, float16 np.nan
integer : int64, int32, int8, uint64,uint32, uint8
boolean
datetime64[ns] NaT
timedelta64[ns] NaT
categorical : see the section below
object : strings np.nan

unicode columns are not supported, and WILL FAIL.

24.8.9.1 Categorical Data

You can write data that contains category dtypes to a HDFStore. Queries work the same as if it was an object
array. However, the category dtyped data is stored in a more efficient manner.

In [484]: dfcat = pd.DataFrame({'A': pd.Series(list('aabbcdba')).astype('category'),
.....: 'B': np.random.randn(8) })
.....:

In [485]: dfcat
Out[485]:

A B
0 a 0.603273
1 a 0.262554
2 b -0.979586
3 b 2.132387
4 c 0.892485
5 d 1.996474
6 b 0.231425
7 a 0.980070

In [486]: dfcat.dtypes
\\Out[486]:
→˓

A category
B float64
dtype: object

In [487]: cstore = pd.HDFStore('cats.h5', mode='w')

(continues on next page)

1216 Chapter 24. IO Tools (Text, CSV, HDF5, . . .)

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

In [488]: cstore.append('dfcat', dfcat, format='table', data_columns=['A'])

In [489]: result = cstore.select('dfcat', where="A in ['b', 'c']")

In [490]: result
Out[490]:

A B
2 b -0.979586
3 b 2.132387
4 c 0.892485
6 b 0.231425

In [491]: result.dtypes
\\Out[491]:
→˓

A category
B float64
dtype: object

24.8.9.2 String Columns

min_itemsize

The underlying implementation of HDFStore uses a fixed column width (itemsize) for string columns. A string
column itemsize is calculated as the maximum of the length of data (for that column) that is passed to the HDFStore,
in the first append. Subsequent appends, may introduce a string for a column larger than the column can hold, an
Exception will be raised (otherwise you could have a silent truncation of these columns, leading to loss of information).
In the future we may relax this and allow a user-specified truncation to occur.

Pass min_itemsize on the first table creation to a-priori specify the minimum length of a particular string column.
min_itemsize can be an integer, or a dict mapping a column name to an integer. You can pass values as a key
to allow all indexables or data_columns to have this min_itemsize.

Passing a min_itemsize dict will cause all passed columns to be created as data_columns automatically.

Note: If you are not passing any data_columns, then the min_itemsize will be the maximum of the length of
any string passed

In [492]: dfs = pd.DataFrame(dict(A='foo', B='bar'), index=list(range(5)))

In [493]: dfs
Out[493]:

A B
0 foo bar
1 foo bar
2 foo bar
3 foo bar
4 foo bar

A and B have a size of 30
In [494]: store.append('dfs', dfs, min_itemsize=30)

In [495]: store.get_storer('dfs').table
(continues on next page)

24.8. HDF5 (PyTables) 1217

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

Out[495]:
/dfs/table (Table(5,)) ''

description := {
"index": Int64Col(shape=(), dflt=0, pos=0),
"values_block_0": StringCol(itemsize=30, shape=(2,), dflt=b'', pos=1)}
byteorder := 'little'
chunkshape := (963,)
autoindex := True
colindexes := {
"index": Index(6, medium, shuffle, zlib(1)).is_csi=False}

A is created as a data_column with a size of 30
B is size is calculated
In [496]: store.append('dfs2', dfs, min_itemsize={'A': 30})

In [497]: store.get_storer('dfs2').table
Out[497]:
/dfs2/table (Table(5,)) ''

description := {
"index": Int64Col(shape=(), dflt=0, pos=0),
"values_block_0": StringCol(itemsize=3, shape=(1,), dflt=b'', pos=1),
"A": StringCol(itemsize=30, shape=(), dflt=b'', pos=2)}
byteorder := 'little'
chunkshape := (1598,)
autoindex := True
colindexes := {
"index": Index(6, medium, shuffle, zlib(1)).is_csi=False,
"A": Index(6, medium, shuffle, zlib(1)).is_csi=False}

nan_rep

String columns will serialize a np.nan (a missing value) with the nan_rep string representation. This defaults to
the string value nan. You could inadvertently turn an actual nan value into a missing value.

In [498]: dfss = pd.DataFrame(dict(A=['foo', 'bar', 'nan']))

In [499]: dfss
Out[499]:

A
0 foo
1 bar
2 nan

In [500]: store.append('dfss', dfss)

In [501]: store.select('dfss')
Out[501]:

A
0 foo
1 bar
2 NaN

here you need to specify a different nan rep
In [502]: store.append('dfss2', dfss, nan_rep='_nan_')

In [503]: store.select('dfss2')
Out[503]:

(continues on next page)

1218 Chapter 24. IO Tools (Text, CSV, HDF5, . . .)

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

A
0 foo
1 bar
2 nan

24.8.10 External Compatibility

HDFStore writes table format objects in specific formats suitable for producing loss-less round trips to pandas
objects. For external compatibility, HDFStore can read native PyTables format tables.

It is possible to write an HDFStore object that can easily be imported into R using the rhdf5 library (Package
website). Create a table format store like this:

In [504]: np.random.seed(1)

In [505]: df_for_r = pd.DataFrame({"first": np.random.rand(100),
.....: "second": np.random.rand(100),
.....: "class": np.random.randint(0, 2, (100,))},
.....: index=range(100))
.....:

In [506]: df_for_r.head()
Out[506]:

first second class
0 0.417022 0.326645 0
1 0.720324 0.527058 0
2 0.000114 0.885942 1
3 0.302333 0.357270 1
4 0.146756 0.908535 1

In [507]: store_export = pd.HDFStore('export.h5')

In [508]: store_export.append('df_for_r', df_for_r, data_columns=df_dc.columns)

In [509]: store_export
Out[509]:
<class 'pandas.io.pytables.HDFStore'>
File path: export.h5

In R this file can be read into a data.frame object using the rhdf5 library. The following example function reads
the corresponding column names and data values from the values and assembles them into a data.frame:

Load values and column names for all datasets from corresponding nodes and
insert them into one data.frame object.

library(rhdf5)

loadhdf5data <- function(h5File) {

listing <- h5ls(h5File)
Find all data nodes, values are stored in *_values and corresponding column
titles in *_items
data_nodes <- grep("_values", listing$name)
name_nodes <- grep("_items", listing$name)
data_paths = paste(listing$group[data_nodes], listing$name[data_nodes], sep = "/")

(continues on next page)

24.8. HDF5 (PyTables) 1219

http://www.bioconductor.org/packages/release/bioc/html/rhdf5.html
http://www.bioconductor.org/packages/release/bioc/html/rhdf5.html

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

name_paths = paste(listing$group[name_nodes], listing$name[name_nodes], sep = "/")
columns = list()
for (idx in seq(data_paths)) {
NOTE: matrices returned by h5read have to be transposed to obtain
required Fortran order!
data <- data.frame(t(h5read(h5File, data_paths[idx])))
names <- t(h5read(h5File, name_paths[idx]))
entry <- data.frame(data)
colnames(entry) <- names
columns <- append(columns, entry)

}

data <- data.frame(columns)

return(data)
}

Now you can import the DataFrame into R:

> data = loadhdf5data("transfer.hdf5")
> head(data)

first second class
1 0.4170220047 0.3266449 0
2 0.7203244934 0.5270581 0
3 0.0001143748 0.8859421 1
4 0.3023325726 0.3572698 1
5 0.1467558908 0.9085352 1
6 0.0923385948 0.6233601 1

Note: The R function lists the entire HDF5 file’s contents and assembles the data.frame object from all matching
nodes, so use this only as a starting point if you have stored multiple DataFrame objects to a single HDF5 file.

24.8.11 Performance

• tables format come with a writing performance penalty as compared to fixed stores. The benefit is the
ability to append/delete and query (potentially very large amounts of data). Write times are generally longer as
compared with regular stores. Query times can be quite fast, especially on an indexed axis.

• You can pass chunksize=<int> to append, specifying the write chunksize (default is 50000). This will
significantly lower your memory usage on writing.

• You can pass expectedrows=<int> to the first append, to set the TOTAL number of expected rows that
PyTables will expected. This will optimize read/write performance.

• Duplicate rows can be written to tables, but are filtered out in selection (with the last items being selected; thus
a table is unique on major, minor pairs)

• A PerformanceWarning will be raised if you are attempting to store types that will be pickled by PyTables
(rather than stored as endemic types). See Here for more information and some solutions.

24.9 Feather

New in version 0.20.0.

1220 Chapter 24. IO Tools (Text, CSV, HDF5, . . .)

http://stackoverflow.com/questions/14355151/how-to-make-pandas-hdfstore-put-operation-faster/14370190#14370190

pandas: powerful Python data analysis toolkit, Release 0.23.4

Feather provides binary columnar serialization for data frames. It is designed to make reading and writing data frames
efficient, and to make sharing data across data analysis languages easy.

Feather is designed to faithfully serialize and de-serialize DataFrames, supporting all of the pandas dtypes, including
extension dtypes such as categorical and datetime with tz.

Several caveats.

• This is a newer library, and the format, though stable, is not guaranteed to be backward compatible to the earlier
versions.

• The format will NOT write an Index, or MultiIndex for the DataFrame and will raise an error if a non-
default one is provided. You can .reset_index() to store the index or .reset_index(drop=True)
to ignore it.

• Duplicate column names and non-string columns names are not supported

• Non supported types include Period and actual Python object types. These will raise a helpful error message
on an attempt at serialization.

See the Full Documentation.

In [510]: df = pd.DataFrame({'a': list('abc'),
.....: 'b': list(range(1, 4)),
.....: 'c': np.arange(3, 6).astype('u1'),
.....: 'd': np.arange(4.0, 7.0, dtype='float64'),
.....: 'e': [True, False, True],
.....: 'f': pd.Categorical(list('abc')),
.....: 'g': pd.date_range('20130101', periods=3),
.....: 'h': pd.date_range('20130101', periods=3, tz='US/Eastern

→˓'),
.....: 'i': pd.date_range('20130101', periods=3, freq='ns')})
.....:

In [511]: df
Out[511]:

a b c d e f g h
→˓ i
0 a 1 3 4.0 True a 2013-01-01 2013-01-01 00:00:00-05:00 2013-01-01 00:00:00.
→˓000000000
1 b 2 4 5.0 False b 2013-01-02 2013-01-02 00:00:00-05:00 2013-01-01 00:00:00.
→˓000000001
2 c 3 5 6.0 True c 2013-01-03 2013-01-03 00:00:00-05:00 2013-01-01 00:00:00.
→˓000000002

In [512]: df.dtypes
\\\Out[512]:
→˓

a object
b int64
c uint8
d float64
e bool
f category
g datetime64[ns]
h datetime64[ns, US/Eastern]
i datetime64[ns]
dtype: object

Write to a feather file.

24.9. Feather 1221

https://github.com/wesm/feather

pandas: powerful Python data analysis toolkit, Release 0.23.4

In [513]: df.to_feather('example.feather')

Read from a feather file.

In [514]: result = pd.read_feather('example.feather')

In [515]: result
Out[515]:

a b c d e f g h
→˓ i
0 a 1 3 4.0 True a 2013-01-01 2013-01-01 00:00:00-05:00 2013-01-01 00:00:00.
→˓000000000
1 b 2 4 5.0 False b 2013-01-02 2013-01-02 00:00:00-05:00 2013-01-01 00:00:00.
→˓000000001
2 c 3 5 6.0 True c 2013-01-03 2013-01-03 00:00:00-05:00 2013-01-01 00:00:00.
→˓000000002

we preserve dtypes
In [516]: result.dtypes
\\\Out[516]:
→˓

a object
b int64
c uint8
d float64
e bool
f category
g datetime64[ns]
h datetime64[ns, US/Eastern]
i datetime64[ns]
dtype: object

24.10 Parquet

New in version 0.21.0.

Apache Parquet provides a partitioned binary columnar serialization for data frames. It is designed to make reading and
writing data frames efficient, and to make sharing data across data analysis languages easy. Parquet can use a variety
of compression techniques to shrink the file size as much as possible while still maintaining good read performance.

Parquet is designed to faithfully serialize and de-serialize DataFrame s, supporting all of the pandas dtypes, includ-
ing extension dtypes such as datetime with tz.

Several caveats.

• Duplicate column names and non-string columns names are not supported.

• Index level names, if specified, must be strings.

• Categorical dtypes can be serialized to parquet, but will de-serialize as object dtype.

• Non supported types include Period and actual Python object types. These will raise a helpful error message
on an attempt at serialization.

You can specify an engine to direct the serialization. This can be one of pyarrow, or fastparquet, or auto.
If the engine is NOT specified, then the pd.options.io.parquet.engine option is checked; if this is also
auto, then pyarrow is tried, and falling back to fastparquet.

1222 Chapter 24. IO Tools (Text, CSV, HDF5, . . .)

https://parquet.apache.org/

pandas: powerful Python data analysis toolkit, Release 0.23.4

See the documentation for pyarrow and fastparquet.

Note: These engines are very similar and should read/write nearly identical parquet format files. Currently pyarrow
does not support timedelta data, fastparquet>=0.1.4 supports timezone aware datetimes. These libraries differ
by having different underlying dependencies (fastparquet by using numba, while pyarrow uses a c-library).

In [517]: df = pd.DataFrame({'a': list('abc'),
.....: 'b': list(range(1, 4)),
.....: 'c': np.arange(3, 6).astype('u1'),
.....: 'd': np.arange(4.0, 7.0, dtype='float64'),
.....: 'e': [True, False, True],
.....: 'f': pd.date_range('20130101', periods=3),
.....: 'g': pd.date_range('20130101', periods=3, tz='US/Eastern

→˓')})
.....:

In [518]: df
Out[518]:

a b c d e f g
0 a 1 3 4.0 True 2013-01-01 2013-01-01 00:00:00-05:00
1 b 2 4 5.0 False 2013-01-02 2013-01-02 00:00:00-05:00
2 c 3 5 6.0 True 2013-01-03 2013-01-03 00:00:00-05:00

In [519]: df.dtypes
\\\Out[519]:
→˓

a object
b int64
c uint8
d float64
e bool
f datetime64[ns]
g datetime64[ns, US/Eastern]
dtype: object

Write to a parquet file.

In [520]: df.to_parquet('example_pa.parquet', engine='pyarrow')

In [521]: df.to_parquet('example_fp.parquet', engine='fastparquet')

Read from a parquet file.

In [522]: result = pd.read_parquet('example_fp.parquet', engine='fastparquet')

In [523]: result = pd.read_parquet('example_pa.parquet', engine='pyarrow')

In [524]: result.dtypes
Out[524]:
a object
b int64
c uint8
d float64
e bool
f datetime64[ns]
g datetime64[ns, US/Eastern]

(continues on next page)

24.10. Parquet 1223

http://arrow.apache.org/docs/python/
https://fastparquet.readthedocs.io/en/latest/

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

dtype: object

Read only certain columns of a parquet file.

In [525]: result = pd.read_parquet('example_fp.parquet',
.....: engine='fastparquet', columns=['a', 'b'])
.....:

In [526]: result.dtypes
Out[526]:
a object
b int64
dtype: object

24.11 SQL Queries

The pandas.io.sql module provides a collection of query wrappers to both facilitate data retrieval and to reduce
dependency on DB-specific API. Database abstraction is provided by SQLAlchemy if installed. In addition you will
need a driver library for your database. Examples of such drivers are psycopg2 for PostgreSQL or pymysql for
MySQL. For SQLite this is included in Python’s standard library by default. You can find an overview of supported
drivers for each SQL dialect in the SQLAlchemy docs.

If SQLAlchemy is not installed, a fallback is only provided for sqlite (and for mysql for backwards compatibility,
but this is deprecated and will be removed in a future version). This mode requires a Python database adapter which
respect the Python DB-API.

See also some cookbook examples for some advanced strategies.

The key functions are:

read_sql_table(table_name, con[, schema, . . .]) Read SQL database table into a DataFrame.
read_sql_query(sql, con[, index_col, . . .]) Read SQL query into a DataFrame.
read_sql(sql, con[, index_col, . . .]) Read SQL query or database table into a DataFrame.
DataFrame.to_sql(name, con[, schema, . . .]) Write records stored in a DataFrame to a SQL database.

24.11.1 pandas.read_sql_table

pandas.read_sql_table(table_name, con, schema=None, index_col=None, coerce_float=True,
parse_dates=None, columns=None, chunksize=None)

Read SQL database table into a DataFrame.

Given a table name and a SQLAlchemy connectable, returns a DataFrame. This function does not support
DBAPI connections.

Parameters table_name : string

Name of SQL table in database.

con : SQLAlchemy connectable (or database string URI)

SQLite DBAPI connection mode not supported.

schema : string, default None

1224 Chapter 24. IO Tools (Text, CSV, HDF5, . . .)

http://initd.org/psycopg/
https://github.com/PyMySQL/PyMySQL
https://docs.python.org/3/library/sqlite3.html
http://docs.sqlalchemy.org/en/latest/dialects/index.html
http://www.python.org/dev/peps/pep-0249/

pandas: powerful Python data analysis toolkit, Release 0.23.4

Name of SQL schema in database to query (if database flavor supports this). Uses
default schema if None (default).

index_col : string or list of strings, optional, default: None

Column(s) to set as index(MultiIndex).

coerce_float : boolean, default True

Attempts to convert values of non-string, non-numeric objects (like decimal.Decimal)
to floating point. Can result in loss of Precision.

parse_dates : list or dict, default: None

• List of column names to parse as dates.

• Dict of {column_name: format string} where format string is strftime compat-
ible in case of parsing string times or is one of (D, s, ns, ms, us) in case of parsing integer
timestamps.

• Dict of {column_name: arg dict}, where the arg dict corresponds to the keyword
arguments of pandas.to_datetime() Especially useful with databases without native
Datetime support, such as SQLite.

columns : list, default: None

List of column names to select from SQL table

chunksize : int, default None

If specified, returns an iterator where chunksize is the number of rows to include in each
chunk.

Returns

DataFrame

See also:

read_sql_query Read SQL query into a DataFrame.

read_sql

Notes

Any datetime values with time zone information will be converted to UTC.

24.11.2 pandas.read_sql_query

pandas.read_sql_query(sql, con, index_col=None, coerce_float=True, params=None,
parse_dates=None, chunksize=None)

Read SQL query into a DataFrame.

Returns a DataFrame corresponding to the result set of the query string. Optionally provide an index_col pa-
rameter to use one of the columns as the index, otherwise default integer index will be used.

Parameters sql : string SQL query or SQLAlchemy Selectable (select or text object)

SQL query to be executed.

con : SQLAlchemy connectable(engine/connection), database string URI,

24.11. SQL Queries 1225

pandas: powerful Python data analysis toolkit, Release 0.23.4

or sqlite3 DBAPI2 connection Using SQLAlchemy makes it possible to use any DB
supported by that library. If a DBAPI2 object, only sqlite3 is supported.

index_col : string or list of strings, optional, default: None

Column(s) to set as index(MultiIndex).

coerce_float : boolean, default True

Attempts to convert values of non-string, non-numeric objects (like decimal.Decimal)
to floating point. Useful for SQL result sets.

params : list, tuple or dict, optional, default: None

List of parameters to pass to execute method. The syntax used to pass parameters is
database driver dependent. Check your database driver documentation for which of the
five syntax styles, described in PEP 249’s paramstyle, is supported. Eg. for psycopg2,
uses %(name)s so use params={‘name’ : ‘value’}

parse_dates : list or dict, default: None

• List of column names to parse as dates.

• Dict of {column_name: format string} where format string is strftime compat-
ible in case of parsing string times, or is one of (D, s, ns, ms, us) in case of parsing integer
timestamps.

• Dict of {column_name: arg dict}, where the arg dict corresponds to the keyword
arguments of pandas.to_datetime() Especially useful with databases without native
Datetime support, such as SQLite.

chunksize : int, default None

If specified, return an iterator where chunksize is the number of rows to include in each
chunk.

Returns

DataFrame

See also:

read_sql_table Read SQL database table into a DataFrame.

read_sql

Notes

Any datetime values with time zone information parsed via the parse_dates parameter will be converted to UTC.

24.11.3 pandas.read_sql

pandas.read_sql(sql, con, index_col=None, coerce_float=True, params=None, parse_dates=None,
columns=None, chunksize=None)

Read SQL query or database table into a DataFrame.

This function is a convenience wrapper around read_sql_table and read_sql_query (for backward
compatibility). It will delegate to the specific function depending on the provided input. A SQL query will be
routed to read_sql_query, while a database table name will be routed to read_sql_table. Note that
the delegated function might have more specific notes about their functionality not listed here.

1226 Chapter 24. IO Tools (Text, CSV, HDF5, . . .)

pandas: powerful Python data analysis toolkit, Release 0.23.4

Parameters sql : string or SQLAlchemy Selectable (select or text object)

SQL query to be executed or a table name.

con : SQLAlchemy connectable (engine/connection) or database string URI

or DBAPI2 connection (fallback mode)

Using SQLAlchemy makes it possible to use any DB supported by that library. If a
DBAPI2 object, only sqlite3 is supported.

index_col : string or list of strings, optional, default: None

Column(s) to set as index(MultiIndex).

coerce_float : boolean, default True

Attempts to convert values of non-string, non-numeric objects (like decimal.Decimal)
to floating point, useful for SQL result sets.

params : list, tuple or dict, optional, default: None

List of parameters to pass to execute method. The syntax used to pass parameters is
database driver dependent. Check your database driver documentation for which of the
five syntax styles, described in PEP 249’s paramstyle, is supported. Eg. for psycopg2,
uses %(name)s so use params={‘name’ : ‘value’}

parse_dates : list or dict, default: None

• List of column names to parse as dates.

• Dict of {column_name: format string} where format string is strftime compat-
ible in case of parsing string times, or is one of (D, s, ns, ms, us) in case of parsing integer
timestamps.

• Dict of {column_name: arg dict}, where the arg dict corresponds to the keyword
arguments of pandas.to_datetime() Especially useful with databases without native
Datetime support, such as SQLite.

columns : list, default: None

List of column names to select from SQL table (only used when reading a table).

chunksize : int, default None

If specified, return an iterator where chunksize is the number of rows to include in each
chunk.

Returns

DataFrame

See also:

read_sql_table Read SQL database table into a DataFrame.

read_sql_query Read SQL query into a DataFrame.

24.11.4 pandas.DataFrame.to_sql

DataFrame.to_sql(name, con, schema=None, if_exists=’fail’, index=True, index_label=None, chunk-
size=None, dtype=None)

Write records stored in a DataFrame to a SQL database.

24.11. SQL Queries 1227

pandas: powerful Python data analysis toolkit, Release 0.23.4

Databases supported by SQLAlchemy [R16] are supported. Tables can be newly created, appended to, or
overwritten.

Parameters name : string

Name of SQL table.

con : sqlalchemy.engine.Engine or sqlite3.Connection

Using SQLAlchemy makes it possible to use any DB supported by that library. Legacy
support is provided for sqlite3.Connection objects.

schema : string, optional

Specify the schema (if database flavor supports this). If None, use default schema.

if_exists : {‘fail’, ‘replace’, ‘append’}, default ‘fail’

How to behave if the table already exists.

• fail: Raise a ValueError.

• replace: Drop the table before inserting new values.

• append: Insert new values to the existing table.

index : boolean, default True

Write DataFrame index as a column. Uses index_label as the column name in the table.

index_label : string or sequence, default None

Column label for index column(s). If None is given (default) and index is True, then the
index names are used. A sequence should be given if the DataFrame uses MultiIndex.

chunksize : int, optional

Rows will be written in batches of this size at a time. By default, all rows will be written
at once.

dtype : dict, optional

Specifying the datatype for columns. The keys should be the column names and the
values should be the SQLAlchemy types or strings for the sqlite3 legacy mode.

Raises ValueError

When the table already exists and if_exists is ‘fail’ (the default).

See also:

pandas.read_sql read a DataFrame from a table

References

[R16], [R17]

Examples

Create an in-memory SQLite database.

>>> from sqlalchemy import create_engine
>>> engine = create_engine('sqlite://', echo=False)

1228 Chapter 24. IO Tools (Text, CSV, HDF5, . . .)

pandas: powerful Python data analysis toolkit, Release 0.23.4

Create a table from scratch with 3 rows.

>>> df = pd.DataFrame({'name' : ['User 1', 'User 2', 'User 3']})
>>> df

name
0 User 1
1 User 2
2 User 3

>>> df.to_sql('users', con=engine)
>>> engine.execute("SELECT * FROM users").fetchall()
[(0, 'User 1'), (1, 'User 2'), (2, 'User 3')]

>>> df1 = pd.DataFrame({'name' : ['User 4', 'User 5']})
>>> df1.to_sql('users', con=engine, if_exists='append')
>>> engine.execute("SELECT * FROM users").fetchall()
[(0, 'User 1'), (1, 'User 2'), (2, 'User 3'),
(0, 'User 4'), (1, 'User 5')]

Overwrite the table with just df1.

>>> df1.to_sql('users', con=engine, if_exists='replace',
... index_label='id')
>>> engine.execute("SELECT * FROM users").fetchall()
[(0, 'User 4'), (1, 'User 5')]

Specify the dtype (especially useful for integers with missing values). Notice that while pandas is forced to store
the data as floating point, the database supports nullable integers. When fetching the data with Python, we get
back integer scalars.

>>> df = pd.DataFrame({"A": [1, None, 2]})
>>> df

A
0 1.0
1 NaN
2 2.0

>>> from sqlalchemy.types import Integer
>>> df.to_sql('integers', con=engine, index=False,
... dtype={"A": Integer()})

>>> engine.execute("SELECT * FROM integers").fetchall()
[(1,), (None,), (2,)]

Note: The function read_sql() is a convenience wrapper around read_sql_table() and
read_sql_query() (and for backward compatibility) and will delegate to specific function depending on the
provided input (database table name or sql query). Table names do not need to be quoted if they have special charac-
ters.

In the following example, we use the SQlite SQL database engine. You can use a temporary SQLite database where
data are stored in “memory”.

To connect with SQLAlchemy you use the create_engine() function to create an engine object from database
URI. You only need to create the engine once per database you are connecting to. For more information on
create_engine() and the URI formatting, see the examples below and the SQLAlchemy documentation

24.11. SQL Queries 1229

http://www.sqlite.org/
http://docs.sqlalchemy.org/en/latest/core/engines.html

pandas: powerful Python data analysis toolkit, Release 0.23.4

In [527]: from sqlalchemy import create_engine

Create your engine.
In [528]: engine = create_engine('sqlite:///:memory:')

If you want to manage your own connections you can pass one of those instead:

with engine.connect() as conn, conn.begin():
data = pd.read_sql_table('data', conn)

24.11.5 Writing DataFrames

Assuming the following data is in a DataFrame data, we can insert it into the database using to_sql().

id Date Col_1 Col_2 Col_3
26 2012-10-18 X 25.7 True
42 2012-10-19 Y -12.4 False
63 2012-10-20 Z 5.73 True

In [529]: data.to_sql('data', engine)

With some databases, writing large DataFrames can result in errors due to packet size limitations being exceeded. This
can be avoided by setting the chunksize parameter when calling to_sql. For example, the following writes data
to the database in batches of 1000 rows at a time:

In [530]: data.to_sql('data_chunked', engine, chunksize=1000)

to_sql() will try to map your data to an appropriate SQL data type based on the dtype of the data. When you have
columns of dtype object, pandas will try to infer the data type.

You can always override the default type by specifying the desired SQL type of any of the columns by using the
dtype argument. This argument needs a dictionary mapping column names to SQLAlchemy types (or strings for the
sqlite3 fallback mode). For example, specifying to use the sqlalchemy String type instead of the default Text type
for string columns:

In [531]: from sqlalchemy.types import String

In [532]: data.to_sql('data_dtype', engine, dtype={'Col_1': String})

Note: Due to the limited support for timedelta’s in the different database flavors, columns with type timedelta64
will be written as integer values as nanoseconds to the database and a warning will be raised.

Note: Columns of category dtype will be converted to the dense representation as you would get with np.
asarray(categorical) (e.g. for string categories this gives an array of strings). Because of this, reading the
database table back in does not generate a categorical.

24.11.6 Reading Tables

read_sql_table() will read a database table given the table name and optionally a subset of columns to read.

1230 Chapter 24. IO Tools (Text, CSV, HDF5, . . .)

pandas: powerful Python data analysis toolkit, Release 0.23.4

Note: In order to use read_sql_table(), you must have the SQLAlchemy optional dependency installed.

In [533]: pd.read_sql_table('data', engine)
Out[533]:

index id Date Col_1 Col_2 Col_3
0 0 26 2010-10-18 X 27.50 True
1 1 42 2010-10-19 Y -12.50 False
2 2 63 2010-10-20 Z 5.73 True

You can also specify the name of the column as the DataFrame index, and specify a subset of columns to be read.

In [534]: pd.read_sql_table('data', engine, index_col='id')
Out[534]:

index Date Col_1 Col_2 Col_3
id
26 0 2010-10-18 X 27.50 True
42 1 2010-10-19 Y -12.50 False
63 2 2010-10-20 Z 5.73 True

In [535]: pd.read_sql_table('data', engine, columns=['Col_1', 'Col_2'])
\\Out[535]:
→˓

Col_1 Col_2
0 X 27.50
1 Y -12.50
2 Z 5.73

And you can explicitly force columns to be parsed as dates:

In [536]: pd.read_sql_table('data', engine, parse_dates=['Date'])
Out[536]:

index id Date Col_1 Col_2 Col_3
0 0 26 2010-10-18 X 27.50 True
1 1 42 2010-10-19 Y -12.50 False
2 2 63 2010-10-20 Z 5.73 True

If needed you can explicitly specify a format string, or a dict of arguments to pass to pandas.to_datetime():

pd.read_sql_table('data', engine, parse_dates={'Date': '%Y-%m-%d'})
pd.read_sql_table('data', engine, parse_dates={'Date': {'format': '%Y-%m-%d %H:%M:%S'}
→˓})

You can check if a table exists using has_table()

24.11.7 Schema support

Reading from and writing to different schema’s is supported through the schema keyword in the
read_sql_table() and to_sql() functions. Note however that this depends on the database flavor (sqlite
does not have schema’s). For example:

df.to_sql('table', engine, schema='other_schema')
pd.read_sql_table('table', engine, schema='other_schema')

24.11. SQL Queries 1231

pandas: powerful Python data analysis toolkit, Release 0.23.4

24.11.8 Querying

You can query using raw SQL in the read_sql_query() function. In this case you must use the SQL variant
appropriate for your database. When using SQLAlchemy, you can also pass SQLAlchemy Expression language
constructs, which are database-agnostic.

In [537]: pd.read_sql_query('SELECT * FROM data', engine)
Out[537]:

index id Date Col_1 Col_2 Col_3
0 0 26 2010-10-18 00:00:00.000000 X 27.50 1
1 1 42 2010-10-19 00:00:00.000000 Y -12.50 0
2 2 63 2010-10-20 00:00:00.000000 Z 5.73 1

Of course, you can specify a more “complex” query.

In [538]: pd.read_sql_query("SELECT id, Col_1, Col_2 FROM data WHERE id = 42;",
→˓engine)
Out[538]:

id Col_1 Col_2
0 42 Y -12.5

The read_sql_query() function supports a chunksize argument. Specifying this will return an iterator through
chunks of the query result:

In [539]: df = pd.DataFrame(np.random.randn(20, 3), columns=list('abc'))

In [540]: df.to_sql('data_chunks', engine, index=False)

In [541]: for chunk in pd.read_sql_query("SELECT * FROM data_chunks", engine,
→˓chunksize=5):

.....: print(chunk)

.....:
a b c

0 0.280665 -0.073113 1.160339
1 0.369493 1.904659 1.111057
2 0.659050 -1.627438 0.602319
3 0.420282 0.810952 1.044442
4 -0.400878 0.824006 -0.562305

a b c
0 1.954878 -1.331952 -1.760689
1 -1.650721 -0.890556 -1.119115
2 1.956079 -0.326499 -1.342676
3 1.114383 -0.586524 -1.236853
4 0.875839 0.623362 -0.434957

a b c
0 1.407540 0.129102 1.616950
1 0.502741 1.558806 0.109403
2 -1.219744 2.449369 -0.545774
3 -0.198838 -0.700399 -0.203394
4 0.242669 0.201830 0.661020

a b c
0 1.792158 -0.120465 -1.233121
1 -1.182318 -0.665755 -1.674196
2 0.825030 -0.498214 -0.310985
3 -0.001891 -1.396620 -0.861316
4 0.674712 0.618539 -0.443172

You can also run a plain query without creating a DataFrame with execute(). This is useful for queries that don’t

1232 Chapter 24. IO Tools (Text, CSV, HDF5, . . .)

pandas: powerful Python data analysis toolkit, Release 0.23.4

return values, such as INSERT. This is functionally equivalent to calling execute on the SQLAlchemy engine or db
connection object. Again, you must use the SQL syntax variant appropriate for your database.

from pandas.io import sql
sql.execute('SELECT * FROM table_name', engine)
sql.execute('INSERT INTO table_name VALUES(?, ?, ?)', engine,

params=[('id', 1, 12.2, True)])

24.11.9 Engine connection examples

To connect with SQLAlchemy you use the create_engine() function to create an engine object from database
URI. You only need to create the engine once per database you are connecting to.

from sqlalchemy import create_engine

engine = create_engine('postgresql://scott:tiger@localhost:5432/mydatabase')

engine = create_engine('mysql+mysqldb://scott:tiger@localhost/foo')

engine = create_engine('oracle://scott:tiger@127.0.0.1:1521/sidname')

engine = create_engine('mssql+pyodbc://mydsn')

sqlite://<nohostname>/<path>
where <path> is relative:
engine = create_engine('sqlite:///foo.db')

or absolute, starting with a slash:
engine = create_engine('sqlite:////absolute/path/to/foo.db')

For more information see the examples the SQLAlchemy documentation

24.11.10 Advanced SQLAlchemy queries

You can use SQLAlchemy constructs to describe your query.

Use sqlalchemy.text() to specify query parameters in a backend-neutral way

In [542]: import sqlalchemy as sa

In [543]: pd.read_sql(sa.text('SELECT * FROM data where Col_1=:col1'),
.....: engine, params={'col1': 'X'})
.....:

Out[543]:
index id Date Col_1 Col_2 Col_3

0 0 26 2010-10-18 00:00:00.000000 X 27.5 1

If you have an SQLAlchemy description of your database you can express where conditions using SQLAlchemy
expressions

In [544]: metadata = sa.MetaData()

In [545]: data_table = sa.Table('data', metadata,
.....: sa.Column('index', sa.Integer),
.....: sa.Column('Date', sa.DateTime),

(continues on next page)

24.11. SQL Queries 1233

http://docs.sqlalchemy.org/en/latest/core/engines.html

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

.....: sa.Column('Col_1', sa.String),

.....: sa.Column('Col_2', sa.Float),

.....: sa.Column('Col_3', sa.Boolean),

.....:)

.....:

In [546]: pd.read_sql(sa.select([data_table]).where(data_table.c.Col_3 == True),
→˓engine)
Out[546]:

index Date Col_1 Col_2 Col_3
0 0 2010-10-18 X 27.50 True
1 2 2010-10-20 Z 5.73 True

You can combine SQLAlchemy expressions with parameters passed to read_sql() using sqlalchemy.
bindparam()

In [547]: import datetime as dt

In [548]: expr = sa.select([data_table]).where(data_table.c.Date > sa.bindparam('date
→˓'))

In [549]: pd.read_sql(expr, engine, params={'date': dt.datetime(2010, 10, 18)})
Out[549]:

index Date Col_1 Col_2 Col_3
0 1 2010-10-19 Y -12.50 False
1 2 2010-10-20 Z 5.73 True

24.11.11 Sqlite fallback

The use of sqlite is supported without using SQLAlchemy. This mode requires a Python database adapter which
respect the Python DB-API.

You can create connections like so:

import sqlite3
con = sqlite3.connect(':memory:')

And then issue the following queries:

data.to_sql('data', cnx)
pd.read_sql_query("SELECT * FROM data", con)

24.12 Google BigQuery

Warning: Starting in 0.20.0, pandas has split off Google BigQuery support into the separate package
pandas-gbq. You can pip install pandas-gbq to get it.

The pandas-gbq package provides functionality to read/write from Google BigQuery.

pandas integrates with this external package. if pandas-gbq is installed, you can use the pandas methods pd.
read_gbq and DataFrame.to_gbq, which will call the respective functions from pandas-gbq.

1234 Chapter 24. IO Tools (Text, CSV, HDF5, . . .)

http://www.python.org/dev/peps/pep-0249/

pandas: powerful Python data analysis toolkit, Release 0.23.4

Full documentation can be found here.

24.13 Stata Format

24.13.1 Writing to Stata format

The method to_stata() will write a DataFrame into a .dta file. The format version of this file is always 115 (Stata
12).

In [550]: df = pd.DataFrame(randn(10, 2), columns=list('AB'))

In [551]: df.to_stata('stata.dta')

Stata data files have limited data type support; only strings with 244 or fewer characters, int8, int16, int32,
float32 and float64 can be stored in .dta files. Additionally, Stata reserves certain values to represent missing
data. Exporting a non-missing value that is outside of the permitted range in Stata for a particular data type will retype
the variable to the next larger size. For example, int8 values are restricted to lie between -127 and 100 in Stata, and
so variables with values above 100 will trigger a conversion to int16. nan values in floating points data types are
stored as the basic missing data type (. in Stata).

Note: It is not possible to export missing data values for integer data types.

The Stata writer gracefully handles other data types including int64, bool, uint8, uint16, uint32 by casting
to the smallest supported type that can represent the data. For example, data with a type of uint8 will be cast to
int8 if all values are less than 100 (the upper bound for non-missing int8 data in Stata), or, if values are outside of
this range, the variable is cast to int16.

Warning: Conversion from int64 to float64 may result in a loss of precision if int64 values are larger than
2**53.

Warning: StataWriter and to_stata() only support fixed width strings containing up to 244 characters,
a limitation imposed by the version 115 dta file format. Attempting to write Stata dta files with strings longer than
244 characters raises a ValueError.

24.13.2 Reading from Stata format

The top-level function read_stata will read a dta file and return either a DataFrame or a StataReader that
can be used to read the file incrementally.

In [552]: pd.read_stata('stata.dta')
Out[552]:

index A B
0 0 1.810535 -1.305727
1 1 -0.344987 -0.230840
2 2 -2.793085 1.937529
3 3 0.366332 -1.044589
4 4 2.051173 0.585662
5 5 0.429526 -0.606998

(continues on next page)

24.13. Stata Format 1235

https://pandas-gbq.readthedocs.io/

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

6 6 0.106223 -1.525680
7 7 0.795026 -0.374438
8 8 0.134048 1.202055
9 9 0.284748 0.262467

Specifying a chunksize yields a StataReader instance that can be used to read chunksize lines from the file
at a time. The StataReader object can be used as an iterator.

In [553]: reader = pd.read_stata('stata.dta', chunksize=3)

In [554]: for df in reader:
.....: print(df.shape)
.....:

(3, 3)
(3, 3)
(3, 3)
(1, 3)

For more fine-grained control, use iterator=True and specify chunksize with each call to read().

In [555]: reader = pd.read_stata('stata.dta', iterator=True)

In [556]: chunk1 = reader.read(5)

In [557]: chunk2 = reader.read(5)

Currently the index is retrieved as a column.

The parameter convert_categoricals indicates whether value labels should be read and used to create a
Categorical variable from them. Value labels can also be retrieved by the function value_labels, which
requires read() to be called before use.

The parameter convert_missing indicates whether missing value representations in Stata should be preserved.
If False (the default), missing values are represented as np.nan. If True, missing values are represented using
StataMissingValue objects, and columns containing missing values will have object data type.

Note: read_stata() and StataReader support .dta formats 113-115 (Stata 10-12), 117 (Stata 13), and 118
(Stata 14).

Note: Setting preserve_dtypes=False will upcast to the standard pandas data types: int64 for all integer
types and float64 for floating point data. By default, the Stata data types are preserved when importing.

24.13.2.1 Categorical Data

Categorical data can be exported to Stata data files as value labeled data. The exported data consists of the
underlying category codes as integer data values and the categories as value labels. Stata does not have an explicit
equivalent to a Categorical and information about whether the variable is ordered is lost when exporting.

Warning: Stata only supports string value labels, and so str is called on the categories when exporting data.
Exporting Categorical variables with non-string categories produces a warning, and can result a loss of infor-
mation if the str representations of the categories are not unique.

1236 Chapter 24. IO Tools (Text, CSV, HDF5, . . .)

pandas: powerful Python data analysis toolkit, Release 0.23.4

Labeled data can similarly be imported from Stata data files as Categorical variables using the keyword argu-
ment convert_categoricals (True by default). The keyword argument order_categoricals (True by
default) determines whether imported Categorical variables are ordered.

Note: When importing categorical data, the values of the variables in the Stata data file are not preserved
since Categorical variables always use integer data types between -1 and n-1 where n is the number
of categories. If the original values in the Stata data file are required, these can be imported by setting
convert_categoricals=False, which will import original data (but not the variable labels). The original
values can be matched to the imported categorical data since there is a simple mapping between the original Stata
data values and the category codes of imported Categorical variables: missing values are assigned code -1, and the
smallest original value is assigned 0, the second smallest is assigned 1 and so on until the largest original value is
assigned the code n-1.

Note: Stata supports partially labeled series. These series have value labels for some but not all data values. Importing
a partially labeled series will produce a Categorical with string categories for the values that are labeled and
numeric categories for values with no label.

24.14 SAS Formats

The top-level function read_sas() can read (but not write) SAS xport (.XPT) and (since v0.18.0) SAS7BDAT
(.sas7bdat) format files.

SAS files only contain two value types: ASCII text and floating point values (usually 8 bytes but sometimes truncated).
For xport files, there is no automatic type conversion to integers, dates, or categoricals. For SAS7BDAT files, the
format codes may allow date variables to be automatically converted to dates. By default the whole file is read and
returned as a DataFrame.

Specify a chunksize or use iterator=True to obtain reader objects (XportReader or SAS7BDATReader)
for incrementally reading the file. The reader objects also have attributes that contain additional information about the
file and its variables.

Read a SAS7BDAT file:

df = pd.read_sas('sas_data.sas7bdat')

Obtain an iterator and read an XPORT file 100,000 lines at a time:

rdr = pd.read_sas('sas_xport.xpt', chunk=100000)
for chunk in rdr:

do_something(chunk)

The specification for the xport file format is available from the SAS web site.

No official documentation is available for the SAS7BDAT format.

24.15 Other file formats

pandas itself only supports IO with a limited set of file formats that map cleanly to its tabular data model. For reading
and writing other file formats into and from pandas, we recommend these packages from the broader community.

24.14. SAS Formats 1237

https://support.sas.com/techsup/technote/ts140.pdf

pandas: powerful Python data analysis toolkit, Release 0.23.4

24.15.1 netCDF

xarray provides data structures inspired by the pandas DataFrame for working with multi-dimensional datasets, with
a focus on the netCDF file format and easy conversion to and from pandas.

24.16 Performance Considerations

This is an informal comparison of various IO methods, using pandas 0.20.3. Timings are machine dependent and small
differences should be ignored.

In [1]: sz = 1000000
In [2]: df = pd.DataFrame({'A': randn(sz), 'B': [1] * sz})

In [3]: df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1000000 entries, 0 to 999999
Data columns (total 2 columns):
A 1000000 non-null float64
B 1000000 non-null int64
dtypes: float64(1), int64(1)
memory usage: 15.3 MB

When writing, the top-three functions in terms of speed are are test_pickle_write, test_feather_write
and test_hdf_fixed_write_compress.

In [14]: %timeit test_sql_write(df)
2.37 s ± 36.6 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)

In [15]: %timeit test_hdf_fixed_write(df)
194 ms ± 65.9 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)

In [26]: %timeit test_hdf_fixed_write_compress(df)
119 ms ± 2.15 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)

In [16]: %timeit test_hdf_table_write(df)
623 ms ± 125 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)

In [27]: %timeit test_hdf_table_write_compress(df)
563 ms ± 23.7 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)

In [17]: %timeit test_csv_write(df)
3.13 s ± 49.9 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)

In [30]: %timeit test_feather_write(df)
103 ms ± 5.88 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)

In [31]: %timeit test_pickle_write(df)
109 ms ± 3.72 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)

In [32]: %timeit test_pickle_write_compress(df)
3.33 s ± 55.2 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)

When reading, the top three are test_feather_read, test_pickle_read and test_hdf_fixed_read.

1238 Chapter 24. IO Tools (Text, CSV, HDF5, . . .)

http://xarray.pydata.org/

pandas: powerful Python data analysis toolkit, Release 0.23.4

In [18]: %timeit test_sql_read()
1.35 s ± 14.7 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)

In [19]: %timeit test_hdf_fixed_read()
14.3 ms ± 438 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)

In [28]: %timeit test_hdf_fixed_read_compress()
23.5 ms ± 672 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)

In [20]: %timeit test_hdf_table_read()
35.4 ms ± 314 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)

In [29]: %timeit test_hdf_table_read_compress()
42.6 ms ± 2.1 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)

In [22]: %timeit test_csv_read()
516 ms ± 27.1 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)

In [33]: %timeit test_feather_read()
4.06 ms ± 115 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)

In [34]: %timeit test_pickle_read()
6.5 ms ± 172 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)

In [35]: %timeit test_pickle_read_compress()
588 ms ± 3.57 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)

Space on disk (in bytes)

34816000 Aug 21 18:00 test.sql
24009240 Aug 21 18:00 test_fixed.hdf
7919610 Aug 21 18:00 test_fixed_compress.hdf

24458892 Aug 21 18:00 test_table.hdf
8657116 Aug 21 18:00 test_table_compress.hdf

28520770 Aug 21 18:00 test.csv
16000248 Aug 21 18:00 test.feather
16000848 Aug 21 18:00 test.pkl
7554108 Aug 21 18:00 test.pkl.compress

And here’s the code:

import os
import pandas as pd
import sqlite3
from numpy.random import randn
from pandas.io import sql

sz = 1000000
df = pd.DataFrame({'A': randn(sz), 'B': [1] * sz})

def test_sql_write(df):
if os.path.exists('test.sql'):

os.remove('test.sql')
sql_db = sqlite3.connect('test.sql')
df.to_sql(name='test_table', con=sql_db)
sql_db.close()

(continues on next page)

24.16. Performance Considerations 1239

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

def test_sql_read():
sql_db = sqlite3.connect('test.sql')
pd.read_sql_query("select * from test_table", sql_db)
sql_db.close()

def test_hdf_fixed_write(df):
df.to_hdf('test_fixed.hdf', 'test', mode='w')

def test_hdf_fixed_read():
pd.read_hdf('test_fixed.hdf', 'test')

def test_hdf_fixed_write_compress(df):
df.to_hdf('test_fixed_compress.hdf', 'test', mode='w', complib='blosc')

def test_hdf_fixed_read_compress():
pd.read_hdf('test_fixed_compress.hdf', 'test')

def test_hdf_table_write(df):
df.to_hdf('test_table.hdf', 'test', mode='w', format='table')

def test_hdf_table_read():
pd.read_hdf('test_table.hdf', 'test')

def test_hdf_table_write_compress(df):
df.to_hdf('test_table_compress.hdf', 'test', mode='w', complib='blosc', format=

→˓'table')

def test_hdf_table_read_compress():
pd.read_hdf('test_table_compress.hdf', 'test')

def test_csv_write(df):
df.to_csv('test.csv', mode='w')

def test_csv_read():
pd.read_csv('test.csv', index_col=0)

def test_feather_write(df):
df.to_feather('test.feather')

def test_feather_read():
pd.read_feather('test.feather')

def test_pickle_write(df):
df.to_pickle('test.pkl')

def test_pickle_read():
pd.read_pickle('test.pkl')

def test_pickle_write_compress(df):
df.to_pickle('test.pkl.compress', compression='xz')

def test_pickle_read_compress():
pd.read_pickle('test.pkl.compress', compression='xz')

1240 Chapter 24. IO Tools (Text, CSV, HDF5, . . .)

CHAPTER

TWENTYFIVE

ENHANCING PERFORMANCE

In this part of the tutorial, we will investigate how to speed up certain functions operating on pandas DataFrames
using three different techniques: Cython, Numba and pandas.eval(). We will see a speed improvement of ~200
when we use Cython and Numba on a test function operating row-wise on the DataFrame. Using pandas.eval()
we will speed up a sum by an order of ~2.

25.1 Cython (Writing C extensions for pandas)

For many use cases writing pandas in pure Python and NumPy is sufficient. In some computationally heavy applica-
tions however, it can be possible to achieve sizeable speed-ups by offloading work to cython.

This tutorial assumes you have refactored as much as possible in Python, for example by trying to remove for-loops
and making use of NumPy vectorization. It’s always worth optimising in Python first.

This tutorial walks through a “typical” process of cythonizing a slow computation. We use an example from the
Cython documentation but in the context of pandas. Our final cythonized solution is around 100 times faster than the
pure Python solution.

25.1.1 Pure python

We have a DataFrame to which we want to apply a function row-wise.

In [1]: df = pd.DataFrame({'a': np.random.randn(1000),
...: 'b': np.random.randn(1000),
...: 'N': np.random.randint(100, 1000, (1000)),
...: 'x': 'x'})
...:

In [2]: df
Out[2]:

a b N x
0 0.469112 -0.218470 585 x
1 -0.282863 -0.061645 841 x
2 -1.509059 -0.723780 251 x
3 -1.135632 0.551225 972 x
4 1.212112 -0.497767 181 x
5 -0.173215 0.837519 458 x
6 0.119209 1.103245 159 x
..
993 0.131892 0.290162 190 x
994 0.342097 0.215341 931 x

(continues on next page)

1241

http://cython.org/
http://docs.cython.org/src/quickstart/cythonize.html
http://docs.cython.org/src/quickstart/cythonize.html

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

995 -1.512743 0.874737 374 x
996 0.933753 1.120790 246 x
997 -0.308013 0.198768 157 x
998 -0.079915 1.757555 977 x
999 -1.010589 -1.115680 770 x

[1000 rows x 4 columns]

Here’s the function in pure Python:

In [3]: def f(x):
...: return x * (x - 1)
...:

In [4]: def integrate_f(a, b, N):
...: s = 0
...: dx = (b - a) / N
...: for i in range(N):
...: s += f(a + i * dx)
...: return s * dx
...:

We achieve our result by using apply (row-wise):

In [7]: %timeit df.apply(lambda x: integrate_f(x['a'], x['b'], x['N']), axis=1)
10 loops, best of 3: 174 ms per loop

But clearly this isn’t fast enough for us. Let’s take a look and see where the time is spent during this operation (limited
to the most time consuming four calls) using the prun ipython magic function:

In [5]: %prun -l 4 df.apply(lambda x: integrate_f(x['a'], x['b'], x['N']), axis=1)
671713 function calls (666693 primitive calls) in 0.246 seconds

Ordered by: internal time
List reduced from 214 to 4 due to restriction <4>

ncalls tottime percall cumtime percall filename:lineno(function)
1000 0.121 0.000 0.177 0.000 <ipython-input-4-c2a74e076cf0>

→˓:1(integrate_f)
552423 0.056 0.000 0.056 0.000 <ipython-input-3-c138bdd570e3>:1(f)

3000 0.008 0.000 0.045 0.000 base.py:3090(get_value)
1 0.006 0.006 0.245 0.245 {pandas._libs.reduction.reduce}

By far the majority of time is spend inside either integrate_f or f, hence we’ll concentrate our efforts cythonizing
these two functions.

Note: In Python 2 replacing the range with its generator counterpart (xrange) would mean the range line would
vanish. In Python 3 range is already a generator.

25.1.2 Plain Cython

First we’re going to need to import the Cython magic function to ipython:

1242 Chapter 25. Enhancing Performance

http://ipython.org/ipython-doc/stable/api/generated/IPython.core.magics.execution.html#IPython.core.magics.execution.ExecutionMagics.prun

pandas: powerful Python data analysis toolkit, Release 0.23.4

In [6]: %load_ext Cython

Now, let’s simply copy our functions over to Cython as is (the suffix is here to distinguish between function versions):

In [7]: %%cython
...: def f_plain(x):
...: return x * (x - 1)
...: def integrate_f_plain(a, b, N):
...: s = 0
...: dx = (b - a) / N
...: for i in range(N):
...: s += f_plain(a + i * dx)
...: return s * dx
...:

Note: If you’re having trouble pasting the above into your ipython, you may need to be using bleeding edge ipython
for paste to play well with cell magics.

In [4]: %timeit df.apply(lambda x: integrate_f_plain(x['a'], x['b'], x['N']), axis=1)
10 loops, best of 3: 85.5 ms per loop

Already this has shaved a third off, not too bad for a simple copy and paste.

25.1.3 Adding type

We get another huge improvement simply by providing type information:

In [8]: %%cython
...: cdef double f_typed(double x) except? -2:
...: return x * (x - 1)
...: cpdef double integrate_f_typed(double a, double b, int N):
...: cdef int i
...: cdef double s, dx
...: s = 0
...: dx = (b - a) / N
...: for i in range(N):
...: s += f_typed(a + i * dx)
...: return s * dx
...:

In [4]: %timeit df.apply(lambda x: integrate_f_typed(x['a'], x['b'], x['N']), axis=1)
10 loops, best of 3: 20.3 ms per loop

Now, we’re talking! It’s now over ten times faster than the original python implementation, and we haven’t really
modified the code. Let’s have another look at what’s eating up time:

In [9]: %prun -l 4 df.apply(lambda x: integrate_f_typed(x['a'], x['b'], x['N']),
→˓axis=1)

119288 function calls (114268 primitive calls) in 0.055 seconds

Ordered by: internal time
List reduced from 211 to 4 due to restriction <4>

(continues on next page)

25.1. Cython (Writing C extensions for pandas) 1243

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

ncalls tottime percall cumtime percall filename:lineno(function)
3000 0.006 0.000 0.036 0.000 base.py:3090(get_value)
9117 0.004 0.000 0.008 0.000 {built-in method builtins.getattr}
3000 0.004 0.000 0.041 0.000 series.py:764(__getitem__)

1 0.003 0.003 0.054 0.054 {pandas._libs.reduction.reduce}

25.1.4 Using ndarray

It’s calling series. . . a lot! It’s creating a Series from each row, and get-ting from both the index and the series (three
times for each row). Function calls are expensive in Python, so maybe we could minimize these by cythonizing the
apply part.

Note: We are now passing ndarrays into the Cython function, fortunately Cython plays very nicely with NumPy.

In [10]: %%cython
....: cimport numpy as np
....: import numpy as np
....: cdef double f_typed(double x) except? -2:
....: return x * (x - 1)
....: cpdef double integrate_f_typed(double a, double b, int N):
....: cdef int i
....: cdef double s, dx
....: s = 0
....: dx = (b - a) / N
....: for i in range(N):
....: s += f_typed(a + i * dx)
....: return s * dx
....: cpdef np.ndarray[double] apply_integrate_f(np.ndarray col_a, np.ndarray col_

→˓b, np.ndarray col_N):
....: assert (col_a.dtype == np.float and col_b.dtype == np.float and col_N.

→˓dtype == np.int)
....: cdef Py_ssize_t i, n = len(col_N)
....: assert (len(col_a) == len(col_b) == n)
....: cdef np.ndarray[double] res = np.empty(n)
....: for i in range(len(col_a)):
....: res[i] = integrate_f_typed(col_a[i], col_b[i], col_N[i])
....: return res
....:

The implementation is simple, it creates an array of zeros and loops over the rows, applying our
integrate_f_typed, and putting this in the zeros array.

Warning: You can not pass a Series directly as a ndarray typed parameter to a Cython function. Instead
pass the actual ndarray using the .values attribute of the Series. The reason is that the Cython definition
is specific to an ndarray and not the passed Series.

So, do not do this:

apply_integrate_f(df['a'], df['b'], df['N'])

But rather, use .values to get the underlying ndarray:

apply_integrate_f(df['a'].values, df['b'].values, df['N'].values)

1244 Chapter 25. Enhancing Performance

pandas: powerful Python data analysis toolkit, Release 0.23.4

Note: Loops like this would be extremely slow in Python, but in Cython looping over NumPy arrays is fast.

In [4]: %timeit apply_integrate_f(df['a'].values, df['b'].values, df['N'].values)
1000 loops, best of 3: 1.25 ms per loop

We’ve gotten another big improvement. Let’s check again where the time is spent:

In [11]: %prun -l 4 apply_integrate_f(df['a'].values, df['b'].values, df['N'].values)
215 function calls in 0.001 seconds

Ordered by: internal time
List reduced from 55 to 4 due to restriction <4>

ncalls tottime percall cumtime percall filename:lineno(function)
1 0.001 0.001 0.001 0.001 {built-in method _cython_magic_

→˓20a45bf86d2a48d5dc2e7ff1cb491989.apply_integrate_f}
3 0.000 0.000 0.000 0.000 internals.py:4137(iget)
1 0.000 0.000 0.001 0.001 {built-in method builtins.exec}
3 0.000 0.000 0.000 0.000 frame.py:2664(__getitem__)

As one might expect, the majority of the time is now spent in apply_integrate_f, so if we wanted to make
anymore efficiencies we must continue to concentrate our efforts here.

25.1.5 More advanced techniques

There is still hope for improvement. Here’s an example of using some more advanced Cython techniques:

In [12]: %%cython
....: cimport cython
....: cimport numpy as np
....: import numpy as np
....: cdef double f_typed(double x) except? -2:
....: return x * (x - 1)
....: cpdef double integrate_f_typed(double a, double b, int N):
....: cdef int i
....: cdef double s, dx
....: s = 0
....: dx = (b - a) / N
....: for i in range(N):
....: s += f_typed(a + i * dx)
....: return s * dx
....: @cython.boundscheck(False)
....: @cython.wraparound(False)
....: cpdef np.ndarray[double] apply_integrate_f_wrap(np.ndarray[double] col_a, np.

→˓ndarray[double] col_b, np.ndarray[int] col_N):
....: cdef int i, n = len(col_N)
....: assert len(col_a) == len(col_b) == n
....: cdef np.ndarray[double] res = np.empty(n)
....: for i in range(n):
....: res[i] = integrate_f_typed(col_a[i], col_b[i], col_N[i])
....: return res
....:

25.1. Cython (Writing C extensions for pandas) 1245

pandas: powerful Python data analysis toolkit, Release 0.23.4

In [4]: %timeit apply_integrate_f_wrap(df['a'].values, df['b'].values, df['N'].values)
1000 loops, best of 3: 987 us per loop

Even faster, with the caveat that a bug in our Cython code (an off-by-one error, for example) might cause a segfault
because memory access isn’t checked. For more about boundscheck and wraparound, see the Cython docs on
compiler directives.

25.2 Using Numba

A recent alternative to statically compiling Cython code, is to use a dynamic jit-compiler, Numba.

Numba gives you the power to speed up your applications with high performance functions written directly in Python.
With a few annotations, array-oriented and math-heavy Python code can be just-in-time compiled to native machine
instructions, similar in performance to C, C++ and Fortran, without having to switch languages or Python interpreters.

Numba works by generating optimized machine code using the LLVM compiler infrastructure at import time, runtime,
or statically (using the included pycc tool). Numba supports compilation of Python to run on either CPU or GPU
hardware, and is designed to integrate with the Python scientific software stack.

Note: You will need to install Numba. This is easy with conda, by using: conda install numba, see installing
using miniconda.

Note: As of Numba version 0.20, pandas objects cannot be passed directly to Numba-compiled functions. Instead,
one must pass the NumPy array underlying the pandas object to the Numba-compiled function as demonstrated below.

25.2.1 Jit

We demonstrate how to use Numba to just-in-time compile our code. We simply take the plain Python code from
above and annotate with the @jit decorator.

import numba

@numba.jit
def f_plain(x):

return x * (x - 1)

@numba.jit
def integrate_f_numba(a, b, N):

s = 0
dx = (b - a) / N
for i in range(N):

s += f_plain(a + i * dx)
return s * dx

@numba.jit
def apply_integrate_f_numba(col_a, col_b, col_N):

n = len(col_N)
result = np.empty(n, dtype='float64')
assert len(col_a) == len(col_b) == n
for i in range(n):

(continues on next page)

1246 Chapter 25. Enhancing Performance

http://cython.readthedocs.io/en/latest/src/reference/compilation.html?highlight=wraparound#compiler-directives

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

result[i] = integrate_f_numba(col_a[i], col_b[i], col_N[i])
return result

def compute_numba(df):
result = apply_integrate_f_numba(df['a'].values, df['b'].values, df['N'].values)
return pd.Series(result, index=df.index, name='result')

Note that we directly pass NumPy arrays to the Numba function. compute_numba is just a wrapper that provides a
nicer interface by passing/returning pandas objects.

In [4]: %timeit compute_numba(df)
1000 loops, best of 3: 798 us per loop

In this example, using Numba was faster than Cython.

25.2.2 Vectorize

Numba can also be used to write vectorized functions that do not require the user to explicitly loop over the observa-
tions of a vector; a vectorized function will be applied to each row automatically. Consider the following toy example
of doubling each observation:

import numba

def double_every_value_nonumba(x):
return x*2

@numba.vectorize
def double_every_value_withnumba(x):

return x*2

Custom function without numba
In [5]: %timeit df['col1_doubled'] = df.a.apply(double_every_value_nonumba)
1000 loops, best of 3: 797 us per loop

Standard implementation (faster than a custom function)
In [6]: %timeit df['col1_doubled'] = df.a*2
1000 loops, best of 3: 233 us per loop

Custom function with numba
In [7]: %timeit df['col1_doubled'] = double_every_value_withnumba(df.a.values)
1000 loops, best of 3: 145 us per loop

25.2.3 Caveats

Note: Numba will execute on any function, but can only accelerate certain classes of functions.

Numba is best at accelerating functions that apply numerical functions to NumPy arrays. When passed a function that
only uses operations it knows how to accelerate, it will execute in nopython mode.

If Numba is passed a function that includes something it doesn’t know how to work with – a category that currently
includes sets, lists, dictionaries, or string functions – it will revert to object mode. In object mode, Numba

25.2. Using Numba 1247

pandas: powerful Python data analysis toolkit, Release 0.23.4

will execute but your code will not speed up significantly. If you would prefer that Numba throw an error if it cannot
compile a function in a way that speeds up your code, pass Numba the argument nopython=True (e.g. @numba.
jit(nopython=True)). For more on troubleshooting Numba modes, see the Numba troubleshooting page.

Read more in the Numba docs.

25.3 Expression Evaluation via eval()

The top-level function pandas.eval() implements expression evaluation of Series and DataFrame objects.

Note: To benefit from using eval() you need to install numexpr. See the recommended dependencies section for
more details.

The point of using eval() for expression evaluation rather than plain Python is two-fold: 1) large DataFrame
objects are evaluated more efficiently and 2) large arithmetic and boolean expressions are evaluated all at once by the
underlying engine (by default numexpr is used for evaluation).

Note: You should not use eval() for simple expressions or for expressions involving small DataFrames. In fact,
eval() is many orders of magnitude slower for smaller expressions/objects than plain ol’ Python. A good rule of
thumb is to only use eval() when you have a DataFrame with more than 10,000 rows.

eval() supports all arithmetic expressions supported by the engine in addition to some extensions available only in
pandas.

Note: The larger the frame and the larger the expression the more speedup you will see from using eval().

25.3.1 Supported Syntax

These operations are supported by pandas.eval():

• Arithmetic operations except for the left shift (<<) and right shift (>>) operators, e.g., df + 2 * pi / s

** 4 % 42 - the_golden_ratio

• Comparison operations, including chained comparisons, e.g., 2 < df < df2

• Boolean operations, e.g., df < df2 and df3 < df4 or not df_bool

• list and tuple literals, e.g., [1, 2] or (1, 2)

• Attribute access, e.g., df.a

• Subscript expressions, e.g., df[0]

• Simple variable evaluation, e.g., pd.eval('df') (this is not very useful)

• Math functions: sin, cos, exp, log, expm1, log1p, sqrt, sinh, cosh, tanh, arcsin, arccos, arctan, arccosh, arcsinh,
arctanh, abs and arctan2.

This Python syntax is not allowed:

• Expressions

– Function calls other than math functions.

1248 Chapter 25. Enhancing Performance

http://numba.pydata.org/numba-doc/latest/user/troubleshoot.html#the-compiled-code-is-too-slow
http://numba.pydata.org/

pandas: powerful Python data analysis toolkit, Release 0.23.4

– is/is not operations

– if expressions

– lambda expressions

– list/set/dict comprehensions

– Literal dict and set expressions

– yield expressions

– Generator expressions

– Boolean expressions consisting of only scalar values

• Statements

– Neither simple nor compound statements are allowed. This includes things like for, while, and if.

25.3.2 eval() Examples

pandas.eval() works well with expressions containing large arrays.

First let’s create a few decent-sized arrays to play with:

In [13]: nrows, ncols = 20000, 100

In [14]: df1, df2, df3, df4 = [pd.DataFrame(np.random.randn(nrows, ncols)) for _ in
→˓range(4)]

Now let’s compare adding them together using plain ol’ Python versus eval():

In [15]: %timeit df1 + df2 + df3 + df4
20.8 ms +- 4.36 ms per loop (mean +- std. dev. of 7 runs, 10 loops each)

In [16]: %timeit pd.eval('df1 + df2 + df3 + df4')
7.85 ms +- 473 us per loop (mean +- std. dev. of 7 runs, 100 loops each)

Now let’s do the same thing but with comparisons:

In [17]: %timeit (df1 > 0) & (df2 > 0) & (df3 > 0) & (df4 > 0)
31.6 ms +- 830 us per loop (mean +- std. dev. of 7 runs, 10 loops each)

In [18]: %timeit pd.eval('(df1 > 0) & (df2 > 0) & (df3 > 0) & (df4 > 0)')
14.2 ms +- 775 us per loop (mean +- std. dev. of 7 runs, 100 loops each)

eval() also works with unaligned pandas objects:

In [19]: s = pd.Series(np.random.randn(50))

In [20]: %timeit df1 + df2 + df3 + df4 + s
30.3 ms +- 3.13 ms per loop (mean +- std. dev. of 7 runs, 10 loops each)

In [21]: %timeit pd.eval('df1 + df2 + df3 + df4 + s')
10 ms +- 1.12 ms per loop (mean +- std. dev. of 7 runs, 100 loops each)

Note: Operations such as

25.3. Expression Evaluation via eval() 1249

https://docs.python.org/3/reference/simple_stmts.html
https://docs.python.org/3/reference/compound_stmts.html

pandas: powerful Python data analysis toolkit, Release 0.23.4

1 and 2 # would parse to 1 & 2, but should evaluate to 2
3 or 4 # would parse to 3 | 4, but should evaluate to 3
~1 # this is okay, but slower when using eval

should be performed in Python. An exception will be raised if you try to perform any boolean/bitwise operations with
scalar operands that are not of type bool or np.bool_. Again, you should perform these kinds of operations in
plain Python.

25.3.3 The DataFrame.eval method

In addition to the top level pandas.eval() function you can also evaluate an expression in the “context” of a
DataFrame.

In [22]: df = pd.DataFrame(np.random.randn(5, 2), columns=['a', 'b'])

In [23]: df.eval('a + b')
Out[23]:
0 -0.246747
1 0.867786
2 -1.626063
3 -1.134978
4 -1.027798
dtype: float64

Any expression that is a valid pandas.eval() expression is also a valid DataFrame.eval() expression, with
the added benefit that you don’t have to prefix the name of the DataFrame to the column(s) you’re interested in
evaluating.

In addition, you can perform assignment of columns within an expression. This allows for formulaic evaluation. The
assignment target can be a new column name or an existing column name, and it must be a valid Python identifier.

New in version 0.18.0.

The inplace keyword determines whether this assignment will performed on the original DataFrame or return a
copy with the new column.

Warning: For backwards compatibility, inplace defaults to True if not specified. This will change in a
future version of pandas - if your code depends on an inplace assignment you should update to explicitly set
inplace=True.

In [24]: df = pd.DataFrame(dict(a=range(5), b=range(5, 10)))

In [25]: df.eval('c = a + b', inplace=True)

In [26]: df.eval('d = a + b + c', inplace=True)

In [27]: df.eval('a = 1', inplace=True)

In [28]: df
Out[28]:

a b c d
0 1 5 5 10
1 1 6 7 14

(continues on next page)

1250 Chapter 25. Enhancing Performance

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

2 1 7 9 18
3 1 8 11 22
4 1 9 13 26

When inplace is set to False, a copy of the DataFrame with the new or modified columns is returned and the
original frame is unchanged.

In [29]: df
Out[29]:

a b c d
0 1 5 5 10
1 1 6 7 14
2 1 7 9 18
3 1 8 11 22
4 1 9 13 26

In [30]: df.eval('e = a - c', inplace=False)
\\Out[30]:
→˓

a b c d e
0 1 5 5 10 -4
1 1 6 7 14 -6
2 1 7 9 18 -8
3 1 8 11 22 -10
4 1 9 13 26 -12

In [31]: df
\\Out[31]:
→˓

a b c d
0 1 5 5 10
1 1 6 7 14
2 1 7 9 18
3 1 8 11 22
4 1 9 13 26

New in version 0.18.0.

As a convenience, multiple assignments can be performed by using a multi-line string.

In [32]: df.eval("""
....: c = a + b
....: d = a + b + c
....: a = 1""", inplace=False)
....:

Out[32]:
a b c d

0 1 5 6 12
1 1 6 7 14
2 1 7 8 16
3 1 8 9 18
4 1 9 10 20

The equivalent in standard Python would be

In [33]: df = pd.DataFrame(dict(a=range(5), b=range(5, 10)))

(continues on next page)

25.3. Expression Evaluation via eval() 1251

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

In [34]: df['c'] = df.a + df.b

In [35]: df['d'] = df.a + df.b + df.c

In [36]: df['a'] = 1

In [37]: df
Out[37]:

a b c d
0 1 5 5 10
1 1 6 7 14
2 1 7 9 18
3 1 8 11 22
4 1 9 13 26

New in version 0.18.0.

The query method gained the inplace keyword which determines whether the query modifies the original frame.

In [38]: df = pd.DataFrame(dict(a=range(5), b=range(5, 10)))

In [39]: df.query('a > 2')
Out[39]:

a b
3 3 8
4 4 9

In [40]: df.query('a > 2', inplace=True)

In [41]: df
Out[41]:

a b
3 3 8
4 4 9

Warning: Unlike with eval, the default value for inplace for query is False. This is consistent with prior
versions of pandas.

25.3.4 Local Variables

You must explicitly reference any local variable that you want to use in an expression by placing the @ character in
front of the name. For example,

In [42]: df = pd.DataFrame(np.random.randn(5, 2), columns=list('ab'))

In [43]: newcol = np.random.randn(len(df))

In [44]: df.eval('b + @newcol')
Out[44]:
0 -0.173926
1 2.493083
2 -0.881831
3 -0.691045

(continues on next page)

1252 Chapter 25. Enhancing Performance

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

4 1.334703
dtype: float64

In [45]: df.query('b < @newcol')
\\\Out[45]:
→˓

a b
0 0.863987 -0.115998
2 -2.621419 -1.297879

If you don’t prefix the local variable with @, pandas will raise an exception telling you the variable is undefined.

When using DataFrame.eval() and DataFrame.query(), this allows you to have a local variable and a
DataFrame column with the same name in an expression.

In [46]: a = np.random.randn()

In [47]: df.query('@a < a')
Out[47]:

a b
0 0.863987 -0.115998

In [48]: df.loc[a < df.a] # same as the previous expression
\\Out[48]:

a b
0 0.863987 -0.115998

With pandas.eval() you cannot use the @ prefix at all, because it isn’t defined in that context. pandas will let
you know this if you try to use @ in a top-level call to pandas.eval(). For example,

In [49]: a, b = 1, 2

In [50]: pd.eval('@a + b')
Traceback (most recent call last):

File "/opt/conda/envs/pandas/lib/python3.6/site-packages/IPython/core/
→˓interactiveshell.py", line 2961, in run_code

exec(code_obj, self.user_global_ns, self.user_ns)

File "<ipython-input-50-af17947a194f>", line 1, in <module>
pd.eval('@a + b')

File "/pandas/pandas/core/computation/eval.py", line 283, in eval
_check_for_locals(expr, level, parser)

File "/pandas/pandas/core/computation/eval.py", line 150, in _check_for_locals
raise SyntaxError(msg)

File "<string>", line unknown
SyntaxError: The '@' prefix is not allowed in top-level eval calls,
please refer to your variables by name without the '@' prefix

In this case, you should simply refer to the variables like you would in standard Python.

In [51]: pd.eval('a + b')
Out[51]: 3

25.3. Expression Evaluation via eval() 1253

pandas: powerful Python data analysis toolkit, Release 0.23.4

25.3.5 pandas.eval() Parsers

There are two different parsers and two different engines you can use as the backend.

The default 'pandas' parser allows a more intuitive syntax for expressing query-like operations (comparisons,
conjunctions and disjunctions). In particular, the precedence of the & and | operators is made equal to the precedence
of the corresponding boolean operations and and or.

For example, the above conjunction can be written without parentheses. Alternatively, you can use the 'python'
parser to enforce strict Python semantics.

In [52]: expr = '(df1 > 0) & (df2 > 0) & (df3 > 0) & (df4 > 0)'

In [53]: x = pd.eval(expr, parser='python')

In [54]: expr_no_parens = 'df1 > 0 & df2 > 0 & df3 > 0 & df4 > 0'

In [55]: y = pd.eval(expr_no_parens, parser='pandas')

In [56]: np.all(x == y)
Out[56]: True

The same expression can be “anded” together with the word and as well:

In [57]: expr = '(df1 > 0) & (df2 > 0) & (df3 > 0) & (df4 > 0)'

In [58]: x = pd.eval(expr, parser='python')

In [59]: expr_with_ands = 'df1 > 0 and df2 > 0 and df3 > 0 and df4 > 0'

In [60]: y = pd.eval(expr_with_ands, parser='pandas')

In [61]: np.all(x == y)
Out[61]: True

The and and or operators here have the same precedence that they would in vanilla Python.

25.3.6 pandas.eval() Backends

There’s also the option to make eval() operate identical to plain ol’ Python.

Note: Using the 'python' engine is generally not useful, except for testing other evaluation engines against it. You
will achieve no performance benefits using eval() with engine='python' and in fact may incur a performance
hit.

You can see this by using pandas.eval() with the 'python' engine. It is a bit slower (not by much) than
evaluating the same expression in Python

In [62]: %timeit df1 + df2 + df3 + df4
21.2 ms +- 2 ms per loop (mean +- std. dev. of 7 runs, 10 loops each)

In [63]: %timeit pd.eval('df1 + df2 + df3 + df4', engine='python')
19.3 ms +- 1.34 ms per loop (mean +- std. dev. of 7 runs, 10 loops each)

1254 Chapter 25. Enhancing Performance

https://docs.python.org/3/reference/expressions.html#and

pandas: powerful Python data analysis toolkit, Release 0.23.4

25.3.7 pandas.eval() Performance

eval() is intended to speed up certain kinds of operations. In particular, those operations involving complex expres-
sions with large DataFrame/Series objects should see a significant performance benefit. Here is a plot showing
the running time of pandas.eval() as function of the size of the frame involved in the computation. The two lines
are two different engines.

Note: Operations with smallish objects (around 15k-20k rows) are faster using plain Python:

This plot was created using a DataFrame with 3 columns each containing floating point values generated using
numpy.random.randn().

25.3. Expression Evaluation via eval() 1255

pandas: powerful Python data analysis toolkit, Release 0.23.4

25.3.8 Technical Minutia Regarding Expression Evaluation

Expressions that would result in an object dtype or involve datetime operations (because of NaT) must be evaluated
in Python space. The main reason for this behavior is to maintain backwards compatibility with versions of NumPy <
1.7. In those versions of NumPy a call to ndarray.astype(str) will truncate any strings that are more than 60
characters in length. Second, we can’t pass object arrays to numexpr thus string comparisons must be evaluated
in Python space.

The upshot is that this only applies to object-dtype’d expressions. So, if you have an expression–for example

In [64]: df = pd.DataFrame({'strings': np.repeat(list('cba'), 3),
....: 'nums': np.repeat(range(3), 3)})
....:

In [65]: df
Out[65]:

strings nums
0 c 0
1 c 0
2 c 0
3 b 1
4 b 1
5 b 1
6 a 2
7 a 2
8 a 2

In [66]: df.query('strings == "a" and nums == 1')
\\Out[66]:
→˓

Empty DataFrame
Columns: [strings, nums]
Index: []

the numeric part of the comparison (nums == 1) will be evaluated by numexpr.

In general, DataFrame.query()/pandas.eval() will evaluate the subexpressions that can be evaluated by
numexpr and those that must be evaluated in Python space transparently to the user. This is done by inferring the
result type of an expression from its arguments and operators.

1256 Chapter 25. Enhancing Performance

CHAPTER

TWENTYSIX

SPARSE DATA STRUCTURES

Note: The SparsePanel class has been removed in 0.19.0

We have implemented “sparse” versions of Series and DataFrame. These are not sparse in the typical “mostly 0”.
Rather, you can view these objects as being “compressed” where any data matching a specific value (NaN / missing
value, though any value can be chosen) is omitted. A special SparseIndex object tracks where data has been
“sparsified”. This will make much more sense with an example. All of the standard pandas data structures have a
to_sparse method:

In [1]: ts = pd.Series(randn(10))

In [2]: ts[2:-2] = np.nan

In [3]: sts = ts.to_sparse()

In [4]: sts
Out[4]:
0 0.469112
1 -0.282863
2 NaN
3 NaN
4 NaN
5 NaN
6 NaN
7 NaN
8 -0.861849
9 -2.104569
dtype: float64
BlockIndex
Block locations: array([0, 8], dtype=int32)
Block lengths: array([2, 2], dtype=int32)

The to_sparse method takes a kind argument (for the sparse index, see below) and a fill_value. So if we
had a mostly zero Series, we could convert it to sparse with fill_value=0:

In [5]: ts.fillna(0).to_sparse(fill_value=0)
Out[5]:
0 0.469112
1 -0.282863
2 0.000000
3 0.000000
4 0.000000
5 0.000000

(continues on next page)

1257

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

6 0.000000
7 0.000000
8 -0.861849
9 -2.104569
dtype: float64
BlockIndex
Block locations: array([0, 8], dtype=int32)
Block lengths: array([2, 2], dtype=int32)

The sparse objects exist for memory efficiency reasons. Suppose you had a large, mostly NA DataFrame:

In [6]: df = pd.DataFrame(randn(10000, 4))

In [7]: df.iloc[:9998] = np.nan

In [8]: sdf = df.to_sparse()

In [9]: sdf
Out[9]:

0 1 2 3
0 NaN NaN NaN NaN
1 NaN NaN NaN NaN
2 NaN NaN NaN NaN
3 NaN NaN NaN NaN
4 NaN NaN NaN NaN
5 NaN NaN NaN NaN
6 NaN NaN NaN NaN
...
9993 NaN NaN NaN NaN
9994 NaN NaN NaN NaN
9995 NaN NaN NaN NaN
9996 NaN NaN NaN NaN
9997 NaN NaN NaN NaN
9998 0.509184 -0.774928 -1.369894 -0.382141
9999 0.280249 -1.648493 1.490865 -0.890819

[10000 rows x 4 columns]

In [10]: sdf.density
\\\Out[10]:
→˓0.0002

As you can see, the density (% of values that have not been “compressed”) is extremely low. This sparse object takes
up much less memory on disk (pickled) and in the Python interpreter. Functionally, their behavior should be nearly
identical to their dense counterparts.

Any sparse object can be converted back to the standard dense form by calling to_dense:

In [11]: sts.to_dense()
Out[11]:
0 0.469112
1 -0.282863
2 NaN
3 NaN
4 NaN
5 NaN
6 NaN

(continues on next page)

1258 Chapter 26. Sparse data structures

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

7 NaN
8 -0.861849
9 -2.104569
dtype: float64

26.1 SparseArray

SparseArray is the base layer for all of the sparse indexed data structures. It is a 1-dimensional ndarray-like object
storing only values distinct from the fill_value:

In [12]: arr = np.random.randn(10)

In [13]: arr[2:5] = np.nan; arr[7:8] = np.nan

In [14]: sparr = pd.SparseArray(arr)

In [15]: sparr
Out[15]:
[-1.9556635297215477, -1.6588664275960427, nan, nan, nan, 1.1589328886422277, 0.
→˓14529711373305043, nan, 0.6060271905134522, 1.3342113401317768]
Fill: nan
IntIndex
Indices: array([0, 1, 5, 6, 8, 9], dtype=int32)

Like the indexed objects (SparseSeries, SparseDataFrame), a SparseArray can be converted back to a regular
ndarray by calling to_dense:

In [16]: sparr.to_dense()
Out[16]:
array([-1.9557, -1.6589, nan, nan, nan, 1.1589, 0.1453,

nan, 0.606 , 1.3342])

26.2 SparseIndex objects

Two kinds of SparseIndex are implemented, block and integer. We recommend using block as it’s more
memory efficient. The integer format keeps an arrays of all of the locations where the data are not equal to the fill
value. The block format tracks only the locations and sizes of blocks of data.

26.3 Sparse Dtypes

Sparse data should have the same dtype as its dense representation. Currently, float64, int64 and bool dtypes
are supported. Depending on the original dtype, fill_value default changes:

• float64: np.nan

• int64: 0

• bool: False

26.1. SparseArray 1259

pandas: powerful Python data analysis toolkit, Release 0.23.4

In [17]: s = pd.Series([1, np.nan, np.nan])

In [18]: s
Out[18]:
0 1.0
1 NaN
2 NaN
dtype: float64

In [19]: s.to_sparse()
\\Out[19]:
0 1.0
1 NaN
2 NaN
dtype: float64
BlockIndex
Block locations: array([0], dtype=int32)
Block lengths: array([1], dtype=int32)

In [20]: s = pd.Series([1, 0, 0])

In [21]: s
Out[21]:
0 1
1 0
2 0
dtype: int64

In [22]: s.to_sparse()
\\Out[22]:
0 1
1 0
2 0
dtype: int64
BlockIndex
Block locations: array([0], dtype=int32)
Block lengths: array([1], dtype=int32)

In [23]: s = pd.Series([True, False, True])

In [24]: s
Out[24]:
0 True
1 False
2 True
dtype: bool

In [25]: s.to_sparse()
\\\Out[25]:
0 True
1 False
2 True
dtype: bool
BlockIndex
Block locations: array([0, 2], dtype=int32)
Block lengths: array([1, 1], dtype=int32)

You can change the dtype using .astype(), the result is also sparse. Note that .astype() also affects to the

1260 Chapter 26. Sparse data structures

pandas: powerful Python data analysis toolkit, Release 0.23.4

fill_value to keep its dense representation.

In [26]: s = pd.Series([1, 0, 0, 0, 0])

In [27]: s
Out[27]:
0 1
1 0
2 0
3 0
4 0
dtype: int64

In [28]: ss = s.to_sparse()

In [29]: ss
Out[29]:
0 1
1 0
2 0
3 0
4 0
dtype: int64
BlockIndex
Block locations: array([0], dtype=int32)
Block lengths: array([1], dtype=int32)

In [30]: ss.astype(np.float64)
\\\Out[30]:
→˓

0 1.0
1 0.0
2 0.0
3 0.0
4 0.0
dtype: float64
BlockIndex
Block locations: array([0], dtype=int32)
Block lengths: array([1], dtype=int32)

It raises if any value cannot be coerced to specified dtype.

In [1]: ss = pd.Series([1, np.nan, np.nan]).to_sparse()
0 1.0
1 NaN
2 NaN
dtype: float64
BlockIndex
Block locations: array([0], dtype=int32)
Block lengths: array([1], dtype=int32)

In [2]: ss.astype(np.int64)
ValueError: unable to coerce current fill_value nan to int64 dtype

26.3. Sparse Dtypes 1261

pandas: powerful Python data analysis toolkit, Release 0.23.4

26.4 Sparse Calculation

You can apply NumPy ufuncs to SparseArray and get a SparseArray as a result.

In [31]: arr = pd.SparseArray([1., np.nan, np.nan, -2., np.nan])

In [32]: np.abs(arr)
Out[32]:
[1.0, nan, nan, 2.0, nan]
Fill: nan
IntIndex
Indices: array([0, 3], dtype=int32)

The ufunc is also applied to fill_value. This is needed to get the correct dense result.

In [33]: arr = pd.SparseArray([1., -1, -1, -2., -1], fill_value=-1)

In [34]: np.abs(arr)
Out[34]:
[1.0, 1.0, 1.0, 2.0, 1.0]
Fill: 1
IntIndex
Indices: array([0, 3], dtype=int32)

In [35]: np.abs(arr).to_dense()
\\\Out[35]:
→˓array([1., 1., 1., 2., 1.])

26.5 Interaction with scipy.sparse

26.5.1 SparseDataFrame

New in version 0.20.0.

Pandas supports creating sparse dataframes directly from scipy.sparse matrices.

In [36]: from scipy.sparse import csr_matrix

In [37]: arr = np.random.random(size=(1000, 5))

In [38]: arr[arr < .9] = 0

In [39]: sp_arr = csr_matrix(arr)

In [40]: sp_arr
Out[40]:
<1000x5 sparse matrix of type '<class 'numpy.float64'>'

with 517 stored elements in Compressed Sparse Row format>

In [41]: sdf = pd.SparseDataFrame(sp_arr)

In [42]: sdf
Out[42]:

0 1 2 3 4

(continues on next page)

1262 Chapter 26. Sparse data structures

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

0 0.956380 NaN NaN NaN NaN
1 NaN NaN NaN NaN NaN
2 NaN NaN NaN NaN NaN
3 NaN NaN NaN NaN NaN
4 0.999552 NaN NaN 0.956153 NaN
5 NaN NaN NaN NaN NaN
6 0.913638 NaN NaN NaN NaN
..
993 NaN NaN NaN NaN NaN
994 NaN NaN NaN NaN NaN
995 NaN NaN NaN 0.998834 NaN
996 NaN NaN NaN NaN NaN
997 NaN NaN NaN NaN NaN
998 NaN NaN 0.95659 NaN NaN
999 NaN NaN NaN NaN NaN

[1000 rows x 5 columns]

All sparse formats are supported, but matrices that are not in COOrdinate format will be converted, copying
data as needed. To convert a SparseDataFrame back to sparse SciPy matrix in COO format, you can use the
SparseDataFrame.to_coo() method:

In [43]: sdf.to_coo()
Out[43]:
<1000x5 sparse matrix of type '<class 'numpy.float64'>'

with 517 stored elements in COOrdinate format>

26.5.2 SparseSeries

A SparseSeries.to_coo() method is implemented for transforming a SparseSeries indexed by a
MultiIndex to a scipy.sparse.coo_matrix.

The method requires a MultiIndex with two or more levels.

In [44]: s = pd.Series([3.0, np.nan, 1.0, 3.0, np.nan, np.nan])

In [45]: s.index = pd.MultiIndex.from_tuples([(1, 2, 'a', 0),
....: (1, 2, 'a', 1),
....: (1, 1, 'b', 0),
....: (1, 1, 'b', 1),
....: (2, 1, 'b', 0),
....: (2, 1, 'b', 1)],
....: names=['A', 'B', 'C', 'D'])
....:

In [46]: s
Out[46]:
A B C D
1 2 a 0 3.0

1 NaN
1 b 0 1.0

1 3.0
2 1 b 0 NaN

1 NaN
dtype: float64

(continues on next page)

26.5. Interaction with scipy.sparse 1263

https://docs.scipy.org/doc/scipy/reference/sparse.html#module-scipy.sparse

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

SparseSeries
In [47]: ss = s.to_sparse()

In [48]: ss
Out[48]:
A B C D
1 2 a 0 3.0

1 NaN
1 b 0 1.0

1 3.0
2 1 b 0 NaN

1 NaN
dtype: float64
BlockIndex
Block locations: array([0, 2], dtype=int32)
Block lengths: array([1, 2], dtype=int32)

In the example below, we transform the SparseSeries to a sparse representation of a 2-d array by specifying that
the first and second MultiIndex levels define labels for the rows and the third and fourth levels define labels for the
columns. We also specify that the column and row labels should be sorted in the final sparse representation.

In [49]: A, rows, columns = ss.to_coo(row_levels=['A', 'B'],
....: column_levels=['C', 'D'],
....: sort_labels=True)
....:

In [50]: A
Out[50]:
<3x4 sparse matrix of type '<class 'numpy.float64'>'

with 3 stored elements in COOrdinate format>

In [51]: A.todense()
\\\Out[51]:
→˓

matrix([[0., 0., 1., 3.],
[3., 0., 0., 0.],
[0., 0., 0., 0.]])

In [52]: rows
\\Out[52]:
→˓[(1, 1), (1, 2), (2, 1)]

In [53]: columns
\\Out[53]:
→˓[('a', 0), ('a', 1), ('b', 0), ('b', 1)]

Specifying different row and column labels (and not sorting them) yields a different sparse matrix:

In [54]: A, rows, columns = ss.to_coo(row_levels=['A', 'B', 'C'],
....: column_levels=['D'],
....: sort_labels=False)
....:

In [55]: A
Out[55]:

(continues on next page)

1264 Chapter 26. Sparse data structures

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

<3x2 sparse matrix of type '<class 'numpy.float64'>'
with 3 stored elements in COOrdinate format>

In [56]: A.todense()
\\\Out[56]:
→˓

matrix([[3., 0.],
[1., 3.],
[0., 0.]])

In [57]: rows
\\Out[57]:
→˓[(1, 2, 'a'), (1, 1, 'b'), (2, 1, 'b')]

In [58]: columns
\\\Out[58]:
→˓[0, 1]

A convenience method SparseSeries.from_coo() is implemented for creating a SparseSeries from a
scipy.sparse.coo_matrix.

In [59]: from scipy import sparse

In [60]: A = sparse.coo_matrix(([3.0, 1.0, 2.0], ([1, 0, 0], [0, 2, 3])),
....: shape=(3, 4))
....:

In [61]: A
Out[61]:
<3x4 sparse matrix of type '<class 'numpy.float64'>'

with 3 stored elements in COOrdinate format>

In [62]: A.todense()
\\\Out[62]:
→˓

matrix([[0., 0., 1., 2.],
[3., 0., 0., 0.],
[0., 0., 0., 0.]])

The default behaviour (with dense_index=False) simply returns a SparseSeries containing only the non-
null entries.

In [63]: ss = pd.SparseSeries.from_coo(A)

In [64]: ss
Out[64]:
0 2 1.0

3 2.0
1 0 3.0
dtype: float64
BlockIndex
Block locations: array([0], dtype=int32)
Block lengths: array([3], dtype=int32)

Specifying dense_index=True will result in an index that is the Cartesian product of the row and columns coordi-
nates of the matrix. Note that this will consume a significant amount of memory (relative to dense_index=False)
if the sparse matrix is large (and sparse) enough.

26.5. Interaction with scipy.sparse 1265

pandas: powerful Python data analysis toolkit, Release 0.23.4

In [65]: ss_dense = pd.SparseSeries.from_coo(A, dense_index=True)

In [66]: ss_dense
Out[66]:
0 0 NaN

1 NaN
2 1.0
3 2.0

1 0 3.0
1 NaN
2 NaN
3 NaN

2 0 NaN
1 NaN
2 NaN
3 NaN

dtype: float64
BlockIndex
Block locations: array([2], dtype=int32)
Block lengths: array([3], dtype=int32)

1266 Chapter 26. Sparse data structures

CHAPTER

TWENTYSEVEN

FREQUENTLY ASKED QUESTIONS (FAQ)

27.1 DataFrame memory usage

The memory usage of a DataFrame (including the index) is shown when calling the info(). A configuration
option, display.memory_usage (see the list of options), specifies if the DataFrame’s memory usage will be
displayed when invoking the df.info() method.

For example, the memory usage of the DataFrame below is shown when calling info():

In [1]: dtypes = ['int64', 'float64', 'datetime64[ns]', 'timedelta64[ns]',
...: 'complex128', 'object', 'bool']
...:

In [2]: n = 5000

In [3]: data = dict([(t, np.random.randint(100, size=n).astype(t))
...: for t in dtypes])
...:

In [4]: df = pd.DataFrame(data)

In [5]: df['categorical'] = df['object'].astype('category')

In [6]: df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 5000 entries, 0 to 4999
Data columns (total 8 columns):
int64 5000 non-null int64
float64 5000 non-null float64
datetime64[ns] 5000 non-null datetime64[ns]
timedelta64[ns] 5000 non-null timedelta64[ns]
complex128 5000 non-null complex128
object 5000 non-null object
bool 5000 non-null bool
categorical 5000 non-null category
dtypes: bool(1), category(1), complex128(1), datetime64[ns](1), float64(1), int64(1),
→˓object(1), timedelta64[ns](1)
memory usage: 289.1+ KB

The + symbol indicates that the true memory usage could be higher, because pandas does not count the memory used
by values in columns with dtype=object.

Passing memory_usage='deep' will enable a more accurate memory usage report, accounting for the full usage
of the contained objects. This is optional as it can be expensive to do this deeper introspection.

1267

pandas: powerful Python data analysis toolkit, Release 0.23.4

In [7]: df.info(memory_usage='deep')
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 5000 entries, 0 to 4999
Data columns (total 8 columns):
int64 5000 non-null int64
float64 5000 non-null float64
datetime64[ns] 5000 non-null datetime64[ns]
timedelta64[ns] 5000 non-null timedelta64[ns]
complex128 5000 non-null complex128
object 5000 non-null object
bool 5000 non-null bool
categorical 5000 non-null category
dtypes: bool(1), category(1), complex128(1), datetime64[ns](1), float64(1), int64(1),
→˓object(1), timedelta64[ns](1)
memory usage: 425.6 KB

By default the display option is set to True but can be explicitly overridden by passing the memory_usage argument
when invoking df.info().

The memory usage of each column can be found by calling the memory_usage() method. This returns a Series
with an index represented by column names and memory usage of each column shown in bytes. For the DataFrame
above, the memory usage of each column and the total memory usage can be found with the memory_usagemethod:

In [8]: df.memory_usage()
Out[8]:
Index 80
int64 40000
float64 40000
datetime64[ns] 40000
timedelta64[ns] 40000
complex128 80000
object 40000
bool 5000
categorical 10920
dtype: int64

total memory usage of dataframe
In [9]: df.memory_usage().sum()
\\\Out[9]:
→˓296000

By default the memory usage of the DataFrame’s index is shown in the returned Series, the memory usage of the
index can be suppressed by passing the index=False argument:

In [10]: df.memory_usage(index=False)
Out[10]:
int64 40000
float64 40000
datetime64[ns] 40000
timedelta64[ns] 40000
complex128 80000
object 40000
bool 5000
categorical 10920
dtype: int64

The memory usage displayed by the info() method utilizes the memory_usage() method to determine the mem-
ory usage of a DataFrame while also formatting the output in human-readable units (base-2 representation; i.e. 1KB

1268 Chapter 27. Frequently Asked Questions (FAQ)

pandas: powerful Python data analysis toolkit, Release 0.23.4

= 1024 bytes).

See also Categorical Memory Usage.

27.2 Using If/Truth Statements with pandas

pandas follows the NumPy convention of raising an error when you try to convert something to a bool. This happens
in an if-statement or when using the boolean operations: and, or, and not. It is not clear what the result of the
following code should be:

>>> if pd.Series([False, True, False]):
...

Should it be True because it’s not zero-length, or False because there are False values? It is unclear, so instead,
pandas raises a ValueError:

>>> if pd.Series([False, True, False]):
print("I was true")

Traceback
...

ValueError: The truth value of an array is ambiguous. Use a.empty, a.any() or a.all().

You need to explicitly choose what you want to do with the DataFrame, e.g. use any(), all() or empty().
Alternatively, you might want to compare if the pandas object is None:

>>> if pd.Series([False, True, False]) is not None:
print("I was not None")

>>> I was not None

Below is how to check if any of the values are True:

>>> if pd.Series([False, True, False]).any():
print("I am any")

>>> I am any

To evaluate single-element pandas objects in a boolean context, use the method bool():

In [11]: pd.Series([True]).bool()
Out[11]: True

In [12]: pd.Series([False]).bool()
\\\\\\\\\\\\\\Out[12]: False

In [13]: pd.DataFrame([[True]]).bool()
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\Out[13]: True

In [14]: pd.DataFrame([[False]]).bool()
\\\Out[14]: False

27.2.1 Bitwise boolean

Bitwise boolean operators like == and != return a boolean Series, which is almost always what you want anyways.

27.2. Using If/Truth Statements with pandas 1269

pandas: powerful Python data analysis toolkit, Release 0.23.4

>>> s = pd.Series(range(5))
>>> s == 4
0 False
1 False
2 False
3 False
4 True
dtype: bool

See boolean comparisons for more examples.

27.2.2 Using the in operator

Using the Python in operator on a Series tests for membership in the index, not membership among the values.

In [15]: s = pd.Series(range(5), index=list('abcde'))

In [16]: 2 in s
Out[16]: False

In [17]: 'b' in s
\\\\\\\\\\\\\\\Out[17]: True

If this behavior is surprising, keep in mind that using in on a Python dictionary tests keys, not values, and Series
are dict-like. To test for membership in the values, use the method isin():

In [18]: s.isin([2])
Out[18]:
a False
b False
c True
d False
e False
dtype: bool

In [19]: s.isin([2]).any()
\\\Out[19]:
→˓True

For DataFrames, likewise, in applies to the column axis, testing for membership in the list of column names.

27.3 NaN, Integer NA values and NA type promotions

27.3.1 Choice of NA representation

For lack of NA (missing) support from the ground up in NumPy and Python in general, we were given the difficult
choice between either:

• A masked array solution: an array of data and an array of boolean values indicating whether a value is there or
is missing.

• Using a special sentinel value, bit pattern, or set of sentinel values to denote NA across the dtypes.

For many reasons we chose the latter. After years of production use it has proven, at least in my opinion, to be the best
decision given the state of affairs in NumPy and Python in general. The special value NaN (Not-A-Number) is used

1270 Chapter 27. Frequently Asked Questions (FAQ)

pandas: powerful Python data analysis toolkit, Release 0.23.4

everywhere as the NA value, and there are API functions isna and notna which can be used across the dtypes to
detect NA values.

However, it comes with it a couple of trade-offs which I most certainly have not ignored.

27.3.2 Support for integer NA

In the absence of high performance NA support being built into NumPy from the ground up, the primary casualty is
the ability to represent NAs in integer arrays. For example:

In [20]: s = pd.Series([1, 2, 3, 4, 5], index=list('abcde'))

In [21]: s
Out[21]:
a 1
b 2
c 3
d 4
e 5
dtype: int64

In [22]: s.dtype
\\Out[22]: dtype('int64')

In [23]: s2 = s.reindex(['a', 'b', 'c', 'f', 'u'])

In [24]: s2
Out[24]:
a 1.0
b 2.0
c 3.0
f NaN
u NaN
dtype: float64

In [25]: s2.dtype
\\Out[25]: dtype(
→˓'float64')

This trade-off is made largely for memory and performance reasons, and also so that the resulting Series continues
to be “numeric”. One possibility is to use dtype=object arrays instead.

27.3.3 NA type promotions

When introducing NAs into an existing Series or DataFrame via reindex() or some other means, boolean and
integer types will be promoted to a different dtype in order to store the NAs. The promotions are summarized in this
table:

Typeclass Promotion dtype for storing NAs
floating no change
object no change
integer cast to float64
boolean cast to object

27.3. NaN, Integer NA values and NA type promotions 1271

pandas: powerful Python data analysis toolkit, Release 0.23.4

While this may seem like a heavy trade-off, I have found very few cases where this is an issue in practice i.e. storing
values greater than 2**53. Some explanation for the motivation is in the next section.

27.3.4 Why not make NumPy like R?

Many people have suggested that NumPy should simply emulate the NA support present in the more domain-specific
statistical programming language R. Part of the reason is the NumPy type hierarchy:

Typeclass Dtypes
numpy.floating float16, float32, float64, float128
numpy.integer int8, int16, int32, int64
numpy.unsignedinteger uint8, uint16, uint32, uint64
numpy.object_ object_
numpy.bool_ bool_
numpy.character string_, unicode_

The R language, by contrast, only has a handful of built-in data types: integer, numeric (floating-point),
character, and boolean. NA types are implemented by reserving special bit patterns for each type to be used
as the missing value. While doing this with the full NumPy type hierarchy would be possible, it would be a more
substantial trade-off (especially for the 8- and 16-bit data types) and implementation undertaking.

An alternate approach is that of using masked arrays. A masked array is an array of data with an associated boolean
mask denoting whether each value should be considered NA or not. I am personally not in love with this approach as I
feel that overall it places a fairly heavy burden on the user and the library implementer. Additionally, it exacts a fairly
high performance cost when working with numerical data compared with the simple approach of using NaN. Thus,
I have chosen the Pythonic “practicality beats purity” approach and traded integer NA capability for a much simpler
approach of using a special value in float and object arrays to denote NA, and promoting integer arrays to floating when
NAs must be introduced.

27.4 Differences with NumPy

For Series and DataFrame objects, var() normalizes by N-1 to produce unbiased estimates of the sample vari-
ance, while NumPy’s var normalizes by N, which measures the variance of the sample. Note that cov() normalizes
by N-1 in both pandas and NumPy.

27.5 Thread-safety

As of pandas 0.11, pandas is not 100% thread safe. The known issues relate to the copy() method. If you are doing
a lot of copying of DataFrame objects shared among threads, we recommend holding locks inside the threads where
the data copying occurs.

See this link for more information.

27.6 Byte-Ordering Issues

Occasionally you may have to deal with data that were created on a machine with a different byte order than the one
on which you are running Python. A common symptom of this issue is an error like:

1272 Chapter 27. Frequently Asked Questions (FAQ)

https://r-project.org
https://stackoverflow.com/questions/13592618/python-pandas-dataframe-thread-safe

pandas: powerful Python data analysis toolkit, Release 0.23.4

Traceback
...

ValueError: Big-endian buffer not supported on little-endian compiler

To deal with this issue you should convert the underlying NumPy array to the native system byte order before passing
it to Series or DataFrame constructors using something similar to the following:

In [26]: x = np.array(list(range(10)), '>i4') # big endian

In [27]: newx = x.byteswap().newbyteorder() # force native byteorder

In [28]: s = pd.Series(newx)

See the NumPy documentation on byte order for more details.

27.6. Byte-Ordering Issues 1273

https://docs.scipy.org/doc/numpy/user/basics.byteswapping.html

pandas: powerful Python data analysis toolkit, Release 0.23.4

1274 Chapter 27. Frequently Asked Questions (FAQ)

CHAPTER

TWENTYEIGHT

RPY2 / R INTERFACE

Warning: Up to pandas 0.19, a pandas.rpy module existed with functionality to convert between pandas and
rpy2 objects. This functionality now lives in the rpy2 project itself. See the updating section of the previous
documentation for a guide to port your code from the removed pandas.rpy to rpy2 functions.

rpy2 is an interface to R running embedded in a Python process, and also includes functionality to deal with pan-
das DataFrames. Converting data frames back and forth between rpy2 and pandas should be largely automated (no
need to convert explicitly, it will be done on the fly in most rpy2 functions). To convert explicitly, the functions are
pandas2ri.py2ri() and pandas2ri.ri2py().

See also the documentation of the rpy2 project: https://rpy2.readthedocs.io.

In the remainder of this page, a few examples of explicit conversion is given. The pandas conversion of rpy2 needs
first to be activated:

In [1]: from rpy2.robjects import r, pandas2ri

ModuleNotFoundError Traceback (most recent call last)
<ipython-input-1-79b90b86f23f> in <module>()
----> 1 from rpy2.robjects import r, pandas2ri

/opt/conda/envs/pandas/lib/python3.6/site-packages/rpy2/robjects/pandas2ri.py in
→˓<module>()

20 import numpy
21 import pytz

---> 22 import tzlocal
23 import warnings
24

ModuleNotFoundError: No module named 'tzlocal'

In [2]: pandas2ri.activate()
\\-
→˓--
NameError Traceback (most recent call last)
<ipython-input-2-0531561cbbe9> in <module>()
----> 1 pandas2ri.activate()

NameError: name 'pandas2ri' is not defined

1275

https://rpy2.readthedocs.io/
http://pandas.pydata.org/pandas-docs/version/0.19.0/r_interface.html#updating-your-code-to-use-rpy2-functions
http://rpy2.bitbucket.org/
http://rpy2.bitbucket.org/
https://rpy2.readthedocs.io

pandas: powerful Python data analysis toolkit, Release 0.23.4

28.1 Transferring R data sets into Python

Once the pandas conversion is activated (pandas2ri.activate()), many conversions of R to pandas objects will
be done automatically. For example, to obtain the ‘iris’ dataset as a pandas DataFrame:

In [3]: r.data('iris')

AttributeError Traceback (most recent call last)
<ipython-input-3-8bdc5639fb0c> in <module>()
----> 1 r.data('iris')

/pandas/pandas/core/window.py in __getattr__(self, attr)
161
162 raise AttributeError("%r object has no attribute %r" %

--> 163 (type(self).__name__, attr))
164
165 def _dir_additions(self):

AttributeError: 'Rolling' object has no attribute 'data'

In [4]: r['iris'].head()
\\\-
→˓--
KeyError Traceback (most recent call last)
<ipython-input-4-b9fbcc010df6> in <module>()
----> 1 r['iris'].head()

/pandas/pandas/core/base.py in __getitem__(self, key)
260 elif not getattr(self, 'as_index', False):
261 if key not in self.obj.columns:

--> 262 raise KeyError("Column not found: {key}".format(key=key))
263 return self._gotitem(key, ndim=2)
264

KeyError: 'Column not found: iris'

If the pandas conversion was not activated, the above could also be accomplished by explicitly converting it with the
pandas2ri.ri2py function (pandas2ri.ri2py(r['iris'])).

28.2 Converting DataFrames into R objects

The pandas2ri.py2ri function support the reverse operation to convert DataFrames into the equivalent R object
(that is, data.frame):

In [5]: df = pd.DataFrame({'A': [1, 2, 3], 'B': [4, 5, 6], 'C':[7,8,9]},
...: index=["one", "two", "three"])
...:

In [6]: r_dataframe = pandas2ri.py2ri(df)

NameError Traceback (most recent call last)
<ipython-input-6-7620636bf651> in <module>()
----> 1 r_dataframe = pandas2ri.py2ri(df)

NameError: name 'pandas2ri' is not defined
(continues on next page)

1276 Chapter 28. rpy2 / R interface

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

In [7]: print(type(r_dataframe))
\\\-
→˓--
NameError Traceback (most recent call last)
<ipython-input-7-4ab82496598b> in <module>()
----> 1 print(type(r_dataframe))

NameError: name 'r_dataframe' is not defined

In [8]: print(r_dataframe)
\\\-
→˓--
NameError Traceback (most recent call last)
<ipython-input-8-714489a67f8e> in <module>()
----> 1 print(r_dataframe)

NameError: name 'r_dataframe' is not defined

The DataFrame’s index is stored as the rownames attribute of the data.frame instance.

28.2. Converting DataFrames into R objects 1277

pandas: powerful Python data analysis toolkit, Release 0.23.4

1278 Chapter 28. rpy2 / R interface

CHAPTER

TWENTYNINE

PANDAS ECOSYSTEM

Increasingly, packages are being built on top of pandas to address specific needs in data preparation, analysis and
visualization. This is encouraging because it means pandas is not only helping users to handle their data tasks but also
that it provides a better starting point for developers to build powerful and more focused data tools. The creation of
libraries that complement pandas’ functionality also allows pandas development to remain focused around it’s original
requirements.

This is an in-exhaustive list of projects that build on pandas in order to provide tools in the PyData space.

We’d like to make it easier for users to find these project, if you know of other substantial projects that you feel should
be on this list, please let us know.

29.1 Statistics and Machine Learning

29.1.1 Statsmodels

Statsmodels is the prominent Python “statistics and econometrics library” and it has a long-standing special relation-
ship with pandas. Statsmodels provides powerful statistics, econometrics, analysis and modeling functionality that is
out of pandas’ scope. Statsmodels leverages pandas objects as the underlying data container for computation.

29.1.2 sklearn-pandas

Use pandas DataFrames in your scikit-learn ML pipeline.

29.1.3 Featuretools

Featuretools is a Python library for automated feature engineering built on top of pandas. It excels at transforming
temporal and relational datasets into feature matrices for machine learning using reusable feature engineering “primi-
tives”. Users can contribute their own primitives in Python and share them with the rest of the community.

29.2 Visualization

29.2.1 Bokeh

Bokeh is a Python interactive visualization library for large datasets that natively uses the latest web technologies.
Its goal is to provide elegant, concise construction of novel graphics in the style of Protovis/D3, while delivering
high-performance interactivity over large data to thin clients.

1279

http://scikit-learn.org/

pandas: powerful Python data analysis toolkit, Release 0.23.4

29.2.2 seaborn

Seaborn is a Python visualization library based on matplotlib. It provides a high-level, dataset-oriented interface for
creating attractive statistical graphics. The plotting functions in seaborn understand pandas objects and leverage pandas
grouping operations internally to support concise specification of complex visualizations. Seaborn also goes beyond
matplotlib and pandas with the option to perform statistical estimation while plotting, aggregating across observations
and visualizing the fit of statistical models to emphasize patterns in a dataset.

29.2.3 yhat/ggplot

Hadley Wickham’s ggplot2 is a foundational exploratory visualization package for the R language. Based on “The
Grammar of Graphics” it provides a powerful, declarative and extremely general way to generate bespoke plots of
any kind of data. It’s really quite incredible. Various implementations to other languages are available, but a faithful
implementation for Python users has long been missing. Although still young (as of Jan-2014), the yhat/ggplot project
has been progressing quickly in that direction.

29.2.4 Vincent

The Vincent project leverages Vega (that in turn, leverages d3) to create plots. Although functional, as of Summer
2016 the Vincent project has not been updated in over two years and is unlikely to receive further updates.

29.2.5 IPython Vega

Like Vincent, the IPython Vega project leverages Vega to create plots, but primarily targets the IPython Notebook
environment.

29.2.6 Plotly

Plotly’s Python API enables interactive figures and web shareability. Maps, 2D, 3D, and live-streaming graphs are
rendered with WebGL and D3.js. The library supports plotting directly from a pandas DataFrame and cloud-based
collaboration. Users of matplotlib, ggplot for Python, and Seaborn can convert figures into interactive web-based
plots. Plots can be drawn in IPython Notebooks , edited with R or MATLAB, modified in a GUI, or embedded in apps
and dashboards. Plotly is free for unlimited sharing, and has cloud, offline, or on-premise accounts for private use.

29.2.7 QtPandas

Spun off from the main pandas library, the qtpandas library enables DataFrame visualization and manipulation in
PyQt4 and PySide applications.

29.3 IDE

29.3.1 IPython

IPython is an interactive command shell and distributed computing environment. IPython Notebook is a web appli-
cation for creating IPython notebooks. An IPython notebook is a JSON document containing an ordered list of in-
put/output cells which can contain code, text, mathematics, plots and rich media. IPython notebooks can be converted
to a number of open standard output formats (HTML, HTML presentation slides, LaTeX, PDF, ReStructuredText,
Markdown, Python) through ‘Download As’ in the web interface and ipython nbconvert in a shell.

1280 Chapter 29. pandas Ecosystem

http://matplotlib.org
http://ggplot2.org/
http://www.cs.uic.edu/~wilkinson/TheGrammarOfGraphics/GOG.html
http://www.cs.uic.edu/~wilkinson/TheGrammarOfGraphics/GOG.html
https://github.com/yhat/ggplot
https://github.com/wrobstory/vincent
https://github.com/trifacta/vega
http://d3js.org/
https://github.com/wrobstory/vincent#2015-08-12-update
https://github.com/vega/ipyvega
https://github.com/trifacta/vega
https://plot.ly/
https://plot.ly/python/
http://d3js.org/
https://plot.ly/python/matplotlib-to-plotly-tutorial/
https://plot.ly/ipython-notebooks/
https://plot.ly/product/plans/
https://plot.ly/python/offline/
https://plot.ly/product/enterprise/
https://github.com/draperjames/qtpandas

pandas: powerful Python data analysis toolkit, Release 0.23.4

Pandas DataFrames implement _repr_html_ methods which are utilized by IPython Notebook for displaying (ab-
breviated) HTML tables. (Note: HTML tables may or may not be compatible with non-HTML IPython output for-
mats.)

29.3.2 quantopian/qgrid

qgrid is “an interactive grid for sorting and filtering DataFrames in IPython Notebook” built with SlickGrid.

29.3.3 Spyder

Spyder is a cross-platform Qt-based open-source Python IDE with editing, testing, debugging, and introspection fea-
tures. Spyder can now introspect and display Pandas DataFrames and show both “column wise min/max and global
min/max coloring.”

29.4 API

29.4.1 pandas-datareader

pandas-datareader is a remote data access library for pandas (PyPI:pandas-datareader). It is based on
functionality that was located in pandas.io.data and pandas.io.wb but was split off in v0.19. See more in
the pandas-datareader docs:

The following data feeds are available:

• Yahoo! Finance

• Google Finance

• FRED

• Fama/French

• World Bank

• OECD

• Eurostat

• EDGAR Index

29.4.2 quandl/Python

Quandl API for Python wraps the Quandl REST API to return Pandas DataFrames with timeseries indexes.

29.4.3 pydatastream

PyDatastream is a Python interface to the Thomson Dataworks Enterprise (DWE/Datastream) SOAP API to return
indexed Pandas DataFrames or Panels with financial data. This package requires valid credentials for this API (non
free).

29.4. API 1281

https://pandas-datareader.readthedocs.io/en/latest/
http://dataworks.thomson.com/Dataworks/Enterprise/1.0/

pandas: powerful Python data analysis toolkit, Release 0.23.4

29.4.4 pandaSDMX

pandaSDMX is a library to retrieve and acquire statistical data and metadata disseminated in SDMX 2.1, an ISO-
standard widely used by institutions such as statistics offices, central banks, and international organisations. pandaS-
DMX can expose datasets and related structural metadata including dataflows, code-lists, and datastructure definitions
as pandas Series or multi-indexed DataFrames.

29.4.5 fredapi

fredapi is a Python interface to the Federal Reserve Economic Data (FRED) provided by the Federal Reserve Bank of
St. Louis. It works with both the FRED database and ALFRED database that contains point-in-time data (i.e. historic
data revisions). fredapi provides a wrapper in Python to the FRED HTTP API, and also provides several convenient
methods for parsing and analyzing point-in-time data from ALFRED. fredapi makes use of pandas and returns data in
a Series or DataFrame. This module requires a FRED API key that you can obtain for free on the FRED website.

29.5 Domain Specific

29.5.1 Geopandas

Geopandas extends pandas data objects to include geographic information which support geometric operations. If your
work entails maps and geographical coordinates, and you love pandas, you should take a close look at Geopandas.

29.5.2 xarray

xarray brings the labeled data power of pandas to the physical sciences by providing N-dimensional variants of the
core pandas data structures. It aims to provide a pandas-like and pandas-compatible toolkit for analytics on multi-
dimensional arrays, rather than the tabular data for which pandas excels.

29.6 Out-of-core

29.6.1 Dask

Dask is a flexible parallel computing library for analytics. Dask provides a familiar DataFrame interface for out-of-
core, parallel and distributed computing.

29.6.2 Dask-ML

Dask-ML enables parallel and distributed machine learning using Dask alongside existing machine learning libraries
like Scikit-Learn, XGBoost, and TensorFlow.

29.6.3 Blaze

Blaze provides a standard API for doing computations with various in-memory and on-disk backends: NumPy, Pandas,
SQLAlchemy, MongoDB, PyTables, PySpark.

1282 Chapter 29. pandas Ecosystem

http://www.sdmx.org
http://research.stlouisfed.org/fred2/

pandas: powerful Python data analysis toolkit, Release 0.23.4

29.6.4 Odo

Odo provides a uniform API for moving data between different formats. It uses pandas own read_csv for CSV
IO and leverages many existing packages such as PyTables, h5py, and pymongo to move data between non pandas
formats. Its graph based approach is also extensible by end users for custom formats that may be too specific for the
core of odo.

29.7 Data validation

29.7.1 Engarde

Engarde is a lightweight library used to explicitly state your assumptions abour your datasets and check that they’re
actually true.

29.8 Extension Data Types

Pandas provides an interface for defining extension types to extend NumPy’s type system. The following libraries im-
plement that interface to provide types not found in NumPy or pandas, which work well with pandas’ data containers.

29.8.1 cyberpandas

Cyberpandas provides an extension type for storing arrays of IP Addresses. These arrays can be stored inside pandas’
Series and DataFrame.

29.9 Accessors

A directory of projects providing extension accessors. This is for users to discover new accessors and for library
authors to coordinate on the namespace.

Library Accessor Classes
cyberpandas ip Series
pdvega vgplot Series, DataFrame

29.7. Data validation 1283

https://cyberpandas.readthedocs.io/en/latest
https://jakevdp.github.io/pdvega/

pandas: powerful Python data analysis toolkit, Release 0.23.4

1284 Chapter 29. pandas Ecosystem

CHAPTER

THIRTY

COMPARISON WITH R / R LIBRARIES

Since pandas aims to provide a lot of the data manipulation and analysis functionality that people use R for, this
page was started to provide a more detailed look at the R language and its many third party libraries as they relate to
pandas. In comparisons with R and CRAN libraries, we care about the following things:

• Functionality / flexibility: what can/cannot be done with each tool

• Performance: how fast are operations. Hard numbers/benchmarks are preferable

• Ease-of-use: Is one tool easier/harder to use (you may have to be the judge of this, given side-by-side code
comparisons)

This page is also here to offer a bit of a translation guide for users of these R packages.

For transfer of DataFrame objects from pandas to R, one option is to use HDF5 files, see External Compatibility
for an example.

30.1 Quick Reference

We’ll start off with a quick reference guide pairing some common R operations using dplyr with pandas equivalents.

30.1.1 Querying, Filtering, Sampling

R pandas
dim(df) df.shape
head(df) df.head()
slice(df, 1:10) df.iloc[:9]
filter(df, col1 == 1, col2 == 1) df.query('col1 == 1 & col2 == 1')
df[df$col1 == 1 & df$col2 == 1,] df[(df.col1 == 1) & (df.col2 == 1)]
select(df, col1, col2) df[['col1', 'col2']]
select(df, col1:col3) df.loc[:, 'col1':'col3']
select(df, -(col1:col3)) df.drop(cols_to_drop, axis=1) but see1

distinct(select(df, col1)) df[['col1']].drop_duplicates()
distinct(select(df, col1, col2)) df[['col1', 'col2']].drop_duplicates()
sample_n(df, 10) df.sample(n=10)
sample_frac(df, 0.01) df.sample(frac=0.01)

1 R’s shorthand for a subrange of columns (select(df, col1:col3)) can be approached cleanly in pandas, if you have the list of columns,
for example df[cols[1:3]] or df.drop(cols[1:3]), but doing this by column name is a bit messy.

1285

http://www.r-project.org/
http://en.wikipedia.org/wiki/R_(programming_language)
http://cran.r-project.org/web/packages/dplyr/index.html

pandas: powerful Python data analysis toolkit, Release 0.23.4

30.1.2 Sorting

R pandas
arrange(df, col1, col2) df.sort_values(['col1', 'col2'])
arrange(df, desc(col1)) df.sort_values('col1', ascending=False)

30.1.3 Transforming

R pandas
select(df, col_one =
col1)

df.rename(columns={'col1': 'col_one'})['col_one']

rename(df, col_one =
col1)

df.rename(columns={'col1': 'col_one'})

mutate(df, c=a-b) df.assign(c=df.a-df.b)

30.1.4 Grouping and Summarizing

R pandas
summary(df) df.describe()
gdf <- group_by(df, col1) gdf = df.groupby('col1')
summarise(gdf, avg=mean(col1, na.
rm=TRUE))

df.groupby('col1').agg({'col1':
'mean'})

summarise(gdf, total=sum(col1)) df.groupby('col1').sum()

30.2 Base R

30.2.1 Slicing with R’s c

R makes it easy to access data.frame columns by name

df <- data.frame(a=rnorm(5), b=rnorm(5), c=rnorm(5), d=rnorm(5), e=rnorm(5))
df[, c("a", "c", "e")]

or by integer location

df <- data.frame(matrix(rnorm(1000), ncol=100))
df[, c(1:10, 25:30, 40, 50:100)]

Selecting multiple columns by name in pandas is straightforward

In [1]: df = pd.DataFrame(np.random.randn(10, 3), columns=list('abc'))

In [2]: df[['a', 'c']]
Out[2]:

a c
0 -1.039575 -0.424972
1 0.567020 -1.087401
2 -0.673690 -1.478427

(continues on next page)

1286 Chapter 30. Comparison with R / R libraries

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

3 0.524988 0.577046
4 -1.715002 -0.370647
5 -1.157892 0.844885
6 1.075770 1.643563
7 -1.469388 -0.674600
8 -1.776904 -1.294524
9 0.413738 -0.472035

In [3]: df.loc[:, ['a', 'c']]
\\\Out[3]:
→˓

a c
0 -1.039575 -0.424972
1 0.567020 -1.087401
2 -0.673690 -1.478427
3 0.524988 0.577046
4 -1.715002 -0.370647
5 -1.157892 0.844885
6 1.075770 1.643563
7 -1.469388 -0.674600
8 -1.776904 -1.294524
9 0.413738 -0.472035

Selecting multiple noncontiguous columns by integer location can be achieved with a combination of the iloc indexer
attribute and numpy.r_.

In [4]: named = list('abcdefg')

In [5]: n = 30

In [6]: columns = named + np.arange(len(named), n).tolist()

In [7]: df = pd.DataFrame(np.random.randn(n, n), columns=columns)

In [8]: df.iloc[:, np.r_[:10, 24:30]]
Out[8]:

a b c d e f g ...
→˓ 9 24 25 26 27 28 29
0 -0.013960 -0.362543 -0.006154 -0.923061 0.895717 0.805244 -1.206412 ... 1.
→˓340309 0.875906 -2.211372 0.974466 -2.006747 -0.410001 -0.078638
1 0.545952 -1.219217 -1.226825 0.769804 -1.281247 -0.727707 -0.121306 ... 0.
→˓341734 -1.743161 -0.826591 -0.345352 1.314232 0.690579 0.995761
2 2.396780 0.014871 3.357427 -0.317441 -1.236269 0.896171 -0.487602 ... 0.
→˓380396 1.266143 0.299368 -0.863838 0.408204 -1.048089 -0.025747
3 -0.988387 0.094055 1.262731 1.289997 0.082423 -0.055758 0.536580 ... -0.
→˓034571 0.221471 -0.744471 0.758527 1.729689 -0.964980 -0.845696
4 -1.340896 1.846883 -1.328865 1.682706 -1.717693 0.888782 0.228440 ... 0.
→˓520260 0.650776 -1.461665 -1.137707 -0.891060 -0.693921 1.613616
5 0.464000 0.227371 -0.496922 0.306389 -2.290613 -1.134623 -1.561819 ... 1.
→˓523962 -0.008434 1.952541 -1.056652 0.533946 -1.226970 0.040403
6 -0.507516 -0.230096 0.394500 -1.934370 -1.652499 1.488753 -0.896484 ... 1.
→˓487349 2.015523 -1.833722 1.771740 -0.670027 0.049307 -0.521493
..
→˓
23 -0.083272 -0.273955 -0.772369 -1.242807 -0.386336 -0.182486 0.164816 ... -1.
→˓898358 1.389045 -0.873585 -0.699862 0.812477 -0.469503 1.142702

(continues on next page)

30.2. Base R 1287

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

24 2.071413 -1.364763 1.122066 0.066847 1.751987 0.419071 -1.118283 ... -0.
→˓611561 -1.040389 -0.796211 0.241596 0.385922 -0.486078 0.433042
25 0.036609 0.359986 1.211905 0.850427 1.554957 -0.888463 -1.508808 ... 2.
→˓175585 1.872601 -2.513465 -0.139184 0.810491 0.571599 -0.000676
26 -1.179240 0.238923 1.756671 -0.747571 0.543625 -0.159609 -0.051458 ... 0.
→˓287918 -1.584814 0.307941 1.809049 0.296237 -0.143550 0.289401
27 0.025645 0.932436 -1.694531 -0.182236 -1.072710 0.466764 -0.072673 ... 0.
→˓001402 0.150664 -3.060395 0.040268 0.066091 -0.192862 1.979055
28 0.439086 0.812684 -0.128932 -0.142506 -1.137207 0.462001 -0.159466 ... 0.
→˓918071 0.922729 0.869610 0.364726 -0.226101 -0.657647 -0.952699
29 -0.909806 -0.312006 0.383630 -0.631606 1.321415 -0.004799 -2.008210 ... -2.
→˓106095 0.039227 0.211283 1.440190 -0.989193 0.313335 -0.399709

[30 rows x 16 columns]

30.2.2 aggregate

In R you may want to split data into subsets and compute the mean for each. Using a data.frame called df and splitting
it into groups by1 and by2:

df <- data.frame(
v1 = c(1,3,5,7,8,3,5,NA,4,5,7,9),
v2 = c(11,33,55,77,88,33,55,NA,44,55,77,99),
by1 = c("red", "blue", 1, 2, NA, "big", 1, 2, "red", 1, NA, 12),
by2 = c("wet", "dry", 99, 95, NA, "damp", 95, 99, "red", 99, NA, NA))

aggregate(x=df[, c("v1", "v2")], by=list(mydf2$by1, mydf2$by2), FUN = mean)

The groupby() method is similar to base R aggregate function.

In [9]: df = pd.DataFrame({
...: 'v1': [1,3,5,7,8,3,5,np.nan,4,5,7,9],
...: 'v2': [11,33,55,77,88,33,55,np.nan,44,55,77,99],
...: 'by1': ["red", "blue", 1, 2, np.nan, "big", 1, 2, "red", 1, np.nan, 12],
...: 'by2': ["wet", "dry", 99, 95, np.nan, "damp", 95, 99, "red", 99, np.nan,
...: np.nan]
...: })
...:

In [10]: g = df.groupby(['by1','by2'])

In [11]: g[['v1','v2']].mean()
Out[11]:

v1 v2
by1 by2
1 95 5.0 55.0

99 5.0 55.0
2 95 7.0 77.0

99 NaN NaN
big damp 3.0 33.0
blue dry 3.0 33.0
red red 4.0 44.0

wet 1.0 11.0

For more details and examples see the groupby documentation.

1288 Chapter 30. Comparison with R / R libraries

pandas: powerful Python data analysis toolkit, Release 0.23.4

30.2.3 match / %in%

A common way to select data in R is using %in% which is defined using the function match. The operator %in% is
used to return a logical vector indicating if there is a match or not:

s <- 0:4
s %in% c(2,4)

The isin() method is similar to R %in% operator:

In [12]: s = pd.Series(np.arange(5),dtype=np.float32)

In [13]: s.isin([2, 4])
Out[13]:
0 False
1 False
2 True
3 False
4 True
dtype: bool

The match function returns a vector of the positions of matches of its first argument in its second:

s <- 0:4
match(s, c(2,4))

For more details and examples see the reshaping documentation.

30.2.4 tapply

tapply is similar to aggregate, but data can be in a ragged array, since the subclass sizes are possibly irregular.
Using a data.frame called baseball, and retrieving information based on the array team:

baseball <-
data.frame(team = gl(5, 5,

labels = paste("Team", LETTERS[1:5])),
player = sample(letters, 25),
batting.average = runif(25, .200, .400))

tapply(baseball$batting.average, baseball.example$team,
max)

In pandas we may use pivot_table() method to handle this:

In [14]: import random

In [15]: import string

In [16]: baseball = pd.DataFrame({
....: 'team': ["team %d" % (x+1) for x in range(5)]*5,
....: 'player': random.sample(list(string.ascii_lowercase),25),
....: 'batting avg': np.random.uniform(.200, .400, 25)
....: })
....:

In [17]: baseball.pivot_table(values='batting avg', columns='team', aggfunc=np.max)

(continues on next page)

30.2. Base R 1289

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

Out[17]:
team team 1 team 2 team 3 team 4 team 5
batting avg 0.394457 0.39573 0.343015 0.388863 0.377379

For more details and examples see the reshaping documentation.

30.2.5 subset

The query() method is similar to the base R subset function. In R you might want to get the rows of a data.
frame where one column’s values are less than another column’s values:

df <- data.frame(a=rnorm(10), b=rnorm(10))
subset(df, a <= b)
df[df$a <= df$b,] # note the comma

In pandas, there are a few ways to perform subsetting. You can use query() or pass an expression as if it were an
index/slice as well as standard boolean indexing:

In [18]: df = pd.DataFrame({'a': np.random.randn(10), 'b': np.random.randn(10)})

In [19]: df.query('a <= b')
Out[19]:

a b
0 -1.003455 -0.990738
1 0.083515 0.548796
3 -0.524392 0.904400
4 -0.837804 0.746374
8 -0.507219 0.245479

In [20]: df[df.a <= df.b]
\\Out[20]:
→˓

a b
0 -1.003455 -0.990738
1 0.083515 0.548796
3 -0.524392 0.904400
4 -0.837804 0.746374
8 -0.507219 0.245479

In [21]: df.loc[df.a <= df.b]
\\Out[21]:
→˓

a b
0 -1.003455 -0.990738
1 0.083515 0.548796
3 -0.524392 0.904400
4 -0.837804 0.746374
8 -0.507219 0.245479

For more details and examples see the query documentation.

30.2.6 with

An expression using a data.frame called df in R with the columns a and b would be evaluated using with like so:

1290 Chapter 30. Comparison with R / R libraries

pandas: powerful Python data analysis toolkit, Release 0.23.4

df <- data.frame(a=rnorm(10), b=rnorm(10))
with(df, a + b)
df$a + df$b # same as the previous expression

In pandas the equivalent expression, using the eval() method, would be:

In [22]: df = pd.DataFrame({'a': np.random.randn(10), 'b': np.random.randn(10)})

In [23]: df.eval('a + b')
Out[23]:
0 -0.920205
1 -0.860236
2 1.154370
3 0.188140
4 -1.163718
5 0.001397
6 -0.825694
7 -1.138198
8 -1.708034
9 1.148616
dtype: float64

In [24]: df.a + df.b # same as the previous expression
\\\Out[24]:
→˓

0 -0.920205
1 -0.860236
2 1.154370
3 0.188140
4 -1.163718
5 0.001397
6 -0.825694
7 -1.138198
8 -1.708034
9 1.148616
dtype: float64

In certain cases eval() will be much faster than evaluation in pure Python. For more details and examples see the
eval documentation.

30.3 plyr

plyr is an R library for the split-apply-combine strategy for data analysis. The functions revolve around three data
structures in R, a for arrays, l for lists, and d for data.frame. The table below shows how these data
structures could be mapped in Python.

R Python
array list
lists dictionary or list of objects
data.frame dataframe

30.3. plyr 1291

pandas: powerful Python data analysis toolkit, Release 0.23.4

30.3.1 ddply

An expression using a data.frame called df in R where you want to summarize x by month:

require(plyr)
df <- data.frame(
x = runif(120, 1, 168),
y = runif(120, 7, 334),
z = runif(120, 1.7, 20.7),
month = rep(c(5,6,7,8),30),
week = sample(1:4, 120, TRUE)

)

ddply(df, .(month, week), summarize,
mean = round(mean(x), 2),
sd = round(sd(x), 2))

In pandas the equivalent expression, using the groupby() method, would be:

In [25]: df = pd.DataFrame({
....: 'x': np.random.uniform(1., 168., 120),
....: 'y': np.random.uniform(7., 334., 120),
....: 'z': np.random.uniform(1.7, 20.7, 120),
....: 'month': [5,6,7,8]*30,
....: 'week': np.random.randint(1,4, 120)
....: })
....:

In [26]: grouped = df.groupby(['month','week'])

In [27]: grouped['x'].agg([np.mean, np.std])
Out[27]:

mean std
month week
5 1 71.840596 52.886392

2 71.904794 55.786805
3 89.845632 49.892367

6 1 97.730877 52.442172
2 93.369836 47.178389
3 96.592088 58.773744

7 1 59.255715 43.442336
2 69.634012 28.607369
3 84.510992 59.761096

8 1 104.787666 31.745437
2 69.717872 53.747188
3 79.892221 52.950459

For more details and examples see the groupby documentation.

30.4 reshape / reshape2

30.4.1 melt.array

An expression using a 3 dimensional array called a in R where you want to melt it into a data.frame:

1292 Chapter 30. Comparison with R / R libraries

pandas: powerful Python data analysis toolkit, Release 0.23.4

a <- array(c(1:23, NA), c(2,3,4))
data.frame(melt(a))

In Python, since a is a list, you can simply use list comprehension.

In [28]: a = np.array(list(range(1,24))+[np.NAN]).reshape(2,3,4)

In [29]: pd.DataFrame([tuple(list(x)+[val]) for x, val in np.ndenumerate(a)])
Out[29]:

0 1 2 3
0 0 0 0 1.0
1 0 0 1 2.0
2 0 0 2 3.0
3 0 0 3 4.0
4 0 1 0 5.0
5 0 1 1 6.0
6 0 1 2 7.0
..
17 1 1 1 18.0
18 1 1 2 19.0
19 1 1 3 20.0
20 1 2 0 21.0
21 1 2 1 22.0
22 1 2 2 23.0
23 1 2 3 NaN

[24 rows x 4 columns]

30.4.2 melt.list

An expression using a list called a in R where you want to melt it into a data.frame:

a <- as.list(c(1:4, NA))
data.frame(melt(a))

In Python, this list would be a list of tuples, so DataFrame() method would convert it to a dataframe as required.

In [30]: a = list(enumerate(list(range(1,5))+[np.NAN]))

In [31]: pd.DataFrame(a)
Out[31]:

0 1
0 0 1.0
1 1 2.0
2 2 3.0
3 3 4.0
4 4 NaN

For more details and examples see the Into to Data Structures documentation.

30.4.3 melt.data.frame

An expression using a data.frame called cheese in R where you want to reshape the data.frame:

30.4. reshape / reshape2 1293

pandas: powerful Python data analysis toolkit, Release 0.23.4

cheese <- data.frame(
first = c('John', 'Mary'),
last = c('Doe', 'Bo'),
height = c(5.5, 6.0),
weight = c(130, 150)

)
melt(cheese, id=c("first", "last"))

In Python, the melt() method is the R equivalent:

In [32]: cheese = pd.DataFrame({'first' : ['John', 'Mary'],
....: 'last' : ['Doe', 'Bo'],
....: 'height' : [5.5, 6.0],
....: 'weight' : [130, 150]})
....:

In [33]: pd.melt(cheese, id_vars=['first', 'last'])
Out[33]:

first last variable value
0 John Doe height 5.5
1 Mary Bo height 6.0
2 John Doe weight 130.0
3 Mary Bo weight 150.0

In [34]: cheese.set_index(['first', 'last']).stack() # alternative way
\\\Out[34]:
→˓

first last
John Doe height 5.5

weight 130.0
Mary Bo height 6.0

weight 150.0
dtype: float64

For more details and examples see the reshaping documentation.

30.4.4 cast

In R acast is an expression using a data.frame called df in R to cast into a higher dimensional array:

df <- data.frame(
x = runif(12, 1, 168),
y = runif(12, 7, 334),
z = runif(12, 1.7, 20.7),
month = rep(c(5,6,7),4),
week = rep(c(1,2), 6)

)

mdf <- melt(df, id=c("month", "week"))
acast(mdf, week ~ month ~ variable, mean)

In Python the best way is to make use of pivot_table():

In [35]: df = pd.DataFrame({
....: 'x': np.random.uniform(1., 168., 12),
....: 'y': np.random.uniform(7., 334., 12),

(continues on next page)

1294 Chapter 30. Comparison with R / R libraries

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

....: 'z': np.random.uniform(1.7, 20.7, 12),

....: 'month': [5,6,7]*4,

....: 'week': [1,2]*6

....: })

....:

In [36]: mdf = pd.melt(df, id_vars=['month', 'week'])

In [37]: pd.pivot_table(mdf, values='value', index=['variable','week'],
....: columns=['month'], aggfunc=np.mean)
....:

Out[37]:
month 5 6 7
variable week
x 1 114.001700 132.227290 65.808204

2 124.669553 147.495706 82.882820
y 1 225.636630 301.864228 91.706834

2 57.692665 215.851669 218.004383
z 1 17.793871 7.124644 17.679823

2 15.068355 13.873974 9.394966

Similarly for dcast which uses a data.frame called df in R to aggregate information based on Animal and
FeedType:

df <- data.frame(
Animal = c('Animal1', 'Animal2', 'Animal3', 'Animal2', 'Animal1',

'Animal2', 'Animal3'),
FeedType = c('A', 'B', 'A', 'A', 'B', 'B', 'A'),
Amount = c(10, 7, 4, 2, 5, 6, 2)

)

dcast(df, Animal ~ FeedType, sum, fill=NaN)
Alternative method using base R
with(df, tapply(Amount, list(Animal, FeedType), sum))

Python can approach this in two different ways. Firstly, similar to above using pivot_table():

In [38]: df = pd.DataFrame({
....: 'Animal': ['Animal1', 'Animal2', 'Animal3', 'Animal2', 'Animal1',
....: 'Animal2', 'Animal3'],
....: 'FeedType': ['A', 'B', 'A', 'A', 'B', 'B', 'A'],
....: 'Amount': [10, 7, 4, 2, 5, 6, 2],
....: })
....:

In [39]: df.pivot_table(values='Amount', index='Animal', columns='FeedType', aggfunc=
→˓'sum')
Out[39]:
FeedType A B
Animal
Animal1 10.0 5.0
Animal2 2.0 13.0
Animal3 6.0 NaN

The second approach is to use the groupby() method:

30.4. reshape / reshape2 1295

pandas: powerful Python data analysis toolkit, Release 0.23.4

In [40]: df.groupby(['Animal','FeedType'])['Amount'].sum()
Out[40]:
Animal FeedType
Animal1 A 10

B 5
Animal2 A 2

B 13
Animal3 A 6
Name: Amount, dtype: int64

For more details and examples see the reshaping documentation or the groupby documentation.

30.4.5 factor

pandas has a data type for categorical data.

cut(c(1,2,3,4,5,6), 3)
factor(c(1,2,3,2,2,3))

In pandas this is accomplished with pd.cut and astype("category"):

In [41]: pd.cut(pd.Series([1,2,3,4,5,6]), 3)
Out[41]:
0 (0.995, 2.667]
1 (0.995, 2.667]
2 (2.667, 4.333]
3 (2.667, 4.333]
4 (4.333, 6.0]
5 (4.333, 6.0]
dtype: category
Categories (3, interval[float64]): [(0.995, 2.667] < (2.667, 4.333] < (4.333, 6.0]]

In [42]: pd.Series([1,2,3,2,2,3]).astype("category")
\\Out[42]:
→˓

0 1
1 2
2 3
3 2
4 2
5 3
dtype: category
Categories (3, int64): [1, 2, 3]

For more details and examples see categorical introduction and the API documentation. There is also a documentation
regarding the differences to R’s factor.

1296 Chapter 30. Comparison with R / R libraries

CHAPTER

THIRTYONE

COMPARISON WITH SQL

Since many potential pandas users have some familiarity with SQL, this page is meant to provide some examples of
how various SQL operations would be performed using pandas.

If you’re new to pandas, you might want to first read through 10 Minutes to pandas to familiarize yourself with the
library.

As is customary, we import pandas and NumPy as follows:

In [1]: import pandas as pd

In [2]: import numpy as np

Most of the examples will utilize the tips dataset found within pandas tests. We’ll read the data into a DataFrame
called tips and assume we have a database table of the same name and structure.

In [3]: url = 'https://raw.github.com/pandas-dev/pandas/master/pandas/tests/data/tips.
→˓csv'

In [4]: tips = pd.read_csv(url)

In [5]: tips.head()
Out[5]:

total_bill tip sex smoker day time size
0 16.99 1.01 Female No Sun Dinner 2
1 10.34 1.66 Male No Sun Dinner 3
2 21.01 3.50 Male No Sun Dinner 3
3 23.68 3.31 Male No Sun Dinner 2
4 24.59 3.61 Female No Sun Dinner 4

31.1 SELECT

In SQL, selection is done using a comma-separated list of columns you’d like to select (or a * to select all columns):

SELECT total_bill, tip, smoker, time
FROM tips
LIMIT 5;

With pandas, column selection is done by passing a list of column names to your DataFrame:

In [6]: tips[['total_bill', 'tip', 'smoker', 'time']].head(5)
Out[6]:

total_bill tip smoker time

(continues on next page)

1297

http://en.wikipedia.org/wiki/SQL

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

0 16.99 1.01 No Dinner
1 10.34 1.66 No Dinner
2 21.01 3.50 No Dinner
3 23.68 3.31 No Dinner
4 24.59 3.61 No Dinner

Calling the DataFrame without the list of column names would display all columns (akin to SQL’s *).

31.2 WHERE

Filtering in SQL is done via a WHERE clause.

SELECT *
FROM tips
WHERE time = 'Dinner'
LIMIT 5;

DataFrames can be filtered in multiple ways; the most intuitive of which is using boolean indexing.

In [7]: tips[tips['time'] == 'Dinner'].head(5)
Out[7]:

total_bill tip sex smoker day time size
0 16.99 1.01 Female No Sun Dinner 2
1 10.34 1.66 Male No Sun Dinner 3
2 21.01 3.50 Male No Sun Dinner 3
3 23.68 3.31 Male No Sun Dinner 2
4 24.59 3.61 Female No Sun Dinner 4

The above statement is simply passing a Series of True/False objects to the DataFrame, returning all rows with
True.

In [8]: is_dinner = tips['time'] == 'Dinner'

In [9]: is_dinner.value_counts()
Out[9]:
True 176
False 68
Name: time, dtype: int64

In [10]: tips[is_dinner].head(5)
\\Out[10]:

total_bill tip sex smoker day time size
0 16.99 1.01 Female No Sun Dinner 2
1 10.34 1.66 Male No Sun Dinner 3
2 21.01 3.50 Male No Sun Dinner 3
3 23.68 3.31 Male No Sun Dinner 2
4 24.59 3.61 Female No Sun Dinner 4

Just like SQL’s OR and AND, multiple conditions can be passed to a DataFrame using | (OR) and & (AND).

-- tips of more than $5.00 at Dinner meals
SELECT *
FROM tips
WHERE time = 'Dinner' AND tip > 5.00;

1298 Chapter 31. Comparison with SQL

http://pandas.pydata.org/pandas-docs/stable/indexing.html#boolean-indexing

pandas: powerful Python data analysis toolkit, Release 0.23.4

tips of more than $5.00 at Dinner meals
In [11]: tips[(tips['time'] == 'Dinner') & (tips['tip'] > 5.00)]
Out[11]:

total_bill tip sex smoker day time size
23 39.42 7.58 Male No Sat Dinner 4
44 30.40 5.60 Male No Sun Dinner 4
47 32.40 6.00 Male No Sun Dinner 4
52 34.81 5.20 Female No Sun Dinner 4
59 48.27 6.73 Male No Sat Dinner 4
116 29.93 5.07 Male No Sun Dinner 4
155 29.85 5.14 Female No Sun Dinner 5
170 50.81 10.00 Male Yes Sat Dinner 3
172 7.25 5.15 Male Yes Sun Dinner 2
181 23.33 5.65 Male Yes Sun Dinner 2
183 23.17 6.50 Male Yes Sun Dinner 4
211 25.89 5.16 Male Yes Sat Dinner 4
212 48.33 9.00 Male No Sat Dinner 4
214 28.17 6.50 Female Yes Sat Dinner 3
239 29.03 5.92 Male No Sat Dinner 3

-- tips by parties of at least 5 diners OR bill total was more than $45
SELECT *
FROM tips
WHERE size >= 5 OR total_bill > 45;

tips by parties of at least 5 diners OR bill total was more than $45
In [12]: tips[(tips['size'] >= 5) | (tips['total_bill'] > 45)]
Out[12]:

total_bill tip sex smoker day time size
59 48.27 6.73 Male No Sat Dinner 4
125 29.80 4.20 Female No Thur Lunch 6
141 34.30 6.70 Male No Thur Lunch 6
142 41.19 5.00 Male No Thur Lunch 5
143 27.05 5.00 Female No Thur Lunch 6
155 29.85 5.14 Female No Sun Dinner 5
156 48.17 5.00 Male No Sun Dinner 6
170 50.81 10.00 Male Yes Sat Dinner 3
182 45.35 3.50 Male Yes Sun Dinner 3
185 20.69 5.00 Male No Sun Dinner 5
187 30.46 2.00 Male Yes Sun Dinner 5
212 48.33 9.00 Male No Sat Dinner 4
216 28.15 3.00 Male Yes Sat Dinner 5

NULL checking is done using the notna() and isna() methods.

In [13]: frame = pd.DataFrame({'col1': ['A', 'B', np.NaN, 'C', 'D'],
....: 'col2': ['F', np.NaN, 'G', 'H', 'I']})
....:

In [14]: frame
Out[14]:

col1 col2
0 A F
1 B NaN
2 NaN G
3 C H
4 D I

31.2. WHERE 1299

pandas: powerful Python data analysis toolkit, Release 0.23.4

Assume we have a table of the same structure as our DataFrame above. We can see only the records where col2 IS
NULL with the following query:

SELECT *
FROM frame
WHERE col2 IS NULL;

In [15]: frame[frame['col2'].isna()]
Out[15]:

col1 col2
1 B NaN

Getting items where col1 IS NOT NULL can be done with notna().

SELECT *
FROM frame
WHERE col1 IS NOT NULL;

In [16]: frame[frame['col1'].notna()]
Out[16]:

col1 col2
0 A F
1 B NaN
3 C H
4 D I

31.3 GROUP BY

In pandas, SQL’s GROUP BY operations are performed using the similarly named groupby() method.
groupby() typically refers to a process where we’d like to split a dataset into groups, apply some function (typically
aggregation) , and then combine the groups together.

A common SQL operation would be getting the count of records in each group throughout a dataset. For instance, a
query getting us the number of tips left by sex:

SELECT sex, count(*)
FROM tips
GROUP BY sex;
/*
Female 87
Male 157

*/

The pandas equivalent would be:

In [17]: tips.groupby('sex').size()
Out[17]:
sex
Female 87
Male 157
dtype: int64

Notice that in the pandas code we used size() and not count(). This is because count() applies the function
to each column, returning the number of not null records within each.

1300 Chapter 31. Comparison with SQL

pandas: powerful Python data analysis toolkit, Release 0.23.4

In [18]: tips.groupby('sex').count()
Out[18]:

total_bill tip smoker day time size
sex
Female 87 87 87 87 87 87
Male 157 157 157 157 157 157

Alternatively, we could have applied the count() method to an individual column:

In [19]: tips.groupby('sex')['total_bill'].count()
Out[19]:
sex
Female 87
Male 157
Name: total_bill, dtype: int64

Multiple functions can also be applied at once. For instance, say we’d like to see how tip amount differs by day of
the week - agg() allows you to pass a dictionary to your grouped DataFrame, indicating which functions to apply to
specific columns.

SELECT day, AVG(tip), COUNT(*)
FROM tips
GROUP BY day;
/*
Fri 2.734737 19
Sat 2.993103 87
Sun 3.255132 76
Thur 2.771452 62

*/

In [20]: tips.groupby('day').agg({'tip': np.mean, 'day': np.size})
Out[20]:

tip day
day
Fri 2.734737 19
Sat 2.993103 87
Sun 3.255132 76
Thur 2.771452 62

Grouping by more than one column is done by passing a list of columns to the groupby() method.

SELECT smoker, day, COUNT(*), AVG(tip)
FROM tips
GROUP BY smoker, day;
/*
smoker day
No Fri 4 2.812500

Sat 45 3.102889
Sun 57 3.167895
Thur 45 2.673778

Yes Fri 15 2.714000
Sat 42 2.875476
Sun 19 3.516842
Thur 17 3.030000

*/

31.3. GROUP BY 1301

pandas: powerful Python data analysis toolkit, Release 0.23.4

In [21]: tips.groupby(['smoker', 'day']).agg({'tip': [np.size, np.mean]})
Out[21]:

tip
size mean

smoker day
No Fri 4.0 2.812500

Sat 45.0 3.102889
Sun 57.0 3.167895
Thur 45.0 2.673778

Yes Fri 15.0 2.714000
Sat 42.0 2.875476
Sun 19.0 3.516842
Thur 17.0 3.030000

31.4 JOIN

JOINs can be performed with join() or merge(). By default, join() will join the DataFrames on their indices.
Each method has parameters allowing you to specify the type of join to perform (LEFT, RIGHT, INNER, FULL) or
the columns to join on (column names or indices).

In [22]: df1 = pd.DataFrame({'key': ['A', 'B', 'C', 'D'],
....: 'value': np.random.randn(4)})
....:

In [23]: df2 = pd.DataFrame({'key': ['B', 'D', 'D', 'E'],
....: 'value': np.random.randn(4)})
....:

Assume we have two database tables of the same name and structure as our DataFrames.

Now let’s go over the various types of JOINs.

31.4.1 INNER JOIN

SELECT *
FROM df1
INNER JOIN df2

ON df1.key = df2.key;

merge performs an INNER JOIN by default
In [24]: pd.merge(df1, df2, on='key')
Out[24]:

key value_x value_y
0 B -0.318214 0.543581
1 D 2.169960 -0.426067
2 D 2.169960 1.138079

merge() also offers parameters for cases when you’d like to join one DataFrame’s column with another DataFrame’s
index.

In [25]: indexed_df2 = df2.set_index('key')

In [26]: pd.merge(df1, indexed_df2, left_on='key', right_index=True)

(continues on next page)

1302 Chapter 31. Comparison with SQL

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

Out[26]:
key value_x value_y

1 B -0.318214 0.543581
3 D 2.169960 -0.426067
3 D 2.169960 1.138079

31.4.2 LEFT OUTER JOIN

-- show all records from df1
SELECT *
FROM df1
LEFT OUTER JOIN df2
ON df1.key = df2.key;

show all records from df1
In [27]: pd.merge(df1, df2, on='key', how='left')
Out[27]:

key value_x value_y
0 A 0.116174 NaN
1 B -0.318214 0.543581
2 C 0.285261 NaN
3 D 2.169960 -0.426067
4 D 2.169960 1.138079

31.4.3 RIGHT JOIN

-- show all records from df2
SELECT *
FROM df1
RIGHT OUTER JOIN df2

ON df1.key = df2.key;

show all records from df2
In [28]: pd.merge(df1, df2, on='key', how='right')
Out[28]:

key value_x value_y
0 B -0.318214 0.543581
1 D 2.169960 -0.426067
2 D 2.169960 1.138079
3 E NaN 0.086073

31.4.4 FULL JOIN

pandas also allows for FULL JOINs, which display both sides of the dataset, whether or not the joined columns find a
match. As of writing, FULL JOINs are not supported in all RDBMS (MySQL).

-- show all records from both tables
SELECT *
FROM df1
FULL OUTER JOIN df2
ON df1.key = df2.key;

31.4. JOIN 1303

pandas: powerful Python data analysis toolkit, Release 0.23.4

show all records from both frames
In [29]: pd.merge(df1, df2, on='key', how='outer')
Out[29]:

key value_x value_y
0 A 0.116174 NaN
1 B -0.318214 0.543581
2 C 0.285261 NaN
3 D 2.169960 -0.426067
4 D 2.169960 1.138079
5 E NaN 0.086073

31.5 UNION

UNION ALL can be performed using concat().

In [30]: df1 = pd.DataFrame({'city': ['Chicago', 'San Francisco', 'New York City'],
....: 'rank': range(1, 4)})
....:

In [31]: df2 = pd.DataFrame({'city': ['Chicago', 'Boston', 'Los Angeles'],
....: 'rank': [1, 4, 5]})
....:

SELECT city, rank
FROM df1
UNION ALL
SELECT city, rank
FROM df2;
/*

city rank
Chicago 1

San Francisco 2
New York City 3

Chicago 1
Boston 4

Los Angeles 5

*/

In [32]: pd.concat([df1, df2])
Out[32]:

city rank
0 Chicago 1
1 San Francisco 2
2 New York City 3
0 Chicago 1
1 Boston 4
2 Los Angeles 5

SQL’s UNION is similar to UNION ALL, however UNION will remove duplicate rows.

SELECT city, rank
FROM df1
UNION
SELECT city, rank

(continues on next page)

1304 Chapter 31. Comparison with SQL

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

FROM df2;
-- notice that there is only one Chicago record this time
/*

city rank
Chicago 1

San Francisco 2
New York City 3

Boston 4
Los Angeles 5

*/

In pandas, you can use concat() in conjunction with drop_duplicates().

In [33]: pd.concat([df1, df2]).drop_duplicates()
Out[33]:

city rank
0 Chicago 1
1 San Francisco 2
2 New York City 3
1 Boston 4
2 Los Angeles 5

31.6 Pandas equivalents for some SQL analytic and aggregate func-
tions

31.6.1 Top N rows with offset

-- MySQL
SELECT * FROM tips
ORDER BY tip DESC
LIMIT 10 OFFSET 5;

In [34]: tips.nlargest(10+5, columns='tip').tail(10)
Out[34]:

total_bill tip sex smoker day time size
183 23.17 6.50 Male Yes Sun Dinner 4
214 28.17 6.50 Female Yes Sat Dinner 3
47 32.40 6.00 Male No Sun Dinner 4
239 29.03 5.92 Male No Sat Dinner 3
88 24.71 5.85 Male No Thur Lunch 2
181 23.33 5.65 Male Yes Sun Dinner 2
44 30.40 5.60 Male No Sun Dinner 4
52 34.81 5.20 Female No Sun Dinner 4
85 34.83 5.17 Female No Thur Lunch 4
211 25.89 5.16 Male Yes Sat Dinner 4

31.6.2 Top N rows per group

-- Oracle's ROW_NUMBER() analytic function
SELECT * FROM (

(continues on next page)

31.6. Pandas equivalents for some SQL analytic and aggregate functions 1305

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

SELECT
t.*,
ROW_NUMBER() OVER(PARTITION BY day ORDER BY total_bill DESC) AS rn

FROM tips t
)
WHERE rn < 3
ORDER BY day, rn;

In [35]: (tips.assign(rn=tips.sort_values(['total_bill'], ascending=False)
....: .groupby(['day'])
....: .cumcount() + 1)
....: .query('rn < 3')
....: .sort_values(['day','rn'])
....:)
....:

Out[35]:
total_bill tip sex smoker day time size rn

95 40.17 4.73 Male Yes Fri Dinner 4 1
90 28.97 3.00 Male Yes Fri Dinner 2 2
170 50.81 10.00 Male Yes Sat Dinner 3 1
212 48.33 9.00 Male No Sat Dinner 4 2
156 48.17 5.00 Male No Sun Dinner 6 1
182 45.35 3.50 Male Yes Sun Dinner 3 2
197 43.11 5.00 Female Yes Thur Lunch 4 1
142 41.19 5.00 Male No Thur Lunch 5 2

the same using rank(method=’first’) function

In [36]: (tips.assign(rnk=tips.groupby(['day'])['total_bill']
....: .rank(method='first', ascending=False))
....: .query('rnk < 3')
....: .sort_values(['day','rnk'])
....:)
....:

Out[36]:
total_bill tip sex smoker day time size rnk

95 40.17 4.73 Male Yes Fri Dinner 4 1.0
90 28.97 3.00 Male Yes Fri Dinner 2 2.0
170 50.81 10.00 Male Yes Sat Dinner 3 1.0
212 48.33 9.00 Male No Sat Dinner 4 2.0
156 48.17 5.00 Male No Sun Dinner 6 1.0
182 45.35 3.50 Male Yes Sun Dinner 3 2.0
197 43.11 5.00 Female Yes Thur Lunch 4 1.0
142 41.19 5.00 Male No Thur Lunch 5 2.0

-- Oracle's RANK() analytic function
SELECT * FROM (

SELECT
t.*,
RANK() OVER(PARTITION BY sex ORDER BY tip) AS rnk

FROM tips t
WHERE tip < 2

)
WHERE rnk < 3
ORDER BY sex, rnk;

Let’s find tips with (rank < 3) per gender group for (tips < 2). Notice that when using rank(method='min')

1306 Chapter 31. Comparison with SQL

pandas: powerful Python data analysis toolkit, Release 0.23.4

function rnk_min remains the same for the same tip (as Oracle’s RANK() function)

In [37]: (tips[tips['tip'] < 2]
....: .assign(rnk_min=tips.groupby(['sex'])['tip']
....: .rank(method='min'))
....: .query('rnk_min < 3')
....: .sort_values(['sex','rnk_min'])
....:)
....:

Out[37]:
total_bill tip sex smoker day time size rnk_min

67 3.07 1.00 Female Yes Sat Dinner 1 1.0
92 5.75 1.00 Female Yes Fri Dinner 2 1.0
111 7.25 1.00 Female No Sat Dinner 1 1.0
236 12.60 1.00 Male Yes Sat Dinner 2 1.0
237 32.83 1.17 Male Yes Sat Dinner 2 2.0

31.7 UPDATE

UPDATE tips
SET tip = tip*2
WHERE tip < 2;

In [38]: tips.loc[tips['tip'] < 2, 'tip'] *= 2

31.8 DELETE

DELETE FROM tips
WHERE tip > 9;

In pandas we select the rows that should remain, instead of deleting them

In [39]: tips = tips.loc[tips['tip'] <= 9]

31.7. UPDATE 1307

pandas: powerful Python data analysis toolkit, Release 0.23.4

1308 Chapter 31. Comparison with SQL

CHAPTER

THIRTYTWO

COMPARISON WITH SAS

For potential users coming from SAS this page is meant to demonstrate how different SAS operations would be
performed in pandas.

If you’re new to pandas, you might want to first read through 10 Minutes to pandas to familiarize yourself with the
library.

As is customary, we import pandas and NumPy as follows:

In [1]: import pandas as pd

In [2]: import numpy as np

Note: Throughout this tutorial, the pandas DataFrame will be displayed by calling df.head(), which displays
the first N (default 5) rows of the DataFrame. This is often used in interactive work (e.g. Jupyter notebook or
terminal) - the equivalent in SAS would be:

proc print data=df(obs=5);
run;

32.1 Data Structures

32.1.1 General Terminology Translation

pandas SAS
DataFrame data set
column variable
row observation
groupby BY-group
NaN .

32.1.2 DataFrame / Series

A DataFrame in pandas is analogous to a SAS data set - a two-dimensional data source with labeled columns that
can be of different types. As will be shown in this document, almost any operation that can be applied to a data set
using SAS’s DATA step, can also be accomplished in pandas.

1309

https://en.wikipedia.org/wiki/SAS_(software)
https://jupyter.org/

pandas: powerful Python data analysis toolkit, Release 0.23.4

A Series is the data structure that represents one column of a DataFrame. SAS doesn’t have a separate data
structure for a single column, but in general, working with a Series is analogous to referencing a column in the
DATA step.

32.1.3 Index

Every DataFrame and Series has an Index - which are labels on the rows of the data. SAS does not have an
exactly analogous concept. A data set’s rows are essentially unlabeled, other than an implicit integer index that can be
accessed during the DATA step (_N_).

In pandas, if no index is specified, an integer index is also used by default (first row = 0, second row = 1, and so on).
While using a labeled Index or MultiIndex can enable sophisticated analyses and is ultimately an important part
of pandas to understand, for this comparison we will essentially ignore the Index and just treat the DataFrame as
a collection of columns. Please see the indexing documentation for much more on how to use an Index effectively.

32.2 Data Input / Output

32.2.1 Constructing a DataFrame from Values

A SAS data set can be built from specified values by placing the data after a datalines statement and specifying
the column names.

data df;
input x y;
datalines;
1 2
3 4
5 6
;

run;

A pandas DataFrame can be constructed in many different ways, but for a small number of values, it is often
convenient to specify it as a Python dictionary, where the keys are the column names and the values are the data.

In [3]: df = pd.DataFrame({
...: 'x': [1, 3, 5],
...: 'y': [2, 4, 6]})
...:

In [4]: df
Out[4]:

x y
0 1 2
1 3 4
2 5 6

32.2.2 Reading External Data

Like SAS, pandas provides utilities for reading in data from many formats. The tips dataset, found within the pandas
tests (csv) will be used in many of the following examples.

SAS provides PROC IMPORT to read csv data into a data set.

1310 Chapter 32. Comparison with SAS

https://raw.github.com/pandas-dev/pandas/master/pandas/tests/data/tips.csv

pandas: powerful Python data analysis toolkit, Release 0.23.4

proc import datafile='tips.csv' dbms=csv out=tips replace;
getnames=yes;

run;

The pandas method is read_csv(), which works similarly.

In [5]: url = 'https://raw.github.com/pandas-dev/pandas/master/pandas/tests/data/tips.
→˓csv'

In [6]: tips = pd.read_csv(url)

In [7]: tips.head()
Out[7]:

total_bill tip sex smoker day time size
0 16.99 1.01 Female No Sun Dinner 2
1 10.34 1.66 Male No Sun Dinner 3
2 21.01 3.50 Male No Sun Dinner 3
3 23.68 3.31 Male No Sun Dinner 2
4 24.59 3.61 Female No Sun Dinner 4

Like PROC IMPORT, read_csv can take a number of parameters to specify how the data should be parsed. For
example, if the data was instead tab delimited, and did not have column names, the pandas command would be:

tips = pd.read_csv('tips.csv', sep='\t', header=None)

alternatively, read_table is an alias to read_csv with tab delimiter
tips = pd.read_table('tips.csv', header=None)

In addition to text/csv, pandas supports a variety of other data formats such as Excel, HDF5, and SQL databases. These
are all read via a pd.read_* function. See the IO documentation for more details.

32.2.3 Exporting Data

The inverse of PROC IMPORT in SAS is PROC EXPORT

proc export data=tips outfile='tips2.csv' dbms=csv;
run;

Similarly in pandas, the opposite of read_csv is to_csv(), and other data formats follow a similar api.

tips.to_csv('tips2.csv')

32.3 Data Operations

32.3.1 Operations on Columns

In the DATA step, arbitrary math expressions can be used on new or existing columns.

data tips;
set tips;
total_bill = total_bill - 2;
new_bill = total_bill / 2;

run;

32.3. Data Operations 1311

pandas: powerful Python data analysis toolkit, Release 0.23.4

pandas provides similar vectorized operations by specifying the individual Series in the DataFrame. New
columns can be assigned in the same way.

In [8]: tips['total_bill'] = tips['total_bill'] - 2

In [9]: tips['new_bill'] = tips['total_bill'] / 2.0

In [10]: tips.head()
Out[10]:

total_bill tip sex smoker day time size new_bill
0 14.99 1.01 Female No Sun Dinner 2 7.495
1 8.34 1.66 Male No Sun Dinner 3 4.170
2 19.01 3.50 Male No Sun Dinner 3 9.505
3 21.68 3.31 Male No Sun Dinner 2 10.840
4 22.59 3.61 Female No Sun Dinner 4 11.295

32.3.2 Filtering

Filtering in SAS is done with an if or where statement, on one or more columns.

data tips;
set tips;
if total_bill > 10;

run;

data tips;
set tips;
where total_bill > 10;
/* equivalent in this case - where happens before the

DATA step begins and can also be used in PROC statements */
run;

DataFrames can be filtered in multiple ways; the most intuitive of which is using boolean indexing

In [11]: tips[tips['total_bill'] > 10].head()
Out[11]:

total_bill tip sex smoker day time size
0 14.99 1.01 Female No Sun Dinner 2
2 19.01 3.50 Male No Sun Dinner 3
3 21.68 3.31 Male No Sun Dinner 2
4 22.59 3.61 Female No Sun Dinner 4
5 23.29 4.71 Male No Sun Dinner 4

32.3.3 If/Then Logic

In SAS, if/then logic can be used to create new columns.

data tips;
set tips;
format bucket $4.;

if total_bill < 10 then bucket = 'low';
else bucket = 'high';

run;

1312 Chapter 32. Comparison with SAS

pandas: powerful Python data analysis toolkit, Release 0.23.4

The same operation in pandas can be accomplished using the where method from numpy.

In [12]: tips['bucket'] = np.where(tips['total_bill'] < 10, 'low', 'high')

In [13]: tips.head()
Out[13]:

total_bill tip sex smoker day time size bucket
0 14.99 1.01 Female No Sun Dinner 2 high
1 8.34 1.66 Male No Sun Dinner 3 low
2 19.01 3.50 Male No Sun Dinner 3 high
3 21.68 3.31 Male No Sun Dinner 2 high
4 22.59 3.61 Female No Sun Dinner 4 high

32.3.4 Date Functionality

SAS provides a variety of functions to do operations on date/datetime columns.

data tips;
set tips;
format date1 date2 date1_plusmonth mmddyy10.;
date1 = mdy(1, 15, 2013);
date2 = mdy(2, 15, 2015);
date1_year = year(date1);
date2_month = month(date2);

* shift date to beginning of next interval;
date1_next = intnx('MONTH', date1, 1);

* count intervals between dates;
months_between = intck('MONTH', date1, date2);

run;

The equivalent pandas operations are shown below. In addition to these functions pandas supports other Time Series
features not available in Base SAS (such as resampling and custom offsets) - see the timeseries documentation for
more details.

In [14]: tips['date1'] = pd.Timestamp('2013-01-15')

In [15]: tips['date2'] = pd.Timestamp('2015-02-15')

In [16]: tips['date1_year'] = tips['date1'].dt.year

In [17]: tips['date2_month'] = tips['date2'].dt.month

In [18]: tips['date1_next'] = tips['date1'] + pd.offsets.MonthBegin()

In [19]: tips['months_between'] = (tips['date2'].dt.to_period('M') -
....: tips['date1'].dt.to_period('M'))
....:

In [20]: tips[['date1','date2','date1_year','date2_month',
....: 'date1_next','months_between']].head()
....:

Out[20]:
date1 date2 date1_year date2_month date1_next months_between

0 2013-01-15 2015-02-15 2013 2 2013-02-01 25
1 2013-01-15 2015-02-15 2013 2 2013-02-01 25
2 2013-01-15 2015-02-15 2013 2 2013-02-01 25

(continues on next page)

32.3. Data Operations 1313

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

3 2013-01-15 2015-02-15 2013 2 2013-02-01 25
4 2013-01-15 2015-02-15 2013 2 2013-02-01 25

32.3.5 Selection of Columns

SAS provides keywords in the DATA step to select, drop, and rename columns.

data tips;
set tips;
keep sex total_bill tip;

run;

data tips;
set tips;
drop sex;

run;

data tips;
set tips;
rename total_bill=total_bill_2;

run;

The same operations are expressed in pandas below.

keep
In [21]: tips[['sex', 'total_bill', 'tip']].head()
Out[21]:

sex total_bill tip
0 Female 14.99 1.01
1 Male 8.34 1.66
2 Male 19.01 3.50
3 Male 21.68 3.31
4 Female 22.59 3.61

drop
In [22]: tips.drop('sex', axis=1).head()
\\Out[22]:
→˓

total_bill tip smoker day time size
0 14.99 1.01 No Sun Dinner 2
1 8.34 1.66 No Sun Dinner 3
2 19.01 3.50 No Sun Dinner 3
3 21.68 3.31 No Sun Dinner 2
4 22.59 3.61 No Sun Dinner 4

rename
In [23]: tips.rename(columns={'total_bill':'total_bill_2'}).head()
\\Out[23]:
→˓

total_bill_2 tip sex smoker day time size
0 14.99 1.01 Female No Sun Dinner 2
1 8.34 1.66 Male No Sun Dinner 3
2 19.01 3.50 Male No Sun Dinner 3
3 21.68 3.31 Male No Sun Dinner 2
4 22.59 3.61 Female No Sun Dinner 4

1314 Chapter 32. Comparison with SAS

pandas: powerful Python data analysis toolkit, Release 0.23.4

32.3.6 Sorting by Values

Sorting in SAS is accomplished via PROC SORT

proc sort data=tips;
by sex total_bill;

run;

pandas objects have a sort_values() method, which takes a list of columns to sort by.

In [24]: tips = tips.sort_values(['sex', 'total_bill'])

In [25]: tips.head()
Out[25]:

total_bill tip sex smoker day time size
67 1.07 1.00 Female Yes Sat Dinner 1
92 3.75 1.00 Female Yes Fri Dinner 2
111 5.25 1.00 Female No Sat Dinner 1
145 6.35 1.50 Female No Thur Lunch 2
135 6.51 1.25 Female No Thur Lunch 2

32.4 String Processing

32.4.1 Length

SAS determines the length of a character string with the LENGTHN and LENGTHC functions. LENGTHN excludes
trailing blanks and LENGTHC includes trailing blanks.

data _null_;
set tips;
put(LENGTHN(time));
put(LENGTHC(time));
run;

Python determines the length of a character string with the len function. len includes trailing blanks. Use len and
rstrip to exclude trailing blanks.

In [26]: tips['time'].str.len().head()
Out[26]:
67 6
92 6
111 6
145 5
135 5
Name: time, dtype: int64

In [27]: tips['time'].str.rstrip().str.len().head()
\\Out[27]:
→˓

67 6
92 6
111 6
145 5
135 5
Name: time, dtype: int64

32.4. String Processing 1315

http://support.sas.com/documentation/cdl/en/lrdict/64316/HTML/default/viewer.htm#a002284668.htm
http://support.sas.com/documentation/cdl/en/lrdict/64316/HTML/default/viewer.htm#a002283942.htm

pandas: powerful Python data analysis toolkit, Release 0.23.4

32.4.2 Find

SAS determines the position of a character in a string with the FINDW function. FINDW takes the string defined by
the first argument and searches for the first position of the substring you supply as the second argument.

data _null_;
set tips;
put(FINDW(sex,'ale'));
run;

Python determines the position of a character in a string with the find function. find searches for the first position
of the substring. If the substring is found, the function returns its position. Keep in mind that Python indexes are
zero-based and the function will return -1 if it fails to find the substring.

In [28]: tips['sex'].str.find("ale").head()
Out[28]:
67 3
92 3
111 3
145 3
135 3
Name: sex, dtype: int64

32.4.3 Substring

SAS extracts a substring from a string based on its position with the SUBSTR function.

data _null_;
set tips;
put(substr(sex,1,1));
run;

With pandas you can use [] notation to extract a substring from a string by position locations. Keep in mind that
Python indexes are zero-based.

In [29]: tips['sex'].str[0:1].head()
Out[29]:
67 F
92 F
111 F
145 F
135 F
Name: sex, dtype: object

32.4.4 Scan

The SAS SCAN function returns the nth word from a string. The first argument is the string you want to parse and the
second argument specifies which word you want to extract.

data firstlast;
input String $60.;
First_Name = scan(string, 1);
Last_Name = scan(string, -1);
datalines2;

(continues on next page)

1316 Chapter 32. Comparison with SAS

http://support.sas.com/documentation/cdl/en/lrdict/64316/HTML/default/viewer.htm#a002978282.htm
http://www2.sas.com/proceedings/sugi25/25/cc/25p088.pdf
http://support.sas.com/documentation/cdl/en/lrdict/64316/HTML/default/viewer.htm#a000214639.htm

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

John Smith;
Jane Cook;
;;;
run;

Python extracts a substring from a string based on its text by using regular expressions. There are much more powerful
approaches, but this just shows a simple approach.

In [30]: firstlast = pd.DataFrame({'String': ['John Smith', 'Jane Cook']})

In [31]: firstlast['First_Name'] = firstlast['String'].str.split(" ", expand=True)[0]

In [32]: firstlast['Last_Name'] = firstlast['String'].str.rsplit(" ", expand=True)[0]

In [33]: firstlast
Out[33]:

String First_Name Last_Name
0 John Smith John John
1 Jane Cook Jane Jane

32.4.5 Upcase, Lowcase, and Propcase

The SAS UPCASE LOWCASE and PROPCASE functions change the case of the argument.

data firstlast;
input String $60.;
string_up = UPCASE(string);
string_low = LOWCASE(string);
string_prop = PROPCASE(string);
datalines2;
John Smith;
Jane Cook;
;;;
run;

The equivalent Python functions are upper, lower, and title.

In [34]: firstlast = pd.DataFrame({'String': ['John Smith', 'Jane Cook']})

In [35]: firstlast['string_up'] = firstlast['String'].str.upper()

In [36]: firstlast['string_low'] = firstlast['String'].str.lower()

In [37]: firstlast['string_prop'] = firstlast['String'].str.title()

In [38]: firstlast
Out[38]:

String string_up string_low string_prop
0 John Smith JOHN SMITH john smith John Smith
1 Jane Cook JANE COOK jane cook Jane Cook

32.4. String Processing 1317

http://support.sas.com/documentation/cdl/en/lrdict/64316/HTML/default/viewer.htm#a000245965.htm
http://support.sas.com/documentation/cdl/en/lrdict/64316/HTML/default/viewer.htm#a000245912.htm
http://support.sas.com/documentation/cdl/en/lrdict/64316/HTML/default/a002598106.htm

pandas: powerful Python data analysis toolkit, Release 0.23.4

32.5 Merging

The following tables will be used in the merge examples

In [39]: df1 = pd.DataFrame({'key': ['A', 'B', 'C', 'D'],
....: 'value': np.random.randn(4)})
....:

In [40]: df1
Out[40]:

key value
0 A -0.857326
1 B 1.075416
2 C 0.371727
3 D 1.065735

In [41]: df2 = pd.DataFrame({'key': ['B', 'D', 'D', 'E'],
....: 'value': np.random.randn(4)})
....:

In [42]: df2
Out[42]:

key value
0 B -0.227314
1 D 2.102726
2 D -0.092796
3 E 0.094694

In SAS, data must be explicitly sorted before merging. Different types of joins are accomplished using the in= dummy
variables to track whether a match was found in one or both input frames.

proc sort data=df1;
by key;

run;

proc sort data=df2;
by key;

run;

data left_join inner_join right_join outer_join;
merge df1(in=a) df2(in=b);

if a and b then output inner_join;
if a then output left_join;
if b then output right_join;
if a or b then output outer_join;

run;

pandas DataFrames have a merge() method, which provides similar functionality. Note that the data does not have
to be sorted ahead of time, and different join types are accomplished via the how keyword.

In [43]: inner_join = df1.merge(df2, on=['key'], how='inner')

In [44]: inner_join
Out[44]:

key value_x value_y
0 B 1.075416 -0.227314

(continues on next page)

1318 Chapter 32. Comparison with SAS

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

1 D 1.065735 2.102726
2 D 1.065735 -0.092796

In [45]: left_join = df1.merge(df2, on=['key'], how='left')

In [46]: left_join
Out[46]:

key value_x value_y
0 A -0.857326 NaN
1 B 1.075416 -0.227314
2 C 0.371727 NaN
3 D 1.065735 2.102726
4 D 1.065735 -0.092796

In [47]: right_join = df1.merge(df2, on=['key'], how='right')

In [48]: right_join
Out[48]:

key value_x value_y
0 B 1.075416 -0.227314
1 D 1.065735 2.102726
2 D 1.065735 -0.092796
3 E NaN 0.094694

In [49]: outer_join = df1.merge(df2, on=['key'], how='outer')

In [50]: outer_join
Out[50]:

key value_x value_y
0 A -0.857326 NaN
1 B 1.075416 -0.227314
2 C 0.371727 NaN
3 D 1.065735 2.102726
4 D 1.065735 -0.092796
5 E NaN 0.094694

32.6 Missing Data

Like SAS, pandas has a representation for missing data - which is the special float value NaN (not a number). Many
of the semantics are the same, for example missing data propagates through numeric operations, and is ignored by
default for aggregations.

In [51]: outer_join
Out[51]:

key value_x value_y
0 A -0.857326 NaN
1 B 1.075416 -0.227314
2 C 0.371727 NaN
3 D 1.065735 2.102726
4 D 1.065735 -0.092796
5 E NaN 0.094694

In [52]: outer_join['value_x'] + outer_join['value_y']
\\Out[52]:
→˓ (continues on next page)

32.6. Missing Data 1319

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

0 NaN
1 0.848102
2 NaN
3 3.168461
4 0.972939
5 NaN
dtype: float64

In [53]: outer_join['value_x'].sum()
\\\Out[53]:
→˓2.7212865354426201

One difference is that missing data cannot be compared to its sentinel value. For example, in SAS you could do this
to filter missing values.

data outer_join_nulls;
set outer_join;
if value_x = .;

run;

data outer_join_no_nulls;
set outer_join;
if value_x ^= .;

run;

Which doesn’t work in pandas. Instead, the pd.isna or pd.notna functions should be used for comparisons.

In [54]: outer_join[pd.isna(outer_join['value_x'])]
Out[54]:

key value_x value_y
5 E NaN 0.094694

In [55]: outer_join[pd.notna(outer_join['value_x'])]
\\Out[55]:

key value_x value_y
0 A -0.857326 NaN
1 B 1.075416 -0.227314
2 C 0.371727 NaN
3 D 1.065735 2.102726
4 D 1.065735 -0.092796

pandas also provides a variety of methods to work with missing data - some of which would be challenging to express
in SAS. For example, there are methods to drop all rows with any missing values, replacing missing values with a
specified value, like the mean, or forward filling from previous rows. See the missing data documentation for more.

In [56]: outer_join.dropna()
Out[56]:

key value_x value_y
1 B 1.075416 -0.227314
3 D 1.065735 2.102726
4 D 1.065735 -0.092796

In [57]: outer_join.fillna(method='ffill')
\\Out[57]:
→˓

key value_x value_y

(continues on next page)

1320 Chapter 32. Comparison with SAS

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

0 A -0.857326 NaN
1 B 1.075416 -0.227314
2 C 0.371727 -0.227314
3 D 1.065735 2.102726
4 D 1.065735 -0.092796
5 E 1.065735 0.094694

In [58]: outer_join['value_x'].fillna(outer_join['value_x'].mean())
\\Out[58]:
→˓

0 -0.857326
1 1.075416
2 0.371727
3 1.065735
4 1.065735
5 0.544257
Name: value_x, dtype: float64

32.7 GroupBy

32.7.1 Aggregation

SAS’s PROC SUMMARY can be used to group by one or more key variables and compute aggregations on numeric
columns.

proc summary data=tips nway;
class sex smoker;
var total_bill tip;
output out=tips_summed sum=;

run;

pandas provides a flexible groupby mechanism that allows similar aggregations. See the groupby documentation for
more details and examples.

In [59]: tips_summed = tips.groupby(['sex', 'smoker'])['total_bill', 'tip'].sum()

In [60]: tips_summed.head()
Out[60]:

total_bill tip
sex smoker
Female No 869.68 149.77

Yes 527.27 96.74
Male No 1725.75 302.00

Yes 1217.07 183.07

32.7.2 Transformation

In SAS, if the group aggregations need to be used with the original frame, it must be merged back together. For
example, to subtract the mean for each observation by smoker group.

32.7. GroupBy 1321

pandas: powerful Python data analysis toolkit, Release 0.23.4

proc summary data=tips missing nway;
class smoker;
var total_bill;
output out=smoker_means mean(total_bill)=group_bill;

run;

proc sort data=tips;
by smoker;

run;

data tips;
merge tips(in=a) smoker_means(in=b);
by smoker;
adj_total_bill = total_bill - group_bill;
if a and b;

run;

pandas groubpy provides a transform mechanism that allows these type of operations to be succinctly expressed
in one operation.

In [61]: gb = tips.groupby('smoker')['total_bill']

In [62]: tips['adj_total_bill'] = tips['total_bill'] - gb.transform('mean')

In [63]: tips.head()
Out[63]:

total_bill tip sex smoker day time size adj_total_bill
67 1.07 1.00 Female Yes Sat Dinner 1 -17.686344
92 3.75 1.00 Female Yes Fri Dinner 2 -15.006344
111 5.25 1.00 Female No Sat Dinner 1 -11.938278
145 6.35 1.50 Female No Thur Lunch 2 -10.838278
135 6.51 1.25 Female No Thur Lunch 2 -10.678278

32.7.3 By Group Processing

In addition to aggregation, pandas groupby can be used to replicate most other by group processing from SAS. For
example, this DATA step reads the data by sex/smoker group and filters to the first entry for each.

proc sort data=tips;
by sex smoker;

run;

data tips_first;
set tips;
by sex smoker;
if FIRST.sex or FIRST.smoker then output;

run;

In pandas this would be written as:

In [64]: tips.groupby(['sex','smoker']).first()
Out[64]:

total_bill tip day time size adj_total_bill
sex smoker
Female No 5.25 1.00 Sat Dinner 1 -11.938278

(continues on next page)

1322 Chapter 32. Comparison with SAS

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

Yes 1.07 1.00 Sat Dinner 1 -17.686344
Male No 5.51 2.00 Thur Lunch 2 -11.678278

Yes 5.25 5.15 Sun Dinner 2 -13.506344

32.8 Other Considerations

32.8.1 Disk vs Memory

pandas operates exclusively in memory, where a SAS data set exists on disk. This means that the size of data able to
be loaded in pandas is limited by your machine’s memory, but also that the operations on that data may be faster.

If out of core processing is needed, one possibility is the dask.dataframe library (currently in development) which
provides a subset of pandas functionality for an on-disk DataFrame

32.8.2 Data Interop

pandas provides a read_sas() method that can read SAS data saved in the XPORT or SAS7BDAT binary format.

libname xportout xport 'transport-file.xpt';
data xportout.tips;

set tips(rename=(total_bill=tbill));

* xport variable names limited to 6 characters;
run;

df = pd.read_sas('transport-file.xpt')
df = pd.read_sas('binary-file.sas7bdat')

You can also specify the file format directly. By default, pandas will try to infer the file format based on its extension.

df = pd.read_sas('transport-file.xpt', format='xport')
df = pd.read_sas('binary-file.sas7bdat', format='sas7bdat')

XPORT is a relatively limited format and the parsing of it is not as optimized as some of the other pandas readers. An
alternative way to interop data between SAS and pandas is to serialize to csv.

version 0.17, 10M rows

In [8]: %time df = pd.read_sas('big.xpt')
Wall time: 14.6 s

In [9]: %time df = pd.read_csv('big.csv')
Wall time: 4.86 s

32.8. Other Considerations 1323

http://dask.pydata.org/en/latest/dataframe.html

pandas: powerful Python data analysis toolkit, Release 0.23.4

1324 Chapter 32. Comparison with SAS

CHAPTER

THIRTYTHREE

COMPARISON WITH STATA

For potential users coming from Stata this page is meant to demonstrate how different Stata operations would be
performed in pandas.

If you’re new to pandas, you might want to first read through 10 Minutes to pandas to familiarize yourself with the
library.

As is customary, we import pandas and NumPy as follows. This means that we can refer to the libraries as pd and np,
respectively, for the rest of the document.

In [1]: import pandas as pd

In [2]: import numpy as np

Note: Throughout this tutorial, the pandas DataFrame will be displayed by calling df.head(), which displays
the first N (default 5) rows of the DataFrame. This is often used in interactive work (e.g. Jupyter notebook or
terminal) – the equivalent in Stata would be:

list in 1/5

33.1 Data Structures

33.1.1 General Terminology Translation

pandas Stata
DataFrame data set
column variable
row observation
groupby bysort
NaN .

33.1.2 DataFrame / Series

A DataFrame in pandas is analogous to a Stata data set – a two-dimensional data source with labeled columns that
can be of different types. As will be shown in this document, almost any operation that can be applied to a data set in
Stata can also be accomplished in pandas.

1325

https://en.wikipedia.org/wiki/Stata
https://jupyter.org/

pandas: powerful Python data analysis toolkit, Release 0.23.4

A Series is the data structure that represents one column of a DataFrame. Stata doesn’t have a separate data
structure for a single column, but in general, working with a Series is analogous to referencing a column of a data
set in Stata.

33.1.3 Index

Every DataFrame and Series has an Index – labels on the rows of the data. Stata does not have an exactly
analogous concept. In Stata, a data set’s rows are essentially unlabeled, other than an implicit integer index that can
be accessed with _n.

In pandas, if no index is specified, an integer index is also used by default (first row = 0, second row = 1, and so on).
While using a labeled Index or MultiIndex can enable sophisticated analyses and is ultimately an important part
of pandas to understand, for this comparison we will essentially ignore the Index and just treat the DataFrame as
a collection of columns. Please see the indexing documentation for much more on how to use an Index effectively.

33.2 Data Input / Output

33.2.1 Constructing a DataFrame from Values

A Stata data set can be built from specified values by placing the data after an input statement and specifying the
column names.

input x y
1 2
3 4
5 6
end

A pandas DataFrame can be constructed in many different ways, but for a small number of values, it is often
convenient to specify it as a Python dictionary, where the keys are the column names and the values are the data.

In [3]: df = pd.DataFrame({
...: 'x': [1, 3, 5],
...: 'y': [2, 4, 6]})
...:

In [4]: df
Out[4]:

x y
0 1 2
1 3 4
2 5 6

33.2.2 Reading External Data

Like Stata, pandas provides utilities for reading in data from many formats. The tips data set, found within the
pandas tests (csv) will be used in many of the following examples.

Stata provides import delimited to read csv data into a data set in memory. If the tips.csv file is in the
current working directory, we can import it as follows.

import delimited tips.csv

1326 Chapter 33. Comparison with Stata

https://raw.github.com/pandas-dev/pandas/master/pandas/tests/data/tips.csv

pandas: powerful Python data analysis toolkit, Release 0.23.4

The pandas method is read_csv(), which works similarly. Additionally, it will automatically download the data
set if presented with a url.

In [5]: url = 'https://raw.github.com/pandas-dev/pandas/master/pandas/tests/data/tips.
→˓csv'

In [6]: tips = pd.read_csv(url)

In [7]: tips.head()
Out[7]:

total_bill tip sex smoker day time size
0 16.99 1.01 Female No Sun Dinner 2
1 10.34 1.66 Male No Sun Dinner 3
2 21.01 3.50 Male No Sun Dinner 3
3 23.68 3.31 Male No Sun Dinner 2
4 24.59 3.61 Female No Sun Dinner 4

Like import delimited, read_csv() can take a number of parameters to specify how the data should be
parsed. For example, if the data were instead tab delimited, did not have column names, and existed in the current
working directory, the pandas command would be:

tips = pd.read_csv('tips.csv', sep='\t', header=None)

alternatively, read_table is an alias to read_csv with tab delimiter
tips = pd.read_table('tips.csv', header=None)

Pandas can also read Stata data sets in .dta format with the read_stata() function.

df = pd.read_stata('data.dta')

In addition to text/csv and Stata files, pandas supports a variety of other data formats such as Excel, SAS, HDF5,
Parquet, and SQL databases. These are all read via a pd.read_* function. See the IO documentation for more
details.

33.2.3 Exporting Data

The inverse of import delimited in Stata is export delimited

export delimited tips2.csv

Similarly in pandas, the opposite of read_csv is DataFrame.to_csv().

tips.to_csv('tips2.csv')

Pandas can also export to Stata file format with the DataFrame.to_stata() method.

tips.to_stata('tips2.dta')

33.3 Data Operations

33.3.1 Operations on Columns

In Stata, arbitrary math expressions can be used with the generate and replace commands on new or existing
columns. The drop command drops the column from the data set.

33.3. Data Operations 1327

pandas: powerful Python data analysis toolkit, Release 0.23.4

replace total_bill = total_bill - 2
generate new_bill = total_bill / 2
drop new_bill

pandas provides similar vectorized operations by specifying the individual Series in the DataFrame. New
columns can be assigned in the same way. The DataFrame.drop()method drops a column from the DataFrame.

In [8]: tips['total_bill'] = tips['total_bill'] - 2

In [9]: tips['new_bill'] = tips['total_bill'] / 2

In [10]: tips.head()
Out[10]:

total_bill tip sex smoker day time size new_bill
0 14.99 1.01 Female No Sun Dinner 2 7.495
1 8.34 1.66 Male No Sun Dinner 3 4.170
2 19.01 3.50 Male No Sun Dinner 3 9.505
3 21.68 3.31 Male No Sun Dinner 2 10.840
4 22.59 3.61 Female No Sun Dinner 4 11.295

In [11]: tips = tips.drop('new_bill', axis=1)

33.3.2 Filtering

Filtering in Stata is done with an if clause on one or more columns.

list if total_bill > 10

DataFrames can be filtered in multiple ways; the most intuitive of which is using boolean indexing.

In [12]: tips[tips['total_bill'] > 10].head()
Out[12]:

total_bill tip sex smoker day time size
0 14.99 1.01 Female No Sun Dinner 2
2 19.01 3.50 Male No Sun Dinner 3
3 21.68 3.31 Male No Sun Dinner 2
4 22.59 3.61 Female No Sun Dinner 4
5 23.29 4.71 Male No Sun Dinner 4

33.3.3 If/Then Logic

In Stata, an if clause can also be used to create new columns.

generate bucket = "low" if total_bill < 10
replace bucket = "high" if total_bill >= 10

The same operation in pandas can be accomplished using the where method from numpy.

In [13]: tips['bucket'] = np.where(tips['total_bill'] < 10, 'low', 'high')

In [14]: tips.head()
Out[14]:

total_bill tip sex smoker day time size bucket
0 14.99 1.01 Female No Sun Dinner 2 high

(continues on next page)

1328 Chapter 33. Comparison with Stata

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

1 8.34 1.66 Male No Sun Dinner 3 low
2 19.01 3.50 Male No Sun Dinner 3 high
3 21.68 3.31 Male No Sun Dinner 2 high
4 22.59 3.61 Female No Sun Dinner 4 high

33.3.4 Date Functionality

Stata provides a variety of functions to do operations on date/datetime columns.

generate date1 = mdy(1, 15, 2013)
generate date2 = date("Feb152015", "MDY")

generate date1_year = year(date1)
generate date2_month = month(date2)

* shift date to beginning of next month
generate date1_next = mdy(month(date1) + 1, 1, year(date1)) if month(date1) != 12
replace date1_next = mdy(1, 1, year(date1) + 1) if month(date1) == 12
generate months_between = mofd(date2) - mofd(date1)

list date1 date2 date1_year date2_month date1_next months_between

The equivalent pandas operations are shown below. In addition to these functions, pandas supports other Time Series
features not available in Stata (such as time zone handling and custom offsets) – see the timeseries documentation for
more details.

In [15]: tips['date1'] = pd.Timestamp('2013-01-15')

In [16]: tips['date2'] = pd.Timestamp('2015-02-15')

In [17]: tips['date1_year'] = tips['date1'].dt.year

In [18]: tips['date2_month'] = tips['date2'].dt.month

In [19]: tips['date1_next'] = tips['date1'] + pd.offsets.MonthBegin()

In [20]: tips['months_between'] = (tips['date2'].dt.to_period('M') -
....: tips['date1'].dt.to_period('M'))
....:

In [21]: tips[['date1','date2','date1_year','date2_month',
....: 'date1_next','months_between']].head()
....:

Out[21]:
date1 date2 date1_year date2_month date1_next months_between

0 2013-01-15 2015-02-15 2013 2 2013-02-01 25
1 2013-01-15 2015-02-15 2013 2 2013-02-01 25
2 2013-01-15 2015-02-15 2013 2 2013-02-01 25
3 2013-01-15 2015-02-15 2013 2 2013-02-01 25
4 2013-01-15 2015-02-15 2013 2 2013-02-01 25

33.3.5 Selection of Columns

Stata provides keywords to select, drop, and rename columns.

33.3. Data Operations 1329

pandas: powerful Python data analysis toolkit, Release 0.23.4

keep sex total_bill tip

drop sex

rename total_bill total_bill_2

The same operations are expressed in pandas below. Note that in contrast to Stata, these operations do not happen in
place. To make these changes persist, assign the operation back to a variable.

keep
In [22]: tips[['sex', 'total_bill', 'tip']].head()
Out[22]:

sex total_bill tip
0 Female 14.99 1.01
1 Male 8.34 1.66
2 Male 19.01 3.50
3 Male 21.68 3.31
4 Female 22.59 3.61

drop
In [23]: tips.drop('sex', axis=1).head()
\\Out[23]:
→˓

total_bill tip smoker day time size
0 14.99 1.01 No Sun Dinner 2
1 8.34 1.66 No Sun Dinner 3
2 19.01 3.50 No Sun Dinner 3
3 21.68 3.31 No Sun Dinner 2
4 22.59 3.61 No Sun Dinner 4

rename
In [24]: tips.rename(columns={'total_bill': 'total_bill_2'}).head()
\\Out[24]:
→˓

total_bill_2 tip sex smoker day time size
0 14.99 1.01 Female No Sun Dinner 2
1 8.34 1.66 Male No Sun Dinner 3
2 19.01 3.50 Male No Sun Dinner 3
3 21.68 3.31 Male No Sun Dinner 2
4 22.59 3.61 Female No Sun Dinner 4

33.3.6 Sorting by Values

Sorting in Stata is accomplished via sort

sort sex total_bill

pandas objects have a DataFrame.sort_values() method, which takes a list of columns to sort by.

In [25]: tips = tips.sort_values(['sex', 'total_bill'])

In [26]: tips.head()
Out[26]:

total_bill tip sex smoker day time size
67 1.07 1.00 Female Yes Sat Dinner 1

(continues on next page)

1330 Chapter 33. Comparison with Stata

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

92 3.75 1.00 Female Yes Fri Dinner 2
111 5.25 1.00 Female No Sat Dinner 1
145 6.35 1.50 Female No Thur Lunch 2
135 6.51 1.25 Female No Thur Lunch 2

33.4 String Processing

33.4.1 Finding Length of String

Stata determines the length of a character string with the strlen() and ustrlen() functions for ASCII and
Unicode strings, respectively.

generate strlen_time = strlen(time)
generate ustrlen_time = ustrlen(time)

Python determines the length of a character string with the len function. In Python 3, all strings are Unicode strings.
len includes trailing blanks. Use len and rstrip to exclude trailing blanks.

In [27]: tips['time'].str.len().head()
Out[27]:
67 6
92 6
111 6
145 5
135 5
Name: time, dtype: int64

In [28]: tips['time'].str.rstrip().str.len().head()
\\Out[28]:
→˓

67 6
92 6
111 6
145 5
135 5
Name: time, dtype: int64

33.4.2 Finding Position of Substring

Stata determines the position of a character in a string with the strpos() function. This takes the string defined by
the first argument and searches for the first position of the substring you supply as the second argument.

generate str_position = strpos(sex, "ale")

Python determines the position of a character in a string with the find() function. find searches for the first
position of the substring. If the substring is found, the function returns its position. Keep in mind that Python indexes
are zero-based and the function will return -1 if it fails to find the substring.

In [29]: tips['sex'].str.find("ale").head()
Out[29]:
67 3

(continues on next page)

33.4. String Processing 1331

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

92 3
111 3
145 3
135 3
Name: sex, dtype: int64

33.4.3 Extracting Substring by Position

Stata extracts a substring from a string based on its position with the substr() function.

generate short_sex = substr(sex, 1, 1)

With pandas you can use [] notation to extract a substring from a string by position locations. Keep in mind that
Python indexes are zero-based.

In [30]: tips['sex'].str[0:1].head()
Out[30]:
67 F
92 F
111 F
145 F
135 F
Name: sex, dtype: object

33.4.4 Extracting nth Word

The Stata word() function returns the nth word from a string. The first argument is the string you want to parse and
the second argument specifies which word you want to extract.

clear
input str20 string
"John Smith"
"Jane Cook"
end

generate first_name = word(name, 1)
generate last_name = word(name, -1)

Python extracts a substring from a string based on its text by using regular expressions. There are much more powerful
approaches, but this just shows a simple approach.

In [31]: firstlast = pd.DataFrame({'string': ['John Smith', 'Jane Cook']})

In [32]: firstlast['First_Name'] = firstlast['string'].str.split(" ", expand=True)[0]

In [33]: firstlast['Last_Name'] = firstlast['string'].str.rsplit(" ", expand=True)[0]

In [34]: firstlast
Out[34]:

string First_Name Last_Name
0 John Smith John John
1 Jane Cook Jane Jane

1332 Chapter 33. Comparison with Stata

pandas: powerful Python data analysis toolkit, Release 0.23.4

33.4.5 Changing Case

The Stata strupper(), strlower(), strproper(), ustrupper(), ustrlower(), and ustrtitle()
functions change the case of ASCII and Unicode strings, respectively.

clear
input str20 string
"John Smith"
"Jane Cook"
end

generate upper = strupper(string)
generate lower = strlower(string)
generate title = strproper(string)
list

The equivalent Python functions are upper, lower, and title.

In [35]: firstlast = pd.DataFrame({'string': ['John Smith', 'Jane Cook']})

In [36]: firstlast['upper'] = firstlast['string'].str.upper()

In [37]: firstlast['lower'] = firstlast['string'].str.lower()

In [38]: firstlast['title'] = firstlast['string'].str.title()

In [39]: firstlast
Out[39]:

string upper lower title
0 John Smith JOHN SMITH john smith John Smith
1 Jane Cook JANE COOK jane cook Jane Cook

33.5 Merging

The following tables will be used in the merge examples

In [40]: df1 = pd.DataFrame({'key': ['A', 'B', 'C', 'D'],
....: 'value': np.random.randn(4)})
....:

In [41]: df1
Out[41]:

key value
0 A 0.885906
1 B 0.794848
2 C -0.943848
3 D 0.328609

In [42]: df2 = pd.DataFrame({'key': ['B', 'D', 'D', 'E'],
....: 'value': np.random.randn(4)})
....:

In [43]: df2
Out[43]:

key value

(continues on next page)

33.5. Merging 1333

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

0 B -1.634931
1 D 2.197567
2 D 0.054695
3 E 0.283297

In Stata, to perform a merge, one data set must be in memory and the other must be referenced as a file name on disk.
In contrast, Python must have both DataFrames already in memory.

By default, Stata performs an outer join, where all observations from both data sets are left in memory after the merge.
One can keep only observations from the initial data set, the merged data set, or the intersection of the two by using
the values created in the _merge variable.

* First create df2 and save to disk
clear
input str1 key
B
D
D
E
end
generate value = rnormal()
save df2.dta

* Now create df1 in memory
clear
input str1 key
A
B
C
D
end
generate value = rnormal()

preserve

* Left join
merge 1:n key using df2.dta
keep if _merge == 1

* Right join
restore, preserve
merge 1:n key using df2.dta
keep if _merge == 2

* Inner join
restore, preserve
merge 1:n key using df2.dta
keep if _merge == 3

* Outer join
restore
merge 1:n key using df2.dta

pandas DataFrames have a DataFrame.merge() method, which provides similar functionality. Note that different
join types are accomplished via the how keyword.

1334 Chapter 33. Comparison with Stata

pandas: powerful Python data analysis toolkit, Release 0.23.4

In [44]: inner_join = df1.merge(df2, on=['key'], how='inner')

In [45]: inner_join
Out[45]:

key value_x value_y
0 B 0.794848 -1.634931
1 D 0.328609 2.197567
2 D 0.328609 0.054695

In [46]: left_join = df1.merge(df2, on=['key'], how='left')

In [47]: left_join
Out[47]:

key value_x value_y
0 A 0.885906 NaN
1 B 0.794848 -1.634931
2 C -0.943848 NaN
3 D 0.328609 2.197567
4 D 0.328609 0.054695

In [48]: right_join = df1.merge(df2, on=['key'], how='right')

In [49]: right_join
Out[49]:

key value_x value_y
0 B 0.794848 -1.634931
1 D 0.328609 2.197567
2 D 0.328609 0.054695
3 E NaN 0.283297

In [50]: outer_join = df1.merge(df2, on=['key'], how='outer')

In [51]: outer_join
Out[51]:

key value_x value_y
0 A 0.885906 NaN
1 B 0.794848 -1.634931
2 C -0.943848 NaN
3 D 0.328609 2.197567
4 D 0.328609 0.054695
5 E NaN 0.283297

33.6 Missing Data

Like Stata, pandas has a representation for missing data – the special float value NaN (not a number). Many of the
semantics are the same; for example missing data propagates through numeric operations, and is ignored by default
for aggregations.

In [52]: outer_join
Out[52]:

key value_x value_y
0 A 0.885906 NaN
1 B 0.794848 -1.634931
2 C -0.943848 NaN
3 D 0.328609 2.197567

(continues on next page)

33.6. Missing Data 1335

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

4 D 0.328609 0.054695
5 E NaN 0.283297

In [53]: outer_join['value_x'] + outer_join['value_y']
\\Out[53]:
→˓

0 NaN
1 -0.840083
2 NaN
3 2.526176
4 0.383304
5 NaN
dtype: float64

In [54]: outer_join['value_x'].sum()
\\\Out[54]:
→˓1.3941243310085349

One difference is that missing data cannot be compared to its sentinel value. For example, in Stata you could do this
to filter missing values.

* Keep missing values
list if value_x == .

* Keep non-missing values
list if value_x != .

This doesn’t work in pandas. Instead, the pd.isna() or pd.notna() functions should be used for comparisons.

In [55]: outer_join[pd.isna(outer_join['value_x'])]
Out[55]:

key value_x value_y
5 E NaN 0.283297

In [56]: outer_join[pd.notna(outer_join['value_x'])]
\\Out[56]:

key value_x value_y
0 A 0.885906 NaN
1 B 0.794848 -1.634931
2 C -0.943848 NaN
3 D 0.328609 2.197567
4 D 0.328609 0.054695

Pandas also provides a variety of methods to work with missing data – some of which would be challenging to express
in Stata. For example, there are methods to drop all rows with any missing values, replacing missing values with a
specified value, like the mean, or forward filling from previous rows. See the missing data documentation for more.

Drop rows with any missing value
In [57]: outer_join.dropna()
Out[57]:

key value_x value_y
1 B 0.794848 -1.634931
3 D 0.328609 2.197567
4 D 0.328609 0.054695

Fill forwards
In [58]: outer_join.fillna(method='ffill')

(continues on next page)

1336 Chapter 33. Comparison with Stata

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

\\Out[58]:
→˓

key value_x value_y
0 A 0.885906 NaN
1 B 0.794848 -1.634931
2 C -0.943848 -1.634931
3 D 0.328609 2.197567
4 D 0.328609 0.054695
5 E 0.328609 0.283297

Impute missing values with the mean
In [59]: outer_join['value_x'].fillna(outer_join['value_x'].mean())
\\Out[59]:
→˓

0 0.885906
1 0.794848
2 -0.943848
3 0.328609
4 0.328609
5 0.278825
Name: value_x, dtype: float64

33.7 GroupBy

33.7.1 Aggregation

Stata’s collapse can be used to group by one or more key variables and compute aggregations on numeric columns.

collapse (sum) total_bill tip, by(sex smoker)

pandas provides a flexible groupby mechanism that allows similar aggregations. See the groupby documentation for
more details and examples.

In [60]: tips_summed = tips.groupby(['sex', 'smoker'])['total_bill', 'tip'].sum()

In [61]: tips_summed.head()
Out[61]:

total_bill tip
sex smoker
Female No 869.68 149.77

Yes 527.27 96.74
Male No 1725.75 302.00

Yes 1217.07 183.07

33.7.2 Transformation

In Stata, if the group aggregations need to be used with the original data set, one would usually use bysort with
egen(). For example, to subtract the mean for each observation by smoker group.

bysort sex smoker: egen group_bill = mean(total_bill)
generate adj_total_bill = total_bill - group_bill

33.7. GroupBy 1337

pandas: powerful Python data analysis toolkit, Release 0.23.4

pandas groubpy provides a transform mechanism that allows these type of operations to be succinctly expressed
in one operation.

In [62]: gb = tips.groupby('smoker')['total_bill']

In [63]: tips['adj_total_bill'] = tips['total_bill'] - gb.transform('mean')

In [64]: tips.head()
Out[64]:

total_bill tip sex smoker day time size adj_total_bill
67 1.07 1.00 Female Yes Sat Dinner 1 -17.686344
92 3.75 1.00 Female Yes Fri Dinner 2 -15.006344
111 5.25 1.00 Female No Sat Dinner 1 -11.938278
145 6.35 1.50 Female No Thur Lunch 2 -10.838278
135 6.51 1.25 Female No Thur Lunch 2 -10.678278

33.7.3 By Group Processing

In addition to aggregation, pandas groupby can be used to replicate most other bysort processing from Stata. For
example, the following example lists the first observation in the current sort order by sex/smoker group.

bysort sex smoker: list if _n == 1

In pandas this would be written as:

In [65]: tips.groupby(['sex','smoker']).first()
Out[65]:

total_bill tip day time size adj_total_bill
sex smoker
Female No 5.25 1.00 Sat Dinner 1 -11.938278

Yes 1.07 1.00 Sat Dinner 1 -17.686344
Male No 5.51 2.00 Thur Lunch 2 -11.678278

Yes 5.25 5.15 Sun Dinner 2 -13.506344

33.8 Other Considerations

33.8.1 Disk vs Memory

Pandas and Stata both operate exclusively in memory. This means that the size of data able to be loaded in pandas is
limited by your machine’s memory. If out of core processing is needed, one possibility is the dask.dataframe library,
which provides a subset of pandas functionality for an on-disk DataFrame.

1338 Chapter 33. Comparison with Stata

http://dask.pydata.org/en/latest/dataframe.html

CHAPTER

THIRTYFOUR

API REFERENCE

This page gives an overview of all public pandas objects, functions and methods. All classes and functions exposed in
pandas.* namespace are public.

Some subpackages are public which include pandas.errors, pandas.plotting, and pandas.testing.
Public functions in pandas.io and pandas.tseries submodules are mentioned in the documentation.
pandas.api.types subpackage holds some public functions related to data types in pandas.

Warning: The pandas.core, pandas.compat, and pandas.util top-level modules are PRIVATE. Sta-
ble functionality in such modules is not guaranteed.

34.1 Input/Output

34.1.1 Pickling

read_pickle(path[, compression]) Load pickled pandas object (or any object) from file.

34.1.1.1 pandas.read_pickle

pandas.read_pickle(path, compression=’infer’)
Load pickled pandas object (or any object) from file.

Warning: Loading pickled data received from untrusted sources can be unsafe. See here.

Parameters path : str

File path where the pickled object will be loaded.

compression : {‘infer’, ‘gzip’, ‘bz2’, ‘zip’, ‘xz’, None}, default ‘infer’

For on-the-fly decompression of on-disk data. If ‘infer’, then use gzip, bz2, xz or zip if
path ends in ‘.gz’, ‘.bz2’, ‘.xz’, or ‘.zip’ respectively, and no decompression otherwise.
Set to None for no decompression.

New in version 0.20.0.

Returns

unpickled [type of object stored in file]

1339

https://docs.python.org/3/library/pickle.html

pandas: powerful Python data analysis toolkit, Release 0.23.4

See also:

DataFrame.to_pickle Pickle (serialize) DataFrame object to file.

Series.to_pickle Pickle (serialize) Series object to file.

read_hdf Read HDF5 file into a DataFrame.

read_sql Read SQL query or database table into a DataFrame.

read_parquet Load a parquet object, returning a DataFrame.

Examples

>>> original_df = pd.DataFrame({"foo": range(5), "bar": range(5, 10)})
>>> original_df

foo bar
0 0 5
1 1 6
2 2 7
3 3 8
4 4 9
>>> pd.to_pickle(original_df, "./dummy.pkl")

>>> unpickled_df = pd.read_pickle("./dummy.pkl")
>>> unpickled_df

foo bar
0 0 5
1 1 6
2 2 7
3 3 8
4 4 9

>>> import os
>>> os.remove("./dummy.pkl")

34.1.2 Flat File

read_table(filepath_or_buffer[, sep, . . .]) Read general delimited file into DataFrame
read_csv(filepath_or_buffer[, sep, . . .]) Read CSV (comma-separated) file into DataFrame
read_fwf(filepath_or_buffer[, colspecs, widths]) Read a table of fixed-width formatted lines into

DataFrame
read_msgpack(path_or_buf[, encoding, iterator]) Load msgpack pandas object from the specified file path

1340 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

34.1.2.1 pandas.read_table

pandas.read_table(filepath_or_buffer, sep=’\t’, delimiter=None, header=’infer’, names=None,
index_col=None, usecols=None, squeeze=False, prefix=None, man-
gle_dupe_cols=True, dtype=None, engine=None, converters=None,
true_values=None, false_values=None, skipinitialspace=False, skiprows=None,
nrows=None, na_values=None, keep_default_na=True, na_filter=True,
verbose=False, skip_blank_lines=True, parse_dates=False, in-
fer_datetime_format=False, keep_date_col=False, date_parser=None, day-
first=False, iterator=False, chunksize=None, compression=’infer’, thou-
sands=None, decimal=b’.’, lineterminator=None, quotechar=’"’, quot-
ing=0, escapechar=None, comment=None, encoding=None, dialect=None,
tupleize_cols=None, error_bad_lines=True, warn_bad_lines=True, skip-
footer=0, doublequote=True, delim_whitespace=False, low_memory=True,
memory_map=False, float_precision=None)

Read general delimited file into DataFrame

Also supports optionally iterating or breaking of the file into chunks.

Additional help can be found in the online docs for IO Tools.

Parameters

filepath_or_buffer [str, pathlib.Path, py._path.local.LocalPath or any \]

object with a read() method (such as a file handle or StringIO)

The string could be a URL. Valid URL schemes include http, ftp, s3, and file. For file
URLs, a host is expected. For instance, a local file could be file://localhost/path/to/table.
csv

sep : str, default t (tab-stop)

Delimiter to use. If sep is None, the C engine cannot automatically detect the separator,
but the Python parsing engine can, meaning the latter will be used and automatically
detect the separator by Python’s builtin sniffer tool, csv.Sniffer. In addition, sep-
arators longer than 1 character and different from '\s+' will be interpreted as regular
expressions and will also force the use of the Python parsing engine. Note that regex
delimiters are prone to ignoring quoted data. Regex example: '\r\t'

delimiter : str, default None

Alternative argument name for sep.

delim_whitespace : boolean, default False

Specifies whether or not whitespace (e.g. ' ' or '\t') will be used as the sep.
Equivalent to setting sep='\s+'. If this option is set to True, nothing should be
passed in for the delimiter parameter.

New in version 0.18.1: support for the Python parser.

header : int or list of ints, default ‘infer’

Row number(s) to use as the column names, and the start of the data. Default be-
havior is to infer the column names: if no names are passed the behavior is identical
to header=0 and column names are inferred from the first line of the file, if col-
umn names are passed explicitly then the behavior is identical to header=None.
Explicitly pass header=0 to be able to replace existing names. The header can
be a list of integers that specify row locations for a multi-index on the columns e.g.
[0,1,3]. Intervening rows that are not specified will be skipped (e.g. 2 in this exam-
ple is skipped). Note that this parameter ignores commented lines and empty lines if

34.1. Input/Output 1341

http://pandas.pydata.org/pandas-docs/stable/io.html
file://localhost/path/to/table.csv
file://localhost/path/to/table.csv

pandas: powerful Python data analysis toolkit, Release 0.23.4

skip_blank_lines=True, so header=0 denotes the first line of data rather than
the first line of the file.

names : array-like, default None

List of column names to use. If file contains no header row, then you should explicitly
pass header=None. Duplicates in this list will cause a UserWarning to be issued.

index_col : int or sequence or False, default None

Column to use as the row labels of the DataFrame. If a sequence is given, a MultiIndex
is used. If you have a malformed file with delimiters at the end of each line, you might
consider index_col=False to force pandas to _not_ use the first column as the index (row
names)

usecols : list-like or callable, default None

Return a subset of the columns. If list-like, all elements must either be positional
(i.e. integer indices into the document columns) or strings that correspond to col-
umn names provided either by the user in names or inferred from the document
header row(s). For example, a valid list-like usecols parameter would be [0, 1, 2]
or [‘foo’, ‘bar’, ‘baz’]. Element order is ignored, so usecols=[0, 1] is the
same as [1, 0]. To instantiate a DataFrame from data with element order pre-
served use pd.read_csv(data, usecols=['foo', 'bar'])[['foo',
'bar']] for columns in ['foo', 'bar'] order or pd.read_csv(data,
usecols=['foo', 'bar'])[['bar', 'foo']] for ['bar', 'foo'] or-
der.

If callable, the callable function will be evaluated against the column names, returning
names where the callable function evaluates to True. An example of a valid callable ar-
gument would be lambda x: x.upper() in ['AAA', 'BBB', 'DDD'].
Using this parameter results in much faster parsing time and lower memory usage.

squeeze : boolean, default False

If the parsed data only contains one column then return a Series

prefix : str, default None

Prefix to add to column numbers when no header, e.g. ‘X’ for X0, X1, . . .

mangle_dupe_cols : boolean, default True

Duplicate columns will be specified as ‘X’, ‘X.1’, . . . ’X.N’, rather than ‘X’. . . ’X’. Pass-
ing in False will cause data to be overwritten if there are duplicate names in the columns.

dtype : Type name or dict of column -> type, default None

Data type for data or columns. E.g. {‘a’: np.float64, ‘b’: np.int32} Use str or object to-
gether with suitable na_values settings to preserve and not interpret dtype. If converters
are specified, they will be applied INSTEAD of dtype conversion.

engine : {‘c’, ‘python’}, optional

Parser engine to use. The C engine is faster while the python engine is currently more
feature-complete.

converters : dict, default None

Dict of functions for converting values in certain columns. Keys can either be integers
or column labels

true_values : list, default None

1342 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

Values to consider as True

false_values : list, default None

Values to consider as False

skipinitialspace : boolean, default False

Skip spaces after delimiter.

skiprows : list-like or integer or callable, default None

Line numbers to skip (0-indexed) or number of lines to skip (int) at the start of the file.

If callable, the callable function will be evaluated against the row indices, returning
True if the row should be skipped and False otherwise. An example of a valid callable
argument would be lambda x: x in [0, 2].

skipfooter : int, default 0

Number of lines at bottom of file to skip (Unsupported with engine=’c’)

nrows : int, default None

Number of rows of file to read. Useful for reading pieces of large files

na_values : scalar, str, list-like, or dict, default None

Additional strings to recognize as NA/NaN. If dict passed, specific per-column NA
values. By default the following values are interpreted as NaN: ‘’, ‘#N/A’, ‘#N/A N/A’,
‘#NA’, ‘-1.#IND’, ‘-1.#QNAN’, ‘-NaN’, ‘-nan’, ‘1.#IND’, ‘1.#QNAN’, ‘N/A’, ‘NA’,
‘NULL’, ‘NaN’, ‘n/a’, ‘nan’, ‘null’.

keep_default_na : bool, default True

Whether or not to include the default NaN values when parsing the data. Depending on
whether na_values is passed in, the behavior is as follows:

• If keep_default_na is True, and na_values are specified, na_values is appended to the
default NaN values used for parsing.

• If keep_default_na is True, and na_values are not specified, only the default NaN
values are used for parsing.

• If keep_default_na is False, and na_values are specified, only the NaN values speci-
fied na_values are used for parsing.

• If keep_default_na is False, and na_values are not specified, no strings will be parsed
as NaN.

Note that if na_filter is passed in as False, the keep_default_na and na_values parame-
ters will be ignored.

na_filter : boolean, default True

Detect missing value markers (empty strings and the value of na_values). In data with-
out any NAs, passing na_filter=False can improve the performance of reading a large
file

verbose : boolean, default False

Indicate number of NA values placed in non-numeric columns

skip_blank_lines : boolean, default True

If True, skip over blank lines rather than interpreting as NaN values

34.1. Input/Output 1343

pandas: powerful Python data analysis toolkit, Release 0.23.4

parse_dates : boolean or list of ints or names or list of lists or dict, default False

• boolean. If True -> try parsing the index.

• list of ints or names. e.g. If [1, 2, 3] -> try parsing columns 1, 2, 3 each as a separate
date column.

• list of lists. e.g. If [[1, 3]] -> combine columns 1 and 3 and parse as a single date
column.

• dict, e.g. {‘foo’ : [1, 3]} -> parse columns 1, 3 as date and call result ‘foo’

If a column or index contains an unparseable date, the entire column or index will be
returned unaltered as an object data type. For non-standard datetime parsing, use pd.
to_datetime after pd.read_csv

Note: A fast-path exists for iso8601-formatted dates.

infer_datetime_format : boolean, default False

If True and parse_dates is enabled, pandas will attempt to infer the format of the date-
time strings in the columns, and if it can be inferred, switch to a faster method of parsing
them. In some cases this can increase the parsing speed by 5-10x.

keep_date_col : boolean, default False

If True and parse_dates specifies combining multiple columns then keep the original
columns.

date_parser : function, default None

Function to use for converting a sequence of string columns to an array of datetime in-
stances. The default uses dateutil.parser.parser to do the conversion. Pandas
will try to call date_parser in three different ways, advancing to the next if an exception
occurs: 1) Pass one or more arrays (as defined by parse_dates) as arguments; 2) con-
catenate (row-wise) the string values from the columns defined by parse_dates into a
single array and pass that; and 3) call date_parser once for each row using one or more
strings (corresponding to the columns defined by parse_dates) as arguments.

dayfirst : boolean, default False

DD/MM format dates, international and European format

iterator : boolean, default False

Return TextFileReader object for iteration or getting chunks with get_chunk().

chunksize : int, default None

Return TextFileReader object for iteration. See the IO Tools docs for more information
on iterator and chunksize.

compression : {‘infer’, ‘gzip’, ‘bz2’, ‘zip’, ‘xz’, None}, default ‘infer’

For on-the-fly decompression of on-disk data. If ‘infer’ and filepath_or_buffer is path-
like, then detect compression from the following extensions: ‘.gz’, ‘.bz2’, ‘.zip’, or ‘.xz’
(otherwise no decompression). If using ‘zip’, the ZIP file must contain only one data
file to be read in. Set to None for no decompression.

New in version 0.18.1: support for ‘zip’ and ‘xz’ compression.

thousands : str, default None

Thousands separator

decimal : str, default ‘.’

1344 Chapter 34. API Reference

http://pandas.pydata.org/pandas-docs/stable/io.html#io-chunking

pandas: powerful Python data analysis toolkit, Release 0.23.4

Character to recognize as decimal point (e.g. use ‘,’ for European data).

float_precision : string, default None

Specifies which converter the C engine should use for floating-point values. The op-
tions are None for the ordinary converter, high for the high-precision converter, and
round_trip for the round-trip converter.

lineterminator : str (length 1), default None

Character to break file into lines. Only valid with C parser.

quotechar : str (length 1), optional

The character used to denote the start and end of a quoted item. Quoted items can
include the delimiter and it will be ignored.

quoting : int or csv.QUOTE_* instance, default 0

Control field quoting behavior per csv.QUOTE_* constants. Use one of
QUOTE_MINIMAL (0), QUOTE_ALL (1), QUOTE_NONNUMERIC (2) or
QUOTE_NONE (3).

doublequote : boolean, default True

When quotechar is specified and quoting is not QUOTE_NONE, indicate whether or not
to interpret two consecutive quotechar elements INSIDE a field as a single quotechar
element.

escapechar : str (length 1), default None

One-character string used to escape delimiter when quoting is QUOTE_NONE.

comment : str, default None

Indicates remainder of line should not be parsed. If found at the beginning of a line, the
line will be ignored altogether. This parameter must be a single character. Like empty
lines (as long as skip_blank_lines=True), fully commented lines are ignored
by the parameter header but not by skiprows. For example, if comment='#', parsing
#empty\na,b,c\n1,2,3with header=0will result in ‘a,b,c’ being treated as the
header.

encoding : str, default None

Encoding to use for UTF when reading/writing (ex. ‘utf-8’). List of Python standard
encodings

dialect : str or csv.Dialect instance, default None

If provided, this parameter will override values (default or not) for the following pa-
rameters: delimiter, doublequote, escapechar, skipinitialspace, quotechar, and quoting.
If it is necessary to override values, a ParserWarning will be issued. See csv.Dialect
documentation for more details.

tupleize_cols : boolean, default False

Deprecated since version 0.21.0: This argument will be removed and will always con-
vert to MultiIndex

Leave a list of tuples on columns as is (default is to convert to a MultiIndex on the
columns)

error_bad_lines : boolean, default True

34.1. Input/Output 1345

https://docs.python.org/3/library/codecs.html#standard-encodings
https://docs.python.org/3/library/codecs.html#standard-encodings

pandas: powerful Python data analysis toolkit, Release 0.23.4

Lines with too many fields (e.g. a csv line with too many commas) will by default cause
an exception to be raised, and no DataFrame will be returned. If False, then these “bad
lines” will dropped from the DataFrame that is returned.

warn_bad_lines : boolean, default True

If error_bad_lines is False, and warn_bad_lines is True, a warning for each “bad line”
will be output.

low_memory : boolean, default True

Internally process the file in chunks, resulting in lower memory use while parsing, but
possibly mixed type inference. To ensure no mixed types either set False, or specify the
type with the dtype parameter. Note that the entire file is read into a single DataFrame
regardless, use the chunksize or iterator parameter to return the data in chunks. (Only
valid with C parser)

memory_map : boolean, default False

If a filepath is provided for filepath_or_buffer, map the file object directly onto memory
and access the data directly from there. Using this option can improve performance
because there is no longer any I/O overhead.

Returns

result [DataFrame or TextParser]

34.1.2.2 pandas.read_csv

pandas.read_csv(filepath_or_buffer, sep=’, ’, delimiter=None, header=’infer’, names=None, in-
dex_col=None, usecols=None, squeeze=False, prefix=None, mangle_dupe_cols=True,
dtype=None, engine=None, converters=None, true_values=None, false_values=None,
skipinitialspace=False, skiprows=None, nrows=None, na_values=None,
keep_default_na=True, na_filter=True, verbose=False, skip_blank_lines=True,
parse_dates=False, infer_datetime_format=False, keep_date_col=False,
date_parser=None, dayfirst=False, iterator=False, chunksize=None, compres-
sion=’infer’, thousands=None, decimal=b’.’, lineterminator=None, quotechar=’"’,
quoting=0, escapechar=None, comment=None, encoding=None, dialect=None,
tupleize_cols=None, error_bad_lines=True, warn_bad_lines=True, skipfooter=0, dou-
blequote=True, delim_whitespace=False, low_memory=True, memory_map=False,
float_precision=None)

Read CSV (comma-separated) file into DataFrame

Also supports optionally iterating or breaking of the file into chunks.

Additional help can be found in the online docs for IO Tools.

Parameters

filepath_or_buffer [str, pathlib.Path, py._path.local.LocalPath or any \]

object with a read() method (such as a file handle or StringIO)

The string could be a URL. Valid URL schemes include http, ftp, s3, and file. For file
URLs, a host is expected. For instance, a local file could be file://localhost/path/to/table.
csv

sep : str, default ‘,’

Delimiter to use. If sep is None, the C engine cannot automatically detect the separator,
but the Python parsing engine can, meaning the latter will be used and automatically

1346 Chapter 34. API Reference

http://pandas.pydata.org/pandas-docs/stable/io.html
file://localhost/path/to/table.csv
file://localhost/path/to/table.csv

pandas: powerful Python data analysis toolkit, Release 0.23.4

detect the separator by Python’s builtin sniffer tool, csv.Sniffer. In addition, sep-
arators longer than 1 character and different from '\s+' will be interpreted as regular
expressions and will also force the use of the Python parsing engine. Note that regex
delimiters are prone to ignoring quoted data. Regex example: '\r\t'

delimiter : str, default None

Alternative argument name for sep.

delim_whitespace : boolean, default False

Specifies whether or not whitespace (e.g. ' ' or '\t') will be used as the sep.
Equivalent to setting sep='\s+'. If this option is set to True, nothing should be
passed in for the delimiter parameter.

New in version 0.18.1: support for the Python parser.

header : int or list of ints, default ‘infer’

Row number(s) to use as the column names, and the start of the data. Default be-
havior is to infer the column names: if no names are passed the behavior is identical
to header=0 and column names are inferred from the first line of the file, if col-
umn names are passed explicitly then the behavior is identical to header=None.
Explicitly pass header=0 to be able to replace existing names. The header can
be a list of integers that specify row locations for a multi-index on the columns e.g.
[0,1,3]. Intervening rows that are not specified will be skipped (e.g. 2 in this exam-
ple is skipped). Note that this parameter ignores commented lines and empty lines if
skip_blank_lines=True, so header=0 denotes the first line of data rather than
the first line of the file.

names : array-like, default None

List of column names to use. If file contains no header row, then you should explicitly
pass header=None. Duplicates in this list will cause a UserWarning to be issued.

index_col : int or sequence or False, default None

Column to use as the row labels of the DataFrame. If a sequence is given, a MultiIndex
is used. If you have a malformed file with delimiters at the end of each line, you might
consider index_col=False to force pandas to _not_ use the first column as the index (row
names)

usecols : list-like or callable, default None

Return a subset of the columns. If list-like, all elements must either be positional
(i.e. integer indices into the document columns) or strings that correspond to col-
umn names provided either by the user in names or inferred from the document
header row(s). For example, a valid list-like usecols parameter would be [0, 1, 2]
or [‘foo’, ‘bar’, ‘baz’]. Element order is ignored, so usecols=[0, 1] is the
same as [1, 0]. To instantiate a DataFrame from data with element order pre-
served use pd.read_csv(data, usecols=['foo', 'bar'])[['foo',
'bar']] for columns in ['foo', 'bar'] order or pd.read_csv(data,
usecols=['foo', 'bar'])[['bar', 'foo']] for ['bar', 'foo'] or-
der.

If callable, the callable function will be evaluated against the column names, returning
names where the callable function evaluates to True. An example of a valid callable ar-
gument would be lambda x: x.upper() in ['AAA', 'BBB', 'DDD'].
Using this parameter results in much faster parsing time and lower memory usage.

squeeze : boolean, default False

34.1. Input/Output 1347

pandas: powerful Python data analysis toolkit, Release 0.23.4

If the parsed data only contains one column then return a Series

prefix : str, default None

Prefix to add to column numbers when no header, e.g. ‘X’ for X0, X1, . . .

mangle_dupe_cols : boolean, default True

Duplicate columns will be specified as ‘X’, ‘X.1’, . . . ’X.N’, rather than ‘X’. . . ’X’. Pass-
ing in False will cause data to be overwritten if there are duplicate names in the columns.

dtype : Type name or dict of column -> type, default None

Data type for data or columns. E.g. {‘a’: np.float64, ‘b’: np.int32} Use str or object to-
gether with suitable na_values settings to preserve and not interpret dtype. If converters
are specified, they will be applied INSTEAD of dtype conversion.

engine : {‘c’, ‘python’}, optional

Parser engine to use. The C engine is faster while the python engine is currently more
feature-complete.

converters : dict, default None

Dict of functions for converting values in certain columns. Keys can either be integers
or column labels

true_values : list, default None

Values to consider as True

false_values : list, default None

Values to consider as False

skipinitialspace : boolean, default False

Skip spaces after delimiter.

skiprows : list-like or integer or callable, default None

Line numbers to skip (0-indexed) or number of lines to skip (int) at the start of the file.

If callable, the callable function will be evaluated against the row indices, returning
True if the row should be skipped and False otherwise. An example of a valid callable
argument would be lambda x: x in [0, 2].

skipfooter : int, default 0

Number of lines at bottom of file to skip (Unsupported with engine=’c’)

nrows : int, default None

Number of rows of file to read. Useful for reading pieces of large files

na_values : scalar, str, list-like, or dict, default None

Additional strings to recognize as NA/NaN. If dict passed, specific per-column NA
values. By default the following values are interpreted as NaN: ‘’, ‘#N/A’, ‘#N/A N/A’,
‘#NA’, ‘-1.#IND’, ‘-1.#QNAN’, ‘-NaN’, ‘-nan’, ‘1.#IND’, ‘1.#QNAN’, ‘N/A’, ‘NA’,
‘NULL’, ‘NaN’, ‘n/a’, ‘nan’, ‘null’.

keep_default_na : bool, default True

Whether or not to include the default NaN values when parsing the data. Depending on
whether na_values is passed in, the behavior is as follows:

1348 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

• If keep_default_na is True, and na_values are specified, na_values is appended to the
default NaN values used for parsing.

• If keep_default_na is True, and na_values are not specified, only the default NaN
values are used for parsing.

• If keep_default_na is False, and na_values are specified, only the NaN values speci-
fied na_values are used for parsing.

• If keep_default_na is False, and na_values are not specified, no strings will be parsed
as NaN.

Note that if na_filter is passed in as False, the keep_default_na and na_values parame-
ters will be ignored.

na_filter : boolean, default True

Detect missing value markers (empty strings and the value of na_values). In data with-
out any NAs, passing na_filter=False can improve the performance of reading a large
file

verbose : boolean, default False

Indicate number of NA values placed in non-numeric columns

skip_blank_lines : boolean, default True

If True, skip over blank lines rather than interpreting as NaN values

parse_dates : boolean or list of ints or names or list of lists or dict, default False

• boolean. If True -> try parsing the index.

• list of ints or names. e.g. If [1, 2, 3] -> try parsing columns 1, 2, 3 each as a separate
date column.

• list of lists. e.g. If [[1, 3]] -> combine columns 1 and 3 and parse as a single date
column.

• dict, e.g. {‘foo’ : [1, 3]} -> parse columns 1, 3 as date and call result ‘foo’

If a column or index contains an unparseable date, the entire column or index will be
returned unaltered as an object data type. For non-standard datetime parsing, use pd.
to_datetime after pd.read_csv

Note: A fast-path exists for iso8601-formatted dates.

infer_datetime_format : boolean, default False

If True and parse_dates is enabled, pandas will attempt to infer the format of the date-
time strings in the columns, and if it can be inferred, switch to a faster method of parsing
them. In some cases this can increase the parsing speed by 5-10x.

keep_date_col : boolean, default False

If True and parse_dates specifies combining multiple columns then keep the original
columns.

date_parser : function, default None

Function to use for converting a sequence of string columns to an array of datetime in-
stances. The default uses dateutil.parser.parser to do the conversion. Pandas
will try to call date_parser in three different ways, advancing to the next if an exception
occurs: 1) Pass one or more arrays (as defined by parse_dates) as arguments; 2) con-
catenate (row-wise) the string values from the columns defined by parse_dates into a

34.1. Input/Output 1349

pandas: powerful Python data analysis toolkit, Release 0.23.4

single array and pass that; and 3) call date_parser once for each row using one or more
strings (corresponding to the columns defined by parse_dates) as arguments.

dayfirst : boolean, default False

DD/MM format dates, international and European format

iterator : boolean, default False

Return TextFileReader object for iteration or getting chunks with get_chunk().

chunksize : int, default None

Return TextFileReader object for iteration. See the IO Tools docs for more information
on iterator and chunksize.

compression : {‘infer’, ‘gzip’, ‘bz2’, ‘zip’, ‘xz’, None}, default ‘infer’

For on-the-fly decompression of on-disk data. If ‘infer’ and filepath_or_buffer is path-
like, then detect compression from the following extensions: ‘.gz’, ‘.bz2’, ‘.zip’, or ‘.xz’
(otherwise no decompression). If using ‘zip’, the ZIP file must contain only one data
file to be read in. Set to None for no decompression.

New in version 0.18.1: support for ‘zip’ and ‘xz’ compression.

thousands : str, default None

Thousands separator

decimal : str, default ‘.’

Character to recognize as decimal point (e.g. use ‘,’ for European data).

float_precision : string, default None

Specifies which converter the C engine should use for floating-point values. The op-
tions are None for the ordinary converter, high for the high-precision converter, and
round_trip for the round-trip converter.

lineterminator : str (length 1), default None

Character to break file into lines. Only valid with C parser.

quotechar : str (length 1), optional

The character used to denote the start and end of a quoted item. Quoted items can
include the delimiter and it will be ignored.

quoting : int or csv.QUOTE_* instance, default 0

Control field quoting behavior per csv.QUOTE_* constants. Use one of
QUOTE_MINIMAL (0), QUOTE_ALL (1), QUOTE_NONNUMERIC (2) or
QUOTE_NONE (3).

doublequote : boolean, default True

When quotechar is specified and quoting is not QUOTE_NONE, indicate whether or not
to interpret two consecutive quotechar elements INSIDE a field as a single quotechar
element.

escapechar : str (length 1), default None

One-character string used to escape delimiter when quoting is QUOTE_NONE.

comment : str, default None

1350 Chapter 34. API Reference

http://pandas.pydata.org/pandas-docs/stable/io.html#io-chunking

pandas: powerful Python data analysis toolkit, Release 0.23.4

Indicates remainder of line should not be parsed. If found at the beginning of a line, the
line will be ignored altogether. This parameter must be a single character. Like empty
lines (as long as skip_blank_lines=True), fully commented lines are ignored
by the parameter header but not by skiprows. For example, if comment='#', parsing
#empty\na,b,c\n1,2,3with header=0will result in ‘a,b,c’ being treated as the
header.

encoding : str, default None

Encoding to use for UTF when reading/writing (ex. ‘utf-8’). List of Python standard
encodings

dialect : str or csv.Dialect instance, default None

If provided, this parameter will override values (default or not) for the following pa-
rameters: delimiter, doublequote, escapechar, skipinitialspace, quotechar, and quoting.
If it is necessary to override values, a ParserWarning will be issued. See csv.Dialect
documentation for more details.

tupleize_cols : boolean, default False

Deprecated since version 0.21.0: This argument will be removed and will always con-
vert to MultiIndex

Leave a list of tuples on columns as is (default is to convert to a MultiIndex on the
columns)

error_bad_lines : boolean, default True

Lines with too many fields (e.g. a csv line with too many commas) will by default cause
an exception to be raised, and no DataFrame will be returned. If False, then these “bad
lines” will dropped from the DataFrame that is returned.

warn_bad_lines : boolean, default True

If error_bad_lines is False, and warn_bad_lines is True, a warning for each “bad line”
will be output.

low_memory : boolean, default True

Internally process the file in chunks, resulting in lower memory use while parsing, but
possibly mixed type inference. To ensure no mixed types either set False, or specify the
type with the dtype parameter. Note that the entire file is read into a single DataFrame
regardless, use the chunksize or iterator parameter to return the data in chunks. (Only
valid with C parser)

memory_map : boolean, default False

If a filepath is provided for filepath_or_buffer, map the file object directly onto memory
and access the data directly from there. Using this option can improve performance
because there is no longer any I/O overhead.

Returns

result [DataFrame or TextParser]

34.1.2.3 pandas.read_fwf

pandas.read_fwf(filepath_or_buffer, colspecs=’infer’, widths=None, **kwds)
Read a table of fixed-width formatted lines into DataFrame

Also supports optionally iterating or breaking of the file into chunks.

34.1. Input/Output 1351

https://docs.python.org/3/library/codecs.html#standard-encodings
https://docs.python.org/3/library/codecs.html#standard-encodings

pandas: powerful Python data analysis toolkit, Release 0.23.4

Additional help can be found in the online docs for IO Tools.

Parameters

filepath_or_buffer [str, pathlib.Path, py._path.local.LocalPath or any \]

object with a read() method (such as a file handle or StringIO)

The string could be a URL. Valid URL schemes include http, ftp, s3, and file. For file
URLs, a host is expected. For instance, a local file could be file://localhost/path/to/table.
csv

colspecs : list of pairs (int, int) or ‘infer’. optional

A list of pairs (tuples) giving the extents of the fixed-width fields of each line as half-
open intervals (i.e., [from, to[). String value ‘infer’ can be used to instruct the parser to
try detecting the column specifications from the first 100 rows of the data which are not
being skipped via skiprows (default=’infer’).

widths : list of ints. optional

A list of field widths which can be used instead of ‘colspecs’ if the intervals are con-
tiguous.

delimiter : str, default ' ' + ' '

Characters to consider as filler characters in the fixed-width file. Can be used to specify
the filler character of the fields if it is not spaces (e.g., ‘~’).

delim_whitespace : boolean, default False

Specifies whether or not whitespace (e.g. ' ' or '\t') will be used as the sep.
Equivalent to setting sep='\s+'. If this option is set to True, nothing should be
passed in for the delimiter parameter.

New in version 0.18.1: support for the Python parser.

header : int or list of ints, default ‘infer’

Row number(s) to use as the column names, and the start of the data. Default be-
havior is to infer the column names: if no names are passed the behavior is identical
to header=0 and column names are inferred from the first line of the file, if col-
umn names are passed explicitly then the behavior is identical to header=None.
Explicitly pass header=0 to be able to replace existing names. The header can
be a list of integers that specify row locations for a multi-index on the columns e.g.
[0,1,3]. Intervening rows that are not specified will be skipped (e.g. 2 in this exam-
ple is skipped). Note that this parameter ignores commented lines and empty lines if
skip_blank_lines=True, so header=0 denotes the first line of data rather than
the first line of the file.

names : array-like, default None

List of column names to use. If file contains no header row, then you should explicitly
pass header=None. Duplicates in this list will cause a UserWarning to be issued.

index_col : int or sequence or False, default None

Column to use as the row labels of the DataFrame. If a sequence is given, a MultiIndex
is used. If you have a malformed file with delimiters at the end of each line, you might
consider index_col=False to force pandas to _not_ use the first column as the index (row
names)

usecols : list-like or callable, default None

1352 Chapter 34. API Reference

http://pandas.pydata.org/pandas-docs/stable/io.html
file://localhost/path/to/table.csv
file://localhost/path/to/table.csv

pandas: powerful Python data analysis toolkit, Release 0.23.4

Return a subset of the columns. If list-like, all elements must either be positional
(i.e. integer indices into the document columns) or strings that correspond to col-
umn names provided either by the user in names or inferred from the document
header row(s). For example, a valid list-like usecols parameter would be [0, 1, 2]
or [‘foo’, ‘bar’, ‘baz’]. Element order is ignored, so usecols=[0, 1] is the
same as [1, 0]. To instantiate a DataFrame from data with element order pre-
served use pd.read_csv(data, usecols=['foo', 'bar'])[['foo',
'bar']] for columns in ['foo', 'bar'] order or pd.read_csv(data,
usecols=['foo', 'bar'])[['bar', 'foo']] for ['bar', 'foo'] or-
der.

If callable, the callable function will be evaluated against the column names, returning
names where the callable function evaluates to True. An example of a valid callable ar-
gument would be lambda x: x.upper() in ['AAA', 'BBB', 'DDD'].
Using this parameter results in much faster parsing time and lower memory usage.

squeeze : boolean, default False

If the parsed data only contains one column then return a Series

prefix : str, default None

Prefix to add to column numbers when no header, e.g. ‘X’ for X0, X1, . . .

mangle_dupe_cols : boolean, default True

Duplicate columns will be specified as ‘X’, ‘X.1’, . . . ’X.N’, rather than ‘X’. . . ’X’. Pass-
ing in False will cause data to be overwritten if there are duplicate names in the columns.

dtype : Type name or dict of column -> type, default None

Data type for data or columns. E.g. {‘a’: np.float64, ‘b’: np.int32} Use str or object to-
gether with suitable na_values settings to preserve and not interpret dtype. If converters
are specified, they will be applied INSTEAD of dtype conversion.

converters : dict, default None

Dict of functions for converting values in certain columns. Keys can either be integers
or column labels

true_values : list, default None

Values to consider as True

false_values : list, default None

Values to consider as False

skipinitialspace : boolean, default False

Skip spaces after delimiter.

skiprows : list-like or integer or callable, default None

Line numbers to skip (0-indexed) or number of lines to skip (int) at the start of the file.

If callable, the callable function will be evaluated against the row indices, returning
True if the row should be skipped and False otherwise. An example of a valid callable
argument would be lambda x: x in [0, 2].

skipfooter : int, default 0

Number of lines at bottom of file to skip (Unsupported with engine=’c’)

nrows : int, default None

34.1. Input/Output 1353

pandas: powerful Python data analysis toolkit, Release 0.23.4

Number of rows of file to read. Useful for reading pieces of large files

na_values : scalar, str, list-like, or dict, default None

Additional strings to recognize as NA/NaN. If dict passed, specific per-column NA
values. By default the following values are interpreted as NaN: ‘’, ‘#N/A’, ‘#N/A N/A’,
‘#NA’, ‘-1.#IND’, ‘-1.#QNAN’, ‘-NaN’, ‘-nan’, ‘1.#IND’, ‘1.#QNAN’, ‘N/A’, ‘NA’,
‘NULL’, ‘NaN’, ‘n/a’, ‘nan’, ‘null’.

keep_default_na : bool, default True

Whether or not to include the default NaN values when parsing the data. Depending on
whether na_values is passed in, the behavior is as follows:

• If keep_default_na is True, and na_values are specified, na_values is appended to the
default NaN values used for parsing.

• If keep_default_na is True, and na_values are not specified, only the default NaN
values are used for parsing.

• If keep_default_na is False, and na_values are specified, only the NaN values speci-
fied na_values are used for parsing.

• If keep_default_na is False, and na_values are not specified, no strings will be parsed
as NaN.

Note that if na_filter is passed in as False, the keep_default_na and na_values parame-
ters will be ignored.

na_filter : boolean, default True

Detect missing value markers (empty strings and the value of na_values). In data with-
out any NAs, passing na_filter=False can improve the performance of reading a large
file

verbose : boolean, default False

Indicate number of NA values placed in non-numeric columns

skip_blank_lines : boolean, default True

If True, skip over blank lines rather than interpreting as NaN values

parse_dates : boolean or list of ints or names or list of lists or dict, default False

• boolean. If True -> try parsing the index.

• list of ints or names. e.g. If [1, 2, 3] -> try parsing columns 1, 2, 3 each as a separate
date column.

• list of lists. e.g. If [[1, 3]] -> combine columns 1 and 3 and parse as a single date
column.

• dict, e.g. {‘foo’ : [1, 3]} -> parse columns 1, 3 as date and call result ‘foo’

If a column or index contains an unparseable date, the entire column or index will be
returned unaltered as an object data type. For non-standard datetime parsing, use pd.
to_datetime after pd.read_csv

Note: A fast-path exists for iso8601-formatted dates.

infer_datetime_format : boolean, default False

If True and parse_dates is enabled, pandas will attempt to infer the format of the date-
time strings in the columns, and if it can be inferred, switch to a faster method of parsing
them. In some cases this can increase the parsing speed by 5-10x.

1354 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

keep_date_col : boolean, default False

If True and parse_dates specifies combining multiple columns then keep the original
columns.

date_parser : function, default None

Function to use for converting a sequence of string columns to an array of datetime in-
stances. The default uses dateutil.parser.parser to do the conversion. Pandas
will try to call date_parser in three different ways, advancing to the next if an exception
occurs: 1) Pass one or more arrays (as defined by parse_dates) as arguments; 2) con-
catenate (row-wise) the string values from the columns defined by parse_dates into a
single array and pass that; and 3) call date_parser once for each row using one or more
strings (corresponding to the columns defined by parse_dates) as arguments.

dayfirst : boolean, default False

DD/MM format dates, international and European format

iterator : boolean, default False

Return TextFileReader object for iteration or getting chunks with get_chunk().

chunksize : int, default None

Return TextFileReader object for iteration. See the IO Tools docs for more information
on iterator and chunksize.

compression : {‘infer’, ‘gzip’, ‘bz2’, ‘zip’, ‘xz’, None}, default ‘infer’

For on-the-fly decompression of on-disk data. If ‘infer’ and filepath_or_buffer is path-
like, then detect compression from the following extensions: ‘.gz’, ‘.bz2’, ‘.zip’, or ‘.xz’
(otherwise no decompression). If using ‘zip’, the ZIP file must contain only one data
file to be read in. Set to None for no decompression.

New in version 0.18.1: support for ‘zip’ and ‘xz’ compression.

thousands : str, default None

Thousands separator

decimal : str, default ‘.’

Character to recognize as decimal point (e.g. use ‘,’ for European data).

float_precision : string, default None

Specifies which converter the C engine should use for floating-point values. The op-
tions are None for the ordinary converter, high for the high-precision converter, and
round_trip for the round-trip converter.

lineterminator : str (length 1), default None

Character to break file into lines. Only valid with C parser.

quotechar : str (length 1), optional

The character used to denote the start and end of a quoted item. Quoted items can
include the delimiter and it will be ignored.

quoting : int or csv.QUOTE_* instance, default 0

Control field quoting behavior per csv.QUOTE_* constants. Use one of
QUOTE_MINIMAL (0), QUOTE_ALL (1), QUOTE_NONNUMERIC (2) or
QUOTE_NONE (3).

34.1. Input/Output 1355

http://pandas.pydata.org/pandas-docs/stable/io.html#io-chunking

pandas: powerful Python data analysis toolkit, Release 0.23.4

doublequote : boolean, default True

When quotechar is specified and quoting is not QUOTE_NONE, indicate whether or not
to interpret two consecutive quotechar elements INSIDE a field as a single quotechar
element.

escapechar : str (length 1), default None

One-character string used to escape delimiter when quoting is QUOTE_NONE.

comment : str, default None

Indicates remainder of line should not be parsed. If found at the beginning of a line, the
line will be ignored altogether. This parameter must be a single character. Like empty
lines (as long as skip_blank_lines=True), fully commented lines are ignored
by the parameter header but not by skiprows. For example, if comment='#', parsing
#empty\na,b,c\n1,2,3with header=0will result in ‘a,b,c’ being treated as the
header.

encoding : str, default None

Encoding to use for UTF when reading/writing (ex. ‘utf-8’). List of Python standard
encodings

dialect : str or csv.Dialect instance, default None

If provided, this parameter will override values (default or not) for the following pa-
rameters: delimiter, doublequote, escapechar, skipinitialspace, quotechar, and quoting.
If it is necessary to override values, a ParserWarning will be issued. See csv.Dialect
documentation for more details.

tupleize_cols : boolean, default False

Deprecated since version 0.21.0: This argument will be removed and will always con-
vert to MultiIndex

Leave a list of tuples on columns as is (default is to convert to a MultiIndex on the
columns)

error_bad_lines : boolean, default True

Lines with too many fields (e.g. a csv line with too many commas) will by default cause
an exception to be raised, and no DataFrame will be returned. If False, then these “bad
lines” will dropped from the DataFrame that is returned.

warn_bad_lines : boolean, default True

If error_bad_lines is False, and warn_bad_lines is True, a warning for each “bad line”
will be output.

low_memory : boolean, default True

Internally process the file in chunks, resulting in lower memory use while parsing, but
possibly mixed type inference. To ensure no mixed types either set False, or specify the
type with the dtype parameter. Note that the entire file is read into a single DataFrame
regardless, use the chunksize or iterator parameter to return the data in chunks. (Only
valid with C parser)

memory_map : boolean, default False

If a filepath is provided for filepath_or_buffer, map the file object directly onto memory
and access the data directly from there. Using this option can improve performance
because there is no longer any I/O overhead.

1356 Chapter 34. API Reference

https://docs.python.org/3/library/codecs.html#standard-encodings
https://docs.python.org/3/library/codecs.html#standard-encodings

pandas: powerful Python data analysis toolkit, Release 0.23.4

Returns

result [DataFrame or TextParser]

34.1.2.4 pandas.read_msgpack

pandas.read_msgpack(path_or_buf, encoding=’utf-8’, iterator=False, **kwargs)
Load msgpack pandas object from the specified file path

THIS IS AN EXPERIMENTAL LIBRARY and the storage format may not be stable until a future release.

Parameters

path_or_buf [string File path, BytesIO like or string]

encoding: Encoding for decoding msgpack str type

iterator : boolean, if True, return an iterator to the unpacker

(default is False)

Returns

obj [type of object stored in file]

34.1.3 Clipboard

read_clipboard([sep]) Read text from clipboard and pass to read_table.

34.1.3.1 pandas.read_clipboard

pandas.read_clipboard(sep=’\\s+’, **kwargs)
Read text from clipboard and pass to read_table. See read_table for the full argument list

Parameters sep : str, default ‘s+’.

A string or regex delimiter. The default of ‘s+’ denotes one or more whitespace charac-
ters.

Returns

parsed [DataFrame]

34.1.4 Excel

read_excel(io[, sheet_name, header, names, . . .]) Read an Excel table into a pandas DataFrame
ExcelFile.parse([sheet_name, header, names,
. . .])

Parse specified sheet(s) into a DataFrame

34.1. Input/Output 1357

pandas: powerful Python data analysis toolkit, Release 0.23.4

34.1.4.1 pandas.read_excel

pandas.read_excel(io, sheet_name=0, header=0, names=None, index_col=None, usecols=None,
squeeze=False, dtype=None, engine=None, converters=None, true_values=None,
false_values=None, skiprows=None, nrows=None, na_values=None,
parse_dates=False, date_parser=None, thousands=None, comment=None,
skipfooter=0, convert_float=True, **kwds)

Read an Excel table into a pandas DataFrame

Parameters io : string, path object (pathlib.Path or py._path.local.LocalPath),

file-like object, pandas ExcelFile, or xlrd workbook. The string could be a URL. Valid
URL schemes include http, ftp, s3, and file. For file URLs, a host is expected. For
instance, a local file could be file://localhost/path/to/workbook.xlsx

sheet_name : string, int, mixed list of strings/ints, or None, default 0

Strings are used for sheet names, Integers are used in zero-indexed sheet positions.

Lists of strings/integers are used to request multiple sheets.

Specify None to get all sheets.

str|int -> DataFrame is returned. list|None -> Dict of DataFrames is returned, with keys
representing sheets.

Available Cases

• Defaults to 0 -> 1st sheet as a DataFrame

• 1 -> 2nd sheet as a DataFrame

• “Sheet1” -> 1st sheet as a DataFrame

• [0,1,”Sheet5”] -> 1st, 2nd & 5th sheet as a dictionary of DataFrames

• None -> All sheets as a dictionary of DataFrames

sheetname : string, int, mixed list of strings/ints, or None, default 0

Deprecated since version 0.21.0: Use sheet_name instead

header : int, list of ints, default 0

Row (0-indexed) to use for the column labels of the parsed DataFrame. If a list of
integers is passed those row positions will be combined into a MultiIndex. Use
None if there is no header.

names : array-like, default None

List of column names to use. If file contains no header row, then you should explicitly
pass header=None

index_col : int, list of ints, default None

Column (0-indexed) to use as the row labels of the DataFrame. Pass None if there is no
such column. If a list is passed, those columns will be combined into a MultiIndex.
If a subset of data is selected with usecols, index_col is based on the subset.

parse_cols : int or list, default None

Deprecated since version 0.21.0: Pass in usecols instead.

usecols : int or list, default None

• If None then parse all columns,

1358 Chapter 34. API Reference

file://localhost/path/to/workbook.xlsx

pandas: powerful Python data analysis toolkit, Release 0.23.4

• If int then indicates last column to be parsed

• If list of ints then indicates list of column numbers to be parsed

• If string then indicates comma separated list of Excel column letters and column ranges (e.g.
“A:E” or “A,C,E:F”). Ranges are inclusive of both sides.

squeeze : boolean, default False

If the parsed data only contains one column then return a Series

dtype : Type name or dict of column -> type, default None

Data type for data or columns. E.g. {‘a’: np.float64, ‘b’: np.int32} Use object to
preserve data as stored in Excel and not interpret dtype. If converters are specified, they
will be applied INSTEAD of dtype conversion.

New in version 0.20.0.

engine: string, default None

If io is not a buffer or path, this must be set to identify io. Acceptable values are None
or xlrd

converters : dict, default None

Dict of functions for converting values in certain columns. Keys can either be integers or
column labels, values are functions that take one input argument, the Excel cell content,
and return the transformed content.

true_values : list, default None

Values to consider as True

New in version 0.19.0.

false_values : list, default None

Values to consider as False

New in version 0.19.0.

skiprows : list-like

Rows to skip at the beginning (0-indexed)

nrows : int, default None

Number of rows to parse

New in version 0.23.0.

na_values : scalar, str, list-like, or dict, default None

Additional strings to recognize as NA/NaN. If dict passed, specific per-column NA
values. By default the following values are interpreted as NaN: ‘’, ‘#N/A’, ‘#N/A N/A’,
‘#NA’, ‘-1.#IND’, ‘-1.#QNAN’, ‘-NaN’, ‘-nan’, ‘1.#IND’, ‘1.#QNAN’, ‘N/A’, ‘NA’,
‘NULL’, ‘NaN’, ‘n/a’, ‘nan’, ‘null’.

keep_default_na : bool, default True

If na_values are specified and keep_default_na is False the default NaN values are over-
ridden, otherwise they’re appended to.

verbose : boolean, default False

Indicate number of NA values placed in non-numeric columns

34.1. Input/Output 1359

pandas: powerful Python data analysis toolkit, Release 0.23.4

thousands : str, default None

Thousands separator for parsing string columns to numeric. Note that this parameter
is only necessary for columns stored as TEXT in Excel, any numeric columns will
automatically be parsed, regardless of display format.

comment : str, default None

Comments out remainder of line. Pass a character or characters to this argument to
indicate comments in the input file. Any data between the comment string and the end
of the current line is ignored.

skip_footer : int, default 0

Deprecated since version 0.23.0: Pass in skipfooter instead.

skipfooter : int, default 0

Rows at the end to skip (0-indexed)

convert_float : boolean, default True

convert integral floats to int (i.e., 1.0 –> 1). If False, all numeric data will be read in as
floats: Excel stores all numbers as floats internally

Returns parsed : DataFrame or Dict of DataFrames

DataFrame from the passed in Excel file. See notes in sheet_name argument for more
information on when a Dict of Dataframes is returned.

Examples

An example DataFrame written to a local file

>>> df_out = pd.DataFrame([('string1', 1),
... ('string2', 2),
... ('string3', 3)],
... columns=['Name', 'Value'])
>>> df_out

Name Value
0 string1 1
1 string2 2
2 string3 3
>>> df_out.to_excel('tmp.xlsx')

The file can be read using the file name as string or an open file object:

>>> pd.read_excel('tmp.xlsx')
Name Value

0 string1 1
1 string2 2
2 string3 3

>>> pd.read_excel(open('tmp.xlsx','rb'))
Name Value

0 string1 1
1 string2 2
2 string3 3

Index and header can be specified via the index_col and header arguments

1360 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

>>> pd.read_excel('tmp.xlsx', index_col=None, header=None)
0 1 2

0 NaN Name Value
1 0.0 string1 1
2 1.0 string2 2
3 2.0 string3 3

Column types are inferred but can be explicitly specified

>>> pd.read_excel('tmp.xlsx', dtype={'Name':str, 'Value':float})
Name Value

0 string1 1.0
1 string2 2.0
2 string3 3.0

True, False, and NA values, and thousands separators have defaults, but can be explicitly specified, too. Supply
the values you would like as strings or lists of strings!

>>> pd.read_excel('tmp.xlsx',
... na_values=['string1', 'string2'])

Name Value
0 NaN 1
1 NaN 2
2 string3 3

Comment lines in the excel input file can be skipped using the comment kwarg

>>> df = pd.DataFrame({'a': ['1', '#2'], 'b': ['2', '3']})
>>> df.to_excel('tmp.xlsx', index=False)
>>> pd.read_excel('tmp.xlsx')

a b
0 1 2
1 #2 3

>>> pd.read_excel('tmp.xlsx', comment='#')
a b

0 1 2

34.1.4.2 pandas.ExcelFile.parse

ExcelFile.parse(sheet_name=0, header=0, names=None, index_col=None, usecols=None,
squeeze=False, converters=None, true_values=None, false_values=None,
skiprows=None, nrows=None, na_values=None, parse_dates=False,
date_parser=None, thousands=None, comment=None, skipfooter=0, con-
vert_float=True, **kwds)

Parse specified sheet(s) into a DataFrame

Equivalent to read_excel(ExcelFile, . . .) See the read_excel docstring for more info on accepted parameters

34.1.5 JSON

read_json([path_or_buf, orient, typ, dtype, . . .]) Convert a JSON string to pandas object

34.1. Input/Output 1361

pandas: powerful Python data analysis toolkit, Release 0.23.4

34.1.5.1 pandas.read_json

pandas.read_json(path_or_buf=None, orient=None, typ=’frame’, dtype=True, convert_axes=True,
convert_dates=True, keep_default_dates=True, numpy=False, precise_float=False,
date_unit=None, encoding=None, lines=False, chunksize=None, compres-
sion=’infer’)

Convert a JSON string to pandas object

Parameters path_or_buf : a valid JSON string or file-like, default: None

The string could be a URL. Valid URL schemes include http, ftp, s3, and file. For file
URLs, a host is expected. For instance, a local file could be file://localhost/
path/to/table.json

orient : string,

Indication of expected JSON string format. Compatible JSON strings can be produced
by to_json() with a corresponding orient value. The set of possible orients is:

• 'split' : dict like {index -> [index], columns -> [columns],
data -> [values]}

• 'records' : list like [{column -> value}, ... , {column ->
value}]

• 'index' : dict like {index -> {column -> value}}

• 'columns' : dict like {column -> {index -> value}}

• 'values' : just the values array

The allowed and default values depend on the value of the typ parameter.

• when typ == 'series',

– allowed orients are {'split','records','index'}

– default is 'index'

– The Series index must be unique for orient 'index'.

• when typ == 'frame',

– allowed orients are {'split','records','index', 'columns',
'values', 'table'}

– default is 'columns'

– The DataFrame index must be unique for orients 'index' and 'columns'.

– The DataFrame columns must be unique for orients 'index', 'columns', and
'records'.

New in version 0.23.0: ‘table’ as an allowed value for the orient argument

typ [type of object to recover (series or frame), default ‘frame’]

dtype : boolean or dict, default True

If True, infer dtypes, if a dict of column to dtype, then use those, if False, then don’t
infer dtypes at all, applies only to the data.

convert_axes : boolean, default True

Try to convert the axes to the proper dtypes.

1362 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

convert_dates : boolean, default True

List of columns to parse for dates; If True, then try to parse datelike columns default is
True; a column label is datelike if

• it ends with '_at',

• it ends with '_time',

• it begins with 'timestamp',

• it is 'modified', or

• it is 'date'

keep_default_dates : boolean, default True

If parsing dates, then parse the default datelike columns

numpy : boolean, default False

Direct decoding to numpy arrays. Supports numeric data only, but non-numeric column
and index labels are supported. Note also that the JSON ordering MUST be the same
for each term if numpy=True.

precise_float : boolean, default False

Set to enable usage of higher precision (strtod) function when decoding string to double
values. Default (False) is to use fast but less precise builtin functionality

date_unit : string, default None

The timestamp unit to detect if converting dates. The default behaviour is to try and de-
tect the correct precision, but if this is not desired then pass one of ‘s’, ‘ms’, ‘us’ or ‘ns’
to force parsing only seconds, milliseconds, microseconds or nanoseconds respectively.

lines : boolean, default False

Read the file as a json object per line.

New in version 0.19.0.

encoding : str, default is ‘utf-8’

The encoding to use to decode py3 bytes.

New in version 0.19.0.

chunksize: integer, default None

Return JsonReader object for iteration. See the line-delimted json docs for more infor-
mation on chunksize. This can only be passed if lines=True. If this is None, the file
will be read into memory all at once.

New in version 0.21.0.

compression : {‘infer’, ‘gzip’, ‘bz2’, ‘zip’, ‘xz’, None}, default ‘infer’

For on-the-fly decompression of on-disk data. If ‘infer’, then use gzip, bz2, zip or xz
if path_or_buf is a string ending in ‘.gz’, ‘.bz2’, ‘.zip’, or ‘xz’, respectively, and no
decompression otherwise. If using ‘zip’, the ZIP file must contain only one data file to
be read in. Set to None for no decompression.

New in version 0.21.0.

Returns

result [Series or DataFrame, depending on the value of typ.]

34.1. Input/Output 1363

http://pandas.pydata.org/pandas-docs/stable/io.html#io-jsonl

pandas: powerful Python data analysis toolkit, Release 0.23.4

See also:

DataFrame.to_json

Notes

Specific to orient='table', if a DataFrame with a literal Index name of index gets written with
to_json(), the subsequent read operation will incorrectly set the Index name to None. This is because
index is also used by DataFrame.to_json() to denote a missing Index name, and the subsequent
read_json() operation cannot distinguish between the two. The same limitation is encountered with a
MultiIndex and any names beginning with 'level_'.

Examples

>>> df = pd.DataFrame([['a', 'b'], ['c', 'd']],
... index=['row 1', 'row 2'],
... columns=['col 1', 'col 2'])

Encoding/decoding a Dataframe using 'split' formatted JSON:

>>> df.to_json(orient='split')
'{"columns":["col 1","col 2"],
"index":["row 1","row 2"],
"data":[["a","b"],["c","d"]]}'

>>> pd.read_json(_, orient='split')
col 1 col 2

row 1 a b
row 2 c d

Encoding/decoding a Dataframe using 'index' formatted JSON:

>>> df.to_json(orient='index')
'{"row 1":{"col 1":"a","col 2":"b"},"row 2":{"col 1":"c","col 2":"d"}}'
>>> pd.read_json(_, orient='index')

col 1 col 2
row 1 a b
row 2 c d

Encoding/decoding a Dataframe using 'records' formatted JSON. Note that index labels are not preserved
with this encoding.

>>> df.to_json(orient='records')
'[{"col 1":"a","col 2":"b"},{"col 1":"c","col 2":"d"}]'
>>> pd.read_json(_, orient='records')
col 1 col 2

0 a b
1 c d

Encoding with Table Schema

>>> df.to_json(orient='table')
'{"schema": {"fields": [{"name": "index", "type": "string"},

{"name": "col 1", "type": "string"},
{"name": "col 2", "type": "string"}],

(continues on next page)

1364 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

"primaryKey": "index",
"pandas_version": "0.20.0"},

"data": [{"index": "row 1", "col 1": "a", "col 2": "b"},
{"index": "row 2", "col 1": "c", "col 2": "d"}]}'

json_normalize(data[, record_path, meta, . . .]) “Normalize” semi-structured JSON data into a flat table
build_table_schema(data[, index, . . .]) Create a Table schema from data.

34.1.5.2 pandas.io.json.json_normalize

pandas.io.json.json_normalize(data, record_path=None, meta=None, meta_prefix=None,
record_prefix=None, errors=’raise’, sep=’.’)

“Normalize” semi-structured JSON data into a flat table

Parameters data : dict or list of dicts

Unserialized JSON objects

record_path : string or list of strings, default None

Path in each object to list of records. If not passed, data will be assumed to be an array
of records

meta : list of paths (string or list of strings), default None

Fields to use as metadata for each record in resulting table

record_prefix : string, default None

If True, prefix records with dotted (?) path, e.g. foo.bar.field if path to records is [‘foo’,
‘bar’]

meta_prefix [string, default None]

errors : {‘raise’, ‘ignore’}, default ‘raise’

• ‘ignore’ : will ignore KeyError if keys listed in meta are not always present

• ‘raise’ : will raise KeyError if keys listed in meta are not always present

New in version 0.20.0.

sep : string, default ‘.’

Nested records will generate names separated by sep, e.g., for sep=’.’, { ‘foo’ : { ‘bar’ :
0 } } -> foo.bar

New in version 0.20.0.

Returns

frame [DataFrame]

Examples

34.1. Input/Output 1365

pandas: powerful Python data analysis toolkit, Release 0.23.4

>>> from pandas.io.json import json_normalize
>>> data = [{'id': 1, 'name': {'first': 'Coleen', 'last': 'Volk'}},
... {'name': {'given': 'Mose', 'family': 'Regner'}},
... {'id': 2, 'name': 'Faye Raker'}]
>>> json_normalize(data)

id name name.family name.first name.given name.last
0 1.0 NaN NaN Coleen NaN Volk
1 NaN NaN Regner NaN Mose NaN
2 2.0 Faye Raker NaN NaN NaN NaN

>>> data = [{'state': 'Florida',
... 'shortname': 'FL',
... 'info': {
... 'governor': 'Rick Scott'
... },
... 'counties': [{'name': 'Dade', 'population': 12345},
... {'name': 'Broward', 'population': 40000},
... {'name': 'Palm Beach', 'population': 60000}]},
... {'state': 'Ohio',
... 'shortname': 'OH',
... 'info': {
... 'governor': 'John Kasich'
... },
... 'counties': [{'name': 'Summit', 'population': 1234},
... {'name': 'Cuyahoga', 'population': 1337}]}]
>>> result = json_normalize(data, 'counties', ['state', 'shortname',
... ['info', 'governor']])
>>> result

name population info.governor state shortname
0 Dade 12345 Rick Scott Florida FL
1 Broward 40000 Rick Scott Florida FL
2 Palm Beach 60000 Rick Scott Florida FL
3 Summit 1234 John Kasich Ohio OH
4 Cuyahoga 1337 John Kasich Ohio OH

>>> data = {'A': [1, 2]}
>>> json_normalize(data, 'A', record_prefix='Prefix.')

Prefix.0
0 1
1 2

34.1.5.3 pandas.io.json.build_table_schema

pandas.io.json.build_table_schema(data, index=True, primary_key=None, version=True)
Create a Table schema from data.

Parameters

data [Series, DataFrame]

index : bool, default True

Whether to include data.index in the schema.

primary_key : bool or None, default True

column names to designate as the primary key. The default None will set ‘primaryKey’
to the index level or levels if the index is unique.

1366 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

version : bool, default True

Whether to include a field pandas_version with the version of pandas that generated the
schema.

Returns

schema [dict]

Notes

See _as_json_table_type for conversion types. Timedeltas as converted to ISO8601 duration format with 9
decimal places after the secnods field for nanosecond precision.

Categoricals are converted to the any dtype, and use the enum field constraint to list the allowed values. The
ordered attribute is included in an ordered field.

Examples

>>> df = pd.DataFrame(
... {'A': [1, 2, 3],
... 'B': ['a', 'b', 'c'],
... 'C': pd.date_range('2016-01-01', freq='d', periods=3),
... }, index=pd.Index(range(3), name='idx'))
>>> build_table_schema(df)
{'fields': [{'name': 'idx', 'type': 'integer'},
{'name': 'A', 'type': 'integer'},
{'name': 'B', 'type': 'string'},
{'name': 'C', 'type': 'datetime'}],
'pandas_version': '0.20.0',
'primaryKey': ['idx']}

34.1.6 HTML

read_html(io[, match, flavor, header, . . .]) Read HTML tables into a list of DataFrame ob-
jects.

34.1.6.1 pandas.read_html

pandas.read_html(io, match=’.+’, flavor=None, header=None, index_col=None, skiprows=None,
attrs=None, parse_dates=False, tupleize_cols=None, thousands=’, ’, encod-
ing=None, decimal=’.’, converters=None, na_values=None, keep_default_na=True,
displayed_only=True)

Read HTML tables into a list of DataFrame objects.

Parameters io : str or file-like

A URL, a file-like object, or a raw string containing HTML. Note that lxml only accepts
the http, ftp and file url protocols. If you have a URL that starts with 'https' you
might try removing the 's'.

match : str or compiled regular expression, optional

The set of tables containing text matching this regex or string will be returned. Unless

34.1. Input/Output 1367

pandas: powerful Python data analysis toolkit, Release 0.23.4

the HTML is extremely simple you will probably need to pass a non-empty string here.
Defaults to ‘.+’ (match any non-empty string). The default value will return all tables
contained on a page. This value is converted to a regular expression so that there is
consistent behavior between Beautiful Soup and lxml.

flavor : str or None, container of strings

The parsing engine to use. ‘bs4’ and ‘html5lib’ are synonymous with each other, they
are both there for backwards compatibility. The default of None tries to use lxml to
parse and if that fails it falls back on bs4 + html5lib.

header : int or list-like or None, optional

The row (or list of rows for a MultiIndex) to use to make the columns headers.

index_col : int or list-like or None, optional

The column (or list of columns) to use to create the index.

skiprows : int or list-like or slice or None, optional

0-based. Number of rows to skip after parsing the column integer. If a sequence of
integers or a slice is given, will skip the rows indexed by that sequence. Note that a
single element sequence means ‘skip the nth row’ whereas an integer means ‘skip n
rows’.

attrs : dict or None, optional

This is a dictionary of attributes that you can pass to use to identify the table in the
HTML. These are not checked for validity before being passed to lxml or Beautiful
Soup. However, these attributes must be valid HTML table attributes to work correctly.
For example,

attrs = {'id': 'table'}

is a valid attribute dictionary because the ‘id’ HTML tag attribute is a valid HTML
attribute for any HTML tag as per this document.

attrs = {'asdf': 'table'}

is not a valid attribute dictionary because ‘asdf’ is not a valid HTML attribute even if
it is a valid XML attribute. Valid HTML 4.01 table attributes can be found here. A
working draft of the HTML 5 spec can be found here. It contains the latest information
on table attributes for the modern web.

parse_dates : bool, optional

See read_csv() for more details.

tupleize_cols : bool, optional

If False try to parse multiple header rows into a MultiIndex, otherwise return raw
tuples. Defaults to False.

Deprecated since version 0.21.0: This argument will be removed and will always con-
vert to MultiIndex

thousands : str, optional

Separator to use to parse thousands. Defaults to ','.

encoding : str or None, optional

1368 Chapter 34. API Reference

http://www.w3.org/TR/html-markup/global-attributes.html
http://www.w3.org/TR/REC-html40/struct/tables.html#h-11.2
http://www.w3.org/TR/html-markup/table.html

pandas: powerful Python data analysis toolkit, Release 0.23.4

The encoding used to decode the web page. Defaults to None.‘‘None‘‘ preserves the
previous encoding behavior, which depends on the underlying parser library (e.g., the
parser library will try to use the encoding provided by the document).

decimal : str, default ‘.’

Character to recognize as decimal point (e.g. use ‘,’ for European data).

New in version 0.19.0.

converters : dict, default None

Dict of functions for converting values in certain columns. Keys can either be integers or
column labels, values are functions that take one input argument, the cell (not column)
content, and return the transformed content.

New in version 0.19.0.

na_values : iterable, default None

Custom NA values

New in version 0.19.0.

keep_default_na : bool, default True

If na_values are specified and keep_default_na is False the default NaN values are over-
ridden, otherwise they’re appended to

New in version 0.19.0.

display_only : bool, default True

Whether elements with “display: none” should be parsed

New in version 0.23.0.

Returns

dfs [list of DataFrames]

See also:

pandas.read_csv

Notes

Before using this function you should read the gotchas about the HTML parsing libraries.

Expect to do some cleanup after you call this function. For example, you might need to manually assign column
names if the column names are converted to NaN when you pass the header=0 argument. We try to assume as
little as possible about the structure of the table and push the idiosyncrasies of the HTML contained in the table
to the user.

This function searches for <table> elements and only for <tr> and <th> rows and <td> elements within
each <tr> or <th> element in the table. <td> stands for “table data”.

Similar to read_csv() the header argument is applied after skiprows is applied.

This function will always return a list of DataFrame or it will fail, e.g., it will not return an empty list.

34.1. Input/Output 1369

pandas: powerful Python data analysis toolkit, Release 0.23.4

Examples

See the read_html documentation in the IO section of the docs for some examples of reading in HTML tables.

34.1.7 HDFStore: PyTables (HDF5)

read_hdf(path_or_buf[, key, mode]) Read from the store, close it if we opened it.
HDFStore.put(key, value[, format, append]) Store object in HDFStore
HDFStore.append(key, value[, format, . . .]) Append to Table in file.
HDFStore.get(key) Retrieve pandas object stored in file
HDFStore.select(key[, where, start, stop, . . .]) Retrieve pandas object stored in file, optionally based

on where criteria
HDFStore.info() print detailed information on the store
HDFStore.keys() Return a (potentially unordered) list of the keys corre-

sponding to the objects stored in the HDFStore.

34.1.7.1 pandas.read_hdf

pandas.read_hdf(path_or_buf, key=None, mode=’r’, **kwargs)
Read from the store, close it if we opened it.

Retrieve pandas object stored in file, optionally based on where criteria

Parameters path_or_buf : string, buffer or path object

Path to the file to open, or an open pandas.HDFStore object. Supports any ob-
ject implementing the __fspath__ protocol. This includes pathlib.Path and
py._path.local.LocalPath objects.

New in version 0.19.0: support for pathlib, py.path.

New in version 0.21.0: support for __fspath__ proptocol.

key : object, optional

The group identifier in the store. Can be omitted if the HDF file contains a single pandas
object.

mode : {‘r’, ‘r+’, ‘a’}, optional

Mode to use when opening the file. Ignored if path_or_buf is a pandas.HDFStore.
Default is ‘r’.

where : list, optional

A list of Term (or convertible) objects.

start : int, optional

Row number to start selection.

stop : int, optional

Row number to stop selection.

columns : list, optional

A list of columns names to return.

iterator : bool, optional

1370 Chapter 34. API Reference

https://docs.python.org/3/library/pathlib.html#pathlib.Path

pandas: powerful Python data analysis toolkit, Release 0.23.4

Return an iterator object.

chunksize : int, optional

Number of rows to include in an iteration when using an iterator.

errors : str, default ‘strict’

Specifies how encoding and decoding errors are to be handled. See the errors argument
for open() for a full list of options.

**kwargs

Additional keyword arguments passed to HDFStore.

Returns item : object

The selected object. Return type depends on the object stored.

See also:

pandas.DataFrame.to_hdf write a HDF file from a DataFrame

pandas.HDFStore low-level access to HDF files

Examples

>>> df = pd.DataFrame([[1, 1.0, 'a']], columns=['x', 'y', 'z'])
>>> df.to_hdf('./store.h5', 'data')
>>> reread = pd.read_hdf('./store.h5')

34.1.7.2 pandas.HDFStore.put

HDFStore.put(key, value, format=None, append=False, **kwargs)
Store object in HDFStore

Parameters

key [object]

value [{Series, DataFrame, Panel}]

format : ‘fixed(f)|table(t)’, default is ‘fixed’

fixed(f) [Fixed format] Fast writing/reading. Not-appendable, nor searchable

table(t) [Table format] Write as a PyTables Table structure which may perform worse
but allow more flexible operations like searching / selecting subsets of the data

append : boolean, default False

This will force Table format, append the input data to the existing.

data_columns : list of columns to create as data columns, or True to

use all columns. See here # noqa

encoding [default None, provide an encoding for strings]

dropna : boolean, default False, do not write an ALL nan row to

the store settable by the option ‘io.hdf.dropna_table’

34.1. Input/Output 1371

https://docs.python.org/3/library/functions.html#open
http://pandas.pydata.org/pandas-docs/stable/io.html#query-via-data-columns

pandas: powerful Python data analysis toolkit, Release 0.23.4

34.1.7.3 pandas.HDFStore.append

HDFStore.append(key, value, format=None, append=True, columns=None, dropna=None, **kwargs)
Append to Table in file. Node must already exist and be Table format.

Parameters

key [object]

value [{Series, DataFrame, Panel}]

format: ‘table’ is the default

table(t) [table format] Write as a PyTables Table structure which may perform worse
but allow more flexible operations like searching / selecting subsets of the data

append : boolean, default True, append the input data to the

existing

data_columns : list of columns, or True, default None

List of columns to create as indexed data columns for on-disk queries, or True to use all
columns. By default only the axes of the object are indexed. See here.

min_itemsize [dict of columns that specify minimum string sizes]

nan_rep [string to use as string nan represenation]

chunksize [size to chunk the writing]

expectedrows [expected TOTAL row size of this table]

encoding [default None, provide an encoding for strings]

dropna : boolean, default False, do not write an ALL nan row to

the store settable by the option ‘io.hdf.dropna_table’

Notes

Does not check if data being appended overlaps with existing data in the table, so be careful

34.1.7.4 pandas.HDFStore.get

HDFStore.get(key)
Retrieve pandas object stored in file

Parameters

key [object]

Returns

obj [type of object stored in file]

1372 Chapter 34. API Reference

http://pandas.pydata.org/pandas-docs/stable/io.html#query-via-data-columns

pandas: powerful Python data analysis toolkit, Release 0.23.4

34.1.7.5 pandas.HDFStore.select

HDFStore.select(key, where=None, start=None, stop=None, columns=None, iterator=False, chunk-
size=None, auto_close=False, **kwargs)

Retrieve pandas object stored in file, optionally based on where criteria

Parameters

key [object]

where [list of Term (or convertible) objects, optional]

start [integer (defaults to None), row number to start selection]

stop [integer (defaults to None), row number to stop selection]

columns : a list of columns that if not None, will limit the return

columns

iterator [boolean, return an iterator, default False]

chunksize [nrows to include in iteration, return an iterator]

auto_close : boolean, should automatically close the store when

finished, default is False

Returns

The selected object

34.1.7.6 pandas.HDFStore.info

HDFStore.info()
print detailed information on the store

New in version 0.21.0.

34.1.7.7 pandas.HDFStore.keys

HDFStore.keys()
Return a (potentially unordered) list of the keys corresponding to the objects stored in the HDFStore. These are
ABSOLUTE path-names (e.g. have the leading ‘/’

34.1.8 Feather

read_feather(path[, nthreads]) Load a feather-format object from the file path

34.1.8.1 pandas.read_feather

pandas.read_feather(path, nthreads=1)
Load a feather-format object from the file path

Parameters

path [string file path, or file-like object]

34.1. Input/Output 1373

pandas: powerful Python data analysis toolkit, Release 0.23.4

nthreads : int, default 1

Number of CPU threads to use when reading to pandas.DataFrame

Returns

type of object stored in file

34.1.9 Parquet

read_parquet(path[, engine, columns]) Load a parquet object from the file path, returning a
DataFrame.

34.1.9.1 pandas.read_parquet

pandas.read_parquet(path, engine=’auto’, columns=None, **kwargs)
Load a parquet object from the file path, returning a DataFrame.

Parameters path : string

File path

columns: list, default=None

If not None, only these columns will be read from the file.

engine : {‘auto’, ‘pyarrow’, ‘fastparquet’}, default ‘auto’

Parquet library to use. If ‘auto’, then the option io.parquet.engine is used. The
default io.parquet.engine behavior is to try ‘pyarrow’, falling back to ‘fastpar-
quet’ if ‘pyarrow’ is unavailable.

kwargs are passed to the engine

Returns

DataFrame

34.1.10 SAS

read_sas(filepath_or_buffer[, format, . . .]) Read SAS files stored as either XPORT or SAS7BDAT
format files.

34.1.10.1 pandas.read_sas

pandas.read_sas(filepath_or_buffer, format=None, index=None, encoding=None, chunksize=None, iter-
ator=False)

Read SAS files stored as either XPORT or SAS7BDAT format files.

Parameters filepath_or_buffer : string or file-like object

Path to the SAS file.

format : string {‘xport’, ‘sas7bdat’} or None

If None, file format is inferred. If ‘xport’ or ‘sas7bdat’, uses the corresponding format.

index : identifier of index column, defaults to None

1374 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

Identifier of column that should be used as index of the DataFrame.

encoding : string, default is None

Encoding for text data. If None, text data are stored as raw bytes.

chunksize : int

Read file chunksize lines at a time, returns iterator.

iterator : bool, defaults to False

If True, returns an iterator for reading the file incrementally.

Returns

DataFrame if iterator=False and chunksize=None, else SAS7BDATReader

or XportReader

34.1.11 SQL

read_sql_table(table_name, con[, schema, . . .]) Read SQL database table into a DataFrame.
read_sql_query(sql, con[, index_col, . . .]) Read SQL query into a DataFrame.
read_sql(sql, con[, index_col, . . .]) Read SQL query or database table into a DataFrame.

34.1.12 Google BigQuery

read_gbq(query[, project_id, index_col, . . .]) Load data from Google BigQuery.

34.1.12.1 pandas.read_gbq

pandas.read_gbq(query, project_id=None, index_col=None, col_order=None, reauth=False, ver-
bose=None, private_key=None, dialect=’legacy’, **kwargs)

Load data from Google BigQuery.

This function requires the pandas-gbq package.

Authentication to the Google BigQuery service is via OAuth 2.0.

• If “private_key” is not provided:

By default “application default credentials” are used.

If default application credentials are not found or are restrictive, user account credentials are used. In this
case, you will be asked to grant permissions for product name ‘pandas GBQ’.

• If “private_key” is provided:

Service account credentials will be used to authenticate.

Parameters query : str

SQL-Like Query to return data values.

project_id : str

Google BigQuery Account project ID.

index_col : str, optional

34.1. Input/Output 1375

https://pandas-gbq.readthedocs.io

pandas: powerful Python data analysis toolkit, Release 0.23.4

Name of result column to use for index in results DataFrame.

col_order : list(str), optional

List of BigQuery column names in the desired order for results DataFrame.

reauth : boolean, default False

Force Google BigQuery to reauthenticate the user. This is useful if multiple accounts
are used.

private_key : str, optional

Service account private key in JSON format. Can be file path or string contents. This is
useful for remote server authentication (eg. Jupyter/IPython notebook on remote host).

dialect : str, default ‘legacy’

SQL syntax dialect to use. Value can be one of:

'legacy' Use BigQuery’s legacy SQL dialect. For more information see BigQuery
Legacy SQL Reference.

'standard' Use BigQuery’s standard SQL, which is compliant with the SQL 2011
standard. For more information see BigQuery Standard SQL Reference.

verbose : boolean, deprecated

Deprecated in Pandas-GBQ 0.4.0. Use the logging module to adjust verbosity instead.

kwargs : dict

Arbitrary keyword arguments. configuration (dict): query config parameters for job
processing. For example:

configuration = {‘query’: {‘useQueryCache’: False}}

For more information see BigQuery SQL Reference

Returns df: DataFrame

DataFrame representing results of query.

See also:

pandas_gbq.read_gbq This function in the pandas-gbq library.

pandas.DataFrame.to_gbq Write a DataFrame to Google BigQuery.

34.1.13 STATA

read_stata(filepath_or_buffer[, . . .]) Read Stata file into DataFrame.

34.1.13.1 pandas.read_stata

pandas.read_stata(filepath_or_buffer, convert_dates=True, convert_categoricals=True, encod-
ing=None, index_col=None, convert_missing=False, preserve_dtypes=True,
columns=None, order_categoricals=True, chunksize=None, iterator=False)

Read Stata file into DataFrame.

Parameters filepath_or_buffer : string or file-like object

Path to .dta file or object implementing a binary read() functions.

1376 Chapter 34. API Reference

https://cloud.google.com/bigquery/docs/reference/legacy-sql
https://cloud.google.com/bigquery/docs/reference/legacy-sql
https://cloud.google.com/bigquery/docs/reference/standard-sql/
https://pandas-gbq.readthedocs.io/en/latest/intro.html#logging
https://cloud.google.com/bigquery/docs/reference/rest/v2/jobs#configuration.query
https://pandas-gbq.readthedocs.io/en/latest/api.html#pandas_gbq.read_gbq

pandas: powerful Python data analysis toolkit, Release 0.23.4

convert_dates : boolean, defaults to True

Convert date variables to DataFrame time values.

convert_categoricals : boolean, defaults to True

Read value labels and convert columns to Categorical/Factor variables.

encoding : string, None or encoding

Encoding used to parse the files. None defaults to latin-1.

index_col : string, optional, default: None

Column to set as index.

convert_missing : boolean, defaults to False

Flag indicating whether to convert missing values to their Stata representations. If False,
missing values are replaced with nan. If True, columns containing missing values are re-
turned with object data types and missing values are represented by StataMissingValue
objects.

preserve_dtypes : boolean, defaults to True

Preserve Stata datatypes. If False, numeric data are upcast to pandas default types for
foreign data (float64 or int64).

columns : list or None

Columns to retain. Columns will be returned in the given order. None returns all
columns.

order_categoricals : boolean, defaults to True

Flag indicating whether converted categorical data are ordered.

chunksize : int, default None

Return StataReader object for iterations, returns chunks with given number of lines.

iterator : boolean, default False

Return StataReader object.

Returns

DataFrame or StataReader

See also:

pandas.io.stata.StataReader low-level reader for Stata data files

pandas.DataFrame.to_stata export Stata data files

Examples

Read a Stata dta file:

>>> import pandas as pd
>>> df = pd.read_stata('filename.dta')

Read a Stata dta file in 10,000 line chunks:

34.1. Input/Output 1377

pandas: powerful Python data analysis toolkit, Release 0.23.4

>>> itr = pd.read_stata('filename.dta', chunksize=10000)
>>> for chunk in itr:
... do_something(chunk)

StataReader.data(**kwargs) (DEPRECATED) Reads observations from Stata file,
converting them into a dataframe

StataReader.data_label() Returns data label of Stata file
StataReader.value_labels() Returns a dict, associating each variable name a dict,

associating each value its corresponding label
StataReader.variable_labels() Returns variable labels as a dict, associating each vari-

able name with corresponding label
StataWriter.write_file()

34.1.13.2 pandas.io.stata.StataReader.data

StataReader.data(**kwargs)
Reads observations from Stata file, converting them into a dataframe

Deprecated since version This: is a legacy method. Use read in new code.

Parameters convert_dates : boolean, defaults to True

Convert date variables to DataFrame time values.

convert_categoricals : boolean, defaults to True

Read value labels and convert columns to Categorical/Factor variables.

index_col : string, optional, default: None

Column to set as index.

convert_missing : boolean, defaults to False

Flag indicating whether to convert missing values to their Stata representations. If False,
missing values are replaced with nan. If True, columns containing missing values are re-
turned with object data types and missing values are represented by StataMissingValue
objects.

preserve_dtypes : boolean, defaults to True

Preserve Stata datatypes. If False, numeric data are upcast to pandas default types for
foreign data (float64 or int64).

columns : list or None

Columns to retain. Columns will be returned in the given order. None returns all
columns.

order_categoricals : boolean, defaults to True

Flag indicating whether converted categorical data are ordered.

Returns

DataFrame

1378 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

34.1.13.3 pandas.io.stata.StataReader.data_label

StataReader.data_label()
Returns data label of Stata file

34.1.13.4 pandas.io.stata.StataReader.value_labels

StataReader.value_labels()
Returns a dict, associating each variable name a dict, associating each value its corresponding label

34.1.13.5 pandas.io.stata.StataReader.variable_labels

StataReader.variable_labels()
Returns variable labels as a dict, associating each variable name with corresponding label

34.1.13.6 pandas.io.stata.StataWriter.write_file

StataWriter.write_file()

34.2 General functions

34.2.1 Data manipulations

melt(frame[, id_vars, value_vars, var_name, . . .]) “Unpivots” a DataFrame from wide format to long for-
mat, optionally leaving identifier variables set.

pivot(index, columns, values) Produce ‘pivot’ table based on 3 columns of this
DataFrame.

pivot_table(data[, values, index, columns, . . .]) Create a spreadsheet-style pivot table as a DataFrame.
crosstab(index, columns[, values, rownames, . . .]) Compute a simple cross-tabulation of two (or more) fac-

tors.
cut(x, bins[, right, labels, retbins, . . .]) Bin values into discrete intervals.
qcut(x, q[, labels, retbins, precision, . . .]) Quantile-based discretization function.
merge(left, right[, how, on, left_on, . . .]) Merge DataFrame objects by performing a database-

style join operation by columns or indexes.
merge_ordered(left, right[, on, left_on, . . .]) Perform merge with optional filling/interpolation de-

signed for ordered data like time series data.
merge_asof(left, right[, on, left_on, . . .]) Perform an asof merge.
concat(objs[, axis, join, join_axes, . . .]) Concatenate pandas objects along a particular axis with

optional set logic along the other axes.
get_dummies(data[, prefix, prefix_sep, . . .]) Convert categorical variable into dummy/indicator vari-

ables
factorize(values[, sort, order, . . .]) Encode the object as an enumerated type or categorical

variable.
unique(values) Hash table-based unique.
wide_to_long(df, stubnames, i, j[, sep, suffix]) Wide panel to long format.

34.2. General functions 1379

pandas: powerful Python data analysis toolkit, Release 0.23.4

34.2.1.1 pandas.melt

pandas.melt(frame, id_vars=None, value_vars=None, var_name=None, value_name=’value’,
col_level=None)

“Unpivots” a DataFrame from wide format to long format, optionally leaving identifier variables set.

This function is useful to massage a DataFrame into a format where one or more columns are identifier variables
(id_vars), while all other columns, considered measured variables (value_vars), are “unpivoted” to the row axis,
leaving just two non-identifier columns, ‘variable’ and ‘value’.

Parameters

frame [DataFrame]

id_vars : tuple, list, or ndarray, optional

Column(s) to use as identifier variables.

value_vars : tuple, list, or ndarray, optional

Column(s) to unpivot. If not specified, uses all columns that are not set as id_vars.

var_name : scalar

Name to use for the ‘variable’ column. If None it uses frame.columns.name or
‘variable’.

value_name : scalar, default ‘value’

Name to use for the ‘value’ column.

col_level : int or string, optional

If columns are a MultiIndex then use this level to melt.

See also:

DataFrame.melt, pivot_table, DataFrame.pivot

Examples

>>> import pandas as pd
>>> df = pd.DataFrame({'A': {0: 'a', 1: 'b', 2: 'c'},
... 'B': {0: 1, 1: 3, 2: 5},
... 'C': {0: 2, 1: 4, 2: 6}})
>>> df

A B C
0 a 1 2
1 b 3 4
2 c 5 6

>>> pd.melt(df, id_vars=['A'], value_vars=['B'])
A variable value

0 a B 1
1 b B 3
2 c B 5

>>> pd.melt(df, id_vars=['A'], value_vars=['B', 'C'])
A variable value

0 a B 1

(continues on next page)

1380 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

1 b B 3
2 c B 5
3 a C 2
4 b C 4
5 c C 6

The names of ‘variable’ and ‘value’ columns can be customized:

>>> pd.melt(df, id_vars=['A'], value_vars=['B'],
... var_name='myVarname', value_name='myValname')

A myVarname myValname
0 a B 1
1 b B 3
2 c B 5

If you have multi-index columns:

>>> df.columns = [list('ABC'), list('DEF')]
>>> df

A B C
D E F

0 a 1 2
1 b 3 4
2 c 5 6

>>> pd.melt(df, col_level=0, id_vars=['A'], value_vars=['B'])
A variable value

0 a B 1
1 b B 3
2 c B 5

>>> pd.melt(df, id_vars=[('A', 'D')], value_vars=[('B', 'E')])
(A, D) variable_0 variable_1 value

0 a B E 1
1 b B E 3
2 c B E 5

34.2.1.2 pandas.pivot

pandas.pivot(index, columns, values)
Produce ‘pivot’ table based on 3 columns of this DataFrame. Uses unique values from index / columns and fills
with values.

Parameters index : ndarray

Labels to use to make new frame’s index

columns : ndarray

Labels to use to make new frame’s columns

values : ndarray

Values to use for populating new frame’s values

Returns

DataFrame

34.2. General functions 1381

pandas: powerful Python data analysis toolkit, Release 0.23.4

See also:

DataFrame.pivot_table generalization of pivot that can handle duplicate values for one index/column
pair

Notes

Obviously, all 3 of the input arguments must have the same length

34.2.1.3 pandas.pivot_table

pandas.pivot_table(data, values=None, index=None, columns=None, aggfunc=’mean’,
fill_value=None, margins=False, dropna=True, margins_name=’All’)

Create a spreadsheet-style pivot table as a DataFrame. The levels in the pivot table will be stored in MultiIndex
objects (hierarchical indexes) on the index and columns of the result DataFrame

Parameters

data [DataFrame]

values [column to aggregate, optional]

index : column, Grouper, array, or list of the previous

If an array is passed, it must be the same length as the data. The list can contain any of
the other types (except list). Keys to group by on the pivot table index. If an array is
passed, it is being used as the same manner as column values.

columns : column, Grouper, array, or list of the previous

If an array is passed, it must be the same length as the data. The list can contain any of
the other types (except list). Keys to group by on the pivot table column. If an array is
passed, it is being used as the same manner as column values.

aggfunc : function, list of functions, dict, default numpy.mean

If list of functions passed, the resulting pivot table will have hierarchical columns whose
top level are the function names (inferred from the function objects themselves) If dict
is passed, the key is column to aggregate and value is function or list of functions

fill_value : scalar, default None

Value to replace missing values with

margins : boolean, default False

Add all row / columns (e.g. for subtotal / grand totals)

dropna : boolean, default True

Do not include columns whose entries are all NaN

margins_name : string, default ‘All’

Name of the row / column that will contain the totals when margins is True.

Returns

table [DataFrame]

See also:

1382 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

DataFrame.pivot pivot without aggregation that can handle non-numeric data

Examples

>>> df = pd.DataFrame({"A": ["foo", "foo", "foo", "foo", "foo",
... "bar", "bar", "bar", "bar"],
... "B": ["one", "one", "one", "two", "two",
... "one", "one", "two", "two"],
... "C": ["small", "large", "large", "small",
... "small", "large", "small", "small",
... "large"],
... "D": [1, 2, 2, 3, 3, 4, 5, 6, 7]})
>>> df

A B C D
0 foo one small 1
1 foo one large 2
2 foo one large 2
3 foo two small 3
4 foo two small 3
5 bar one large 4
6 bar one small 5
7 bar two small 6
8 bar two large 7

>>> table = pivot_table(df, values='D', index=['A', 'B'],
... columns=['C'], aggfunc=np.sum)
>>> table
C large small
A B
bar one 4.0 5.0

two 7.0 6.0
foo one 4.0 1.0

two NaN 6.0

>>> table = pivot_table(df, values='D', index=['A', 'B'],
... columns=['C'], aggfunc=np.sum)
>>> table
C large small
A B
bar one 4.0 5.0

two 7.0 6.0
foo one 4.0 1.0

two NaN 6.0

>>> table = pivot_table(df, values=['D', 'E'], index=['A', 'C'],
... aggfunc={'D': np.mean,
... 'E': [min, max, np.mean]})
>>> table

D E
mean max median min

A C
bar large 5.500000 16 14.5 13

small 5.500000 15 14.5 14
foo large 2.000000 10 9.5 9

small 2.333333 12 11.0 8

34.2. General functions 1383

pandas: powerful Python data analysis toolkit, Release 0.23.4

34.2.1.4 pandas.crosstab

pandas.crosstab(index, columns, values=None, rownames=None, colnames=None, aggfunc=None, mar-
gins=False, margins_name=’All’, dropna=True, normalize=False)

Compute a simple cross-tabulation of two (or more) factors. By default computes a frequency table of the factors
unless an array of values and an aggregation function are passed

Parameters index : array-like, Series, or list of arrays/Series

Values to group by in the rows

columns : array-like, Series, or list of arrays/Series

Values to group by in the columns

values : array-like, optional

Array of values to aggregate according to the factors. Requires aggfunc be specified.

aggfunc : function, optional

If specified, requires values be specified as well

rownames : sequence, default None

If passed, must match number of row arrays passed

colnames : sequence, default None

If passed, must match number of column arrays passed

margins : boolean, default False

Add row/column margins (subtotals)

margins_name : string, default ‘All’

Name of the row / column that will contain the totals when margins is True.

New in version 0.21.0.

dropna : boolean, default True

Do not include columns whose entries are all NaN

normalize : boolean, {‘all’, ‘index’, ‘columns’}, or {0,1}, default False

Normalize by dividing all values by the sum of values.

• If passed ‘all’ or True, will normalize over all values.

• If passed ‘index’ will normalize over each row.

• If passed ‘columns’ will normalize over each column.

• If margins is True, will also normalize margin values.

New in version 0.18.1.

Returns

crosstab [DataFrame]

1384 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

Notes

Any Series passed will have their name attributes used unless row or column names for the cross-tabulation are
specified.

Any input passed containing Categorical data will have all of its categories included in the cross-tabulation,
even if the actual data does not contain any instances of a particular category.

In the event that there aren’t overlapping indexes an empty DataFrame will be returned.

Examples

>>> a = np.array(["foo", "foo", "foo", "foo", "bar", "bar",
... "bar", "bar", "foo", "foo", "foo"], dtype=object)
>>> b = np.array(["one", "one", "one", "two", "one", "one",
... "one", "two", "two", "two", "one"], dtype=object)
>>> c = np.array(["dull", "dull", "shiny", "dull", "dull", "shiny",
... "shiny", "dull", "shiny", "shiny", "shiny"],
... dtype=object)

>>> pd.crosstab(a, [b, c], rownames=['a'], colnames=['b', 'c'])
...
b one two
c dull shiny dull shiny
a
bar 1 2 1 0
foo 2 2 1 2

>>> foo = pd.Categorical(['a', 'b'], categories=['a', 'b', 'c'])
>>> bar = pd.Categorical(['d', 'e'], categories=['d', 'e', 'f'])
>>> crosstab(foo, bar) # 'c' and 'f' are not represented in the data,
... # but they still will be counted in the output
...
col_0 d e f
row_0
a 1 0 0
b 0 1 0
c 0 0 0

34.2.1.5 pandas.cut

pandas.cut(x, bins, right=True, labels=None, retbins=False, precision=3, include_lowest=False, dupli-
cates=’raise’)

Bin values into discrete intervals.

Use cut when you need to segment and sort data values into bins. This function is also useful for going from
a continuous variable to a categorical variable. For example, cut could convert ages to groups of age ranges.
Supports binning into an equal number of bins, or a pre-specified array of bins.

Parameters x : array-like

The input array to be binned. Must be 1-dimensional.

bins : int, sequence of scalars, or pandas.IntervalIndex

The criteria to bin by.

34.2. General functions 1385

pandas: powerful Python data analysis toolkit, Release 0.23.4

• int : Defines the number of equal-width bins in the range of x. The range of x is
extended by .1% on each side to include the minimum and maximum values of x.

• sequence of scalars : Defines the bin edges allowing for non-uniform width. No
extension of the range of x is done.

• IntervalIndex : Defines the exact bins to be used.

right : bool, default True

Indicates whether bins includes the rightmost edge or not. If right == True (the
default), then the bins [1, 2, 3, 4] indicate (1,2], (2,3], (3,4]. This argument is
ignored when bins is an IntervalIndex.

labels : array or bool, optional

Specifies the labels for the returned bins. Must be the same length as the resulting bins.
If False, returns only integer indicators of the bins. This affects the type of the output
container (see below). This argument is ignored when bins is an IntervalIndex.

retbins : bool, default False

Whether to return the bins or not. Useful when bins is provided as a scalar.

precision : int, default 3

The precision at which to store and display the bins labels.

include_lowest : bool, default False

Whether the first interval should be left-inclusive or not.

duplicates : {default ‘raise’, ‘drop’}, optional

If bin edges are not unique, raise ValueError or drop non-uniques.

New in version 0.23.0.

Returns out : pandas.Categorical, Series, or ndarray

An array-like object representing the respective bin for each value of x. The type de-
pends on the value of labels.

• True (default) : returns a Series for Series x or a pandas.Categorical for all other
inputs. The values stored within are Interval dtype.

• sequence of scalars : returns a Series for Series x or a pandas.Categorical for all other
inputs. The values stored within are whatever the type in the sequence is.

• False : returns an ndarray of integers.

bins : numpy.ndarray or IntervalIndex.

The computed or specified bins. Only returned when retbins=True. For scalar or se-
quence bins, this is an ndarray with the computed bins. If set duplicates=drop, bins will
drop non-unique bin. For an IntervalIndex bins, this is equal to bins.

See also:

qcut Discretize variable into equal-sized buckets based on rank or based on sample quantiles.

pandas.Categorical Array type for storing data that come from a fixed set of values.

Series One-dimensional array with axis labels (including time series).

pandas.IntervalIndex Immutable Index implementing an ordered, sliceable set.

1386 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

Notes

Any NA values will be NA in the result. Out of bounds values will be NA in the resulting Series or pan-
das.Categorical object.

Examples

Discretize into three equal-sized bins.

>>> pd.cut(np.array([1, 7, 5, 4, 6, 3]), 3)
...
[(0.994, 3.0], (5.0, 7.0], (3.0, 5.0], (3.0, 5.0], (5.0, 7.0], ...
Categories (3, interval[float64]): [(0.994, 3.0] < (3.0, 5.0] ...

>>> pd.cut(np.array([1, 7, 5, 4, 6, 3]), 3, retbins=True)
...
([(0.994, 3.0], (5.0, 7.0], (3.0, 5.0], (3.0, 5.0], (5.0, 7.0], ...
Categories (3, interval[float64]): [(0.994, 3.0] < (3.0, 5.0] ...
array([0.994, 3. , 5. , 7.]))

Discovers the same bins, but assign them specific labels. Notice that the returned Categorical’s categories are
labels and is ordered.

>>> pd.cut(np.array([1, 7, 5, 4, 6, 3]),
... 3, labels=["bad", "medium", "good"])
[bad, good, medium, medium, good, bad]
Categories (3, object): [bad < medium < good]

labels=False implies you just want the bins back.

>>> pd.cut([0, 1, 1, 2], bins=4, labels=False)
array([0, 1, 1, 3])

Passing a Series as an input returns a Series with categorical dtype:

>>> s = pd.Series(np.array([2, 4, 6, 8, 10]),
... index=['a', 'b', 'c', 'd', 'e'])
>>> pd.cut(s, 3)
...
a (1.992, 4.667]
b (1.992, 4.667]
c (4.667, 7.333]
d (7.333, 10.0]
e (7.333, 10.0]
dtype: category
Categories (3, interval[float64]): [(1.992, 4.667] < (4.667, ...

Passing a Series as an input returns a Series with mapping value. It is used to map numerically to intervals based
on bins.

>>> s = pd.Series(np.array([2, 4, 6, 8, 10]),
... index=['a', 'b', 'c', 'd', 'e'])
>>> pd.cut(s, [0, 2, 4, 6, 8, 10], labels=False, retbins=True, right=False)
...
(a 0.0

(continues on next page)

34.2. General functions 1387

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

b 1.0
c 2.0
d 3.0
e 4.0
dtype: float64, array([0, 2, 4, 6, 8]))

Use drop optional when bins is not unique

>>> pd.cut(s, [0, 2, 4, 6, 10, 10], labels=False, retbins=True,
... right=False, duplicates='drop')
...
(a 0.0
b 1.0
c 2.0
d 3.0
e 3.0
dtype: float64, array([0, 2, 4, 6, 8]))

Passing an IntervalIndex for bins results in those categories exactly. Notice that values not covered by the
IntervalIndex are set to NaN. 0 is to the left of the first bin (which is closed on the right), and 1.5 falls between
two bins.

>>> bins = pd.IntervalIndex.from_tuples([(0, 1), (2, 3), (4, 5)])
>>> pd.cut([0, 0.5, 1.5, 2.5, 4.5], bins)
[NaN, (0, 1], NaN, (2, 3], (4, 5]]
Categories (3, interval[int64]): [(0, 1] < (2, 3] < (4, 5]]

34.2.1.6 pandas.qcut

pandas.qcut(x, q, labels=None, retbins=False, precision=3, duplicates=’raise’)
Quantile-based discretization function. Discretize variable into equal-sized buckets based on rank or based on
sample quantiles. For example 1000 values for 10 quantiles would produce a Categorical object indicating
quantile membership for each data point.

Parameters

x [1d ndarray or Series]

q : integer or array of quantiles

Number of quantiles. 10 for deciles, 4 for quartiles, etc. Alternately array of quantiles,
e.g. [0, .25, .5, .75, 1.] for quartiles

labels : array or boolean, default None

Used as labels for the resulting bins. Must be of the same length as the resulting bins.
If False, return only integer indicators of the bins.

retbins : bool, optional

Whether to return the (bins, labels) or not. Can be useful if bins is given as a scalar.

precision : int, optional

The precision at which to store and display the bins labels

duplicates : {default ‘raise’, ‘drop’}, optional

1388 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

If bin edges are not unique, raise ValueError or drop non-uniques.

New in version 0.20.0.

Returns out : Categorical or Series or array of integers if labels is False

The return type (Categorical or Series) depends on the input: a Series of type category
if input is a Series else Categorical. Bins are represented as categories when categorical
data is returned.

bins : ndarray of floats

Returned only if retbins is True.

Notes

Out of bounds values will be NA in the resulting Categorical object

Examples

>>> pd.qcut(range(5), 4)
...
[(-0.001, 1.0], (-0.001, 1.0], (1.0, 2.0], (2.0, 3.0], (3.0, 4.0]]
Categories (4, interval[float64]): [(-0.001, 1.0] < (1.0, 2.0] ...

>>> pd.qcut(range(5), 3, labels=["good", "medium", "bad"])
...
[good, good, medium, bad, bad]
Categories (3, object): [good < medium < bad]

>>> pd.qcut(range(5), 4, labels=False)
array([0, 0, 1, 2, 3])

34.2.1.7 pandas.merge

pandas.merge(left, right, how=’inner’, on=None, left_on=None, right_on=None, left_index=False,
right_index=False, sort=False, suffixes=(’_x’, ’_y’), copy=True, indicator=False, vali-
date=None)

Merge DataFrame objects by performing a database-style join operation by columns or indexes.

If joining columns on columns, the DataFrame indexes will be ignored. Otherwise if joining indexes on indexes
or indexes on a column or columns, the index will be passed on.

Parameters

left [DataFrame]

right [DataFrame]

how : {‘left’, ‘right’, ‘outer’, ‘inner’}, default ‘inner’

• left: use only keys from left frame, similar to a SQL left outer join; preserve key order

• right: use only keys from right frame, similar to a SQL right outer join; preserve key order

• outer: use union of keys from both frames, similar to a SQL full outer join; sort keys lexi-
cographically

34.2. General functions 1389

pandas: powerful Python data analysis toolkit, Release 0.23.4

• inner: use intersection of keys from both frames, similar to a SQL inner join; preserve the
order of the left keys

on : label or list

Column or index level names to join on. These must be found in both DataFrames. If on
is None and not merging on indexes then this defaults to the intersection of the columns
in both DataFrames.

left_on : label or list, or array-like

Column or index level names to join on in the left DataFrame. Can also be an array or
list of arrays of the length of the left DataFrame. These arrays are treated as if they are
columns.

right_on : label or list, or array-like

Column or index level names to join on in the right DataFrame. Can also be an array or
list of arrays of the length of the right DataFrame. These arrays are treated as if they are
columns.

left_index : boolean, default False

Use the index from the left DataFrame as the join key(s). If it is a MultiIndex, the
number of keys in the other DataFrame (either the index or a number of columns) must
match the number of levels

right_index : boolean, default False

Use the index from the right DataFrame as the join key. Same caveats as left_index

sort : boolean, default False

Sort the join keys lexicographically in the result DataFrame. If False, the order of the
join keys depends on the join type (how keyword)

suffixes : 2-length sequence (tuple, list, . . .)

Suffix to apply to overlapping column names in the left and right side, respectively

copy : boolean, default True

If False, do not copy data unnecessarily

indicator : boolean or string, default False

If True, adds a column to output DataFrame called “_merge” with information on the
source of each row. If string, column with information on source of each row will be
added to output DataFrame, and column will be named value of string. Information
column is Categorical-type and takes on a value of “left_only” for observations whose
merge key only appears in ‘left’ DataFrame, “right_only” for observations whose merge
key only appears in ‘right’ DataFrame, and “both” if the observation’s merge key is
found in both.

validate : string, default None

If specified, checks if merge is of specified type.

• “one_to_one” or “1:1”: check if merge keys are unique in both left and right datasets.

• “one_to_many” or “1:m”: check if merge keys are unique in left dataset.

• “many_to_one” or “m:1”: check if merge keys are unique in right dataset.

• “many_to_many” or “m:m”: allowed, but does not result in checks.

1390 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

New in version 0.21.0.

Returns merged : DataFrame

The output type will the be same as ‘left’, if it is a subclass of DataFrame.

See also:

merge_ordered, merge_asof, DataFrame.join

Notes

Support for specifying index levels as the on, left_on, and right_on parameters was added in version 0.23.0

Examples

>>> A >>> B
lkey value rkey value

0 foo 1 0 foo 5
1 bar 2 1 bar 6
2 baz 3 2 qux 7
3 foo 4 3 bar 8

>>> A.merge(B, left_on='lkey', right_on='rkey', how='outer')
lkey value_x rkey value_y

0 foo 1 foo 5
1 foo 4 foo 5
2 bar 2 bar 6
3 bar 2 bar 8
4 baz 3 NaN NaN
5 NaN NaN qux 7

34.2.1.8 pandas.merge_ordered

pandas.merge_ordered(left, right, on=None, left_on=None, right_on=None, left_by=None,
right_by=None, fill_method=None, suffixes=(’_x’, ’_y’), how=’outer’)

Perform merge with optional filling/interpolation designed for ordered data like time series data. Optionally
perform group-wise merge (see examples)

Parameters

left [DataFrame]

right [DataFrame]

on : label or list

Field names to join on. Must be found in both DataFrames.

left_on : label or list, or array-like

Field names to join on in left DataFrame. Can be a vector or list of vectors of the length
of the DataFrame to use a particular vector as the join key instead of columns

right_on : label or list, or array-like

Field names to join on in right DataFrame or vector/list of vectors per left_on docs

left_by : column name or list of column names

34.2. General functions 1391

pandas: powerful Python data analysis toolkit, Release 0.23.4

Group left DataFrame by group columns and merge piece by piece with right DataFrame

right_by : column name or list of column names

Group right DataFrame by group columns and merge piece by piece with left DataFrame

fill_method : {‘ffill’, None}, default None

Interpolation method for data

suffixes : 2-length sequence (tuple, list, . . .)

Suffix to apply to overlapping column names in the left and right side, respectively

how : {‘left’, ‘right’, ‘outer’, ‘inner’}, default ‘outer’

• left: use only keys from left frame (SQL: left outer join)

• right: use only keys from right frame (SQL: right outer join)

• outer: use union of keys from both frames (SQL: full outer join)

• inner: use intersection of keys from both frames (SQL: inner join)

New in version 0.19.0.

Returns merged : DataFrame

The output type will the be same as ‘left’, if it is a subclass of DataFrame.

See also:

merge, merge_asof

Examples

>>> A >>> B
key lvalue group key rvalue

0 a 1 a 0 b 1
1 c 2 a 1 c 2
2 e 3 a 2 d 3
3 a 1 b
4 c 2 b
5 e 3 b

>>> merge_ordered(A, B, fill_method='ffill', left_by='group')
group key lvalue rvalue

0 a a 1 NaN
1 a b 1 1.0
2 a c 2 2.0
3 a d 2 3.0
4 a e 3 3.0
5 b a 1 NaN
6 b b 1 1.0
7 b c 2 2.0
8 b d 2 3.0
9 b e 3 3.0

1392 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

34.2.1.9 pandas.merge_asof

pandas.merge_asof(left, right, on=None, left_on=None, right_on=None, left_index=False,
right_index=False, by=None, left_by=None, right_by=None, suffixes=(’_x’,
’_y’), tolerance=None, allow_exact_matches=True, direction=’backward’)

Perform an asof merge. This is similar to a left-join except that we match on nearest key rather than equal keys.

Both DataFrames must be sorted by the key.

For each row in the left DataFrame:

• A “backward” search selects the last row in the right DataFrame whose ‘on’ key is less than or equal to the
left’s key.

• A “forward” search selects the first row in the right DataFrame whose ‘on’ key is greater than or equal to
the left’s key.

• A “nearest” search selects the row in the right DataFrame whose ‘on’ key is closest in absolute distance to
the left’s key.

The default is “backward” and is compatible in versions below 0.20.0. The direction parameter was added in
version 0.20.0 and introduces “forward” and “nearest”.

Optionally match on equivalent keys with ‘by’ before searching with ‘on’.

New in version 0.19.0.

Parameters

left [DataFrame]

right [DataFrame]

on : label

Field name to join on. Must be found in both DataFrames. The data MUST be ordered.
Furthermore this must be a numeric column, such as datetimelike, integer, or float. On
or left_on/right_on must be given.

left_on : label

Field name to join on in left DataFrame.

right_on : label

Field name to join on in right DataFrame.

left_index : boolean

Use the index of the left DataFrame as the join key.

New in version 0.19.2.

right_index : boolean

Use the index of the right DataFrame as the join key.

New in version 0.19.2.

by : column name or list of column names

Match on these columns before performing merge operation.

left_by : column name

Field names to match on in the left DataFrame.

New in version 0.19.2.

34.2. General functions 1393

pandas: powerful Python data analysis toolkit, Release 0.23.4

right_by : column name

Field names to match on in the right DataFrame.

New in version 0.19.2.

suffixes : 2-length sequence (tuple, list, . . .)

Suffix to apply to overlapping column names in the left and right side, respectively.

tolerance : integer or Timedelta, optional, default None

Select asof tolerance within this range; must be compatible with the merge index.

allow_exact_matches : boolean, default True

• If True, allow matching with the same ‘on’ value (i.e. less-than-or-equal-to / greater-than-
or-equal-to)

• If False, don’t match the same ‘on’ value (i.e., stricly less-than / strictly greater-than)

direction : ‘backward’ (default), ‘forward’, or ‘nearest’

Whether to search for prior, subsequent, or closest matches.

New in version 0.20.0.

Returns

merged [DataFrame]

See also:

merge, merge_ordered

Examples

>>> left = pd.DataFrame({'a': [1, 5, 10], 'left_val': ['a', 'b', 'c']})
>>> left

a left_val
0 1 a
1 5 b
2 10 c

>>> right = pd.DataFrame({'a': [1, 2, 3, 6, 7],
... 'right_val': [1, 2, 3, 6, 7]})
>>> right

a right_val
0 1 1
1 2 2
2 3 3
3 6 6
4 7 7

>>> pd.merge_asof(left, right, on='a')
a left_val right_val

0 1 a 1
1 5 b 3
2 10 c 7

1394 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

>>> pd.merge_asof(left, right, on='a', allow_exact_matches=False)
a left_val right_val

0 1 a NaN
1 5 b 3.0
2 10 c 7.0

>>> pd.merge_asof(left, right, on='a', direction='forward')
a left_val right_val

0 1 a 1.0
1 5 b 6.0
2 10 c NaN

>>> pd.merge_asof(left, right, on='a', direction='nearest')
a left_val right_val

0 1 a 1
1 5 b 6
2 10 c 7

We can use indexed DataFrames as well.

>>> left = pd.DataFrame({'left_val': ['a', 'b', 'c']}, index=[1, 5, 10])
>>> left

left_val
1 a
5 b
10 c

>>> right = pd.DataFrame({'right_val': [1, 2, 3, 6, 7]},
... index=[1, 2, 3, 6, 7])
>>> right

right_val
1 1
2 2
3 3
6 6
7 7

>>> pd.merge_asof(left, right, left_index=True, right_index=True)
left_val right_val

1 a 1
5 b 3
10 c 7

Here is a real-world times-series example

>>> quotes
time ticker bid ask

0 2016-05-25 13:30:00.023 GOOG 720.50 720.93
1 2016-05-25 13:30:00.023 MSFT 51.95 51.96
2 2016-05-25 13:30:00.030 MSFT 51.97 51.98
3 2016-05-25 13:30:00.041 MSFT 51.99 52.00
4 2016-05-25 13:30:00.048 GOOG 720.50 720.93
5 2016-05-25 13:30:00.049 AAPL 97.99 98.01
6 2016-05-25 13:30:00.072 GOOG 720.50 720.88
7 2016-05-25 13:30:00.075 MSFT 52.01 52.03

34.2. General functions 1395

pandas: powerful Python data analysis toolkit, Release 0.23.4

>>> trades
time ticker price quantity

0 2016-05-25 13:30:00.023 MSFT 51.95 75
1 2016-05-25 13:30:00.038 MSFT 51.95 155
2 2016-05-25 13:30:00.048 GOOG 720.77 100
3 2016-05-25 13:30:00.048 GOOG 720.92 100
4 2016-05-25 13:30:00.048 AAPL 98.00 100

By default we are taking the asof of the quotes

>>> pd.merge_asof(trades, quotes,
... on='time',
... by='ticker')

time ticker price quantity bid ask
0 2016-05-25 13:30:00.023 MSFT 51.95 75 51.95 51.96
1 2016-05-25 13:30:00.038 MSFT 51.95 155 51.97 51.98
2 2016-05-25 13:30:00.048 GOOG 720.77 100 720.50 720.93
3 2016-05-25 13:30:00.048 GOOG 720.92 100 720.50 720.93
4 2016-05-25 13:30:00.048 AAPL 98.00 100 NaN NaN

We only asof within 2ms between the quote time and the trade time

>>> pd.merge_asof(trades, quotes,
... on='time',
... by='ticker',
... tolerance=pd.Timedelta('2ms'))

time ticker price quantity bid ask
0 2016-05-25 13:30:00.023 MSFT 51.95 75 51.95 51.96
1 2016-05-25 13:30:00.038 MSFT 51.95 155 NaN NaN
2 2016-05-25 13:30:00.048 GOOG 720.77 100 720.50 720.93
3 2016-05-25 13:30:00.048 GOOG 720.92 100 720.50 720.93
4 2016-05-25 13:30:00.048 AAPL 98.00 100 NaN NaN

We only asof within 10ms between the quote time and the trade time and we exclude exact matches on time.
However prior data will propagate forward

>>> pd.merge_asof(trades, quotes,
... on='time',
... by='ticker',
... tolerance=pd.Timedelta('10ms'),
... allow_exact_matches=False)

time ticker price quantity bid ask
0 2016-05-25 13:30:00.023 MSFT 51.95 75 NaN NaN
1 2016-05-25 13:30:00.038 MSFT 51.95 155 51.97 51.98
2 2016-05-25 13:30:00.048 GOOG 720.77 100 NaN NaN
3 2016-05-25 13:30:00.048 GOOG 720.92 100 NaN NaN
4 2016-05-25 13:30:00.048 AAPL 98.00 100 NaN NaN

34.2.1.10 pandas.concat

pandas.concat(objs, axis=0, join=’outer’, join_axes=None, ignore_index=False, keys=None, lev-
els=None, names=None, verify_integrity=False, sort=None, copy=True)

Concatenate pandas objects along a particular axis with optional set logic along the other axes.

Can also add a layer of hierarchical indexing on the concatenation axis, which may be useful if the labels are
the same (or overlapping) on the passed axis number.

1396 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

Parameters objs : a sequence or mapping of Series, DataFrame, or Panel objects

If a dict is passed, the sorted keys will be used as the keys argument, unless it is passed,
in which case the values will be selected (see below). Any None objects will be dropped
silently unless they are all None in which case a ValueError will be raised

axis : {0/’index’, 1/’columns’}, default 0

The axis to concatenate along

join : {‘inner’, ‘outer’}, default ‘outer’

How to handle indexes on other axis(es)

join_axes : list of Index objects

Specific indexes to use for the other n - 1 axes instead of performing inner/outer set
logic

ignore_index : boolean, default False

If True, do not use the index values along the concatenation axis. The resulting axis
will be labeled 0, . . . , n - 1. This is useful if you are concatenating objects where
the concatenation axis does not have meaningful indexing information. Note the index
values on the other axes are still respected in the join.

keys : sequence, default None

If multiple levels passed, should contain tuples. Construct hierarchical index using the
passed keys as the outermost level

levels : list of sequences, default None

Specific levels (unique values) to use for constructing a MultiIndex. Otherwise they will
be inferred from the keys

names : list, default None

Names for the levels in the resulting hierarchical index

verify_integrity : boolean, default False

Check whether the new concatenated axis contains duplicates. This can be very expen-
sive relative to the actual data concatenation

sort : boolean, default None

Sort non-concatenation axis if it is not already aligned when join is ‘outer’. The current
default of sorting is deprecated and will change to not-sorting in a future version of
pandas.

Explicitly pass sort=True to silence the warning and sort. Explicitly pass
sort=False to silence the warning and not sort.

This has no effect when join='inner', which already preserves the order of the
non-concatenation axis.

New in version 0.23.0.

copy : boolean, default True

If False, do not copy data unnecessarily

Returns concatenated : object, type of objs

34.2. General functions 1397

pandas: powerful Python data analysis toolkit, Release 0.23.4

When concatenating all Series along the index (axis=0), a Series is returned.
When objs contains at least one DataFrame, a DataFrame is returned. When
concatenating along the columns (axis=1), a DataFrame is returned.

See also:

Series.append, DataFrame.append, DataFrame.join, DataFrame.merge

Notes

The keys, levels, and names arguments are all optional.

A walkthrough of how this method fits in with other tools for combining pandas objects can be found here.

Examples

Combine two Series.

>>> s1 = pd.Series(['a', 'b'])
>>> s2 = pd.Series(['c', 'd'])
>>> pd.concat([s1, s2])
0 a
1 b
0 c
1 d
dtype: object

Clear the existing index and reset it in the result by setting the ignore_index option to True.

>>> pd.concat([s1, s2], ignore_index=True)
0 a
1 b
2 c
3 d
dtype: object

Add a hierarchical index at the outermost level of the data with the keys option.

>>> pd.concat([s1, s2], keys=['s1', 's2',])
s1 0 a

1 b
s2 0 c

1 d
dtype: object

Label the index keys you create with the names option.

>>> pd.concat([s1, s2], keys=['s1', 's2'],
... names=['Series name', 'Row ID'])
Series name Row ID
s1 0 a

1 b
s2 0 c

1 d
dtype: object

Combine two DataFrame objects with identical columns.

1398 Chapter 34. API Reference

http://pandas.pydata.org/pandas-docs/stable/merging.html

pandas: powerful Python data analysis toolkit, Release 0.23.4

>>> df1 = pd.DataFrame([['a', 1], ['b', 2]],
... columns=['letter', 'number'])
>>> df1
letter number

0 a 1
1 b 2
>>> df2 = pd.DataFrame([['c', 3], ['d', 4]],
... columns=['letter', 'number'])
>>> df2
letter number

0 c 3
1 d 4
>>> pd.concat([df1, df2])
letter number

0 a 1
1 b 2
0 c 3
1 d 4

Combine DataFrame objects with overlapping columns and return everything. Columns outside the intersec-
tion will be filled with NaN values.

>>> df3 = pd.DataFrame([['c', 3, 'cat'], ['d', 4, 'dog']],
... columns=['letter', 'number', 'animal'])
>>> df3
letter number animal

0 c 3 cat
1 d 4 dog
>>> pd.concat([df1, df3])
animal letter number

0 NaN a 1
1 NaN b 2
0 cat c 3
1 dog d 4

Combine DataFrame objects with overlapping columns and return only those that are shared by passing
inner to the join keyword argument.

>>> pd.concat([df1, df3], join="inner")
letter number

0 a 1
1 b 2
0 c 3
1 d 4

Combine DataFrame objects horizontally along the x axis by passing in axis=1.

>>> df4 = pd.DataFrame([['bird', 'polly'], ['monkey', 'george']],
... columns=['animal', 'name'])
>>> pd.concat([df1, df4], axis=1)
letter number animal name

0 a 1 bird polly
1 b 2 monkey george

Prevent the result from including duplicate index values with the verify_integrity option.

34.2. General functions 1399

pandas: powerful Python data analysis toolkit, Release 0.23.4

>>> df5 = pd.DataFrame([1], index=['a'])
>>> df5

0
a 1
>>> df6 = pd.DataFrame([2], index=['a'])
>>> df6

0
a 2
>>> pd.concat([df5, df6], verify_integrity=True)
Traceback (most recent call last):

...
ValueError: Indexes have overlapping values: ['a']

34.2.1.11 pandas.get_dummies

pandas.get_dummies(data, prefix=None, prefix_sep=’_’, dummy_na=False, columns=None,
sparse=False, drop_first=False, dtype=None)

Convert categorical variable into dummy/indicator variables

Parameters

data [array-like, Series, or DataFrame]

prefix : string, list of strings, or dict of strings, default None

String to append DataFrame column names. Pass a list with length equal to the number
of columns when calling get_dummies on a DataFrame. Alternatively, prefix can be a
dictionary mapping column names to prefixes.

prefix_sep : string, default ‘_’

If appending prefix, separator/delimiter to use. Or pass a list or dictionary as with prefix.

dummy_na : bool, default False

Add a column to indicate NaNs, if False NaNs are ignored.

columns : list-like, default None

Column names in the DataFrame to be encoded. If columns is None then all the columns
with object or category dtype will be converted.

sparse : bool, default False

Whether the dummy columns should be sparse or not. Returns SparseDataFrame if
data is a Series or if all columns are included. Otherwise returns a DataFrame with
some SparseBlocks.

drop_first : bool, default False

Whether to get k-1 dummies out of k categorical levels by removing the first level.

New in version 0.18.0.

dtype : dtype, default np.uint8

Data type for new columns. Only a single dtype is allowed.

New in version 0.23.0.

Returns

dummies [DataFrame or SparseDataFrame]

1400 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

See also:

Series.str.get_dummies

Examples

>>> import pandas as pd
>>> s = pd.Series(list('abca'))

>>> pd.get_dummies(s)
a b c

0 1 0 0
1 0 1 0
2 0 0 1
3 1 0 0

>>> s1 = ['a', 'b', np.nan]

>>> pd.get_dummies(s1)
a b

0 1 0
1 0 1
2 0 0

>>> pd.get_dummies(s1, dummy_na=True)
a b NaN

0 1 0 0
1 0 1 0
2 0 0 1

>>> df = pd.DataFrame({'A': ['a', 'b', 'a'], 'B': ['b', 'a', 'c'],
... 'C': [1, 2, 3]})

>>> pd.get_dummies(df, prefix=['col1', 'col2'])
C col1_a col1_b col2_a col2_b col2_c

0 1 1 0 0 1 0
1 2 0 1 1 0 0
2 3 1 0 0 0 1

>>> pd.get_dummies(pd.Series(list('abcaa')))
a b c

0 1 0 0
1 0 1 0
2 0 0 1
3 1 0 0
4 1 0 0

>>> pd.get_dummies(pd.Series(list('abcaa')), drop_first=True)
b c

0 0 0
1 1 0
2 0 1
3 0 0
4 0 0

34.2. General functions 1401

pandas: powerful Python data analysis toolkit, Release 0.23.4

>>> pd.get_dummies(pd.Series(list('abc')), dtype=float)
a b c

0 1.0 0.0 0.0
1 0.0 1.0 0.0
2 0.0 0.0 1.0

34.2.1.12 pandas.factorize

pandas.factorize(values, sort=False, order=None, na_sentinel=-1, size_hint=None)
Encode the object as an enumerated type or categorical variable.

This method is useful for obtaining a numeric representation of an array when all that matters is identifying
distinct values. factorize is available as both a top-level function pandas.factorize(), and as a method
Series.factorize() and Index.factorize().

Parameters values : sequence

A 1-D seqeunce. Sequences that aren’t pandas objects are coereced to ndarrays before
factorization.

sort : bool, default False

Sort uniques and shuffle labels to maintain the relationship.

order

Deprecated since version 0.23.0: This parameter has no effect and is deprecated.

na_sentinel : int, default -1

Value to mark “not found”.

size_hint : int, optional

Hint to the hashtable sizer.

Returns labels : ndarray

An integer ndarray that’s an indexer into uniques. uniques.take(labels) will
have the same values as values.

uniques : ndarray, Index, or Categorical

The unique valid values. When values is Categorical, uniques is a Categorical. When
values is some other pandas object, an Index is returned. Otherwise, a 1-D ndarray is
returned.

Note: Even if there’s a missing value in values, uniques will not contain an entry for
it.

See also:

pandas.cut Discretize continuous-valued array.

pandas.unique Find the unique valuse in an array.

1402 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

Examples

These examples all show factorize as a top-level method like pd.factorize(values). The results are
identical for methods like Series.factorize().

>>> labels, uniques = pd.factorize(['b', 'b', 'a', 'c', 'b'])
>>> labels
array([0, 0, 1, 2, 0])
>>> uniques
array(['b', 'a', 'c'], dtype=object)

With sort=True, the uniques will be sorted, and labels will be shuffled so that the relationship is the main-
tained.

>>> labels, uniques = pd.factorize(['b', 'b', 'a', 'c', 'b'], sort=True)
>>> labels
array([1, 1, 0, 2, 1])
>>> uniques
array(['a', 'b', 'c'], dtype=object)

Missing values are indicated in labels with na_sentinel (-1 by default). Note that missing values are never
included in uniques.

>>> labels, uniques = pd.factorize(['b', None, 'a', 'c', 'b'])
>>> labels
array([0, -1, 1, 2, 0])
>>> uniques
array(['b', 'a', 'c'], dtype=object)

Thus far, we’ve only factorized lists (which are internally coerced to NumPy arrays). When factorizing pandas
objects, the type of uniques will differ. For Categoricals, a Categorical is returned.

>>> cat = pd.Categorical(['a', 'a', 'c'], categories=['a', 'b', 'c'])
>>> labels, uniques = pd.factorize(cat)
>>> labels
array([0, 0, 1])
>>> uniques
[a, c]
Categories (3, object): [a, b, c]

Notice that 'b' is in uniques.categories, desipite not being present in cat.values.

For all other pandas objects, an Index of the appropriate type is returned.

>>> cat = pd.Series(['a', 'a', 'c'])
>>> labels, uniques = pd.factorize(cat)
>>> labels
array([0, 0, 1])
>>> uniques
Index(['a', 'c'], dtype='object')

34.2.1.13 pandas.unique

pandas.unique(values)
Hash table-based unique. Uniques are returned in order of appearance. This does NOT sort.

Significantly faster than numpy.unique. Includes NA values.

34.2. General functions 1403

pandas: powerful Python data analysis toolkit, Release 0.23.4

Parameters

values [1d array-like]

Returns unique values.

• If the input is an Index, the return is an Index

• If the input is a Categorical dtype, the return is a Categorical

• If the input is a Series/ndarray, the return will be an ndarray

See also:

pandas.Index.unique, pandas.Series.unique

Examples

>>> pd.unique(pd.Series([2, 1, 3, 3]))
array([2, 1, 3])

>>> pd.unique(pd.Series([2] + [1] * 5))
array([2, 1])

>>> pd.unique(Series([pd.Timestamp('20160101'),
... pd.Timestamp('20160101')]))
array(['2016-01-01T00:00:00.000000000'], dtype='datetime64[ns]')

>>> pd.unique(pd.Series([pd.Timestamp('20160101', tz='US/Eastern'),
... pd.Timestamp('20160101', tz='US/Eastern')]))
array([Timestamp('2016-01-01 00:00:00-0500', tz='US/Eastern')],

dtype=object)

>>> pd.unique(pd.Index([pd.Timestamp('20160101', tz='US/Eastern'),
... pd.Timestamp('20160101', tz='US/Eastern')]))
DatetimeIndex(['2016-01-01 00:00:00-05:00'],
... dtype='datetime64[ns, US/Eastern]', freq=None)

>>> pd.unique(list('baabc'))
array(['b', 'a', 'c'], dtype=object)

An unordered Categorical will return categories in the order of appearance.

>>> pd.unique(Series(pd.Categorical(list('baabc'))))
[b, a, c]
Categories (3, object): [b, a, c]

>>> pd.unique(Series(pd.Categorical(list('baabc'),
... categories=list('abc'))))
[b, a, c]
Categories (3, object): [b, a, c]

An ordered Categorical preserves the category ordering.

>>> pd.unique(Series(pd.Categorical(list('baabc'),
... categories=list('abc'),

(continues on next page)

1404 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

... ordered=True)))
[b, a, c]
Categories (3, object): [a < b < c]

An array of tuples

>>> pd.unique([('a', 'b'), ('b', 'a'), ('a', 'c'), ('b', 'a')])
array([('a', 'b'), ('b', 'a'), ('a', 'c')], dtype=object)

34.2.1.14 pandas.wide_to_long

pandas.wide_to_long(df, stubnames, i, j, sep=”, suffix=’\\d+’)
Wide panel to long format. Less flexible but more user-friendly than melt.

With stubnames [‘A’, ‘B’], this function expects to find one or more group of columns with format Asuffix1,
Asuffix2,. . . , Bsuffix1, Bsuffix2,. . . You specify what you want to call this suffix in the resulting long format
with j (for example j=’year’)

Each row of these wide variables are assumed to be uniquely identified by i (can be a single column name or a
list of column names)

All remaining variables in the data frame are left intact.

Parameters df : DataFrame

The wide-format DataFrame

stubnames : str or list-like

The stub name(s). The wide format variables are assumed to start with the stub names.

i : str or list-like

Column(s) to use as id variable(s)

j : str

The name of the subobservation variable. What you wish to name your suffix in the
long format.

sep : str, default “”

A character indicating the separation of the variable names in the wide format, to be
stripped from the names in the long format. For example, if your column names are
A-suffix1, A-suffix2, you can strip the hyphen by specifying sep=’-‘

New in version 0.20.0.

suffix : str, default ‘\d+’

A regular expression capturing the wanted suffixes. ‘\d+’ captures numeric suffixes.
Suffixes with no numbers could be specified with the negated character class ‘\D+’.
You can also further disambiguate suffixes, for example, if your wide variables are of
the form Aone, Btwo,.., and you have an unrelated column Arating, you can ignore the
last one by specifying suffix=’(!?one|two)’

New in version 0.20.0.

Changed in version 0.23.0: When all suffixes are numeric, they are cast to int64/float64.

Returns DataFrame

34.2. General functions 1405

pandas: powerful Python data analysis toolkit, Release 0.23.4

A DataFrame that contains each stub name as a variable, with new index (i, j)

Notes

All extra variables are left untouched. This simply uses pandas.melt under the hood, but is hard-coded to “do
the right thing” in a typical case.

Examples

>>> import pandas as pd
>>> import numpy as np
>>> np.random.seed(123)
>>> df = pd.DataFrame({"A1970" : {0 : "a", 1 : "b", 2 : "c"},
... "A1980" : {0 : "d", 1 : "e", 2 : "f"},
... "B1970" : {0 : 2.5, 1 : 1.2, 2 : .7},
... "B1980" : {0 : 3.2, 1 : 1.3, 2 : .1},
... "X" : dict(zip(range(3), np.random.randn(3)))
... })
>>> df["id"] = df.index
>>> df
A1970 A1980 B1970 B1980 X id

0 a d 2.5 3.2 -1.085631 0
1 b e 1.2 1.3 0.997345 1
2 c f 0.7 0.1 0.282978 2
>>> pd.wide_to_long(df, ["A", "B"], i="id", j="year")
...

X A B
id year
0 1970 -1.085631 a 2.5
1 1970 0.997345 b 1.2
2 1970 0.282978 c 0.7
0 1980 -1.085631 d 3.2
1 1980 0.997345 e 1.3
2 1980 0.282978 f 0.1

With multuple id columns

>>> df = pd.DataFrame({
... 'famid': [1, 1, 1, 2, 2, 2, 3, 3, 3],
... 'birth': [1, 2, 3, 1, 2, 3, 1, 2, 3],
... 'ht1': [2.8, 2.9, 2.2, 2, 1.8, 1.9, 2.2, 2.3, 2.1],
... 'ht2': [3.4, 3.8, 2.9, 3.2, 2.8, 2.4, 3.3, 3.4, 2.9]
... })
>>> df

birth famid ht1 ht2
0 1 1 2.8 3.4
1 2 1 2.9 3.8
2 3 1 2.2 2.9
3 1 2 2.0 3.2
4 2 2 1.8 2.8
5 3 2 1.9 2.4
6 1 3 2.2 3.3
7 2 3 2.3 3.4
8 3 3 2.1 2.9
>>> l = pd.wide_to_long(df, stubnames='ht', i=['famid', 'birth'], j='age')

(continues on next page)

1406 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

>>> l
...

ht
famid birth age
1 1 1 2.8

2 3.4
2 1 2.9

2 3.8
3 1 2.2

2 2.9
2 1 1 2.0

2 3.2
2 1 1.8

2 2.8
3 1 1.9

2 2.4
3 1 1 2.2

2 3.3
2 1 2.3

2 3.4
3 1 2.1

2 2.9

Going from long back to wide just takes some creative use of unstack

>>> w = l.unstack()
>>> w.columns = w.columns.map('{0[0]}{0[1]}'.format)
>>> w.reset_index()

famid birth ht1 ht2
0 1 1 2.8 3.4
1 1 2 2.9 3.8
2 1 3 2.2 2.9
3 2 1 2.0 3.2
4 2 2 1.8 2.8
5 2 3 1.9 2.4
6 3 1 2.2 3.3
7 3 2 2.3 3.4
8 3 3 2.1 2.9

Less wieldy column names are also handled

>>> np.random.seed(0)
>>> df = pd.DataFrame({'A(quarterly)-2010': np.random.rand(3),
... 'A(quarterly)-2011': np.random.rand(3),
... 'B(quarterly)-2010': np.random.rand(3),
... 'B(quarterly)-2011': np.random.rand(3),
... 'X' : np.random.randint(3, size=3)})
>>> df['id'] = df.index
>>> df

A(quarterly)-2010 A(quarterly)-2011 B(quarterly)-2010 ...
0 0.548814 0.544883 0.437587 ...
1 0.715189 0.423655 0.891773 ...
2 0.602763 0.645894 0.963663 ...

X id
0 0 0
1 1 1
2 1 2

34.2. General functions 1407

pandas: powerful Python data analysis toolkit, Release 0.23.4

>>> pd.wide_to_long(df, ['A(quarterly)', 'B(quarterly)'], i='id',
... j='year', sep='-')
...

X A(quarterly) B(quarterly)
id year
0 2010 0 0.548814 0.437587
1 2010 1 0.715189 0.891773
2 2010 1 0.602763 0.963663
0 2011 0 0.544883 0.383442
1 2011 1 0.423655 0.791725
2 2011 1 0.645894 0.528895

If we have many columns, we could also use a regex to find our stubnames and pass that list on to wide_to_long

>>> stubnames = sorted(
... set([match[0] for match in df.columns.str.findall(
... r'[A-B]\(.*\)').values if match != []])
...)
>>> list(stubnames)
['A(quarterly)', 'B(quarterly)']

All of the above examples have integers as suffixes. It is possible to have non-integers as suffixes.

>>> df = pd.DataFrame({
... 'famid': [1, 1, 1, 2, 2, 2, 3, 3, 3],
... 'birth': [1, 2, 3, 1, 2, 3, 1, 2, 3],
... 'ht_one': [2.8, 2.9, 2.2, 2, 1.8, 1.9, 2.2, 2.3, 2.1],
... 'ht_two': [3.4, 3.8, 2.9, 3.2, 2.8, 2.4, 3.3, 3.4, 2.9]
... })
>>> df

birth famid ht_one ht_two
0 1 1 2.8 3.4
1 2 1 2.9 3.8
2 3 1 2.2 2.9
3 1 2 2.0 3.2
4 2 2 1.8 2.8
5 3 2 1.9 2.4
6 1 3 2.2 3.3
7 2 3 2.3 3.4
8 3 3 2.1 2.9

>>> l = pd.wide_to_long(df, stubnames='ht', i=['famid', 'birth'], j='age',
sep='_', suffix='\w')

>>> l
...

ht
famid birth age
1 1 one 2.8

two 3.4
2 one 2.9

two 3.8
3 one 2.2

two 2.9
2 1 one 2.0

two 3.2
2 one 1.8

two 2.8

(continues on next page)

1408 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

3 one 1.9
two 2.4

3 1 one 2.2
two 3.3

2 one 2.3
two 3.4

3 one 2.1
two 2.9

34.2.2 Top-level missing data

isna(obj) Detect missing values for an array-like object.
isnull(obj) Detect missing values for an array-like object.
notna(obj) Detect non-missing values for an array-like object.
notnull(obj) Detect non-missing values for an array-like object.

34.2.2.1 pandas.isna

pandas.isna(obj)
Detect missing values for an array-like object.

This function takes a scalar or array-like object and indictates whether values are missing (NaN in numeric
arrays, None or NaN in object arrays, NaT in datetimelike).

Parameters obj : scalar or array-like

Object to check for null or missing values.

Returns bool or array-like of bool

For scalar input, returns a scalar boolean. For array input, returns an array of boolean
indicating whether each corresponding element is missing.

See also:

notna boolean inverse of pandas.isna.

Series.isna Detetct missing values in a Series.

DataFrame.isna Detect missing values in a DataFrame.

Index.isna Detect missing values in an Index.

Examples

Scalar arguments (including strings) result in a scalar boolean.

>>> pd.isna('dog')
False

>>> pd.isna(np.nan)
True

ndarrays result in an ndarray of booleans.

34.2. General functions 1409

pandas: powerful Python data analysis toolkit, Release 0.23.4

>>> array = np.array([[1, np.nan, 3], [4, 5, np.nan]])
>>> array
array([[1., nan, 3.],

[4., 5., nan]])
>>> pd.isna(array)
array([[False, True, False],

[False, False, True]])

For indexes, an ndarray of booleans is returned.

>>> index = pd.DatetimeIndex(["2017-07-05", "2017-07-06", None,
... "2017-07-08"])
>>> index
DatetimeIndex(['2017-07-05', '2017-07-06', 'NaT', '2017-07-08'],

dtype='datetime64[ns]', freq=None)
>>> pd.isna(index)
array([False, False, True, False])

For Series and DataFrame, the same type is returned, containing booleans.

>>> df = pd.DataFrame([['ant', 'bee', 'cat'], ['dog', None, 'fly']])
>>> df

0 1 2
0 ant bee cat
1 dog None fly
>>> pd.isna(df)

0 1 2
0 False False False
1 False True False

>>> pd.isna(df[1])
0 False
1 True
Name: 1, dtype: bool

34.2.2.2 pandas.isnull

pandas.isnull(obj)
Detect missing values for an array-like object.

This function takes a scalar or array-like object and indictates whether values are missing (NaN in numeric
arrays, None or NaN in object arrays, NaT in datetimelike).

Parameters obj : scalar or array-like

Object to check for null or missing values.

Returns bool or array-like of bool

For scalar input, returns a scalar boolean. For array input, returns an array of boolean
indicating whether each corresponding element is missing.

See also:

notna boolean inverse of pandas.isna.

Series.isna Detetct missing values in a Series.

DataFrame.isna Detect missing values in a DataFrame.

1410 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

Index.isna Detect missing values in an Index.

Examples

Scalar arguments (including strings) result in a scalar boolean.

>>> pd.isna('dog')
False

>>> pd.isna(np.nan)
True

ndarrays result in an ndarray of booleans.

>>> array = np.array([[1, np.nan, 3], [4, 5, np.nan]])
>>> array
array([[1., nan, 3.],

[4., 5., nan]])
>>> pd.isna(array)
array([[False, True, False],

[False, False, True]])

For indexes, an ndarray of booleans is returned.

>>> index = pd.DatetimeIndex(["2017-07-05", "2017-07-06", None,
... "2017-07-08"])
>>> index
DatetimeIndex(['2017-07-05', '2017-07-06', 'NaT', '2017-07-08'],

dtype='datetime64[ns]', freq=None)
>>> pd.isna(index)
array([False, False, True, False])

For Series and DataFrame, the same type is returned, containing booleans.

>>> df = pd.DataFrame([['ant', 'bee', 'cat'], ['dog', None, 'fly']])
>>> df

0 1 2
0 ant bee cat
1 dog None fly
>>> pd.isna(df)

0 1 2
0 False False False
1 False True False

>>> pd.isna(df[1])
0 False
1 True
Name: 1, dtype: bool

34.2.2.3 pandas.notna

pandas.notna(obj)
Detect non-missing values for an array-like object.

34.2. General functions 1411

pandas: powerful Python data analysis toolkit, Release 0.23.4

This function takes a scalar or array-like object and indictates whether values are valid (not missing, which is
NaN in numeric arrays, None or NaN in object arrays, NaT in datetimelike).

Parameters obj : array-like or object value

Object to check for not null or non-missing values.

Returns bool or array-like of bool

For scalar input, returns a scalar boolean. For array input, returns an array of boolean
indicating whether each corresponding element is valid.

See also:

isna boolean inverse of pandas.notna.

Series.notna Detetct valid values in a Series.

DataFrame.notna Detect valid values in a DataFrame.

Index.notna Detect valid values in an Index.

Examples

Scalar arguments (including strings) result in a scalar boolean.

>>> pd.notna('dog')
True

>>> pd.notna(np.nan)
False

ndarrays result in an ndarray of booleans.

>>> array = np.array([[1, np.nan, 3], [4, 5, np.nan]])
>>> array
array([[1., nan, 3.],

[4., 5., nan]])
>>> pd.notna(array)
array([[True, False, True],

[True, True, False]])

For indexes, an ndarray of booleans is returned.

>>> index = pd.DatetimeIndex(["2017-07-05", "2017-07-06", None,
... "2017-07-08"])
>>> index
DatetimeIndex(['2017-07-05', '2017-07-06', 'NaT', '2017-07-08'],

dtype='datetime64[ns]', freq=None)
>>> pd.notna(index)
array([True, True, False, True])

For Series and DataFrame, the same type is returned, containing booleans.

>>> df = pd.DataFrame([['ant', 'bee', 'cat'], ['dog', None, 'fly']])
>>> df

0 1 2
0 ant bee cat

(continues on next page)

1412 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

1 dog None fly
>>> pd.notna(df)

0 1 2
0 True True True
1 True False True

>>> pd.notna(df[1])
0 True
1 False
Name: 1, dtype: bool

34.2.2.4 pandas.notnull

pandas.notnull(obj)
Detect non-missing values for an array-like object.

This function takes a scalar or array-like object and indictates whether values are valid (not missing, which is
NaN in numeric arrays, None or NaN in object arrays, NaT in datetimelike).

Parameters obj : array-like or object value

Object to check for not null or non-missing values.

Returns bool or array-like of bool

For scalar input, returns a scalar boolean. For array input, returns an array of boolean
indicating whether each corresponding element is valid.

See also:

isna boolean inverse of pandas.notna.

Series.notna Detetct valid values in a Series.

DataFrame.notna Detect valid values in a DataFrame.

Index.notna Detect valid values in an Index.

Examples

Scalar arguments (including strings) result in a scalar boolean.

>>> pd.notna('dog')
True

>>> pd.notna(np.nan)
False

ndarrays result in an ndarray of booleans.

>>> array = np.array([[1, np.nan, 3], [4, 5, np.nan]])
>>> array
array([[1., nan, 3.],

[4., 5., nan]])
>>> pd.notna(array)

(continues on next page)

34.2. General functions 1413

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

array([[True, False, True],
[True, True, False]])

For indexes, an ndarray of booleans is returned.

>>> index = pd.DatetimeIndex(["2017-07-05", "2017-07-06", None,
... "2017-07-08"])
>>> index
DatetimeIndex(['2017-07-05', '2017-07-06', 'NaT', '2017-07-08'],

dtype='datetime64[ns]', freq=None)
>>> pd.notna(index)
array([True, True, False, True])

For Series and DataFrame, the same type is returned, containing booleans.

>>> df = pd.DataFrame([['ant', 'bee', 'cat'], ['dog', None, 'fly']])
>>> df

0 1 2
0 ant bee cat
1 dog None fly
>>> pd.notna(df)

0 1 2
0 True True True
1 True False True

>>> pd.notna(df[1])
0 True
1 False
Name: 1, dtype: bool

34.2.3 Top-level conversions

to_numeric(arg[, errors, downcast]) Convert argument to a numeric type.

34.2.3.1 pandas.to_numeric

pandas.to_numeric(arg, errors=’raise’, downcast=None)
Convert argument to a numeric type.

Parameters

arg [list, tuple, 1-d array, or Series]

errors : {‘ignore’, ‘raise’, ‘coerce’}, default ‘raise’

• If ‘raise’, then invalid parsing will raise an exception

• If ‘coerce’, then invalid parsing will be set as NaN

• If ‘ignore’, then invalid parsing will return the input

downcast : {‘integer’, ‘signed’, ‘unsigned’, ‘float’} , default None

If not None, and if the data has been successfully cast to a numerical dtype (or if the
data was numeric to begin with), downcast that resulting data to the smallest numerical
dtype possible according to the following rules:

1414 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

• ‘integer’ or ‘signed’: smallest signed int dtype (min.: np.int8)

• ‘unsigned’: smallest unsigned int dtype (min.: np.uint8)

• ‘float’: smallest float dtype (min.: np.float32)

As this behaviour is separate from the core conversion to numeric values, any errors
raised during the downcasting will be surfaced regardless of the value of the ‘errors’
input.

In addition, downcasting will only occur if the size of the resulting data’s dtype is strictly
larger than the dtype it is to be cast to, so if none of the dtypes checked satisfy that
specification, no downcasting will be performed on the data.

New in version 0.19.0.

Returns ret : numeric if parsing succeeded.

Return type depends on input. Series if Series, otherwise ndarray

See also:

pandas.DataFrame.astype Cast argument to a specified dtype.

pandas.to_datetime Convert argument to datetime.

pandas.to_timedelta Convert argument to timedelta.

numpy.ndarray.astype Cast a numpy array to a specified type.

Examples

Take separate series and convert to numeric, coercing when told to

>>> import pandas as pd
>>> s = pd.Series(['1.0', '2', -3])
>>> pd.to_numeric(s)
0 1.0
1 2.0
2 -3.0
dtype: float64
>>> pd.to_numeric(s, downcast='float')
0 1.0
1 2.0
2 -3.0
dtype: float32
>>> pd.to_numeric(s, downcast='signed')
0 1
1 2
2 -3
dtype: int8
>>> s = pd.Series(['apple', '1.0', '2', -3])
>>> pd.to_numeric(s, errors='ignore')
0 apple
1 1.0
2 2
3 -3
dtype: object
>>> pd.to_numeric(s, errors='coerce')
0 NaN

(continues on next page)

34.2. General functions 1415

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.astype.html#numpy.ndarray.astype

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

1 1.0
2 2.0
3 -3.0
dtype: float64

34.2.4 Top-level dealing with datetimelike

to_datetime(arg[, errors, dayfirst, . . .]) Convert argument to datetime.
to_timedelta(arg[, unit, box, errors]) Convert argument to timedelta
date_range([start, end, periods, freq, tz, . . .]) Return a fixed frequency DatetimeIndex.
bdate_range([start, end, periods, freq, tz, . . .]) Return a fixed frequency DatetimeIndex, with business

day as the default frequency
period_range([start, end, periods, freq, name]) Return a fixed frequency PeriodIndex, with day (calen-

dar) as the default frequency
timedelta_range([start, end, periods, freq, . . .]) Return a fixed frequency TimedeltaIndex, with day as

the default frequency
infer_freq(index[, warn]) Infer the most likely frequency given the input index.

34.2.4.1 pandas.to_datetime

pandas.to_datetime(arg, errors=’raise’, dayfirst=False, yearfirst=False, utc=None, box=True, for-
mat=None, exact=True, unit=None, infer_datetime_format=False, origin=’unix’,
cache=False)

Convert argument to datetime.

Parameters arg : integer, float, string, datetime, list, tuple, 1-d array, Series

New in version 0.18.1: or DataFrame/dict-like

errors : {‘ignore’, ‘raise’, ‘coerce’}, default ‘raise’

• If ‘raise’, then invalid parsing will raise an exception

• If ‘coerce’, then invalid parsing will be set as NaT

• If ‘ignore’, then invalid parsing will return the input

dayfirst : boolean, default False

Specify a date parse order if arg is str or its list-likes. If True, parses dates with the day
first, eg 10/11/12 is parsed as 2012-11-10. Warning: dayfirst=True is not strict, but will
prefer to parse with day first (this is a known bug, based on dateutil behavior).

yearfirst : boolean, default False

Specify a date parse order if arg is str or its list-likes.

• If True parses dates with the year first, eg 10/11/12 is parsed as 2010-11-12.

• If both dayfirst and yearfirst are True, yearfirst is preceded (same as dateutil).

Warning: yearfirst=True is not strict, but will prefer to parse with year first (this is a
known bug, based on dateutil beahavior).

New in version 0.16.1.

utc : boolean, default None

1416 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

Return UTC DatetimeIndex if True (converting any tz-aware datetime.datetime objects
as well).

box : boolean, default True

• If True returns a DatetimeIndex

• If False returns ndarray of values.

format : string, default None

strftime to parse time, eg “%d/%m/%Y”, note that “%f” will parse all the way up to
nanoseconds.

exact : boolean, True by default

• If True, require an exact format match.

• If False, allow the format to match anywhere in the target string.

unit : string, default ‘ns’

unit of the arg (D,s,ms,us,ns) denote the unit, which is an integer or float number. This
will be based off the origin. Example, with unit=’ms’ and origin=’unix’ (the default),
this would calculate the number of milliseconds to the unix epoch start.

infer_datetime_format : boolean, default False

If True and no format is given, attempt to infer the format of the datetime strings, and
if it can be inferred, switch to a faster method of parsing them. In some cases this can
increase the parsing speed by ~5-10x.

origin : scalar, default is ‘unix’

Define the reference date. The numeric values would be parsed as number of units
(defined by unit) since this reference date.

• If ‘unix’ (or POSIX) time; origin is set to 1970-01-01.

• If ‘julian’, unit must be ‘D’, and origin is set to beginning of Julian Calendar. Julian
day number 0 is assigned to the day starting at noon on January 1, 4713 BC.

• If Timestamp convertible, origin is set to Timestamp identified by origin.

New in version 0.20.0.

cache : boolean, default False

If True, use a cache of unique, converted dates to apply the datetime conversion. May
produce sigificant speed-up when parsing duplicate date strings, especially ones with
timezone offsets.

New in version 0.23.0.

Returns ret : datetime if parsing succeeded.

Return type depends on input:

• list-like: DatetimeIndex

• Series: Series of datetime64 dtype

• scalar: Timestamp

In case when it is not possible to return designated types (e.g. when any element of input
is before Timestamp.min or after Timestamp.max) return will have datetime.datetime
type (or corresponding array/Series).

34.2. General functions 1417

pandas: powerful Python data analysis toolkit, Release 0.23.4

See also:

pandas.DataFrame.astype Cast argument to a specified dtype.

pandas.to_timedelta Convert argument to timedelta.

Examples

Assembling a datetime from multiple columns of a DataFrame. The keys can be common abbreviations like
[‘year’, ‘month’, ‘day’, ‘minute’, ‘second’, ‘ms’, ‘us’, ‘ns’]) or plurals of the same

>>> df = pd.DataFrame({'year': [2015, 2016],
'month': [2, 3],
'day': [4, 5]})

>>> pd.to_datetime(df)
0 2015-02-04
1 2016-03-05
dtype: datetime64[ns]

If a date does not meet the timestamp limitations, passing errors=’ignore’ will return the original input instead
of raising any exception.

Passing errors=’coerce’ will force an out-of-bounds date to NaT, in addition to forcing non-dates (or non-
parseable dates) to NaT.

>>> pd.to_datetime('13000101', format='%Y%m%d', errors='ignore')
datetime.datetime(1300, 1, 1, 0, 0)
>>> pd.to_datetime('13000101', format='%Y%m%d', errors='coerce')
NaT

Passing infer_datetime_format=True can often-times speedup a parsing if its not an ISO8601 format exactly,
but in a regular format.

>>> s = pd.Series(['3/11/2000', '3/12/2000', '3/13/2000']*1000)

>>> s.head()
0 3/11/2000
1 3/12/2000
2 3/13/2000
3 3/11/2000
4 3/12/2000
dtype: object

>>> %timeit pd.to_datetime(s,infer_datetime_format=True)
100 loops, best of 3: 10.4 ms per loop

>>> %timeit pd.to_datetime(s,infer_datetime_format=False)
1 loop, best of 3: 471 ms per loop

Using a unix epoch time

>>> pd.to_datetime(1490195805, unit='s')
Timestamp('2017-03-22 15:16:45')
>>> pd.to_datetime(1490195805433502912, unit='ns')
Timestamp('2017-03-22 15:16:45.433502912')

1418 Chapter 34. API Reference

http://pandas.pydata.org/pandas-docs/stable/timeseries.html#timeseries-timestamp-limits

pandas: powerful Python data analysis toolkit, Release 0.23.4

Warning: For float arg, precision rounding might happen. To prevent unexpected behavior use a fixed-
width exact type.

Using a non-unix epoch origin

>>> pd.to_datetime([1, 2, 3], unit='D',
origin=pd.Timestamp('1960-01-01'))

0 1960-01-02
1 1960-01-03
2 1960-01-04

34.2.4.2 pandas.to_timedelta

pandas.to_timedelta(arg, unit=’ns’, box=True, errors=’raise’)
Convert argument to timedelta

Parameters

arg [string, timedelta, list, tuple, 1-d array, or Series]

unit : unit of the arg (D,h,m,s,ms,us,ns) denote the unit, which is an

integer/float number

box : boolean, default True

• If True returns a Timedelta/TimedeltaIndex of the results

• if False returns a np.timedelta64 or ndarray of values of dtype timedelta64[ns]

errors : {‘ignore’, ‘raise’, ‘coerce’}, default ‘raise’

• If ‘raise’, then invalid parsing will raise an exception

• If ‘coerce’, then invalid parsing will be set as NaT

• If ‘ignore’, then invalid parsing will return the input

Returns

ret [timedelta64/arrays of timedelta64 if parsing succeeded]

See also:

pandas.DataFrame.astype Cast argument to a specified dtype.

pandas.to_datetime Convert argument to datetime.

Examples

Parsing a single string to a Timedelta:

>>> pd.to_timedelta('1 days 06:05:01.00003')
Timedelta('1 days 06:05:01.000030')
>>> pd.to_timedelta('15.5us')
Timedelta('0 days 00:00:00.000015')

Parsing a list or array of strings:

34.2. General functions 1419

pandas: powerful Python data analysis toolkit, Release 0.23.4

>>> pd.to_timedelta(['1 days 06:05:01.00003', '15.5us', 'nan'])
TimedeltaIndex(['1 days 06:05:01.000030', '0 days 00:00:00.000015', NaT],

dtype='timedelta64[ns]', freq=None)

Converting numbers by specifying the unit keyword argument:

>>> pd.to_timedelta(np.arange(5), unit='s')
TimedeltaIndex(['00:00:00', '00:00:01', '00:00:02',

'00:00:03', '00:00:04'],
dtype='timedelta64[ns]', freq=None)

>>> pd.to_timedelta(np.arange(5), unit='d')
TimedeltaIndex(['0 days', '1 days', '2 days', '3 days', '4 days'],

dtype='timedelta64[ns]', freq=None)

34.2.4.3 pandas.date_range

pandas.date_range(start=None, end=None, periods=None, freq=None, tz=None, normalize=False,
name=None, closed=None, **kwargs)

Return a fixed frequency DatetimeIndex.

Parameters start : str or datetime-like, optional

Left bound for generating dates.

end : str or datetime-like, optional

Right bound for generating dates.

periods : integer, optional

Number of periods to generate.

freq : str or DateOffset, default ‘D’ (calendar daily)

Frequency strings can have multiples, e.g. ‘5H’. See here for a list of frequency aliases.

tz : str or tzinfo, optional

Time zone name for returning localized DatetimeIndex, for example
‘Asia/Hong_Kong’. By default, the resulting DatetimeIndex is timezone-naive.

normalize : bool, default False

Normalize start/end dates to midnight before generating date range.

name : str, default None

Name of the resulting DatetimeIndex.

closed : {None, ‘left’, ‘right’}, optional

Make the interval closed with respect to the given frequency to the ‘left’, ‘right’, or both
sides (None, the default).

**kwargs

For compatibility. Has no effect on the result.

Returns

rng [DatetimeIndex]

See also:

1420 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

pandas.DatetimeIndex An immutable container for datetimes.

pandas.timedelta_range Return a fixed frequency TimedeltaIndex.

pandas.period_range Return a fixed frequency PeriodIndex.

pandas.interval_range Return a fixed frequency IntervalIndex.

Notes

Of the four parameters start, end, periods, and freq, exactly three must be specified. If freq is omitted,
the resulting DatetimeIndexwill have periods linearly spaced elements between start and end (closed
on both sides).

To learn more about the frequency strings, please see this link.

Examples

Specifying the values

The next four examples generate the same DatetimeIndex, but vary the combination of start, end and periods.

Specify start and end, with the default daily frequency.

>>> pd.date_range(start='1/1/2018', end='1/08/2018')
DatetimeIndex(['2018-01-01', '2018-01-02', '2018-01-03', '2018-01-04',

'2018-01-05', '2018-01-06', '2018-01-07', '2018-01-08'],
dtype='datetime64[ns]', freq='D')

Specify start and periods, the number of periods (days).

>>> pd.date_range(start='1/1/2018', periods=8)
DatetimeIndex(['2018-01-01', '2018-01-02', '2018-01-03', '2018-01-04',

'2018-01-05', '2018-01-06', '2018-01-07', '2018-01-08'],
dtype='datetime64[ns]', freq='D')

Specify end and periods, the number of periods (days).

>>> pd.date_range(end='1/1/2018', periods=8)
DatetimeIndex(['2017-12-25', '2017-12-26', '2017-12-27', '2017-12-28',

'2017-12-29', '2017-12-30', '2017-12-31', '2018-01-01'],
dtype='datetime64[ns]', freq='D')

Specify start, end, and periods; the frequency is generated automatically (linearly spaced).

>>> pd.date_range(start='2018-04-24', end='2018-04-27', periods=3)
DatetimeIndex(['2018-04-24 00:00:00', '2018-04-25 12:00:00',

'2018-04-27 00:00:00'], freq=None)

Other Parameters

Changed the freq (frequency) to 'M' (month end frequency).

>>> pd.date_range(start='1/1/2018', periods=5, freq='M')
DatetimeIndex(['2018-01-31', '2018-02-28', '2018-03-31', '2018-04-30',

'2018-05-31'],
dtype='datetime64[ns]', freq='M')

34.2. General functions 1421

http://pandas.pydata.org/pandas-docs/stable/timeseries.html#offset-aliases

pandas: powerful Python data analysis toolkit, Release 0.23.4

Multiples are allowed

>>> pd.date_range(start='1/1/2018', periods=5, freq='3M')
DatetimeIndex(['2018-01-31', '2018-04-30', '2018-07-31', '2018-10-31',

'2019-01-31'],
dtype='datetime64[ns]', freq='3M')

freq can also be specified as an Offset object.

>>> pd.date_range(start='1/1/2018', periods=5, freq=pd.offsets.MonthEnd(3))
DatetimeIndex(['2018-01-31', '2018-04-30', '2018-07-31', '2018-10-31',

'2019-01-31'],
dtype='datetime64[ns]', freq='3M')

Specify tz to set the timezone.

>>> pd.date_range(start='1/1/2018', periods=5, tz='Asia/Tokyo')
DatetimeIndex(['2018-01-01 00:00:00+09:00', '2018-01-02 00:00:00+09:00',

'2018-01-03 00:00:00+09:00', '2018-01-04 00:00:00+09:00',
'2018-01-05 00:00:00+09:00'],

dtype='datetime64[ns, Asia/Tokyo]', freq='D')

closed controls whether to include start and end that are on the boundary. The default includes boundary points
on either end.

>>> pd.date_range(start='2017-01-01', end='2017-01-04', closed=None)
DatetimeIndex(['2017-01-01', '2017-01-02', '2017-01-03', '2017-01-04'],

dtype='datetime64[ns]', freq='D')

Use closed='left' to exclude end if it falls on the boundary.

>>> pd.date_range(start='2017-01-01', end='2017-01-04', closed='left')
DatetimeIndex(['2017-01-01', '2017-01-02', '2017-01-03'],

dtype='datetime64[ns]', freq='D')

Use closed='right' to exclude start if it falls on the boundary.

>>> pd.date_range(start='2017-01-01', end='2017-01-04', closed='right')
DatetimeIndex(['2017-01-02', '2017-01-03', '2017-01-04'],

dtype='datetime64[ns]', freq='D')

34.2.4.4 pandas.bdate_range

pandas.bdate_range(start=None, end=None, periods=None, freq=’B’, tz=None, normalize=True,
name=None, weekmask=None, holidays=None, closed=None, **kwargs)

Return a fixed frequency DatetimeIndex, with business day as the default frequency

Parameters start : string or datetime-like, default None

Left bound for generating dates

end : string or datetime-like, default None

Right bound for generating dates

periods : integer, default None

Number of periods to generate

freq : string or DateOffset, default ‘B’ (business daily)

1422 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

Frequency strings can have multiples, e.g. ‘5H’

tz : string or None

Time zone name for returning localized DatetimeIndex, for example Asia/Beijing

normalize : bool, default False

Normalize start/end dates to midnight before generating date range

name : string, default None

Name of the resulting DatetimeIndex

weekmask : string or None, default None

Weekmask of valid business days, passed to numpy.busdaycalendar, only used
when custom frequency strings are passed. The default value None is equivalent to
‘Mon Tue Wed Thu Fri’

New in version 0.21.0.

holidays : list-like or None, default None

Dates to exclude from the set of valid business days, passed to numpy.
busdaycalendar, only used when custom frequency strings are passed

New in version 0.21.0.

closed : string, default None

Make the interval closed with respect to the given frequency to the ‘left’, ‘right’, or both
sides (None)

Returns

rng [DatetimeIndex]

Notes

Of the four parameters: start, end, periods, and freq, exactly three must be specified. Specifying freq
is a requirement for bdate_range. Use date_range if specifying freq is not desired.

To learn more about the frequency strings, please see this link.

34.2.4.5 pandas.period_range

pandas.period_range(start=None, end=None, periods=None, freq=’D’, name=None)
Return a fixed frequency PeriodIndex, with day (calendar) as the default frequency

Parameters start : string or period-like, default None

Left bound for generating periods

end : string or period-like, default None

Right bound for generating periods

periods : integer, default None

Number of periods to generate

freq : string or DateOffset, default ‘D’ (calendar daily)

Frequency alias

34.2. General functions 1423

http://pandas.pydata.org/pandas-docs/stable/timeseries.html#offset-aliases

pandas: powerful Python data analysis toolkit, Release 0.23.4

name : string, default None

Name of the resulting PeriodIndex

Returns

prng [PeriodIndex]

Notes

Of the three parameters: start, end, and periods, exactly two must be specified.

To learn more about the frequency strings, please see this link.

Examples

>>> pd.period_range(start='2017-01-01', end='2018-01-01', freq='M')
PeriodIndex(['2017-01', '2017-02', '2017-03', '2017-04', '2017-05',

'2017-06', '2017-06', '2017-07', '2017-08', '2017-09',
'2017-10', '2017-11', '2017-12', '2018-01'],

dtype='period[M]', freq='M')

If start or end are Period objects, they will be used as anchor endpoints for a PeriodIndex with
frequency matching that of the period_range constructor.

>>> pd.period_range(start=pd.Period('2017Q1', freq='Q'),
... end=pd.Period('2017Q2', freq='Q'), freq='M')
PeriodIndex(['2017-03', '2017-04', '2017-05', '2017-06'],

dtype='period[M]', freq='M')

34.2.4.6 pandas.timedelta_range

pandas.timedelta_range(start=None, end=None, periods=None, freq=None, name=None,
closed=None)

Return a fixed frequency TimedeltaIndex, with day as the default frequency

Parameters start : string or timedelta-like, default None

Left bound for generating timedeltas

end : string or timedelta-like, default None

Right bound for generating timedeltas

periods : integer, default None

Number of periods to generate

freq : string or DateOffset, default ‘D’ (calendar daily)

Frequency strings can have multiples, e.g. ‘5H’

name : string, default None

Name of the resulting TimedeltaIndex

closed : string, default None

Make the interval closed with respect to the given frequency to the ‘left’, ‘right’, or both
sides (None)

1424 Chapter 34. API Reference

http://pandas.pydata.org/pandas-docs/stable/timeseries.html#offset-aliases

pandas: powerful Python data analysis toolkit, Release 0.23.4

Returns

rng [TimedeltaIndex]

Notes

Of the four parameters start, end, periods, and freq, exactly three must be specified. If freq is omit-
ted, the resulting TimedeltaIndex will have periods linearly spaced elements between start and end
(closed on both sides).

To learn more about the frequency strings, please see this link.

Examples

>>> pd.timedelta_range(start='1 day', periods=4)
TimedeltaIndex(['1 days', '2 days', '3 days', '4 days'],

dtype='timedelta64[ns]', freq='D')

The closed parameter specifies which endpoint is included. The default behavior is to include both endpoints.

>>> pd.timedelta_range(start='1 day', periods=4, closed='right')
TimedeltaIndex(['2 days', '3 days', '4 days'],

dtype='timedelta64[ns]', freq='D')

The freq parameter specifies the frequency of the TimedeltaIndex. Only fixed frequencies can be passed,
non-fixed frequencies such as ‘M’ (month end) will raise.

>>> pd.timedelta_range(start='1 day', end='2 days', freq='6H')
TimedeltaIndex(['1 days 00:00:00', '1 days 06:00:00', '1 days 12:00:00',

'1 days 18:00:00', '2 days 00:00:00'],
dtype='timedelta64[ns]', freq='6H')

Specify start, end, and periods; the frequency is generated automatically (linearly spaced).

>>> pd.timedelta_range(start='1 day', end='5 days', periods=4)
TimedeltaIndex(['1 days 00:00:00', '2 days 08:00:00', '3 days 16:00:00',

'5 days 00:00:00'],
dtype='timedelta64[ns]', freq=None)

34.2.4.7 pandas.infer_freq

pandas.infer_freq(index, warn=True)
Infer the most likely frequency given the input index. If the frequency is uncertain, a warning will be printed.

Parameters index : DatetimeIndex or TimedeltaIndex

if passed a Series will use the values of the series (NOT THE INDEX)

warn [boolean, default True]

Returns freq : string or None

None if no discernible frequency TypeError if the index is not datetime-like ValueError
if there are less than three values.

34.2. General functions 1425

http://pandas.pydata.org/pandas-docs/stable/timeseries.html#offset-aliases

pandas: powerful Python data analysis toolkit, Release 0.23.4

34.2.5 Top-level dealing with intervals

interval_range([start, end, periods, freq, . . .]) Return a fixed frequency IntervalIndex

34.2.5.1 pandas.interval_range

pandas.interval_range(start=None, end=None, periods=None, freq=None, name=None,
closed=’right’)

Return a fixed frequency IntervalIndex

Parameters start : numeric or datetime-like, default None

Left bound for generating intervals

end : numeric or datetime-like, default None

Right bound for generating intervals

periods : integer, default None

Number of periods to generate

freq : numeric, string, or DateOffset, default None

The length of each interval. Must be consistent with the type of start and end, e.g. 2 for
numeric, or ‘5H’ for datetime-like. Default is 1 for numeric and ‘D’ (calendar daily) for
datetime-like.

name : string, default None

Name of the resulting IntervalIndex

closed : {‘left’, ‘right’, ‘both’, ‘neither’}, default ‘right’

Whether the intervals are closed on the left-side, right-side, both or neither.

Returns

rng [IntervalIndex]

See also:

IntervalIndex an Index of intervals that are all closed on the same side.

Notes

Of the four parameters start, end, periods, and freq, exactly three must be specified. If freq is omit-
ted, the resulting IntervalIndex will have periods linearly spaced elements between start and end,
inclusively.

To learn more about datetime-like frequency strings, please see this link.

Examples

Numeric start and end is supported.

>>> pd.interval_range(start=0, end=5)
IntervalIndex([(0, 1], (1, 2], (2, 3], (3, 4], (4, 5]]

closed='right', dtype='interval[int64]')

1426 Chapter 34. API Reference

http://pandas.pydata.org/pandas-docs/stable/timeseries.html#offset-aliases

pandas: powerful Python data analysis toolkit, Release 0.23.4

Additionally, datetime-like input is also supported.

>>> pd.interval_range(start=pd.Timestamp('2017-01-01'),
end=pd.Timestamp('2017-01-04'))

IntervalIndex([(2017-01-01, 2017-01-02], (2017-01-02, 2017-01-03],
(2017-01-03, 2017-01-04]]

closed='right', dtype='interval[datetime64[ns]]')

The freq parameter specifies the frequency between the left and right. endpoints of the individual intervals
within the IntervalIndex. For numeric start and end, the frequency must also be numeric.

>>> pd.interval_range(start=0, periods=4, freq=1.5)
IntervalIndex([(0.0, 1.5], (1.5, 3.0], (3.0, 4.5], (4.5, 6.0]]

closed='right', dtype='interval[float64]')

Similarly, for datetime-like start and end, the frequency must be convertible to a DateOffset.

>>> pd.interval_range(start=pd.Timestamp('2017-01-01'),
periods=3, freq='MS')

IntervalIndex([(2017-01-01, 2017-02-01], (2017-02-01, 2017-03-01],
(2017-03-01, 2017-04-01]]

closed='right', dtype='interval[datetime64[ns]]')

Specify start, end, and periods; the frequency is generated automatically (linearly spaced).

>>> pd.interval_range(start=0, end=6, periods=4)
IntervalIndex([(0.0, 1.5], (1.5, 3.0], (3.0, 4.5], (4.5, 6.0]]

closed='right',
dtype='interval[float64]')

The closed parameter specifies which endpoints of the individual intervals within the IntervalIndex are
closed.

>>> pd.interval_range(end=5, periods=4, closed='both')
IntervalIndex([[1, 2], [2, 3], [3, 4], [4, 5]]

closed='both', dtype='interval[int64]')

34.2.6 Top-level evaluation

eval(expr[, parser, engine, truediv, . . .]) Evaluate a Python expression as a string using various
backends.

34.2.6.1 pandas.eval

pandas.eval(expr, parser=’pandas’, engine=None, truediv=True, local_dict=None, global_dict=None,
resolvers=(), level=0, target=None, inplace=False)

Evaluate a Python expression as a string using various backends.

The following arithmetic operations are supported: +, -, *, /, **, %, // (python engine only) along with the
following boolean operations: | (or), & (and), and ~ (not). Additionally, the 'pandas' parser allows the use of
and, or, and not with the same semantics as the corresponding bitwise operators. Series and DataFrame
objects are supported and behave as they would with plain ol’ Python evaluation.

Parameters expr : str or unicode

The expression to evaluate. This string cannot contain any Python statements, only

34.2. General functions 1427

https://docs.python.org/3/reference/expressions.html#and
https://docs.python.org/3/reference/expressions.html#or
https://docs.python.org/3/reference/expressions.html#not
https://docs.python.org/3/reference/simple_stmts.html#simple-statements

pandas: powerful Python data analysis toolkit, Release 0.23.4

Python expressions.

parser : string, default ‘pandas’, {‘pandas’, ‘python’}

The parser to use to construct the syntax tree from the expression. The default of
'pandas' parses code slightly different than standard Python. Alternatively, you can
parse an expression using the 'python' parser to retain strict Python semantics. See
the enhancing performance documentation for more details.

engine : string or None, default ‘numexpr’, {‘python’, ‘numexpr’}

The engine used to evaluate the expression. Supported engines are

• None : tries to use numexpr, falls back to python

• 'numexpr': This default engine evaluates pandas objects using numexpr for
large speed ups in complex expressions with large frames.

• 'python': Performs operations as if you had eval’d in top level python. This
engine is generally not that useful.

More backends may be available in the future.

truediv : bool, optional

Whether to use true division, like in Python >= 3

local_dict : dict or None, optional

A dictionary of local variables, taken from locals() by default.

global_dict : dict or None, optional

A dictionary of global variables, taken from globals() by default.

resolvers : list of dict-like or None, optional

A list of objects implementing the __getitem__ special method that you can use
to inject an additional collection of namespaces to use for variable lookup. For ex-
ample, this is used in the query() method to inject the DataFrame.index and
DataFrame.columns variables that refer to their respective DataFrame instance
attributes.

level : int, optional

The number of prior stack frames to traverse and add to the current scope. Most users
will not need to change this parameter.

target : object, optional, default None

This is the target object for assignment. It is used when there is variable assignment in
the expression. If so, then target must support item assignment with string keys, and if
a copy is being returned, it must also support .copy().

inplace : bool, default False

If target is provided, and the expression mutates target, whether to modify target in-
place. Otherwise, return a copy of target with the mutation.

Returns

ndarray, numeric scalar, DataFrame, Series

Raises ValueError

There are many instances where such an error can be raised:

1428 Chapter 34. API Reference

https://docs.python.org/3/reference/simple_stmts.html#expression-statements

pandas: powerful Python data analysis toolkit, Release 0.23.4

• target=None, but the expression is multiline.

• The expression is multiline, but not all them have item assignment. An example of
such an arrangement is this:

a = b + 1 a + 2

Here, there are expressions on different lines, making it multiline, but the last line has
no variable assigned to the output of a + 2.

• inplace=True, but the expression is missing item assignment.

• Item assignment is provided, but the target does not support string item assignment.

• Item assignment is provided and inplace=False, but the target does not support the
.copy() method

See also:

pandas.DataFrame.query , pandas.DataFrame.eval

Notes

The dtype of any objects involved in an arithmetic % operation are recursively cast to float64.

See the enhancing performance documentation for more details.

34.2.7 Testing

test([extra_args])

34.2.7.1 pandas.test

pandas.test(extra_args=None)

34.3 Series

34.3.1 Constructor

Series([data, index, dtype, name, copy, . . .]) One-dimensional ndarray with axis labels (including
time series).

34.3.1.1 pandas.Series

class pandas.Series(data=None, index=None, dtype=None, name=None, copy=False, fast-
path=False)

One-dimensional ndarray with axis labels (including time series).

Labels need not be unique but must be a hashable type. The object supports both integer- and label-based
indexing and provides a host of methods for performing operations involving the index. Statistical methods
from ndarray have been overridden to automatically exclude missing data (currently represented as NaN).

Operations between Series (+, -, /, , *) align values based on their associated index values– they need not be the

34.3. Series 1429

pandas: powerful Python data analysis toolkit, Release 0.23.4

same length. The result index will be the sorted union of the two indexes.

Parameters data : array-like, dict, or scalar value

Contains data stored in Series

Changed in version 0.23.0: If data is a dict, argument order is maintained for Python
3.6 and later.

index : array-like or Index (1d)

Values must be hashable and have the same length as data. Non-unique index values
are allowed. Will default to RangeIndex (0, 1, 2, . . . , n) if not provided. If both a dict
and index sequence are used, the index will override the keys found in the dict.

dtype : numpy.dtype or None

If None, dtype will be inferred

copy : boolean, default False

Copy input data

Attributes

T return the transpose, which is by definition self
asobject Return object Series which contains boxed values.
at Access a single value for a row/column label pair.
axes Return a list of the row axis labels
base return the base object if the memory of the underly-

ing data is shared
blocks (DEPRECATED) Internal property, property syn-

onym for as_blocks()
data return the data pointer of the underlying data
dtype return the dtype object of the underlying data
dtypes return the dtype object of the underlying data
flags
ftype return if the data is sparse|dense
ftypes return if the data is sparse|dense
hasnans return if I have any nans; enables various perf

speedups
iat Access a single value for a row/column pair by inte-

ger position.
iloc Purely integer-location based indexing for selection

by position.
index The index (axis labels) of the Series.
is_monotonic Return boolean if values in the object are mono-

tonic_increasing
is_monotonic_decreasing Return boolean if values in the object are mono-

tonic_decreasing
is_monotonic_increasing Return boolean if values in the object are mono-

tonic_increasing
is_unique Return boolean if values in the object are unique
itemsize return the size of the dtype of the item of the under-

lying data
Continued on next page

1430 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

Table 24 – continued from previous page
ix A primarily label-location based indexer, with inte-

ger position fallback.
loc Access a group of rows and columns by label(s) or a

boolean array.
nbytes return the number of bytes in the underlying data
ndim return the number of dimensions of the underlying

data, by definition 1
shape return a tuple of the shape of the underlying data
size return the number of elements in the underlying data
strides return the strides of the underlying data
values Return Series as ndarray or ndarray-like depending

on the dtype

pandas.Series.T

Series.T
return the transpose, which is by definition self

pandas.Series.asobject

Series.asobject
Return object Series which contains boxed values.

Deprecated since version 0.23.0: Use astype(object) instead.

this is an internal non-public method

pandas.Series.at

Series.at
Access a single value for a row/column label pair.

Similar to loc, in that both provide label-based lookups. Use at if you only need to get or set a single
value in a DataFrame or Series.

Raises KeyError

When label does not exist in DataFrame

See also:

DataFrame.iat Access a single value for a row/column pair by integer position

DataFrame.loc Access a group of rows and columns by label(s)

Series.at Access a single value using a label

Examples

>>> df = pd.DataFrame([[0, 2, 3], [0, 4, 1], [10, 20, 30]],
... index=[4, 5, 6], columns=['A', 'B', 'C'])
>>> df

(continues on next page)

34.3. Series 1431

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

A B C
4 0 2 3
5 0 4 1
6 10 20 30

Get value at specified row/column pair

>>> df.at[4, 'B']
2

Set value at specified row/column pair

>>> df.at[4, 'B'] = 10
>>> df.at[4, 'B']
10

Get value within a Series

>>> df.loc[5].at['B']
4

pandas.Series.axes

Series.axes
Return a list of the row axis labels

pandas.Series.base

Series.base
return the base object if the memory of the underlying data is shared

pandas.Series.blocks

Series.blocks
Internal property, property synonym for as_blocks()

Deprecated since version 0.21.0.

pandas.Series.data

Series.data
return the data pointer of the underlying data

pandas.Series.dtype

Series.dtype
return the dtype object of the underlying data

1432 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

pandas.Series.dtypes

Series.dtypes
return the dtype object of the underlying data

pandas.Series.flags

Series.flags

pandas.Series.ftype

Series.ftype
return if the data is sparse|dense

pandas.Series.ftypes

Series.ftypes
return if the data is sparse|dense

pandas.Series.hasnans

Series.hasnans
return if I have any nans; enables various perf speedups

pandas.Series.iat

Series.iat
Access a single value for a row/column pair by integer position.

Similar to iloc, in that both provide integer-based lookups. Use iat if you only need to get or set a
single value in a DataFrame or Series.

Raises IndexError

When integer position is out of bounds

See also:

DataFrame.at Access a single value for a row/column label pair

DataFrame.loc Access a group of rows and columns by label(s)

DataFrame.iloc Access a group of rows and columns by integer position(s)

Examples

34.3. Series 1433

pandas: powerful Python data analysis toolkit, Release 0.23.4

>>> df = pd.DataFrame([[0, 2, 3], [0, 4, 1], [10, 20, 30]],
... columns=['A', 'B', 'C'])
>>> df

A B C
0 0 2 3
1 0 4 1
2 10 20 30

Get value at specified row/column pair

>>> df.iat[1, 2]
1

Set value at specified row/column pair

>>> df.iat[1, 2] = 10
>>> df.iat[1, 2]
10

Get value within a series

>>> df.loc[0].iat[1]
2

pandas.Series.iloc

Series.iloc
Purely integer-location based indexing for selection by position.

.iloc[] is primarily integer position based (from 0 to length-1 of the axis), but may also be used
with a boolean array.

Allowed inputs are:

• An integer, e.g. 5.

• A list or array of integers, e.g. [4, 3, 0].

• A slice object with ints, e.g. 1:7.

• A boolean array.

• A callable function with one argument (the calling Series, DataFrame or Panel) and that returns
valid output for indexing (one of the above)

.ilocwill raise IndexError if a requested indexer is out-of-bounds, except slice indexers which allow
out-of-bounds indexing (this conforms with python/numpy slice semantics).

See more at Selection by Position

pandas.Series.index

Series.index
The index (axis labels) of the Series.

1434 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

pandas.Series.is_monotonic

Series.is_monotonic
Return boolean if values in the object are monotonic_increasing

New in version 0.19.0.

Returns

is_monotonic [boolean]

pandas.Series.is_monotonic_decreasing

Series.is_monotonic_decreasing
Return boolean if values in the object are monotonic_decreasing

New in version 0.19.0.

Returns

is_monotonic_decreasing [boolean]

pandas.Series.is_monotonic_increasing

Series.is_monotonic_increasing
Return boolean if values in the object are monotonic_increasing

New in version 0.19.0.

Returns

is_monotonic [boolean]

pandas.Series.is_unique

Series.is_unique
Return boolean if values in the object are unique

Returns

is_unique [boolean]

pandas.Series.itemsize

Series.itemsize
return the size of the dtype of the item of the underlying data

pandas.Series.ix

Series.ix
A primarily label-location based indexer, with integer position fallback.

Warning: Starting in 0.20.0, the .ix indexer is deprecated, in favor of the more strict .iloc and .loc indexers.

34.3. Series 1435

pandas: powerful Python data analysis toolkit, Release 0.23.4

.ix[] supports mixed integer and label based access. It is primarily label based, but will fall back to
integer positional access unless the corresponding axis is of integer type.

.ix is the most general indexer and will support any of the inputs in .loc and .iloc. .ix also supports
floating point label schemes. .ix is exceptionally useful when dealing with mixed positional and label
based hierarchical indexes.

However, when an axis is integer based, ONLY label based access and not positional access is supported.
Thus, in such cases, it’s usually better to be explicit and use .iloc or .loc.

See more at Advanced Indexing.

pandas.Series.loc

Series.loc
Access a group of rows and columns by label(s) or a boolean array.

.loc[] is primarily label based, but may also be used with a boolean array.

Allowed inputs are:

• A single label, e.g. 5 or 'a', (note that 5 is interpreted as a label of the index, and never as an integer
position along the index).

• A list or array of labels, e.g. ['a', 'b', 'c'].

• A slice object with labels, e.g. 'a':'f'.

Warning: Note that contrary to usual python slices, both the start and the stop are included

• A boolean array of the same length as the axis being sliced, e.g. [True, False, True].

• A callable function with one argument (the calling Series, DataFrame or Panel) and that returns
valid output for indexing (one of the above)

See more at Selection by Label

Raises KeyError:

when any items are not found

See also:

DataFrame.at Access a single value for a row/column label pair

DataFrame.iloc Access group of rows and columns by integer position(s)

DataFrame.xs Returns a cross-section (row(s) or column(s)) from the Series/DataFrame.

Series.loc Access group of values using labels

Examples

Getting values

1436 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

>>> df = pd.DataFrame([[1, 2], [4, 5], [7, 8]],
... index=['cobra', 'viper', 'sidewinder'],
... columns=['max_speed', 'shield'])
>>> df

max_speed shield
cobra 1 2
viper 4 5
sidewinder 7 8

Single label. Note this returns the row as a Series.

>>> df.loc['viper']
max_speed 4
shield 5
Name: viper, dtype: int64

List of labels. Note using [[]] returns a DataFrame.

>>> df.loc[['viper', 'sidewinder']]
max_speed shield

viper 4 5
sidewinder 7 8

Single label for row and column

>>> df.loc['cobra', 'shield']
2

Slice with labels for row and single label for column. As mentioned above, note that both the start and
stop of the slice are included.

>>> df.loc['cobra':'viper', 'max_speed']
cobra 1
viper 4
Name: max_speed, dtype: int64

Boolean list with the same length as the row axis

>>> df.loc[[False, False, True]]
max_speed shield

sidewinder 7 8

Conditional that returns a boolean Series

>>> df.loc[df['shield'] > 6]
max_speed shield

sidewinder 7 8

Conditional that returns a boolean Series with column labels specified

>>> df.loc[df['shield'] > 6, ['max_speed']]
max_speed

sidewinder 7

Callable that returns a boolean Series

34.3. Series 1437

pandas: powerful Python data analysis toolkit, Release 0.23.4

>>> df.loc[lambda df: df['shield'] == 8]
max_speed shield

sidewinder 7 8

Setting values

Set value for all items matching the list of labels

>>> df.loc[['viper', 'sidewinder'], ['shield']] = 50
>>> df

max_speed shield
cobra 1 2
viper 4 50
sidewinder 7 50

Set value for an entire row

>>> df.loc['cobra'] = 10
>>> df

max_speed shield
cobra 10 10
viper 4 50
sidewinder 7 50

Set value for an entire column

>>> df.loc[:, 'max_speed'] = 30
>>> df

max_speed shield
cobra 30 10
viper 30 50
sidewinder 30 50

Set value for rows matching callable condition

>>> df.loc[df['shield'] > 35] = 0
>>> df

max_speed shield
cobra 30 10
viper 0 0
sidewinder 0 0

Getting values on a DataFrame with an index that has integer labels

Another example using integers for the index

>>> df = pd.DataFrame([[1, 2], [4, 5], [7, 8]],
... index=[7, 8, 9], columns=['max_speed', 'shield'])
>>> df

max_speed shield
7 1 2
8 4 5
9 7 8

Slice with integer labels for rows. As mentioned above, note that both the start and stop of the slice are
included.

1438 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

>>> df.loc[7:9]
max_speed shield

7 1 2
8 4 5
9 7 8

Getting values with a MultiIndex

A number of examples using a DataFrame with a MultiIndex

>>> tuples = [
... ('cobra', 'mark i'), ('cobra', 'mark ii'),
... ('sidewinder', 'mark i'), ('sidewinder', 'mark ii'),
... ('viper', 'mark ii'), ('viper', 'mark iii')
...]
>>> index = pd.MultiIndex.from_tuples(tuples)
>>> values = [[12, 2], [0, 4], [10, 20],
... [1, 4], [7, 1], [16, 36]]
>>> df = pd.DataFrame(values, columns=['max_speed', 'shield'], index=index)
>>> df

max_speed shield
cobra mark i 12 2

mark ii 0 4
sidewinder mark i 10 20

mark ii 1 4
viper mark ii 7 1

mark iii 16 36

Single label. Note this returns a DataFrame with a single index.

>>> df.loc['cobra']
max_speed shield

mark i 12 2
mark ii 0 4

Single index tuple. Note this returns a Series.

>>> df.loc[('cobra', 'mark ii')]
max_speed 0
shield 4
Name: (cobra, mark ii), dtype: int64

Single label for row and column. Similar to passing in a tuple, this returns a Series.

>>> df.loc['cobra', 'mark i']
max_speed 12
shield 2
Name: (cobra, mark i), dtype: int64

Single tuple. Note using [[]] returns a DataFrame.

>>> df.loc[[('cobra', 'mark ii')]]
max_speed shield

cobra mark ii 0 4

Single tuple for the index with a single label for the column

34.3. Series 1439

pandas: powerful Python data analysis toolkit, Release 0.23.4

>>> df.loc[('cobra', 'mark i'), 'shield']
2

Slice from index tuple to single label

>>> df.loc[('cobra', 'mark i'):'viper']
max_speed shield

cobra mark i 12 2
mark ii 0 4

sidewinder mark i 10 20
mark ii 1 4

viper mark ii 7 1
mark iii 16 36

Slice from index tuple to index tuple

>>> df.loc[('cobra', 'mark i'):('viper', 'mark ii')]
max_speed shield

cobra mark i 12 2
mark ii 0 4

sidewinder mark i 10 20
mark ii 1 4

viper mark ii 7 1

pandas.Series.nbytes

Series.nbytes
return the number of bytes in the underlying data

pandas.Series.ndim

Series.ndim
return the number of dimensions of the underlying data, by definition 1

pandas.Series.shape

Series.shape
return a tuple of the shape of the underlying data

pandas.Series.size

Series.size
return the number of elements in the underlying data

pandas.Series.strides

Series.strides
return the strides of the underlying data

1440 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

pandas.Series.values

Series.values
Return Series as ndarray or ndarray-like depending on the dtype

Returns

arr [numpy.ndarray or ndarray-like]

Examples

>>> pd.Series([1, 2, 3]).values
array([1, 2, 3])

>>> pd.Series(list('aabc')).values
array(['a', 'a', 'b', 'c'], dtype=object)

>>> pd.Series(list('aabc')).astype('category').values
[a, a, b, c]
Categories (3, object): [a, b, c]

Timezone aware datetime data is converted to UTC:

>>> pd.Series(pd.date_range('20130101', periods=3,
... tz='US/Eastern')).values
array(['2013-01-01T05:00:00.000000000',

'2013-01-02T05:00:00.000000000',
'2013-01-03T05:00:00.000000000'], dtype='datetime64[ns]')

empty
imag
is_copy
name
real

Methods

abs() Return a Series/DataFrame with absolute numeric
value of each element.

add(other[, level, fill_value, axis]) Addition of series and other, element-wise (binary
operator add).

add_prefix(prefix) Prefix labels with string prefix.
add_suffix(suffix) Suffix labels with string suffix.
agg(func[, axis]) Aggregate using one or more operations over the

specified axis.
aggregate(func[, axis]) Aggregate using one or more operations over the

specified axis.
align(other[, join, axis, level, copy, . . .]) Align two objects on their axes with the specified

join method for each axis Index
Continued on next page

34.3. Series 1441

pandas: powerful Python data analysis toolkit, Release 0.23.4

Table 25 – continued from previous page
all([axis, bool_only, skipna, level]) Return whether all elements are True, potentially

over an axis.
any([axis, bool_only, skipna, level]) Return whether any element is True over requested

axis.
append(to_append[, ignore_index, . . .]) Concatenate two or more Series.
apply(func[, convert_dtype, args]) Invoke function on values of Series.
argmax([axis, skipna]) (DEPRECATED) .. deprecated:: 0.21.0
argmin([axis, skipna]) (DEPRECATED) .. deprecated:: 0.21.0
argsort([axis, kind, order]) Overrides ndarray.argsort.
as_blocks([copy]) (DEPRECATED) Convert the frame to a dict of

dtype -> Constructor Types that each has a homo-
geneous dtype.

as_matrix([columns]) (DEPRECATED) Convert the frame to its Numpy-
array representation.

asfreq(freq[, method, how, normalize, . . .]) Convert TimeSeries to specified frequency.
asof(where[, subset]) The last row without any NaN is taken (or the last

row without NaN considering only the subset of
columns in the case of a DataFrame)

astype(dtype[, copy, errors]) Cast a pandas object to a specified dtype dtype.
at_time(time[, asof]) Select values at particular time of day (e.g.
autocorr([lag]) Lag-N autocorrelation
between(left, right[, inclusive]) Return boolean Series equivalent to left <= series <=

right.
between_time(start_time, end_time[, . . .]) Select values between particular times of the day

(e.g., 9:00-9:30 AM).
bfill([axis, inplace, limit, downcast]) Synonym for DataFrame.

fillna(method='bfill')
bool() Return the bool of a single element PandasObject.
cat alias of pandas.core.arrays.

categorical.CategoricalAccessor
clip([lower, upper, axis, inplace]) Trim values at input threshold(s).
clip_lower(threshold[, axis, inplace]) Return copy of the input with values below a thresh-

old truncated.
clip_upper(threshold[, axis, inplace]) Return copy of input with values above given

value(s) truncated.
combine(other, func[, fill_value]) Perform elementwise binary operation on two Series

using given function with optional fill value when an
index is missing from one Series or the other

combine_first(other) Combine Series values, choosing the calling Series’s
values first.

compound([axis, skipna, level]) Return the compound percentage of the values for
the requested axis

compress(condition, *args, **kwargs) Return selected slices of an array along given axis as
a Series

consolidate([inplace]) (DEPRECATED) Compute NDFrame with “consoli-
dated” internals (data of each dtype grouped together
in a single ndarray).

convert_objects([convert_dates, . . .]) (DEPRECATED) Attempt to infer better dtype for
object columns.

copy([deep]) Make a copy of this object’s indices and data.
Continued on next page

1442 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

Table 25 – continued from previous page
corr(other[, method, min_periods]) Compute correlation with other Series, excluding

missing values
count([level]) Return number of non-NA/null observations in the

Series
cov(other[, min_periods]) Compute covariance with Series, excluding missing

values
cummax([axis, skipna]) Return cumulative maximum over a DataFrame or

Series axis.
cummin([axis, skipna]) Return cumulative minimum over a DataFrame or

Series axis.
cumprod([axis, skipna]) Return cumulative product over a DataFrame or Se-

ries axis.
cumsum([axis, skipna]) Return cumulative sum over a DataFrame or Series

axis.
describe([percentiles, include, exclude]) Generates descriptive statistics that summarize the

central tendency, dispersion and shape of a dataset’s
distribution, excluding NaN values.

diff([periods]) First discrete difference of element.
div(other[, level, fill_value, axis]) Floating division of series and other, element-wise

(binary operator truediv).
divide(other[, level, fill_value, axis]) Floating division of series and other, element-wise

(binary operator truediv).
divmod(other[, level, fill_value, axis]) Integer division and modulo of series and other,

element-wise (binary operator divmod).
dot(other) Matrix multiplication with DataFrame or inner-

product with Series objects.
drop([labels, axis, index, columns, level, . . .]) Return Series with specified index labels removed.
drop_duplicates([keep, inplace]) Return Series with duplicate values removed.
dropna([axis, inplace]) Return a new Series with missing values removed.
dt alias of pandas.core.

indexes.accessors.
CombinedDatetimelikeProperties

duplicated([keep]) Indicate duplicate Series values.
eq(other[, level, fill_value, axis]) Equal to of series and other, element-wise (binary

operator eq).
equals(other) Determines if two NDFrame objects contain the

same elements.
ewm([com, span, halflife, alpha, . . .]) Provides exponential weighted functions
expanding([min_periods, center, axis]) Provides expanding transformations.
factorize([sort, na_sentinel]) Encode the object as an enumerated type or categor-

ical variable.
ffill([axis, inplace, limit, downcast]) Synonym for DataFrame.

fillna(method='ffill')
fillna([value, method, axis, inplace, . . .]) Fill NA/NaN values using the specified method
filter([items, like, regex, axis]) Subset rows or columns of dataframe according to

labels in the specified index.
first(offset) Convenience method for subsetting initial periods of

time series data based on a date offset.
first_valid_index() Return index for first non-NA/null value.
floordiv(other[, level, fill_value, axis]) Integer division of series and other, element-wise (bi-

nary operator floordiv).
Continued on next page

34.3. Series 1443

pandas: powerful Python data analysis toolkit, Release 0.23.4

Table 25 – continued from previous page
from_array(arr[, index, name, dtype, copy, . . .]) Construct Series from array.
from_csv(path[, sep, parse_dates, header, . . .]) (DEPRECATED) Read CSV file.
ge(other[, level, fill_value, axis]) Greater than or equal to of series and other, element-

wise (binary operator ge).
get(key[, default]) Get item from object for given key (DataFrame col-

umn, Panel slice, etc.).
get_dtype_counts() Return counts of unique dtypes in this object.
get_ftype_counts() (DEPRECATED) Return counts of unique ftypes in

this object.
get_value(label[, takeable]) (DEPRECATED) Quickly retrieve single value at

passed index label
get_values() same as values (but handles sparseness conversions);

is a view
groupby([by, axis, level, as_index, sort, . . .]) Group series using mapper (dict or key function, ap-

ply given function to group, return result as series) or
by a series of columns.

gt(other[, level, fill_value, axis]) Greater than of series and other, element-wise (bi-
nary operator gt).

head([n]) Return the first n rows.
hist([by, ax, grid, xlabelsize, xrot, . . .]) Draw histogram of the input series using matplotlib
idxmax([axis, skipna]) Return the row label of the maximum value.
idxmin([axis, skipna]) Return the row label of the minimum value.
infer_objects() Attempt to infer better dtypes for object columns.
interpolate([method, axis, limit, inplace, . . .]) Interpolate values according to different methods.
isin(values) Check whether values are contained in Series.
isna() Detect missing values.
isnull() Detect missing values.
item() return the first element of the underlying data as a

python scalar
items() Lazily iterate over (index, value) tuples
iteritems() Lazily iterate over (index, value) tuples
keys() Alias for index
kurt([axis, skipna, level, numeric_only]) Return unbiased kurtosis over requested axis using

Fisher’s definition of kurtosis (kurtosis of normal ==
0.0).

kurtosis([axis, skipna, level, numeric_only]) Return unbiased kurtosis over requested axis using
Fisher’s definition of kurtosis (kurtosis of normal ==
0.0).

last(offset) Convenience method for subsetting final periods of
time series data based on a date offset.

last_valid_index() Return index for last non-NA/null value.
le(other[, level, fill_value, axis]) Less than or equal to of series and other, element-

wise (binary operator le).
lt(other[, level, fill_value, axis]) Less than of series and other, element-wise (binary

operator lt).
mad([axis, skipna, level]) Return the mean absolute deviation of the values for

the requested axis
map(arg[, na_action]) Map values of Series using input correspondence (a

dict, Series, or function).
Continued on next page

1444 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

Table 25 – continued from previous page
mask(cond[, other, inplace, axis, level, . . .]) Return an object of same shape as self and whose

corresponding entries are from self where cond is
False and otherwise are from other.

max([axis, skipna, level, numeric_only]) This method returns the maximum of the values in
the object.

mean([axis, skipna, level, numeric_only]) Return the mean of the values for the requested axis
median([axis, skipna, level, numeric_only]) Return the median of the values for the requested

axis
memory_usage([index, deep]) Return the memory usage of the Series.
min([axis, skipna, level, numeric_only]) This method returns the minimum of the values in

the object.
mod(other[, level, fill_value, axis]) Modulo of series and other, element-wise (binary op-

erator mod).
mode() Return the mode(s) of the dataset.
mul(other[, level, fill_value, axis]) Multiplication of series and other, element-wise (bi-

nary operator mul).
multiply(other[, level, fill_value, axis]) Multiplication of series and other, element-wise (bi-

nary operator mul).
ne(other[, level, fill_value, axis]) Not equal to of series and other, element-wise (bi-

nary operator ne).
nlargest([n, keep]) Return the largest n elements.
nonzero() Return the integer indices of the elements that are

non-zero
notna() Detect existing (non-missing) values.
notnull() Detect existing (non-missing) values.
nsmallest([n, keep]) Return the smallest n elements.
nunique([dropna]) Return number of unique elements in the object.
pct_change([periods, fill_method, limit, freq]) Percentage change between the current and a prior

element.
pipe(func, *args, **kwargs) Apply func(self, *args, **kwargs)
plot alias of pandas.plotting._core.

SeriesPlotMethods
pop(item) Return item and drop from frame.
pow(other[, level, fill_value, axis]) Exponential power of series and other, element-wise

(binary operator pow).
prod([axis, skipna, level, numeric_only, . . .]) Return the product of the values for the requested

axis
product([axis, skipna, level, numeric_only, . . .]) Return the product of the values for the requested

axis
ptp([axis, skipna, level, numeric_only]) Returns the difference between the maximum value

and the
put(*args, **kwargs) Applies the put method to its values attribute if it has

one.
quantile([q, interpolation]) Return value at the given quantile, a la

numpy.percentile.
radd(other[, level, fill_value, axis]) Addition of series and other, element-wise (binary

operator radd).
rank([axis, method, numeric_only, . . .]) Compute numerical data ranks (1 through n) along

axis.
ravel([order]) Return the flattened underlying data as an ndarray

Continued on next page

34.3. Series 1445

pandas: powerful Python data analysis toolkit, Release 0.23.4

Table 25 – continued from previous page
rdiv(other[, level, fill_value, axis]) Floating division of series and other, element-wise

(binary operator rtruediv).
reindex([index]) Conform Series to new index with optional filling

logic, placing NA/NaN in locations having no value
in the previous index.

reindex_axis(labels[, axis]) (DEPRECATED) Conform Series to new index with
optional filling logic.

reindex_like(other[, method, copy, limit, . . .]) Return an object with matching indices to myself.
rename([index]) Alter Series index labels or name
rename_axis(mapper[, axis, copy, inplace]) Alter the name of the index or columns.
reorder_levels(order) Rearrange index levels using input order.
repeat(repeats, *args, **kwargs) Repeat elements of an Series.
replace([to_replace, value, inplace, limit, . . .]) Replace values given in to_replace with value.
resample(rule[, how, axis, fill_method, . . .]) Convenience method for frequency conversion and

resampling of time series.
reset_index([level, drop, name, inplace]) Generate a new DataFrame or Series with the index

reset.
rfloordiv(other[, level, fill_value, axis]) Integer division of series and other, element-wise (bi-

nary operator rfloordiv).
rmod(other[, level, fill_value, axis]) Modulo of series and other, element-wise (binary op-

erator rmod).
rmul(other[, level, fill_value, axis]) Multiplication of series and other, element-wise (bi-

nary operator rmul).
rolling(window[, min_periods, center, . . .]) Provides rolling window calculations.
round([decimals]) Round each value in a Series to the given number of

decimals.
rpow(other[, level, fill_value, axis]) Exponential power of series and other, element-wise

(binary operator rpow).
rsub(other[, level, fill_value, axis]) Subtraction of series and other, element-wise (binary

operator rsub).
rtruediv(other[, level, fill_value, axis]) Floating division of series and other, element-wise

(binary operator rtruediv).
sample([n, frac, replace, weights, . . .]) Return a random sample of items from an axis of

object.
searchsorted(value[, side, sorter]) Find indices where elements should be inserted to

maintain order.
select(crit[, axis]) (DEPRECATED) Return data corresponding to axis

labels matching criteria
sem([axis, skipna, level, ddof, numeric_only]) Return unbiased standard error of the mean over re-

quested axis.
set_axis(labels[, axis, inplace]) Assign desired index to given axis.
set_value(label, value[, takeable]) (DEPRECATED) Quickly set single value at passed

label.
shift([periods, freq, axis]) Shift index by desired number of periods with an op-

tional time freq
skew([axis, skipna, level, numeric_only]) Return unbiased skew over requested axis Normal-

ized by N-1
slice_shift([periods, axis]) Equivalent to shift without copying data.
sort_index([axis, level, ascending, . . .]) Sort Series by index labels.
sort_values([axis, ascending, inplace, . . .]) Sort by the values.

Continued on next page

1446 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

Table 25 – continued from previous page
sortlevel([level, ascending, sort_remaining]) (DEPRECATED) Sort Series with MultiIndex by

chosen level.
squeeze([axis]) Squeeze length 1 dimensions.
std([axis, skipna, level, ddof, numeric_only]) Return sample standard deviation over requested

axis.
str alias of pandas.core.strings.

StringMethods
sub(other[, level, fill_value, axis]) Subtraction of series and other, element-wise (binary

operator sub).
subtract(other[, level, fill_value, axis]) Subtraction of series and other, element-wise (binary

operator sub).
sum([axis, skipna, level, numeric_only, . . .]) Return the sum of the values for the requested axis
swapaxes(axis1, axis2[, copy]) Interchange axes and swap values axes appropriately
swaplevel([i, j, copy]) Swap levels i and j in a MultiIndex
tail([n]) Return the last n rows.
take(indices[, axis, convert, is_copy]) Return the elements in the given positional indices

along an axis.
to_clipboard([excel, sep]) Copy object to the system clipboard.
to_csv([path, index, sep, na_rep, . . .]) Write Series to a comma-separated values (csv) file
to_dense() Return dense representation of NDFrame (as op-

posed to sparse)
to_dict([into]) Convert Series to {label -> value} dict or dict-like

object.
to_excel(excel_writer[, sheet_name, na_rep,
. . .])

Write Series to an excel sheet

to_frame([name]) Convert Series to DataFrame
to_hdf(path_or_buf, key, **kwargs) Write the contained data to an HDF5 file using HDF-

Store.
to_json([path_or_buf, orient, date_format, . . .]) Convert the object to a JSON string.
to_latex([buf, columns, col_space, header, . . .]) Render an object to a tabular environment table.
to_msgpack([path_or_buf, encoding]) msgpack (serialize) object to input file path
to_period([freq, copy]) Convert Series from DatetimeIndex to PeriodIndex

with desired frequency (inferred from index if not
passed)

to_pickle(path[, compression, protocol]) Pickle (serialize) object to file.
to_sparse([kind, fill_value]) Convert Series to SparseSeries
to_sql(name, con[, schema, if_exists, . . .]) Write records stored in a DataFrame to a SQL

database.
to_string([buf, na_rep, float_format, . . .]) Render a string representation of the Series
to_timestamp([freq, how, copy]) Cast to datetimeindex of timestamps, at beginning of

period
to_xarray() Return an xarray object from the pandas object.
tolist() Return a list of the values.
transform(func, *args, **kwargs) Call function producing a like-indexed NDFrame

and return a NDFrame with the transformed values
transpose(*args, **kwargs) return the transpose, which is by definition self
truediv(other[, level, fill_value, axis]) Floating division of series and other, element-wise

(binary operator truediv).
truncate([before, after, axis, copy]) Truncate a Series or DataFrame before and after

some index value.
Continued on next page

34.3. Series 1447

pandas: powerful Python data analysis toolkit, Release 0.23.4

Table 25 – continued from previous page
tshift([periods, freq, axis]) Shift the time index, using the index’s frequency if

available.
tz_convert(tz[, axis, level, copy]) Convert tz-aware axis to target time zone.
tz_localize(tz[, axis, level, copy, ambiguous]) Localize tz-naive TimeSeries to target time zone.
unique() Return unique values of Series object.
unstack([level, fill_value]) Unstack, a.k.a.
update(other) Modify Series in place using non-NA values from

passed Series.
valid([inplace]) (DEPRECATED) Return Series without null values.
value_counts([normalize, sort, ascending, . . .]) Returns object containing counts of unique values.
var([axis, skipna, level, ddof, numeric_only]) Return unbiased variance over requested axis.
view([dtype]) Create a new view of the Series.
where(cond[, other, inplace, axis, level, . . .]) Return an object of same shape as self and whose

corresponding entries are from self where cond is
True and otherwise are from other.

xs(key[, axis, level, drop_level]) Returns a cross-section (row(s) or column(s)) from
the Series/DataFrame.

pandas.Series.abs

Series.abs()
Return a Series/DataFrame with absolute numeric value of each element.

This function only applies to elements that are all numeric.

Returns abs

Series/DataFrame containing the absolute value of each element.

See also:

numpy.absolute calculate the absolute value element-wise.

Notes

For complex inputs, 1.2 + 1j, the absolute value is
√
𝑎2 + 𝑏2.

Examples

Absolute numeric values in a Series.

>>> s = pd.Series([-1.10, 2, -3.33, 4])
>>> s.abs()
0 1.10
1 2.00
2 3.33
3 4.00
dtype: float64

Absolute numeric values in a Series with complex numbers.

1448 Chapter 34. API Reference

https://docs.scipy.org/doc/numpy/reference/generated/numpy.absolute.html#numpy.absolute

pandas: powerful Python data analysis toolkit, Release 0.23.4

>>> s = pd.Series([1.2 + 1j])
>>> s.abs()
0 1.56205
dtype: float64

Absolute numeric values in a Series with a Timedelta element.

>>> s = pd.Series([pd.Timedelta('1 days')])
>>> s.abs()
0 1 days
dtype: timedelta64[ns]

Select rows with data closest to certain value using argsort (from StackOverflow).

>>> df = pd.DataFrame({
... 'a': [4, 5, 6, 7],
... 'b': [10, 20, 30, 40],
... 'c': [100, 50, -30, -50]
... })
>>> df

a b c
0 4 10 100
1 5 20 50
2 6 30 -30
3 7 40 -50
>>> df.loc[(df.c - 43).abs().argsort()]

a b c
1 5 20 50
0 4 10 100
2 6 30 -30
3 7 40 -50

pandas.Series.add

Series.add(other, level=None, fill_value=None, axis=0)
Addition of series and other, element-wise (binary operator add).

Equivalent to series + other, but with support to substitute a fill_value for missing data in one of
the inputs.

Parameters

other [Series or scalar value]

fill_value : None or float value, default None (NaN)

Fill existing missing (NaN) values, and any new element needed for successful Series
alignment, with this value before computation. If data in both corresponding Series
locations is missing the result will be missing

level : int or name

Broadcast across a level, matching Index values on the passed MultiIndex level

Returns

result [Series]

34.3. Series 1449

https://stackoverflow.com/a/17758115

pandas: powerful Python data analysis toolkit, Release 0.23.4

See also:

Series.radd

Examples

>>> a = pd.Series([1, 1, 1, np.nan], index=['a', 'b', 'c', 'd'])
>>> a
a 1.0
b 1.0
c 1.0
d NaN
dtype: float64
>>> b = pd.Series([1, np.nan, 1, np.nan], index=['a', 'b', 'd', 'e'])
>>> b
a 1.0
b NaN
d 1.0
e NaN
dtype: float64
>>> a.add(b, fill_value=0)
a 2.0
b 1.0
c 1.0
d 1.0
e NaN
dtype: float64

pandas.Series.add_prefix

Series.add_prefix(prefix)
Prefix labels with string prefix.

For Series, the row labels are prefixed. For DataFrame, the column labels are prefixed.

Parameters prefix : str

The string to add before each label.

Returns Series or DataFrame

New Series or DataFrame with updated labels.

See also:

Series.add_suffix Suffix row labels with string suffix.

DataFrame.add_suffix Suffix column labels with string suffix.

Examples

>>> s = pd.Series([1, 2, 3, 4])
>>> s
0 1
1 2

(continues on next page)

1450 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

2 3
3 4
dtype: int64

>>> s.add_prefix('item_')
item_0 1
item_1 2
item_2 3
item_3 4
dtype: int64

>>> df = pd.DataFrame({'A': [1, 2, 3, 4], 'B': [3, 4, 5, 6]})
>>> df

A B
0 1 3
1 2 4
2 3 5
3 4 6

>>> df.add_prefix('col_')
col_A col_B

0 1 3
1 2 4
2 3 5
3 4 6

pandas.Series.add_suffix

Series.add_suffix(suffix)
Suffix labels with string suffix.

For Series, the row labels are suffixed. For DataFrame, the column labels are suffixed.

Parameters suffix : str

The string to add after each label.

Returns Series or DataFrame

New Series or DataFrame with updated labels.

See also:

Series.add_prefix Prefix row labels with string prefix.

DataFrame.add_prefix Prefix column labels with string prefix.

Examples

>>> s = pd.Series([1, 2, 3, 4])
>>> s
0 1
1 2
2 3

(continues on next page)

34.3. Series 1451

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

3 4
dtype: int64

>>> s.add_suffix('_item')
0_item 1
1_item 2
2_item 3
3_item 4
dtype: int64

>>> df = pd.DataFrame({'A': [1, 2, 3, 4], 'B': [3, 4, 5, 6]})
>>> df

A B
0 1 3
1 2 4
2 3 5
3 4 6

>>> df.add_suffix('_col')
A_col B_col

0 1 3
1 2 4
2 3 5
3 4 6

pandas.Series.agg

Series.agg(func, axis=0, *args, **kwargs)
Aggregate using one or more operations over the specified axis.

New in version 0.20.0.

Parameters func : function, string, dictionary, or list of string/functions

Function to use for aggregating the data. If a function, must either work when passed a
Series or when passed to Series.apply. For a DataFrame, can pass a dict, if the keys are
DataFrame column names.

Accepted combinations are:

• string function name.

• function.

• list of functions.

• dict of column names -> functions (or list of functions).

axis : {0 or ‘index’}

Parameter needed for compatibility with DataFrame.

*args

Positional arguments to pass to func.

**kwargs

Keyword arguments to pass to func.

1452 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

Returns

aggregated [Series]

See also:

pandas.Series.apply , pandas.Series.transform

Notes

agg is an alias for aggregate. Use the alias.

A passed user-defined-function will be passed a Series for evaluation.

Examples

>>> s = Series(np.random.randn(10))

>>> s.agg('min')
-1.3018049988556679

>>> s.agg(['min', 'max'])
min -1.301805
max 1.127688
dtype: float64

pandas.Series.aggregate

Series.aggregate(func, axis=0, *args, **kwargs)
Aggregate using one or more operations over the specified axis.

New in version 0.20.0.

Parameters func : function, string, dictionary, or list of string/functions

Function to use for aggregating the data. If a function, must either work when passed a
Series or when passed to Series.apply. For a DataFrame, can pass a dict, if the keys are
DataFrame column names.

Accepted combinations are:

• string function name.

• function.

• list of functions.

• dict of column names -> functions (or list of functions).

axis : {0 or ‘index’}

Parameter needed for compatibility with DataFrame.

*args

Positional arguments to pass to func.

**kwargs

34.3. Series 1453

pandas: powerful Python data analysis toolkit, Release 0.23.4

Keyword arguments to pass to func.

Returns

aggregated [Series]

See also:

pandas.Series.apply , pandas.Series.transform

Notes

agg is an alias for aggregate. Use the alias.

A passed user-defined-function will be passed a Series for evaluation.

Examples

>>> s = Series(np.random.randn(10))

>>> s.agg('min')
-1.3018049988556679

>>> s.agg(['min', 'max'])
min -1.301805
max 1.127688
dtype: float64

pandas.Series.align

Series.align(other, join=’outer’, axis=None, level=None, copy=True, fill_value=None,
method=None, limit=None, fill_axis=0, broadcast_axis=None)

Align two objects on their axes with the specified join method for each axis Index

Parameters

other [DataFrame or Series]

join [{‘outer’, ‘inner’, ‘left’, ‘right’}, default ‘outer’]

axis : allowed axis of the other object, default None

Align on index (0), columns (1), or both (None)

level : int or level name, default None

Broadcast across a level, matching Index values on the passed MultiIndex level

copy : boolean, default True

Always returns new objects. If copy=False and no reindexing is required then original
objects are returned.

fill_value : scalar, default np.NaN

Value to use for missing values. Defaults to NaN, but can be any “compatible” value

method [str, default None]

1454 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

limit [int, default None]

fill_axis : {0 or ‘index’}, default 0

Filling axis, method and limit

broadcast_axis : {0 or ‘index’}, default None

Broadcast values along this axis, if aligning two objects of different dimensions

Returns (left, right) : (Series, type of other)

Aligned objects

pandas.Series.all

Series.all(axis=0, bool_only=None, skipna=True, level=None, **kwargs)
Return whether all elements are True, potentially over an axis.

Returns True if all elements within a series or along a Dataframe axis are non-zero, not-empty or not-False.

Parameters axis : {0 or ‘index’, 1 or ‘columns’, None}, default 0

Indicate which axis or axes should be reduced.

• 0 / ‘index’ : reduce the index, return a Series whose index is the original column
labels.

• 1 / ‘columns’ : reduce the columns, return a Series whose index is the original index.

• None : reduce all axes, return a scalar.

skipna : boolean, default True

Exclude NA/null values. If an entire row/column is NA, the result will be NA.

level : int or level name, default None

If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into
a scalar.

bool_only : boolean, default None

Include only boolean columns. If None, will attempt to use everything, then use only
boolean data. Not implemented for Series.

**kwargs : any, default None

Additional keywords have no effect but might be accepted for compatibility with
NumPy.

Returns

all [scalar or Series (if level specified)]

See also:

pandas.Series.all Return True if all elements are True

pandas.DataFrame.any Return True if one (or more) elements are True

34.3. Series 1455

pandas: powerful Python data analysis toolkit, Release 0.23.4

Examples

Series

>>> pd.Series([True, True]).all()
True
>>> pd.Series([True, False]).all()
False

DataFrames

Create a dataframe from a dictionary.

>>> df = pd.DataFrame({'col1': [True, True], 'col2': [True, False]})
>>> df

col1 col2
0 True True
1 True False

Default behaviour checks if column-wise values all return True.

>>> df.all()
col1 True
col2 False
dtype: bool

Specify axis='columns' to check if row-wise values all return True.

>>> df.all(axis='columns')
0 True
1 False
dtype: bool

Or axis=None for whether every value is True.

>>> df.all(axis=None)
False

pandas.Series.any

Series.any(axis=0, bool_only=None, skipna=True, level=None, **kwargs)
Return whether any element is True over requested axis.

Unlike DataFrame.all(), this performs an or operation. If any of the values along the specified axis
is True, this will return True.

Parameters axis : {0 or ‘index’, 1 or ‘columns’, None}, default 0

Indicate which axis or axes should be reduced.

• 0 / ‘index’ : reduce the index, return a Series whose index is the original column
labels.

• 1 / ‘columns’ : reduce the columns, return a Series whose index is the original index.

• None : reduce all axes, return a scalar.

skipna : boolean, default True

1456 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

Exclude NA/null values. If an entire row/column is NA, the result will be NA.

level : int or level name, default None

If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into
a scalar.

bool_only : boolean, default None

Include only boolean columns. If None, will attempt to use everything, then use only
boolean data. Not implemented for Series.

**kwargs : any, default None

Additional keywords have no effect but might be accepted for compatibility with
NumPy.

Returns

any [scalar or Series (if level specified)]

See also:

pandas.DataFrame.all Return whether all elements are True.

Examples

Series

For Series input, the output is a scalar indicating whether any element is True.

>>> pd.Series([True, False]).any()
True

DataFrame

Whether each column contains at least one True element (the default).

>>> df = pd.DataFrame({"A": [1, 2], "B": [0, 2], "C": [0, 0]})
>>> df

A B C
0 1 0 0
1 2 2 0

>>> df.any()
A True
B True
C False
dtype: bool

Aggregating over the columns.

>>> df = pd.DataFrame({"A": [True, False], "B": [1, 2]})
>>> df

A B
0 True 1
1 False 2

34.3. Series 1457

pandas: powerful Python data analysis toolkit, Release 0.23.4

>>> df.any(axis='columns')
0 True
1 True
dtype: bool

>>> df = pd.DataFrame({"A": [True, False], "B": [1, 0]})
>>> df

A B
0 True 1
1 False 0

>>> df.any(axis='columns')
0 True
1 False
dtype: bool

Aggregating over the entire DataFrame with axis=None.

>>> df.any(axis=None)
True

any for an empty DataFrame is an empty Series.

>>> pd.DataFrame([]).any()
Series([], dtype: bool)

pandas.Series.append

Series.append(to_append, ignore_index=False, verify_integrity=False)
Concatenate two or more Series.

Parameters

to_append [Series or list/tuple of Series]

ignore_index : boolean, default False

If True, do not use the index labels.

New in version 0.19.0.

verify_integrity : boolean, default False

If True, raise Exception on creating index with duplicates

Returns

appended [Series]

See also:

pandas.concat General function to concatenate DataFrame, Series or Panel objects

Notes

Iteratively appending to a Series can be more computationally intensive than a single concatenate. A better
solution is to append values to a list and then concatenate the list with the original Series all at once.

1458 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

Examples

>>> s1 = pd.Series([1, 2, 3])
>>> s2 = pd.Series([4, 5, 6])
>>> s3 = pd.Series([4, 5, 6], index=[3,4,5])
>>> s1.append(s2)
0 1
1 2
2 3
0 4
1 5
2 6
dtype: int64

>>> s1.append(s3)
0 1
1 2
2 3
3 4
4 5
5 6
dtype: int64

With ignore_index set to True:

>>> s1.append(s2, ignore_index=True)
0 1
1 2
2 3
3 4
4 5
5 6
dtype: int64

With verify_integrity set to True:

>>> s1.append(s2, verify_integrity=True)
Traceback (most recent call last):
...
ValueError: Indexes have overlapping values: [0, 1, 2]

pandas.Series.apply

Series.apply(func, convert_dtype=True, args=(), **kwds)
Invoke function on values of Series. Can be ufunc (a NumPy function that applies to the entire Series) or
a Python function that only works on single values

Parameters

func [function]

convert_dtype : boolean, default True

Try to find better dtype for elementwise function results. If False, leave as dtype=object

args : tuple

Positional arguments to pass to function in addition to the value

34.3. Series 1459

pandas: powerful Python data analysis toolkit, Release 0.23.4

Additional keyword arguments will be passed as keywords to the function

Returns

y [Series or DataFrame if func returns a Series]

See also:

Series.map For element-wise operations

Series.agg only perform aggregating type operations

Series.transform only perform transformating type operations

Examples

Create a series with typical summer temperatures for each city.

>>> import pandas as pd
>>> import numpy as np
>>> series = pd.Series([20, 21, 12], index=['London',
... 'New York','Helsinki'])
>>> series
London 20
New York 21
Helsinki 12
dtype: int64

Square the values by defining a function and passing it as an argument to apply().

>>> def square(x):
... return x**2
>>> series.apply(square)
London 400
New York 441
Helsinki 144
dtype: int64

Square the values by passing an anonymous function as an argument to apply().

>>> series.apply(lambda x: x**2)
London 400
New York 441
Helsinki 144
dtype: int64

Define a custom function that needs additional positional arguments and pass these additional arguments
using the args keyword.

>>> def subtract_custom_value(x, custom_value):
... return x-custom_value

>>> series.apply(subtract_custom_value, args=(5,))
London 15
New York 16
Helsinki 7
dtype: int64

1460 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

Define a custom function that takes keyword arguments and pass these arguments to apply.

>>> def add_custom_values(x, **kwargs):
... for month in kwargs:
... x+=kwargs[month]
... return x

>>> series.apply(add_custom_values, june=30, july=20, august=25)
London 95
New York 96
Helsinki 87
dtype: int64

Use a function from the Numpy library.

>>> series.apply(np.log)
London 2.995732
New York 3.044522
Helsinki 2.484907
dtype: float64

pandas.Series.argmax

Series.argmax(axis=0, skipna=True, *args, **kwargs)

Deprecated since version 0.21.0:

‘argmax’ is deprecated, use ‘idxmax’ instead. The behavior of ‘argmax’ will be corrected to return
the positional maximum in the future. Use ‘series.values.argmax’ to get the position of the maxi-
mum now.

Return the row label of the maximum value.

If multiple values equal the maximum, the first row label with that value is returned.

Parameters skipna : boolean, default True

Exclude NA/null values. If the entire Series is NA, the result will be NA.

axis : int, default 0

For compatibility with DataFrame.idxmax. Redundant for application on Series.

*args, **kwargs

Additional keywors have no effect but might be accepted for compatibility with NumPy.

Returns

idxmax [Index of maximum of values.]

Raises ValueError

If the Series is empty.

See also:

numpy.argmax Return indices of the maximum values along the given axis.

DataFrame.idxmax Return index of first occurrence of maximum over requested axis.

Series.idxmin Return index label of the first occurrence of minimum of values.

34.3. Series 1461

https://docs.scipy.org/doc/numpy/reference/generated/numpy.argmax.html#numpy.argmax

pandas: powerful Python data analysis toolkit, Release 0.23.4

Notes

This method is the Series version of ndarray.argmax. This method returns the label of the maximum,
while ndarray.argmax returns the position. To get the position, use series.values.argmax().

Examples

>>> s = pd.Series(data=[1, None, 4, 3, 4],
... index=['A', 'B', 'C', 'D', 'E'])
>>> s
A 1.0
B NaN
C 4.0
D 3.0
E 4.0
dtype: float64

>>> s.idxmax()
'C'

If skipna is False and there is an NA value in the data, the function returns nan.

>>> s.idxmax(skipna=False)
nan

pandas.Series.argmin

Series.argmin(axis=None, skipna=True, *args, **kwargs)

Deprecated since version 0.21.0:

‘argmin’ is deprecated, use ‘idxmin’ instead. The behavior of ‘argmin’ will be corrected to return the
positional minimum in the future. Use ‘series.values.argmin’ to get the position of the minimum now.

Return the row label of the minimum value.

If multiple values equal the minimum, the first row label with that value is returned.

Parameters skipna : boolean, default True

Exclude NA/null values. If the entire Series is NA, the result will be NA.

axis : int, default 0

For compatibility with DataFrame.idxmin. Redundant for application on Series.

*args, **kwargs

Additional keywors have no effect but might be accepted for compatibility with NumPy.

Returns

idxmin [Index of minimum of values.]

Raises ValueError

If the Series is empty.

See also:

1462 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

numpy.argmin Return indices of the minimum values along the given axis.

DataFrame.idxmin Return index of first occurrence of minimum over requested axis.

Series.idxmax Return index label of the first occurrence of maximum of values.

Notes

This method is the Series version of ndarray.argmin. This method returns the label of the minimum,
while ndarray.argmin returns the position. To get the position, use series.values.argmin().

Examples

>>> s = pd.Series(data=[1, None, 4, 1],
... index=['A' ,'B' ,'C' ,'D'])
>>> s
A 1.0
B NaN
C 4.0
D 1.0
dtype: float64

>>> s.idxmin()
'A'

If skipna is False and there is an NA value in the data, the function returns nan.

>>> s.idxmin(skipna=False)
nan

pandas.Series.argsort

Series.argsort(axis=0, kind=’quicksort’, order=None)
Overrides ndarray.argsort. Argsorts the value, omitting NA/null values, and places the result in the same
locations as the non-NA values

Parameters

axis [int (can only be zero)]

kind : {‘mergesort’, ‘quicksort’, ‘heapsort’}, default ‘quicksort’

Choice of sorting algorithm. See np.sort for more information. ‘mergesort’ is the only
stable algorithm

order [ignored]

Returns

argsorted [Series, with -1 indicated where nan values are present]

See also:

numpy.ndarray.argsort

34.3. Series 1463

https://docs.scipy.org/doc/numpy/reference/generated/numpy.argmin.html#numpy.argmin
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.argsort.html#numpy.ndarray.argsort

pandas: powerful Python data analysis toolkit, Release 0.23.4

pandas.Series.as_blocks

Series.as_blocks(copy=True)
Convert the frame to a dict of dtype -> Constructor Types that each has a homogeneous dtype.

Deprecated since version 0.21.0.

NOTE: the dtypes of the blocks WILL BE PRESERVED HERE (unlike in as_matrix)

Parameters

copy [boolean, default True]

Returns

values [a dict of dtype -> Constructor Types]

pandas.Series.as_matrix

Series.as_matrix(columns=None)
Convert the frame to its Numpy-array representation.

Deprecated since version 0.23.0: Use DataFrame.values() instead.

Parameters columns: list, optional, default:None

If None, return all columns, otherwise, returns specified columns.

Returns values : ndarray

If the caller is heterogeneous and contains booleans or objects, the result will be of
dtype=object. See Notes.

See also:

pandas.DataFrame.values

Notes

Return is NOT a Numpy-matrix, rather, a Numpy-array.

The dtype will be a lower-common-denominator dtype (implicit upcasting); that is to say if the dtypes
(even of numeric types) are mixed, the one that accommodates all will be chosen. Use this with care if you
are not dealing with the blocks.

e.g. If the dtypes are float16 and float32, dtype will be upcast to float32. If dtypes are int32 and uint8,
dtype will be upcase to int32. By numpy.find_common_type convention, mixing int64 and uint64 will
result in a flot64 dtype.

This method is provided for backwards compatibility. Generally, it is recommended to use ‘.values’.

pandas.Series.asfreq

Series.asfreq(freq, method=None, how=None, normalize=False, fill_value=None)
Convert TimeSeries to specified frequency.

Optionally provide filling method to pad/backfill missing values.

1464 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

Returns the original data conformed to a new index with the specified frequency. resample is more
appropriate if an operation, such as summarization, is necessary to represent the data at the new frequency.

Parameters

freq [DateOffset object, or string]

method : {‘backfill’/’bfill’, ‘pad’/’ffill’}, default None

Method to use for filling holes in reindexed Series (note this does not fill NaNs that
already were present):

• ‘pad’ / ‘ffill’: propagate last valid observation forward to next valid

• ‘backfill’ / ‘bfill’: use NEXT valid observation to fill

how : {‘start’, ‘end’}, default end

For PeriodIndex only, see PeriodIndex.asfreq

normalize : bool, default False

Whether to reset output index to midnight

fill_value: scalar, optional

Value to use for missing values, applied during upsampling (note this does not fill NaNs
that already were present).

New in version 0.20.0.

Returns

converted [type of caller]

See also:

reindex

Notes

To learn more about the frequency strings, please see this link.

Examples

Start by creating a series with 4 one minute timestamps.

>>> index = pd.date_range('1/1/2000', periods=4, freq='T')
>>> series = pd.Series([0.0, None, 2.0, 3.0], index=index)
>>> df = pd.DataFrame({'s':series})
>>> df

s
2000-01-01 00:00:00 0.0
2000-01-01 00:01:00 NaN
2000-01-01 00:02:00 2.0
2000-01-01 00:03:00 3.0

Upsample the series into 30 second bins.

34.3. Series 1465

http://pandas.pydata.org/pandas-docs/stable/timeseries.html#offset-aliases

pandas: powerful Python data analysis toolkit, Release 0.23.4

>>> df.asfreq(freq='30S')
s

2000-01-01 00:00:00 0.0
2000-01-01 00:00:30 NaN
2000-01-01 00:01:00 NaN
2000-01-01 00:01:30 NaN
2000-01-01 00:02:00 2.0
2000-01-01 00:02:30 NaN
2000-01-01 00:03:00 3.0

Upsample again, providing a fill value.

>>> df.asfreq(freq='30S', fill_value=9.0)
s

2000-01-01 00:00:00 0.0
2000-01-01 00:00:30 9.0
2000-01-01 00:01:00 NaN
2000-01-01 00:01:30 9.0
2000-01-01 00:02:00 2.0
2000-01-01 00:02:30 9.0
2000-01-01 00:03:00 3.0

Upsample again, providing a method.

>>> df.asfreq(freq='30S', method='bfill')
s

2000-01-01 00:00:00 0.0
2000-01-01 00:00:30 NaN
2000-01-01 00:01:00 NaN
2000-01-01 00:01:30 2.0
2000-01-01 00:02:00 2.0
2000-01-01 00:02:30 3.0
2000-01-01 00:03:00 3.0

pandas.Series.asof

Series.asof(where, subset=None)
The last row without any NaN is taken (or the last row without NaN considering only the subset of columns
in the case of a DataFrame)

New in version 0.19.0: For DataFrame

If there is no good value, NaN is returned for a Series a Series of NaN values for a DataFrame

Parameters

where [date or array of dates]

subset : string or list of strings, default None

if not None use these columns for NaN propagation

Returns where is scalar

• value or NaN if input is Series

• Series if input is DataFrame

where is Index: same shape object as input

1466 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

See also:

merge_asof

Notes

Dates are assumed to be sorted Raises if this is not the case

pandas.Series.astype

Series.astype(dtype, copy=True, errors=’raise’, **kwargs)
Cast a pandas object to a specified dtype dtype.

Parameters dtype : data type, or dict of column name -> data type

Use a numpy.dtype or Python type to cast entire pandas object to the same type. Alterna-
tively, use {col: dtype, . . . }, where col is a column label and dtype is a numpy.dtype or
Python type to cast one or more of the DataFrame’s columns to column-specific types.

copy : bool, default True.

Return a copy when copy=True (be very careful setting copy=False as changes to
values then may propagate to other pandas objects).

errors : {‘raise’, ‘ignore’}, default ‘raise’.

Control raising of exceptions on invalid data for provided dtype.

• raise : allow exceptions to be raised

• ignore : suppress exceptions. On error return original object

New in version 0.20.0.

raise_on_error : raise on invalid input

Deprecated since version 0.20.0: Use errors instead

kwargs [keyword arguments to pass on to the constructor]

Returns

casted [type of caller]

See also:

pandas.to_datetime Convert argument to datetime.

pandas.to_timedelta Convert argument to timedelta.

pandas.to_numeric Convert argument to a numeric type.

numpy.ndarray.astype Cast a numpy array to a specified type.

Examples

34.3. Series 1467

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.astype.html#numpy.ndarray.astype

pandas: powerful Python data analysis toolkit, Release 0.23.4

>>> ser = pd.Series([1, 2], dtype='int32')
>>> ser
0 1
1 2
dtype: int32
>>> ser.astype('int64')
0 1
1 2
dtype: int64

Convert to categorical type:

>>> ser.astype('category')
0 1
1 2
dtype: category
Categories (2, int64): [1, 2]

Convert to ordered categorical type with custom ordering:

>>> ser.astype('category', ordered=True, categories=[2, 1])
0 1
1 2
dtype: category
Categories (2, int64): [2 < 1]

Note that using copy=False and changing data on a new pandas object may propagate changes:

>>> s1 = pd.Series([1,2])
>>> s2 = s1.astype('int64', copy=False)
>>> s2[0] = 10
>>> s1 # note that s1[0] has changed too
0 10
1 2
dtype: int64

pandas.Series.at_time

Series.at_time(time, asof=False)
Select values at particular time of day (e.g. 9:30AM).

Parameters

time [datetime.time or string]

Returns

values_at_time [type of caller]

Raises TypeError

If the index is not a DatetimeIndex

See also:

between_time Select values between particular times of the day

first Select initial periods of time series based on a date offset

1468 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

last Select final periods of time series based on a date offset

DatetimeIndex.indexer_at_time Get just the index locations for values at particular time of the
day

Examples

>>> i = pd.date_range('2018-04-09', periods=4, freq='12H')
>>> ts = pd.DataFrame({'A': [1,2,3,4]}, index=i)
>>> ts

A
2018-04-09 00:00:00 1
2018-04-09 12:00:00 2
2018-04-10 00:00:00 3
2018-04-10 12:00:00 4

>>> ts.at_time('12:00')
A

2018-04-09 12:00:00 2
2018-04-10 12:00:00 4

pandas.Series.autocorr

Series.autocorr(lag=1)
Lag-N autocorrelation

Parameters lag : int, default 1

Number of lags to apply before performing autocorrelation.

Returns

autocorr [float]

pandas.Series.between

Series.between(left, right, inclusive=True)
Return boolean Series equivalent to left <= series <= right.

This function returns a boolean vector containing True wherever the corresponding Series element is be-
tween the boundary values left and right. NA values are treated as False.

Parameters left : scalar

Left boundary.

right : scalar

Right boundary.

inclusive : bool, default True

Include boundaries.

Returns Series

Each element will be a boolean.

34.3. Series 1469

pandas: powerful Python data analysis toolkit, Release 0.23.4

See also:

pandas.Series.gt Greater than of series and other

pandas.Series.lt Less than of series and other

Notes

This function is equivalent to (left <= ser) & (ser <= right)

Examples

>>> s = pd.Series([2, 0, 4, 8, np.nan])

Boundary values are included by default:

>>> s.between(1, 4)
0 True
1 False
2 True
3 False
4 False
dtype: bool

With inclusive set to False boundary values are excluded:

>>> s.between(1, 4, inclusive=False)
0 True
1 False
2 False
3 False
4 False
dtype: bool

left and right can be any scalar value:

>>> s = pd.Series(['Alice', 'Bob', 'Carol', 'Eve'])
>>> s.between('Anna', 'Daniel')
0 False
1 True
2 True
3 False
dtype: bool

pandas.Series.between_time

Series.between_time(start_time, end_time, include_start=True, include_end=True)
Select values between particular times of the day (e.g., 9:00-9:30 AM).

By setting start_time to be later than end_time, you can get the times that are not between the two
times.

Parameters

start_time [datetime.time or string]

1470 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

end_time [datetime.time or string]

include_start [boolean, default True]

include_end [boolean, default True]

Returns

values_between_time [type of caller]

Raises TypeError

If the index is not a DatetimeIndex

See also:

at_time Select values at a particular time of the day

first Select initial periods of time series based on a date offset

last Select final periods of time series based on a date offset

DatetimeIndex.indexer_between_time Get just the index locations for values between partic-
ular times of the day

Examples

>>> i = pd.date_range('2018-04-09', periods=4, freq='1D20min')
>>> ts = pd.DataFrame({'A': [1,2,3,4]}, index=i)
>>> ts

A
2018-04-09 00:00:00 1
2018-04-10 00:20:00 2
2018-04-11 00:40:00 3
2018-04-12 01:00:00 4

>>> ts.between_time('0:15', '0:45')
A

2018-04-10 00:20:00 2
2018-04-11 00:40:00 3

You get the times that are not between two times by setting start_time later than end_time:

>>> ts.between_time('0:45', '0:15')
A

2018-04-09 00:00:00 1
2018-04-12 01:00:00 4

pandas.Series.bfill

Series.bfill(axis=None, inplace=False, limit=None, downcast=None)
Synonym for DataFrame.fillna(method='bfill')

pandas.Series.bool

Series.bool()
Return the bool of a single element PandasObject.

34.3. Series 1471

pandas: powerful Python data analysis toolkit, Release 0.23.4

This must be a boolean scalar value, either True or False. Raise a ValueError if the PandasObject does not
have exactly 1 element, or that element is not boolean

pandas.Series.cat

Series.cat()
Accessor object for categorical properties of the Series values.

Be aware that assigning to categories is a inplace operation, while all methods return new categorical data
per default (but can be called with inplace=True).

Parameters

data [Series or CategoricalIndex]

Examples

>>> s.cat.categories
>>> s.cat.categories = list('abc')
>>> s.cat.rename_categories(list('cab'))
>>> s.cat.reorder_categories(list('cab'))
>>> s.cat.add_categories(['d','e'])
>>> s.cat.remove_categories(['d'])
>>> s.cat.remove_unused_categories()
>>> s.cat.set_categories(list('abcde'))
>>> s.cat.as_ordered()
>>> s.cat.as_unordered()

pandas.Series.clip

Series.clip(lower=None, upper=None, axis=None, inplace=False, *args, **kwargs)
Trim values at input threshold(s).

Assigns values outside boundary to boundary values. Thresholds can be singular values or array like, and
in the latter case the clipping is performed element-wise in the specified axis.

Parameters lower : float or array_like, default None

Minimum threshold value. All values below this threshold will be set to it.

upper : float or array_like, default None

Maximum threshold value. All values above this threshold will be set to it.

axis : int or string axis name, optional

Align object with lower and upper along the given axis.

inplace : boolean, default False

Whether to perform the operation in place on the data.

New in version 0.21.0.

*args, **kwargs

Additional keywords have no effect but might be accepted for compatibility with numpy.

Returns Series or DataFrame

1472 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

Same type as calling object with the values outside the clip boundaries replaced

See also:

clip_lower Clip values below specified threshold(s).

clip_upper Clip values above specified threshold(s).

Examples

>>> data = {'col_0': [9, -3, 0, -1, 5], 'col_1': [-2, -7, 6, 8, -5]}
>>> df = pd.DataFrame(data)
>>> df

col_0 col_1
0 9 -2
1 -3 -7
2 0 6
3 -1 8
4 5 -5

Clips per column using lower and upper thresholds:

>>> df.clip(-4, 6)
col_0 col_1

0 6 -2
1 -3 -4
2 0 6
3 -1 6
4 5 -4

Clips using specific lower and upper thresholds per column element:

>>> t = pd.Series([2, -4, -1, 6, 3])
>>> t
0 2
1 -4
2 -1
3 6
4 3
dtype: int64

>>> df.clip(t, t + 4, axis=0)
col_0 col_1

0 6 2
1 -3 -4
2 0 3
3 6 8
4 5 3

pandas.Series.clip_lower

Series.clip_lower(threshold, axis=None, inplace=False)
Return copy of the input with values below a threshold truncated.

Parameters threshold : numeric or array-like

34.3. Series 1473

pandas: powerful Python data analysis toolkit, Release 0.23.4

Minimum value allowed. All values below threshold will be set to this value.

• float : every value is compared to threshold.

• array-like : The shape of threshold should match the object it’s compared to. When
self is a Series, threshold should be the length. When self is a DataFrame, threshold
should 2-D and the same shape as self for axis=None, or 1-D and the same length
as the axis being compared.

axis : {0 or ‘index’, 1 or ‘columns’}, default 0

Align self with threshold along the given axis.

inplace : boolean, default False

Whether to perform the operation in place on the data.

New in version 0.21.0.

Returns

clipped [same type as input]

See also:

Series.clip Return copy of input with values below and above thresholds truncated.

Series.clip_upper Return copy of input with values above threshold truncated.

Examples

Series single threshold clipping:

>>> s = pd.Series([5, 6, 7, 8, 9])
>>> s.clip_lower(8)
0 8
1 8
2 8
3 8
4 9
dtype: int64

Series clipping element-wise using an array of thresholds. threshold should be the same length as the
Series.

>>> elemwise_thresholds = [4, 8, 7, 2, 5]
>>> s.clip_lower(elemwise_thresholds)
0 5
1 8
2 7
3 8
4 9
dtype: int64

DataFrames can be compared to a scalar.

>>> df = pd.DataFrame({"A": [1, 3, 5], "B": [2, 4, 6]})
>>> df

A B
0 1 2

(continues on next page)

1474 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

1 3 4
2 5 6

>>> df.clip_lower(3)
A B

0 3 3
1 3 4
2 5 6

Or to an array of values. By default, threshold should be the same shape as the DataFrame.

>>> df.clip_lower(np.array([[3, 4], [2, 2], [6, 2]]))
A B

0 3 4
1 3 4
2 6 6

Control how threshold is broadcast with axis. In this case threshold should be the same length as the axis
specified by axis.

>>> df.clip_lower(np.array([3, 3, 5]), axis='index')
A B

0 3 3
1 3 4
2 5 6

>>> df.clip_lower(np.array([4, 5]), axis='columns')
A B

0 4 5
1 4 5
2 5 6

pandas.Series.clip_upper

Series.clip_upper(threshold, axis=None, inplace=False)
Return copy of input with values above given value(s) truncated.

Parameters

threshold [float or array_like]

axis : int or string axis name, optional

Align object with threshold along the given axis.

inplace : boolean, default False

Whether to perform the operation in place on the data

New in version 0.21.0.

Returns

clipped [same type as input]

See also:

clip

34.3. Series 1475

pandas: powerful Python data analysis toolkit, Release 0.23.4

pandas.Series.combine

Series.combine(other, func, fill_value=nan)
Perform elementwise binary operation on two Series using given function with optional fill value when an
index is missing from one Series or the other

Parameters

other [Series or scalar value]

func : function

Function that takes two scalars as inputs and return a scalar

fill_value [scalar value]

Returns

result [Series]

See also:

Series.combine_first Combine Series values, choosing the calling Series’s values first

Examples

>>> s1 = Series([1, 2])
>>> s2 = Series([0, 3])
>>> s1.combine(s2, lambda x1, x2: x1 if x1 < x2 else x2)
0 0
1 2
dtype: int64

pandas.Series.combine_first

Series.combine_first(other)
Combine Series values, choosing the calling Series’s values first. Result index will be the union of the two
indexes

Parameters

other [Series]

Returns

combined [Series]

See also:

Series.combine Perform elementwise operation on two Series using a given function

Examples

1476 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

>>> s1 = pd.Series([1, np.nan])
>>> s2 = pd.Series([3, 4])
>>> s1.combine_first(s2)
0 1.0
1 4.0
dtype: float64

pandas.Series.compound

Series.compound(axis=None, skipna=None, level=None)
Return the compound percentage of the values for the requested axis

Parameters

axis [{index (0)}]

skipna : boolean, default True

Exclude NA/null values when computing the result.

level : int or level name, default None

If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into
a scalar

numeric_only : boolean, default None

Include only float, int, boolean columns. If None, will attempt to use everything, then
use only numeric data. Not implemented for Series.

Returns

compounded [scalar or Series (if level specified)]

pandas.Series.compress

Series.compress(condition, *args, **kwargs)
Return selected slices of an array along given axis as a Series

See also:

numpy.ndarray.compress

pandas.Series.consolidate

Series.consolidate(inplace=False)
Compute NDFrame with “consolidated” internals (data of each dtype grouped together in a single ndarray).

Deprecated since version 0.20.0: Consolidate will be an internal implementation only.

pandas.Series.convert_objects

Series.convert_objects(convert_dates=True, convert_numeric=False, con-
vert_timedeltas=True, copy=True)

Attempt to infer better dtype for object columns.

Deprecated since version 0.21.0.

34.3. Series 1477

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.compress.html#numpy.ndarray.compress

pandas: powerful Python data analysis toolkit, Release 0.23.4

Parameters convert_dates : boolean, default True

If True, convert to date where possible. If ‘coerce’, force conversion, with unconvertible
values becoming NaT.

convert_numeric : boolean, default False

If True, attempt to coerce to numbers (including strings), with unconvertible values
becoming NaN.

convert_timedeltas : boolean, default True

If True, convert to timedelta where possible. If ‘coerce’, force conversion, with uncon-
vertible values becoming NaT.

copy : boolean, default True

If True, return a copy even if no copy is necessary (e.g. no conversion was done). Note:
This is meant for internal use, and should not be confused with inplace.

Returns

converted [same as input object]

See also:

pandas.to_datetime Convert argument to datetime.

pandas.to_timedelta Convert argument to timedelta.

pandas.to_numeric Return a fixed frequency timedelta index, with day as the default.

pandas.Series.copy

Series.copy(deep=True)
Make a copy of this object’s indices and data.

When deep=True (default), a new object will be created with a copy of the calling object’s data and
indices. Modifications to the data or indices of the copy will not be reflected in the original object (see
notes below).

When deep=False, a new object will be created without copying the calling object’s data or index (only
references to the data and index are copied). Any changes to the data of the original will be reflected in the
shallow copy (and vice versa).

Parameters deep : bool, default True

Make a deep copy, including a copy of the data and the indices. With deep=False
neither the indices nor the data are copied.

Returns copy : Series, DataFrame or Panel

Object type matches caller.

Notes

When deep=True, data is copied but actual Python objects will not be copied recursively, only the
reference to the object. This is in contrast to copy.deepcopy in the Standard Library, which recursively
copies object data (see examples below).

1478 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

While Index objects are copied when deep=True, the underlying numpy array is not copied for per-
formance reasons. Since Index is immutable, the underlying data can be safely shared and a copy is not
needed.

Examples

>>> s = pd.Series([1, 2], index=["a", "b"])
>>> s
a 1
b 2
dtype: int64

>>> s_copy = s.copy()
>>> s_copy
a 1
b 2
dtype: int64

Shallow copy versus default (deep) copy:

>>> s = pd.Series([1, 2], index=["a", "b"])
>>> deep = s.copy()
>>> shallow = s.copy(deep=False)

Shallow copy shares data and index with original.

>>> s is shallow
False
>>> s.values is shallow.values and s.index is shallow.index
True

Deep copy has own copy of data and index.

>>> s is deep
False
>>> s.values is deep.values or s.index is deep.index
False

Updates to the data shared by shallow copy and original is reflected in both; deep copy remains unchanged.

>>> s[0] = 3
>>> shallow[1] = 4
>>> s
a 3
b 4
dtype: int64
>>> shallow
a 3
b 4
dtype: int64
>>> deep
a 1
b 2
dtype: int64

34.3. Series 1479

pandas: powerful Python data analysis toolkit, Release 0.23.4

Note that when copying an object containing Python objects, a deep copy will copy the data, but will not
do so recursively. Updating a nested data object will be reflected in the deep copy.

>>> s = pd.Series([[1, 2], [3, 4]])
>>> deep = s.copy()
>>> s[0][0] = 10
>>> s
0 [10, 2]
1 [3, 4]
dtype: object
>>> deep
0 [10, 2]
1 [3, 4]
dtype: object

pandas.Series.corr

Series.corr(other, method=’pearson’, min_periods=None)
Compute correlation with other Series, excluding missing values

Parameters

other [Series]

method : {‘pearson’, ‘kendall’, ‘spearman’}

• pearson : standard correlation coefficient

• kendall : Kendall Tau correlation coefficient

• spearman : Spearman rank correlation

min_periods : int, optional

Minimum number of observations needed to have a valid result

Returns

correlation [float]

pandas.Series.count

Series.count(level=None)
Return number of non-NA/null observations in the Series

Parameters level : int or level name, default None

If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into
a smaller Series

Returns

nobs [int or Series (if level specified)]

pandas.Series.cov

Series.cov(other, min_periods=None)
Compute covariance with Series, excluding missing values

1480 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

Parameters

other [Series]

min_periods : int, optional

Minimum number of observations needed to have a valid result

Returns

covariance [float]

Normalized by N-1 (unbiased estimator).

pandas.Series.cummax

Series.cummax(axis=None, skipna=True, *args, **kwargs)
Return cumulative maximum over a DataFrame or Series axis.

Returns a DataFrame or Series of the same size containing the cumulative maximum.

Parameters axis : {0 or ‘index’, 1 or ‘columns’}, default 0

The index or the name of the axis. 0 is equivalent to None or ‘index’.

skipna : boolean, default True

Exclude NA/null values. If an entire row/column is NA, the result will be NA.

*args, **kwargs :

Additional keywords have no effect but might be accepted for compatibility with
NumPy.

Returns

cummax [scalar or Series]

See also:

pandas.core.window.Expanding.max Similar functionality but ignores NaN values.

Series.max Return the maximum over Series axis.

Series.cummax Return cumulative maximum over Series axis.

Series.cummin Return cumulative minimum over Series axis.

Series.cumsum Return cumulative sum over Series axis.

Series.cumprod Return cumulative product over Series axis.

Examples

Series

>>> s = pd.Series([2, np.nan, 5, -1, 0])
>>> s
0 2.0
1 NaN
2 5.0
3 -1.0

(continues on next page)

34.3. Series 1481

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

4 0.0
dtype: float64

By default, NA values are ignored.

>>> s.cummax()
0 2.0
1 NaN
2 5.0
3 5.0
4 5.0
dtype: float64

To include NA values in the operation, use skipna=False

>>> s.cummax(skipna=False)
0 2.0
1 NaN
2 NaN
3 NaN
4 NaN
dtype: float64

DataFrame

>>> df = pd.DataFrame([[2.0, 1.0],
... [3.0, np.nan],
... [1.0, 0.0]],
... columns=list('AB'))
>>> df

A B
0 2.0 1.0
1 3.0 NaN
2 1.0 0.0

By default, iterates over rows and finds the maximum in each column. This is equivalent to axis=None
or axis='index'.

>>> df.cummax()
A B

0 2.0 1.0
1 3.0 NaN
2 3.0 1.0

To iterate over columns and find the maximum in each row, use axis=1

>>> df.cummax(axis=1)
A B

0 2.0 2.0
1 3.0 NaN
2 1.0 1.0

1482 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

pandas.Series.cummin

Series.cummin(axis=None, skipna=True, *args, **kwargs)
Return cumulative minimum over a DataFrame or Series axis.

Returns a DataFrame or Series of the same size containing the cumulative minimum.

Parameters axis : {0 or ‘index’, 1 or ‘columns’}, default 0

The index or the name of the axis. 0 is equivalent to None or ‘index’.

skipna : boolean, default True

Exclude NA/null values. If an entire row/column is NA, the result will be NA.

*args, **kwargs :

Additional keywords have no effect but might be accepted for compatibility with
NumPy.

Returns

cummin [scalar or Series]

See also:

pandas.core.window.Expanding.min Similar functionality but ignores NaN values.

Series.min Return the minimum over Series axis.

Series.cummax Return cumulative maximum over Series axis.

Series.cummin Return cumulative minimum over Series axis.

Series.cumsum Return cumulative sum over Series axis.

Series.cumprod Return cumulative product over Series axis.

Examples

Series

>>> s = pd.Series([2, np.nan, 5, -1, 0])
>>> s
0 2.0
1 NaN
2 5.0
3 -1.0
4 0.0
dtype: float64

By default, NA values are ignored.

>>> s.cummin()
0 2.0
1 NaN
2 2.0
3 -1.0
4 -1.0
dtype: float64

To include NA values in the operation, use skipna=False

34.3. Series 1483

pandas: powerful Python data analysis toolkit, Release 0.23.4

>>> s.cummin(skipna=False)
0 2.0
1 NaN
2 NaN
3 NaN
4 NaN
dtype: float64

DataFrame

>>> df = pd.DataFrame([[2.0, 1.0],
... [3.0, np.nan],
... [1.0, 0.0]],
... columns=list('AB'))
>>> df

A B
0 2.0 1.0
1 3.0 NaN
2 1.0 0.0

By default, iterates over rows and finds the minimum in each column. This is equivalent to axis=None
or axis='index'.

>>> df.cummin()
A B

0 2.0 1.0
1 2.0 NaN
2 1.0 0.0

To iterate over columns and find the minimum in each row, use axis=1

>>> df.cummin(axis=1)
A B

0 2.0 1.0
1 3.0 NaN
2 1.0 0.0

pandas.Series.cumprod

Series.cumprod(axis=None, skipna=True, *args, **kwargs)
Return cumulative product over a DataFrame or Series axis.

Returns a DataFrame or Series of the same size containing the cumulative product.

Parameters axis : {0 or ‘index’, 1 or ‘columns’}, default 0

The index or the name of the axis. 0 is equivalent to None or ‘index’.

skipna : boolean, default True

Exclude NA/null values. If an entire row/column is NA, the result will be NA.

*args, **kwargs :

Additional keywords have no effect but might be accepted for compatibility with
NumPy.

Returns

1484 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

cumprod [scalar or Series]

See also:

pandas.core.window.Expanding.prod Similar functionality but ignores NaN values.

Series.prod Return the product over Series axis.

Series.cummax Return cumulative maximum over Series axis.

Series.cummin Return cumulative minimum over Series axis.

Series.cumsum Return cumulative sum over Series axis.

Series.cumprod Return cumulative product over Series axis.

Examples

Series

>>> s = pd.Series([2, np.nan, 5, -1, 0])
>>> s
0 2.0
1 NaN
2 5.0
3 -1.0
4 0.0
dtype: float64

By default, NA values are ignored.

>>> s.cumprod()
0 2.0
1 NaN
2 10.0
3 -10.0
4 -0.0
dtype: float64

To include NA values in the operation, use skipna=False

>>> s.cumprod(skipna=False)
0 2.0
1 NaN
2 NaN
3 NaN
4 NaN
dtype: float64

DataFrame

>>> df = pd.DataFrame([[2.0, 1.0],
... [3.0, np.nan],
... [1.0, 0.0]],
... columns=list('AB'))
>>> df

A B
0 2.0 1.0

(continues on next page)

34.3. Series 1485

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

1 3.0 NaN
2 1.0 0.0

By default, iterates over rows and finds the product in each column. This is equivalent to axis=None or
axis='index'.

>>> df.cumprod()
A B

0 2.0 1.0
1 6.0 NaN
2 6.0 0.0

To iterate over columns and find the product in each row, use axis=1

>>> df.cumprod(axis=1)
A B

0 2.0 2.0
1 3.0 NaN
2 1.0 0.0

pandas.Series.cumsum

Series.cumsum(axis=None, skipna=True, *args, **kwargs)
Return cumulative sum over a DataFrame or Series axis.

Returns a DataFrame or Series of the same size containing the cumulative sum.

Parameters axis : {0 or ‘index’, 1 or ‘columns’}, default 0

The index or the name of the axis. 0 is equivalent to None or ‘index’.

skipna : boolean, default True

Exclude NA/null values. If an entire row/column is NA, the result will be NA.

*args, **kwargs :

Additional keywords have no effect but might be accepted for compatibility with
NumPy.

Returns

cumsum [scalar or Series]

See also:

pandas.core.window.Expanding.sum Similar functionality but ignores NaN values.

Series.sum Return the sum over Series axis.

Series.cummax Return cumulative maximum over Series axis.

Series.cummin Return cumulative minimum over Series axis.

Series.cumsum Return cumulative sum over Series axis.

Series.cumprod Return cumulative product over Series axis.

1486 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

Examples

Series

>>> s = pd.Series([2, np.nan, 5, -1, 0])
>>> s
0 2.0
1 NaN
2 5.0
3 -1.0
4 0.0
dtype: float64

By default, NA values are ignored.

>>> s.cumsum()
0 2.0
1 NaN
2 7.0
3 6.0
4 6.0
dtype: float64

To include NA values in the operation, use skipna=False

>>> s.cumsum(skipna=False)
0 2.0
1 NaN
2 NaN
3 NaN
4 NaN
dtype: float64

DataFrame

>>> df = pd.DataFrame([[2.0, 1.0],
... [3.0, np.nan],
... [1.0, 0.0]],
... columns=list('AB'))
>>> df

A B
0 2.0 1.0
1 3.0 NaN
2 1.0 0.0

By default, iterates over rows and finds the sum in each column. This is equivalent to axis=None or
axis='index'.

>>> df.cumsum()
A B

0 2.0 1.0
1 5.0 NaN
2 6.0 1.0

To iterate over columns and find the sum in each row, use axis=1

34.3. Series 1487

pandas: powerful Python data analysis toolkit, Release 0.23.4

>>> df.cumsum(axis=1)
A B

0 2.0 3.0
1 3.0 NaN
2 1.0 1.0

pandas.Series.describe

Series.describe(percentiles=None, include=None, exclude=None)
Generates descriptive statistics that summarize the central tendency, dispersion and shape of a dataset’s
distribution, excluding NaN values.

Analyzes both numeric and object series, as well as DataFrame column sets of mixed data types. The
output will vary depending on what is provided. Refer to the notes below for more detail.

Parameters percentiles : list-like of numbers, optional

The percentiles to include in the output. All should fall between 0 and 1. The default is
[.25, .5, .75], which returns the 25th, 50th, and 75th percentiles.

include : ‘all’, list-like of dtypes or None (default), optional

A white list of data types to include in the result. Ignored for Series. Here are the
options:

• ‘all’ : All columns of the input will be included in the output.

• A list-like of dtypes : Limits the results to the provided data types. To limit the result
to numeric types submit numpy.number. To limit it instead to object columns
submit the numpy.object data type. Strings can also be used in the style of
select_dtypes (e.g. df.describe(include=['O'])). To select pandas
categorical columns, use 'category'

• None (default) : The result will include all numeric columns.

exclude : list-like of dtypes or None (default), optional,

A black list of data types to omit from the result. Ignored for Series. Here are the
options:

• A list-like of dtypes : Excludes the provided data types from the result. To ex-
clude numeric types submit numpy.number. To exclude object columns sub-
mit the data type numpy.object. Strings can also be used in the style of
select_dtypes (e.g. df.describe(include=['O'])). To exclude pandas
categorical columns, use 'category'

• None (default) : The result will exclude nothing.

Returns

summary: Series/DataFrame of summary statistics

See also:

DataFrame.count, DataFrame.max, DataFrame.min, DataFrame.mean, DataFrame.
std, DataFrame.select_dtypes

1488 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

Notes

For numeric data, the result’s index will include count, mean, std, min, max as well as lower, 50 and
upper percentiles. By default the lower percentile is 25 and the upper percentile is 75. The 50 percentile
is the same as the median.

For object data (e.g. strings or timestamps), the result’s index will include count, unique, top, and
freq. The top is the most common value. The freq is the most common value’s frequency. Timestamps
also include the first and last items.

If multiple object values have the highest count, then the count and top results will be arbitrarily chosen
from among those with the highest count.

For mixed data types provided via a DataFrame, the default is to return only an analysis of numeric
columns. If the dataframe consists only of object and categorical data without any numeric columns,
the default is to return an analysis of both the object and categorical columns. If include='all' is
provided as an option, the result will include a union of attributes of each type.

The include and exclude parameters can be used to limit which columns in a DataFrame are analyzed
for the output. The parameters are ignored when analyzing a Series.

Examples

Describing a numeric Series.

>>> s = pd.Series([1, 2, 3])
>>> s.describe()
count 3.0
mean 2.0
std 1.0
min 1.0
25% 1.5
50% 2.0
75% 2.5
max 3.0

Describing a categorical Series.

>>> s = pd.Series(['a', 'a', 'b', 'c'])
>>> s.describe()
count 4
unique 3
top a
freq 2
dtype: object

Describing a timestamp Series.

>>> s = pd.Series([
... np.datetime64("2000-01-01"),
... np.datetime64("2010-01-01"),
... np.datetime64("2010-01-01")
...])
>>> s.describe()
count 3
unique 2
top 2010-01-01 00:00:00

(continues on next page)

34.3. Series 1489

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

freq 2
first 2000-01-01 00:00:00
last 2010-01-01 00:00:00
dtype: object

Describing a DataFrame. By default only numeric fields are returned.

>>> df = pd.DataFrame({ 'object': ['a', 'b', 'c'],
... 'numeric': [1, 2, 3],
... 'categorical': pd.Categorical(['d','e','f'])
... })
>>> df.describe()

numeric
count 3.0
mean 2.0
std 1.0
min 1.0
25% 1.5
50% 2.0
75% 2.5
max 3.0

Describing all columns of a DataFrame regardless of data type.

>>> df.describe(include='all')
categorical numeric object

count 3 3.0 3
unique 3 NaN 3
top f NaN c
freq 1 NaN 1
mean NaN 2.0 NaN
std NaN 1.0 NaN
min NaN 1.0 NaN
25% NaN 1.5 NaN
50% NaN 2.0 NaN
75% NaN 2.5 NaN
max NaN 3.0 NaN

Describing a column from a DataFrame by accessing it as an attribute.

>>> df.numeric.describe()
count 3.0
mean 2.0
std 1.0
min 1.0
25% 1.5
50% 2.0
75% 2.5
max 3.0
Name: numeric, dtype: float64

Including only numeric columns in a DataFrame description.

>>> df.describe(include=[np.number])
numeric

count 3.0

(continues on next page)

1490 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

mean 2.0
std 1.0
min 1.0
25% 1.5
50% 2.0
75% 2.5
max 3.0

Including only string columns in a DataFrame description.

>>> df.describe(include=[np.object])
object

count 3
unique 3
top c
freq 1

Including only categorical columns from a DataFrame description.

>>> df.describe(include=['category'])
categorical

count 3
unique 3
top f
freq 1

Excluding numeric columns from a DataFrame description.

>>> df.describe(exclude=[np.number])
categorical object

count 3 3
unique 3 3
top f c
freq 1 1

Excluding object columns from a DataFrame description.

>>> df.describe(exclude=[np.object])
categorical numeric

count 3 3.0
unique 3 NaN
top f NaN
freq 1 NaN
mean NaN 2.0
std NaN 1.0
min NaN 1.0
25% NaN 1.5
50% NaN 2.0
75% NaN 2.5
max NaN 3.0

pandas.Series.diff

Series.diff(periods=1)
First discrete difference of element.

34.3. Series 1491

pandas: powerful Python data analysis toolkit, Release 0.23.4

Calculates the difference of a Series element compared with another element in the Series (default is
element in previous row).

Parameters periods : int, default 1

Periods to shift for calculating difference, accepts negative values.

Returns

diffed [Series]

See also:

Series.pct_change Percent change over given number of periods.

Series.shift Shift index by desired number of periods with an optional time freq.

DataFrame.diff First discrete difference of object

Examples

Difference with previous row

>>> s = pd.Series([1, 1, 2, 3, 5, 8])
>>> s.diff()
0 NaN
1 0.0
2 1.0
3 1.0
4 2.0
5 3.0
dtype: float64

Difference with 3rd previous row

>>> s.diff(periods=3)
0 NaN
1 NaN
2 NaN
3 2.0
4 4.0
5 6.0
dtype: float64

Difference with following row

>>> s.diff(periods=-1)
0 0.0
1 -1.0
2 -1.0
3 -2.0
4 -3.0
5 NaN
dtype: float64

1492 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

pandas.Series.div

Series.div(other, level=None, fill_value=None, axis=0)
Floating division of series and other, element-wise (binary operator truediv).

Equivalent to series / other, but with support to substitute a fill_value for missing data in one of
the inputs.

Parameters

other [Series or scalar value]

fill_value : None or float value, default None (NaN)

Fill existing missing (NaN) values, and any new element needed for successful Series
alignment, with this value before computation. If data in both corresponding Series
locations is missing the result will be missing

level : int or name

Broadcast across a level, matching Index values on the passed MultiIndex level

Returns

result [Series]

See also:

Series.rtruediv

Examples

>>> a = pd.Series([1, 1, 1, np.nan], index=['a', 'b', 'c', 'd'])
>>> a
a 1.0
b 1.0
c 1.0
d NaN
dtype: float64
>>> b = pd.Series([1, np.nan, 1, np.nan], index=['a', 'b', 'd', 'e'])
>>> b
a 1.0
b NaN
d 1.0
e NaN
dtype: float64
>>> a.add(b, fill_value=0)
a 2.0
b 1.0
c 1.0
d 1.0
e NaN
dtype: float64

pandas.Series.divide

Series.divide(other, level=None, fill_value=None, axis=0)
Floating division of series and other, element-wise (binary operator truediv).

34.3. Series 1493

pandas: powerful Python data analysis toolkit, Release 0.23.4

Equivalent to series / other, but with support to substitute a fill_value for missing data in one of
the inputs.

Parameters

other [Series or scalar value]

fill_value : None or float value, default None (NaN)

Fill existing missing (NaN) values, and any new element needed for successful Series
alignment, with this value before computation. If data in both corresponding Series
locations is missing the result will be missing

level : int or name

Broadcast across a level, matching Index values on the passed MultiIndex level

Returns

result [Series]

See also:

Series.rtruediv

Examples

>>> a = pd.Series([1, 1, 1, np.nan], index=['a', 'b', 'c', 'd'])
>>> a
a 1.0
b 1.0
c 1.0
d NaN
dtype: float64
>>> b = pd.Series([1, np.nan, 1, np.nan], index=['a', 'b', 'd', 'e'])
>>> b
a 1.0
b NaN
d 1.0
e NaN
dtype: float64
>>> a.add(b, fill_value=0)
a 2.0
b 1.0
c 1.0
d 1.0
e NaN
dtype: float64

pandas.Series.divmod

Series.divmod(other, level=None, fill_value=None, axis=0)
Integer division and modulo of series and other, element-wise (binary operator divmod).

Equivalent to series divmod other, but with support to substitute a fill_value for missing data in
one of the inputs.

Parameters

1494 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

other [Series or scalar value]

fill_value : None or float value, default None (NaN)

Fill existing missing (NaN) values, and any new element needed for successful Series
alignment, with this value before computation. If data in both corresponding Series
locations is missing the result will be missing

level : int or name

Broadcast across a level, matching Index values on the passed MultiIndex level

Returns

result [Series]

See also:

Series.None

Examples

>>> a = pd.Series([1, 1, 1, np.nan], index=['a', 'b', 'c', 'd'])
>>> a
a 1.0
b 1.0
c 1.0
d NaN
dtype: float64
>>> b = pd.Series([1, np.nan, 1, np.nan], index=['a', 'b', 'd', 'e'])
>>> b
a 1.0
b NaN
d 1.0
e NaN
dtype: float64
>>> a.add(b, fill_value=0)
a 2.0
b 1.0
c 1.0
d 1.0
e NaN
dtype: float64

pandas.Series.dot

Series.dot(other)
Matrix multiplication with DataFrame or inner-product with Series objects. Can also be called using self
@ other in Python >= 3.5.

Parameters

other [Series or DataFrame]

Returns

dot_product [scalar or Series]

34.3. Series 1495

pandas: powerful Python data analysis toolkit, Release 0.23.4

pandas.Series.drop

Series.drop(labels=None, axis=0, index=None, columns=None, level=None, inplace=False, er-
rors=’raise’)

Return Series with specified index labels removed.

Remove elements of a Series based on specifying the index labels. When using a multi-index, labels on
different levels can be removed by specifying the level.

Parameters labels : single label or list-like

Index labels to drop.

axis : 0, default 0

Redundant for application on Series.

index, columns : None

Redundant for application on Series, but index can be used instead of labels.

New in version 0.21.0.

level : int or level name, optional

For MultiIndex, level for which the labels will be removed.

inplace : bool, default False

If True, do operation inplace and return None.

errors : {‘ignore’, ‘raise’}, default ‘raise’

If ‘ignore’, suppress error and only existing labels are dropped.

Returns

dropped [pandas.Series]

Raises KeyError

If none of the labels are found in the index.

See also:

Series.reindex Return only specified index labels of Series.

Series.dropna Return series without null values.

Series.drop_duplicates Return Series with duplicate values removed.

DataFrame.drop Drop specified labels from rows or columns.

Examples

>>> s = pd.Series(data=np.arange(3), index=['A','B','C'])
>>> s
A 0
B 1
C 2
dtype: int64

Drop labels B en C

1496 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

>>> s.drop(labels=['B','C'])
A 0
dtype: int64

Drop 2nd level label in MultiIndex Series

>>> midx = pd.MultiIndex(levels=[['lama', 'cow', 'falcon'],
... ['speed', 'weight', 'length']],
... labels=[[0, 0, 0, 1, 1, 1, 2, 2, 2],
... [0, 1, 2, 0, 1, 2, 0, 1, 2]])
>>> s = pd.Series([45, 200, 1.2, 30, 250, 1.5, 320, 1, 0.3],
... index=midx)
>>> s
lama speed 45.0

weight 200.0
length 1.2

cow speed 30.0
weight 250.0
length 1.5

falcon speed 320.0
weight 1.0
length 0.3

dtype: float64

>>> s.drop(labels='weight', level=1)
lama speed 45.0

length 1.2
cow speed 30.0

length 1.5
falcon speed 320.0

length 0.3
dtype: float64

pandas.Series.drop_duplicates

Series.drop_duplicates(keep=’first’, inplace=False)
Return Series with duplicate values removed.

Parameters keep : {‘first’, ‘last’, False}, default ‘first’

• ‘first’ : Drop duplicates except for the first occurrence.

• ‘last’ : Drop duplicates except for the last occurrence.

• False : Drop all duplicates.

inplace : boolean, default False

If True, performs operation inplace and returns None.

Returns

deduplicated [Series]

See also:

Index.drop_duplicates equivalent method on Index

DataFrame.drop_duplicates equivalent method on DataFrame

34.3. Series 1497

pandas: powerful Python data analysis toolkit, Release 0.23.4

Series.duplicated related method on Series, indicating duplicate Series values.

Examples

Generate an Series with duplicated entries.

>>> s = pd.Series(['lama', 'cow', 'lama', 'beetle', 'lama', 'hippo'],
... name='animal')
>>> s
0 lama
1 cow
2 lama
3 beetle
4 lama
5 hippo
Name: animal, dtype: object

With the ‘keep’ parameter, the selection behaviour of duplicated values can be changed. The value ‘first’
keeps the first occurrence for each set of duplicated entries. The default value of keep is ‘first’.

>>> s.drop_duplicates()
0 lama
1 cow
3 beetle
5 hippo
Name: animal, dtype: object

The value ‘last’ for parameter ‘keep’ keeps the last occurrence for each set of duplicated entries.

>>> s.drop_duplicates(keep='last')
1 cow
3 beetle
4 lama
5 hippo
Name: animal, dtype: object

The value False for parameter ‘keep’ discards all sets of duplicated entries. Setting the value of ‘inplace’
to True performs the operation inplace and returns None.

>>> s.drop_duplicates(keep=False, inplace=True)
>>> s
1 cow
3 beetle
5 hippo
Name: animal, dtype: object

pandas.Series.dropna

Series.dropna(axis=0, inplace=False, **kwargs)
Return a new Series with missing values removed.

See the User Guide for more on which values are considered missing, and how to work with missing data.

Parameters axis : {0 or ‘index’}, default 0

There is only one axis to drop values from.

1498 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

inplace : bool, default False

If True, do operation inplace and return None.

**kwargs

Not in use.

Returns Series

Series with NA entries dropped from it.

See also:

Series.isna Indicate missing values.

Series.notna Indicate existing (non-missing) values.

Series.fillna Replace missing values.

DataFrame.dropna Drop rows or columns which contain NA values.

Index.dropna Drop missing indices.

Examples

>>> ser = pd.Series([1., 2., np.nan])
>>> ser
0 1.0
1 2.0
2 NaN
dtype: float64

Drop NA values from a Series.

>>> ser.dropna()
0 1.0
1 2.0
dtype: float64

Keep the Series with valid entries in the same variable.

>>> ser.dropna(inplace=True)
>>> ser
0 1.0
1 2.0
dtype: float64

Empty strings are not considered NA values. None is considered an NA value.

>>> ser = pd.Series([np.NaN, 2, pd.NaT, '', None, 'I stay'])
>>> ser
0 NaN
1 2
2 NaT
3
4 None
5 I stay
dtype: object

(continues on next page)

34.3. Series 1499

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

>>> ser.dropna()
1 2
3
5 I stay
dtype: object

pandas.Series.dt

Series.dt()
Accessor object for datetimelike properties of the Series values.

Examples

>>> s.dt.hour
>>> s.dt.second
>>> s.dt.quarter

Returns a Series indexed like the original Series. Raises TypeError if the Series does not contain datetime-
like values.

pandas.Series.duplicated

Series.duplicated(keep=’first’)
Indicate duplicate Series values.

Duplicated values are indicated as True values in the resulting Series. Either all duplicates, all except the
first or all except the last occurrence of duplicates can be indicated.

Parameters keep : {‘first’, ‘last’, False}, default ‘first’

• ‘first’ : Mark duplicates as True except for the first occurrence.

• ‘last’ : Mark duplicates as True except for the last occurrence.

• False : Mark all duplicates as True.

Returns

pandas.core.series.Series

See also:

pandas.Index.duplicated Equivalent method on pandas.Index

pandas.DataFrame.duplicated Equivalent method on pandas.DataFrame

pandas.Series.drop_duplicates Remove duplicate values from Series

Examples

By default, for each set of duplicated values, the first occurrence is set on False and all others on True:

1500 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

>>> animals = pd.Series(['lama', 'cow', 'lama', 'beetle', 'lama'])
>>> animals.duplicated()
0 False
1 False
2 True
3 False
4 True
dtype: bool

which is equivalent to

>>> animals.duplicated(keep='first')
0 False
1 False
2 True
3 False
4 True
dtype: bool

By using ‘last’, the last occurrence of each set of duplicated values is set on False and all others on True:

>>> animals.duplicated(keep='last')
0 True
1 False
2 True
3 False
4 False
dtype: bool

By setting keep on False, all duplicates are True:

>>> animals.duplicated(keep=False)
0 True
1 False
2 True
3 False
4 True
dtype: bool

pandas.Series.eq

Series.eq(other, level=None, fill_value=None, axis=0)
Equal to of series and other, element-wise (binary operator eq).

Equivalent to series == other, but with support to substitute a fill_value for missing data in one of
the inputs.

Parameters

other [Series or scalar value]

fill_value : None or float value, default None (NaN)

Fill existing missing (NaN) values, and any new element needed for successful Series
alignment, with this value before computation. If data in both corresponding Series
locations is missing the result will be missing

level : int or name

34.3. Series 1501

pandas: powerful Python data analysis toolkit, Release 0.23.4

Broadcast across a level, matching Index values on the passed MultiIndex level

Returns

result [Series]

See also:

Series.None

Examples

>>> a = pd.Series([1, 1, 1, np.nan], index=['a', 'b', 'c', 'd'])
>>> a
a 1.0
b 1.0
c 1.0
d NaN
dtype: float64
>>> b = pd.Series([1, np.nan, 1, np.nan], index=['a', 'b', 'd', 'e'])
>>> b
a 1.0
b NaN
d 1.0
e NaN
dtype: float64
>>> a.add(b, fill_value=0)
a 2.0
b 1.0
c 1.0
d 1.0
e NaN
dtype: float64

pandas.Series.equals

Series.equals(other)
Determines if two NDFrame objects contain the same elements. NaNs in the same location are considered
equal.

pandas.Series.ewm

Series.ewm(com=None, span=None, halflife=None, alpha=None, min_periods=0, adjust=True, ig-
nore_na=False, axis=0)

Provides exponential weighted functions

New in version 0.18.0.

Parameters com : float, optional

Specify decay in terms of center of mass, 𝛼 = 1/(1 + 𝑐𝑜𝑚), for 𝑐𝑜𝑚 ≥ 0

span : float, optional

Specify decay in terms of span, 𝛼 = 2/(𝑠𝑝𝑎𝑛+ 1), for 𝑠𝑝𝑎𝑛 ≥ 1

halflife : float, optional

1502 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

Specify decay in terms of half-life, 𝛼 = 1−𝑒𝑥𝑝(𝑙𝑜𝑔(0.5)/ℎ𝑎𝑙𝑓𝑙𝑖𝑓𝑒), for ℎ𝑎𝑙𝑓𝑙𝑖𝑓𝑒 > 0

alpha : float, optional

Specify smoothing factor 𝛼 directly, 0 < 𝛼 ≤ 1

New in version 0.18.0.

min_periods : int, default 0

Minimum number of observations in window required to have a value (otherwise result
is NA).

adjust : boolean, default True

Divide by decaying adjustment factor in beginning periods to account for imbalance in
relative weightings (viewing EWMA as a moving average)

ignore_na : boolean, default False

Ignore missing values when calculating weights; specify True to reproduce pre-0.15.0
behavior

Returns

a Window sub-classed for the particular operation

See also:

rolling Provides rolling window calculations

expanding Provides expanding transformations.

Notes

Exactly one of center of mass, span, half-life, and alpha must be provided. Allowed values and relationship
between the parameters are specified in the parameter descriptions above; see the link at the end of this
section for a detailed explanation.

When adjust is True (default), weighted averages are calculated using weights (1-alpha)**(n-1), (1-
alpha)**(n-2), . . . , 1-alpha, 1.

When adjust is False, weighted averages are calculated recursively as: weighted_average[0] = arg[0];
weighted_average[i] = (1-alpha)*weighted_average[i-1] + alpha*arg[i].

When ignore_na is False (default), weights are based on absolute positions. For example, the weights of
x and y used in calculating the final weighted average of [x, None, y] are (1-alpha)**2 and 1 (if adjust is
True), and (1-alpha)**2 and alpha (if adjust is False).

When ignore_na is True (reproducing pre-0.15.0 behavior), weights are based on relative positions. For
example, the weights of x and y used in calculating the final weighted average of [x, None, y] are 1-alpha
and 1 (if adjust is True), and 1-alpha and alpha (if adjust is False).

More details can be found at http://pandas.pydata.org/pandas-docs/stable/computation.html#
exponentially-weighted-windows

Examples

34.3. Series 1503

http://pandas.pydata.org/pandas-docs/stable/computation.html#exponentially-weighted-windows
http://pandas.pydata.org/pandas-docs/stable/computation.html#exponentially-weighted-windows

pandas: powerful Python data analysis toolkit, Release 0.23.4

>>> df = DataFrame({'B': [0, 1, 2, np.nan, 4]})
B

0 0.0
1 1.0
2 2.0
3 NaN
4 4.0

>>> df.ewm(com=0.5).mean()
B

0 0.000000
1 0.750000
2 1.615385
3 1.615385
4 3.670213

pandas.Series.expanding

Series.expanding(min_periods=1, center=False, axis=0)
Provides expanding transformations.

New in version 0.18.0.

Parameters min_periods : int, default 1

Minimum number of observations in window required to have a value (otherwise result
is NA).

center : boolean, default False

Set the labels at the center of the window.

axis [int or string, default 0]

Returns

a Window sub-classed for the particular operation

See also:

rolling Provides rolling window calculations

ewm Provides exponential weighted functions

Notes

By default, the result is set to the right edge of the window. This can be changed to the center of the
window by setting center=True.

Examples

1504 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

>>> df = DataFrame({'B': [0, 1, 2, np.nan, 4]})
B

0 0.0
1 1.0
2 2.0
3 NaN
4 4.0

>>> df.expanding(2).sum()
B

0 NaN
1 1.0
2 3.0
3 3.0
4 7.0

pandas.Series.factorize

Series.factorize(sort=False, na_sentinel=-1)
Encode the object as an enumerated type or categorical variable.

This method is useful for obtaining a numeric representation of an array when all that matters is identifying
distinct values. factorize is available as both a top-level function pandas.factorize(), and as a
method Series.factorize() and Index.factorize().

Parameters sort : boolean, default False

Sort uniques and shuffle labels to maintain the relationship.

na_sentinel : int, default -1

Value to mark “not found”.

Returns labels : ndarray

An integer ndarray that’s an indexer into uniques. uniques.take(labels) will
have the same values as values.

uniques : ndarray, Index, or Categorical

The unique valid values. When values is Categorical, uniques is a Categorical. When
values is some other pandas object, an Index is returned. Otherwise, a 1-D ndarray is
returned.

Note: Even if there’s a missing value in values, uniques will not contain an entry for it.

See also:

pandas.cut Discretize continuous-valued array.

pandas.unique Find the unique valuse in an array.

Examples

These examples all show factorize as a top-level method like pd.factorize(values). The results
are identical for methods like Series.factorize().

34.3. Series 1505

pandas: powerful Python data analysis toolkit, Release 0.23.4

>>> labels, uniques = pd.factorize(['b', 'b', 'a', 'c', 'b'])
>>> labels
array([0, 0, 1, 2, 0])
>>> uniques
array(['b', 'a', 'c'], dtype=object)

With sort=True, the uniques will be sorted, and labels will be shuffled so that the relationship is the
maintained.

>>> labels, uniques = pd.factorize(['b', 'b', 'a', 'c', 'b'], sort=True)
>>> labels
array([1, 1, 0, 2, 1])
>>> uniques
array(['a', 'b', 'c'], dtype=object)

Missing values are indicated in labels with na_sentinel (-1 by default). Note that missing values are never
included in uniques.

>>> labels, uniques = pd.factorize(['b', None, 'a', 'c', 'b'])
>>> labels
array([0, -1, 1, 2, 0])
>>> uniques
array(['b', 'a', 'c'], dtype=object)

Thus far, we’ve only factorized lists (which are internally coerced to NumPy arrays). When factorizing
pandas objects, the type of uniques will differ. For Categoricals, a Categorical is returned.

>>> cat = pd.Categorical(['a', 'a', 'c'], categories=['a', 'b', 'c'])
>>> labels, uniques = pd.factorize(cat)
>>> labels
array([0, 0, 1])
>>> uniques
[a, c]
Categories (3, object): [a, b, c]

Notice that 'b' is in uniques.categories, desipite not being present in cat.values.

For all other pandas objects, an Index of the appropriate type is returned.

>>> cat = pd.Series(['a', 'a', 'c'])
>>> labels, uniques = pd.factorize(cat)
>>> labels
array([0, 0, 1])
>>> uniques
Index(['a', 'c'], dtype='object')

pandas.Series.ffill

Series.ffill(axis=None, inplace=False, limit=None, downcast=None)
Synonym for DataFrame.fillna(method='ffill')

1506 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

pandas.Series.fillna

Series.fillna(value=None, method=None, axis=None, inplace=False, limit=None, down-
cast=None, **kwargs)

Fill NA/NaN values using the specified method

Parameters value : scalar, dict, Series, or DataFrame

Value to use to fill holes (e.g. 0), alternately a dict/Series/DataFrame of values spec-
ifying which value to use for each index (for a Series) or column (for a DataFrame).
(values not in the dict/Series/DataFrame will not be filled). This value cannot be a list.

method : {‘backfill’, ‘bfill’, ‘pad’, ‘ffill’, None}, default None

Method to use for filling holes in reindexed Series pad / ffill: propagate last valid obser-
vation forward to next valid backfill / bfill: use NEXT valid observation to fill gap

axis [{0 or ‘index’}]

inplace : boolean, default False

If True, fill in place. Note: this will modify any other views on this object, (e.g. a
no-copy slice for a column in a DataFrame).

limit : int, default None

If method is specified, this is the maximum number of consecutive NaN values to for-
ward/backward fill. In other words, if there is a gap with more than this number of
consecutive NaNs, it will only be partially filled. If method is not specified, this is the
maximum number of entries along the entire axis where NaNs will be filled. Must be
greater than 0 if not None.

downcast : dict, default is None

a dict of item->dtype of what to downcast if possible, or the string ‘infer’ which will try
to downcast to an appropriate equal type (e.g. float64 to int64 if possible)

Returns

filled [Series]

See also:

interpolate Fill NaN values using interpolation.

reindex, asfreq

Examples

>>> df = pd.DataFrame([[np.nan, 2, np.nan, 0],
... [3, 4, np.nan, 1],
... [np.nan, np.nan, np.nan, 5],
... [np.nan, 3, np.nan, 4]],
... columns=list('ABCD'))
>>> df

A B C D
0 NaN 2.0 NaN 0
1 3.0 4.0 NaN 1

(continues on next page)

34.3. Series 1507

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

2 NaN NaN NaN 5
3 NaN 3.0 NaN 4

Replace all NaN elements with 0s.

>>> df.fillna(0)
A B C D

0 0.0 2.0 0.0 0
1 3.0 4.0 0.0 1
2 0.0 0.0 0.0 5
3 0.0 3.0 0.0 4

We can also propagate non-null values forward or backward.

>>> df.fillna(method='ffill')
A B C D

0 NaN 2.0 NaN 0
1 3.0 4.0 NaN 1
2 3.0 4.0 NaN 5
3 3.0 3.0 NaN 4

Replace all NaN elements in column ‘A’, ‘B’, ‘C’, and ‘D’, with 0, 1, 2, and 3 respectively.

>>> values = {'A': 0, 'B': 1, 'C': 2, 'D': 3}
>>> df.fillna(value=values)

A B C D
0 0.0 2.0 2.0 0
1 3.0 4.0 2.0 1
2 0.0 1.0 2.0 5
3 0.0 3.0 2.0 4

Only replace the first NaN element.

>>> df.fillna(value=values, limit=1)
A B C D

0 0.0 2.0 2.0 0
1 3.0 4.0 NaN 1
2 NaN 1.0 NaN 5
3 NaN 3.0 NaN 4

pandas.Series.filter

Series.filter(items=None, like=None, regex=None, axis=None)
Subset rows or columns of dataframe according to labels in the specified index.

Note that this routine does not filter a dataframe on its contents. The filter is applied to the labels of the
index.

Parameters items : list-like

List of info axis to restrict to (must not all be present)

like : string

Keep info axis where “arg in col == True”

regex : string (regular expression)

1508 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

Keep info axis with re.search(regex, col) == True

axis : int or string axis name

The axis to filter on. By default this is the info axis, ‘index’ for Series, ‘columns’ for
DataFrame

Returns

same type as input object

See also:

pandas.DataFrame.loc

Notes

The items, like, and regex parameters are enforced to be mutually exclusive.

axis defaults to the info axis that is used when indexing with [].

Examples

>>> df
one two three
mouse 1 2 3
rabbit 4 5 6

>>> # select columns by name
>>> df.filter(items=['one', 'three'])
one three
mouse 1 3
rabbit 4 6

>>> # select columns by regular expression
>>> df.filter(regex='e$', axis=1)
one three
mouse 1 3
rabbit 4 6

>>> # select rows containing 'bbi'
>>> df.filter(like='bbi', axis=0)
one two three
rabbit 4 5 6

pandas.Series.first

Series.first(offset)
Convenience method for subsetting initial periods of time series data based on a date offset.

Parameters

offset [string, DateOffset, dateutil.relativedelta]

Returns

34.3. Series 1509

pandas: powerful Python data analysis toolkit, Release 0.23.4

subset [type of caller]

Raises TypeError

If the index is not a DatetimeIndex

See also:

last Select final periods of time series based on a date offset

at_time Select values at a particular time of the day

between_time Select values between particular times of the day

Examples

>>> i = pd.date_range('2018-04-09', periods=4, freq='2D')
>>> ts = pd.DataFrame({'A': [1,2,3,4]}, index=i)
>>> ts

A
2018-04-09 1
2018-04-11 2
2018-04-13 3
2018-04-15 4

Get the rows for the first 3 days:

>>> ts.first('3D')
A

2018-04-09 1
2018-04-11 2

Notice the data for 3 first calender days were returned, not the first 3 days observed in the dataset, and
therefore data for 2018-04-13 was not returned.

pandas.Series.first_valid_index

Series.first_valid_index()
Return index for first non-NA/null value.

Returns

scalar [type of index]

Notes

If all elements are non-NA/null, returns None. Also returns None for empty NDFrame.

pandas.Series.floordiv

Series.floordiv(other, level=None, fill_value=None, axis=0)
Integer division of series and other, element-wise (binary operator floordiv).

Equivalent to series // other, but with support to substitute a fill_value for missing data in one of
the inputs.

1510 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

Parameters

other [Series or scalar value]

fill_value : None or float value, default None (NaN)

Fill existing missing (NaN) values, and any new element needed for successful Series
alignment, with this value before computation. If data in both corresponding Series
locations is missing the result will be missing

level : int or name

Broadcast across a level, matching Index values on the passed MultiIndex level

Returns

result [Series]

See also:

Series.rfloordiv

Examples

>>> a = pd.Series([1, 1, 1, np.nan], index=['a', 'b', 'c', 'd'])
>>> a
a 1.0
b 1.0
c 1.0
d NaN
dtype: float64
>>> b = pd.Series([1, np.nan, 1, np.nan], index=['a', 'b', 'd', 'e'])
>>> b
a 1.0
b NaN
d 1.0
e NaN
dtype: float64
>>> a.add(b, fill_value=0)
a 2.0
b 1.0
c 1.0
d 1.0
e NaN
dtype: float64

pandas.Series.from_array

classmethod Series.from_array(arr, index=None, name=None, dtype=None, copy=False,
fastpath=False)

Construct Series from array.

Deprecated since version 0.23.0: Use pd.Series(..) constructor instead.

34.3. Series 1511

pandas: powerful Python data analysis toolkit, Release 0.23.4

pandas.Series.from_csv

classmethod Series.from_csv(path, sep=’, ’, parse_dates=True, header=None, index_col=0,
encoding=None, infer_datetime_format=False)

Read CSV file.

Deprecated since version 0.21.0: Use pandas.read_csv() instead.

It is preferable to use the more powerful pandas.read_csv() for most general purposes, but
from_csv makes for an easy roundtrip to and from a file (the exact counterpart of to_csv), especially
with a time Series.

This method only differs from pandas.read_csv() in some defaults:

• index_col is 0 instead of None (take first column as index by default)

• header is None instead of 0 (the first row is not used as the column names)

• parse_dates is True instead of False (try parsing the index as datetime by default)

With pandas.read_csv(), the option squeeze=True can be used to return a Series like
from_csv.

Parameters

path [string file path or file handle / StringIO]

sep : string, default ‘,’

Field delimiter

parse_dates : boolean, default True

Parse dates. Different default from read_table

header : int, default None

Row to use as header (skip prior rows)

index_col : int or sequence, default 0

Column to use for index. If a sequence is given, a MultiIndex is used. Different default
from read_table

encoding : string, optional

a string representing the encoding to use if the contents are non-ascii, for python ver-
sions prior to 3

infer_datetime_format: boolean, default False

If True and parse_dates is True for a column, try to infer the datetime format based on
the first datetime string. If the format can be inferred, there often will be a large parsing
speed-up.

Returns

y [Series]

See also:

pandas.read_csv

1512 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

pandas.Series.ge

Series.ge(other, level=None, fill_value=None, axis=0)
Greater than or equal to of series and other, element-wise (binary operator ge).

Equivalent to series >= other, but with support to substitute a fill_value for missing data in one of
the inputs.

Parameters

other [Series or scalar value]

fill_value : None or float value, default None (NaN)

Fill existing missing (NaN) values, and any new element needed for successful Series
alignment, with this value before computation. If data in both corresponding Series
locations is missing the result will be missing

level : int or name

Broadcast across a level, matching Index values on the passed MultiIndex level

Returns

result [Series]

See also:

Series.None

Examples

>>> a = pd.Series([1, 1, 1, np.nan], index=['a', 'b', 'c', 'd'])
>>> a
a 1.0
b 1.0
c 1.0
d NaN
dtype: float64
>>> b = pd.Series([1, np.nan, 1, np.nan], index=['a', 'b', 'd', 'e'])
>>> b
a 1.0
b NaN
d 1.0
e NaN
dtype: float64
>>> a.add(b, fill_value=0)
a 2.0
b 1.0
c 1.0
d 1.0
e NaN
dtype: float64

pandas.Series.get

Series.get(key, default=None)
Get item from object for given key (DataFrame column, Panel slice, etc.). Returns default value if not

34.3. Series 1513

pandas: powerful Python data analysis toolkit, Release 0.23.4

found.

Parameters

key [object]

Returns

value [type of items contained in object]

pandas.Series.get_dtype_counts

Series.get_dtype_counts()
Return counts of unique dtypes in this object.

Returns dtype : Series

Series with the count of columns with each dtype.

See also:

dtypes Return the dtypes in this object.

Examples

>>> a = [['a', 1, 1.0], ['b', 2, 2.0], ['c', 3, 3.0]]
>>> df = pd.DataFrame(a, columns=['str', 'int', 'float'])
>>> df

str int float
0 a 1 1.0
1 b 2 2.0
2 c 3 3.0

>>> df.get_dtype_counts()
float64 1
int64 1
object 1
dtype: int64

pandas.Series.get_ftype_counts

Series.get_ftype_counts()
Return counts of unique ftypes in this object.

Deprecated since version 0.23.0.

This is useful for SparseDataFrame or for DataFrames containing sparse arrays.

Returns dtype : Series

Series with the count of columns with each type and sparsity (dense/sparse)

See also:

ftypes Return ftypes (indication of sparse/dense and dtype) in this object.

1514 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

Examples

>>> a = [['a', 1, 1.0], ['b', 2, 2.0], ['c', 3, 3.0]]
>>> df = pd.DataFrame(a, columns=['str', 'int', 'float'])
>>> df

str int float
0 a 1 1.0
1 b 2 2.0
2 c 3 3.0

>>> df.get_ftype_counts()
float64:dense 1
int64:dense 1
object:dense 1
dtype: int64

pandas.Series.get_value

Series.get_value(label, takeable=False)
Quickly retrieve single value at passed index label

Deprecated since version 0.21.0: Please use .at[] or .iat[] accessors.

Parameters

label [object]

takeable [interpret the index as indexers, default False]

Returns

value [scalar value]

pandas.Series.get_values

Series.get_values()
same as values (but handles sparseness conversions); is a view

pandas.Series.groupby

Series.groupby(by=None, axis=0, level=None, as_index=True, sort=True, group_keys=True,
squeeze=False, observed=False, **kwargs)

Group series using mapper (dict or key function, apply given function to group, return result as series) or
by a series of columns.

Parameters by : mapping, function, label, or list of labels

Used to determine the groups for the groupby. If by is a function, it’s called on each
value of the object’s index. If a dict or Series is passed, the Series or dict VALUES will
be used to determine the groups (the Series’ values are first aligned; see .align()
method). If an ndarray is passed, the values are used as-is determine the groups. A label
or list of labels may be passed to group by the columns in self. Notice that a tuple is
interpreted a (single) key.

axis [int, default 0]

34.3. Series 1515

pandas: powerful Python data analysis toolkit, Release 0.23.4

level : int, level name, or sequence of such, default None

If the axis is a MultiIndex (hierarchical), group by a particular level or levels

as_index : boolean, default True

For aggregated output, return object with group labels as the index. Only relevant for
DataFrame input. as_index=False is effectively “SQL-style” grouped output

sort : boolean, default True

Sort group keys. Get better performance by turning this off. Note this does not influence
the order of observations within each group. groupby preserves the order of rows within
each group.

group_keys : boolean, default True

When calling apply, add group keys to index to identify pieces

squeeze : boolean, default False

reduce the dimensionality of the return type if possible, otherwise return a consistent
type

observed : boolean, default False

This only applies if any of the groupers are Categoricals If True: only show observed
values for categorical groupers. If False: show all values for categorical groupers.

New in version 0.23.0.

Returns

GroupBy object

See also:

resample Convenience method for frequency conversion and resampling of time series.

Notes

See the user guide for more.

Examples

DataFrame results

>>> data.groupby(func, axis=0).mean()
>>> data.groupby(['col1', 'col2'])['col3'].mean()

DataFrame with hierarchical index

>>> data.groupby(['col1', 'col2']).mean()

pandas.Series.gt

Series.gt(other, level=None, fill_value=None, axis=0)
Greater than of series and other, element-wise (binary operator gt).

1516 Chapter 34. API Reference

http://pandas.pydata.org/pandas-docs/stable/groupby.html

pandas: powerful Python data analysis toolkit, Release 0.23.4

Equivalent to series > other, but with support to substitute a fill_value for missing data in one of
the inputs.

Parameters

other [Series or scalar value]

fill_value : None or float value, default None (NaN)

Fill existing missing (NaN) values, and any new element needed for successful Series
alignment, with this value before computation. If data in both corresponding Series
locations is missing the result will be missing

level : int or name

Broadcast across a level, matching Index values on the passed MultiIndex level

Returns

result [Series]

See also:

Series.None

Examples

>>> a = pd.Series([1, 1, 1, np.nan], index=['a', 'b', 'c', 'd'])
>>> a
a 1.0
b 1.0
c 1.0
d NaN
dtype: float64
>>> b = pd.Series([1, np.nan, 1, np.nan], index=['a', 'b', 'd', 'e'])
>>> b
a 1.0
b NaN
d 1.0
e NaN
dtype: float64
>>> a.add(b, fill_value=0)
a 2.0
b 1.0
c 1.0
d 1.0
e NaN
dtype: float64

pandas.Series.head

Series.head(n=5)
Return the first n rows.

This function returns the first n rows for the object based on position. It is useful for quickly testing if your
object has the right type of data in it.

Parameters n : int, default 5

34.3. Series 1517

pandas: powerful Python data analysis toolkit, Release 0.23.4

Number of rows to select.

Returns obj_head : type of caller

The first n rows of the caller object.

See also:

pandas.DataFrame.tail Returns the last n rows.

Examples

>>> df = pd.DataFrame({'animal':['alligator', 'bee', 'falcon', 'lion',
... 'monkey', 'parrot', 'shark', 'whale', 'zebra']})
>>> df

animal
0 alligator
1 bee
2 falcon
3 lion
4 monkey
5 parrot
6 shark
7 whale
8 zebra

Viewing the first 5 lines

>>> df.head()
animal

0 alligator
1 bee
2 falcon
3 lion
4 monkey

Viewing the first n lines (three in this case)

>>> df.head(3)
animal

0 alligator
1 bee
2 falcon

pandas.Series.hist

Series.hist(by=None, ax=None, grid=True, xlabelsize=None, xrot=None, ylabelsize=None,
yrot=None, figsize=None, bins=10, **kwds)

Draw histogram of the input series using matplotlib

Parameters by : object, optional

If passed, then used to form histograms for separate groups

ax : matplotlib axis object

If not passed, uses gca()

1518 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

grid : boolean, default True

Whether to show axis grid lines

xlabelsize : int, default None

If specified changes the x-axis label size

xrot : float, default None

rotation of x axis labels

ylabelsize : int, default None

If specified changes the y-axis label size

yrot : float, default None

rotation of y axis labels

figsize : tuple, default None

figure size in inches by default

bins : integer or sequence, default 10

Number of histogram bins to be used. If an integer is given, bins + 1 bin edges are
calculated and returned. If bins is a sequence, gives bin edges, including left edge of
first bin and right edge of last bin. In this case, bins is returned unmodified.

bins: integer, default 10

Number of histogram bins to be used

‘**kwds‘ : keywords

To be passed to the actual plotting function

See also:

matplotlib.axes.Axes.hist Plot a histogram using matplotlib.

pandas.Series.idxmax

Series.idxmax(axis=0, skipna=True, *args, **kwargs)
Return the row label of the maximum value.

If multiple values equal the maximum, the first row label with that value is returned.

Parameters skipna : boolean, default True

Exclude NA/null values. If the entire Series is NA, the result will be NA.

axis : int, default 0

For compatibility with DataFrame.idxmax. Redundant for application on Series.

*args, **kwargs

Additional keywors have no effect but might be accepted for compatibility with NumPy.

Returns

idxmax [Index of maximum of values.]

Raises ValueError

34.3. Series 1519

https://matplotlib.org/api/_as_gen/matplotlib.axes.Axes.hist.html#matplotlib.axes.Axes.hist

pandas: powerful Python data analysis toolkit, Release 0.23.4

If the Series is empty.

See also:

numpy.argmax Return indices of the maximum values along the given axis.

DataFrame.idxmax Return index of first occurrence of maximum over requested axis.

Series.idxmin Return index label of the first occurrence of minimum of values.

Notes

This method is the Series version of ndarray.argmax. This method returns the label of the maximum,
while ndarray.argmax returns the position. To get the position, use series.values.argmax().

Examples

>>> s = pd.Series(data=[1, None, 4, 3, 4],
... index=['A', 'B', 'C', 'D', 'E'])
>>> s
A 1.0
B NaN
C 4.0
D 3.0
E 4.0
dtype: float64

>>> s.idxmax()
'C'

If skipna is False and there is an NA value in the data, the function returns nan.

>>> s.idxmax(skipna=False)
nan

pandas.Series.idxmin

Series.idxmin(axis=None, skipna=True, *args, **kwargs)
Return the row label of the minimum value.

If multiple values equal the minimum, the first row label with that value is returned.

Parameters skipna : boolean, default True

Exclude NA/null values. If the entire Series is NA, the result will be NA.

axis : int, default 0

For compatibility with DataFrame.idxmin. Redundant for application on Series.

*args, **kwargs

Additional keywors have no effect but might be accepted for compatibility with NumPy.

Returns

idxmin [Index of minimum of values.]

1520 Chapter 34. API Reference

https://docs.scipy.org/doc/numpy/reference/generated/numpy.argmax.html#numpy.argmax

pandas: powerful Python data analysis toolkit, Release 0.23.4

Raises ValueError

If the Series is empty.

See also:

numpy.argmin Return indices of the minimum values along the given axis.

DataFrame.idxmin Return index of first occurrence of minimum over requested axis.

Series.idxmax Return index label of the first occurrence of maximum of values.

Notes

This method is the Series version of ndarray.argmin. This method returns the label of the minimum,
while ndarray.argmin returns the position. To get the position, use series.values.argmin().

Examples

>>> s = pd.Series(data=[1, None, 4, 1],
... index=['A' ,'B' ,'C' ,'D'])
>>> s
A 1.0
B NaN
C 4.0
D 1.0
dtype: float64

>>> s.idxmin()
'A'

If skipna is False and there is an NA value in the data, the function returns nan.

>>> s.idxmin(skipna=False)
nan

pandas.Series.infer_objects

Series.infer_objects()
Attempt to infer better dtypes for object columns.

Attempts soft conversion of object-dtyped columns, leaving non-object and unconvertible columns un-
changed. The inference rules are the same as during normal Series/DataFrame construction.

New in version 0.21.0.

Returns

converted [same type as input object]

See also:

pandas.to_datetime Convert argument to datetime.

pandas.to_timedelta Convert argument to timedelta.

pandas.to_numeric Convert argument to numeric typeR

34.3. Series 1521

https://docs.scipy.org/doc/numpy/reference/generated/numpy.argmin.html#numpy.argmin

pandas: powerful Python data analysis toolkit, Release 0.23.4

Examples

>>> df = pd.DataFrame({"A": ["a", 1, 2, 3]})
>>> df = df.iloc[1:]
>>> df

A
1 1
2 2
3 3

>>> df.dtypes
A object
dtype: object

>>> df.infer_objects().dtypes
A int64
dtype: object

pandas.Series.interpolate

Series.interpolate(method=’linear’, axis=0, limit=None, inplace=False,
limit_direction=’forward’, limit_area=None, downcast=None, **kwargs)

Interpolate values according to different methods.

Please note that only method='linear' is supported for DataFrames/Series with a MultiIndex.

Parameters method : {‘linear’, ‘time’, ‘index’, ‘values’, ‘nearest’, ‘zero’,

‘slinear’, ‘quadratic’, ‘cubic’, ‘barycentric’, ‘krogh’, ‘polynomial’, ‘spline’,
‘piecewise_polynomial’, ‘from_derivatives’, ‘pchip’, ‘akima’}

• ‘linear’: ignore the index and treat the values as equally spaced. This is the only
method supported on MultiIndexes. default

• ‘time’: interpolation works on daily and higher resolution data to interpolate given
length of interval

• ‘index’, ‘values’: use the actual numerical values of the index

• ‘nearest’, ‘zero’, ‘slinear’, ‘quadratic’, ‘cubic’, ‘barycentric’, ‘polynomial’ is passed
to scipy.interpolate.interp1d. Both ‘polynomial’ and ‘spline’ require
that you also specify an order (int), e.g. df.interpolate(method=’polynomial’, or-
der=4). These use the actual numerical values of the index.

• ‘krogh’, ‘piecewise_polynomial’, ‘spline’, ‘pchip’ and ‘akima’ are all wrappers
around the scipy interpolation methods of similar names. These use the actual nu-
merical values of the index. For more information on their behavior, see the scipy
documentation and tutorial documentation

• ‘from_derivatives’ refers to BPoly.from_derivatives which replaces ‘piece-
wise_polynomial’ interpolation method in scipy 0.18

New in version 0.18.1: Added support for the ‘akima’ method Added interpolate method
‘from_derivatives’ which replaces ‘piecewise_polynomial’ in scipy 0.18; backwards-
compatible with scipy < 0.18

axis : {0, 1}, default 0

1522 Chapter 34. API Reference

http://docs.scipy.org/doc/scipy/reference/interpolate.html#univariate-interpolation
http://docs.scipy.org/doc/scipy/reference/interpolate.html#univariate-interpolation
http://docs.scipy.org/doc/scipy/reference/tutorial/interpolate.html

pandas: powerful Python data analysis toolkit, Release 0.23.4

• 0: fill column-by-column

• 1: fill row-by-row

limit : int, default None.

Maximum number of consecutive NaNs to fill. Must be greater than 0.

limit_direction [{‘forward’, ‘backward’, ‘both’}, default ‘forward’]

limit_area : {‘inside’, ‘outside’}, default None

• None: (default) no fill restriction

• ‘inside’ Only fill NaNs surrounded by valid values (interpolate).

• ‘outside’ Only fill NaNs outside valid values (extrapolate).

If limit is specified, consecutive NaNs will be filled in this direction.

New in version 0.21.0.

inplace : bool, default False

Update the NDFrame in place if possible.

downcast : optional, ‘infer’ or None, defaults to None

Downcast dtypes if possible.

kwargs [keyword arguments to pass on to the interpolating function.]

Returns

Series or DataFrame of same shape interpolated at the NaNs

See also:

reindex, replace, fillna

Examples

Filling in NaNs

>>> s = pd.Series([0, 1, np.nan, 3])
>>> s.interpolate()
0 0
1 1
2 2
3 3
dtype: float64

pandas.Series.isin

Series.isin(values)
Check whether values are contained in Series.

Return a boolean Series showing whether each element in the Series matches an element in the passed
sequence of values exactly.

Parameters values : set or list-like

34.3. Series 1523

pandas: powerful Python data analysis toolkit, Release 0.23.4

The sequence of values to test. Passing in a single string will raise a TypeError.
Instead, turn a single string into a list of one element.

New in version 0.18.1: Support for values as a set.

Returns

isin [Series (bool dtype)]

Raises TypeError

• If values is a string

See also:

pandas.DataFrame.isin equivalent method on DataFrame

Examples

>>> s = pd.Series(['lama', 'cow', 'lama', 'beetle', 'lama',
... 'hippo'], name='animal')
>>> s.isin(['cow', 'lama'])
0 True
1 True
2 True
3 False
4 True
5 False
Name: animal, dtype: bool

Passing a single string as s.isin('lama') will raise an error. Use a list of one element instead:

>>> s.isin(['lama'])
0 True
1 False
2 True
3 False
4 True
5 False
Name: animal, dtype: bool

pandas.Series.isna

Series.isna()
Detect missing values.

Return a boolean same-sized object indicating if the values are NA. NA values, such as None or numpy.
NaN, gets mapped to True values. Everything else gets mapped to False values. Characters such as empty
strings '' or numpy.inf are not considered NA values (unless you set pandas.options.mode.
use_inf_as_na = True).

Returns Series

Mask of bool values for each element in Series that indicates whether an element is not
an NA value.

See also:

1524 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

Series.isnull alias of isna

Series.notna boolean inverse of isna

Series.dropna omit axes labels with missing values

isna top-level isna

Examples

Show which entries in a DataFrame are NA.

>>> df = pd.DataFrame({'age': [5, 6, np.NaN],
... 'born': [pd.NaT, pd.Timestamp('1939-05-27'),
... pd.Timestamp('1940-04-25')],
... 'name': ['Alfred', 'Batman', ''],
... 'toy': [None, 'Batmobile', 'Joker']})
>>> df

age born name toy
0 5.0 NaT Alfred None
1 6.0 1939-05-27 Batman Batmobile
2 NaN 1940-04-25 Joker

>>> df.isna()
age born name toy

0 False True False True
1 False False False False
2 True False False False

Show which entries in a Series are NA.

>>> ser = pd.Series([5, 6, np.NaN])
>>> ser
0 5.0
1 6.0
2 NaN
dtype: float64

>>> ser.isna()
0 False
1 False
2 True
dtype: bool

pandas.Series.isnull

Series.isnull()
Detect missing values.

Return a boolean same-sized object indicating if the values are NA. NA values, such as None or numpy.
NaN, gets mapped to True values. Everything else gets mapped to False values. Characters such as empty
strings '' or numpy.inf are not considered NA values (unless you set pandas.options.mode.
use_inf_as_na = True).

Returns Series

34.3. Series 1525

pandas: powerful Python data analysis toolkit, Release 0.23.4

Mask of bool values for each element in Series that indicates whether an element is not
an NA value.

See also:

Series.isnull alias of isna

Series.notna boolean inverse of isna

Series.dropna omit axes labels with missing values

isna top-level isna

Examples

Show which entries in a DataFrame are NA.

>>> df = pd.DataFrame({'age': [5, 6, np.NaN],
... 'born': [pd.NaT, pd.Timestamp('1939-05-27'),
... pd.Timestamp('1940-04-25')],
... 'name': ['Alfred', 'Batman', ''],
... 'toy': [None, 'Batmobile', 'Joker']})
>>> df

age born name toy
0 5.0 NaT Alfred None
1 6.0 1939-05-27 Batman Batmobile
2 NaN 1940-04-25 Joker

>>> df.isna()
age born name toy

0 False True False True
1 False False False False
2 True False False False

Show which entries in a Series are NA.

>>> ser = pd.Series([5, 6, np.NaN])
>>> ser
0 5.0
1 6.0
2 NaN
dtype: float64

>>> ser.isna()
0 False
1 False
2 True
dtype: bool

pandas.Series.item

Series.item()
return the first element of the underlying data as a python scalar

1526 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

pandas.Series.items

Series.items()
Lazily iterate over (index, value) tuples

pandas.Series.iteritems

Series.iteritems()
Lazily iterate over (index, value) tuples

pandas.Series.keys

Series.keys()
Alias for index

pandas.Series.kurt

Series.kurt(axis=None, skipna=None, level=None, numeric_only=None, **kwargs)
Return unbiased kurtosis over requested axis using Fisher’s definition of kurtosis (kurtosis of normal ==
0.0). Normalized by N-1

Parameters

axis [{index (0)}]

skipna : boolean, default True

Exclude NA/null values when computing the result.

level : int or level name, default None

If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into
a scalar

numeric_only : boolean, default None

Include only float, int, boolean columns. If None, will attempt to use everything, then
use only numeric data. Not implemented for Series.

Returns

kurt [scalar or Series (if level specified)]

pandas.Series.kurtosis

Series.kurtosis(axis=None, skipna=None, level=None, numeric_only=None, **kwargs)
Return unbiased kurtosis over requested axis using Fisher’s definition of kurtosis (kurtosis of normal ==
0.0). Normalized by N-1

Parameters

axis [{index (0)}]

skipna : boolean, default True

Exclude NA/null values when computing the result.

34.3. Series 1527

pandas: powerful Python data analysis toolkit, Release 0.23.4

level : int or level name, default None

If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into
a scalar

numeric_only : boolean, default None

Include only float, int, boolean columns. If None, will attempt to use everything, then
use only numeric data. Not implemented for Series.

Returns

kurt [scalar or Series (if level specified)]

pandas.Series.last

Series.last(offset)
Convenience method for subsetting final periods of time series data based on a date offset.

Parameters

offset [string, DateOffset, dateutil.relativedelta]

Returns

subset [type of caller]

Raises TypeError

If the index is not a DatetimeIndex

See also:

first Select initial periods of time series based on a date offset

at_time Select values at a particular time of the day

between_time Select values between particular times of the day

Examples

>>> i = pd.date_range('2018-04-09', periods=4, freq='2D')
>>> ts = pd.DataFrame({'A': [1,2,3,4]}, index=i)
>>> ts

A
2018-04-09 1
2018-04-11 2
2018-04-13 3
2018-04-15 4

Get the rows for the last 3 days:

>>> ts.last('3D')
A

2018-04-13 3
2018-04-15 4

Notice the data for 3 last calender days were returned, not the last 3 observed days in the dataset, and
therefore data for 2018-04-11 was not returned.

1528 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

pandas.Series.last_valid_index

Series.last_valid_index()
Return index for last non-NA/null value.

Returns

scalar [type of index]

Notes

If all elements are non-NA/null, returns None. Also returns None for empty NDFrame.

pandas.Series.le

Series.le(other, level=None, fill_value=None, axis=0)
Less than or equal to of series and other, element-wise (binary operator le).

Equivalent to series <= other, but with support to substitute a fill_value for missing data in one of
the inputs.

Parameters

other [Series or scalar value]

fill_value : None or float value, default None (NaN)

Fill existing missing (NaN) values, and any new element needed for successful Series
alignment, with this value before computation. If data in both corresponding Series
locations is missing the result will be missing

level : int or name

Broadcast across a level, matching Index values on the passed MultiIndex level

Returns

result [Series]

See also:

Series.None

Examples

>>> a = pd.Series([1, 1, 1, np.nan], index=['a', 'b', 'c', 'd'])
>>> a
a 1.0
b 1.0
c 1.0
d NaN
dtype: float64
>>> b = pd.Series([1, np.nan, 1, np.nan], index=['a', 'b', 'd', 'e'])
>>> b
a 1.0
b NaN
d 1.0

(continues on next page)

34.3. Series 1529

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

e NaN
dtype: float64
>>> a.add(b, fill_value=0)
a 2.0
b 1.0
c 1.0
d 1.0
e NaN
dtype: float64

pandas.Series.lt

Series.lt(other, level=None, fill_value=None, axis=0)
Less than of series and other, element-wise (binary operator lt).

Equivalent to series < other, but with support to substitute a fill_value for missing data in one of
the inputs.

Parameters

other [Series or scalar value]

fill_value : None or float value, default None (NaN)

Fill existing missing (NaN) values, and any new element needed for successful Series
alignment, with this value before computation. If data in both corresponding Series
locations is missing the result will be missing

level : int or name

Broadcast across a level, matching Index values on the passed MultiIndex level

Returns

result [Series]

See also:

Series.None

Examples

>>> a = pd.Series([1, 1, 1, np.nan], index=['a', 'b', 'c', 'd'])
>>> a
a 1.0
b 1.0
c 1.0
d NaN
dtype: float64
>>> b = pd.Series([1, np.nan, 1, np.nan], index=['a', 'b', 'd', 'e'])
>>> b
a 1.0
b NaN
d 1.0
e NaN
dtype: float64
>>> a.add(b, fill_value=0)

(continues on next page)

1530 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

a 2.0
b 1.0
c 1.0
d 1.0
e NaN
dtype: float64

pandas.Series.mad

Series.mad(axis=None, skipna=None, level=None)
Return the mean absolute deviation of the values for the requested axis

Parameters

axis [{index (0)}]

skipna : boolean, default True

Exclude NA/null values when computing the result.

level : int or level name, default None

If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into
a scalar

numeric_only : boolean, default None

Include only float, int, boolean columns. If None, will attempt to use everything, then
use only numeric data. Not implemented for Series.

Returns

mad [scalar or Series (if level specified)]

pandas.Series.map

Series.map(arg, na_action=None)
Map values of Series using input correspondence (a dict, Series, or function).

Parameters arg : function, dict, or Series

Mapping correspondence.

na_action : {None, ‘ignore’}

If ‘ignore’, propagate NA values, without passing them to the mapping correspondence.

Returns y : Series

Same index as caller.

See also:

Series.apply For applying more complex functions on a Series.

DataFrame.apply Apply a function row-/column-wise.

DataFrame.applymap Apply a function elementwise on a whole DataFrame.

34.3. Series 1531

pandas: powerful Python data analysis toolkit, Release 0.23.4

Notes

When arg is a dictionary, values in Series that are not in the dictionary (as keys) are converted to NaN.
However, if the dictionary is a dict subclass that defines __missing__ (i.e. provides a method for
default values), then this default is used rather than NaN:

>>> from collections import Counter
>>> counter = Counter()
>>> counter['bar'] += 1
>>> y.map(counter)
1 0
2 1
3 0
dtype: int64

Examples

Map inputs to outputs (both of type Series):

>>> x = pd.Series([1,2,3], index=['one', 'two', 'three'])
>>> x
one 1
two 2
three 3
dtype: int64

>>> y = pd.Series(['foo', 'bar', 'baz'], index=[1,2,3])
>>> y
1 foo
2 bar
3 baz

>>> x.map(y)
one foo
two bar
three baz

If arg is a dictionary, return a new Series with values converted according to the dictionary’s mapping:

>>> z = {1: 'A', 2: 'B', 3: 'C'}

>>> x.map(z)
one A
two B
three C

Use na_action to control whether NA values are affected by the mapping function.

>>> s = pd.Series([1, 2, 3, np.nan])

>>> s2 = s.map('this is a string {}'.format, na_action=None)
0 this is a string 1.0
1 this is a string 2.0
2 this is a string 3.0

(continues on next page)

1532 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

3 this is a string nan
dtype: object

>>> s3 = s.map('this is a string {}'.format, na_action='ignore')
0 this is a string 1.0
1 this is a string 2.0
2 this is a string 3.0
3 NaN
dtype: object

pandas.Series.mask

Series.mask(cond, other=nan, inplace=False, axis=None, level=None, errors=’raise’,
try_cast=False, raise_on_error=None)

Return an object of same shape as self and whose corresponding entries are from self where cond is False
and otherwise are from other.

Parameters cond : boolean NDFrame, array-like, or callable

Where cond is False, keep the original value. Where True, replace with corresponding
value from other. If cond is callable, it is computed on the NDFrame and should return
boolean NDFrame or array. The callable must not change input NDFrame (though
pandas doesn’t check it).

New in version 0.18.1: A callable can be used as cond.

other : scalar, NDFrame, or callable

Entries where cond is True are replaced with corresponding value from other. If other
is callable, it is computed on the NDFrame and should return scalar or NDFrame. The
callable must not change input NDFrame (though pandas doesn’t check it).

New in version 0.18.1: A callable can be used as other.

inplace : boolean, default False

Whether to perform the operation in place on the data

axis [alignment axis if needed, default None]

level [alignment level if needed, default None]

errors : str, {‘raise’, ‘ignore’}, default ‘raise’

• raise : allow exceptions to be raised

• ignore : suppress exceptions. On error return original object

Note that currently this parameter won’t affect the results and will always coerce to a
suitable dtype.

try_cast : boolean, default False

try to cast the result back to the input type (if possible),

raise_on_error : boolean, default True

Whether to raise on invalid data types (e.g. trying to where on strings)

Deprecated since version 0.21.0.

34.3. Series 1533

pandas: powerful Python data analysis toolkit, Release 0.23.4

Returns

wh [same type as caller]

See also:

DataFrame.where()

Notes

The mask method is an application of the if-then idiom. For each element in the calling DataFrame, if
cond is False the element is used; otherwise the corresponding element from the DataFrame other is
used.

The signature for DataFrame.where() differs from numpy.where(). Roughly df1.where(m,
df2) is equivalent to np.where(m, df1, df2).

For further details and examples see the mask documentation in indexing.

Examples

>>> s = pd.Series(range(5))
>>> s.where(s > 0)
0 NaN
1 1.0
2 2.0
3 3.0
4 4.0

>>> s.mask(s > 0)
0 0.0
1 NaN
2 NaN
3 NaN
4 NaN

>>> s.where(s > 1, 10)
0 10.0
1 10.0
2 2.0
3 3.0
4 4.0

>>> df = pd.DataFrame(np.arange(10).reshape(-1, 2), columns=['A', 'B'])
>>> m = df % 3 == 0
>>> df.where(m, -df)

A B
0 0 -1
1 -2 3
2 -4 -5
3 6 -7
4 -8 9
>>> df.where(m, -df) == np.where(m, df, -df)

A B
0 True True

(continues on next page)

1534 Chapter 34. API Reference

https://docs.scipy.org/doc/numpy/reference/generated/numpy.where.html#numpy.where

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

1 True True
2 True True
3 True True
4 True True
>>> df.where(m, -df) == df.mask(~m, -df)

A B
0 True True
1 True True
2 True True
3 True True
4 True True

pandas.Series.max

Series.max(axis=None, skipna=None, level=None, numeric_only=None, **kwargs)

This method returns the maximum of the values in the object. If you want the index of the maximum,
use idxmax. This is the equivalent of the numpy.ndarray method argmax.

Parameters

axis [{index (0)}]

skipna : boolean, default True

Exclude NA/null values when computing the result.

level : int or level name, default None

If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into
a scalar

numeric_only : boolean, default None

Include only float, int, boolean columns. If None, will attempt to use everything, then
use only numeric data. Not implemented for Series.

Returns

max [scalar or Series (if level specified)]

pandas.Series.mean

Series.mean(axis=None, skipna=None, level=None, numeric_only=None, **kwargs)
Return the mean of the values for the requested axis

Parameters

axis [{index (0)}]

skipna : boolean, default True

Exclude NA/null values when computing the result.

level : int or level name, default None

If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into
a scalar

numeric_only : boolean, default None

34.3. Series 1535

pandas: powerful Python data analysis toolkit, Release 0.23.4

Include only float, int, boolean columns. If None, will attempt to use everything, then
use only numeric data. Not implemented for Series.

Returns

mean [scalar or Series (if level specified)]

pandas.Series.median

Series.median(axis=None, skipna=None, level=None, numeric_only=None, **kwargs)
Return the median of the values for the requested axis

Parameters

axis [{index (0)}]

skipna : boolean, default True

Exclude NA/null values when computing the result.

level : int or level name, default None

If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into
a scalar

numeric_only : boolean, default None

Include only float, int, boolean columns. If None, will attempt to use everything, then
use only numeric data. Not implemented for Series.

Returns

median [scalar or Series (if level specified)]

pandas.Series.memory_usage

Series.memory_usage(index=True, deep=False)
Return the memory usage of the Series.

The memory usage can optionally include the contribution of the index and of elements of object dtype.

Parameters index : bool, default True

Specifies whether to include the memory usage of the Series index.

deep : bool, default False

If True, introspect the data deeply by interrogating object dtypes for system-level mem-
ory consumption, and include it in the returned value.

Returns int

Bytes of memory consumed.

See also:

numpy.ndarray.nbytes Total bytes consumed by the elements of the array.

DataFrame.memory_usage Bytes consumed by a DataFrame.

1536 Chapter 34. API Reference

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.nbytes.html#numpy.ndarray.nbytes

pandas: powerful Python data analysis toolkit, Release 0.23.4

Examples

>>> s = pd.Series(range(3))
>>> s.memory_usage()
104

Not including the index gives the size of the rest of the data, which is necessarily smaller:

>>> s.memory_usage(index=False)
24

The memory footprint of object values is ignored by default:

>>> s = pd.Series(["a", "b"])
>>> s.values
array(['a', 'b'], dtype=object)
>>> s.memory_usage()
96
>>> s.memory_usage(deep=True)
212

pandas.Series.min

Series.min(axis=None, skipna=None, level=None, numeric_only=None, **kwargs)

This method returns the minimum of the values in the object. If you want the index of the minimum,
use idxmin. This is the equivalent of the numpy.ndarray method argmin.

Parameters

axis [{index (0)}]

skipna : boolean, default True

Exclude NA/null values when computing the result.

level : int or level name, default None

If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into
a scalar

numeric_only : boolean, default None

Include only float, int, boolean columns. If None, will attempt to use everything, then
use only numeric data. Not implemented for Series.

Returns

min [scalar or Series (if level specified)]

pandas.Series.mod

Series.mod(other, level=None, fill_value=None, axis=0)
Modulo of series and other, element-wise (binary operator mod).

Equivalent to series % other, but with support to substitute a fill_value for missing data in one of
the inputs.

34.3. Series 1537

pandas: powerful Python data analysis toolkit, Release 0.23.4

Parameters

other [Series or scalar value]

fill_value : None or float value, default None (NaN)

Fill existing missing (NaN) values, and any new element needed for successful Series
alignment, with this value before computation. If data in both corresponding Series
locations is missing the result will be missing

level : int or name

Broadcast across a level, matching Index values on the passed MultiIndex level

Returns

result [Series]

See also:

Series.rmod

Examples

>>> a = pd.Series([1, 1, 1, np.nan], index=['a', 'b', 'c', 'd'])
>>> a
a 1.0
b 1.0
c 1.0
d NaN
dtype: float64
>>> b = pd.Series([1, np.nan, 1, np.nan], index=['a', 'b', 'd', 'e'])
>>> b
a 1.0
b NaN
d 1.0
e NaN
dtype: float64
>>> a.add(b, fill_value=0)
a 2.0
b 1.0
c 1.0
d 1.0
e NaN
dtype: float64

pandas.Series.mode

Series.mode()
Return the mode(s) of the dataset.

Always returns Series even if only one value is returned.

Returns

modes [Series (sorted)]

1538 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

pandas.Series.mul

Series.mul(other, level=None, fill_value=None, axis=0)
Multiplication of series and other, element-wise (binary operator mul).

Equivalent to series * other, but with support to substitute a fill_value for missing data in one of
the inputs.

Parameters

other [Series or scalar value]

fill_value : None or float value, default None (NaN)

Fill existing missing (NaN) values, and any new element needed for successful Series
alignment, with this value before computation. If data in both corresponding Series
locations is missing the result will be missing

level : int or name

Broadcast across a level, matching Index values on the passed MultiIndex level

Returns

result [Series]

See also:

Series.rmul

Examples

>>> a = pd.Series([1, 1, 1, np.nan], index=['a', 'b', 'c', 'd'])
>>> a
a 1.0
b 1.0
c 1.0
d NaN
dtype: float64
>>> b = pd.Series([1, np.nan, 1, np.nan], index=['a', 'b', 'd', 'e'])
>>> b
a 1.0
b NaN
d 1.0
e NaN
dtype: float64
>>> a.add(b, fill_value=0)
a 2.0
b 1.0
c 1.0
d 1.0
e NaN
dtype: float64

pandas.Series.multiply

Series.multiply(other, level=None, fill_value=None, axis=0)
Multiplication of series and other, element-wise (binary operator mul).

34.3. Series 1539

pandas: powerful Python data analysis toolkit, Release 0.23.4

Equivalent to series * other, but with support to substitute a fill_value for missing data in one of
the inputs.

Parameters

other [Series or scalar value]

fill_value : None or float value, default None (NaN)

Fill existing missing (NaN) values, and any new element needed for successful Series
alignment, with this value before computation. If data in both corresponding Series
locations is missing the result will be missing

level : int or name

Broadcast across a level, matching Index values on the passed MultiIndex level

Returns

result [Series]

See also:

Series.rmul

Examples

>>> a = pd.Series([1, 1, 1, np.nan], index=['a', 'b', 'c', 'd'])
>>> a
a 1.0
b 1.0
c 1.0
d NaN
dtype: float64
>>> b = pd.Series([1, np.nan, 1, np.nan], index=['a', 'b', 'd', 'e'])
>>> b
a 1.0
b NaN
d 1.0
e NaN
dtype: float64
>>> a.add(b, fill_value=0)
a 2.0
b 1.0
c 1.0
d 1.0
e NaN
dtype: float64

pandas.Series.ne

Series.ne(other, level=None, fill_value=None, axis=0)
Not equal to of series and other, element-wise (binary operator ne).

Equivalent to series != other, but with support to substitute a fill_value for missing data in one of
the inputs.

Parameters

1540 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

other [Series or scalar value]

fill_value : None or float value, default None (NaN)

Fill existing missing (NaN) values, and any new element needed for successful Series
alignment, with this value before computation. If data in both corresponding Series
locations is missing the result will be missing

level : int or name

Broadcast across a level, matching Index values on the passed MultiIndex level

Returns

result [Series]

See also:

Series.None

Examples

>>> a = pd.Series([1, 1, 1, np.nan], index=['a', 'b', 'c', 'd'])
>>> a
a 1.0
b 1.0
c 1.0
d NaN
dtype: float64
>>> b = pd.Series([1, np.nan, 1, np.nan], index=['a', 'b', 'd', 'e'])
>>> b
a 1.0
b NaN
d 1.0
e NaN
dtype: float64
>>> a.add(b, fill_value=0)
a 2.0
b 1.0
c 1.0
d 1.0
e NaN
dtype: float64

pandas.Series.nlargest

Series.nlargest(n=5, keep=’first’)
Return the largest n elements.

Parameters n : int

Return this many descending sorted values

keep : {‘first’, ‘last’}, default ‘first’

Where there are duplicate values: - first : take the first occurrence. - last : take
the last occurrence.

Returns top_n : Series

34.3. Series 1541

pandas: powerful Python data analysis toolkit, Release 0.23.4

The n largest values in the Series, in sorted order

See also:

Series.nsmallest

Notes

Faster than .sort_values(ascending=False).head(n) for small n relative to the size of the
Series object.

Examples

>>> import pandas as pd
>>> import numpy as np
>>> s = pd.Series(np.random.randn(10**6))
>>> s.nlargest(10) # only sorts up to the N requested
219921 4.644710
82124 4.608745
421689 4.564644
425277 4.447014
718691 4.414137
43154 4.403520
283187 4.313922
595519 4.273635
503969 4.250236
121637 4.240952
dtype: float64

pandas.Series.nonzero

Series.nonzero()
Return the integer indices of the elements that are non-zero

This method is equivalent to calling numpy.nonzero on the series data. For compatibility with NumPy,
the return value is the same (a tuple with an array of indices for each dimension), but it will always be a
one-item tuple because series only have one dimension.

See also:

numpy.nonzero

Examples

>>> s = pd.Series([0, 3, 0, 4])
>>> s.nonzero()
(array([1, 3]),)
>>> s.iloc[s.nonzero()[0]]
1 3
3 4
dtype: int64

1542 Chapter 34. API Reference

https://docs.scipy.org/doc/numpy/reference/generated/numpy.nonzero.html#numpy.nonzero

pandas: powerful Python data analysis toolkit, Release 0.23.4

>>> s = pd.Series([0, 3, 0, 4], index=['a', 'b', 'c', 'd'])
same return although index of s is different
>>> s.nonzero()
(array([1, 3]),)
>>> s.iloc[s.nonzero()[0]]
b 3
d 4
dtype: int64

pandas.Series.notna

Series.notna()
Detect existing (non-missing) values.

Return a boolean same-sized object indicating if the values are not NA. Non-missing values get mapped to
True. Characters such as empty strings '' or numpy.inf are not considered NA values (unless you set
pandas.options.mode.use_inf_as_na = True). NA values, such as None or numpy.NaN,
get mapped to False values.

Returns Series

Mask of bool values for each element in Series that indicates whether an element is not
an NA value.

See also:

Series.notnull alias of notna

Series.isna boolean inverse of notna

Series.dropna omit axes labels with missing values

notna top-level notna

Examples

Show which entries in a DataFrame are not NA.

>>> df = pd.DataFrame({'age': [5, 6, np.NaN],
... 'born': [pd.NaT, pd.Timestamp('1939-05-27'),
... pd.Timestamp('1940-04-25')],
... 'name': ['Alfred', 'Batman', ''],
... 'toy': [None, 'Batmobile', 'Joker']})
>>> df

age born name toy
0 5.0 NaT Alfred None
1 6.0 1939-05-27 Batman Batmobile
2 NaN 1940-04-25 Joker

>>> df.notna()
age born name toy

0 True False True False
1 True True True True
2 False True True True

Show which entries in a Series are not NA.

34.3. Series 1543

pandas: powerful Python data analysis toolkit, Release 0.23.4

>>> ser = pd.Series([5, 6, np.NaN])
>>> ser
0 5.0
1 6.0
2 NaN
dtype: float64

>>> ser.notna()
0 True
1 True
2 False
dtype: bool

pandas.Series.notnull

Series.notnull()
Detect existing (non-missing) values.

Return a boolean same-sized object indicating if the values are not NA. Non-missing values get mapped to
True. Characters such as empty strings '' or numpy.inf are not considered NA values (unless you set
pandas.options.mode.use_inf_as_na = True). NA values, such as None or numpy.NaN,
get mapped to False values.

Returns Series

Mask of bool values for each element in Series that indicates whether an element is not
an NA value.

See also:

Series.notnull alias of notna

Series.isna boolean inverse of notna

Series.dropna omit axes labels with missing values

notna top-level notna

Examples

Show which entries in a DataFrame are not NA.

>>> df = pd.DataFrame({'age': [5, 6, np.NaN],
... 'born': [pd.NaT, pd.Timestamp('1939-05-27'),
... pd.Timestamp('1940-04-25')],
... 'name': ['Alfred', 'Batman', ''],
... 'toy': [None, 'Batmobile', 'Joker']})
>>> df

age born name toy
0 5.0 NaT Alfred None
1 6.0 1939-05-27 Batman Batmobile
2 NaN 1940-04-25 Joker

1544 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

>>> df.notna()
age born name toy

0 True False True False
1 True True True True
2 False True True True

Show which entries in a Series are not NA.

>>> ser = pd.Series([5, 6, np.NaN])
>>> ser
0 5.0
1 6.0
2 NaN
dtype: float64

>>> ser.notna()
0 True
1 True
2 False
dtype: bool

pandas.Series.nsmallest

Series.nsmallest(n=5, keep=’first’)
Return the smallest n elements.

Parameters n : int

Return this many ascending sorted values

keep : {‘first’, ‘last’}, default ‘first’

Where there are duplicate values: - first : take the first occurrence. - last : take
the last occurrence.

Returns bottom_n : Series

The n smallest values in the Series, in sorted order

See also:

Series.nlargest

Notes

Faster than .sort_values().head(n) for small n relative to the size of the Series object.

Examples

>>> import pandas as pd
>>> import numpy as np
>>> s = pd.Series(np.random.randn(10**6))
>>> s.nsmallest(10) # only sorts up to the N requested
288532 -4.954580

(continues on next page)

34.3. Series 1545

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

732345 -4.835960
64803 -4.812550
446457 -4.609998
501225 -4.483945
669476 -4.472935
973615 -4.401699
621279 -4.355126
773916 -4.347355
359919 -4.331927
dtype: float64

pandas.Series.nunique

Series.nunique(dropna=True)
Return number of unique elements in the object.

Excludes NA values by default.

Parameters dropna : boolean, default True

Don’t include NaN in the count.

Returns

nunique [int]

pandas.Series.pct_change

Series.pct_change(periods=1, fill_method=’pad’, limit=None, freq=None, **kwargs)
Percentage change between the current and a prior element.

Computes the percentage change from the immediately previous row by default. This is useful in compar-
ing the percentage of change in a time series of elements.

Parameters periods : int, default 1

Periods to shift for forming percent change.

fill_method : str, default ‘pad’

How to handle NAs before computing percent changes.

limit : int, default None

The number of consecutive NAs to fill before stopping.

freq : DateOffset, timedelta, or offset alias string, optional

Increment to use from time series API (e.g. ‘M’ or BDay()).

**kwargs

Additional keyword arguments are passed into DataFrame.shift or Series.shift.

Returns chg : Series or DataFrame

The same type as the calling object.

See also:

Series.diff Compute the difference of two elements in a Series.

1546 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

DataFrame.diff Compute the difference of two elements in a DataFrame.

Series.shift Shift the index by some number of periods.

DataFrame.shift Shift the index by some number of periods.

Examples

Series

>>> s = pd.Series([90, 91, 85])
>>> s
0 90
1 91
2 85
dtype: int64

>>> s.pct_change()
0 NaN
1 0.011111
2 -0.065934
dtype: float64

>>> s.pct_change(periods=2)
0 NaN
1 NaN
2 -0.055556
dtype: float64

See the percentage change in a Series where filling NAs with last valid observation forward to next valid.

>>> s = pd.Series([90, 91, None, 85])
>>> s
0 90.0
1 91.0
2 NaN
3 85.0
dtype: float64

>>> s.pct_change(fill_method='ffill')
0 NaN
1 0.011111
2 0.000000
3 -0.065934
dtype: float64

DataFrame

Percentage change in French franc, Deutsche Mark, and Italian lira from 1980-01-01 to 1980-03-01.

>>> df = pd.DataFrame({
... 'FR': [4.0405, 4.0963, 4.3149],
... 'GR': [1.7246, 1.7482, 1.8519],
... 'IT': [804.74, 810.01, 860.13]},
... index=['1980-01-01', '1980-02-01', '1980-03-01'])
>>> df

(continues on next page)

34.3. Series 1547

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

FR GR IT
1980-01-01 4.0405 1.7246 804.74
1980-02-01 4.0963 1.7482 810.01
1980-03-01 4.3149 1.8519 860.13

>>> df.pct_change()
FR GR IT

1980-01-01 NaN NaN NaN
1980-02-01 0.013810 0.013684 0.006549
1980-03-01 0.053365 0.059318 0.061876

Percentage of change in GOOG and APPL stock volume. Shows computing the percentage change be-
tween columns.

>>> df = pd.DataFrame({
... '2016': [1769950, 30586265],
... '2015': [1500923, 40912316],
... '2014': [1371819, 41403351]},
... index=['GOOG', 'APPL'])
>>> df

2016 2015 2014
GOOG 1769950 1500923 1371819
APPL 30586265 40912316 41403351

>>> df.pct_change(axis='columns')
2016 2015 2014

GOOG NaN -0.151997 -0.086016
APPL NaN 0.337604 0.012002

pandas.Series.pipe

Series.pipe(func, *args, **kwargs)
Apply func(self, *args, **kwargs)

Parameters func : function

function to apply to the NDFrame. args, and kwargs are passed into func. Alter-
natively a (callable, data_keyword) tuple where data_keyword is a string
indicating the keyword of callable that expects the NDFrame.

args : iterable, optional

positional arguments passed into func.

kwargs : mapping, optional

a dictionary of keyword arguments passed into func.

Returns

object [the return type of func.]

See also:

pandas.DataFrame.apply , pandas.DataFrame.applymap, pandas.Series.map

1548 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

Notes

Use .pipe when chaining together functions that expect Series, DataFrames or GroupBy objects. Instead
of writing

>>> f(g(h(df), arg1=a), arg2=b, arg3=c)

You can write

>>> (df.pipe(h)
... .pipe(g, arg1=a)
... .pipe(f, arg2=b, arg3=c)
...)

If you have a function that takes the data as (say) the second argument, pass a tuple indicating which
keyword expects the data. For example, suppose f takes its data as arg2:

>>> (df.pipe(h)
... .pipe(g, arg1=a)
... .pipe((f, 'arg2'), arg1=a, arg3=c)
...)

pandas.Series.plot

Series.plot(kind=’line’, ax=None, figsize=None, use_index=True, title=None, grid=None, leg-
end=False, style=None, logx=False, logy=False, loglog=False, xticks=None, yt-
icks=None, xlim=None, ylim=None, rot=None, fontsize=None, colormap=None, ta-
ble=False, yerr=None, xerr=None, label=None, secondary_y=False, **kwds)

Make plots of Series using matplotlib / pylab.

New in version 0.17.0: Each plot kind has a corresponding method on the Series.plot accessor: s.
plot(kind='line') is equivalent to s.plot.line().

Parameters

data [Series]

kind : str

• ‘line’ : line plot (default)

• ‘bar’ : vertical bar plot

• ‘barh’ : horizontal bar plot

• ‘hist’ : histogram

• ‘box’ : boxplot

• ‘kde’ : Kernel Density Estimation plot

• ‘density’ : same as ‘kde’

• ‘area’ : area plot

• ‘pie’ : pie plot

ax : matplotlib axes object

If not passed, uses gca()

34.3. Series 1549

pandas: powerful Python data analysis toolkit, Release 0.23.4

figsize [a tuple (width, height) in inches]

use_index : boolean, default True

Use index as ticks for x axis

title : string or list

Title to use for the plot. If a string is passed, print the string at the top of the figure. If
a list is passed and subplots is True, print each item in the list above the corresponding
subplot.

grid : boolean, default None (matlab style default)

Axis grid lines

legend : False/True/’reverse’

Place legend on axis subplots

style : list or dict

matplotlib line style per column

logx : boolean, default False

Use log scaling on x axis

logy : boolean, default False

Use log scaling on y axis

loglog : boolean, default False

Use log scaling on both x and y axes

xticks : sequence

Values to use for the xticks

yticks : sequence

Values to use for the yticks

xlim [2-tuple/list]

ylim [2-tuple/list]

rot : int, default None

Rotation for ticks (xticks for vertical, yticks for horizontal plots)

fontsize : int, default None

Font size for xticks and yticks

colormap : str or matplotlib colormap object, default None

Colormap to select colors from. If string, load colormap with that name from matplotlib.

colorbar : boolean, optional

If True, plot colorbar (only relevant for ‘scatter’ and ‘hexbin’ plots)

position : float

Specify relative alignments for bar plot layout. From 0 (left/bottom-end) to 1 (right/top-
end). Default is 0.5 (center)

1550 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

table : boolean, Series or DataFrame, default False

If True, draw a table using the data in the DataFrame and the data will be transposed to
meet matplotlib’s default layout. If a Series or DataFrame is passed, use passed data to
draw a table.

yerr : DataFrame, Series, array-like, dict and str

See Plotting with Error Bars for detail.

xerr [same types as yerr.]

label [label argument to provide to plot]

secondary_y : boolean or sequence of ints, default False

If True then y-axis will be on the right

mark_right : boolean, default True

When using a secondary_y axis, automatically mark the column labels with “(right)” in
the legend

‘**kwds‘ : keywords

Options to pass to matplotlib plotting method

Returns

axes [matplotlib.axes.Axes or numpy.ndarray of them]

Notes

• See matplotlib documentation online for more on this subject

• If kind = ‘bar’ or ‘barh’, you can specify relative alignments for bar plot layout by position keyword.
From 0 (left/bottom-end) to 1 (right/top-end). Default is 0.5 (center)

pandas.Series.pop

Series.pop(item)
Return item and drop from frame. Raise KeyError if not found.

Parameters item : str

Column label to be popped

Returns

popped [Series]

Examples

>>> df = pd.DataFrame([('falcon', 'bird', 389.0),
... ('parrot', 'bird', 24.0),
... ('lion', 'mammal', 80.5),
... ('monkey', 'mammal', np.nan)],
... columns=('name', 'class', 'max_speed'))

(continues on next page)

34.3. Series 1551

https://matplotlib.org/api/axes_api.html#matplotlib.axes.Axes

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

>>> df
name class max_speed

0 falcon bird 389.0
1 parrot bird 24.0
2 lion mammal 80.5
3 monkey mammal NaN

>>> df.pop('class')
0 bird
1 bird
2 mammal
3 mammal
Name: class, dtype: object

>>> df
name max_speed

0 falcon 389.0
1 parrot 24.0
2 lion 80.5
3 monkey NaN

pandas.Series.pow

Series.pow(other, level=None, fill_value=None, axis=0)
Exponential power of series and other, element-wise (binary operator pow).

Equivalent to series ** other, but with support to substitute a fill_value for missing data in one of
the inputs.

Parameters

other [Series or scalar value]

fill_value : None or float value, default None (NaN)

Fill existing missing (NaN) values, and any new element needed for successful Series
alignment, with this value before computation. If data in both corresponding Series
locations is missing the result will be missing

level : int or name

Broadcast across a level, matching Index values on the passed MultiIndex level

Returns

result [Series]

See also:

Series.rpow

Examples

>>> a = pd.Series([1, 1, 1, np.nan], index=['a', 'b', 'c', 'd'])
>>> a
a 1.0

(continues on next page)

1552 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

b 1.0
c 1.0
d NaN
dtype: float64
>>> b = pd.Series([1, np.nan, 1, np.nan], index=['a', 'b', 'd', 'e'])
>>> b
a 1.0
b NaN
d 1.0
e NaN
dtype: float64
>>> a.add(b, fill_value=0)
a 2.0
b 1.0
c 1.0
d 1.0
e NaN
dtype: float64

pandas.Series.prod

Series.prod(axis=None, skipna=None, level=None, numeric_only=None, min_count=0, **kwargs)
Return the product of the values for the requested axis

Parameters

axis [{index (0)}]

skipna : boolean, default True

Exclude NA/null values when computing the result.

level : int or level name, default None

If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into
a scalar

numeric_only : boolean, default None

Include only float, int, boolean columns. If None, will attempt to use everything, then
use only numeric data. Not implemented for Series.

min_count : int, default 0

The required number of valid values to perform the operation. If fewer than
min_count non-NA values are present the result will be NA.

New in version 0.22.0: Added with the default being 0. This means the sum of an
all-NA or empty Series is 0, and the product of an all-NA or empty Series is 1.

Returns

prod [scalar or Series (if level specified)]

Examples

By default, the product of an empty or all-NA Series is 1

34.3. Series 1553

pandas: powerful Python data analysis toolkit, Release 0.23.4

>>> pd.Series([]).prod()
1.0

This can be controlled with the min_count parameter

>>> pd.Series([]).prod(min_count=1)
nan

Thanks to the skipna parameter, min_count handles all-NA and empty series identically.

>>> pd.Series([np.nan]).prod()
1.0

>>> pd.Series([np.nan]).prod(min_count=1)
nan

pandas.Series.product

Series.product(axis=None, skipna=None, level=None, numeric_only=None, min_count=0,
**kwargs)

Return the product of the values for the requested axis

Parameters

axis [{index (0)}]

skipna : boolean, default True

Exclude NA/null values when computing the result.

level : int or level name, default None

If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into
a scalar

numeric_only : boolean, default None

Include only float, int, boolean columns. If None, will attempt to use everything, then
use only numeric data. Not implemented for Series.

min_count : int, default 0

The required number of valid values to perform the operation. If fewer than
min_count non-NA values are present the result will be NA.

New in version 0.22.0: Added with the default being 0. This means the sum of an
all-NA or empty Series is 0, and the product of an all-NA or empty Series is 1.

Returns

prod [scalar or Series (if level specified)]

Examples

By default, the product of an empty or all-NA Series is 1

>>> pd.Series([]).prod()
1.0

1554 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

This can be controlled with the min_count parameter

>>> pd.Series([]).prod(min_count=1)
nan

Thanks to the skipna parameter, min_count handles all-NA and empty series identically.

>>> pd.Series([np.nan]).prod()
1.0

>>> pd.Series([np.nan]).prod(min_count=1)
nan

pandas.Series.ptp

Series.ptp(axis=None, skipna=None, level=None, numeric_only=None, **kwargs)

Returns the difference between the maximum value and the minimum value in the object. This is the
equivalent of the numpy.ndarray method ptp.

Parameters

axis [{index (0)}]

skipna : boolean, default True

Exclude NA/null values when computing the result.

level : int or level name, default None

If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into
a scalar

numeric_only : boolean, default None

Include only float, int, boolean columns. If None, will attempt to use everything, then
use only numeric data. Not implemented for Series.

Returns

ptp [scalar or Series (if level specified)]

pandas.Series.put

Series.put(*args, **kwargs)
Applies the put method to its values attribute if it has one.

See also:

numpy.ndarray.put

pandas.Series.quantile

Series.quantile(q=0.5, interpolation=’linear’)
Return value at the given quantile, a la numpy.percentile.

Parameters q : float or array-like, default 0.5 (50% quantile)

34.3. Series 1555

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.put.html#numpy.ndarray.put

pandas: powerful Python data analysis toolkit, Release 0.23.4

0 <= q <= 1, the quantile(s) to compute

interpolation : {‘linear’, ‘lower’, ‘higher’, ‘midpoint’, ‘nearest’}

New in version 0.18.0.

This optional parameter specifies the interpolation method to use, when the desired
quantile lies between two data points i and j:

• linear: i + (j - i) * fraction, where fraction is the fractional part of the index sur-
rounded by i and j.

• lower: i.

• higher: j.

• nearest: i or j whichever is nearest.

• midpoint: (i + j) / 2.

Returns quantile : float or Series

if q is an array, a Series will be returned where the index is q and the values are the
quantiles.

See also:

pandas.core.window.Rolling.quantile

Examples

>>> s = Series([1, 2, 3, 4])
>>> s.quantile(.5)
2.5
>>> s.quantile([.25, .5, .75])
0.25 1.75
0.50 2.50
0.75 3.25
dtype: float64

pandas.Series.radd

Series.radd(other, level=None, fill_value=None, axis=0)
Addition of series and other, element-wise (binary operator radd).

Equivalent to other + series, but with support to substitute a fill_value for missing data in one of
the inputs.

Parameters

other [Series or scalar value]

fill_value : None or float value, default None (NaN)

Fill existing missing (NaN) values, and any new element needed for successful Series
alignment, with this value before computation. If data in both corresponding Series
locations is missing the result will be missing

level : int or name

Broadcast across a level, matching Index values on the passed MultiIndex level

1556 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

Returns

result [Series]

See also:

Series.add

Examples

>>> a = pd.Series([1, 1, 1, np.nan], index=['a', 'b', 'c', 'd'])
>>> a
a 1.0
b 1.0
c 1.0
d NaN
dtype: float64
>>> b = pd.Series([1, np.nan, 1, np.nan], index=['a', 'b', 'd', 'e'])
>>> b
a 1.0
b NaN
d 1.0
e NaN
dtype: float64
>>> a.add(b, fill_value=0)
a 2.0
b 1.0
c 1.0
d 1.0
e NaN
dtype: float64

pandas.Series.rank

Series.rank(axis=0, method=’average’, numeric_only=None, na_option=’keep’, ascending=True,
pct=False)

Compute numerical data ranks (1 through n) along axis. Equal values are assigned a rank that is the average
of the ranks of those values

Parameters axis : {0 or ‘index’, 1 or ‘columns’}, default 0

index to direct ranking

method : {‘average’, ‘min’, ‘max’, ‘first’, ‘dense’}

• average: average rank of group

• min: lowest rank in group

• max: highest rank in group

• first: ranks assigned in order they appear in the array

• dense: like ‘min’, but rank always increases by 1 between groups

numeric_only : boolean, default None

Include only float, int, boolean data. Valid only for DataFrame or Panel objects

na_option : {‘keep’, ‘top’, ‘bottom’}

34.3. Series 1557

pandas: powerful Python data analysis toolkit, Release 0.23.4

• keep: leave NA values where they are

• top: smallest rank if ascending

• bottom: smallest rank if descending

ascending : boolean, default True

False for ranks by high (1) to low (N)

pct : boolean, default False

Computes percentage rank of data

Returns

ranks [same type as caller]

pandas.Series.ravel

Series.ravel(order=’C’)
Return the flattened underlying data as an ndarray

See also:

numpy.ndarray.ravel

pandas.Series.rdiv

Series.rdiv(other, level=None, fill_value=None, axis=0)
Floating division of series and other, element-wise (binary operator rtruediv).

Equivalent to other / series, but with support to substitute a fill_value for missing data in one of
the inputs.

Parameters

other [Series or scalar value]

fill_value : None or float value, default None (NaN)

Fill existing missing (NaN) values, and any new element needed for successful Series
alignment, with this value before computation. If data in both corresponding Series
locations is missing the result will be missing

level : int or name

Broadcast across a level, matching Index values on the passed MultiIndex level

Returns

result [Series]

See also:

Series.truediv

Examples

1558 Chapter 34. API Reference

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.ravel.html#numpy.ndarray.ravel

pandas: powerful Python data analysis toolkit, Release 0.23.4

>>> a = pd.Series([1, 1, 1, np.nan], index=['a', 'b', 'c', 'd'])
>>> a
a 1.0
b 1.0
c 1.0
d NaN
dtype: float64
>>> b = pd.Series([1, np.nan, 1, np.nan], index=['a', 'b', 'd', 'e'])
>>> b
a 1.0
b NaN
d 1.0
e NaN
dtype: float64
>>> a.add(b, fill_value=0)
a 2.0
b 1.0
c 1.0
d 1.0
e NaN
dtype: float64

pandas.Series.reindex

Series.reindex(index=None, **kwargs)
Conform Series to new index with optional filling logic, placing NA/NaN in locations having no value in
the previous index. A new object is produced unless the new index is equivalent to the current one and
copy=False

Parameters index : array-like, optional (should be specified using keywords)

New labels / index to conform to. Preferably an Index object to avoid duplicating data

method : {None, ‘backfill’/’bfill’, ‘pad’/’ffill’, ‘nearest’}, optional

method to use for filling holes in reindexed DataFrame. Please note: this is only appli-
cable to DataFrames/Series with a monotonically increasing/decreasing index.

• default: don’t fill gaps

• pad / ffill: propagate last valid observation forward to next valid

• backfill / bfill: use next valid observation to fill gap

• nearest: use nearest valid observations to fill gap

copy : boolean, default True

Return a new object, even if the passed indexes are the same

level : int or name

Broadcast across a level, matching Index values on the passed MultiIndex level

fill_value : scalar, default np.NaN

Value to use for missing values. Defaults to NaN, but can be any “compatible” value

limit : int, default None

Maximum number of consecutive elements to forward or backward fill

34.3. Series 1559

pandas: powerful Python data analysis toolkit, Release 0.23.4

tolerance : optional

Maximum distance between original and new labels for inexact matches. The values of
the index at the matching locations most satisfy the equation abs(index[indexer]
- target) <= tolerance.

Tolerance may be a scalar value, which applies the same tolerance to all values, or list-
like, which applies variable tolerance per element. List-like includes list, tuple, array,
Series, and must be the same size as the index and its dtype must exactly match the
index’s type.

New in version 0.21.0: (list-like tolerance)

Returns

reindexed [Series]

Examples

DataFrame.reindex supports two calling conventions

• (index=index_labels, columns=column_labels, ...)

• (labels, axis={'index', 'columns'}, ...)

We highly recommend using keyword arguments to clarify your intent.

Create a dataframe with some fictional data.

>>> index = ['Firefox', 'Chrome', 'Safari', 'IE10', 'Konqueror']
>>> df = pd.DataFrame({
... 'http_status': [200,200,404,404,301],
... 'response_time': [0.04, 0.02, 0.07, 0.08, 1.0]},
... index=index)
>>> df

http_status response_time
Firefox 200 0.04
Chrome 200 0.02
Safari 404 0.07
IE10 404 0.08
Konqueror 301 1.00

Create a new index and reindex the dataframe. By default values in the new index that do not have
corresponding records in the dataframe are assigned NaN.

>>> new_index= ['Safari', 'Iceweasel', 'Comodo Dragon', 'IE10',
... 'Chrome']
>>> df.reindex(new_index)

http_status response_time
Safari 404.0 0.07
Iceweasel NaN NaN
Comodo Dragon NaN NaN
IE10 404.0 0.08
Chrome 200.0 0.02

We can fill in the missing values by passing a value to the keyword fill_value. Because the index is
not monotonically increasing or decreasing, we cannot use arguments to the keyword method to fill the
NaN values.

1560 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

>>> df.reindex(new_index, fill_value=0)
http_status response_time

Safari 404 0.07
Iceweasel 0 0.00
Comodo Dragon 0 0.00
IE10 404 0.08
Chrome 200 0.02

>>> df.reindex(new_index, fill_value='missing')
http_status response_time

Safari 404 0.07
Iceweasel missing missing
Comodo Dragon missing missing
IE10 404 0.08
Chrome 200 0.02

We can also reindex the columns.

>>> df.reindex(columns=['http_status', 'user_agent'])
http_status user_agent

Firefox 200 NaN
Chrome 200 NaN
Safari 404 NaN
IE10 404 NaN
Konqueror 301 NaN

Or we can use “axis-style” keyword arguments

>>> df.reindex(['http_status', 'user_agent'], axis="columns")
http_status user_agent

Firefox 200 NaN
Chrome 200 NaN
Safari 404 NaN
IE10 404 NaN
Konqueror 301 NaN

To further illustrate the filling functionality in reindex, we will create a dataframe with a monotonically
increasing index (for example, a sequence of dates).

>>> date_index = pd.date_range('1/1/2010', periods=6, freq='D')
>>> df2 = pd.DataFrame({"prices": [100, 101, np.nan, 100, 89, 88]},
... index=date_index)
>>> df2

prices
2010-01-01 100
2010-01-02 101
2010-01-03 NaN
2010-01-04 100
2010-01-05 89
2010-01-06 88

Suppose we decide to expand the dataframe to cover a wider date range.

>>> date_index2 = pd.date_range('12/29/2009', periods=10, freq='D')
>>> df2.reindex(date_index2)

prices
2009-12-29 NaN

(continues on next page)

34.3. Series 1561

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

2009-12-30 NaN
2009-12-31 NaN
2010-01-01 100
2010-01-02 101
2010-01-03 NaN
2010-01-04 100
2010-01-05 89
2010-01-06 88
2010-01-07 NaN

The index entries that did not have a value in the original data frame (for example, ‘2009-12-29’) are by
default filled with NaN. If desired, we can fill in the missing values using one of several options.

For example, to backpropagate the last valid value to fill the NaN values, pass bfill as an argument to
the method keyword.

>>> df2.reindex(date_index2, method='bfill')
prices

2009-12-29 100
2009-12-30 100
2009-12-31 100
2010-01-01 100
2010-01-02 101
2010-01-03 NaN
2010-01-04 100
2010-01-05 89
2010-01-06 88
2010-01-07 NaN

Please note that the NaN value present in the original dataframe (at index value 2010-01-03) will not be
filled by any of the value propagation schemes. This is because filling while reindexing does not look at
dataframe values, but only compares the original and desired indexes. If you do want to fill in the NaN
values present in the original dataframe, use the fillna() method.

See the user guide for more.

pandas.Series.reindex_axis

Series.reindex_axis(labels, axis=0, **kwargs)
Conform Series to new index with optional filling logic.

Deprecated since version 0.21.0: Use Series.reindex instead.

pandas.Series.reindex_like

Series.reindex_like(other, method=None, copy=True, limit=None, tolerance=None)
Return an object with matching indices to myself.

Parameters

other [Object]

method [string or None]

copy [boolean, default True]

limit : int, default None

1562 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

Maximum number of consecutive labels to fill for inexact matches.

tolerance : optional

Maximum distance between labels of the other object and this object for inexact
matches. Can be list-like.

New in version 0.21.0: (list-like tolerance)

Returns

reindexed [same as input]

Notes

Like calling s.reindex(index=other.index, columns=other.columns, method=. . .)

pandas.Series.rename

Series.rename(index=None, **kwargs)
Alter Series index labels or name

Function / dict values must be unique (1-to-1). Labels not contained in a dict / Series will be left as-is.
Extra labels listed don’t throw an error.

Alternatively, change Series.name with a scalar value.

See the user guide for more.

Parameters index : scalar, hashable sequence, dict-like or function, optional

dict-like or functions are transformations to apply to the index. Scalar or hashable
sequence-like will alter the Series.name attribute.

copy : boolean, default True

Also copy underlying data

inplace : boolean, default False

Whether to return a new Series. If True then value of copy is ignored.

level : int or level name, default None

In case of a MultiIndex, only rename labels in the specified level.

Returns

renamed [Series (new object)]

See also:

pandas.Series.rename_axis

Examples

>>> s = pd.Series([1, 2, 3])
>>> s
0 1
1 2

(continues on next page)

34.3. Series 1563

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

2 3
dtype: int64
>>> s.rename("my_name") # scalar, changes Series.name
0 1
1 2
2 3
Name: my_name, dtype: int64
>>> s.rename(lambda x: x ** 2) # function, changes labels
0 1
1 2
4 3
dtype: int64
>>> s.rename({1: 3, 2: 5}) # mapping, changes labels
0 1
3 2
5 3
dtype: int64

pandas.Series.rename_axis

Series.rename_axis(mapper, axis=0, copy=True, inplace=False)
Alter the name of the index or columns.

Parameters mapper : scalar, list-like, optional

Value to set as the axis name attribute.

axis : {0 or ‘index’, 1 or ‘columns’}, default 0

The index or the name of the axis.

copy : boolean, default True

Also copy underlying data.

inplace : boolean, default False

Modifies the object directly, instead of creating a new Series or DataFrame.

Returns renamed : Series, DataFrame, or None

The same type as the caller or None if inplace is True.

See also:

pandas.Series.rename Alter Series index labels or name

pandas.DataFrame.rename Alter DataFrame index labels or name

pandas.Index.rename Set new names on index

Notes

Prior to version 0.21.0, rename_axis could also be used to change the axis labels by passing a mapping
or scalar. This behavior is deprecated and will be removed in a future version. Use rename instead.

1564 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

Examples

Series

>>> s = pd.Series([1, 2, 3])
>>> s.rename_axis("foo")
foo
0 1
1 2
2 3
dtype: int64

DataFrame

>>> df = pd.DataFrame({"A": [1, 2, 3], "B": [4, 5, 6]})
>>> df.rename_axis("foo")

A B
foo
0 1 4
1 2 5
2 3 6

>>> df.rename_axis("bar", axis="columns")
bar A B
0 1 4
1 2 5
2 3 6

pandas.Series.reorder_levels

Series.reorder_levels(order)
Rearrange index levels using input order. May not drop or duplicate levels

Parameters order : list of int representing new level order.

(reference level by number or key)

axis [where to reorder levels]

Returns

type of caller (new object)

pandas.Series.repeat

Series.repeat(repeats, *args, **kwargs)
Repeat elements of an Series. Refer to numpy.ndarray.repeat for more information about the repeats
argument.

See also:

numpy.ndarray.repeat

34.3. Series 1565

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.repeat.html#numpy.ndarray.repeat

pandas: powerful Python data analysis toolkit, Release 0.23.4

pandas.Series.replace

Series.replace(to_replace=None, value=None, inplace=False, limit=None, regex=False,
method=’pad’)

Replace values given in to_replace with value.

Values of the Series are replaced with other values dynamically. This differs from updating with .loc or
.iloc, which require you to specify a location to update with some value.

Parameters to_replace : str, regex, list, dict, Series, int, float, or None

How to find the values that will be replaced.

• numeric, str or regex:

– numeric: numeric values equal to to_replace will be replaced with value

– str: string exactly matching to_replace will be replaced with value

– regex: regexs matching to_replace will be replaced with value

• list of str, regex, or numeric:

– First, if to_replace and value are both lists, they must be the same length.

– Second, if regex=True then all of the strings in both lists will be interpreted
as regexs otherwise they will match directly. This doesn’t matter much for value
since there are only a few possible substitution regexes you can use.

– str, regex and numeric rules apply as above.

• dict:

– Dicts can be used to specify different replacement values for different existing
values. For example, {'a': 'b', 'y': 'z'} replaces the value ‘a’ with
‘b’ and ‘y’ with ‘z’. To use a dict in this way the value parameter should be None.

– For a DataFrame a dict can specify that different values should be replaced in
different columns. For example, {'a': 1, 'b': 'z'} looks for the value
1 in column ‘a’ and the value ‘z’ in column ‘b’ and replaces these values with
whatever is specified in value. The value parameter should not be None in this
case. You can treat this as a special case of passing two lists except that you are
specifying the column to search in.

– For a DataFrame nested dictionaries, e.g., {'a': {'b': np.nan}}, are
read as follows: look in column ‘a’ for the value ‘b’ and replace it with NaN. The
value parameter should be None to use a nested dict in this way. You can nest
regular expressions as well. Note that column names (the top-level dictionary keys
in a nested dictionary) cannot be regular expressions.

• None:

– This means that the regex argument must be a string, compiled regular expression,
or list, dict, ndarray or Series of such elements. If value is also None then this
must be a nested dictionary or Series.

See the examples section for examples of each of these.

value : scalar, dict, list, str, regex, default None

Value to replace any values matching to_replace with. For a DataFrame a dict of
values can be used to specify which value to use for each column (columns not in
the dict will not be filled). Regular expressions, strings and lists or dicts of such
objects are also allowed.

1566 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

inplace : boolean, default False

If True, in place. Note: this will modify any other views on this object (e.g. a column
from a DataFrame). Returns the caller if this is True.

limit : int, default None

Maximum size gap to forward or backward fill.

regex : bool or same types as to_replace, default False

Whether to interpret to_replace and/or value as regular expressions. If this is True
then to_replace must be a string. Alternatively, this could be a regular expression or
a list, dict, or array of regular expressions in which case to_replace must be None.

method : {‘pad’, ‘ffill’, ‘bfill’, None}

The method to use when for replacement, when to_replace is a scalar, list or tuple
and value is None.

Changed in version 0.23.0: Added to DataFrame.

Returns Series

Object after replacement.

Raises AssertionError

• If regex is not a bool and to_replace is not None.

TypeError

• If to_replace is a dict and value is not a list, dict, ndarray, or Series

• If to_replace is None and regex is not compilable into a regular expression or is a list,
dict, ndarray, or Series.

• When replacing multiple bool or datetime64 objects and the arguments to
to_replace does not match the type of the value being replaced

ValueError

• If a list or an ndarray is passed to to_replace and value but they are not the same
length.

See also:

Series.fillna Fill NA values

Series.where Replace values based on boolean condition

Series.str.replace Simple string replacement.

Notes

• Regex substitution is performed under the hood with re.sub. The rules for substitution for re.sub
are the same.

• Regular expressions will only substitute on strings, meaning you cannot provide, for example, a
regular expression matching floating point numbers and expect the columns in your frame that have
a numeric dtype to be matched. However, if those floating point numbers are strings, then you can
do this.

34.3. Series 1567

pandas: powerful Python data analysis toolkit, Release 0.23.4

• This method has a lot of options. You are encouraged to experiment and play with this method to
gain intuition about how it works.

• When dict is used as the to_replace value, it is like key(s) in the dict are the to_replace part and
value(s) in the dict are the value parameter.

Examples

Scalar ‘to_replace‘ and ‘value‘

>>> s = pd.Series([0, 1, 2, 3, 4])
>>> s.replace(0, 5)
0 5
1 1
2 2
3 3
4 4
dtype: int64

>>> df = pd.DataFrame({'A': [0, 1, 2, 3, 4],
... 'B': [5, 6, 7, 8, 9],
... 'C': ['a', 'b', 'c', 'd', 'e']})
>>> df.replace(0, 5)

A B C
0 5 5 a
1 1 6 b
2 2 7 c
3 3 8 d
4 4 9 e

List-like ‘to_replace‘

>>> df.replace([0, 1, 2, 3], 4)
A B C

0 4 5 a
1 4 6 b
2 4 7 c
3 4 8 d
4 4 9 e

>>> df.replace([0, 1, 2, 3], [4, 3, 2, 1])
A B C

0 4 5 a
1 3 6 b
2 2 7 c
3 1 8 d
4 4 9 e

>>> s.replace([1, 2], method='bfill')
0 0
1 3
2 3
3 3
4 4
dtype: int64

1568 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

dict-like ‘to_replace‘

>>> df.replace({0: 10, 1: 100})
A B C

0 10 5 a
1 100 6 b
2 2 7 c
3 3 8 d
4 4 9 e

>>> df.replace({'A': 0, 'B': 5}, 100)
A B C

0 100 100 a
1 1 6 b
2 2 7 c
3 3 8 d
4 4 9 e

>>> df.replace({'A': {0: 100, 4: 400}})
A B C

0 100 5 a
1 1 6 b
2 2 7 c
3 3 8 d
4 400 9 e

Regular expression ‘to_replace‘

>>> df = pd.DataFrame({'A': ['bat', 'foo', 'bait'],
... 'B': ['abc', 'bar', 'xyz']})
>>> df.replace(to_replace=r'^ba.$', value='new', regex=True)

A B
0 new abc
1 foo new
2 bait xyz

>>> df.replace({'A': r'^ba.$'}, {'A': 'new'}, regex=True)
A B

0 new abc
1 foo bar
2 bait xyz

>>> df.replace(regex=r'^ba.$', value='new')
A B

0 new abc
1 foo new
2 bait xyz

>>> df.replace(regex={r'^ba.$':'new', 'foo':'xyz'})
A B

0 new abc
1 xyz new
2 bait xyz

>>> df.replace(regex=[r'^ba.$', 'foo'], value='new')
A B

(continues on next page)

34.3. Series 1569

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

0 new abc
1 new new
2 bait xyz

Note that when replacing multiple bool or datetime64 objects, the data types in the to_replace pa-
rameter must match the data type of the value being replaced:

>>> df = pd.DataFrame({'A': [True, False, True],
... 'B': [False, True, False]})
>>> df.replace({'a string': 'new value', True: False}) # raises
Traceback (most recent call last):

...
TypeError: Cannot compare types 'ndarray(dtype=bool)' and 'str'

This raises a TypeError because one of the dict keys is not of the correct type for replacement.

Compare the behavior of s.replace({'a': None}) and s.replace('a', None) to under-
stand the pecularities of the to_replace parameter:

>>> s = pd.Series([10, 'a', 'a', 'b', 'a'])

When one uses a dict as the to_replace value, it is like the value(s) in the dict are equal to the value parame-
ter. s.replace({'a': None}) is equivalent to s.replace(to_replace={'a': None},
value=None, method=None):

>>> s.replace({'a': None})
0 10
1 None
2 None
3 b
4 None
dtype: object

When value=None and to_replace is a scalar, list or tuple, replace uses the method parameter (default
‘pad’) to do the replacement. So this is why the ‘a’ values are being replaced by 10 in rows 1 and 2
and ‘b’ in row 4 in this case. The command s.replace('a', None) is actually equivalent to s.
replace(to_replace='a', value=None, method='pad'):

>>> s.replace('a', None)
0 10
1 10
2 10
3 b
4 b
dtype: object

pandas.Series.resample

Series.resample(rule, how=None, axis=0, fill_method=None, closed=None, label=None, con-
vention=’start’, kind=None, loffset=None, limit=None, base=0, on=None,
level=None)

Convenience method for frequency conversion and resampling of time series. Object must have a
datetime-like index (DatetimeIndex, PeriodIndex, or TimedeltaIndex), or pass datetime-like values to
the on or level keyword.

1570 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

Parameters rule : string

the offset string or object representing target conversion

axis [int, optional, default 0]

closed : {‘right’, ‘left’}

Which side of bin interval is closed. The default is ‘left’ for all frequency offsets
except for ‘M’, ‘A’, ‘Q’, ‘BM’, ‘BA’, ‘BQ’, and ‘W’ which all have a default of
‘right’.

label : {‘right’, ‘left’}

Which bin edge label to label bucket with. The default is ‘left’ for all frequency
offsets except for ‘M’, ‘A’, ‘Q’, ‘BM’, ‘BA’, ‘BQ’, and ‘W’ which all have a
default of ‘right’.

convention : {‘start’, ‘end’, ‘s’, ‘e’}

For PeriodIndex only, controls whether to use the start or end of rule

kind: {‘timestamp’, ‘period’}, optional

Pass ‘timestamp’ to convert the resulting index to a DateTimeIndex or ‘pe-
riod’ to convert it to a PeriodIndex. By default the input representation is
retained.

loffset : timedelta

Adjust the resampled time labels

base : int, default 0

For frequencies that evenly subdivide 1 day, the “origin” of the aggregated in-
tervals. For example, for ‘5min’ frequency, base could range from 0 through 4.
Defaults to 0

on : string, optional

For a DataFrame, column to use instead of index for resampling. Column must
be datetime-like.

New in version 0.19.0.

level : string or int, optional

For a MultiIndex, level (name or number) to use for resampling. Level must be
datetime-like.

New in version 0.19.0.

Returns

Resampler object

See also:

groupby Group by mapping, function, label, or list of labels.

34.3. Series 1571

pandas: powerful Python data analysis toolkit, Release 0.23.4

Notes

See the user guide for more.

To learn more about the offset strings, please see this link.

Examples

Start by creating a series with 9 one minute timestamps.

>>> index = pd.date_range('1/1/2000', periods=9, freq='T')
>>> series = pd.Series(range(9), index=index)
>>> series
2000-01-01 00:00:00 0
2000-01-01 00:01:00 1
2000-01-01 00:02:00 2
2000-01-01 00:03:00 3
2000-01-01 00:04:00 4
2000-01-01 00:05:00 5
2000-01-01 00:06:00 6
2000-01-01 00:07:00 7
2000-01-01 00:08:00 8
Freq: T, dtype: int64

Downsample the series into 3 minute bins and sum the values of the timestamps falling into a bin.

>>> series.resample('3T').sum()
2000-01-01 00:00:00 3
2000-01-01 00:03:00 12
2000-01-01 00:06:00 21
Freq: 3T, dtype: int64

Downsample the series into 3 minute bins as above, but label each bin using the right edge instead of the
left. Please note that the value in the bucket used as the label is not included in the bucket, which it labels.
For example, in the original series the bucket 2000-01-01 00:03:00 contains the value 3, but the
summed value in the resampled bucket with the label 2000-01-01 00:03:00 does not include 3 (if
it did, the summed value would be 6, not 3). To include this value close the right side of the bin interval
as illustrated in the example below this one.

>>> series.resample('3T', label='right').sum()
2000-01-01 00:03:00 3
2000-01-01 00:06:00 12
2000-01-01 00:09:00 21
Freq: 3T, dtype: int64

Downsample the series into 3 minute bins as above, but close the right side of the bin interval.

>>> series.resample('3T', label='right', closed='right').sum()
2000-01-01 00:00:00 0
2000-01-01 00:03:00 6
2000-01-01 00:06:00 15
2000-01-01 00:09:00 15
Freq: 3T, dtype: int64

Upsample the series into 30 second bins.

1572 Chapter 34. API Reference

http://pandas.pydata.org/pandas-docs/stable/timeseries.html#resampling
http://pandas.pydata.org/pandas-docs/stable/timeseries.html#offset-aliases

pandas: powerful Python data analysis toolkit, Release 0.23.4

>>> series.resample('30S').asfreq()[0:5] #select first 5 rows
2000-01-01 00:00:00 0.0
2000-01-01 00:00:30 NaN
2000-01-01 00:01:00 1.0
2000-01-01 00:01:30 NaN
2000-01-01 00:02:00 2.0
Freq: 30S, dtype: float64

Upsample the series into 30 second bins and fill the NaN values using the pad method.

>>> series.resample('30S').pad()[0:5]
2000-01-01 00:00:00 0
2000-01-01 00:00:30 0
2000-01-01 00:01:00 1
2000-01-01 00:01:30 1
2000-01-01 00:02:00 2
Freq: 30S, dtype: int64

Upsample the series into 30 second bins and fill the NaN values using the bfill method.

>>> series.resample('30S').bfill()[0:5]
2000-01-01 00:00:00 0
2000-01-01 00:00:30 1
2000-01-01 00:01:00 1
2000-01-01 00:01:30 2
2000-01-01 00:02:00 2
Freq: 30S, dtype: int64

Pass a custom function via apply

>>> def custom_resampler(array_like):
... return np.sum(array_like)+5

>>> series.resample('3T').apply(custom_resampler)
2000-01-01 00:00:00 8
2000-01-01 00:03:00 17
2000-01-01 00:06:00 26
Freq: 3T, dtype: int64

For a Series with a PeriodIndex, the keyword convention can be used to control whether to use the start or
end of rule.

>>> s = pd.Series([1, 2], index=pd.period_range('2012-01-01',
freq='A',
periods=2))

>>> s
2012 1
2013 2
Freq: A-DEC, dtype: int64

Resample by month using ‘start’ convention. Values are assigned to the first month of the period.

>>> s.resample('M', convention='start').asfreq().head()
2012-01 1.0
2012-02 NaN
2012-03 NaN
2012-04 NaN

(continues on next page)

34.3. Series 1573

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

2012-05 NaN
Freq: M, dtype: float64

Resample by month using ‘end’ convention. Values are assigned to the last month of the period.

>>> s.resample('M', convention='end').asfreq()
2012-12 1.0
2013-01 NaN
2013-02 NaN
2013-03 NaN
2013-04 NaN
2013-05 NaN
2013-06 NaN
2013-07 NaN
2013-08 NaN
2013-09 NaN
2013-10 NaN
2013-11 NaN
2013-12 2.0
Freq: M, dtype: float64

For DataFrame objects, the keyword on can be used to specify the column instead of the index for resam-
pling.

>>> df = pd.DataFrame(data=9*[range(4)], columns=['a', 'b', 'c', 'd'])
>>> df['time'] = pd.date_range('1/1/2000', periods=9, freq='T')
>>> df.resample('3T', on='time').sum()

a b c d
time
2000-01-01 00:00:00 0 3 6 9
2000-01-01 00:03:00 0 3 6 9
2000-01-01 00:06:00 0 3 6 9

For a DataFrame with MultiIndex, the keyword level can be used to specify on level the resampling
needs to take place.

>>> time = pd.date_range('1/1/2000', periods=5, freq='T')
>>> df2 = pd.DataFrame(data=10*[range(4)],

columns=['a', 'b', 'c', 'd'],
index=pd.MultiIndex.from_product([time, [1, 2]])
)

>>> df2.resample('3T', level=0).sum()
a b c d

2000-01-01 00:00:00 0 6 12 18
2000-01-01 00:03:00 0 4 8 12

pandas.Series.reset_index

Series.reset_index(level=None, drop=False, name=None, inplace=False)
Generate a new DataFrame or Series with the index reset.

This is useful when the index needs to be treated as a column, or when the index is meaningless and needs
to be reset to the default before another operation.

Parameters level : int, str, tuple, or list, default optional

1574 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

For a Series with a MultiIndex, only remove the specified levels from the index.
Removes all levels by default.

drop : bool, default False

Just reset the index, without inserting it as a column in the new DataFrame.

name : object, optional

The name to use for the column containing the original Series values. Uses
self.name by default. This argument is ignored when drop is True.

inplace : bool, default False

Modify the Series in place (do not create a new object).

Returns Series or DataFrame

When drop is False (the default), a DataFrame is returned. The newly created
columns will come first in the DataFrame, followed by the original Series values.
When drop is True, a Series is returned. In either case, if inplace=True, no
value is returned.

See also:

DataFrame.reset_index Analogous function for DataFrame.

Examples

>>> s = pd.Series([1, 2, 3, 4], name='foo',
... index=pd.Index(['a', 'b', 'c', 'd'], name='idx'))

Generate a DataFrame with default index.

>>> s.reset_index()
idx foo

0 a 1
1 b 2
2 c 3
3 d 4

To specify the name of the new column use name.

>>> s.reset_index(name='values')
idx values

0 a 1
1 b 2
2 c 3
3 d 4

To generate a new Series with the default set drop to True.

>>> s.reset_index(drop=True)
0 1
1 2
2 3
3 4
Name: foo, dtype: int64

34.3. Series 1575

pandas: powerful Python data analysis toolkit, Release 0.23.4

To update the Series in place, without generating a new one set inplace to True. Note that it also requires
drop=True.

>>> s.reset_index(inplace=True, drop=True)
>>> s
0 1
1 2
2 3
3 4
Name: foo, dtype: int64

The level parameter is interesting for Series with a multi-level index.

>>> arrays = [np.array(['bar', 'bar', 'baz', 'baz']),
... np.array(['one', 'two', 'one', 'two'])]
>>> s2 = pd.Series(
... range(4), name='foo',
... index=pd.MultiIndex.from_arrays(arrays,
... names=['a', 'b']))

To remove a specific level from the Index, use level.

>>> s2.reset_index(level='a')
a foo

b
one bar 0
two bar 1
one baz 2
two baz 3

If level is not set, all levels are removed from the Index.

>>> s2.reset_index()
a b foo

0 bar one 0
1 bar two 1
2 baz one 2
3 baz two 3

pandas.Series.rfloordiv

Series.rfloordiv(other, level=None, fill_value=None, axis=0)
Integer division of series and other, element-wise (binary operator rfloordiv).

Equivalent to other // series, but with support to substitute a fill_value for missing data in one of
the inputs.

Parameters

other [Series or scalar value]

fill_value : None or float value, default None (NaN)

Fill existing missing (NaN) values, and any new element needed for successful
Series alignment, with this value before computation. If data in both correspond-
ing Series locations is missing the result will be missing

level : int or name

1576 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

Broadcast across a level, matching Index values on the passed MultiIndex level

Returns

result [Series]

See also:

Series.floordiv

Examples

>>> a = pd.Series([1, 1, 1, np.nan], index=['a', 'b', 'c', 'd'])
>>> a
a 1.0
b 1.0
c 1.0
d NaN
dtype: float64
>>> b = pd.Series([1, np.nan, 1, np.nan], index=['a', 'b', 'd', 'e'])
>>> b
a 1.0
b NaN
d 1.0
e NaN
dtype: float64
>>> a.add(b, fill_value=0)
a 2.0
b 1.0
c 1.0
d 1.0
e NaN
dtype: float64

pandas.Series.rmod

Series.rmod(other, level=None, fill_value=None, axis=0)
Modulo of series and other, element-wise (binary operator rmod).

Equivalent to other % series, but with support to substitute a fill_value for missing data in one of
the inputs.

Parameters

other [Series or scalar value]

fill_value : None or float value, default None (NaN)

Fill existing missing (NaN) values, and any new element needed for successful
Series alignment, with this value before computation. If data in both correspond-
ing Series locations is missing the result will be missing

level : int or name

Broadcast across a level, matching Index values on the passed MultiIndex level

Returns

result [Series]

34.3. Series 1577

pandas: powerful Python data analysis toolkit, Release 0.23.4

See also:

Series.mod

Examples

>>> a = pd.Series([1, 1, 1, np.nan], index=['a', 'b', 'c', 'd'])
>>> a
a 1.0
b 1.0
c 1.0
d NaN
dtype: float64
>>> b = pd.Series([1, np.nan, 1, np.nan], index=['a', 'b', 'd', 'e'])
>>> b
a 1.0
b NaN
d 1.0
e NaN
dtype: float64
>>> a.add(b, fill_value=0)
a 2.0
b 1.0
c 1.0
d 1.0
e NaN
dtype: float64

pandas.Series.rmul

Series.rmul(other, level=None, fill_value=None, axis=0)
Multiplication of series and other, element-wise (binary operator rmul).

Equivalent to other * series, but with support to substitute a fill_value for missing data in one of
the inputs.

Parameters

other [Series or scalar value]

fill_value : None or float value, default None (NaN)

Fill existing missing (NaN) values, and any new element needed for successful
Series alignment, with this value before computation. If data in both correspond-
ing Series locations is missing the result will be missing

level : int or name

Broadcast across a level, matching Index values on the passed MultiIndex level

Returns

result [Series]

See also:

Series.mul

1578 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

Examples

>>> a = pd.Series([1, 1, 1, np.nan], index=['a', 'b', 'c', 'd'])
>>> a
a 1.0
b 1.0
c 1.0
d NaN
dtype: float64
>>> b = pd.Series([1, np.nan, 1, np.nan], index=['a', 'b', 'd', 'e'])
>>> b
a 1.0
b NaN
d 1.0
e NaN
dtype: float64
>>> a.add(b, fill_value=0)
a 2.0
b 1.0
c 1.0
d 1.0
e NaN
dtype: float64

pandas.Series.rolling

Series.rolling(window, min_periods=None, center=False, win_type=None, on=None, axis=0,
closed=None)

Provides rolling window calculations.

New in version 0.18.0.

Parameters window : int, or offset

Size of the moving window. This is the number of observations used for calculat-
ing the statistic. Each window will be a fixed size.

If its an offset then this will be the time period of each window. Each window will
be a variable sized based on the observations included in the time-period. This is
only valid for datetimelike indexes. This is new in 0.19.0

min_periods : int, default None

Minimum number of observations in window required to have a value (otherwise
result is NA). For a window that is specified by an offset, this will default to 1.

center : boolean, default False

Set the labels at the center of the window.

win_type : string, default None

Provide a window type. If None, all points are evenly weighted. See the notes
below for further information.

on : string, optional

For a DataFrame, column on which to calculate the rolling window, rather than
the index

34.3. Series 1579

pandas: powerful Python data analysis toolkit, Release 0.23.4

closed : string, default None

Make the interval closed on the ‘right’, ‘left’, ‘both’ or ‘neither’ endpoints. For
offset-based windows, it defaults to ‘right’. For fixed windows, defaults to ‘both’.
Remaining cases not implemented for fixed windows.

New in version 0.20.0.

axis [int or string, default 0]

Returns

a Window or Rolling sub-classed for the particular operation

See also:

expanding Provides expanding transformations.

ewm Provides exponential weighted functions

Notes

By default, the result is set to the right edge of the window. This can be changed to the center of the
window by setting center=True.

To learn more about the offsets & frequency strings, please see this link.

The recognized win_types are:

• boxcar

• triang

• blackman

• hamming

• bartlett

• parzen

• bohman

• blackmanharris

• nuttall

• barthann

• kaiser (needs beta)

• gaussian (needs std)

• general_gaussian (needs power, width)

• slepian (needs width).

If win_type=None all points are evenly weighted. To learn more about different window types see
scipy.signal window functions.

1580 Chapter 34. API Reference

http://pandas.pydata.org/pandas-docs/stable/timeseries.html#offset-aliases
https://docs.scipy.org/doc/scipy/reference/signal.html#window-functions

pandas: powerful Python data analysis toolkit, Release 0.23.4

Examples

>>> df = pd.DataFrame({'B': [0, 1, 2, np.nan, 4]})
>>> df

B
0 0.0
1 1.0
2 2.0
3 NaN
4 4.0

Rolling sum with a window length of 2, using the ‘triang’ window type.

>>> df.rolling(2, win_type='triang').sum()
B

0 NaN
1 1.0
2 2.5
3 NaN
4 NaN

Rolling sum with a window length of 2, min_periods defaults to the window length.

>>> df.rolling(2).sum()
B

0 NaN
1 1.0
2 3.0
3 NaN
4 NaN

Same as above, but explicitly set the min_periods

>>> df.rolling(2, min_periods=1).sum()
B

0 0.0
1 1.0
2 3.0
3 2.0
4 4.0

A ragged (meaning not-a-regular frequency), time-indexed DataFrame

>>> df = pd.DataFrame({'B': [0, 1, 2, np.nan, 4]},
... index = [pd.Timestamp('20130101 09:00:00'),
... pd.Timestamp('20130101 09:00:02'),
... pd.Timestamp('20130101 09:00:03'),
... pd.Timestamp('20130101 09:00:05'),
... pd.Timestamp('20130101 09:00:06')])

>>> df
B

2013-01-01 09:00:00 0.0
2013-01-01 09:00:02 1.0
2013-01-01 09:00:03 2.0
2013-01-01 09:00:05 NaN
2013-01-01 09:00:06 4.0

34.3. Series 1581

pandas: powerful Python data analysis toolkit, Release 0.23.4

Contrasting to an integer rolling window, this will roll a variable length window corresponding to the time
period. The default for min_periods is 1.

>>> df.rolling('2s').sum()
B

2013-01-01 09:00:00 0.0
2013-01-01 09:00:02 1.0
2013-01-01 09:00:03 3.0
2013-01-01 09:00:05 NaN
2013-01-01 09:00:06 4.0

pandas.Series.round

Series.round(decimals=0, *args, **kwargs)
Round each value in a Series to the given number of decimals.

Parameters decimals : int

Number of decimal places to round to (default: 0). If decimals is negative, it
specifies the number of positions to the left of the decimal point.

Returns

Series object

See also:

numpy.around, DataFrame.round

pandas.Series.rpow

Series.rpow(other, level=None, fill_value=None, axis=0)
Exponential power of series and other, element-wise (binary operator rpow).

Equivalent to other ** series, but with support to substitute a fill_value for missing data in one of
the inputs.

Parameters

other [Series or scalar value]

fill_value : None or float value, default None (NaN)

Fill existing missing (NaN) values, and any new element needed for successful
Series alignment, with this value before computation. If data in both correspond-
ing Series locations is missing the result will be missing

level : int or name

Broadcast across a level, matching Index values on the passed MultiIndex level

Returns

result [Series]

See also:

Series.pow

1582 Chapter 34. API Reference

https://docs.scipy.org/doc/numpy/reference/generated/numpy.around.html#numpy.around

pandas: powerful Python data analysis toolkit, Release 0.23.4

Examples

>>> a = pd.Series([1, 1, 1, np.nan], index=['a', 'b', 'c', 'd'])
>>> a
a 1.0
b 1.0
c 1.0
d NaN
dtype: float64
>>> b = pd.Series([1, np.nan, 1, np.nan], index=['a', 'b', 'd', 'e'])
>>> b
a 1.0
b NaN
d 1.0
e NaN
dtype: float64
>>> a.add(b, fill_value=0)
a 2.0
b 1.0
c 1.0
d 1.0
e NaN
dtype: float64

pandas.Series.rsub

Series.rsub(other, level=None, fill_value=None, axis=0)
Subtraction of series and other, element-wise (binary operator rsub).

Equivalent to other - series, but with support to substitute a fill_value for missing data in one of
the inputs.

Parameters

other [Series or scalar value]

fill_value : None or float value, default None (NaN)

Fill existing missing (NaN) values, and any new element needed for successful
Series alignment, with this value before computation. If data in both correspond-
ing Series locations is missing the result will be missing

level : int or name

Broadcast across a level, matching Index values on the passed MultiIndex level

Returns

result [Series]

See also:

Series.sub

Examples

34.3. Series 1583

pandas: powerful Python data analysis toolkit, Release 0.23.4

>>> a = pd.Series([1, 1, 1, np.nan], index=['a', 'b', 'c', 'd'])
>>> a
a 1.0
b 1.0
c 1.0
d NaN
dtype: float64
>>> b = pd.Series([1, np.nan, 1, np.nan], index=['a', 'b', 'd', 'e'])
>>> b
a 1.0
b NaN
d 1.0
e NaN
dtype: float64
>>> a.add(b, fill_value=0)
a 2.0
b 1.0
c 1.0
d 1.0
e NaN
dtype: float64

pandas.Series.rtruediv

Series.rtruediv(other, level=None, fill_value=None, axis=0)
Floating division of series and other, element-wise (binary operator rtruediv).

Equivalent to other / series, but with support to substitute a fill_value for missing data in one of
the inputs.

Parameters

other [Series or scalar value]

fill_value : None or float value, default None (NaN)

Fill existing missing (NaN) values, and any new element needed for successful
Series alignment, with this value before computation. If data in both correspond-
ing Series locations is missing the result will be missing

level : int or name

Broadcast across a level, matching Index values on the passed MultiIndex level

Returns

result [Series]

See also:

Series.truediv

Examples

>>> a = pd.Series([1, 1, 1, np.nan], index=['a', 'b', 'c', 'd'])
>>> a
a 1.0

(continues on next page)

1584 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

b 1.0
c 1.0
d NaN
dtype: float64
>>> b = pd.Series([1, np.nan, 1, np.nan], index=['a', 'b', 'd', 'e'])
>>> b
a 1.0
b NaN
d 1.0
e NaN
dtype: float64
>>> a.add(b, fill_value=0)
a 2.0
b 1.0
c 1.0
d 1.0
e NaN
dtype: float64

pandas.Series.sample

Series.sample(n=None, frac=None, replace=False, weights=None, random_state=None,
axis=None)

Return a random sample of items from an axis of object.

You can use random_state for reproducibility.

Parameters n : int, optional

Number of items from axis to return. Cannot be used with frac. Default = 1 if
frac = None.

frac : float, optional

Fraction of axis items to return. Cannot be used with n.

replace : boolean, optional

Sample with or without replacement. Default = False.

weights : str or ndarray-like, optional

Default ‘None’ results in equal probability weighting. If passed a Series, will
align with target object on index. Index values in weights not found in sampled
object will be ignored and index values in sampled object not in weights will be
assigned weights of zero. If called on a DataFrame, will accept the name of a
column when axis = 0. Unless weights are a Series, weights must be same length
as axis being sampled. If weights do not sum to 1, they will be normalized to sum
to 1. Missing values in the weights column will be treated as zero. inf and -inf
values not allowed.

random_state : int or numpy.random.RandomState, optional

Seed for the random number generator (if int), or numpy RandomState object.

axis : int or string, optional

Axis to sample. Accepts axis number or name. Default is stat axis for given data
type (0 for Series and DataFrames, 1 for Panels).

34.3. Series 1585

pandas: powerful Python data analysis toolkit, Release 0.23.4

Returns

A new object of same type as caller.

Examples

Generate an example Series and DataFrame:

>>> s = pd.Series(np.random.randn(50))
>>> s.head()
0 -0.038497
1 1.820773
2 -0.972766
3 -1.598270
4 -1.095526
dtype: float64
>>> df = pd.DataFrame(np.random.randn(50, 4), columns=list('ABCD'))
>>> df.head()

A B C D
0 0.016443 -2.318952 -0.566372 -1.028078
1 -1.051921 0.438836 0.658280 -0.175797
2 -1.243569 -0.364626 -0.215065 0.057736
3 1.768216 0.404512 -0.385604 -1.457834
4 1.072446 -1.137172 0.314194 -0.046661

Next extract a random sample from both of these objects. . .

3 random elements from the Series:

>>> s.sample(n=3)
27 -0.994689
55 -1.049016
67 -0.224565
dtype: float64

And a random 10% of the DataFrame with replacement:

>>> df.sample(frac=0.1, replace=True)
A B C D

35 1.981780 0.142106 1.817165 -0.290805
49 -1.336199 -0.448634 -0.789640 0.217116
40 0.823173 -0.078816 1.009536 1.015108
15 1.421154 -0.055301 -1.922594 -0.019696
6 -0.148339 0.832938 1.787600 -1.383767

You can use random state for reproducibility:

>>> df.sample(random_state=1)
A B C D
37 -2.027662 0.103611 0.237496 -0.165867
43 -0.259323 -0.583426 1.516140 -0.479118
12 -1.686325 -0.579510 0.985195 -0.460286
8 1.167946 0.429082 1.215742 -1.636041
9 1.197475 -0.864188 1.554031 -1.505264

1586 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

pandas.Series.searchsorted

Series.searchsorted(value, side=’left’, sorter=None)
Find indices where elements should be inserted to maintain order.

Find the indices into a sorted Series self such that, if the corresponding elements in value were inserted
before the indices, the order of self would be preserved.

Parameters value : array_like

Values to insert into self.

side : {‘left’, ‘right’}, optional

If ‘left’, the index of the first suitable location found is given. If ‘right’, return the
last such index. If there is no suitable index, return either 0 or N (where N is the
length of self).

sorter : 1-D array_like, optional

Optional array of integer indices that sort self into ascending order. They are
typically the result of np.argsort.

Returns indices : array of ints

Array of insertion points with the same shape as value.

See also:

numpy.searchsorted

Notes

Binary search is used to find the required insertion points.

Examples

>>> x = pd.Series([1, 2, 3])
>>> x
0 1
1 2
2 3
dtype: int64

>>> x.searchsorted(4)
array([3])

>>> x.searchsorted([0, 4])
array([0, 3])

>>> x.searchsorted([1, 3], side='left')
array([0, 2])

>>> x.searchsorted([1, 3], side='right')
array([1, 3])

34.3. Series 1587

https://docs.scipy.org/doc/numpy/reference/generated/numpy.searchsorted.html#numpy.searchsorted

pandas: powerful Python data analysis toolkit, Release 0.23.4

>>> x = pd.Categorical(['apple', 'bread', 'bread',
'cheese', 'milk'], ordered=True)

[apple, bread, bread, cheese, milk]
Categories (4, object): [apple < bread < cheese < milk]

>>> x.searchsorted('bread')
array([1]) # Note: an array, not a scalar

>>> x.searchsorted(['bread'], side='right')
array([3])

pandas.Series.select

Series.select(crit, axis=0)
Return data corresponding to axis labels matching criteria

Deprecated since version 0.21.0: Use df.loc[df.index.map(crit)] to select via labels

Parameters crit : function

To be called on each index (label). Should return True or False

axis [int]

Returns

selection [type of caller]

pandas.Series.sem

Series.sem(axis=None, skipna=None, level=None, ddof=1, numeric_only=None, **kwargs)
Return unbiased standard error of the mean over requested axis.

Normalized by N-1 by default. This can be changed using the ddof argument

Parameters

axis [{index (0)}]

skipna : boolean, default True

Exclude NA/null values. If an entire row/column is NA, the result will be NA

level : int or level name, default None

If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing
into a scalar

ddof : int, default 1

Delta Degrees of Freedom. The divisor used in calculations is N - ddof, where N
represents the number of elements.

numeric_only : boolean, default None

Include only float, int, boolean columns. If None, will attempt to use everything,
then use only numeric data. Not implemented for Series.

Returns

1588 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

sem [scalar or Series (if level specified)]

pandas.Series.set_axis

Series.set_axis(labels, axis=0, inplace=None)
Assign desired index to given axis.

Indexes for column or row labels can be changed by assigning a list-like or Index.

Changed in version 0.21.0: The signature is now labels and axis, consistent with the rest of pandas API.
Previously, the axis and labels arguments were respectively the first and second positional arguments.

Parameters labels : list-like, Index

The values for the new index.

axis : {0 or ‘index’, 1 or ‘columns’}, default 0

The axis to update. The value 0 identifies the rows, and 1 identifies the columns.

inplace : boolean, default None

Whether to return a new %(klass)s instance.

Warning: inplace=None currently falls back to to True, but in a future
version, will default to False. Use inplace=True explicitly rather than relying
on the default.

Returns renamed : %(klass)s or None

An object of same type as caller if inplace=False, None otherwise.

See also:

pandas.DataFrame.rename_axis Alter the name of the index or columns.

Examples

Series

>>> s = pd.Series([1, 2, 3])
>>> s
0 1
1 2
2 3
dtype: int64

>>> s.set_axis(['a', 'b', 'c'], axis=0, inplace=False)
a 1
b 2
c 3
dtype: int64

The original object is not modified.

34.3. Series 1589

pandas: powerful Python data analysis toolkit, Release 0.23.4

>>> s
0 1
1 2
2 3
dtype: int64

DataFrame

>>> df = pd.DataFrame({"A": [1, 2, 3], "B": [4, 5, 6]})

Change the row labels.

>>> df.set_axis(['a', 'b', 'c'], axis='index', inplace=False)
A B

a 1 4
b 2 5
c 3 6

Change the column labels.

>>> df.set_axis(['I', 'II'], axis='columns', inplace=False)
I II

0 1 4
1 2 5
2 3 6

Now, update the labels inplace.

>>> df.set_axis(['i', 'ii'], axis='columns', inplace=True)
>>> df

i ii
0 1 4
1 2 5
2 3 6

pandas.Series.set_value

Series.set_value(label, value, takeable=False)
Quickly set single value at passed label. If label is not contained, a new object is created with the label
placed at the end of the result index.

Deprecated since version 0.21.0: Please use .at[] or .iat[] accessors.

Parameters label : object

Partial indexing with MultiIndex not allowed

value : object

Scalar value

takeable [interpret the index as indexers, default False]

Returns series : Series

If label is contained, will be reference to calling Series, otherwise a new object

1590 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

pandas.Series.shift

Series.shift(periods=1, freq=None, axis=0)
Shift index by desired number of periods with an optional time freq

Parameters periods : int

Number of periods to move, can be positive or negative

freq : DateOffset, timedelta, or time rule string, optional

Increment to use from the tseries module or time rule (e.g. ‘EOM’). See Notes.

axis [{0 or ‘index’}]

Returns

shifted [Series]

Notes

If freq is specified then the index values are shifted but the data is not realigned. That is, use freq if you
would like to extend the index when shifting and preserve the original data.

pandas.Series.skew

Series.skew(axis=None, skipna=None, level=None, numeric_only=None, **kwargs)
Return unbiased skew over requested axis Normalized by N-1

Parameters

axis [{index (0)}]

skipna : boolean, default True

Exclude NA/null values when computing the result.

level : int or level name, default None

If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing
into a scalar

numeric_only : boolean, default None

Include only float, int, boolean columns. If None, will attempt to use everything,
then use only numeric data. Not implemented for Series.

Returns

skew [scalar or Series (if level specified)]

pandas.Series.slice_shift

Series.slice_shift(periods=1, axis=0)
Equivalent to shift without copying data. The shifted data will not include the dropped periods and the
shifted axis will be smaller than the original.

Parameters periods : int

34.3. Series 1591

pandas: powerful Python data analysis toolkit, Release 0.23.4

Number of periods to move, can be positive or negative

Returns

shifted [same type as caller]

Notes

While the slice_shift is faster than shift, you may pay for it later during alignment.

pandas.Series.sort_index

Series.sort_index(axis=0, level=None, ascending=True, inplace=False, kind=’quicksort’,
na_position=’last’, sort_remaining=True)

Sort Series by index labels.

Returns a new Series sorted by label if inplace argument is False, otherwise updates the original series
and returns None.

Parameters axis : int, default 0

Axis to direct sorting. This can only be 0 for Series.

level : int, optional

If not None, sort on values in specified index level(s).

ascending : bool, default true

Sort ascending vs. descending.

inplace : bool, default False

If True, perform operation in-place.

kind : {‘quicksort’, ‘mergesort’, ‘heapsort’}, default ‘quicksort’

Choice of sorting algorithm. See also numpy.sort() for more information.
‘mergesort’ is the only stable algorithm. For DataFrames, this option is only
applied when sorting on a single column or label.

na_position : {‘first’, ‘last’}, default ‘last’

If ‘first’ puts NaNs at the beginning, ‘last’ puts NaNs at the end. Not implemented
for MultiIndex.

sort_remaining : bool, default True

If true and sorting by level and index is multilevel, sort by other levels too (in
order) after sorting by specified level.

Returns pandas.Series

The original Series sorted by the labels

See also:

DataFrame.sort_index Sort DataFrame by the index

DataFrame.sort_values Sort DataFrame by the value

Series.sort_values Sort Series by the value

1592 Chapter 34. API Reference

https://docs.scipy.org/doc/numpy/reference/generated/numpy.sort.html#numpy.sort

pandas: powerful Python data analysis toolkit, Release 0.23.4

Examples

>>> s = pd.Series(['a', 'b', 'c', 'd'], index=[3, 2, 1, 4])
>>> s.sort_index()
1 c
2 b
3 a
4 d
dtype: object

Sort Descending

>>> s.sort_index(ascending=False)
4 d
3 a
2 b
1 c
dtype: object

Sort Inplace

>>> s.sort_index(inplace=True)
>>> s
1 c
2 b
3 a
4 d
dtype: object

By default NaNs are put at the end, but use na_position to place them at the beginning

>>> s = pd.Series(['a', 'b', 'c', 'd'], index=[3, 2, 1, np.nan])
>>> s.sort_index(na_position='first')
NaN d
1.0 c
2.0 b
3.0 a

dtype: object

Specify index level to sort

>>> arrays = [np.array(['qux', 'qux', 'foo', 'foo',
... 'baz', 'baz', 'bar', 'bar']),
... np.array(['two', 'one', 'two', 'one',
... 'two', 'one', 'two', 'one'])]
>>> s = pd.Series([1, 2, 3, 4, 5, 6, 7, 8], index=arrays)
>>> s.sort_index(level=1)
bar one 8
baz one 6
foo one 4
qux one 2
bar two 7
baz two 5
foo two 3
qux two 1
dtype: int64

Does not sort by remaining levels when sorting by levels

34.3. Series 1593

pandas: powerful Python data analysis toolkit, Release 0.23.4

>>> s.sort_index(level=1, sort_remaining=False)
qux one 2
foo one 4
baz one 6
bar one 8
qux two 1
foo two 3
baz two 5
bar two 7
dtype: int64

pandas.Series.sort_values

Series.sort_values(axis=0, ascending=True, inplace=False, kind=’quicksort’,
na_position=’last’)

Sort by the values.

Sort a Series in ascending or descending order by some criterion.

Parameters axis : {0 or ‘index’}, default 0

Axis to direct sorting. The value ‘index’ is accepted for compatibility with
DataFrame.sort_values.

ascending : bool, default True

If True, sort values in ascending order, otherwise descending.

inplace : bool, default False

If True, perform operation in-place.

kind : {‘quicksort’, ‘mergesort’ or ‘heapsort’}, default ‘quicksort’

Choice of sorting algorithm. See also numpy.sort() for more information.
‘mergesort’ is the only stable algorithm.

na_position : {‘first’ or ‘last’}, default ‘last’

Argument ‘first’ puts NaNs at the beginning, ‘last’ puts NaNs at the end.

Returns Series

Series ordered by values.

See also:

Series.sort_index Sort by the Series indices.

DataFrame.sort_values Sort DataFrame by the values along either axis.

DataFrame.sort_index Sort DataFrame by indices.

Examples

>>> s = pd.Series([np.nan, 1, 3, 10, 5])
>>> s
0 NaN
1 1.0

(continues on next page)

1594 Chapter 34. API Reference

https://docs.scipy.org/doc/numpy/reference/generated/numpy.sort.html#numpy.sort

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

2 3.0
3 10.0
4 5.0
dtype: float64

Sort values ascending order (default behaviour)

>>> s.sort_values(ascending=True)
1 1.0
2 3.0
4 5.0
3 10.0
0 NaN
dtype: float64

Sort values descending order

>>> s.sort_values(ascending=False)
3 10.0
4 5.0
2 3.0
1 1.0
0 NaN
dtype: float64

Sort values inplace

>>> s.sort_values(ascending=False, inplace=True)
>>> s
3 10.0
4 5.0
2 3.0
1 1.0
0 NaN
dtype: float64

Sort values putting NAs first

>>> s.sort_values(na_position='first')
0 NaN
1 1.0
2 3.0
4 5.0
3 10.0
dtype: float64

Sort a series of strings

>>> s = pd.Series(['z', 'b', 'd', 'a', 'c'])
>>> s
0 z
1 b
2 d
3 a
4 c
dtype: object

34.3. Series 1595

pandas: powerful Python data analysis toolkit, Release 0.23.4

>>> s.sort_values()
3 a
1 b
4 c
2 d
0 z
dtype: object

pandas.Series.sortlevel

Series.sortlevel(level=0, ascending=True, sort_remaining=True)
Sort Series with MultiIndex by chosen level. Data will be lexicographically sorted by the chosen level
followed by the other levels (in order),

Deprecated since version 0.20.0: Use Series.sort_index()

Parameters

level [int or level name, default None]

ascending [bool, default True]

Returns

sorted [Series]

See also:

Series.sort_index

pandas.Series.squeeze

Series.squeeze(axis=None)
Squeeze length 1 dimensions.

Parameters axis : None, integer or string axis name, optional

The axis to squeeze if 1-sized.

New in version 0.20.0.

Returns

scalar if 1-sized, else original object

pandas.Series.std

Series.std(axis=None, skipna=None, level=None, ddof=1, numeric_only=None, **kwargs)
Return sample standard deviation over requested axis.

Normalized by N-1 by default. This can be changed using the ddof argument

Parameters

axis [{index (0)}]

skipna : boolean, default True

Exclude NA/null values. If an entire row/column is NA, the result will be NA

1596 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

level : int or level name, default None

If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing
into a scalar

ddof : int, default 1

Delta Degrees of Freedom. The divisor used in calculations is N - ddof, where N
represents the number of elements.

numeric_only : boolean, default None

Include only float, int, boolean columns. If None, will attempt to use everything,
then use only numeric data. Not implemented for Series.

Returns

std [scalar or Series (if level specified)]

pandas.Series.str

Series.str()
Vectorized string functions for Series and Index. NAs stay NA unless handled otherwise by a particular
method. Patterned after Python’s string methods, with some inspiration from R’s stringr package.

Examples

>>> s.str.split('_')
>>> s.str.replace('_', '')

pandas.Series.sub

Series.sub(other, level=None, fill_value=None, axis=0)
Subtraction of series and other, element-wise (binary operator sub).

Equivalent to series - other, but with support to substitute a fill_value for missing data in one of
the inputs.

Parameters

other [Series or scalar value]

fill_value : None or float value, default None (NaN)

Fill existing missing (NaN) values, and any new element needed for successful
Series alignment, with this value before computation. If data in both correspond-
ing Series locations is missing the result will be missing

level : int or name

Broadcast across a level, matching Index values on the passed MultiIndex level

Returns

result [Series]

See also:

Series.rsub

34.3. Series 1597

pandas: powerful Python data analysis toolkit, Release 0.23.4

Examples

>>> a = pd.Series([1, 1, 1, np.nan], index=['a', 'b', 'c', 'd'])
>>> a
a 1.0
b 1.0
c 1.0
d NaN
dtype: float64
>>> b = pd.Series([1, np.nan, 1, np.nan], index=['a', 'b', 'd', 'e'])
>>> b
a 1.0
b NaN
d 1.0
e NaN
dtype: float64
>>> a.add(b, fill_value=0)
a 2.0
b 1.0
c 1.0
d 1.0
e NaN
dtype: float64

pandas.Series.subtract

Series.subtract(other, level=None, fill_value=None, axis=0)
Subtraction of series and other, element-wise (binary operator sub).

Equivalent to series - other, but with support to substitute a fill_value for missing data in one of
the inputs.

Parameters

other [Series or scalar value]

fill_value : None or float value, default None (NaN)

Fill existing missing (NaN) values, and any new element needed for successful
Series alignment, with this value before computation. If data in both correspond-
ing Series locations is missing the result will be missing

level : int or name

Broadcast across a level, matching Index values on the passed MultiIndex level

Returns

result [Series]

See also:

Series.rsub

Examples

1598 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

>>> a = pd.Series([1, 1, 1, np.nan], index=['a', 'b', 'c', 'd'])
>>> a
a 1.0
b 1.0
c 1.0
d NaN
dtype: float64
>>> b = pd.Series([1, np.nan, 1, np.nan], index=['a', 'b', 'd', 'e'])
>>> b
a 1.0
b NaN
d 1.0
e NaN
dtype: float64
>>> a.add(b, fill_value=0)
a 2.0
b 1.0
c 1.0
d 1.0
e NaN
dtype: float64

pandas.Series.sum

Series.sum(axis=None, skipna=None, level=None, numeric_only=None, min_count=0, **kwargs)
Return the sum of the values for the requested axis

Parameters

axis [{index (0)}]

skipna : boolean, default True

Exclude NA/null values when computing the result.

level : int or level name, default None

If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing
into a scalar

numeric_only : boolean, default None

Include only float, int, boolean columns. If None, will attempt to use everything,
then use only numeric data. Not implemented for Series.

min_count : int, default 0

The required number of valid values to perform the operation. If fewer than
min_count non-NA values are present the result will be NA.

New in version 0.22.0: Added with the default being 0. This means the sum of
an all-NA or empty Series is 0, and the product of an all-NA or empty Series is 1.

Returns

sum [scalar or Series (if level specified)]

34.3. Series 1599

pandas: powerful Python data analysis toolkit, Release 0.23.4

Examples

By default, the sum of an empty or all-NA Series is 0.

>>> pd.Series([]).sum() # min_count=0 is the default
0.0

This can be controlled with the min_count parameter. For example, if you’d like the sum of an empty
series to be NaN, pass min_count=1.

>>> pd.Series([]).sum(min_count=1)
nan

Thanks to the skipna parameter, min_count handles all-NA and empty series identically.

>>> pd.Series([np.nan]).sum()
0.0

>>> pd.Series([np.nan]).sum(min_count=1)
nan

pandas.Series.swapaxes

Series.swapaxes(axis1, axis2, copy=True)
Interchange axes and swap values axes appropriately

Returns

y [same as input]

pandas.Series.swaplevel

Series.swaplevel(i=-2, j=-1, copy=True)
Swap levels i and j in a MultiIndex

Parameters i, j : int, string (can be mixed)

Level of index to be swapped. Can pass level name as string.

Returns

swapped [Series]

.. versionchanged:: 0.18.1

The indexes i and j are now optional, and default to the two innermost levels of
the index.

pandas.Series.tail

Series.tail(n=5)
Return the last n rows.

This function returns last n rows from the object based on position. It is useful for quickly verifying data,
for example, after sorting or appending rows.

1600 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

Parameters n : int, default 5

Number of rows to select.

Returns type of caller

The last n rows of the caller object.

See also:

pandas.DataFrame.head The first n rows of the caller object.

Examples

>>> df = pd.DataFrame({'animal':['alligator', 'bee', 'falcon', 'lion',
... 'monkey', 'parrot', 'shark', 'whale', 'zebra']})
>>> df

animal
0 alligator
1 bee
2 falcon
3 lion
4 monkey
5 parrot
6 shark
7 whale
8 zebra

Viewing the last 5 lines

>>> df.tail()
animal

4 monkey
5 parrot
6 shark
7 whale
8 zebra

Viewing the last n lines (three in this case)

>>> df.tail(3)
animal

6 shark
7 whale
8 zebra

pandas.Series.take

Series.take(indices, axis=0, convert=None, is_copy=True, **kwargs)
Return the elements in the given positional indices along an axis.

This means that we are not indexing according to actual values in the index attribute of the object. We are
indexing according to the actual position of the element in the object.

Parameters indices : array-like

An array of ints indicating which positions to take.

34.3. Series 1601

pandas: powerful Python data analysis toolkit, Release 0.23.4

axis : {0 or ‘index’, 1 or ‘columns’, None}, default 0

The axis on which to select elements. 0 means that we are selecting rows, 1
means that we are selecting columns.

convert : bool, default True

Whether to convert negative indices into positive ones. For example, -1 would
map to the len(axis) - 1. The conversions are similar to the behavior of
indexing a regular Python list.

Deprecated since version 0.21.0: In the future, negative indices will always be
converted.

is_copy : bool, default True

Whether to return a copy of the original object or not.

**kwargs

For compatibility with numpy.take(). Has no effect on the output.

Returns taken : type of caller

An array-like containing the elements taken from the object.

See also:

DataFrame.loc Select a subset of a DataFrame by labels.

DataFrame.iloc Select a subset of a DataFrame by positions.

numpy.take Take elements from an array along an axis.

Examples

>>> df = pd.DataFrame([('falcon', 'bird', 389.0),
... ('parrot', 'bird', 24.0),
... ('lion', 'mammal', 80.5),
... ('monkey', 'mammal', np.nan)],
... columns=['name', 'class', 'max_speed'],
... index=[0, 2, 3, 1])
>>> df

name class max_speed
0 falcon bird 389.0
2 parrot bird 24.0
3 lion mammal 80.5
1 monkey mammal NaN

Take elements at positions 0 and 3 along the axis 0 (default).

Note how the actual indices selected (0 and 1) do not correspond to our selected indices 0 and 3. That’s
because we are selecting the 0th and 3rd rows, not rows whose indices equal 0 and 3.

>>> df.take([0, 3])
name class max_speed

0 falcon bird 389.0
1 monkey mammal NaN

Take elements at indices 1 and 2 along the axis 1 (column selection).

1602 Chapter 34. API Reference

https://docs.scipy.org/doc/numpy/reference/generated/numpy.take.html#numpy.take

pandas: powerful Python data analysis toolkit, Release 0.23.4

>>> df.take([1, 2], axis=1)
class max_speed

0 bird 389.0
2 bird 24.0
3 mammal 80.5
1 mammal NaN

We may take elements using negative integers for positive indices, starting from the end of the object, just
like with Python lists.

>>> df.take([-1, -2])
name class max_speed

1 monkey mammal NaN
3 lion mammal 80.5

pandas.Series.to_clipboard

Series.to_clipboard(excel=True, sep=None, **kwargs)
Copy object to the system clipboard.

Write a text representation of object to the system clipboard. This can be pasted into Excel, for example.

Parameters excel : bool, default True

• True, use the provided separator, writing in a csv format for allowing easy pasting
into excel.

• False, write a string representation of the object to the clipboard.

sep : str, default '\t'

Field delimiter.

**kwargs

These parameters will be passed to DataFrame.to_csv.

See also:

DataFrame.to_csv Write a DataFrame to a comma-separated values (csv) file.

read_clipboard Read text from clipboard and pass to read_table.

Notes

Requirements for your platform.

• Linux : xclip, or xsel (with gtk or PyQt4 modules)

• Windows : none

• OS X : none

Examples

Copy the contents of a DataFrame to the clipboard.

34.3. Series 1603

pandas: powerful Python data analysis toolkit, Release 0.23.4

>>> df = pd.DataFrame([[1, 2, 3], [4, 5, 6]], columns=['A', 'B', 'C'])
>>> df.to_clipboard(sep=',')
... # Wrote the following to the system clipboard:
... # ,A,B,C
... # 0,1,2,3
... # 1,4,5,6

We can omit the the index by passing the keyword index and setting it to false.

>>> df.to_clipboard(sep=',', index=False)
... # Wrote the following to the system clipboard:
... # A,B,C
... # 1,2,3
... # 4,5,6

pandas.Series.to_csv

Series.to_csv(path=None, index=True, sep=’, ’, na_rep=”, float_format=None, header=False,
index_label=None, mode=’w’, encoding=None, compression=None,
date_format=None, decimal=’.’)

Write Series to a comma-separated values (csv) file

Parameters path : string or file handle, default None

File path or object, if None is provided the result is returned as a string.

na_rep : string, default ‘’

Missing data representation

float_format : string, default None

Format string for floating point numbers

header : boolean, default False

Write out series name

index : boolean, default True

Write row names (index)

index_label : string or sequence, default None

Column label for index column(s) if desired. If None is given, and header and
index are True, then the index names are used. A sequence should be given if the
DataFrame uses MultiIndex.

mode [Python write mode, default ‘w’]

sep : character, default “,”

Field delimiter for the output file.

encoding : string, optional

a string representing the encoding to use if the contents are non-ascii, for python
versions prior to 3

compression : string, optional

1604 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

A string representing the compression to use in the output file. Allowed values
are ‘gzip’, ‘bz2’, ‘zip’, ‘xz’. This input is only used when the first argument is a
filename.

date_format: string, default None

Format string for datetime objects.

decimal: string, default ‘.’

Character recognized as decimal separator. E.g. use ‘,’ for European data

pandas.Series.to_dense

Series.to_dense()
Return dense representation of NDFrame (as opposed to sparse)

pandas.Series.to_dict

Series.to_dict(into=<class ’dict’>)
Convert Series to {label -> value} dict or dict-like object.

Parameters into : class, default dict

The collections.Mapping subclass to use as the return object. Can be the actual
class or an empty instance of the mapping type you want. If you want a collec-
tions.defaultdict, you must pass it initialized.

New in version 0.21.0.

Returns

value_dict [collections.Mapping]

Examples

>>> s = pd.Series([1, 2, 3, 4])
>>> s.to_dict()
{0: 1, 1: 2, 2: 3, 3: 4}
>>> from collections import OrderedDict, defaultdict
>>> s.to_dict(OrderedDict)
OrderedDict([(0, 1), (1, 2), (2, 3), (3, 4)])
>>> dd = defaultdict(list)
>>> s.to_dict(dd)
defaultdict(<type 'list'>, {0: 1, 1: 2, 2: 3, 3: 4})

pandas.Series.to_excel

Series.to_excel(excel_writer, sheet_name=’Sheet1’, na_rep=”, float_format=None,
columns=None, header=True, index=True, index_label=None, startrow=0,
startcol=0, engine=None, merge_cells=True, encoding=None, inf_rep=’inf’,
verbose=True)

Write Series to an excel sheet

New in version 0.20.0.

34.3. Series 1605

pandas: powerful Python data analysis toolkit, Release 0.23.4

Parameters excel_writer : string or ExcelWriter object

File path or existing ExcelWriter

sheet_name : string, default ‘Sheet1’

Name of sheet which will contain DataFrame

na_rep : string, default ‘’

Missing data representation

float_format : string, default None

Format string for floating point numbers

columns : sequence, optional

Columns to write

header : boolean or list of string, default True

Write out the column names. If a list of strings is given it is assumed to be aliases
for the column names

index : boolean, default True

Write row names (index)

index_label : string or sequence, default None

Column label for index column(s) if desired. If None is given, and header and
index are True, then the index names are used. A sequence should be given if the
DataFrame uses MultiIndex.

startrow :

upper left cell row to dump data frame

startcol :

upper left cell column to dump data frame

engine : string, default None

write engine to use - you can also set this via the options io.excel.xlsx.
writer, io.excel.xls.writer, and io.excel.xlsm.writer.

merge_cells : boolean, default True

Write MultiIndex and Hierarchical Rows as merged cells.

encoding: string, default None

encoding of the resulting excel file. Only necessary for xlwt, other writers support
unicode natively.

inf_rep : string, default ‘inf’

Representation for infinity (there is no native representation for infinity in Excel)

freeze_panes : tuple of integer (length 2), default None

Specifies the one-based bottommost row and rightmost column that is to be frozen

New in version 0.20.0.

1606 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

Notes

If passing an existing ExcelWriter object, then the sheet will be added to the existing workbook. This can
be used to save different DataFrames to one workbook:

>>> writer = pd.ExcelWriter('output.xlsx')
>>> df1.to_excel(writer,'Sheet1')
>>> df2.to_excel(writer,'Sheet2')
>>> writer.save()

For compatibility with to_csv, to_excel serializes lists and dicts to strings before writing.

pandas.Series.to_frame

Series.to_frame(name=None)
Convert Series to DataFrame

Parameters name : object, default None

The passed name should substitute for the series name (if it has one).

Returns

data_frame [DataFrame]

pandas.Series.to_hdf

Series.to_hdf(path_or_buf, key, **kwargs)
Write the contained data to an HDF5 file using HDFStore.

Hierarchical Data Format (HDF) is self-describing, allowing an application to interpret the structure and
contents of a file with no outside information. One HDF file can hold a mix of related objects which can
be accessed as a group or as individual objects.

In order to add another DataFrame or Series to an existing HDF file please use append mode and a different
a key.

For more information see the user guide.

Parameters path_or_buf : str or pandas.HDFStore

File path or HDFStore object.

key : str

Identifier for the group in the store.

mode : {‘a’, ‘w’, ‘r+’}, default ‘a’

Mode to open file:

• ‘w’: write, a new file is created (an existing file with the same name would be
deleted).

• ‘a’: append, an existing file is opened for reading and writing, and if the file
does not exist it is created.

• ‘r+’: similar to ‘a’, but the file must already exist.

format : {‘fixed’, ‘table’}, default ‘fixed’

34.3. Series 1607

pandas: powerful Python data analysis toolkit, Release 0.23.4

Possible values:

• ‘fixed’: Fixed format. Fast writing/reading. Not-appendable, nor searchable.

• ‘table’: Table format. Write as a PyTables Table structure which may perform
worse but allow more flexible operations like searching / selecting subsets of
the data.

append : bool, default False

For Table formats, append the input data to the existing.

data_columns : list of columns or True, optional

List of columns to create as indexed data columns for on-disk queries, or True to
use all columns. By default only the axes of the object are indexed. See Query
via Data Columns. Applicable only to format=’table’.

complevel : {0-9}, optional

Specifies a compression level for data. A value of 0 disables compression.

complib : {‘zlib’, ‘lzo’, ‘bzip2’, ‘blosc’}, default ‘zlib’

Specifies the compression library to be used. As of v0.20.2 these addi-
tional compressors for Blosc are supported (default if no compressor speci-
fied: ‘blosc:blosclz’): {‘blosc:blosclz’, ‘blosc:lz4’, ‘blosc:lz4hc’, ‘blosc:snappy’,
‘blosc:zlib’, ‘blosc:zstd’}. Specifying a compression library which is not avail-
able issues a ValueError.

fletcher32 : bool, default False

If applying compression use the fletcher32 checksum.

dropna : bool, default False

If true, ALL nan rows will not be written to store.

errors : str, default ‘strict’

Specifies how encoding and decoding errors are to be handled. See the errors
argument for open() for a full list of options.

See also:

DataFrame.read_hdf Read from HDF file.

DataFrame.to_parquet Write a DataFrame to the binary parquet format.

DataFrame.to_sql Write to a sql table.

DataFrame.to_feather Write out feather-format for DataFrames.

DataFrame.to_csv Write out to a csv file.

Examples

>>> df = pd.DataFrame({'A': [1, 2, 3], 'B': [4, 5, 6]},
... index=['a', 'b', 'c'])
>>> df.to_hdf('data.h5', key='df', mode='w')

We can add another object to the same file:

1608 Chapter 34. API Reference

https://docs.python.org/3/library/functions.html#open

pandas: powerful Python data analysis toolkit, Release 0.23.4

>>> s = pd.Series([1, 2, 3, 4])
>>> s.to_hdf('data.h5', key='s')

Reading from HDF file:

>>> pd.read_hdf('data.h5', 'df')
A B
a 1 4
b 2 5
c 3 6
>>> pd.read_hdf('data.h5', 's')
0 1
1 2
2 3
3 4
dtype: int64

Deleting file with data:

>>> import os
>>> os.remove('data.h5')

pandas.Series.to_json

Series.to_json(path_or_buf=None, orient=None, date_format=None, double_precision=10,
force_ascii=True, date_unit=’ms’, default_handler=None, lines=False, compres-
sion=None, index=True)

Convert the object to a JSON string.

Note NaN’s and None will be converted to null and datetime objects will be converted to UNIX times-
tamps.

Parameters path_or_buf : string or file handle, optional

File path or object. If not specified, the result is returned as a string.

orient : string

Indication of expected JSON string format.

• Series

– default is ‘index’

– allowed values are: {‘split’,’records’,’index’}

• DataFrame

– default is ‘columns’

– allowed values are: {‘split’,’records’,’index’,’columns’,’values’}

• The format of the JSON string

– ‘split’ : dict like {‘index’ -> [index], ‘columns’ -> [columns], ‘data’ -> [val-
ues]}

– ‘records’ : list like [{column -> value}, . . . , {column -> value}]

– ‘index’ : dict like {index -> {column -> value}}

– ‘columns’ : dict like {column -> {index -> value}}

34.3. Series 1609

pandas: powerful Python data analysis toolkit, Release 0.23.4

– ‘values’ : just the values array

– ‘table’ : dict like {‘schema’: {schema}, ‘data’: {data}} describing the data,
and the data component is like orient='records'.

Changed in version 0.20.0.

date_format : {None, ‘epoch’, ‘iso’}

Type of date conversion. ‘epoch’ = epoch milliseconds, ‘iso’ = ISO8601. The
default depends on the orient. For orient='table', the default is ‘iso’. For
all other orients, the default is ‘epoch’.

double_precision : int, default 10

The number of decimal places to use when encoding floating point values.

force_ascii : boolean, default True

Force encoded string to be ASCII.

date_unit : string, default ‘ms’ (milliseconds)

The time unit to encode to, governs timestamp and ISO8601 precision. One of
‘s’, ‘ms’, ‘us’, ‘ns’ for second, millisecond, microsecond, and nanosecond re-
spectively.

default_handler : callable, default None

Handler to call if object cannot otherwise be converted to a suitable format for
JSON. Should receive a single argument which is the object to convert and return
a serialisable object.

lines : boolean, default False

If ‘orient’ is ‘records’ write out line delimited json format. Will throw ValueError
if incorrect ‘orient’ since others are not list like.

New in version 0.19.0.

compression : {None, ‘gzip’, ‘bz2’, ‘zip’, ‘xz’}

A string representing the compression to use in the output file, only used when
the first argument is a filename.

New in version 0.21.0.

index : boolean, default True

Whether to include the index values in the JSON string. Not including the index
(index=False) is only supported when orient is ‘split’ or ‘table’.

New in version 0.23.0.

See also:

pandas.read_json

Examples

>>> df = pd.DataFrame([['a', 'b'], ['c', 'd']],
... index=['row 1', 'row 2'],
... columns=['col 1', 'col 2'])
>>> df.to_json(orient='split')

(continues on next page)

1610 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

'{"columns":["col 1","col 2"],
"index":["row 1","row 2"],
"data":[["a","b"],["c","d"]]}'

Encoding/decoding a Dataframe using 'records' formatted JSON. Note that index labels are not pre-
served with this encoding.

>>> df.to_json(orient='records')
'[{"col 1":"a","col 2":"b"},{"col 1":"c","col 2":"d"}]'

Encoding/decoding a Dataframe using 'index' formatted JSON:

>>> df.to_json(orient='index')
'{"row 1":{"col 1":"a","col 2":"b"},"row 2":{"col 1":"c","col 2":"d"}}'

Encoding/decoding a Dataframe using 'columns' formatted JSON:

>>> df.to_json(orient='columns')
'{"col 1":{"row 1":"a","row 2":"c"},"col 2":{"row 1":"b","row 2":"d"}}'

Encoding/decoding a Dataframe using 'values' formatted JSON:

>>> df.to_json(orient='values')
'[["a","b"],["c","d"]]'

Encoding with Table Schema

>>> df.to_json(orient='table')
'{"schema": {"fields": [{"name": "index", "type": "string"},

{"name": "col 1", "type": "string"},
{"name": "col 2", "type": "string"}],

"primaryKey": "index",
"pandas_version": "0.20.0"},

"data": [{"index": "row 1", "col 1": "a", "col 2": "b"},
{"index": "row 2", "col 1": "c", "col 2": "d"}]}'

pandas.Series.to_latex

Series.to_latex(buf=None, columns=None, col_space=None, header=True, index=True,
na_rep=’NaN’, formatters=None, float_format=None, sparsify=None, in-
dex_names=True, bold_rows=False, column_format=None, longtable=None,
escape=None, encoding=None, decimal=’.’, multicolumn=None, multicol-
umn_format=None, multirow=None)

Render an object to a tabular environment table. You can splice this into a LaTeX document. Requires
\usepackage{booktabs}.

Changed in version 0.20.2: Added to Series

to_latex-specific options:

bold_rows [boolean, default False] Make the row labels bold in the output

column_format [str, default None] The columns format as specified in LaTeX table format e.g ‘rcl’ for
3 columns

longtable [boolean, default will be read from the pandas config module] Default: False. Use a longtable
environment instead of tabular. Requires adding a \usepackage{longtable} to your LaTeX preamble.

34.3. Series 1611

https://en.wikibooks.org/wiki/LaTeX/Tables

pandas: powerful Python data analysis toolkit, Release 0.23.4

escape [boolean, default will be read from the pandas config module] Default: True. When set to False
prevents from escaping latex special characters in column names.

encoding [str, default None] A string representing the encoding to use in the output file, defaults to ‘ascii’
on Python 2 and ‘utf-8’ on Python 3.

decimal [string, default ‘.’] Character recognized as decimal separator, e.g. ‘,’ in Europe.

New in version 0.18.0.

multicolumn [boolean, default True] Use multicolumn to enhance MultiIndex columns. The default will
be read from the config module.

New in version 0.20.0.

multicolumn_format [str, default ‘l’] The alignment for multicolumns, similar to column_format The
default will be read from the config module.

New in version 0.20.0.

multirow [boolean, default False] Use multirow to enhance MultiIndex rows. Requires adding a \usepa-
ckage{multirow} to your LaTeX preamble. Will print centered labels (instead of top-aligned) across
the contained rows, separating groups via clines. The default will be read from the pandas config
module.

New in version 0.20.0.

pandas.Series.to_msgpack

Series.to_msgpack(path_or_buf=None, encoding=’utf-8’, **kwargs)
msgpack (serialize) object to input file path

THIS IS AN EXPERIMENTAL LIBRARY and the storage format may not be stable until a future release.

Parameters path : string File path, buffer-like, or None

if None, return generated string

append : boolean whether to append to an existing msgpack

(default is False)

compress : type of compressor (zlib or blosc), default to None (no

compression)

pandas.Series.to_period

Series.to_period(freq=None, copy=True)
Convert Series from DatetimeIndex to PeriodIndex with desired frequency (inferred from index if not
passed)

Parameters

freq [string, default]

Returns

ts [Series with PeriodIndex]

1612 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

pandas.Series.to_pickle

Series.to_pickle(path, compression=’infer’, protocol=4)
Pickle (serialize) object to file.

Parameters path : str

File path where the pickled object will be stored.

compression : {‘infer’, ‘gzip’, ‘bz2’, ‘zip’, ‘xz’, None}, default ‘infer’

A string representing the compression to use in the output file. By default, infers
from the file extension in specified path.

New in version 0.20.0.

protocol : int

Int which indicates which protocol should be used by the pickler, default HIGH-
EST_PROTOCOL (see [R27] paragraph 12.1.2). The possible values for this
parameter depend on the version of Python. For Python 2.x, possible values are
0, 1, 2. For Python>=3.0, 3 is a valid value. For Python >= 3.4, 4 is a valid value.
A negative value for the protocol parameter is equivalent to setting its value to
HIGHEST_PROTOCOL.

New in version 0.21.0.

See also:

read_pickle Load pickled pandas object (or any object) from file.

DataFrame.to_hdf Write DataFrame to an HDF5 file.

DataFrame.to_sql Write DataFrame to a SQL database.

DataFrame.to_parquet Write a DataFrame to the binary parquet format.

Examples

>>> original_df = pd.DataFrame({"foo": range(5), "bar": range(5, 10)})
>>> original_df

foo bar
0 0 5
1 1 6
2 2 7
3 3 8
4 4 9
>>> original_df.to_pickle("./dummy.pkl")

>>> unpickled_df = pd.read_pickle("./dummy.pkl")
>>> unpickled_df

foo bar
0 0 5
1 1 6
2 2 7
3 3 8
4 4 9

34.3. Series 1613

pandas: powerful Python data analysis toolkit, Release 0.23.4

>>> import os
>>> os.remove("./dummy.pkl")

pandas.Series.to_sparse

Series.to_sparse(kind=’block’, fill_value=None)
Convert Series to SparseSeries

Parameters

kind [{‘block’, ‘integer’}]

fill_value [float, defaults to NaN (missing)]

Returns

sp [SparseSeries]

pandas.Series.to_sql

Series.to_sql(name, con, schema=None, if_exists=’fail’, index=True, index_label=None, chunk-
size=None, dtype=None)

Write records stored in a DataFrame to a SQL database.

Databases supported by SQLAlchemy [R28] are supported. Tables can be newly created, appended to, or
overwritten.

Parameters name : string

Name of SQL table.

con : sqlalchemy.engine.Engine or sqlite3.Connection

Using SQLAlchemy makes it possible to use any DB supported by that library.
Legacy support is provided for sqlite3.Connection objects.

schema : string, optional

Specify the schema (if database flavor supports this). If None, use default schema.

if_exists : {‘fail’, ‘replace’, ‘append’}, default ‘fail’

How to behave if the table already exists.

• fail: Raise a ValueError.

• replace: Drop the table before inserting new values.

• append: Insert new values to the existing table.

index : boolean, default True

Write DataFrame index as a column. Uses index_label as the column name in the
table.

index_label : string or sequence, default None

Column label for index column(s). If None is given (default) and index is True,
then the index names are used. A sequence should be given if the DataFrame uses
MultiIndex.

chunksize : int, optional

1614 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

Rows will be written in batches of this size at a time. By default, all rows will be
written at once.

dtype : dict, optional

Specifying the datatype for columns. The keys should be the column names
and the values should be the SQLAlchemy types or strings for the sqlite3 legacy
mode.

Raises ValueError

When the table already exists and if_exists is ‘fail’ (the default).

See also:

pandas.read_sql read a DataFrame from a table

References

[R28], [R29]

Examples

Create an in-memory SQLite database.

>>> from sqlalchemy import create_engine
>>> engine = create_engine('sqlite://', echo=False)

Create a table from scratch with 3 rows.

>>> df = pd.DataFrame({'name' : ['User 1', 'User 2', 'User 3']})
>>> df

name
0 User 1
1 User 2
2 User 3

>>> df.to_sql('users', con=engine)
>>> engine.execute("SELECT * FROM users").fetchall()
[(0, 'User 1'), (1, 'User 2'), (2, 'User 3')]

>>> df1 = pd.DataFrame({'name' : ['User 4', 'User 5']})
>>> df1.to_sql('users', con=engine, if_exists='append')
>>> engine.execute("SELECT * FROM users").fetchall()
[(0, 'User 1'), (1, 'User 2'), (2, 'User 3'),
(0, 'User 4'), (1, 'User 5')]

Overwrite the table with just df1.

>>> df1.to_sql('users', con=engine, if_exists='replace',
... index_label='id')
>>> engine.execute("SELECT * FROM users").fetchall()
[(0, 'User 4'), (1, 'User 5')]

34.3. Series 1615

pandas: powerful Python data analysis toolkit, Release 0.23.4

Specify the dtype (especially useful for integers with missing values). Notice that while pandas is forced
to store the data as floating point, the database supports nullable integers. When fetching the data with
Python, we get back integer scalars.

>>> df = pd.DataFrame({"A": [1, None, 2]})
>>> df

A
0 1.0
1 NaN
2 2.0

>>> from sqlalchemy.types import Integer
>>> df.to_sql('integers', con=engine, index=False,
... dtype={"A": Integer()})

>>> engine.execute("SELECT * FROM integers").fetchall()
[(1,), (None,), (2,)]

pandas.Series.to_string

Series.to_string(buf=None, na_rep=’NaN’, float_format=None, header=True, index=True,
length=False, dtype=False, name=False, max_rows=None)

Render a string representation of the Series

Parameters buf : StringIO-like, optional

buffer to write to

na_rep : string, optional

string representation of NAN to use, default ‘NaN’

float_format : one-parameter function, optional

formatter function to apply to columns’ elements if they are floats default None

header: boolean, default True

Add the Series header (index name)

index : bool, optional

Add index (row) labels, default True

length : boolean, default False

Add the Series length

dtype : boolean, default False

Add the Series dtype

name : boolean, default False

Add the Series name if not None

max_rows : int, optional

Maximum number of rows to show before truncating. If None, show all.

Returns

formatted [string (if not buffer passed)]

1616 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

pandas.Series.to_timestamp

Series.to_timestamp(freq=None, how=’start’, copy=True)
Cast to datetimeindex of timestamps, at beginning of period

Parameters freq : string, default frequency of PeriodIndex

Desired frequency

how : {‘s’, ‘e’, ‘start’, ‘end’}

Convention for converting period to timestamp; start of period vs. end

Returns

ts [Series with DatetimeIndex]

pandas.Series.to_xarray

Series.to_xarray()
Return an xarray object from the pandas object.

Returns

a DataArray for a Series

a Dataset for a DataFrame

a DataArray for higher dims

Notes

See the xarray docs

Examples

>>> df = pd.DataFrame({'A' : [1, 1, 2],
'B' : ['foo', 'bar', 'foo'],
'C' : np.arange(4.,7)})

>>> df
A B C

0 1 foo 4.0
1 1 bar 5.0
2 2 foo 6.0

>>> df.to_xarray()
<xarray.Dataset>
Dimensions: (index: 3)
Coordinates:

* index (index) int64 0 1 2
Data variables:

A (index) int64 1 1 2
B (index) object 'foo' 'bar' 'foo'
C (index) float64 4.0 5.0 6.0

34.3. Series 1617

http://xarray.pydata.org/en/stable/

pandas: powerful Python data analysis toolkit, Release 0.23.4

>>> df = pd.DataFrame({'A' : [1, 1, 2],
'B' : ['foo', 'bar', 'foo'],
'C' : np.arange(4.,7)}

).set_index(['B','A'])
>>> df

C
B A
foo 1 4.0
bar 1 5.0
foo 2 6.0

>>> df.to_xarray()
<xarray.Dataset>
Dimensions: (A: 2, B: 2)
Coordinates:

* B (B) object 'bar' 'foo'

* A (A) int64 1 2
Data variables:

C (B, A) float64 5.0 nan 4.0 6.0

>>> p = pd.Panel(np.arange(24).reshape(4,3,2),
items=list('ABCD'),
major_axis=pd.date_range('20130101', periods=3),
minor_axis=['first', 'second'])

>>> p
<class 'pandas.core.panel.Panel'>
Dimensions: 4 (items) x 3 (major_axis) x 2 (minor_axis)
Items axis: A to D
Major_axis axis: 2013-01-01 00:00:00 to 2013-01-03 00:00:00
Minor_axis axis: first to second

>>> p.to_xarray()
<xarray.DataArray (items: 4, major_axis: 3, minor_axis: 2)>
array([[[0, 1],

[2, 3],
[4, 5]],

[[6, 7],
[8, 9],
[10, 11]],

[[12, 13],
[14, 15],
[16, 17]],

[[18, 19],
[20, 21],
[22, 23]]])

Coordinates:

* items (items) object 'A' 'B' 'C' 'D'

* major_axis (major_axis) datetime64[ns] 2013-01-01 2013-01-02 2013-01-03
→˓ # noqa

* minor_axis (minor_axis) object 'first' 'second'

pandas.Series.tolist

Series.tolist()
Return a list of the values.

1618 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

These are each a scalar type, which is a Python scalar (for str, int, float) or a pandas scalar (for Times-
tamp/Timedelta/Interval/Period)

See also:

numpy.ndarray.tolist

pandas.Series.transform

Series.transform(func, *args, **kwargs)
Call function producing a like-indexed NDFrame and return a NDFrame with the transformed values

New in version 0.20.0.

Parameters func : callable, string, dictionary, or list of string/callables

To apply to column

Accepted Combinations are:

• string function name

• function

• list of functions

• dict of column names -> functions (or list of functions)

Returns

transformed [NDFrame]

See also:

pandas.NDFrame.aggregate, pandas.NDFrame.apply

Examples

>>> df = pd.DataFrame(np.random.randn(10, 3), columns=['A', 'B', 'C'],
... index=pd.date_range('1/1/2000', periods=10))
df.iloc[3:7] = np.nan

>>> df.transform(lambda x: (x - x.mean()) / x.std())
A B C

2000-01-01 0.579457 1.236184 0.123424
2000-01-02 0.370357 -0.605875 -1.231325
2000-01-03 1.455756 -0.277446 0.288967
2000-01-04 NaN NaN NaN
2000-01-05 NaN NaN NaN
2000-01-06 NaN NaN NaN
2000-01-07 NaN NaN NaN
2000-01-08 -0.498658 1.274522 1.642524
2000-01-09 -0.540524 -1.012676 -0.828968
2000-01-10 -1.366388 -0.614710 0.005378

34.3. Series 1619

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.tolist.html#numpy.ndarray.tolist

pandas: powerful Python data analysis toolkit, Release 0.23.4

pandas.Series.transpose

Series.transpose(*args, **kwargs)
return the transpose, which is by definition self

pandas.Series.truediv

Series.truediv(other, level=None, fill_value=None, axis=0)
Floating division of series and other, element-wise (binary operator truediv).

Equivalent to series / other, but with support to substitute a fill_value for missing data in one of
the inputs.

Parameters

other [Series or scalar value]

fill_value : None or float value, default None (NaN)

Fill existing missing (NaN) values, and any new element needed for successful
Series alignment, with this value before computation. If data in both correspond-
ing Series locations is missing the result will be missing

level : int or name

Broadcast across a level, matching Index values on the passed MultiIndex level

Returns

result [Series]

See also:

Series.rtruediv

Examples

>>> a = pd.Series([1, 1, 1, np.nan], index=['a', 'b', 'c', 'd'])
>>> a
a 1.0
b 1.0
c 1.0
d NaN
dtype: float64
>>> b = pd.Series([1, np.nan, 1, np.nan], index=['a', 'b', 'd', 'e'])
>>> b
a 1.0
b NaN
d 1.0
e NaN
dtype: float64
>>> a.add(b, fill_value=0)
a 2.0
b 1.0
c 1.0
d 1.0
e NaN
dtype: float64

1620 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

pandas.Series.truncate

Series.truncate(before=None, after=None, axis=None, copy=True)
Truncate a Series or DataFrame before and after some index value.

This is a useful shorthand for boolean indexing based on index values above or below certain thresholds.

Parameters before : date, string, int

Truncate all rows before this index value.

after : date, string, int

Truncate all rows after this index value.

axis : {0 or ‘index’, 1 or ‘columns’}, optional

Axis to truncate. Truncates the index (rows) by default.

copy : boolean, default is True,

Return a copy of the truncated section.

Returns type of caller

The truncated Series or DataFrame.

See also:

DataFrame.loc Select a subset of a DataFrame by label.

DataFrame.iloc Select a subset of a DataFrame by position.

Notes

If the index being truncated contains only datetime values, before and after may be specified as strings
instead of Timestamps.

Examples

>>> df = pd.DataFrame({'A': ['a', 'b', 'c', 'd', 'e'],
... 'B': ['f', 'g', 'h', 'i', 'j'],
... 'C': ['k', 'l', 'm', 'n', 'o']},
... index=[1, 2, 3, 4, 5])
>>> df

A B C
1 a f k
2 b g l
3 c h m
4 d i n
5 e j o

>>> df.truncate(before=2, after=4)
A B C

2 b g l
3 c h m
4 d i n

The columns of a DataFrame can be truncated.

34.3. Series 1621

pandas: powerful Python data analysis toolkit, Release 0.23.4

>>> df.truncate(before="A", after="B", axis="columns")
A B

1 a f
2 b g
3 c h
4 d i
5 e j

For Series, only rows can be truncated.

>>> df['A'].truncate(before=2, after=4)
2 b
3 c
4 d
Name: A, dtype: object

The index values in truncate can be datetimes or string dates.

>>> dates = pd.date_range('2016-01-01', '2016-02-01', freq='s')
>>> df = pd.DataFrame(index=dates, data={'A': 1})
>>> df.tail()

A
2016-01-31 23:59:56 1
2016-01-31 23:59:57 1
2016-01-31 23:59:58 1
2016-01-31 23:59:59 1
2016-02-01 00:00:00 1

>>> df.truncate(before=pd.Timestamp('2016-01-05'),
... after=pd.Timestamp('2016-01-10')).tail()

A
2016-01-09 23:59:56 1
2016-01-09 23:59:57 1
2016-01-09 23:59:58 1
2016-01-09 23:59:59 1
2016-01-10 00:00:00 1

Because the index is a DatetimeIndex containing only dates, we can specify before and after as strings.
They will be coerced to Timestamps before truncation.

>>> df.truncate('2016-01-05', '2016-01-10').tail()
A

2016-01-09 23:59:56 1
2016-01-09 23:59:57 1
2016-01-09 23:59:58 1
2016-01-09 23:59:59 1
2016-01-10 00:00:00 1

Note that truncate assumes a 0 value for any unspecified time component (midnight). This differs
from partial string slicing, which returns any partially matching dates.

>>> df.loc['2016-01-05':'2016-01-10', :].tail()
A

2016-01-10 23:59:55 1
2016-01-10 23:59:56 1
2016-01-10 23:59:57 1

(continues on next page)

1622 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

2016-01-10 23:59:58 1
2016-01-10 23:59:59 1

pandas.Series.tshift

Series.tshift(periods=1, freq=None, axis=0)
Shift the time index, using the index’s frequency if available.

Parameters periods : int

Number of periods to move, can be positive or negative

freq : DateOffset, timedelta, or time rule string, default None

Increment to use from the tseries module or time rule (e.g. ‘EOM’)

axis : int or basestring

Corresponds to the axis that contains the Index

Returns

shifted [NDFrame]

Notes

If freq is not specified then tries to use the freq or inferred_freq attributes of the index. If neither of those
attributes exist, a ValueError is thrown

pandas.Series.tz_convert

Series.tz_convert(tz, axis=0, level=None, copy=True)
Convert tz-aware axis to target time zone.

Parameters

tz [string or pytz.timezone object]

axis [the axis to convert]

level : int, str, default None

If axis ia a MultiIndex, convert a specific level. Otherwise must be None

copy : boolean, default True

Also make a copy of the underlying data

Raises TypeError

If the axis is tz-naive.

pandas.Series.tz_localize

Series.tz_localize(tz, axis=0, level=None, copy=True, ambiguous=’raise’)
Localize tz-naive TimeSeries to target time zone.

34.3. Series 1623

pandas: powerful Python data analysis toolkit, Release 0.23.4

Parameters

tz [string or pytz.timezone object]

axis [the axis to localize]

level : int, str, default None

If axis ia a MultiIndex, localize a specific level. Otherwise must be None

copy : boolean, default True

Also make a copy of the underlying data

ambiguous : ‘infer’, bool-ndarray, ‘NaT’, default ‘raise’

• ‘infer’ will attempt to infer fall dst-transition hours based on order

• bool-ndarray where True signifies a DST time, False designates a non-DST time (note
that this flag is only applicable for ambiguous times)

• ‘NaT’ will return NaT where there are ambiguous times

• ‘raise’ will raise an AmbiguousTimeError if there are ambiguous times

Raises TypeError

If the TimeSeries is tz-aware and tz is not None.

pandas.Series.unique

Series.unique()
Return unique values of Series object.

Uniques are returned in order of appearance. Hash table-based unique, therefore does NOT sort.

Returns ndarray or Categorical

The unique values returned as a NumPy array. In case of categorical data type,
returned as a Categorical.

See also:

pandas.unique top-level unique method for any 1-d array-like object.

Index.unique return Index with unique values from an Index object.

Examples

>>> pd.Series([2, 1, 3, 3], name='A').unique()
array([2, 1, 3])

>>> pd.Series([pd.Timestamp('2016-01-01') for _ in range(3)]).unique()
array(['2016-01-01T00:00:00.000000000'], dtype='datetime64[ns]')

>>> pd.Series([pd.Timestamp('2016-01-01', tz='US/Eastern')
... for _ in range(3)]).unique()
array([Timestamp('2016-01-01 00:00:00-0500', tz='US/Eastern')],

dtype=object)

An unordered Categorical will return categories in the order of appearance.

1624 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

>>> pd.Series(pd.Categorical(list('baabc'))).unique()
[b, a, c]
Categories (3, object): [b, a, c]

An ordered Categorical preserves the category ordering.

>>> pd.Series(pd.Categorical(list('baabc'), categories=list('abc'),
... ordered=True)).unique()
[b, a, c]
Categories (3, object): [a < b < c]

pandas.Series.unstack

Series.unstack(level=-1, fill_value=None)
Unstack, a.k.a. pivot, Series with MultiIndex to produce DataFrame. The level involved will automatically
get sorted.

Parameters level : int, string, or list of these, default last level

Level(s) to unstack, can pass level name

fill_value : replace NaN with this value if the unstack produces

missing values

New in version 0.18.0.

Returns

unstacked [DataFrame]

Examples

>>> s = pd.Series([1, 2, 3, 4],
... index=pd.MultiIndex.from_product([['one', 'two'], ['a', 'b']]))
>>> s
one a 1

b 2
two a 3

b 4
dtype: int64

>>> s.unstack(level=-1)
a b

one 1 2
two 3 4

>>> s.unstack(level=0)
one two

a 1 3
b 2 4

34.3. Series 1625

pandas: powerful Python data analysis toolkit, Release 0.23.4

pandas.Series.update

Series.update(other)
Modify Series in place using non-NA values from passed Series. Aligns on index

Parameters

other [Series]

Examples

>>> s = pd.Series([1, 2, 3])
>>> s.update(pd.Series([4, 5, 6]))
>>> s
0 4
1 5
2 6
dtype: int64

>>> s = pd.Series(['a', 'b', 'c'])
>>> s.update(pd.Series(['d', 'e'], index=[0, 2]))
>>> s
0 d
1 b
2 e
dtype: object

>>> s = pd.Series([1, 2, 3])
>>> s.update(pd.Series([4, 5, 6, 7, 8]))
>>> s
0 4
1 5
2 6
dtype: int64

If other contains NaNs the corresponding values are not updated in the original Series.

>>> s = pd.Series([1, 2, 3])
>>> s.update(pd.Series([4, np.nan, 6]))
>>> s
0 4
1 2
2 6
dtype: int64

pandas.Series.valid

Series.valid(inplace=False, **kwargs)
Return Series without null values.

Deprecated since version 0.23.0: Use Series.dropna() instead.

1626 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

pandas.Series.value_counts

Series.value_counts(normalize=False, sort=True, ascending=False, bins=None,
dropna=True)

Returns object containing counts of unique values.

The resulting object will be in descending order so that the first element is the most frequently-occurring
element. Excludes NA values by default.

Parameters normalize : boolean, default False

If True then the object returned will contain the relative frequencies of the unique
values.

sort : boolean, default True

Sort by values

ascending : boolean, default False

Sort in ascending order

bins : integer, optional

Rather than count values, group them into half-open bins, a convenience for
pd.cut, only works with numeric data

dropna : boolean, default True

Don’t include counts of NaN.

Returns

counts [Series]

pandas.Series.var

Series.var(axis=None, skipna=None, level=None, ddof=1, numeric_only=None, **kwargs)
Return unbiased variance over requested axis.

Normalized by N-1 by default. This can be changed using the ddof argument

Parameters

axis [{index (0)}]

skipna : boolean, default True

Exclude NA/null values. If an entire row/column is NA, the result will be NA

level : int or level name, default None

If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing
into a scalar

ddof : int, default 1

Delta Degrees of Freedom. The divisor used in calculations is N - ddof, where N
represents the number of elements.

numeric_only : boolean, default None

Include only float, int, boolean columns. If None, will attempt to use everything,
then use only numeric data. Not implemented for Series.

34.3. Series 1627

pandas: powerful Python data analysis toolkit, Release 0.23.4

Returns

var [scalar or Series (if level specified)]

pandas.Series.view

Series.view(dtype=None)
Create a new view of the Series.

This function will return a new Series with a view of the same underlying values in memory, optionally
reinterpreted with a new data type. The new data type must preserve the same size in bytes as to not cause
index misalignment.

Parameters dtype : data type

Data type object or one of their string representations.

Returns Series

A new Series object as a view of the same data in memory.

See also:

numpy.ndarray.view Equivalent numpy function to create a new view of the same data in memory.

Notes

Series are instantiated with dtype=float64 by default. While numpy.ndarray.view() will re-
turn a view with the same data type as the original array, Series.view() (without specified dtype)
will try using float64 and may fail if the original data type size in bytes is not the same.

Examples

>>> s = pd.Series([-2, -1, 0, 1, 2], dtype='int8')
>>> s
0 -2
1 -1
2 0
3 1
4 2
dtype: int8

The 8 bit signed integer representation of -1 is 0b11111111, but the same bytes represent 255 if read as
an 8 bit unsigned integer:

>>> us = s.view('uint8')
>>> us
0 254
1 255
2 0
3 1
4 2
dtype: uint8

The views share the same underlying values:

1628 Chapter 34. API Reference

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.view.html#numpy.ndarray.view

pandas: powerful Python data analysis toolkit, Release 0.23.4

>>> us[0] = 128
>>> s
0 -128
1 -1
2 0
3 1
4 2
dtype: int8

pandas.Series.where

Series.where(cond, other=nan, inplace=False, axis=None, level=None, errors=’raise’,
try_cast=False, raise_on_error=None)

Return an object of same shape as self and whose corresponding entries are from self where cond is True
and otherwise are from other.

Parameters cond : boolean NDFrame, array-like, or callable

Where cond is True, keep the original value. Where False, replace with corre-
sponding value from other. If cond is callable, it is computed on the NDFrame
and should return boolean NDFrame or array. The callable must not change input
NDFrame (though pandas doesn’t check it).

New in version 0.18.1: A callable can be used as cond.

other : scalar, NDFrame, or callable

Entries where cond is False are replaced with corresponding value from other.
If other is callable, it is computed on the NDFrame and should return scalar or
NDFrame. The callable must not change input NDFrame (though pandas doesn’t
check it).

New in version 0.18.1: A callable can be used as other.

inplace : boolean, default False

Whether to perform the operation in place on the data

axis [alignment axis if needed, default None]

level [alignment level if needed, default None]

errors : str, {‘raise’, ‘ignore’}, default ‘raise’

• raise : allow exceptions to be raised

• ignore : suppress exceptions. On error return original object

Note that currently this parameter won’t affect the results and will always coerce
to a suitable dtype.

try_cast : boolean, default False

try to cast the result back to the input type (if possible),

raise_on_error : boolean, default True

Whether to raise on invalid data types (e.g. trying to where on strings)

Deprecated since version 0.21.0.

Returns

34.3. Series 1629

pandas: powerful Python data analysis toolkit, Release 0.23.4

wh [same type as caller]

See also:

DataFrame.mask()

Notes

The where method is an application of the if-then idiom. For each element in the calling DataFrame, if
cond is True the element is used; otherwise the corresponding element from the DataFrame other is
used.

The signature for DataFrame.where() differs from numpy.where(). Roughly df1.where(m,
df2) is equivalent to np.where(m, df1, df2).

For further details and examples see the where documentation in indexing.

Examples

>>> s = pd.Series(range(5))
>>> s.where(s > 0)
0 NaN
1 1.0
2 2.0
3 3.0
4 4.0

>>> s.mask(s > 0)
0 0.0
1 NaN
2 NaN
3 NaN
4 NaN

>>> s.where(s > 1, 10)
0 10.0
1 10.0
2 2.0
3 3.0
4 4.0

>>> df = pd.DataFrame(np.arange(10).reshape(-1, 2), columns=['A', 'B'])
>>> m = df % 3 == 0
>>> df.where(m, -df)

A B
0 0 -1
1 -2 3
2 -4 -5
3 6 -7
4 -8 9
>>> df.where(m, -df) == np.where(m, df, -df)

A B
0 True True
1 True True
2 True True

(continues on next page)

1630 Chapter 34. API Reference

https://docs.scipy.org/doc/numpy/reference/generated/numpy.where.html#numpy.where

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

3 True True
4 True True
>>> df.where(m, -df) == df.mask(~m, -df)

A B
0 True True
1 True True
2 True True
3 True True
4 True True

pandas.Series.xs

Series.xs(key, axis=0, level=None, drop_level=True)
Returns a cross-section (row(s) or column(s)) from the Series/DataFrame. Defaults to cross-section on
the rows (axis=0).

Parameters key : object

Some label contained in the index, or partially in a MultiIndex

axis : int, default 0

Axis to retrieve cross-section on

level : object, defaults to first n levels (n=1 or len(key))

In case of a key partially contained in a MultiIndex, indicate which levels are
used. Levels can be referred by label or position.

drop_level : boolean, default True

If False, returns object with same levels as self.

Returns

xs [Series or DataFrame]

Notes

xs is only for getting, not setting values.

MultiIndex Slicers is a generic way to get/set values on any level or levels. It is a superset of xs function-
ality, see MultiIndex Slicers

Examples

>>> df
A B C

a 4 5 2
b 4 0 9
c 9 7 3
>>> df.xs('a')
A 4
B 5
C 2

(continues on next page)

34.3. Series 1631

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

Name: a
>>> df.xs('C', axis=1)
a 2
b 9
c 3
Name: C

>>> df
A B C D

first second third
bar one 1 4 1 8 9

two 1 7 5 5 0
baz one 1 6 6 8 0

three 2 5 3 5 3
>>> df.xs(('baz', 'three'))

A B C D
third
2 5 3 5 3
>>> df.xs('one', level=1)

A B C D
first third
bar 1 4 1 8 9
baz 1 6 6 8 0
>>> df.xs(('baz', 2), level=[0, 'third'])

A B C D
second
three 5 3 5 3

34.3.2 Attributes

Axes

Series.index The index (axis labels) of the Series.

Series.values Return Series as ndarray or ndarray-like depending on
the dtype

Series.dtype return the dtype object of the underlying data
Series.ftype return if the data is sparse|dense
Series.shape return a tuple of the shape of the underlying data
Series.nbytes return the number of bytes in the underlying data
Series.ndim return the number of dimensions of the underlying data,

by definition 1
Series.size return the number of elements in the underlying data
Series.strides return the strides of the underlying data
Series.itemsize return the size of the dtype of the item of the underlying

data
Series.base return the base object if the memory of the underlying

data is shared
Series.T return the transpose, which is by definition self
Series.memory_usage([index, deep]) Return the memory usage of the Series.
Series.hasnans return if I have any nans; enables various perf speedups

Continued on next page

1632 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

Table 27 – continued from previous page
Series.flags
Series.empty
Series.dtypes return the dtype object of the underlying data
Series.ftypes return if the data is sparse|dense
Series.data return the data pointer of the underlying data
Series.is_copy
Series.name
Series.put(*args, **kwargs) Applies the put method to its values attribute if it has

one.

34.3.2.1 pandas.Series.empty

Series.empty

34.3.2.2 pandas.Series.is_copy

Series.is_copy

34.3.2.3 pandas.Series.name

Series.name

34.3.3 Conversion

Series.astype(dtype[, copy, errors]) Cast a pandas object to a specified dtype dtype.
Series.infer_objects() Attempt to infer better dtypes for object columns.
Series.convert_objects([convert_dates, . . .]) (DEPRECATED) Attempt to infer better dtype for ob-

ject columns.
Series.copy([deep]) Make a copy of this object’s indices and data.
Series.bool() Return the bool of a single element PandasObject.
Series.to_period([freq, copy]) Convert Series from DatetimeIndex to PeriodIndex with

desired frequency (inferred from index if not passed)
Series.to_timestamp([freq, how, copy]) Cast to datetimeindex of timestamps, at beginning of pe-

riod
Series.tolist() Return a list of the values.
Series.get_values() same as values (but handles sparseness conversions); is

a view

34.3.4 Indexing, iteration

Series.get(key[, default]) Get item from object for given key (DataFrame column,
Panel slice, etc.).

Series.at Access a single value for a row/column label pair.
Series.iat Access a single value for a row/column pair by integer

position.
Continued on next page

34.3. Series 1633

pandas: powerful Python data analysis toolkit, Release 0.23.4

Table 29 – continued from previous page
Series.loc Access a group of rows and columns by label(s) or a

boolean array.
Series.iloc Purely integer-location based indexing for selection by

position.
Series.__iter__() Return an iterator of the values.
Series.iteritems() Lazily iterate over (index, value) tuples
Series.items() Lazily iterate over (index, value) tuples
Series.keys() Alias for index
Series.pop(item) Return item and drop from frame.
Series.item() return the first element of the underlying data as a

python scalar
Series.xs(key[, axis, level, drop_level]) Returns a cross-section (row(s) or column(s)) from the

Series/DataFrame.

34.3.4.1 pandas.Series.__iter__

Series.__iter__()
Return an iterator of the values.

These are each a scalar type, which is a Python scalar (for str, int, float) or a pandas scalar (for Times-
tamp/Timedelta/Interval/Period)

For more information on .at, .iat, .loc, and .iloc, see the indexing documentation.

34.3.5 Binary operator functions

Series.add(other[, level, fill_value, axis]) Addition of series and other, element-wise (binary oper-
ator add).

Series.sub(other[, level, fill_value, axis]) Subtraction of series and other, element-wise (binary
operator sub).

Series.mul(other[, level, fill_value, axis]) Multiplication of series and other, element-wise (binary
operator mul).

Series.div(other[, level, fill_value, axis]) Floating division of series and other, element-wise (bi-
nary operator truediv).

Series.truediv(other[, level, fill_value, axis]) Floating division of series and other, element-wise (bi-
nary operator truediv).

Series.floordiv(other[, level, fill_value, axis]) Integer division of series and other, element-wise (bi-
nary operator floordiv).

Series.mod(other[, level, fill_value, axis]) Modulo of series and other, element-wise (binary oper-
ator mod).

Series.pow(other[, level, fill_value, axis]) Exponential power of series and other, element-wise
(binary operator pow).

Series.radd(other[, level, fill_value, axis]) Addition of series and other, element-wise (binary oper-
ator radd).

Series.rsub(other[, level, fill_value, axis]) Subtraction of series and other, element-wise (binary
operator rsub).

Series.rmul(other[, level, fill_value, axis]) Multiplication of series and other, element-wise (binary
operator rmul).

Series.rdiv(other[, level, fill_value, axis]) Floating division of series and other, element-wise (bi-
nary operator rtruediv).

Continued on next page

1634 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

Table 30 – continued from previous page
Series.rtruediv(other[, level, fill_value, axis]) Floating division of series and other, element-wise (bi-

nary operator rtruediv).
Series.rfloordiv(other[, level, fill_value, . . .]) Integer division of series and other, element-wise (bi-

nary operator rfloordiv).
Series.rmod(other[, level, fill_value, axis]) Modulo of series and other, element-wise (binary oper-

ator rmod).
Series.rpow(other[, level, fill_value, axis]) Exponential power of series and other, element-wise

(binary operator rpow).
Series.combine(other, func[, fill_value]) Perform elementwise binary operation on two Series us-

ing given function with optional fill value when an index
is missing from one Series or the other

Series.combine_first(other) Combine Series values, choosing the calling Series’s
values first.

Series.round([decimals]) Round each value in a Series to the given number of
decimals.

Series.lt(other[, level, fill_value, axis]) Less than of series and other, element-wise (binary op-
erator lt).

Series.gt(other[, level, fill_value, axis]) Greater than of series and other, element-wise (binary
operator gt).

Series.le(other[, level, fill_value, axis]) Less than or equal to of series and other, element-wise
(binary operator le).

Series.ge(other[, level, fill_value, axis]) Greater than or equal to of series and other, element-
wise (binary operator ge).

Series.ne(other[, level, fill_value, axis]) Not equal to of series and other, element-wise (binary
operator ne).

Series.eq(other[, level, fill_value, axis]) Equal to of series and other, element-wise (binary oper-
ator eq).

Series.product([axis, skipna, level, . . .]) Return the product of the values for the requested axis
Series.dot(other) Matrix multiplication with DataFrame or inner-product

with Series objects.

34.3.6 Function application, GroupBy & Window

Series.apply(func[, convert_dtype, args]) Invoke function on values of Series.
Series.agg(func[, axis]) Aggregate using one or more operations over the speci-

fied axis.
Series.aggregate(func[, axis]) Aggregate using one or more operations over the speci-

fied axis.
Series.transform(func, *args, **kwargs) Call function producing a like-indexed NDFrame and

return a NDFrame with the transformed values
Series.map(arg[, na_action]) Map values of Series using input correspondence (a dict,

Series, or function).
Series.groupby([by, axis, level, as_index, . . .]) Group series using mapper (dict or key function, apply

given function to group, return result as series) or by a
series of columns.

Series.rolling(window[, min_periods, . . .]) Provides rolling window calculations.
Series.expanding([min_periods, center, axis]) Provides expanding transformations.
Series.ewm([com, span, halflife, alpha, . . .]) Provides exponential weighted functions
Series.pipe(func, *args, **kwargs) Apply func(self, *args, **kwargs)

34.3. Series 1635

pandas: powerful Python data analysis toolkit, Release 0.23.4

34.3.7 Computations / Descriptive Stats

Series.abs() Return a Series/DataFrame with absolute numeric value
of each element.

Series.all([axis, bool_only, skipna, level]) Return whether all elements are True, potentially over
an axis.

Series.any([axis, bool_only, skipna, level]) Return whether any element is True over requested axis.
Series.autocorr([lag]) Lag-N autocorrelation
Series.between(left, right[, inclusive]) Return boolean Series equivalent to left <= series <=

right.
Series.clip([lower, upper, axis, inplace]) Trim values at input threshold(s).
Series.clip_lower(threshold[, axis, inplace]) Return copy of the input with values below a threshold

truncated.
Series.clip_upper(threshold[, axis, inplace]) Return copy of input with values above given value(s)

truncated.
Series.corr(other[, method, min_periods]) Compute correlation with other Series, excluding miss-

ing values
Series.count([level]) Return number of non-NA/null observations in the Se-

ries
Series.cov(other[, min_periods]) Compute covariance with Series, excluding missing val-

ues
Series.cummax([axis, skipna]) Return cumulative maximum over a DataFrame or Se-

ries axis.
Series.cummin([axis, skipna]) Return cumulative minimum over a DataFrame or Se-

ries axis.
Series.cumprod([axis, skipna]) Return cumulative product over a DataFrame or Series

axis.
Series.cumsum([axis, skipna]) Return cumulative sum over a DataFrame or Series axis.
Series.describe([percentiles, include, exclude]) Generates descriptive statistics that summarize the cen-

tral tendency, dispersion and shape of a dataset’s distri-
bution, excluding NaN values.

Series.diff([periods]) First discrete difference of element.
Series.factorize([sort, na_sentinel]) Encode the object as an enumerated type or categorical

variable.
Series.kurt([axis, skipna, level, numeric_only]) Return unbiased kurtosis over requested axis using

Fisher’s definition of kurtosis (kurtosis of normal ==
0.0).

Series.mad([axis, skipna, level]) Return the mean absolute deviation of the values for the
requested axis

Series.max([axis, skipna, level, numeric_only]) This method returns the maximum of the values in the
object.

Series.mean([axis, skipna, level, numeric_only]) Return the mean of the values for the requested axis
Series.median([axis, skipna, level, . . .]) Return the median of the values for the requested axis
Series.min([axis, skipna, level, numeric_only]) This method returns the minimum of the values in the

object.
Series.mode() Return the mode(s) of the dataset.
Series.nlargest([n, keep]) Return the largest n elements.
Series.nsmallest([n, keep]) Return the smallest n elements.
Series.pct_change([periods, fill_method, . . .]) Percentage change between the current and a prior ele-

ment.
Series.prod([axis, skipna, level, . . .]) Return the product of the values for the requested axis

Continued on next page

1636 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

Table 32 – continued from previous page
Series.quantile([q, interpolation]) Return value at the given quantile, a la

numpy.percentile.
Series.rank([axis, method, numeric_only, . . .]) Compute numerical data ranks (1 through n) along axis.
Series.sem([axis, skipna, level, ddof, . . .]) Return unbiased standard error of the mean over re-

quested axis.
Series.skew([axis, skipna, level, numeric_only]) Return unbiased skew over requested axis Normalized

by N-1
Series.std([axis, skipna, level, ddof, . . .]) Return sample standard deviation over requested axis.
Series.sum([axis, skipna, level, . . .]) Return the sum of the values for the requested axis
Series.var([axis, skipna, level, ddof, . . .]) Return unbiased variance over requested axis.
Series.kurtosis([axis, skipna, level, . . .]) Return unbiased kurtosis over requested axis using

Fisher’s definition of kurtosis (kurtosis of normal ==
0.0).

Series.unique() Return unique values of Series object.
Series.nunique([dropna]) Return number of unique elements in the object.
Series.is_unique Return boolean if values in the object are unique
Series.is_monotonic Return boolean if values in the object are mono-

tonic_increasing
Series.is_monotonic_increasing Return boolean if values in the object are mono-

tonic_increasing
Series.is_monotonic_decreasing Return boolean if values in the object are mono-

tonic_decreasing
Series.value_counts([normalize, sort, . . .]) Returns object containing counts of unique values.
Series.compound([axis, skipna, level]) Return the compound percentage of the values for the

requested axis
Series.nonzero() Return the integer indices of the elements that are non-

zero
Series.ptp([axis, skipna, level, numeric_only]) Returns the difference between the maximum value and

the

34.3.8 Reindexing / Selection / Label manipulation

Series.align(other[, join, axis, level, . . .]) Align two objects on their axes with the specified join
method for each axis Index

Series.drop([labels, axis, index, columns, . . .]) Return Series with specified index labels removed.
Series.drop_duplicates([keep, inplace]) Return Series with duplicate values removed.
Series.duplicated([keep]) Indicate duplicate Series values.
Series.equals(other) Determines if two NDFrame objects contain the same

elements.
Series.first(offset) Convenience method for subsetting initial periods of

time series data based on a date offset.
Series.head([n]) Return the first n rows.
Series.idxmax([axis, skipna]) Return the row label of the maximum value.
Series.idxmin([axis, skipna]) Return the row label of the minimum value.
Series.isin(values) Check whether values are contained in Series.
Series.last(offset) Convenience method for subsetting final periods of time

series data based on a date offset.
Series.reindex([index]) Conform Series to new index with optional filling logic,

placing NA/NaN in locations having no value in the pre-
vious index.

Continued on next page

34.3. Series 1637

pandas: powerful Python data analysis toolkit, Release 0.23.4

Table 33 – continued from previous page
Series.reindex_like(other[, method, copy, . . .]) Return an object with matching indices to myself.
Series.rename([index]) Alter Series index labels or name
Series.rename_axis(mapper[, axis, copy, in-
place])

Alter the name of the index or columns.

Series.reset_index([level, drop, name, in-
place])

Generate a new DataFrame or Series with the index re-
set.

Series.sample([n, frac, replace, weights, . . .]) Return a random sample of items from an axis of object.
Series.select(crit[, axis]) (DEPRECATED) Return data corresponding to axis la-

bels matching criteria
Series.set_axis(labels[, axis, inplace]) Assign desired index to given axis.
Series.take(indices[, axis, convert, is_copy]) Return the elements in the given positional indices

along an axis.
Series.tail([n]) Return the last n rows.
Series.truncate([before, after, axis, copy]) Truncate a Series or DataFrame before and after some

index value.
Series.where(cond[, other, inplace, axis, . . .]) Return an object of same shape as self and whose cor-

responding entries are from self where cond is True and
otherwise are from other.

Series.mask(cond[, other, inplace, axis, . . .]) Return an object of same shape as self and whose corre-
sponding entries are from self where cond is False and
otherwise are from other.

Series.add_prefix(prefix) Prefix labels with string prefix.
Series.add_suffix(suffix) Suffix labels with string suffix.
Series.filter([items, like, regex, axis]) Subset rows or columns of dataframe according to labels

in the specified index.

34.3.9 Missing data handling

Series.isna() Detect missing values.
Series.notna() Detect existing (non-missing) values.
Series.dropna([axis, inplace]) Return a new Series with missing values removed.
Series.fillna([value, method, axis, . . .]) Fill NA/NaN values using the specified method
Series.interpolate([method, axis, limit, . . .]) Interpolate values according to different methods.

34.3.10 Reshaping, sorting

Series.argsort([axis, kind, order]) Overrides ndarray.argsort.
Series.argmin([axis, skipna]) (DEPRECATED) .. deprecated:: 0.21.0
Series.argmax([axis, skipna]) (DEPRECATED) .. deprecated:: 0.21.0
Series.reorder_levels(order) Rearrange index levels using input order.
Series.sort_values([axis, ascending, . . .]) Sort by the values.
Series.sort_index([axis, level, ascending, . . .]) Sort Series by index labels.
Series.swaplevel([i, j, copy]) Swap levels i and j in a MultiIndex
Series.unstack([level, fill_value]) Unstack, a.k.a.
Series.searchsorted(value[, side, sorter]) Find indices where elements should be inserted to main-

tain order.
Series.ravel([order]) Return the flattened underlying data as an ndarray
Series.repeat(repeats, *args, **kwargs) Repeat elements of an Series.
Series.squeeze([axis]) Squeeze length 1 dimensions.

Continued on next page

1638 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

Table 35 – continued from previous page
Series.view([dtype]) Create a new view of the Series.
Series.sortlevel([level, ascending, . . .]) (DEPRECATED) Sort Series with MultiIndex by cho-

sen level.

34.3.11 Combining / joining / merging

Series.append(to_append[, ignore_index, . . .]) Concatenate two or more Series.
Series.replace([to_replace, value, inplace, . . .]) Replace values given in to_replace with value.
Series.update(other) Modify Series in place using non-NA values from

passed Series.

34.3.12 Time series-related

Series.asfreq(freq[, method, how, . . .]) Convert TimeSeries to specified frequency.
Series.asof(where[, subset]) The last row without any NaN is taken (or the last row

without NaN considering only the subset of columns in
the case of a DataFrame)

Series.shift([periods, freq, axis]) Shift index by desired number of periods with an op-
tional time freq

Series.first_valid_index() Return index for first non-NA/null value.
Series.last_valid_index() Return index for last non-NA/null value.
Series.resample(rule[, how, axis, . . .]) Convenience method for frequency conversion and re-

sampling of time series.
Series.tz_convert(tz[, axis, level, copy]) Convert tz-aware axis to target time zone.
Series.tz_localize(tz[, axis, level, copy, . . .]) Localize tz-naive TimeSeries to target time zone.
Series.at_time(time[, asof]) Select values at particular time of day (e.g.
Series.between_time(start_time, end_time[,
. . .])

Select values between particular times of the day (e.g.,
9:00-9:30 AM).

Series.tshift([periods, freq, axis]) Shift the time index, using the index’s frequency if avail-
able.

Series.slice_shift([periods, axis]) Equivalent to shift without copying data.

34.3.13 Datetimelike Properties

Series.dt can be used to access the values of the series as datetimelike and return several properties. These can be
accessed like Series.dt.<property>.

Datetime Properties

Series.dt.date Returns numpy array of python datetime.date objects
(namely, the date part of Timestamps without timezone
information).

Series.dt.time Returns numpy array of datetime.time.
Series.dt.year The year of the datetime
Series.dt.month The month as January=1, December=12
Series.dt.day The days of the datetime
Series.dt.hour The hours of the datetime
Series.dt.minute The minutes of the datetime
Series.dt.second The seconds of the datetime

Continued on next page

34.3. Series 1639

pandas: powerful Python data analysis toolkit, Release 0.23.4

Table 38 – continued from previous page
Series.dt.microsecond The microseconds of the datetime
Series.dt.nanosecond The nanoseconds of the datetime
Series.dt.week The week ordinal of the year
Series.dt.weekofyear The week ordinal of the year
Series.dt.dayofweek The day of the week with Monday=0, Sunday=6
Series.dt.weekday The day of the week with Monday=0, Sunday=6
Series.dt.dayofyear The ordinal day of the year
Series.dt.quarter The quarter of the date
Series.dt.is_month_start Logical indicating if first day of month (defined by fre-

quency)
Series.dt.is_month_end Indicator for whether the date is the last day of the

month.
Series.dt.is_quarter_start Indicator for whether the date is the first day of a quarter.
Series.dt.is_quarter_end Indicator for whether the date is the last day of a quarter.
Series.dt.is_year_start Indicate whether the date is the first day of a year.
Series.dt.is_year_end Indicate whether the date is the last day of the year.
Series.dt.is_leap_year Boolean indicator if the date belongs to a leap year.
Series.dt.daysinmonth The number of days in the month
Series.dt.days_in_month The number of days in the month
Series.dt.tz
Series.dt.freq

34.3.13.1 pandas.Series.dt.date

Series.dt.date
Returns numpy array of python datetime.date objects (namely, the date part of Timestamps without timezone
information).

34.3.13.2 pandas.Series.dt.time

Series.dt.time
Returns numpy array of datetime.time. The time part of the Timestamps.

34.3.13.3 pandas.Series.dt.year

Series.dt.year
The year of the datetime

34.3.13.4 pandas.Series.dt.month

Series.dt.month
The month as January=1, December=12

34.3.13.5 pandas.Series.dt.day

Series.dt.day
The days of the datetime

1640 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

34.3.13.6 pandas.Series.dt.hour

Series.dt.hour
The hours of the datetime

34.3.13.7 pandas.Series.dt.minute

Series.dt.minute
The minutes of the datetime

34.3.13.8 pandas.Series.dt.second

Series.dt.second
The seconds of the datetime

34.3.13.9 pandas.Series.dt.microsecond

Series.dt.microsecond
The microseconds of the datetime

34.3.13.10 pandas.Series.dt.nanosecond

Series.dt.nanosecond
The nanoseconds of the datetime

34.3.13.11 pandas.Series.dt.week

Series.dt.week
The week ordinal of the year

34.3.13.12 pandas.Series.dt.weekofyear

Series.dt.weekofyear
The week ordinal of the year

34.3.13.13 pandas.Series.dt.dayofweek

Series.dt.dayofweek
The day of the week with Monday=0, Sunday=6

34.3.13.14 pandas.Series.dt.weekday

Series.dt.weekday
The day of the week with Monday=0, Sunday=6

34.3. Series 1641

pandas: powerful Python data analysis toolkit, Release 0.23.4

34.3.13.15 pandas.Series.dt.dayofyear

Series.dt.dayofyear
The ordinal day of the year

34.3.13.16 pandas.Series.dt.quarter

Series.dt.quarter
The quarter of the date

34.3.13.17 pandas.Series.dt.is_month_start

Series.dt.is_month_start
Logical indicating if first day of month (defined by frequency)

34.3.13.18 pandas.Series.dt.is_month_end

Series.dt.is_month_end
Indicator for whether the date is the last day of the month.

Returns Series or array

For Series, returns a Series with boolean values. For DatetimeIndex, returns a
boolean array.

See also:

is_month_start Indicator for whether the date is the first day of the month.

Examples

This method is available on Series with datetime values under the .dt accessor, and directly on DatetimeIndex.

>>> dates = pd.Series(pd.date_range("2018-02-27", periods=3))
>>> dates
0 2018-02-27
1 2018-02-28
2 2018-03-01
dtype: datetime64[ns]
>>> dates.dt.is_month_end
0 False
1 True
2 False
dtype: bool

>>> idx = pd.date_range("2018-02-27", periods=3)
>>> idx.is_month_end
array([False, True, False], dtype=bool)

1642 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

34.3.13.19 pandas.Series.dt.is_quarter_start

Series.dt.is_quarter_start
Indicator for whether the date is the first day of a quarter.

Returns is_quarter_start : Series or DatetimeIndex

The same type as the original data with boolean values. Series will have the same
name and index. DatetimeIndex will have the same name.

See also:

quarter Return the quarter of the date.

is_quarter_end Similar property for indicating the quarter start.

Examples

This method is available on Series with datetime values under the .dt accessor, and directly on DatetimeIndex.

>>> df = pd.DataFrame({'dates': pd.date_range("2017-03-30",
... periods=4)})
>>> df.assign(quarter=df.dates.dt.quarter,
... is_quarter_start=df.dates.dt.is_quarter_start)

dates quarter is_quarter_start
0 2017-03-30 1 False
1 2017-03-31 1 False
2 2017-04-01 2 True
3 2017-04-02 2 False

>>> idx = pd.date_range('2017-03-30', periods=4)
>>> idx
DatetimeIndex(['2017-03-30', '2017-03-31', '2017-04-01', '2017-04-02'],

dtype='datetime64[ns]', freq='D')

>>> idx.is_quarter_start
array([False, False, True, False])

34.3.13.20 pandas.Series.dt.is_quarter_end

Series.dt.is_quarter_end
Indicator for whether the date is the last day of a quarter.

Returns is_quarter_end : Series or DatetimeIndex

The same type as the original data with boolean values. Series will have the same
name and index. DatetimeIndex will have the same name.

See also:

quarter Return the quarter of the date.

is_quarter_start Similar property indicating the quarter start.

34.3. Series 1643

pandas: powerful Python data analysis toolkit, Release 0.23.4

Examples

This method is available on Series with datetime values under the .dt accessor, and directly on DatetimeIndex.

>>> df = pd.DataFrame({'dates': pd.date_range("2017-03-30",
... periods=4)})
>>> df.assign(quarter=df.dates.dt.quarter,
... is_quarter_end=df.dates.dt.is_quarter_end)

dates quarter is_quarter_end
0 2017-03-30 1 False
1 2017-03-31 1 True
2 2017-04-01 2 False
3 2017-04-02 2 False

>>> idx = pd.date_range('2017-03-30', periods=4)
>>> idx
DatetimeIndex(['2017-03-30', '2017-03-31', '2017-04-01', '2017-04-02'],

dtype='datetime64[ns]', freq='D')

>>> idx.is_quarter_end
array([False, True, False, False])

34.3.13.21 pandas.Series.dt.is_year_start

Series.dt.is_year_start
Indicate whether the date is the first day of a year.

Returns Series or DatetimeIndex

The same type as the original data with boolean values. Series will have the same
name and index. DatetimeIndex will have the same name.

See also:

is_year_end Similar property indicating the last day of the year.

Examples

This method is available on Series with datetime values under the .dt accessor, and directly on DatetimeIndex.

>>> dates = pd.Series(pd.date_range("2017-12-30", periods=3))
>>> dates
0 2017-12-30
1 2017-12-31
2 2018-01-01
dtype: datetime64[ns]

>>> dates.dt.is_year_start
0 False
1 False
2 True
dtype: bool

1644 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

>>> idx = pd.date_range("2017-12-30", periods=3)
>>> idx
DatetimeIndex(['2017-12-30', '2017-12-31', '2018-01-01'],

dtype='datetime64[ns]', freq='D')

>>> idx.is_year_start
array([False, False, True])

34.3.13.22 pandas.Series.dt.is_year_end

Series.dt.is_year_end
Indicate whether the date is the last day of the year.

Returns Series or DatetimeIndex

The same type as the original data with boolean values. Series will have the same
name and index. DatetimeIndex will have the same name.

See also:

is_year_start Similar property indicating the start of the year.

Examples

This method is available on Series with datetime values under the .dt accessor, and directly on DatetimeIndex.

>>> dates = pd.Series(pd.date_range("2017-12-30", periods=3))
>>> dates
0 2017-12-30
1 2017-12-31
2 2018-01-01
dtype: datetime64[ns]

>>> dates.dt.is_year_end
0 False
1 True
2 False
dtype: bool

>>> idx = pd.date_range("2017-12-30", periods=3)
>>> idx
DatetimeIndex(['2017-12-30', '2017-12-31', '2018-01-01'],

dtype='datetime64[ns]', freq='D')

>>> idx.is_year_end
array([False, True, False])

34.3.13.23 pandas.Series.dt.is_leap_year

Series.dt.is_leap_year
Boolean indicator if the date belongs to a leap year.

34.3. Series 1645

pandas: powerful Python data analysis toolkit, Release 0.23.4

A leap year is a year, which has 366 days (instead of 365) including 29th of February as an intercalary day. Leap
years are years which are multiples of four with the exception of years divisible by 100 but not by 400.

Returns Series or ndarray

Booleans indicating if dates belong to a leap year.

Examples

This method is available on Series with datetime values under the .dt accessor, and directly on DatetimeIndex.

>>> idx = pd.date_range("2012-01-01", "2015-01-01", freq="Y")
>>> idx
DatetimeIndex(['2012-12-31', '2013-12-31', '2014-12-31'],

dtype='datetime64[ns]', freq='A-DEC')
>>> idx.is_leap_year
array([True, False, False], dtype=bool)

>>> dates = pd.Series(idx)
>>> dates_series
0 2012-12-31
1 2013-12-31
2 2014-12-31
dtype: datetime64[ns]
>>> dates_series.dt.is_leap_year
0 True
1 False
2 False
dtype: bool

34.3.13.24 pandas.Series.dt.daysinmonth

Series.dt.daysinmonth
The number of days in the month

34.3.13.25 pandas.Series.dt.days_in_month

Series.dt.days_in_month
The number of days in the month

34.3.13.26 pandas.Series.dt.tz

Series.dt.tz

34.3.13.27 pandas.Series.dt.freq

Series.dt.freq

Datetime Methods

Series.dt.to_period(*args, **kwargs) Cast to PeriodIndex at a particular frequency.
Continued on next page

1646 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

Table 39 – continued from previous page
Series.dt.to_pydatetime() Return the data as an array of native Python datetime

objects
Series.dt.tz_localize(*args, **kwargs) Localize tz-naive DatetimeIndex to tz-aware Date-

timeIndex.
Series.dt.tz_convert(*args, **kwargs) Convert tz-aware DatetimeIndex from one time zone to

another.
Series.dt.normalize(*args, **kwargs) Convert times to midnight.
Series.dt.strftime(*args, **kwargs) Convert to Index using specified date_format.
Series.dt.round(*args, **kwargs) round the data to the specified freq.
Series.dt.floor(*args, **kwargs) floor the data to the specified freq.
Series.dt.ceil(*args, **kwargs) ceil the data to the specified freq.
Series.dt.month_name(*args, **kwargs) Return the month names of the DateTimeIndex with

specified locale.
Series.dt.day_name(*args, **kwargs) Return the day names of the DateTimeIndex with spec-

ified locale.

34.3.13.28 pandas.Series.dt.to_period

Series.dt.to_period(*args, **kwargs)
Cast to PeriodIndex at a particular frequency.

Converts DatetimeIndex to PeriodIndex.

Parameters freq : string or Offset, optional

One of pandas’ offset strings or an Offset object. Will be inferred by default.

Returns

PeriodIndex

Raises ValueError

When converting a DatetimeIndex with non-regular values, so that a frequency can-
not be inferred.

See also:

pandas.PeriodIndex Immutable ndarray holding ordinal values

pandas.DatetimeIndex.to_pydatetime Return DatetimeIndex as object

Examples

>>> df = pd.DataFrame({"y": [1,2,3]},
... index=pd.to_datetime(["2000-03-31 00:00:00",
... "2000-05-31 00:00:00",
... "2000-08-31 00:00:00"]))
>>> df.index.to_period("M")
PeriodIndex(['2000-03', '2000-05', '2000-08'],

dtype='period[M]', freq='M')

Infer the daily frequency

34.3. Series 1647

pandas: powerful Python data analysis toolkit, Release 0.23.4

>>> idx = pd.date_range("2017-01-01", periods=2)
>>> idx.to_period()
PeriodIndex(['2017-01-01', '2017-01-02'],

dtype='period[D]', freq='D')

34.3.13.29 pandas.Series.dt.to_pydatetime

Series.dt.to_pydatetime()
Return the data as an array of native Python datetime objects

Timezone information is retained if present.

Warning: Python’s datetime uses microsecond resolution, which is lower than pandas (nanosecond). The
values are truncated.

Returns numpy.ndarray

object dtype array containing native Python datetime objects.

See also:

datetime.datetime Standard library value for a datetime.

Examples

>>> s = pd.Series(pd.date_range('20180310', periods=2))
>>> s
0 2018-03-10
1 2018-03-11
dtype: datetime64[ns]

>>> s.dt.to_pydatetime()
array([datetime.datetime(2018, 3, 10, 0, 0),

datetime.datetime(2018, 3, 11, 0, 0)], dtype=object)

pandas’ nanosecond precision is truncated to microseconds.

>>> s = pd.Series(pd.date_range('20180310', periods=2, freq='ns'))
>>> s
0 2018-03-10 00:00:00.000000000
1 2018-03-10 00:00:00.000000001
dtype: datetime64[ns]

>>> s.dt.to_pydatetime()
array([datetime.datetime(2018, 3, 10, 0, 0),

datetime.datetime(2018, 3, 10, 0, 0)], dtype=object)

34.3.13.30 pandas.Series.dt.tz_localize

Series.dt.tz_localize(*args, **kwargs)
Localize tz-naive DatetimeIndex to tz-aware DatetimeIndex.

1648 Chapter 34. API Reference

https://docs.python.org/3/library/datetime.html#datetime.datetime

pandas: powerful Python data analysis toolkit, Release 0.23.4

This method takes a time zone (tz) naive DatetimeIndex object and makes this time zone aware. It does not
move the time to another time zone. Time zone localization helps to switch from time zone aware to time zone
unaware objects.

Parameters tz : string, pytz.timezone, dateutil.tz.tzfile or None

Time zone to convert timestamps to. Passing None will remove the time zone infor-
mation preserving local time.

ambiguous : str {‘infer’, ‘NaT’, ‘raise’} or bool array, default ‘raise’

• ‘infer’ will attempt to infer fall dst-transition hours based on order

• bool-ndarray where True signifies a DST time, False signifies a non-DST time (note that
this flag is only applicable for ambiguous times)

• ‘NaT’ will return NaT where there are ambiguous times

• ‘raise’ will raise an AmbiguousTimeError if there are ambiguous times

errors : {‘raise’, ‘coerce’}, default ‘raise’

• ‘raise’ will raise a NonExistentTimeError if a timestamp is not valid in the
specified time zone (e.g. due to a transition from or to DST time)

• ‘coerce’ will return NaT if the timestamp can not be converted to the specified
time zone

New in version 0.19.0.

Returns DatetimeIndex

Index converted to the specified time zone.

Raises TypeError

If the DatetimeIndex is tz-aware and tz is not None.

See also:

DatetimeIndex.tz_convert Convert tz-aware DatetimeIndex from one time zone to another.

Examples

>>> tz_naive = pd.date_range('2018-03-01 09:00', periods=3)
>>> tz_naive
DatetimeIndex(['2018-03-01 09:00:00', '2018-03-02 09:00:00',

'2018-03-03 09:00:00'],
dtype='datetime64[ns]', freq='D')

Localize DatetimeIndex in US/Eastern time zone:

>>> tz_aware = tz_naive.tz_localize(tz='US/Eastern')
>>> tz_aware
DatetimeIndex(['2018-03-01 09:00:00-05:00',

'2018-03-02 09:00:00-05:00',
'2018-03-03 09:00:00-05:00'],

dtype='datetime64[ns, US/Eastern]', freq='D')

With the tz=None, we can remove the time zone information while keeping the local time (not converted to
UTC):

34.3. Series 1649

pandas: powerful Python data analysis toolkit, Release 0.23.4

>>> tz_aware.tz_localize(None)
DatetimeIndex(['2018-03-01 09:00:00', '2018-03-02 09:00:00',

'2018-03-03 09:00:00'],
dtype='datetime64[ns]', freq='D')

34.3.13.31 pandas.Series.dt.tz_convert

Series.dt.tz_convert(*args, **kwargs)
Convert tz-aware DatetimeIndex from one time zone to another.

Parameters tz : string, pytz.timezone, dateutil.tz.tzfile or None

Time zone for time. Corresponding timestamps would be converted to this time zone
of the DatetimeIndex. A tz of None will convert to UTC and remove the timezone
information.

Returns

normalized [DatetimeIndex]

Raises TypeError

If DatetimeIndex is tz-naive.

See also:

DatetimeIndex.tz A timezone that has a variable offset from UTC

DatetimeIndex.tz_localize Localize tz-naive DatetimeIndex to a given time zone, or remove time-
zone from a tz-aware DatetimeIndex.

Examples

With the tz parameter, we can change the DatetimeIndex to other time zones:

>>> dti = pd.DatetimeIndex(start='2014-08-01 09:00',
... freq='H', periods=3, tz='Europe/Berlin')

>>> dti
DatetimeIndex(['2014-08-01 09:00:00+02:00',

'2014-08-01 10:00:00+02:00',
'2014-08-01 11:00:00+02:00'],

dtype='datetime64[ns, Europe/Berlin]', freq='H')

>>> dti.tz_convert('US/Central')
DatetimeIndex(['2014-08-01 02:00:00-05:00',

'2014-08-01 03:00:00-05:00',
'2014-08-01 04:00:00-05:00'],

dtype='datetime64[ns, US/Central]', freq='H')

With the tz=None, we can remove the timezone (after converting to UTC if necessary):

>>> dti = pd.DatetimeIndex(start='2014-08-01 09:00',freq='H',
... periods=3, tz='Europe/Berlin')

1650 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

>>> dti
DatetimeIndex(['2014-08-01 09:00:00+02:00',

'2014-08-01 10:00:00+02:00',
'2014-08-01 11:00:00+02:00'],
dtype='datetime64[ns, Europe/Berlin]', freq='H')

>>> dti.tz_convert(None)
DatetimeIndex(['2014-08-01 07:00:00',

'2014-08-01 08:00:00',
'2014-08-01 09:00:00'],
dtype='datetime64[ns]', freq='H')

34.3.13.32 pandas.Series.dt.normalize

Series.dt.normalize(*args, **kwargs)
Convert times to midnight.

The time component of the date-timeise converted to midnight i.e. 00:00:00. This is useful in cases, when the
time does not matter. Length is unaltered. The timezones are unaffected.

This method is available on Series with datetime values under the .dt accessor, and directly on DatetimeIndex.

Returns DatetimeIndex or Series

The same type as the original data. Series will have the same name and index.
DatetimeIndex will have the same name.

See also:

floor Floor the datetimes to the specified freq.

ceil Ceil the datetimes to the specified freq.

round Round the datetimes to the specified freq.

Examples

>>> idx = pd.DatetimeIndex(start='2014-08-01 10:00', freq='H',
... periods=3, tz='Asia/Calcutta')
>>> idx
DatetimeIndex(['2014-08-01 10:00:00+05:30',

'2014-08-01 11:00:00+05:30',
'2014-08-01 12:00:00+05:30'],
dtype='datetime64[ns, Asia/Calcutta]', freq='H')

>>> idx.normalize()
DatetimeIndex(['2014-08-01 00:00:00+05:30',

'2014-08-01 00:00:00+05:30',
'2014-08-01 00:00:00+05:30'],
dtype='datetime64[ns, Asia/Calcutta]', freq=None)

34.3.13.33 pandas.Series.dt.strftime

Series.dt.strftime(*args, **kwargs)
Convert to Index using specified date_format.

34.3. Series 1651

pandas: powerful Python data analysis toolkit, Release 0.23.4

Return an Index of formatted strings specified by date_format, which supports the same string format as the
python standard library. Details of the string format can be found in python string format doc

Parameters date_format : str

Date format string (e.g. “%Y-%m-%d”).

Returns Index

Index of formatted strings

See also:

pandas.to_datetime Convert the given argument to datetime

DatetimeIndex.normalize Return DatetimeIndex with times to midnight.

DatetimeIndex.round Round the DatetimeIndex to the specified freq.

DatetimeIndex.floor Floor the DatetimeIndex to the specified freq.

Examples

>>> rng = pd.date_range(pd.Timestamp("2018-03-10 09:00"),
... periods=3, freq='s')
>>> rng.strftime('%B %d, %Y, %r')
Index(['March 10, 2018, 09:00:00 AM', 'March 10, 2018, 09:00:01 AM',

'March 10, 2018, 09:00:02 AM'],
dtype='object')

34.3.13.34 pandas.Series.dt.round

Series.dt.round(*args, **kwargs)
round the data to the specified freq.

Parameters freq : str or Offset

The frequency level to round the index to. Must be a fixed frequency like ‘S’ (second)
not ‘ME’ (month end). See frequency aliases for a list of possible freq values.

Returns DatetimeIndex, TimedeltaIndex, or Series

Index of the same type for a DatetimeIndex or TimedeltaIndex, or a Series with the
same index for a Series.

Raises

ValueError if the ‘freq‘ cannot be converted.

Examples

DatetimeIndex

>>> rng = pd.date_range('1/1/2018 11:59:00', periods=3, freq='min')
>>> rng
DatetimeIndex(['2018-01-01 11:59:00', '2018-01-01 12:00:00',

'2018-01-01 12:01:00'],
dtype='datetime64[ns]', freq='T')

(continues on next page)

1652 Chapter 34. API Reference

https://docs.python.org/3/library/datetime.html#strftime-and-strptime-behavior

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

>>> rng.round('H')
DatetimeIndex(['2018-01-01 12:00:00', '2018-01-01 12:00:00',

'2018-01-01 12:00:00'],
dtype='datetime64[ns]', freq=None)

Series

>>> pd.Series(rng).dt.round("H")
0 2018-01-01 12:00:00
1 2018-01-01 12:00:00
2 2018-01-01 12:00:00
dtype: datetime64[ns]

34.3.13.35 pandas.Series.dt.floor

Series.dt.floor(*args, **kwargs)
floor the data to the specified freq.

Parameters freq : str or Offset

The frequency level to floor the index to. Must be a fixed frequency like ‘S’ (second)
not ‘ME’ (month end). See frequency aliases for a list of possible freq values.

Returns DatetimeIndex, TimedeltaIndex, or Series

Index of the same type for a DatetimeIndex or TimedeltaIndex, or a Series with the
same index for a Series.

Raises

ValueError if the ‘freq‘ cannot be converted.

Examples

DatetimeIndex

>>> rng = pd.date_range('1/1/2018 11:59:00', periods=3, freq='min')
>>> rng
DatetimeIndex(['2018-01-01 11:59:00', '2018-01-01 12:00:00',

'2018-01-01 12:01:00'],
dtype='datetime64[ns]', freq='T')

>>> rng.floor('H')
DatetimeIndex(['2018-01-01 11:00:00', '2018-01-01 12:00:00',

'2018-01-01 12:00:00'],
dtype='datetime64[ns]', freq=None)

Series

>>> pd.Series(rng).dt.floor("H")
0 2018-01-01 11:00:00
1 2018-01-01 12:00:00
2 2018-01-01 12:00:00
dtype: datetime64[ns]

34.3. Series 1653

pandas: powerful Python data analysis toolkit, Release 0.23.4

34.3.13.36 pandas.Series.dt.ceil

Series.dt.ceil(*args, **kwargs)
ceil the data to the specified freq.

Parameters freq : str or Offset

The frequency level to ceil the index to. Must be a fixed frequency like ‘S’ (second)
not ‘ME’ (month end). See frequency aliases for a list of possible freq values.

Returns DatetimeIndex, TimedeltaIndex, or Series

Index of the same type for a DatetimeIndex or TimedeltaIndex, or a Series with the
same index for a Series.

Raises

ValueError if the ‘freq‘ cannot be converted.

Examples

DatetimeIndex

>>> rng = pd.date_range('1/1/2018 11:59:00', periods=3, freq='min')
>>> rng
DatetimeIndex(['2018-01-01 11:59:00', '2018-01-01 12:00:00',

'2018-01-01 12:01:00'],
dtype='datetime64[ns]', freq='T')

>>> rng.ceil('H')
DatetimeIndex(['2018-01-01 12:00:00', '2018-01-01 12:00:00',

'2018-01-01 13:00:00'],
dtype='datetime64[ns]', freq=None)

Series

>>> pd.Series(rng).dt.ceil("H")
0 2018-01-01 12:00:00
1 2018-01-01 12:00:00
2 2018-01-01 13:00:00
dtype: datetime64[ns]

34.3.13.37 pandas.Series.dt.month_name

Series.dt.month_name(*args, **kwargs)
Return the month names of the DateTimeIndex with specified locale.

Parameters locale : string, default None (English locale)

locale determining the language in which to return the month name

Returns month_names : Index

Index of month names

.. versionadded:: 0.23.0

1654 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

34.3.13.38 pandas.Series.dt.day_name

Series.dt.day_name(*args, **kwargs)
Return the day names of the DateTimeIndex with specified locale.

Parameters locale : string, default None (English locale)

locale determining the language in which to return the day name

Returns month_names : Index

Index of day names

.. versionadded:: 0.23.0

Timedelta Properties

Series.dt.days Number of days for each element.
Series.dt.seconds Number of seconds (>= 0 and less than 1 day) for each

element.
Series.dt.microseconds Number of microseconds (>= 0 and less than 1 second)

for each element.
Series.dt.nanoseconds Number of nanoseconds (>= 0 and less than 1 microsec-

ond) for each element.
Series.dt.components Return a dataframe of the components (days, hours,

minutes, seconds, milliseconds, microseconds,
nanoseconds) of the Timedeltas.

34.3.13.39 pandas.Series.dt.days

Series.dt.days
Number of days for each element.

34.3.13.40 pandas.Series.dt.seconds

Series.dt.seconds
Number of seconds (>= 0 and less than 1 day) for each element.

34.3.13.41 pandas.Series.dt.microseconds

Series.dt.microseconds
Number of microseconds (>= 0 and less than 1 second) for each element.

34.3.13.42 pandas.Series.dt.nanoseconds

Series.dt.nanoseconds
Number of nanoseconds (>= 0 and less than 1 microsecond) for each element.

34.3.13.43 pandas.Series.dt.components

Series.dt.components
Return a dataframe of the components (days, hours, minutes, seconds, milliseconds, microseconds, nanosec-

34.3. Series 1655

pandas: powerful Python data analysis toolkit, Release 0.23.4

onds) of the Timedeltas.

Returns

a DataFrame

Timedelta Methods

Series.dt.to_pytimedelta() Return an array of native datetime.timedelta objects.
Series.dt.total_seconds(*args, **kwargs) Return total duration of each element expressed in sec-

onds.

34.3.13.44 pandas.Series.dt.to_pytimedelta

Series.dt.to_pytimedelta()
Return an array of native datetime.timedelta objects.

Python’s standard datetime library uses a different representation timedelta’s. This method converts a Series of
pandas Timedeltas to datetime.timedelta format with the same length as the original Series.

Returns a : numpy.ndarray

1D array containing data with datetime.timedelta type.

See also:

datetime.timedelta

Examples

>>> s = pd.Series(pd.to_timedelta(np.arange(5), unit='d'))
>>> s
0 0 days
1 1 days
2 2 days
3 3 days
4 4 days
dtype: timedelta64[ns]

>>> s.dt.to_pytimedelta()
array([datetime.timedelta(0), datetime.timedelta(1),

datetime.timedelta(2), datetime.timedelta(3),
datetime.timedelta(4)], dtype=object)

34.3.13.45 pandas.Series.dt.total_seconds

Series.dt.total_seconds(*args, **kwargs)
Return total duration of each element expressed in seconds.

This method is available directly on TimedeltaIndex and on Series containing timedelta values under the .dt
namespace.

Returns seconds : Float64Index or Series

1656 Chapter 34. API Reference

https://docs.python.org/3/library/datetime.html#datetime.timedelta

pandas: powerful Python data analysis toolkit, Release 0.23.4

When the calling object is a TimedeltaIndex, the return type is a Float64Index. When
the calling object is a Series, the return type is Series of type float64 whose index is
the same as the original.

See also:

datetime.timedelta.total_seconds Standard library version of this method.

TimedeltaIndex.components Return a DataFrame with components of each Timedelta.

Examples

Series

>>> s = pd.Series(pd.to_timedelta(np.arange(5), unit='d'))
>>> s
0 0 days
1 1 days
2 2 days
3 3 days
4 4 days
dtype: timedelta64[ns]

>>> s.dt.total_seconds()
0 0.0
1 86400.0
2 172800.0
3 259200.0
4 345600.0
dtype: float64

TimedeltaIndex

>>> idx = pd.to_timedelta(np.arange(5), unit='d')
>>> idx
TimedeltaIndex(['0 days', '1 days', '2 days', '3 days', '4 days'],

dtype='timedelta64[ns]', freq=None)

>>> idx.total_seconds()
Float64Index([0.0, 86400.0, 172800.0, 259200.00000000003, 345600.0],

dtype='float64')

34.3.14 String handling

Series.str can be used to access the values of the series as strings and apply several methods to it. These can be
accessed like Series.str.<function/property>.

Series.str.capitalize() Convert strings in the Series/Index to be capitalized.
Series.str.cat([others, sep, na_rep, join]) Concatenate strings in the Series/Index with given sep-

arator.
Series.str.center(width[, fillchar]) Filling left and right side of strings in the Series/Index

with an additional character.
Continued on next page

34.3. Series 1657

https://docs.python.org/3/library/datetime.html#datetime.timedelta.total_seconds

pandas: powerful Python data analysis toolkit, Release 0.23.4

Table 42 – continued from previous page
Series.str.contains(pat[, case, flags, na, . . .]) Test if pattern or regex is contained within a string of a

Series or Index.
Series.str.count(pat[, flags]) Count occurrences of pattern in each string of the Se-

ries/Index.
Series.str.decode(encoding[, errors]) Decode character string in the Series/Index using indi-

cated encoding.
Series.str.encode(encoding[, errors]) Encode character string in the Series/Index using indi-

cated encoding.
Series.str.endswith(pat[, na]) Test if the end of each string element matches a pattern.
Series.str.extract(pat[, flags, expand]) For each subject string in the Series, extract groups from

the first match of regular expression pat.
Series.str.extractall(pat[, flags]) For each subject string in the Series, extract groups from

all matches of regular expression pat.
Series.str.find(sub[, start, end]) Return lowest indexes in each strings in the Se-

ries/Index where the substring is fully contained be-
tween [start:end].

Series.str.findall(pat[, flags]) Find all occurrences of pattern or regular expression in
the Series/Index.

Series.str.get(i) Extract element from each component at specified posi-
tion.

Series.str.index(sub[, start, end]) Return lowest indexes in each strings where the sub-
string is fully contained between [start:end].

Series.str.join(sep) Join lists contained as elements in the Series/Index with
passed delimiter.

Series.str.len() Compute length of each string in the Series/Index.
Series.str.ljust(width[, fillchar]) Filling right side of strings in the Series/Index with an

additional character.
Series.str.lower() Convert strings in the Series/Index to lowercase.
Series.str.lstrip([to_strip]) Strip whitespace (including newlines) from each string

in the Series/Index from left side.
Series.str.match(pat[, case, flags, na, . . .]) Determine if each string matches a regular expression.
Series.str.normalize(form) Return the Unicode normal form for the strings in the

Series/Index.
Series.str.pad(width[, side, fillchar]) Pad strings in the Series/Index with an additional char-

acter to specified side.
Series.str.partition([pat, expand]) Split the string at the first occurrence of sep, and return

3 elements containing the part before the separator, the
separator itself, and the part after the separator.

Series.str.repeat(repeats) Duplicate each string in the Series/Index by indicated
number of times.

Series.str.replace(pat, repl[, n, case, . . .]) Replace occurrences of pattern/regex in the Series/Index
with some other string.

Series.str.rfind(sub[, start, end]) Return highest indexes in each strings in the Se-
ries/Index where the substring is fully contained be-
tween [start:end].

Series.str.rindex(sub[, start, end]) Return highest indexes in each strings where the sub-
string is fully contained between [start:end].

Series.str.rjust(width[, fillchar]) Filling left side of strings in the Series/Index with an
additional character.

Continued on next page

1658 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

Table 42 – continued from previous page
Series.str.rpartition([pat, expand]) Split the string at the last occurrence of sep, and return

3 elements containing the part before the separator, the
separator itself, and the part after the separator.

Series.str.rstrip([to_strip]) Strip whitespace (including newlines) from each string
in the Series/Index from right side.

Series.str.slice([start, stop, step]) Slice substrings from each element in the Series/Index
Series.str.slice_replace([start, stop, repl]) Replace a positional slice of a string with another value.
Series.str.split([pat, n, expand]) Split strings around given separator/delimiter.
Series.str.rsplit([pat, n, expand]) Split each string in the Series/Index by the given delim-

iter string, starting at the end of the string and working
to the front.

Series.str.startswith(pat[, na]) Test if the start of each string element matches a pattern.
Series.str.strip([to_strip]) Strip whitespace (including newlines) from each string

in the Series/Index from left and right sides.
Series.str.swapcase() Convert strings in the Series/Index to be swapcased.
Series.str.title() Convert strings in the Series/Index to titlecase.
Series.str.translate(table[, deletechars]) Map all characters in the string through the given map-

ping table.
Series.str.upper() Convert strings in the Series/Index to uppercase.
Series.str.wrap(width, **kwargs) Wrap long strings in the Series/Index to be formatted in

paragraphs with length less than a given width.
Series.str.zfill(width) Filling left side of strings in the Series/Index with 0.
Series.str.isalnum() Check whether all characters in each string in the Se-

ries/Index are alphanumeric.
Series.str.isalpha() Check whether all characters in each string in the Se-

ries/Index are alphabetic.
Series.str.isdigit() Check whether all characters in each string in the Se-

ries/Index are digits.
Series.str.isspace() Check whether all characters in each string in the Se-

ries/Index are whitespace.
Series.str.islower() Check whether all characters in each string in the Se-

ries/Index are lowercase.
Series.str.isupper() Check whether all characters in each string in the Se-

ries/Index are uppercase.
Series.str.istitle() Check whether all characters in each string in the Se-

ries/Index are titlecase.
Series.str.isnumeric() Check whether all characters in each string in the Se-

ries/Index are numeric.
Series.str.isdecimal() Check whether all characters in each string in the Se-

ries/Index are decimal.
Series.str.get_dummies([sep]) Split each string in the Series by sep and return a frame

of dummy/indicator variables.

34.3.14.1 pandas.Series.str.capitalize

Series.str.capitalize()
Convert strings in the Series/Index to be capitalized.

Equivalent to str.capitalize().

Returns

Series/Index of objects

34.3. Series 1659

https://docs.python.org/3/library/stdtypes.html#str.capitalize

pandas: powerful Python data analysis toolkit, Release 0.23.4

See also:

Series.str.lower Converts all characters to lowercase.

Series.str.upper Converts all characters to uppercase.

Series.str.title Converts first character of each word to uppercase and remaining to lowercase.

Series.str.capitalize Converts first character to uppercase and remaining to lowercase.

Series.str.swapcase Converts uppercase to lowercase and lowercase to uppercase.

Examples

>>> s = pd.Series(['lower', 'CAPITALS', 'this is a sentence', 'SwApCaSe'])
>>> s
0 lower
1 CAPITALS
2 this is a sentence
3 SwApCaSe
dtype: object

>>> s.str.lower()
0 lower
1 capitals
2 this is a sentence
3 swapcase
dtype: object

>>> s.str.upper()
0 LOWER
1 CAPITALS
2 THIS IS A SENTENCE
3 SWAPCASE
dtype: object

>>> s.str.title()
0 Lower
1 Capitals
2 This Is A Sentence
3 Swapcase
dtype: object

>>> s.str.capitalize()
0 Lower
1 Capitals
2 This is a sentence
3 Swapcase
dtype: object

>>> s.str.swapcase()
0 LOWER
1 capitals
2 THIS IS A SENTENCE
3 sWaPcAsE
dtype: object

1660 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

34.3.14.2 pandas.Series.str.cat

Series.str.cat(others=None, sep=None, na_rep=None, join=None)
Concatenate strings in the Series/Index with given separator.

If others is specified, this function concatenates the Series/Index and elements of others element-wise. If others
is not passed, then all values in the Series/Index are concatenated into a single string with a given sep.

Parameters others : Series, Index, DataFrame, np.ndarrary or list-like

Series, Index, DataFrame, np.ndarray (one- or two-dimensional) and other list-likes
of strings must have the same length as the calling Series/Index, with the exception
of indexed objects (i.e. Series/Index/DataFrame) if join is not None.

If others is a list-like that contains a combination of Series, np.ndarray (1-dim) or
list-like, then all elements will be unpacked and must satisfy the above criteria indi-
vidually.

If others is None, the method returns the concatenation of all strings in the calling
Series/Index.

sep : string or None, default None

If None, concatenates without any separator.

na_rep : string or None, default None

Representation that is inserted for all missing values:

• If na_rep is None, and others is None, missing values in the Series/Index are
omitted from the result.

• If na_rep is None, and others is not None, a row containing a missing value
in any of the columns (before concatenation) will have a missing value in the
result.

join : {‘left’, ‘right’, ‘outer’, ‘inner’}, default None

Determines the join-style between the calling Series/Index and any Se-
ries/Index/DataFrame in others (objects without an index need to match the length
of the calling Series/Index). If None, alignment is disabled, but this option will be
removed in a future version of pandas and replaced with a default of ‘left’. To disable
alignment, use .values on any Series/Index/DataFrame in others.

New in version 0.23.0.

Returns concat : str or Series/Index of objects

If others is None, str is returned, otherwise a Series/Index (same type as caller) of
objects is returned.

See also:

split Split each string in the Series/Index

Examples

When not passing others, all values are concatenated into a single string:

34.3. Series 1661

pandas: powerful Python data analysis toolkit, Release 0.23.4

>>> s = pd.Series(['a', 'b', np.nan, 'd'])
>>> s.str.cat(sep=' ')
'a b d'

By default, NA values in the Series are ignored. Using na_rep, they can be given a representation:

>>> s.str.cat(sep=' ', na_rep='?')
'a b ? d'

If others is specified, corresponding values are concatenated with the separator. Result will be a Series of strings.

>>> s.str.cat(['A', 'B', 'C', 'D'], sep=',')
0 a,A
1 b,B
2 NaN
3 d,D
dtype: object

Missing values will remain missing in the result, but can again be represented using na_rep

>>> s.str.cat(['A', 'B', 'C', 'D'], sep=',', na_rep='-')
0 a,A
1 b,B
2 -,C
3 d,D
dtype: object

If sep is not specified, the values are concatenated without separation.

>>> s.str.cat(['A', 'B', 'C', 'D'], na_rep='-')
0 aA
1 bB
2 -C
3 dD
dtype: object

Series with different indexes can be aligned before concatenation. The join-keyword works as in other methods.

>>> t = pd.Series(['d', 'a', 'e', 'c'], index=[3, 0, 4, 2])
>>> s.str.cat(t, join=None, na_rep='-')
0 ad
1 ba
2 -e
3 dc
dtype: object
>>>
>>> s.str.cat(t, join='left', na_rep='-')
0 aa
1 b-
2 -c
3 dd
dtype: object
>>>
>>> s.str.cat(t, join='outer', na_rep='-')
0 aa
1 b-
2 -c

(continues on next page)

1662 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

3 dd
4 -e
dtype: object
>>>
>>> s.str.cat(t, join='inner', na_rep='-')
0 aa
2 -c
3 dd
dtype: object
>>>
>>> s.str.cat(t, join='right', na_rep='-')
3 dd
0 aa
4 -e
2 -c
dtype: object

For more examples, see here.

34.3.14.3 pandas.Series.str.center

Series.str.center(width, fillchar=’ ’)
Filling left and right side of strings in the Series/Index with an additional character. Equivalent to str.
center().

Parameters width : int

Minimum width of resulting string; additional characters will be filled with
fillchar

fillchar : str

Additional character for filling, default is whitespace

Returns

filled [Series/Index of objects]

34.3.14.4 pandas.Series.str.contains

Series.str.contains(pat, case=True, flags=0, na=nan, regex=True)
Test if pattern or regex is contained within a string of a Series or Index.

Return boolean Series or Index based on whether a given pattern or regex is contained within a string of a Series
or Index.

Parameters pat : str

Character sequence or regular expression.

case : bool, default True

If True, case sensitive.

flags : int, default 0 (no flags)

Flags to pass through to the re module, e.g. re.IGNORECASE.

na : default NaN

34.3. Series 1663

https://docs.python.org/3/library/stdtypes.html#str.center
https://docs.python.org/3/library/stdtypes.html#str.center

pandas: powerful Python data analysis toolkit, Release 0.23.4

Fill value for missing values.

regex : bool, default True

If True, assumes the pat is a regular expression.

If False, treats the pat as a literal string.

Returns Series or Index of boolean values

A Series or Index of boolean values indicating whether the given pattern is contained
within the string of each element of the Series or Index.

See also:

match analogous, but stricter, relying on re.match instead of re.search

Examples

Returning a Series of booleans using only a literal pattern.

>>> s1 = pd.Series(['Mouse', 'dog', 'house and parrot', '23', np.NaN])
>>> s1.str.contains('og', regex=False)
0 False
1 True
2 False
3 False
4 NaN
dtype: object

Returning an Index of booleans using only a literal pattern.

>>> ind = pd.Index(['Mouse', 'dog', 'house and parrot', '23.0', np.NaN])
>>> ind.str.contains('23', regex=False)
Index([False, False, False, True, nan], dtype='object')

Specifying case sensitivity using case.

>>> s1.str.contains('oG', case=True, regex=True)
0 False
1 False
2 False
3 False
4 NaN
dtype: object

Specifying na to be False instead of NaN replaces NaN values with False. If Series or Index does not contain
NaN values the resultant dtype will be bool, otherwise, an object dtype.

>>> s1.str.contains('og', na=False, regex=True)
0 False
1 True
2 False
3 False
4 False
dtype: bool

Returning ‘house’ and ‘parrot’ within same string.

1664 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

>>> s1.str.contains('house|parrot', regex=True)
0 False
1 False
2 True
3 False
4 NaN
dtype: object

Ignoring case sensitivity using flags with regex.

>>> import re
>>> s1.str.contains('PARROT', flags=re.IGNORECASE, regex=True)
0 False
1 False
2 True
3 False
4 NaN
dtype: object

Returning any digit using regular expression.

>>> s1.str.contains('\d', regex=True)
0 False
1 False
2 False
3 True
4 NaN
dtype: object

Ensure pat is a not a literal pattern when regex is set to True. Note in the following example one might expect
only s2[1] and s2[3] to return True. However, ‘.0’ as a regex matches any character followed by a 0.

>>> s2 = pd.Series(['40','40.0','41','41.0','35'])
>>> s2.str.contains('.0', regex=True)
0 True
1 True
2 False
3 True
4 False
dtype: bool

34.3.14.5 pandas.Series.str.count

Series.str.count(pat, flags=0, **kwargs)
Count occurrences of pattern in each string of the Series/Index.

This function is used to count the number of times a particular regex pattern is repeated in each of the string
elements of the Series.

Parameters pat : str

Valid regular expression.

flags : int, default 0, meaning no flags

Flags for the re module. For a complete list, see here.

**kwargs

34.3. Series 1665

https://docs.python.org/3/howto/regex.html#compilation-flags

pandas: powerful Python data analysis toolkit, Release 0.23.4

For compatability with other string methods. Not used.

Returns counts : Series or Index

Same type as the calling object containing the integer counts.

See also:

re Standard library module for regular expressions.

str.count Standard library version, without regular expression support.

Notes

Some characters need to be escaped when passing in pat. eg. '$' has a special meaning in regex and must be
escaped when finding this literal character.

Examples

>>> s = pd.Series(['A', 'B', 'Aaba', 'Baca', np.nan, 'CABA', 'cat'])
>>> s.str.count('a')
0 0.0
1 0.0
2 2.0
3 2.0
4 NaN
5 0.0
6 1.0
dtype: float64

Escape '$' to find the literal dollar sign.

>>> s = pd.Series(['$', 'B', 'Aab$', '$$ca', 'CB', 'cat'])
>>> s.str.count('\$')
0 1
1 0
2 1
3 2
4 2
5 0
dtype: int64

This is also available on Index

>>> pd.Index(['A', 'A', 'Aaba', 'cat']).str.count('a')
Int64Index([0, 0, 2, 1], dtype='int64')

34.3.14.6 pandas.Series.str.decode

Series.str.decode(encoding, errors=’strict’)
Decode character string in the Series/Index using indicated encoding. Equivalent to str.decode() in
python2 and bytes.decode() in python3.

Parameters

encoding [str]

1666 Chapter 34. API Reference

https://docs.python.org/3/library/re.html#module-re
https://docs.python.org/3/library/stdtypes.html#str.count
https://docs.python.org/3/library/stdtypes.html#bytes.decode

pandas: powerful Python data analysis toolkit, Release 0.23.4

errors [str, optional]

Returns

decoded [Series/Index of objects]

34.3.14.7 pandas.Series.str.encode

Series.str.encode(encoding, errors=’strict’)
Encode character string in the Series/Index using indicated encoding. Equivalent to str.encode().

Parameters

encoding [str]

errors [str, optional]

Returns

encoded [Series/Index of objects]

34.3.14.8 pandas.Series.str.endswith

Series.str.endswith(pat, na=nan)
Test if the end of each string element matches a pattern.

Equivalent to str.endswith().

Parameters pat : str

Character sequence. Regular expressions are not accepted.

na : object, default NaN

Object shown if element tested is not a string.

Returns Series or Index of bool

A Series of booleans indicating whether the given pattern matches the end of each
string element.

See also:

str.endswith Python standard library string method.

Series.str.startswith Same as endswith, but tests the start of string.

Series.str.contains Tests if string element contains a pattern.

Examples

>>> s = pd.Series(['bat', 'bear', 'caT', np.nan])
>>> s
0 bat
1 bear
2 caT
3 NaN
dtype: object

34.3. Series 1667

https://docs.python.org/3/library/stdtypes.html#str.encode
https://docs.python.org/3/library/stdtypes.html#str.endswith
https://docs.python.org/3/library/stdtypes.html#str.endswith

pandas: powerful Python data analysis toolkit, Release 0.23.4

>>> s.str.endswith('t')
0 True
1 False
2 False
3 NaN
dtype: object

Specifying na to be False instead of NaN.

>>> s.str.endswith('t', na=False)
0 True
1 False
2 False
3 False
dtype: bool

34.3.14.9 pandas.Series.str.extract

Series.str.extract(pat, flags=0, expand=True)
For each subject string in the Series, extract groups from the first match of regular expression pat.

Parameters pat : string

Regular expression pattern with capturing groups

flags : int, default 0 (no flags)

re module flags, e.g. re.IGNORECASE

expand : bool, default True

• If True, return DataFrame.

• If False, return Series/Index/DataFrame.

New in version 0.18.0.

Returns

DataFrame with one row for each subject string, and one column for

each group. Any capture group names in regular expression pat will

be used for column names; otherwise capture group numbers will be

used. The dtype of each result column is always object, even when

no match is found. If expand=False and pat has only one capture group,

then return a Series (if subject is a Series) or Index (if subject

is an Index).

See also:

extractall returns all matches (not just the first match)

Examples

A pattern with two groups will return a DataFrame with two columns. Non-matches will be NaN.

1668 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

>>> s = Series(['a1', 'b2', 'c3'])
>>> s.str.extract(r'([ab])(\d)')

0 1
0 a 1
1 b 2
2 NaN NaN

A pattern may contain optional groups.

>>> s.str.extract(r'([ab])?(\d)')
0 1

0 a 1
1 b 2
2 NaN 3

Named groups will become column names in the result.

>>> s.str.extract(r'(?P<letter>[ab])(?P<digit>\d)')
letter digit

0 a 1
1 b 2
2 NaN NaN

A pattern with one group will return a DataFrame with one column if expand=True.

>>> s.str.extract(r'[ab](\d)', expand=True)
0

0 1
1 2
2 NaN

A pattern with one group will return a Series if expand=False.

>>> s.str.extract(r'[ab](\d)', expand=False)
0 1
1 2
2 NaN
dtype: object

34.3.14.10 pandas.Series.str.extractall

Series.str.extractall(pat, flags=0)
For each subject string in the Series, extract groups from all matches of regular expression pat. When each
subject string in the Series has exactly one match, extractall(pat).xs(0, level=’match’) is the same as extract(pat).

New in version 0.18.0.

Parameters pat : string

Regular expression pattern with capturing groups

flags : int, default 0 (no flags)

re module flags, e.g. re.IGNORECASE

Returns

A DataFrame with one row for each match, and one column for each

34.3. Series 1669

pandas: powerful Python data analysis toolkit, Release 0.23.4

group. Its rows have a MultiIndex with first levels that come from

the subject Series. The last level is named ‘match’ and indicates

the order in the subject. Any capture group names in regular

expression pat will be used for column names; otherwise capture

group numbers will be used.

See also:

extract returns first match only (not all matches)

Examples

A pattern with one group will return a DataFrame with one column. Indices with no matches will not appear in
the result.

>>> s = Series(["a1a2", "b1", "c1"], index=["A", "B", "C"])
>>> s.str.extractall(r"[ab](\d)")

0
match

A 0 1
1 2

B 0 1

Capture group names are used for column names of the result.

>>> s.str.extractall(r"[ab](?P<digit>\d)")
digit

match
A 0 1
1 2

B 0 1

A pattern with two groups will return a DataFrame with two columns.

>>> s.str.extractall(r"(?P<letter>[ab])(?P<digit>\d)")
letter digit

match
A 0 a 1
1 a 2

B 0 b 1

Optional groups that do not match are NaN in the result.

>>> s.str.extractall(r"(?P<letter>[ab])?(?P<digit>\d)")
letter digit

match
A 0 a 1
1 a 2

B 0 b 1
C 0 NaN 1

1670 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

34.3.14.11 pandas.Series.str.find

Series.str.find(sub, start=0, end=None)
Return lowest indexes in each strings in the Series/Index where the substring is fully contained between
[start:end]. Return -1 on failure. Equivalent to standard str.find().

Parameters sub : str

Substring being searched

start : int

Left edge index

end : int

Right edge index

Returns

found [Series/Index of integer values]

See also:

rfind Return highest indexes in each strings

34.3.14.12 pandas.Series.str.findall

Series.str.findall(pat, flags=0, **kwargs)
Find all occurrences of pattern or regular expression in the Series/Index.

Equivalent to applying re.findall() to all the elements in the Series/Index.

Parameters pat : string

Pattern or regular expression.

flags : int, default 0

re module flags, e.g. re.IGNORECASE (default is 0, which means no flags).

Returns Series/Index of lists of strings

All non-overlapping matches of pattern or regular expression in each string of this
Series/Index.

See also:

count Count occurrences of pattern or regular expression in each string of the Series/Index.

extractall For each string in the Series, extract groups from all matches of regular expression and return a
DataFrame with one row for each match and one column for each group.

re.findall The equivalent re function to all non-overlapping matches of pattern or regular expression in
string, as a list of strings.

Examples

>>> s = pd.Series(['Lion', 'Monkey', 'Rabbit'])

The search for the pattern ‘Monkey’ returns one match:

34.3. Series 1671

https://docs.python.org/3/library/stdtypes.html#str.find
https://docs.python.org/3/library/re.html#re.findall
https://docs.python.org/3/library/re.html#re.findall

pandas: powerful Python data analysis toolkit, Release 0.23.4

>>> s.str.findall('Monkey')
0 []
1 [Monkey]
2 []
dtype: object

On the other hand, the search for the pattern ‘MONKEY’ doesn’t return any match:

>>> s.str.findall('MONKEY')
0 []
1 []
2 []
dtype: object

Flags can be added to the pattern or regular expression. For instance, to find the pattern ‘MONKEY’ ignoring
the case:

>>> import re
>>> s.str.findall('MONKEY', flags=re.IGNORECASE)
0 []
1 [Monkey]
2 []
dtype: object

When the pattern matches more than one string in the Series, all matches are returned:

>>> s.str.findall('on')
0 [on]
1 [on]
2 []
dtype: object

Regular expressions are supported too. For instance, the search for all the strings ending with the word ‘on’ is
shown next:

>>> s.str.findall('on$')
0 [on]
1 []
2 []
dtype: object

If the pattern is found more than once in the same string, then a list of multiple strings is returned:

>>> s.str.findall('b')
0 []
1 []
2 [b, b]
dtype: object

34.3.14.13 pandas.Series.str.get

Series.str.get(i)
Extract element from each component at specified position.

Extract element from lists, tuples, or strings in each element in the Series/Index.

Parameters i : int

1672 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

Position of element to extract.

Returns

items [Series/Index of objects]

Examples

>>> s = pd.Series(["String",
(1, 2, 3),
["a", "b", "c"],
123, -456,
{1:"Hello", "2":"World"}])

>>> s
0 String
1 (1, 2, 3)
2 [a, b, c]
3 123
4 -456
5 {1: 'Hello', '2': 'World'}
dtype: object

>>> s.str.get(1)
0 t
1 2
2 b
3 NaN
4 NaN
5 Hello
dtype: object

>>> s.str.get(-1)
0 g
1 3
2 c
3 NaN
4 NaN
5 NaN
dtype: object

34.3.14.14 pandas.Series.str.index

Series.str.index(sub, start=0, end=None)
Return lowest indexes in each strings where the substring is fully contained between [start:end]. This is the same
as str.find except instead of returning -1, it raises a ValueError when the substring is not found. Equivalent
to standard str.index.

Parameters sub : str

Substring being searched

start : int

Left edge index

end : int

34.3. Series 1673

pandas: powerful Python data analysis toolkit, Release 0.23.4

Right edge index

Returns

found [Series/Index of objects]

See also:

rindex Return highest indexes in each strings

34.3.14.15 pandas.Series.str.join

Series.str.join(sep)
Join lists contained as elements in the Series/Index with passed delimiter.

If the elements of a Series are lists themselves, join the content of these lists using the delimiter passed to the
function. This function is an equivalent to str.join().

Parameters sep : str

Delimiter to use between list entries.

Returns

Series/Index: object

See also:

str.join Standard library version of this method.

Series.str.split Split strings around given separator/delimiter.

Notes

If any of the lists does not contain string objects the result of the join will be NaN.

Examples

Example with a list that contains non-string elements.

>>> s = pd.Series([['lion', 'elephant', 'zebra'],
... [1.1, 2.2, 3.3],
... ['cat', np.nan, 'dog'],
... ['cow', 4.5, 'goat']
... ['duck', ['swan', 'fish'], 'guppy']])
>>> s
0 [lion, elephant, zebra]
1 [1.1, 2.2, 3.3]
2 [cat, nan, dog]
3 [cow, 4.5, goat]
4 [duck, [swan, fish], guppy]
dtype: object

Join all lists using an ‘-‘, the lists containing object(s) of types other than str will become a NaN.

1674 Chapter 34. API Reference

https://docs.python.org/3/library/stdtypes.html#str.join
https://docs.python.org/3/library/stdtypes.html#str.join

pandas: powerful Python data analysis toolkit, Release 0.23.4

>>> s.str.join('-')
0 lion-elephant-zebra
1 NaN
2 NaN
3 NaN
4 NaN
dtype: object

34.3.14.16 pandas.Series.str.len

Series.str.len()
Compute length of each string in the Series/Index.

Returns

lengths [Series/Index of integer values]

34.3.14.17 pandas.Series.str.ljust

Series.str.ljust(width, fillchar=’ ’)
Filling right side of strings in the Series/Index with an additional character. Equivalent to str.ljust().

Parameters width : int

Minimum width of resulting string; additional characters will be filled with
fillchar

fillchar : str

Additional character for filling, default is whitespace

Returns

filled [Series/Index of objects]

34.3.14.18 pandas.Series.str.lower

Series.str.lower()
Convert strings in the Series/Index to lowercase.

Equivalent to str.lower().

Returns

Series/Index of objects

See also:

Series.str.lower Converts all characters to lowercase.

Series.str.upper Converts all characters to uppercase.

Series.str.title Converts first character of each word to uppercase and remaining to lowercase.

Series.str.capitalize Converts first character to uppercase and remaining to lowercase.

Series.str.swapcase Converts uppercase to lowercase and lowercase to uppercase.

34.3. Series 1675

https://docs.python.org/3/library/stdtypes.html#str.ljust
https://docs.python.org/3/library/stdtypes.html#str.lower

pandas: powerful Python data analysis toolkit, Release 0.23.4

Examples

>>> s = pd.Series(['lower', 'CAPITALS', 'this is a sentence', 'SwApCaSe'])
>>> s
0 lower
1 CAPITALS
2 this is a sentence
3 SwApCaSe
dtype: object

>>> s.str.lower()
0 lower
1 capitals
2 this is a sentence
3 swapcase
dtype: object

>>> s.str.upper()
0 LOWER
1 CAPITALS
2 THIS IS A SENTENCE
3 SWAPCASE
dtype: object

>>> s.str.title()
0 Lower
1 Capitals
2 This Is A Sentence
3 Swapcase
dtype: object

>>> s.str.capitalize()
0 Lower
1 Capitals
2 This is a sentence
3 Swapcase
dtype: object

>>> s.str.swapcase()
0 LOWER
1 capitals
2 THIS IS A SENTENCE
3 sWaPcAsE
dtype: object

34.3.14.19 pandas.Series.str.lstrip

Series.str.lstrip(to_strip=None)
Strip whitespace (including newlines) from each string in the Series/Index from left side. Equivalent to str.
lstrip().

Returns

stripped [Series/Index of objects]

1676 Chapter 34. API Reference

https://docs.python.org/3/library/stdtypes.html#str.lstrip
https://docs.python.org/3/library/stdtypes.html#str.lstrip

pandas: powerful Python data analysis toolkit, Release 0.23.4

34.3.14.20 pandas.Series.str.match

Series.str.match(pat, case=True, flags=0, na=nan, as_indexer=None)
Determine if each string matches a regular expression.

Parameters pat : string

Character sequence or regular expression

case : boolean, default True

If True, case sensitive

flags : int, default 0 (no flags)

re module flags, e.g. re.IGNORECASE

na [default NaN, fill value for missing values.]

as_indexer

Deprecated since version 0.21.0.

Returns

Series/array of boolean values

See also:

contains analogous, but less strict, relying on re.search instead of re.match

extract extract matched groups

34.3.14.21 pandas.Series.str.normalize

Series.str.normalize(form)
Return the Unicode normal form for the strings in the Series/Index. For more information on the forms, see the
unicodedata.normalize().

Parameters form : {‘NFC’, ‘NFKC’, ‘NFD’, ‘NFKD’}

Unicode form

Returns

normalized [Series/Index of objects]

34.3.14.22 pandas.Series.str.pad

Series.str.pad(width, side=’left’, fillchar=’ ’)
Pad strings in the Series/Index with an additional character to specified side.

Parameters width : int

Minimum width of resulting string; additional characters will be filled with spaces

side [{‘left’, ‘right’, ‘both’}, default ‘left’]

fillchar : str

Additional character for filling, default is whitespace

34.3. Series 1677

https://docs.python.org/3/library/unicodedata.html#unicodedata.normalize

pandas: powerful Python data analysis toolkit, Release 0.23.4

Returns

padded [Series/Index of objects]

34.3.14.23 pandas.Series.str.partition

Series.str.partition(pat=’ ’, expand=True)
Split the string at the first occurrence of sep, and return 3 elements containing the part before the separator, the
separator itself, and the part after the separator. If the separator is not found, return 3 elements containing the
string itself, followed by two empty strings.

Parameters pat : string, default whitespace

String to split on.

expand : bool, default True

• If True, return DataFrame/MultiIndex expanding dimensionality.

• If False, return Series/Index.

Returns

split [DataFrame/MultiIndex or Series/Index of objects]

See also:

rpartition Split the string at the last occurrence of sep

Examples

>>> s = Series(['A_B_C', 'D_E_F', 'X'])
0 A_B_C
1 D_E_F
2 X
dtype: object

>>> s.str.partition('_')
0 1 2

0 A _ B_C
1 D _ E_F
2 X

>>> s.str.rpartition('_')
0 1 2

0 A_B _ C
1 D_E _ F
2 X

34.3.14.24 pandas.Series.str.repeat

Series.str.repeat(repeats)
Duplicate each string in the Series/Index by indicated number of times.

Parameters repeats : int or array

Same value for all (int) or different value per (array)

1678 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

Returns

repeated [Series/Index of objects]

34.3.14.25 pandas.Series.str.replace

Series.str.replace(pat, repl, n=-1, case=None, flags=0, regex=True)
Replace occurrences of pattern/regex in the Series/Index with some other string. Equivalent to str.
replace() or re.sub().

Parameters pat : string or compiled regex

String can be a character sequence or regular expression.

New in version 0.20.0: pat also accepts a compiled regex.

repl : string or callable

Replacement string or a callable. The callable is passed the regex match object and
must return a replacement string to be used. See re.sub().

New in version 0.20.0: repl also accepts a callable.

n : int, default -1 (all)

Number of replacements to make from start

case : boolean, default None

• If True, case sensitive (the default if pat is a string)

• Set to False for case insensitive

• Cannot be set if pat is a compiled regex

flags : int, default 0 (no flags)

• re module flags, e.g. re.IGNORECASE

• Cannot be set if pat is a compiled regex

regex : boolean, default True

• If True, assumes the passed-in pattern is a regular expression.

• If False, treats the pattern as a literal string

• Cannot be set to False if pat is a compiled regex or repl is a callable.

New in version 0.23.0.

Returns

replaced [Series/Index of objects]

Raises ValueError

• if regex is False and repl is a callable or pat is a compiled regex

• if pat is a compiled regex and case or flags is set

Notes

When pat is a compiled regex, all flags should be included in the compiled regex. Use of case, flags, or
regex=False with a compiled regex will raise an error.

34.3. Series 1679

https://docs.python.org/3/library/stdtypes.html#str.replace
https://docs.python.org/3/library/stdtypes.html#str.replace
https://docs.python.org/3/library/re.html#re.sub
https://docs.python.org/3/library/re.html#re.sub

pandas: powerful Python data analysis toolkit, Release 0.23.4

Examples

When pat is a string and regex is True (the default), the given pat is compiled as a regex. When repl is a string,
it replaces matching regex patterns as with re.sub(). NaN value(s) in the Series are left as is:

>>> pd.Series(['foo', 'fuz', np.nan]).str.replace('f.', 'ba', regex=True)
0 bao
1 baz
2 NaN
dtype: object

When pat is a string and regex is False, every pat is replaced with repl as with str.replace():

>>> pd.Series(['f.o', 'fuz', np.nan]).str.replace('f.', 'ba', regex=False)
0 bao
1 fuz
2 NaN
dtype: object

When repl is a callable, it is called on every pat using re.sub(). The callable should expect one positional
argument (a regex object) and return a string.

To get the idea:

>>> pd.Series(['foo', 'fuz', np.nan]).str.replace('f', repr)
0 <_sre.SRE_Match object; span=(0, 1), match='f'>oo
1 <_sre.SRE_Match object; span=(0, 1), match='f'>uz
2 NaN
dtype: object

Reverse every lowercase alphabetic word:

>>> repl = lambda m: m.group(0)[::-1]
>>> pd.Series(['foo 123', 'bar baz', np.nan]).str.replace(r'[a-z]+', repl)
0 oof 123
1 rab zab
2 NaN
dtype: object

Using regex groups (extract second group and swap case):

>>> pat = r"(?P<one>\w+) (?P<two>\w+) (?P<three>\w+)"
>>> repl = lambda m: m.group('two').swapcase()
>>> pd.Series(['One Two Three', 'Foo Bar Baz']).str.replace(pat, repl)
0 tWO
1 bAR
dtype: object

Using a compiled regex with flags

>>> regex_pat = re.compile(r'FUZ', flags=re.IGNORECASE)
>>> pd.Series(['foo', 'fuz', np.nan]).str.replace(regex_pat, 'bar')
0 foo
1 bar
2 NaN
dtype: object

1680 Chapter 34. API Reference

https://docs.python.org/3/library/stdtypes.html#str.replace
https://docs.python.org/3/library/re.html#re.sub

pandas: powerful Python data analysis toolkit, Release 0.23.4

34.3.14.26 pandas.Series.str.rfind

Series.str.rfind(sub, start=0, end=None)
Return highest indexes in each strings in the Series/Index where the substring is fully contained between
[start:end]. Return -1 on failure. Equivalent to standard str.rfind().

Parameters sub : str

Substring being searched

start : int

Left edge index

end : int

Right edge index

Returns

found [Series/Index of integer values]

See also:

find Return lowest indexes in each strings

34.3.14.27 pandas.Series.str.rindex

Series.str.rindex(sub, start=0, end=None)
Return highest indexes in each strings where the substring is fully contained between [start:end]. This is the
same as str.rfind except instead of returning -1, it raises a ValueError when the substring is not found.
Equivalent to standard str.rindex.

Parameters sub : str

Substring being searched

start : int

Left edge index

end : int

Right edge index

Returns

found [Series/Index of objects]

See also:

index Return lowest indexes in each strings

34.3.14.28 pandas.Series.str.rjust

Series.str.rjust(width, fillchar=’ ’)
Filling left side of strings in the Series/Index with an additional character. Equivalent to str.rjust().

Parameters width : int

Minimum width of resulting string; additional characters will be filled with
fillchar

34.3. Series 1681

https://docs.python.org/3/library/stdtypes.html#str.rfind
https://docs.python.org/3/library/stdtypes.html#str.rjust

pandas: powerful Python data analysis toolkit, Release 0.23.4

fillchar : str

Additional character for filling, default is whitespace

Returns

filled [Series/Index of objects]

34.3.14.29 pandas.Series.str.rpartition

Series.str.rpartition(pat=’ ’, expand=True)
Split the string at the last occurrence of sep, and return 3 elements containing the part before the separator, the
separator itself, and the part after the separator. If the separator is not found, return 3 elements containing two
empty strings, followed by the string itself.

Parameters pat : string, default whitespace

String to split on.

expand : bool, default True

• If True, return DataFrame/MultiIndex expanding dimensionality.

• If False, return Series/Index.

Returns

split [DataFrame/MultiIndex or Series/Index of objects]

See also:

partition Split the string at the first occurrence of sep

Examples

>>> s = Series(['A_B_C', 'D_E_F', 'X'])
0 A_B_C
1 D_E_F
2 X
dtype: object

>>> s.str.partition('_')
0 1 2

0 A _ B_C
1 D _ E_F
2 X

>>> s.str.rpartition('_')
0 1 2

0 A_B _ C
1 D_E _ F
2 X

1682 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

34.3.14.30 pandas.Series.str.rstrip

Series.str.rstrip(to_strip=None)
Strip whitespace (including newlines) from each string in the Series/Index from right side. Equivalent to str.
rstrip().

Returns

stripped [Series/Index of objects]

34.3.14.31 pandas.Series.str.slice

Series.str.slice(start=None, stop=None, step=None)
Slice substrings from each element in the Series/Index

Parameters

start [int or None]

stop [int or None]

step [int or None]

Returns

sliced [Series/Index of objects]

34.3.14.32 pandas.Series.str.slice_replace

Series.str.slice_replace(start=None, stop=None, repl=None)
Replace a positional slice of a string with another value.

Parameters start : int, optional

Left index position to use for the slice. If not specified (None), the slice is unbounded
on the left, i.e. slice from the start of the string.

stop : int, optional

Right index position to use for the slice. If not specified (None), the slice is un-
bounded on the right, i.e. slice until the end of the string.

repl : str, optional

String for replacement. If not specified (None), the sliced region is replaced with an
empty string.

Returns replaced : Series or Index

Same type as the original object.

See also:

Series.str.slice Just slicing without replacement.

Examples

34.3. Series 1683

https://docs.python.org/3/library/stdtypes.html#str.rstrip
https://docs.python.org/3/library/stdtypes.html#str.rstrip

pandas: powerful Python data analysis toolkit, Release 0.23.4

>>> s = pd.Series(['a', 'ab', 'abc', 'abdc', 'abcde'])
>>> s
0 a
1 ab
2 abc
3 abdc
4 abcde
dtype: object

Specify just start, meaning replace start until the end of the string with repl.

>>> s.str.slice_replace(1, repl='X')
0 aX
1 aX
2 aX
3 aX
4 aX
dtype: object

Specify just stop, meaning the start of the string to stop is replaced with repl, and the rest of the string is included.

>>> s.str.slice_replace(stop=2, repl='X')
0 X
1 X
2 Xc
3 Xdc
4 Xcde
dtype: object

Specify start and stop, meaning the slice from start to stop is replaced with repl. Everything before or after start
and stop is included as is.

>>> s.str.slice_replace(start=1, stop=3, repl='X')
0 aX
1 aX
2 aX
3 aXc
4 aXde
dtype: object

34.3.14.33 pandas.Series.str.split

Series.str.split(pat=None, n=-1, expand=False)
Split strings around given separator/delimiter.

Split each string in the caller’s values by given pattern, propagating NaN values. Equivalent to str.split().

Parameters pat : str, optional

String or regular expression to split on. If not specified, split on whitespace.

n : int, default -1 (all)

Limit number of splits in output. None, 0 and -1 will be interpreted as return all
splits.

expand : bool, default False

Expand the splitted strings into separate columns.

1684 Chapter 34. API Reference

https://docs.python.org/3/library/stdtypes.html#str.split

pandas: powerful Python data analysis toolkit, Release 0.23.4

• If True, return DataFrame/MultiIndex expanding dimensionality.

• If False, return Series/Index, containing lists of strings.

Returns Series, Index, DataFrame or MultiIndex

Type matches caller unless expand=True (see Notes).

See also:

str.split Standard library version of this method.

Series.str.get_dummies Split each string into dummy variables.

Series.str.partition Split string on a separator, returning the before, separator, and after components.

Notes

The handling of the n keyword depends on the number of found splits:

• If found splits > n, make first n splits only

• If found splits <= n, make all splits

• If for a certain row the number of found splits < n, append None for padding up to n if expand=True

If using expand=True, Series and Index callers return DataFrame and MultiIndex objects, respectively.

Examples

>>> s = pd.Series(["this is good text", "but this is even better"])

By default, split will return an object of the same size having lists containing the split elements

>>> s.str.split()
0 [this, is, good, text]
1 [but, this, is, even, better]
dtype: object
>>> s.str.split("random")
0 [this is good text]
1 [but this is even better]
dtype: object

When using expand=True, the split elements will expand out into separate columns.

For Series object, output return type is DataFrame.

>>> s.str.split(expand=True)
0 1 2 3 4

0 this is good text None
1 but this is even better
>>> s.str.split(" is ", expand=True)

0 1
0 this good text
1 but this even better

For Index object, output return type is MultiIndex.

34.3. Series 1685

https://docs.python.org/3/library/stdtypes.html#str.split

pandas: powerful Python data analysis toolkit, Release 0.23.4

>>> i = pd.Index(["ba 100 001", "ba 101 002", "ba 102 003"])
>>> i.str.split(expand=True)
MultiIndex(levels=[['ba'], ['100', '101', '102'], ['001', '002', '003']],

labels=[[0, 0, 0], [0, 1, 2], [0, 1, 2]])

Parameter n can be used to limit the number of splits in the output.

>>> s.str.split("is", n=1)
0 [th, is good text]
1 [but th, is even better]
dtype: object
>>> s.str.split("is", n=1, expand=True)

0 1
0 th is good text
1 but th is even better

If NaN is present, it is propagated throughout the columns during the split.

>>> s = pd.Series(["this is good text", "but this is even better", np.nan])
>>> s.str.split(n=3, expand=True)

0 1 2 3
0 this is good text
1 but this is even better
2 NaN NaN NaN NaN

34.3.14.34 pandas.Series.str.rsplit

Series.str.rsplit(pat=None, n=-1, expand=False)
Split each string in the Series/Index by the given delimiter string, starting at the end of the string and working
to the front. Equivalent to str.rsplit().

Parameters pat : string, default None

Separator to split on. If None, splits on whitespace

n : int, default -1 (all)

None, 0 and -1 will be interpreted as return all splits

expand : bool, default False

• If True, return DataFrame/MultiIndex expanding dimensionality.

• If False, return Series/Index.

Returns

split [Series/Index or DataFrame/MultiIndex of objects]

34.3.14.35 pandas.Series.str.startswith

Series.str.startswith(pat, na=nan)
Test if the start of each string element matches a pattern.

Equivalent to str.startswith().

Parameters pat : str

Character sequence. Regular expressions are not accepted.

1686 Chapter 34. API Reference

https://docs.python.org/3/library/stdtypes.html#str.rsplit
https://docs.python.org/3/library/stdtypes.html#str.startswith

pandas: powerful Python data analysis toolkit, Release 0.23.4

na : object, default NaN

Object shown if element tested is not a string.

Returns Series or Index of bool

A Series of booleans indicating whether the given pattern matches the start of each
string element.

See also:

str.startswith Python standard library string method.

Series.str.endswith Same as startswith, but tests the end of string.

Series.str.contains Tests if string element contains a pattern.

Examples

>>> s = pd.Series(['bat', 'Bear', 'cat', np.nan])
>>> s
0 bat
1 Bear
2 cat
3 NaN
dtype: object

>>> s.str.startswith('b')
0 True
1 False
2 False
3 NaN
dtype: object

Specifying na to be False instead of NaN.

>>> s.str.startswith('b', na=False)
0 True
1 False
2 False
3 False
dtype: bool

34.3.14.36 pandas.Series.str.strip

Series.str.strip(to_strip=None)
Strip whitespace (including newlines) from each string in the Series/Index from left and right sides. Equivalent
to str.strip().

Returns

stripped [Series/Index of objects]

34.3. Series 1687

https://docs.python.org/3/library/stdtypes.html#str.startswith
https://docs.python.org/3/library/stdtypes.html#str.strip

pandas: powerful Python data analysis toolkit, Release 0.23.4

34.3.14.37 pandas.Series.str.swapcase

Series.str.swapcase()
Convert strings in the Series/Index to be swapcased.

Equivalent to str.swapcase().

Returns

Series/Index of objects

See also:

Series.str.lower Converts all characters to lowercase.

Series.str.upper Converts all characters to uppercase.

Series.str.title Converts first character of each word to uppercase and remaining to lowercase.

Series.str.capitalize Converts first character to uppercase and remaining to lowercase.

Series.str.swapcase Converts uppercase to lowercase and lowercase to uppercase.

Examples

>>> s = pd.Series(['lower', 'CAPITALS', 'this is a sentence', 'SwApCaSe'])
>>> s
0 lower
1 CAPITALS
2 this is a sentence
3 SwApCaSe
dtype: object

>>> s.str.lower()
0 lower
1 capitals
2 this is a sentence
3 swapcase
dtype: object

>>> s.str.upper()
0 LOWER
1 CAPITALS
2 THIS IS A SENTENCE
3 SWAPCASE
dtype: object

>>> s.str.title()
0 Lower
1 Capitals
2 This Is A Sentence
3 Swapcase
dtype: object

>>> s.str.capitalize()
0 Lower
1 Capitals

(continues on next page)

1688 Chapter 34. API Reference

https://docs.python.org/3/library/stdtypes.html#str.swapcase

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

2 This is a sentence
3 Swapcase
dtype: object

>>> s.str.swapcase()
0 LOWER
1 capitals
2 THIS IS A SENTENCE
3 sWaPcAsE
dtype: object

34.3.14.38 pandas.Series.str.title

Series.str.title()
Convert strings in the Series/Index to titlecase.

Equivalent to str.title().

Returns

Series/Index of objects

See also:

Series.str.lower Converts all characters to lowercase.

Series.str.upper Converts all characters to uppercase.

Series.str.title Converts first character of each word to uppercase and remaining to lowercase.

Series.str.capitalize Converts first character to uppercase and remaining to lowercase.

Series.str.swapcase Converts uppercase to lowercase and lowercase to uppercase.

Examples

>>> s = pd.Series(['lower', 'CAPITALS', 'this is a sentence', 'SwApCaSe'])
>>> s
0 lower
1 CAPITALS
2 this is a sentence
3 SwApCaSe
dtype: object

>>> s.str.lower()
0 lower
1 capitals
2 this is a sentence
3 swapcase
dtype: object

>>> s.str.upper()
0 LOWER
1 CAPITALS
2 THIS IS A SENTENCE

(continues on next page)

34.3. Series 1689

https://docs.python.org/3/library/stdtypes.html#str.title

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

3 SWAPCASE
dtype: object

>>> s.str.title()
0 Lower
1 Capitals
2 This Is A Sentence
3 Swapcase
dtype: object

>>> s.str.capitalize()
0 Lower
1 Capitals
2 This is a sentence
3 Swapcase
dtype: object

>>> s.str.swapcase()
0 LOWER
1 capitals
2 THIS IS A SENTENCE
3 sWaPcAsE
dtype: object

34.3.14.39 pandas.Series.str.translate

Series.str.translate(table, deletechars=None)
Map all characters in the string through the given mapping table. Equivalent to standard str.translate().
Note that the optional argument deletechars is only valid if you are using python 2. For python 3, character
deletion should be specified via the table argument.

Parameters table : dict (python 3), str or None (python 2)

In python 3, table is a mapping of Unicode ordinals to Unicode ordinals, strings,
or None. Unmapped characters are left untouched. Characters mapped to None are
deleted. str.maketrans() is a helper function for making translation tables.
In python 2, table is either a string of length 256 or None. If the table argument is
None, no translation is applied and the operation simply removes the characters in
deletechars. string.maketrans() is a helper function for making translation
tables.

deletechars : str, optional (python 2)

A string of characters to delete. This argument is only valid in python 2.

Returns

translated [Series/Index of objects]

34.3.14.40 pandas.Series.str.upper

Series.str.upper()
Convert strings in the Series/Index to uppercase.

Equivalent to str.upper().

1690 Chapter 34. API Reference

https://docs.python.org/3/library/stdtypes.html#str.translate
https://docs.python.org/3/library/stdtypes.html#str.maketrans
https://docs.python.org/3/library/stdtypes.html#str.upper

pandas: powerful Python data analysis toolkit, Release 0.23.4

Returns

Series/Index of objects

See also:

Series.str.lower Converts all characters to lowercase.

Series.str.upper Converts all characters to uppercase.

Series.str.title Converts first character of each word to uppercase and remaining to lowercase.

Series.str.capitalize Converts first character to uppercase and remaining to lowercase.

Series.str.swapcase Converts uppercase to lowercase and lowercase to uppercase.

Examples

>>> s = pd.Series(['lower', 'CAPITALS', 'this is a sentence', 'SwApCaSe'])
>>> s
0 lower
1 CAPITALS
2 this is a sentence
3 SwApCaSe
dtype: object

>>> s.str.lower()
0 lower
1 capitals
2 this is a sentence
3 swapcase
dtype: object

>>> s.str.upper()
0 LOWER
1 CAPITALS
2 THIS IS A SENTENCE
3 SWAPCASE
dtype: object

>>> s.str.title()
0 Lower
1 Capitals
2 This Is A Sentence
3 Swapcase
dtype: object

>>> s.str.capitalize()
0 Lower
1 Capitals
2 This is a sentence
3 Swapcase
dtype: object

>>> s.str.swapcase()
0 LOWER

(continues on next page)

34.3. Series 1691

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

1 capitals
2 THIS IS A SENTENCE
3 sWaPcAsE
dtype: object

34.3.14.41 pandas.Series.str.wrap

Series.str.wrap(width, **kwargs)
Wrap long strings in the Series/Index to be formatted in paragraphs with length less than a given width.

This method has the same keyword parameters and defaults as textwrap.TextWrapper.

Parameters width : int

Maximum line-width

expand_tabs : bool, optional

If true, tab characters will be expanded to spaces (default: True)

replace_whitespace : bool, optional

If true, each whitespace character (as defined by string.whitespace) remaining after
tab expansion will be replaced by a single space (default: True)

drop_whitespace : bool, optional

If true, whitespace that, after wrapping, happens to end up at the beginning or end of
a line is dropped (default: True)

break_long_words : bool, optional

If true, then words longer than width will be broken in order to ensure that no lines
are longer than width. If it is false, long words will not be broken, and some lines
may be longer than width. (default: True)

break_on_hyphens : bool, optional

If true, wrapping will occur preferably on whitespace and right after hyphens in com-
pound words, as it is customary in English. If false, only whitespaces will be consid-
ered as potentially good places for line breaks, but you need to set break_long_words
to false if you want truly insecable words. (default: True)

Returns

wrapped [Series/Index of objects]

Notes

Internally, this method uses a textwrap.TextWrapper instance with default settings. To achieve behavior
matching R’s stringr library str_wrap function, use the arguments:

• expand_tabs = False

• replace_whitespace = True

• drop_whitespace = True

• break_long_words = False

• break_on_hyphens = False

1692 Chapter 34. API Reference

https://docs.python.org/3/library/textwrap.html#textwrap.TextWrapper
https://docs.python.org/3/library/textwrap.html#textwrap.TextWrapper

pandas: powerful Python data analysis toolkit, Release 0.23.4

Examples

>>> s = pd.Series(['line to be wrapped', 'another line to be wrapped'])
>>> s.str.wrap(12)
0 line to be\nwrapped
1 another line\nto be\nwrapped

34.3.14.42 pandas.Series.str.zfill

Series.str.zfill(width)
Filling left side of strings in the Series/Index with 0. Equivalent to str.zfill().

Parameters width : int

Minimum width of resulting string; additional characters will be filled with 0

Returns

filled [Series/Index of objects]

34.3.14.43 pandas.Series.str.isalnum

Series.str.isalnum()
Check whether all characters in each string in the Series/Index are alphanumeric. Equivalent to str.
isalnum().

Returns

is [Series/array of boolean values]

34.3.14.44 pandas.Series.str.isalpha

Series.str.isalpha()
Check whether all characters in each string in the Series/Index are alphabetic. Equivalent to str.isalpha().

Returns

is [Series/array of boolean values]

34.3.14.45 pandas.Series.str.isdigit

Series.str.isdigit()
Check whether all characters in each string in the Series/Index are digits. Equivalent to str.isdigit().

Returns

is [Series/array of boolean values]

34.3.14.46 pandas.Series.str.isspace

Series.str.isspace()
Check whether all characters in each string in the Series/Index are whitespace. Equivalent to str.
isspace().

Returns

34.3. Series 1693

https://docs.python.org/3/library/stdtypes.html#str.zfill
https://docs.python.org/3/library/stdtypes.html#str.isalnum
https://docs.python.org/3/library/stdtypes.html#str.isalnum
https://docs.python.org/3/library/stdtypes.html#str.isalpha
https://docs.python.org/3/library/stdtypes.html#str.isdigit
https://docs.python.org/3/library/stdtypes.html#str.isspace
https://docs.python.org/3/library/stdtypes.html#str.isspace

pandas: powerful Python data analysis toolkit, Release 0.23.4

is [Series/array of boolean values]

34.3.14.47 pandas.Series.str.islower

Series.str.islower()
Check whether all characters in each string in the Series/Index are lowercase. Equivalent to str.islower().

Returns

is [Series/array of boolean values]

34.3.14.48 pandas.Series.str.isupper

Series.str.isupper()
Check whether all characters in each string in the Series/Index are uppercase. Equivalent to str.isupper().

Returns

is [Series/array of boolean values]

34.3.14.49 pandas.Series.str.istitle

Series.str.istitle()
Check whether all characters in each string in the Series/Index are titlecase. Equivalent to str.istitle().

Returns

is [Series/array of boolean values]

34.3.14.50 pandas.Series.str.isnumeric

Series.str.isnumeric()
Check whether all characters in each string in the Series/Index are numeric. Equivalent to str.
isnumeric().

Returns

is [Series/array of boolean values]

34.3.14.51 pandas.Series.str.isdecimal

Series.str.isdecimal()
Check whether all characters in each string in the Series/Index are decimal. Equivalent to str.isdecimal().

Returns

is [Series/array of boolean values]

34.3.14.52 pandas.Series.str.get_dummies

Series.str.get_dummies(sep=’|’)
Split each string in the Series by sep and return a frame of dummy/indicator variables.

Parameters sep : string, default “|”

String to split on.

1694 Chapter 34. API Reference

https://docs.python.org/3/library/stdtypes.html#str.islower
https://docs.python.org/3/library/stdtypes.html#str.isupper
https://docs.python.org/3/library/stdtypes.html#str.istitle
https://docs.python.org/3/library/stdtypes.html#str.isnumeric
https://docs.python.org/3/library/stdtypes.html#str.isnumeric
https://docs.python.org/3/library/stdtypes.html#str.isdecimal

pandas: powerful Python data analysis toolkit, Release 0.23.4

Returns

dummies [DataFrame]

See also:

pandas.get_dummies

Examples

>>> Series(['a|b', 'a', 'a|c']).str.get_dummies()
a b c

0 1 1 0
1 1 0 0
2 1 0 1

>>> Series(['a|b', np.nan, 'a|c']).str.get_dummies()
a b c

0 1 1 0
1 0 0 0
2 1 0 1

34.3.15 Categorical

Pandas defines a custom data type for representing data that can take only a limited, fixed set of values. The dtype of
a Categorical can be described by a pandas.api.types.CategoricalDtype.

api.types.CategoricalDtype([categories, or-
dered])

Type for categorical data with the categories and or-
deredness

34.3.15.1 pandas.api.types.CategoricalDtype

class pandas.api.types.CategoricalDtype(categories=None, ordered=None)
Type for categorical data with the categories and orderedness

Changed in version 0.21.0.

Parameters categories : sequence, optional

Must be unique, and must not contain any nulls.

ordered [bool, default False]

See also:

pandas.Categorical

Notes

This class is useful for specifying the type of a Categorical independent of the values. See CategoricalDtype
for more.

34.3. Series 1695

pandas: powerful Python data analysis toolkit, Release 0.23.4

Examples

>>> t = CategoricalDtype(categories=['b', 'a'], ordered=True)
>>> pd.Series(['a', 'b', 'a', 'c'], dtype=t)
0 a
1 b
2 a
3 NaN
dtype: category
Categories (2, object): [b < a]

Attributes

categories An Index containing the unique categories allowed.
ordered Whether the categories have an ordered relationship

pandas.api.types.CategoricalDtype.categories

CategoricalDtype.categories
An Index containing the unique categories allowed.

pandas.api.types.CategoricalDtype.ordered

CategoricalDtype.ordered
Whether the categories have an ordered relationship

Methods

None

api.types.CategoricalDtype.categories An Index containing the unique categories allowed.
api.types.CategoricalDtype.ordered Whether the categories have an ordered relationship

Categorical data can be stored in a pandas.Categorical

Categorical(values[, categories, ordered, . . .]) Represents a categorical variable in classic R / S-plus
fashion

34.3.15.2 pandas.Categorical

class pandas.Categorical(values, categories=None, ordered=None, dtype=None, fastpath=False)
Represents a categorical variable in classic R / S-plus fashion

Categoricals can only take on only a limited, and usually fixed, number of possible values (categories). In con-
trast to statistical categorical variables, a Categorical might have an order, but numerical operations (additions,
divisions, . . .) are not possible.

1696 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

All values of the Categorical are either in categories or np.nan. Assigning values outside of categories will raise
a ValueError. Order is defined by the order of the categories, not lexical order of the values.

Parameters values : list-like

The values of the categorical. If categories are given, values not in categories will be
replaced with NaN.

categories : Index-like (unique), optional

The unique categories for this categorical. If not given, the categories are assumed
to be the unique values of values.

ordered : boolean, (default False)

Whether or not this categorical is treated as a ordered categorical. If not given, the
resulting categorical will not be ordered.

dtype : CategoricalDtype

An instance of CategoricalDtype to use for this categorical

New in version 0.21.0.

Raises ValueError

If the categories do not validate.

TypeError

If an explicit ordered=True is given but no categories and the values are not
sortable.

See also:

pandas.api.types.CategoricalDtype Type for categorical data

CategoricalIndex An Index with an underlying Categorical

Notes

See the user guide for more.

Examples

>>> pd.Categorical([1, 2, 3, 1, 2, 3])
[1, 2, 3, 1, 2, 3]
Categories (3, int64): [1, 2, 3]

>>> pd.Categorical(['a', 'b', 'c', 'a', 'b', 'c'])
[a, b, c, a, b, c]
Categories (3, object): [a, b, c]

Ordered Categoricals can be sorted according to the custom order of the categories and can have a min and max
value.

34.3. Series 1697

http://pandas.pydata.org/pandas-docs/stable/categorical.html

pandas: powerful Python data analysis toolkit, Release 0.23.4

>>> c = pd.Categorical(['a','b','c','a','b','c'], ordered=True,
... categories=['c', 'b', 'a'])
>>> c
[a, b, c, a, b, c]
Categories (3, object): [c < b < a]
>>> c.min()
'c'

Attributes

categories The categories of this categorical.
codes The category codes of this categorical.
ordered Whether the categories have an ordered relationship
dtype The CategoricalDtype for this instance

pandas.Categorical.categories

Categorical.categories
The categories of this categorical.

Setting assigns new values to each category (effectively a rename of each individual category).

The assigned value has to be a list-like object. All items must be unique and the number of items in the
new categories must be the same as the number of items in the old categories.

Assigning to categories is a inplace operation!

Raises ValueError

If the new categories do not validate as categories or if the number of new cate-
gories is unequal the number of old categories

See also:

rename_categories, reorder_categories, add_categories, remove_categories,
remove_unused_categories, set_categories

pandas.Categorical.codes

Categorical.codes
The category codes of this categorical.

Level codes are an array if integer which are the positions of the real values in the categories array.

There is not setter, use the other categorical methods and the normal item setter to change values in the
categorical.

pandas.Categorical.ordered

Categorical.ordered
Whether the categories have an ordered relationship

1698 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

pandas.Categorical.dtype

Categorical.dtype
The CategoricalDtype for this instance

Methods

from_codes(codes, categories[, ordered]) Make a Categorical type from codes and categories
arrays.

__array__([dtype]) The numpy array interface.

pandas.Categorical.from_codes

classmethod Categorical.from_codes(codes, categories, ordered=False)
Make a Categorical type from codes and categories arrays.

This constructor is useful if you already have codes and categories and so do not need the (computation
intensive) factorization step, which is usually done on the constructor.

If your data does not follow this convention, please use the normal constructor.

Parameters codes : array-like, integers

An integer array, where each integer points to a category in categories or -1 for
NaN

categories : index-like

The categories for the categorical. Items need to be unique.

ordered : boolean, (default False)

Whether or not this categorical is treated as a ordered categorical. If not given,
the resulting categorical will be unordered.

pandas.Categorical.__array__

Categorical.__array__(dtype=None)
The numpy array interface.

Returns values : numpy array

A numpy array of either the specified dtype or, if dtype==None (default), the
same dtype as categorical.categories.dtype

The alternative Categorical.from_codes() constructor can be used when you have the categories and integer
codes already:

Categorical.from_codes(codes, categories[,
. . .])

Make a Categorical type from codes and categories ar-
rays.

The dtype information is available on the Categorical

34.3. Series 1699

pandas: powerful Python data analysis toolkit, Release 0.23.4

Categorical.dtype The CategoricalDtype for this instance
Categorical.categories The categories of this categorical.
Categorical.ordered Whether the categories have an ordered relationship
Categorical.codes The category codes of this categorical.

np.asarray(categorical) works by implementing the array interface. Be aware, that this converts the Cate-
gorical back to a NumPy array, so categories and order information is not preserved!

Categorical.__array__([dtype]) The numpy array interface.

A Categorical can be stored in a Series or DataFrame. To create a Series of dtype category, use cat =
s.astype(dtype) or Series(..., dtype=dtype) where dtype is either

• the string 'category'

• an instance of CategoricalDtype.

If the Series is of dtype CategoricalDtype, Series.cat can be used to change the categorical data. This
accessor is similar to the Series.dt or Series.str and has the following usable methods and properties:

Series.cat.categories The categories of this categorical.
Series.cat.ordered Whether the categories have an ordered relationship
Series.cat.codes

34.3.15.3 pandas.Series.cat.categories

Series.cat.categories
The categories of this categorical.

Setting assigns new values to each category (effectively a rename of each individual category).

The assigned value has to be a list-like object. All items must be unique and the number of items in the new
categories must be the same as the number of items in the old categories.

Assigning to categories is a inplace operation!

Raises ValueError

If the new categories do not validate as categories or if the number of new categories
is unequal the number of old categories

See also:

rename_categories, reorder_categories, add_categories, remove_categories,
remove_unused_categories, set_categories

34.3.15.4 pandas.Series.cat.ordered

Series.cat.ordered
Whether the categories have an ordered relationship

34.3.15.5 pandas.Series.cat.codes

Series.cat.codes

1700 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

Series.cat.rename_categories(*args,
**kwargs)

Renames categories.

Series.cat.reorder_categories(*args,
**kwargs)

Reorders categories as specified in new_categories.

Series.cat.add_categories(*args, **kwargs) Add new categories.
Series.cat.remove_categories(*args,
**kwargs)

Removes the specified categories.

Series.cat.remove_unused_categories(*args,
. . .)

Removes categories which are not used.

Series.cat.set_categories(*args, **kwargs) Sets the categories to the specified new_categories.
Series.cat.as_ordered(*args, **kwargs) Sets the Categorical to be ordered
Series.cat.as_unordered(*args, **kwargs) Sets the Categorical to be unordered

34.3.15.6 pandas.Series.cat.rename_categories

Series.cat.rename_categories(*args, **kwargs)
Renames categories.

Parameters new_categories : list-like, dict-like or callable

• list-like: all items must be unique and the number of items in the new categories
must match the existing number of categories.

• dict-like: specifies a mapping from old categories to new. Categories not con-
tained in the mapping are passed through and extra categories in the mapping
are ignored.

New in version 0.21.0.

• callable : a callable that is called on all items in the old categories and whose
return values comprise the new categories.

New in version 0.23.0.

Warning: Currently, Series are considered list like. In a future version of pandas
they’ll be considered dict-like.

inplace : boolean (default: False)

Whether or not to rename the categories inplace or return a copy of this categorical
with renamed categories.

Returns cat : Categorical or None

With inplace=False, the new categorical is returned. With inplace=True,
there is no return value.

Raises ValueError

If new categories are list-like and do not have the same number of items than the
current categories or do not validate as categories

See also:

reorder_categories, add_categories, remove_categories,
remove_unused_categories, set_categories

34.3. Series 1701

pandas: powerful Python data analysis toolkit, Release 0.23.4

Examples

>>> c = Categorical(['a', 'a', 'b'])
>>> c.rename_categories([0, 1])
[0, 0, 1]
Categories (2, int64): [0, 1]

For dict-like new_categories, extra keys are ignored and categories not in the dictionary are passed through

>>> c.rename_categories({'a': 'A', 'c': 'C'})
[A, A, b]
Categories (2, object): [A, b]

You may also provide a callable to create the new categories

>>> c.rename_categories(lambda x: x.upper())
[A, A, B]
Categories (2, object): [A, B]

34.3.15.7 pandas.Series.cat.reorder_categories

Series.cat.reorder_categories(*args, **kwargs)
Reorders categories as specified in new_categories.

new_categories need to include all old categories and no new category items.

Parameters new_categories : Index-like

The categories in new order.

ordered : boolean, optional

Whether or not the categorical is treated as a ordered categorical. If not given, do
not change the ordered information.

inplace : boolean (default: False)

Whether or not to reorder the categories inplace or return a copy of this categorical
with reordered categories.

Returns

cat [Categorical with reordered categories or None if inplace.]

Raises ValueError

If the new categories do not contain all old category items or any new ones

See also:

rename_categories, add_categories, remove_categories,
remove_unused_categories, set_categories

34.3.15.8 pandas.Series.cat.add_categories

Series.cat.add_categories(*args, **kwargs)
Add new categories.

new_categories will be included at the last/highest place in the categories and will be unused directly after this
call.

1702 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

Parameters new_categories : category or list-like of category

The new categories to be included.

inplace : boolean (default: False)

Whether or not to add the categories inplace or return a copy of this categorical with
added categories.

Returns

cat [Categorical with new categories added or None if inplace.]

Raises ValueError

If the new categories include old categories or do not validate as categories

See also:

rename_categories, reorder_categories, remove_categories,
remove_unused_categories, set_categories

34.3.15.9 pandas.Series.cat.remove_categories

Series.cat.remove_categories(*args, **kwargs)
Removes the specified categories.

removals must be included in the old categories. Values which were in the removed categories will be set to
NaN

Parameters removals : category or list of categories

The categories which should be removed.

inplace : boolean (default: False)

Whether or not to remove the categories inplace or return a copy of this categorical
with removed categories.

Returns

cat [Categorical with removed categories or None if inplace.]

Raises ValueError

If the removals are not contained in the categories

See also:

rename_categories, reorder_categories, add_categories,
remove_unused_categories, set_categories

34.3.15.10 pandas.Series.cat.remove_unused_categories

Series.cat.remove_unused_categories(*args, **kwargs)
Removes categories which are not used.

Parameters inplace : boolean (default: False)

Whether or not to drop unused categories inplace or return a copy of this categorical
with unused categories dropped.

Returns

cat [Categorical with unused categories dropped or None if inplace.]

34.3. Series 1703

pandas: powerful Python data analysis toolkit, Release 0.23.4

See also:

rename_categories, reorder_categories, add_categories, remove_categories,
set_categories

34.3.15.11 pandas.Series.cat.set_categories

Series.cat.set_categories(*args, **kwargs)
Sets the categories to the specified new_categories.

new_categories can include new categories (which will result in unused categories) or remove old categories
(which results in values set to NaN). If rename==True, the categories will simple be renamed (less or more
items than in old categories will result in values set to NaN or in unused categories respectively).

This method can be used to perform more than one action of adding, removing, and reordering simultaneously
and is therefore faster than performing the individual steps via the more specialised methods.

On the other hand this methods does not do checks (e.g., whether the old categories are included in the new
categories on a reorder), which can result in surprising changes, for example when using special string dtypes
on python3, which does not considers a S1 string equal to a single char python string.

Parameters new_categories : Index-like

The categories in new order.

ordered : boolean, (default: False)

Whether or not the categorical is treated as a ordered categorical. If not given, do
not change the ordered information.

rename : boolean (default: False)

Whether or not the new_categories should be considered as a rename of the old
categories or as reordered categories.

inplace : boolean (default: False)

Whether or not to reorder the categories inplace or return a copy of this categorical
with reordered categories.

Returns

cat [Categorical with reordered categories or None if inplace.]

Raises ValueError

If new_categories does not validate as categories

See also:

rename_categories, reorder_categories, add_categories, remove_categories,
remove_unused_categories

34.3.15.12 pandas.Series.cat.as_ordered

Series.cat.as_ordered(*args, **kwargs)
Sets the Categorical to be ordered

Parameters inplace : boolean (default: False)

Whether or not to set the ordered attribute inplace or return a copy of this categorical
with ordered set to True

1704 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

34.3.15.13 pandas.Series.cat.as_unordered

Series.cat.as_unordered(*args, **kwargs)
Sets the Categorical to be unordered

Parameters inplace : boolean (default: False)

Whether or not to set the ordered attribute inplace or return a copy of this categorical
with ordered set to False

34.3.16 Plotting

Series.plot is both a callable method and a namespace attribute for specific plotting methods of the form
Series.plot.<kind>.

Series.plot([kind, ax, figsize,]) Series plotting accessor and method

Series.plot.area(**kwds) Area plot
Series.plot.bar(**kwds) Vertical bar plot
Series.plot.barh(**kwds) Horizontal bar plot
Series.plot.box(**kwds) Boxplot
Series.plot.density([bw_method, ind]) Generate Kernel Density Estimate plot using Gaussian

kernels.
Series.plot.hist([bins]) Histogram
Series.plot.kde([bw_method, ind]) Generate Kernel Density Estimate plot using Gaussian

kernels.
Series.plot.line(**kwds) Line plot
Series.plot.pie(**kwds) Pie chart

34.3.16.1 pandas.Series.plot.area

Series.plot.area(**kwds)
Area plot

Parameters ‘**kwds‘ : optional

Additional keyword arguments are documented in pandas.Series.plot().

Returns

axes [matplotlib.axes.Axes or numpy.ndarray of them]

34.3.16.2 pandas.Series.plot.bar

Series.plot.bar(**kwds)
Vertical bar plot

Parameters ‘**kwds‘ : optional

Additional keyword arguments are documented in pandas.Series.plot().

Returns

axes [matplotlib.axes.Axes or numpy.ndarray of them]

34.3. Series 1705

https://matplotlib.org/api/axes_api.html#matplotlib.axes.Axes
https://matplotlib.org/api/axes_api.html#matplotlib.axes.Axes

pandas: powerful Python data analysis toolkit, Release 0.23.4

34.3.16.3 pandas.Series.plot.barh

Series.plot.barh(**kwds)
Horizontal bar plot

Parameters ‘**kwds‘ : optional

Additional keyword arguments are documented in pandas.Series.plot().

Returns

axes [matplotlib.axes.Axes or numpy.ndarray of them]

34.3.16.4 pandas.Series.plot.box

Series.plot.box(**kwds)
Boxplot

Parameters ‘**kwds‘ : optional

Additional keyword arguments are documented in pandas.Series.plot().

Returns

axes [matplotlib.axes.Axes or numpy.ndarray of them]

34.3.16.5 pandas.Series.plot.density

Series.plot.density(bw_method=None, ind=None, **kwds)
Generate Kernel Density Estimate plot using Gaussian kernels.

In statistics, kernel density estimation (KDE) is a non-parametric way to estimate the probability density function
(PDF) of a random variable. This function uses Gaussian kernels and includes automatic bandwith determina-
tion.

Parameters bw_method : str, scalar or callable, optional

The method used to calculate the estimator bandwidth. This can be ‘scott’, ‘sil-
verman’, a scalar constant or a callable. If None (default), ‘scott’ is used. See
scipy.stats.gaussian_kde for more information.

ind : NumPy array or integer, optional

Evaluation points for the estimated PDF. If None (default), 1000 equally spaced
points are used. If ind is a NumPy array, the KDE is evaluated at the points passed.
If ind is an integer, ind number of equally spaced points are used.

**kwds : optional

Additional keyword arguments are documented in pandas.Series.plot().

Returns

axes [matplotlib.axes.Axes or numpy.ndarray of them]

See also:

scipy.stats.gaussian_kde Representation of a kernel-density estimate using Gaussian kernels. This
is the function used internally to estimate the PDF.

DataFrame.plot.kde Generate a KDE plot for a DataFrame.

1706 Chapter 34. API Reference

https://matplotlib.org/api/axes_api.html#matplotlib.axes.Axes
https://matplotlib.org/api/axes_api.html#matplotlib.axes.Axes
https://en.wikipedia.org/wiki/Kernel_density_estimation
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.gaussian_kde.html#scipy.stats.gaussian_kde
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.gaussian_kde.html#scipy.stats.gaussian_kde

pandas: powerful Python data analysis toolkit, Release 0.23.4

Examples

Given a Series of points randomly sampled from an unknown distribution, estimate its PDF using KDE with
automatic bandwidth determination and plot the results, evaluating them at 1000 equally spaced points (default):

>>> s = pd.Series([1, 2, 2.5, 3, 3.5, 4, 5])
>>> ax = s.plot.kde()

A scalar bandwidth can be specified. Using a small bandwidth value can lead to overfitting, while using a large
bandwidth value may result in underfitting:

>>> ax = s.plot.kde(bw_method=0.3)

>>> ax = s.plot.kde(bw_method=3)

Finally, the ind parameter determines the evaluation points for the plot of the estimated PDF:

>>> ax = s.plot.kde(ind=[1, 2, 3, 4, 5])

34.3.16.6 pandas.Series.plot.hist

Series.plot.hist(bins=10, **kwds)
Histogram

Parameters bins: integer, default 10

Number of histogram bins to be used

‘**kwds‘ : optional

Additional keyword arguments are documented in pandas.Series.plot().

Returns

axes [matplotlib.axes.Axes or numpy.ndarray of them]

34.3.16.7 pandas.Series.plot.kde

Series.plot.kde(bw_method=None, ind=None, **kwds)
Generate Kernel Density Estimate plot using Gaussian kernels.

In statistics, kernel density estimation (KDE) is a non-parametric way to estimate the probability density function
(PDF) of a random variable. This function uses Gaussian kernels and includes automatic bandwith determina-
tion.

Parameters bw_method : str, scalar or callable, optional

The method used to calculate the estimator bandwidth. This can be ‘scott’, ‘sil-
verman’, a scalar constant or a callable. If None (default), ‘scott’ is used. See
scipy.stats.gaussian_kde for more information.

ind : NumPy array or integer, optional

Evaluation points for the estimated PDF. If None (default), 1000 equally spaced
points are used. If ind is a NumPy array, the KDE is evaluated at the points passed.
If ind is an integer, ind number of equally spaced points are used.

**kwds : optional

34.3. Series 1707

https://matplotlib.org/api/axes_api.html#matplotlib.axes.Axes
https://en.wikipedia.org/wiki/Kernel_density_estimation
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.gaussian_kde.html#scipy.stats.gaussian_kde

pandas: powerful Python data analysis toolkit, Release 0.23.4

Additional keyword arguments are documented in pandas.Series.plot().

Returns

axes [matplotlib.axes.Axes or numpy.ndarray of them]

See also:

scipy.stats.gaussian_kde Representation of a kernel-density estimate using Gaussian kernels. This
is the function used internally to estimate the PDF.

DataFrame.plot.kde Generate a KDE plot for a DataFrame.

Examples

Given a Series of points randomly sampled from an unknown distribution, estimate its PDF using KDE with
automatic bandwidth determination and plot the results, evaluating them at 1000 equally spaced points (default):

>>> s = pd.Series([1, 2, 2.5, 3, 3.5, 4, 5])
>>> ax = s.plot.kde()

A scalar bandwidth can be specified. Using a small bandwidth value can lead to overfitting, while using a large
bandwidth value may result in underfitting:

>>> ax = s.plot.kde(bw_method=0.3)

>>> ax = s.plot.kde(bw_method=3)

Finally, the ind parameter determines the evaluation points for the plot of the estimated PDF:

>>> ax = s.plot.kde(ind=[1, 2, 3, 4, 5])

34.3.16.8 pandas.Series.plot.line

Series.plot.line(**kwds)
Line plot

Parameters ‘**kwds‘ : optional

Additional keyword arguments are documented in pandas.Series.plot().

Returns

axes [matplotlib.axes.Axes or numpy.ndarray of them]

Examples

>>> s = pd.Series([1, 3, 2])
>>> s.plot.line()

34.3.16.9 pandas.Series.plot.pie

Series.plot.pie(**kwds)
Pie chart

1708 Chapter 34. API Reference

https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.gaussian_kde.html#scipy.stats.gaussian_kde
https://matplotlib.org/api/axes_api.html#matplotlib.axes.Axes

pandas: powerful Python data analysis toolkit, Release 0.23.4

Parameters ‘**kwds‘ : optional

Additional keyword arguments are documented in pandas.Series.plot().

Returns

axes [matplotlib.axes.Axes or numpy.ndarray of them]

Series.hist([by, ax, grid, xlabelsize, . . .]) Draw histogram of the input series using matplotlib

34.3.17 Serialization / IO / Conversion

Series.to_pickle(path[, compression, protocol]) Pickle (serialize) object to file.
Series.to_csv([path, index, sep, na_rep, . . .]) Write Series to a comma-separated values (csv) file
Series.to_dict([into]) Convert Series to {label -> value} dict or dict-like ob-

ject.
Series.to_excel(excel_writer[, sheet_name, . . .]) Write Series to an excel sheet
Series.to_frame([name]) Convert Series to DataFrame
Series.to_xarray() Return an xarray object from the pandas object.
Series.to_hdf(path_or_buf, key, **kwargs) Write the contained data to an HDF5 file using HDFS-

tore.
Series.to_sql(name, con[, schema, . . .]) Write records stored in a DataFrame to a SQL database.
Series.to_msgpack([path_or_buf, encoding]) msgpack (serialize) object to input file path
Series.to_json([path_or_buf, orient, . . .]) Convert the object to a JSON string.
Series.to_sparse([kind, fill_value]) Convert Series to SparseSeries
Series.to_dense() Return dense representation of NDFrame (as opposed to

sparse)
Series.to_string([buf, na_rep, . . .]) Render a string representation of the Series
Series.to_clipboard([excel, sep]) Copy object to the system clipboard.
Series.to_latex([buf, columns, col_space, . . .]) Render an object to a tabular environment table.

34.3.18 Sparse

SparseSeries.to_coo([row_levels, . . .]) Create a scipy.sparse.coo_matrix from a SparseSeries
with MultiIndex.

SparseSeries.from_coo(A[, dense_index]) Create a SparseSeries from a scipy.sparse.coo_matrix.

34.3.18.1 pandas.SparseSeries.to_coo

SparseSeries.to_coo(row_levels=(0,), column_levels=(1,), sort_labels=False)
Create a scipy.sparse.coo_matrix from a SparseSeries with MultiIndex.

Use row_levels and column_levels to determine the row and column coordinates respectively. row_levels and
column_levels are the names (labels) or numbers of the levels. {row_levels, column_levels} must be a partition
of the MultiIndex level names (or numbers).

Parameters

row_levels [tuple/list]

column_levels [tuple/list]

sort_labels : bool, default False

34.3. Series 1709

https://matplotlib.org/api/axes_api.html#matplotlib.axes.Axes

pandas: powerful Python data analysis toolkit, Release 0.23.4

Sort the row and column labels before forming the sparse matrix.

Returns

y [scipy.sparse.coo_matrix]

rows [list (row labels)]

columns [list (column labels)]

Examples

>>> from numpy import nan
>>> s = Series([3.0, nan, 1.0, 3.0, nan, nan])
>>> s.index = MultiIndex.from_tuples([(1, 2, 'a', 0),

(1, 2, 'a', 1),
(1, 1, 'b', 0),
(1, 1, 'b', 1),
(2, 1, 'b', 0),
(2, 1, 'b', 1)],
names=['A', 'B', 'C', 'D'])

>>> ss = s.to_sparse()
>>> A, rows, columns = ss.to_coo(row_levels=['A', 'B'],

column_levels=['C', 'D'],
sort_labels=True)

>>> A
<3x4 sparse matrix of type '<class 'numpy.float64'>'

with 3 stored elements in COOrdinate format>
>>> A.todense()
matrix([[0., 0., 1., 3.],
[3., 0., 0., 0.],
[0., 0., 0., 0.]])
>>> rows
[(1, 1), (1, 2), (2, 1)]
>>> columns
[('a', 0), ('a', 1), ('b', 0), ('b', 1)]

34.3.18.2 pandas.SparseSeries.from_coo

classmethod SparseSeries.from_coo(A, dense_index=False)
Create a SparseSeries from a scipy.sparse.coo_matrix.

Parameters

A [scipy.sparse.coo_matrix]

dense_index : bool, default False

If False (default), the SparseSeries index consists of only the coords of the non-null
entries of the original coo_matrix. If True, the SparseSeries index consists of the full
sorted (row, col) coordinates of the coo_matrix.

Returns

s [SparseSeries]

1710 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

Examples

>>> from scipy import sparse
>>> A = sparse.coo_matrix(([3.0, 1.0, 2.0], ([1, 0, 0], [0, 2, 3])),

shape=(3, 4))
>>> A
<3x4 sparse matrix of type '<class 'numpy.float64'>'

with 3 stored elements in COOrdinate format>
>>> A.todense()
matrix([[0., 0., 1., 2.],

[3., 0., 0., 0.],
[0., 0., 0., 0.]])

>>> ss = SparseSeries.from_coo(A)
>>> ss
0 2 1

3 2
1 0 3
dtype: float64
BlockIndex
Block locations: array([0], dtype=int32)
Block lengths: array([3], dtype=int32)

34.4 DataFrame

34.4.1 Constructor

DataFrame([data, index, columns, dtype, copy]) Two-dimensional size-mutable, potentially heteroge-
neous tabular data structure with labeled axes (rows and
columns).

34.4.1.1 pandas.DataFrame

class pandas.DataFrame(data=None, index=None, columns=None, dtype=None, copy=False)
Two-dimensional size-mutable, potentially heterogeneous tabular data structure with labeled axes (rows and
columns). Arithmetic operations align on both row and column labels. Can be thought of as a dict-like container
for Series objects. The primary pandas data structure.

Parameters data : numpy ndarray (structured or homogeneous), dict, or DataFrame

Dict can contain Series, arrays, constants, or list-like objects

Changed in version 0.23.0: If data is a dict, argument order is maintained for Python
3.6 and later.

index : Index or array-like

Index to use for resulting frame. Will default to RangeIndex if no indexing informa-
tion part of input data and no index provided

columns : Index or array-like

Column labels to use for resulting frame. Will default to RangeIndex (0, 1, 2, . . . , n)
if no column labels are provided

dtype : dtype, default None

34.4. DataFrame 1711

pandas: powerful Python data analysis toolkit, Release 0.23.4

Data type to force. Only a single dtype is allowed. If None, infer

copy : boolean, default False

Copy data from inputs. Only affects DataFrame / 2d ndarray input

See also:

DataFrame.from_records constructor from tuples, also record arrays

DataFrame.from_dict from dicts of Series, arrays, or dicts

DataFrame.from_items from sequence of (key, value) pairs

pandas.read_csv , pandas.read_table, pandas.read_clipboard

Examples

Constructing DataFrame from a dictionary.

>>> d = {'col1': [1, 2], 'col2': [3, 4]}
>>> df = pd.DataFrame(data=d)
>>> df

col1 col2
0 1 3
1 2 4

Notice that the inferred dtype is int64.

>>> df.dtypes
col1 int64
col2 int64
dtype: object

To enforce a single dtype:

>>> df = pd.DataFrame(data=d, dtype=np.int8)
>>> df.dtypes
col1 int8
col2 int8
dtype: object

Constructing DataFrame from numpy ndarray:

>>> df2 = pd.DataFrame(np.random.randint(low=0, high=10, size=(5, 5)),
... columns=['a', 'b', 'c', 'd', 'e'])
>>> df2

a b c d e
0 2 8 8 3 4
1 4 2 9 0 9
2 1 0 7 8 0
3 5 1 7 1 3
4 6 0 2 4 2

Attributes

1712 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

T Transpose index and columns.
at Access a single value for a row/column label pair.
axes Return a list representing the axes of the DataFrame.
blocks (DEPRECATED) Internal property, property syn-

onym for as_blocks()
columns The column labels of the DataFrame.
dtypes Return the dtypes in the DataFrame.
empty Indicator whether DataFrame is empty.
ftypes Return the ftypes (indication of sparse/dense and

dtype) in DataFrame.
iat Access a single value for a row/column pair by inte-

ger position.
iloc Purely integer-location based indexing for selection

by position.
index The index (row labels) of the DataFrame.
ix A primarily label-location based indexer, with inte-

ger position fallback.
loc Access a group of rows and columns by label(s) or a

boolean array.
ndim Return an int representing the number of axes / array

dimensions.
shape Return a tuple representing the dimensionality of the

DataFrame.
size Return an int representing the number of elements in

this object.
style Property returning a Styler object containing meth-

ods for building a styled HTML representation fo the
DataFrame.

values Return a Numpy representation of the DataFrame.

pandas.DataFrame.T

DataFrame.T
Transpose index and columns.

Reflect the DataFrame over its main diagonal by writing rows as columns and vice-versa. The property T
is an accessor to the method transpose().

Parameters copy : bool, default False

If True, the underlying data is copied. Otherwise (default), no copy is made if
possible.

*args, **kwargs

Additional keywords have no effect but might be accepted for compatibility with
numpy.

Returns DataFrame

The transposed DataFrame.

See also:

numpy.transpose Permute the dimensions of a given array.

34.4. DataFrame 1713

https://docs.scipy.org/doc/numpy/reference/generated/numpy.transpose.html#numpy.transpose

pandas: powerful Python data analysis toolkit, Release 0.23.4

Notes

Transposing a DataFrame with mixed dtypes will result in a homogeneous DataFrame with the object
dtype. In such a case, a copy of the data is always made.

Examples

Square DataFrame with homogeneous dtype

>>> d1 = {'col1': [1, 2], 'col2': [3, 4]}
>>> df1 = pd.DataFrame(data=d1)
>>> df1

col1 col2
0 1 3
1 2 4

>>> df1_transposed = df1.T # or df1.transpose()
>>> df1_transposed

0 1
col1 1 2
col2 3 4

When the dtype is homogeneous in the original DataFrame, we get a transposed DataFrame with the same
dtype:

>>> df1.dtypes
col1 int64
col2 int64
dtype: object
>>> df1_transposed.dtypes
0 int64
1 int64
dtype: object

Non-square DataFrame with mixed dtypes

>>> d2 = {'name': ['Alice', 'Bob'],
... 'score': [9.5, 8],
... 'employed': [False, True],
... 'kids': [0, 0]}
>>> df2 = pd.DataFrame(data=d2)
>>> df2

name score employed kids
0 Alice 9.5 False 0
1 Bob 8.0 True 0

>>> df2_transposed = df2.T # or df2.transpose()
>>> df2_transposed

0 1
name Alice Bob
score 9.5 8
employed False True
kids 0 0

When the DataFrame has mixed dtypes, we get a transposed DataFrame with the object dtype:

1714 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

>>> df2.dtypes
name object
score float64
employed bool
kids int64
dtype: object
>>> df2_transposed.dtypes
0 object
1 object
dtype: object

pandas.DataFrame.at

DataFrame.at
Access a single value for a row/column label pair.

Similar to loc, in that both provide label-based lookups. Use at if you only need to get or set a single
value in a DataFrame or Series.

Raises KeyError

When label does not exist in DataFrame

See also:

DataFrame.iat Access a single value for a row/column pair by integer position

DataFrame.loc Access a group of rows and columns by label(s)

Series.at Access a single value using a label

Examples

>>> df = pd.DataFrame([[0, 2, 3], [0, 4, 1], [10, 20, 30]],
... index=[4, 5, 6], columns=['A', 'B', 'C'])
>>> df

A B C
4 0 2 3
5 0 4 1
6 10 20 30

Get value at specified row/column pair

>>> df.at[4, 'B']
2

Set value at specified row/column pair

>>> df.at[4, 'B'] = 10
>>> df.at[4, 'B']
10

Get value within a Series

>>> df.loc[5].at['B']
4

34.4. DataFrame 1715

pandas: powerful Python data analysis toolkit, Release 0.23.4

pandas.DataFrame.axes

DataFrame.axes
Return a list representing the axes of the DataFrame.

It has the row axis labels and column axis labels as the only members. They are returned in that order.

Examples

>>> df = pd.DataFrame({'col1': [1, 2], 'col2': [3, 4]})
>>> df.axes
[RangeIndex(start=0, stop=2, step=1), Index(['coll', 'col2'],
dtype='object')]

pandas.DataFrame.blocks

DataFrame.blocks
Internal property, property synonym for as_blocks()

Deprecated since version 0.21.0.

pandas.DataFrame.columns

DataFrame.columns
The column labels of the DataFrame.

pandas.DataFrame.dtypes

DataFrame.dtypes
Return the dtypes in the DataFrame.

This returns a Series with the data type of each column. The result’s index is the original DataFrame’s
columns. Columns with mixed types are stored with the object dtype. See the User Guide for more.

Returns pandas.Series

The data type of each column.

See also:

pandas.DataFrame.ftypes dtype and sparsity information.

Examples

>>> df = pd.DataFrame({'float': [1.0],
... 'int': [1],
... 'datetime': [pd.Timestamp('20180310')],
... 'string': ['foo']})
>>> df.dtypes
float float64
int int64

(continues on next page)

1716 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

datetime datetime64[ns]
string object
dtype: object

pandas.DataFrame.empty

DataFrame.empty
Indicator whether DataFrame is empty.

True if DataFrame is entirely empty (no items), meaning any of the axes are of length 0.

Returns bool

If DataFrame is empty, return True, if not return False.

See also:

pandas.Series.dropna, pandas.DataFrame.dropna

Notes

If DataFrame contains only NaNs, it is still not considered empty. See the example below.

Examples

An example of an actual empty DataFrame. Notice the index is empty:

>>> df_empty = pd.DataFrame({'A' : []})
>>> df_empty
Empty DataFrame
Columns: [A]
Index: []
>>> df_empty.empty
True

If we only have NaNs in our DataFrame, it is not considered empty! We will need to drop the NaNs to
make the DataFrame empty:

>>> df = pd.DataFrame({'A' : [np.nan]})
>>> df

A
0 NaN
>>> df.empty
False
>>> df.dropna().empty
True

pandas.DataFrame.ftypes

DataFrame.ftypes
Return the ftypes (indication of sparse/dense and dtype) in DataFrame.

34.4. DataFrame 1717

pandas: powerful Python data analysis toolkit, Release 0.23.4

This returns a Series with the data type of each column. The result’s index is the original DataFrame’s
columns. Columns with mixed types are stored with the object dtype. See the User Guide for more.

Returns pandas.Series

The data type and indication of sparse/dense of each column.

See also:

pandas.DataFrame.dtypes Series with just dtype information.

pandas.SparseDataFrame Container for sparse tabular data.

Notes

Sparse data should have the same dtypes as its dense representation.

Examples

>>> import numpy as np
>>> arr = np.random.RandomState(0).randn(100, 4)
>>> arr[arr < .8] = np.nan
>>> pd.DataFrame(arr).ftypes
0 float64:dense
1 float64:dense
2 float64:dense
3 float64:dense
dtype: object

>>> pd.SparseDataFrame(arr).ftypes
0 float64:sparse
1 float64:sparse
2 float64:sparse
3 float64:sparse
dtype: object

pandas.DataFrame.iat

DataFrame.iat
Access a single value for a row/column pair by integer position.

Similar to iloc, in that both provide integer-based lookups. Use iat if you only need to get or set a
single value in a DataFrame or Series.

Raises IndexError

When integer position is out of bounds

See also:

DataFrame.at Access a single value for a row/column label pair

DataFrame.loc Access a group of rows and columns by label(s)

DataFrame.iloc Access a group of rows and columns by integer position(s)

1718 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

Examples

>>> df = pd.DataFrame([[0, 2, 3], [0, 4, 1], [10, 20, 30]],
... columns=['A', 'B', 'C'])
>>> df

A B C
0 0 2 3
1 0 4 1
2 10 20 30

Get value at specified row/column pair

>>> df.iat[1, 2]
1

Set value at specified row/column pair

>>> df.iat[1, 2] = 10
>>> df.iat[1, 2]
10

Get value within a series

>>> df.loc[0].iat[1]
2

pandas.DataFrame.iloc

DataFrame.iloc
Purely integer-location based indexing for selection by position.

.iloc[] is primarily integer position based (from 0 to length-1 of the axis), but may also be used
with a boolean array.

Allowed inputs are:

• An integer, e.g. 5.

• A list or array of integers, e.g. [4, 3, 0].

• A slice object with ints, e.g. 1:7.

• A boolean array.

• A callable function with one argument (the calling Series, DataFrame or Panel) and that returns
valid output for indexing (one of the above)

.iloc will raise IndexError if a requested indexer is out-of-bounds, except slice indexers which
allow out-of-bounds indexing (this conforms with python/numpy slice semantics).

See more at Selection by Position

pandas.DataFrame.index

DataFrame.index
The index (row labels) of the DataFrame.

34.4. DataFrame 1719

pandas: powerful Python data analysis toolkit, Release 0.23.4

pandas.DataFrame.ix

DataFrame.ix
A primarily label-location based indexer, with integer position fallback.

Warning: Starting in 0.20.0, the .ix indexer is deprecated, in favor of the more strict .iloc and .loc indexers.

.ix[] supports mixed integer and label based access. It is primarily label based, but will fall back to
integer positional access unless the corresponding axis is of integer type.

.ix is the most general indexer and will support any of the inputs in .loc and .iloc. .ix also
supports floating point label schemes. .ix is exceptionally useful when dealing with mixed positional
and label based hierarchical indexes.

However, when an axis is integer based, ONLY label based access and not positional access is supported.
Thus, in such cases, it’s usually better to be explicit and use .iloc or .loc.

See more at Advanced Indexing.

pandas.DataFrame.loc

DataFrame.loc
Access a group of rows and columns by label(s) or a boolean array.

.loc[] is primarily label based, but may also be used with a boolean array.

Allowed inputs are:

• A single label, e.g. 5 or 'a', (note that 5 is interpreted as a label of the index, and never as an
integer position along the index).

• A list or array of labels, e.g. ['a', 'b', 'c'].

• A slice object with labels, e.g. 'a':'f'.

Warning: Note that contrary to usual python slices, both the start and the stop are included

• A boolean array of the same length as the axis being sliced, e.g. [True, False, True].

• A callable function with one argument (the calling Series, DataFrame or Panel) and that returns
valid output for indexing (one of the above)

See more at Selection by Label

Raises KeyError:

when any items are not found

See also:

DataFrame.at Access a single value for a row/column label pair

DataFrame.iloc Access group of rows and columns by integer position(s)

DataFrame.xs Returns a cross-section (row(s) or column(s)) from the Series/DataFrame.

Series.loc Access group of values using labels

1720 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

Examples

Getting values

>>> df = pd.DataFrame([[1, 2], [4, 5], [7, 8]],
... index=['cobra', 'viper', 'sidewinder'],
... columns=['max_speed', 'shield'])
>>> df

max_speed shield
cobra 1 2
viper 4 5
sidewinder 7 8

Single label. Note this returns the row as a Series.

>>> df.loc['viper']
max_speed 4
shield 5
Name: viper, dtype: int64

List of labels. Note using [[]] returns a DataFrame.

>>> df.loc[['viper', 'sidewinder']]
max_speed shield

viper 4 5
sidewinder 7 8

Single label for row and column

>>> df.loc['cobra', 'shield']
2

Slice with labels for row and single label for column. As mentioned above, note that both the start and
stop of the slice are included.

>>> df.loc['cobra':'viper', 'max_speed']
cobra 1
viper 4
Name: max_speed, dtype: int64

Boolean list with the same length as the row axis

>>> df.loc[[False, False, True]]
max_speed shield

sidewinder 7 8

Conditional that returns a boolean Series

>>> df.loc[df['shield'] > 6]
max_speed shield

sidewinder 7 8

Conditional that returns a boolean Series with column labels specified

>>> df.loc[df['shield'] > 6, ['max_speed']]
max_speed

sidewinder 7

34.4. DataFrame 1721

pandas: powerful Python data analysis toolkit, Release 0.23.4

Callable that returns a boolean Series

>>> df.loc[lambda df: df['shield'] == 8]
max_speed shield

sidewinder 7 8

Setting values

Set value for all items matching the list of labels

>>> df.loc[['viper', 'sidewinder'], ['shield']] = 50
>>> df

max_speed shield
cobra 1 2
viper 4 50
sidewinder 7 50

Set value for an entire row

>>> df.loc['cobra'] = 10
>>> df

max_speed shield
cobra 10 10
viper 4 50
sidewinder 7 50

Set value for an entire column

>>> df.loc[:, 'max_speed'] = 30
>>> df

max_speed shield
cobra 30 10
viper 30 50
sidewinder 30 50

Set value for rows matching callable condition

>>> df.loc[df['shield'] > 35] = 0
>>> df

max_speed shield
cobra 30 10
viper 0 0
sidewinder 0 0

Getting values on a DataFrame with an index that has integer labels

Another example using integers for the index

>>> df = pd.DataFrame([[1, 2], [4, 5], [7, 8]],
... index=[7, 8, 9], columns=['max_speed', 'shield'])
>>> df

max_speed shield
7 1 2
8 4 5
9 7 8

Slice with integer labels for rows. As mentioned above, note that both the start and stop of the slice are
included.

1722 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

>>> df.loc[7:9]
max_speed shield

7 1 2
8 4 5
9 7 8

Getting values with a MultiIndex

A number of examples using a DataFrame with a MultiIndex

>>> tuples = [
... ('cobra', 'mark i'), ('cobra', 'mark ii'),
... ('sidewinder', 'mark i'), ('sidewinder', 'mark ii'),
... ('viper', 'mark ii'), ('viper', 'mark iii')
...]
>>> index = pd.MultiIndex.from_tuples(tuples)
>>> values = [[12, 2], [0, 4], [10, 20],
... [1, 4], [7, 1], [16, 36]]
>>> df = pd.DataFrame(values, columns=['max_speed', 'shield'], index=index)
>>> df

max_speed shield
cobra mark i 12 2

mark ii 0 4
sidewinder mark i 10 20

mark ii 1 4
viper mark ii 7 1

mark iii 16 36

Single label. Note this returns a DataFrame with a single index.

>>> df.loc['cobra']
max_speed shield

mark i 12 2
mark ii 0 4

Single index tuple. Note this returns a Series.

>>> df.loc[('cobra', 'mark ii')]
max_speed 0
shield 4
Name: (cobra, mark ii), dtype: int64

Single label for row and column. Similar to passing in a tuple, this returns a Series.

>>> df.loc['cobra', 'mark i']
max_speed 12
shield 2
Name: (cobra, mark i), dtype: int64

Single tuple. Note using [[]] returns a DataFrame.

>>> df.loc[[('cobra', 'mark ii')]]
max_speed shield

cobra mark ii 0 4

Single tuple for the index with a single label for the column

34.4. DataFrame 1723

pandas: powerful Python data analysis toolkit, Release 0.23.4

>>> df.loc[('cobra', 'mark i'), 'shield']
2

Slice from index tuple to single label

>>> df.loc[('cobra', 'mark i'):'viper']
max_speed shield

cobra mark i 12 2
mark ii 0 4

sidewinder mark i 10 20
mark ii 1 4

viper mark ii 7 1
mark iii 16 36

Slice from index tuple to index tuple

>>> df.loc[('cobra', 'mark i'):('viper', 'mark ii')]
max_speed shield

cobra mark i 12 2
mark ii 0 4

sidewinder mark i 10 20
mark ii 1 4

viper mark ii 7 1

pandas.DataFrame.ndim

DataFrame.ndim
Return an int representing the number of axes / array dimensions.

Return 1 if Series. Otherwise return 2 if DataFrame.

See also:

ndarray.ndim

Examples

>>> s = pd.Series({'a': 1, 'b': 2, 'c': 3})
>>> s.ndim
1

>>> df = pd.DataFrame({'col1': [1, 2], 'col2': [3, 4]})
>>> df.ndim
2

pandas.DataFrame.shape

DataFrame.shape
Return a tuple representing the dimensionality of the DataFrame.

See also:

ndarray.shape

1724 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

Examples

>>> df = pd.DataFrame({'col1': [1, 2], 'col2': [3, 4]})
>>> df.shape
(2, 2)

>>> df = pd.DataFrame({'col1': [1, 2], 'col2': [3, 4],
... 'col3': [5, 6]})
>>> df.shape
(2, 3)

pandas.DataFrame.size

DataFrame.size
Return an int representing the number of elements in this object.

Return the number of rows if Series. Otherwise return the number of rows times number of columns if
DataFrame.

See also:

ndarray.size

Examples

>>> s = pd.Series({'a': 1, 'b': 2, 'c': 3})
>>> s.size
3

>>> df = pd.DataFrame({'col1': [1, 2], 'col2': [3, 4]})
>>> df.size
4

pandas.DataFrame.style

DataFrame.style
Property returning a Styler object containing methods for building a styled HTML representation fo the
DataFrame.

See also:

pandas.io.formats.style.Styler

pandas.DataFrame.values

DataFrame.values
Return a Numpy representation of the DataFrame.

Only the values in the DataFrame will be returned, the axes labels will be removed.

Returns numpy.ndarray

The values of the DataFrame.

34.4. DataFrame 1725

pandas: powerful Python data analysis toolkit, Release 0.23.4

See also:

pandas.DataFrame.index Retrievie the index labels

pandas.DataFrame.columns Retrieving the column names

Notes

The dtype will be a lower-common-denominator dtype (implicit upcasting); that is to say if the dtypes
(even of numeric types) are mixed, the one that accommodates all will be chosen. Use this with care if
you are not dealing with the blocks.

e.g. If the dtypes are float16 and float32, dtype will be upcast to float32. If dtypes are int32 and uint8,
dtype will be upcast to int32. By numpy.find_common_type() convention, mixing int64 and uint64
will result in a float64 dtype.

Examples

A DataFrame where all columns are the same type (e.g., int64) results in an array of the same type.

>>> df = pd.DataFrame({'age': [3, 29],
... 'height': [94, 170],
... 'weight': [31, 115]})
>>> df

age height weight
0 3 94 31
1 29 170 115
>>> df.dtypes
age int64
height int64
weight int64
dtype: object
>>> df.values
array([[3, 94, 31],

[29, 170, 115]], dtype=int64)

A DataFrame with mixed type columns(e.g., str/object, int64, float32) results in an ndarray of the broadest
type that accommodates these mixed types (e.g., object).

>>> df2 = pd.DataFrame([('parrot', 24.0, 'second'),
... ('lion', 80.5, 1),
... ('monkey', np.nan, None)],
... columns=('name', 'max_speed', 'rank'))
>>> df2.dtypes
name object
max_speed float64
rank object
dtype: object
>>> df2.values
array([['parrot', 24.0, 'second'],

['lion', 80.5, 1],
['monkey', nan, None]], dtype=object)

is_copy

1726 Chapter 34. API Reference

https://docs.scipy.org/doc/numpy/reference/generated/numpy.find_common_type.html#numpy.find_common_type

pandas: powerful Python data analysis toolkit, Release 0.23.4

Methods

abs() Return a Series/DataFrame with absolute numeric
value of each element.

add(other[, axis, level, fill_value]) Addition of dataframe and other, element-wise (bi-
nary operator add).

add_prefix(prefix) Prefix labels with string prefix.
add_suffix(suffix) Suffix labels with string suffix.
agg(func[, axis]) Aggregate using one or more operations over the

specified axis.
aggregate(func[, axis]) Aggregate using one or more operations over the

specified axis.
align(other[, join, axis, level, copy, . . .]) Align two objects on their axes with the specified

join method for each axis Index
all([axis, bool_only, skipna, level]) Return whether all elements are True, potentially

over an axis.
any([axis, bool_only, skipna, level]) Return whether any element is True over requested

axis.
append(other[, ignore_index, . . .]) Append rows of other to the end of this frame, re-

turning a new object.
apply(func[, axis, broadcast, raw, reduce, . . .]) Apply a function along an axis of the DataFrame.
applymap(func) Apply a function to a Dataframe elementwise.
as_blocks([copy]) (DEPRECATED) Convert the frame to a dict of

dtype -> Constructor Types that each has a homo-
geneous dtype.

as_matrix([columns]) (DEPRECATED) Convert the frame to its Numpy-
array representation.

asfreq(freq[, method, how, normalize, . . .]) Convert TimeSeries to specified frequency.
asof(where[, subset]) The last row without any NaN is taken (or the last

row without NaN considering only the subset of
columns in the case of a DataFrame)

assign(**kwargs) Assign new columns to a DataFrame, returning a
new object (a copy) with the new columns added to
the original ones.

astype(dtype[, copy, errors]) Cast a pandas object to a specified dtype dtype.
at_time(time[, asof]) Select values at particular time of day (e.g.
between_time(start_time, end_time[, . . .]) Select values between particular times of the day

(e.g., 9:00-9:30 AM).
bfill([axis, inplace, limit, downcast]) Synonym for DataFrame.

fillna(method='bfill')
bool() Return the bool of a single element PandasObject.
boxplot([column, by, ax, fontsize, rot, . . .]) Make a box plot from DataFrame columns.
clip([lower, upper, axis, inplace]) Trim values at input threshold(s).
clip_lower(threshold[, axis, inplace]) Return copy of the input with values below a thresh-

old truncated.
clip_upper(threshold[, axis, inplace]) Return copy of input with values above given

value(s) truncated.
combine(other, func[, fill_value, overwrite]) Add two DataFrame objects and do not propagate

NaN values, so if for a (column, time) one frame is
missing a value, it will default to the other frame’s
value (which might be NaN as well)

Continued on next page

34.4. DataFrame 1727

pandas: powerful Python data analysis toolkit, Release 0.23.4

Table 61 – continued from previous page
combine_first(other) Combine two DataFrame objects and default to non-

null values in frame calling the method.
compound([axis, skipna, level]) Return the compound percentage of the values for

the requested axis
consolidate([inplace]) (DEPRECATED) Compute NDFrame with “consoli-

dated” internals (data of each dtype grouped together
in a single ndarray).

convert_objects([convert_dates, . . .]) (DEPRECATED) Attempt to infer better dtype for
object columns.

copy([deep]) Make a copy of this object’s indices and data.
corr([method, min_periods]) Compute pairwise correlation of columns, excluding

NA/null values
corrwith(other[, axis, drop]) Compute pairwise correlation between rows or

columns of two DataFrame objects.
count([axis, level, numeric_only]) Count non-NA cells for each column or row.
cov([min_periods]) Compute pairwise covariance of columns, excluding

NA/null values.
cummax([axis, skipna]) Return cumulative maximum over a DataFrame or

Series axis.
cummin([axis, skipna]) Return cumulative minimum over a DataFrame or

Series axis.
cumprod([axis, skipna]) Return cumulative product over a DataFrame or Se-

ries axis.
cumsum([axis, skipna]) Return cumulative sum over a DataFrame or Series

axis.
describe([percentiles, include, exclude]) Generates descriptive statistics that summarize the

central tendency, dispersion and shape of a dataset’s
distribution, excluding NaN values.

diff([periods, axis]) First discrete difference of element.
div(other[, axis, level, fill_value]) Floating division of dataframe and other, element-

wise (binary operator truediv).
divide(other[, axis, level, fill_value]) Floating division of dataframe and other, element-

wise (binary operator truediv).
dot(other) Matrix multiplication with DataFrame or Series ob-

jects.
drop([labels, axis, index, columns, level, . . .]) Drop specified labels from rows or columns.
drop_duplicates([subset, keep, inplace]) Return DataFrame with duplicate rows removed, op-

tionally only considering certain columns
dropna([axis, how, thresh, subset, inplace]) Remove missing values.
duplicated([subset, keep]) Return boolean Series denoting duplicate rows, op-

tionally only considering certain columns
eq(other[, axis, level]) Wrapper for flexible comparison methods eq
equals(other) Determines if two NDFrame objects contain the

same elements.
eval(expr[, inplace]) Evaluate a string describing operations on

DataFrame columns.
ewm([com, span, halflife, alpha, . . .]) Provides exponential weighted functions
expanding([min_periods, center, axis]) Provides expanding transformations.
ffill([axis, inplace, limit, downcast]) Synonym for DataFrame.

fillna(method='ffill')
fillna([value, method, axis, inplace, . . .]) Fill NA/NaN values using the specified method

Continued on next page

1728 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

Table 61 – continued from previous page
filter([items, like, regex, axis]) Subset rows or columns of dataframe according to

labels in the specified index.
first(offset) Convenience method for subsetting initial periods of

time series data based on a date offset.
first_valid_index() Return index for first non-NA/null value.
floordiv(other[, axis, level, fill_value]) Integer division of dataframe and other, element-

wise (binary operator floordiv).
from_csv(path[, header, sep, index_col, . . .]) (DEPRECATED) Read CSV file.
from_dict(data[, orient, dtype, columns]) Construct DataFrame from dict of array-like or dicts.
from_items(items[, columns, orient]) (DEPRECATED) Construct a dataframe from a list

of tuples
from_records(data[, index, exclude, . . .]) Convert structured or record ndarray to DataFrame
ge(other[, axis, level]) Wrapper for flexible comparison methods ge
get(key[, default]) Get item from object for given key (DataFrame col-

umn, Panel slice, etc.).
get_dtype_counts() Return counts of unique dtypes in this object.
get_ftype_counts() (DEPRECATED) Return counts of unique ftypes in

this object.
get_value(index, col[, takeable]) (DEPRECATED) Quickly retrieve single value at

passed column and index
get_values() Return an ndarray after converting sparse values to

dense.
groupby([by, axis, level, as_index, sort, . . .]) Group series using mapper (dict or key function, ap-

ply given function to group, return result as series) or
by a series of columns.

gt(other[, axis, level]) Wrapper for flexible comparison methods gt
head([n]) Return the first n rows.
hist([column, by, grid, xlabelsize, xrot, . . .]) Make a histogram of the DataFrame’s.
idxmax([axis, skipna]) Return index of first occurrence of maximum over

requested axis.
idxmin([axis, skipna]) Return index of first occurrence of minimum over re-

quested axis.
infer_objects() Attempt to infer better dtypes for object columns.
info([verbose, buf, max_cols, memory_usage,
. . .])

Print a concise summary of a DataFrame.

insert(loc, column, value[, allow_duplicates]) Insert column into DataFrame at specified location.
interpolate([method, axis, limit, inplace, . . .]) Interpolate values according to different methods.
isin(values) Return boolean DataFrame showing whether each el-

ement in the DataFrame is contained in values.
isna() Detect missing values.
isnull() Detect missing values.
items() Iterator over (column name, Series) pairs.
iteritems() Iterator over (column name, Series) pairs.
iterrows() Iterate over DataFrame rows as (index, Series) pairs.
itertuples([index, name]) Iterate over DataFrame rows as namedtuples, with

index value as first element of the tuple.
join(other[, on, how, lsuffix, rsuffix, sort]) Join columns with other DataFrame either on index

or on a key column.
keys() Get the ‘info axis’ (see Indexing for more)

Continued on next page

34.4. DataFrame 1729

pandas: powerful Python data analysis toolkit, Release 0.23.4

Table 61 – continued from previous page
kurt([axis, skipna, level, numeric_only]) Return unbiased kurtosis over requested axis using

Fisher’s definition of kurtosis (kurtosis of normal ==
0.0).

kurtosis([axis, skipna, level, numeric_only]) Return unbiased kurtosis over requested axis using
Fisher’s definition of kurtosis (kurtosis of normal ==
0.0).

last(offset) Convenience method for subsetting final periods of
time series data based on a date offset.

last_valid_index() Return index for last non-NA/null value.
le(other[, axis, level]) Wrapper for flexible comparison methods le
lookup(row_labels, col_labels) Label-based “fancy indexing” function for

DataFrame.
lt(other[, axis, level]) Wrapper for flexible comparison methods lt
mad([axis, skipna, level]) Return the mean absolute deviation of the values for

the requested axis
mask(cond[, other, inplace, axis, level, . . .]) Return an object of same shape as self and whose

corresponding entries are from self where cond is
False and otherwise are from other.

max([axis, skipna, level, numeric_only]) This method returns the maximum of the values in
the object.

mean([axis, skipna, level, numeric_only]) Return the mean of the values for the requested axis
median([axis, skipna, level, numeric_only]) Return the median of the values for the requested

axis
melt([id_vars, value_vars, var_name, . . .]) “Unpivots” a DataFrame from wide format to long

format, optionally leaving identifier variables set.
memory_usage([index, deep]) Return the memory usage of each column in bytes.
merge(right[, how, on, left_on, right_on, . . .]) Merge DataFrame objects by performing a database-

style join operation by columns or indexes.
min([axis, skipna, level, numeric_only]) This method returns the minimum of the values in

the object.
mod(other[, axis, level, fill_value]) Modulo of dataframe and other, element-wise (bi-

nary operator mod).
mode([axis, numeric_only]) Gets the mode(s) of each element along the axis se-

lected.
mul(other[, axis, level, fill_value]) Multiplication of dataframe and other, element-wise

(binary operator mul).
multiply(other[, axis, level, fill_value]) Multiplication of dataframe and other, element-wise

(binary operator mul).
ne(other[, axis, level]) Wrapper for flexible comparison methods ne
nlargest(n, columns[, keep]) Return the first n rows ordered by columns in de-

scending order.
notna() Detect existing (non-missing) values.
notnull() Detect existing (non-missing) values.
nsmallest(n, columns[, keep]) Get the rows of a DataFrame sorted by the n smallest

values of columns.
nunique([axis, dropna]) Return Series with number of distinct observations

over requested axis.
pct_change([periods, fill_method, limit, freq]) Percentage change between the current and a prior

element.
pipe(func, *args, **kwargs) Apply func(self, *args, **kwargs)

Continued on next page

1730 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

Table 61 – continued from previous page
pivot([index, columns, values]) Return reshaped DataFrame organized by given in-

dex / column values.
pivot_table([values, index, columns, . . .]) Create a spreadsheet-style pivot table as a

DataFrame.
plot alias of pandas.plotting._core.

FramePlotMethods
pop(item) Return item and drop from frame.
pow(other[, axis, level, fill_value]) Exponential power of dataframe and other, element-

wise (binary operator pow).
prod([axis, skipna, level, numeric_only, . . .]) Return the product of the values for the requested

axis
product([axis, skipna, level, numeric_only, . . .]) Return the product of the values for the requested

axis
quantile([q, axis, numeric_only, interpolation]) Return values at the given quantile over requested

axis, a la numpy.percentile.
query(expr[, inplace]) Query the columns of a frame with a boolean expres-

sion.
radd(other[, axis, level, fill_value]) Addition of dataframe and other, element-wise (bi-

nary operator radd).
rank([axis, method, numeric_only, . . .]) Compute numerical data ranks (1 through n) along

axis.
rdiv(other[, axis, level, fill_value]) Floating division of dataframe and other, element-

wise (binary operator rtruediv).
reindex([labels, index, columns, axis, . . .]) Conform DataFrame to new index with optional fill-

ing logic, placing NA/NaN in locations having no
value in the previous index.

reindex_axis(labels[, axis, method, level, . . .]) Conform input object to new index with optional fill-
ing logic, placing NA/NaN in locations having no
value in the previous index.

reindex_like(other[, method, copy, limit, . . .]) Return an object with matching indices to myself.
rename([mapper, index, columns, axis, copy, . . .]) Alter axes labels.
rename_axis(mapper[, axis, copy, inplace]) Alter the name of the index or columns.
reorder_levels(order[, axis]) Rearrange index levels using input order.
replace([to_replace, value, inplace, limit, . . .]) Replace values given in to_replace with value.
resample(rule[, how, axis, fill_method, . . .]) Convenience method for frequency conversion and

resampling of time series.
reset_index([level, drop, inplace, . . .]) For DataFrame with multi-level index, return new

DataFrame with labeling information in the columns
under the index names, defaulting to ‘level_0’,
‘level_1’, etc.

rfloordiv(other[, axis, level, fill_value]) Integer division of dataframe and other, element-
wise (binary operator rfloordiv).

rmod(other[, axis, level, fill_value]) Modulo of dataframe and other, element-wise (bi-
nary operator rmod).

rmul(other[, axis, level, fill_value]) Multiplication of dataframe and other, element-wise
(binary operator rmul).

rolling(window[, min_periods, center, . . .]) Provides rolling window calculations.
round([decimals]) Round a DataFrame to a variable number of decimal

places.
rpow(other[, axis, level, fill_value]) Exponential power of dataframe and other, element-

wise (binary operator rpow).
Continued on next page

34.4. DataFrame 1731

pandas: powerful Python data analysis toolkit, Release 0.23.4

Table 61 – continued from previous page
rsub(other[, axis, level, fill_value]) Subtraction of dataframe and other, element-wise

(binary operator rsub).
rtruediv(other[, axis, level, fill_value]) Floating division of dataframe and other, element-

wise (binary operator rtruediv).
sample([n, frac, replace, weights, . . .]) Return a random sample of items from an axis of

object.
select(crit[, axis]) (DEPRECATED) Return data corresponding to axis

labels matching criteria
select_dtypes([include, exclude]) Return a subset of the DataFrame’s columns based

on the column dtypes.
sem([axis, skipna, level, ddof, numeric_only]) Return unbiased standard error of the mean over re-

quested axis.
set_axis(labels[, axis, inplace]) Assign desired index to given axis.
set_index(keys[, drop, append, inplace, . . .]) Set the DataFrame index (row labels) using one or

more existing columns.
set_value(index, col, value[, takeable]) (DEPRECATED) Put single value at passed column

and index
shift([periods, freq, axis]) Shift index by desired number of periods with an op-

tional time freq
skew([axis, skipna, level, numeric_only]) Return unbiased skew over requested axis Normal-

ized by N-1
slice_shift([periods, axis]) Equivalent to shift without copying data.
sort_index([axis, level, ascending, . . .]) Sort object by labels (along an axis)
sort_values(by[, axis, ascending, inplace, . . .]) Sort by the values along either axis
sortlevel([level, axis, ascending, inplace, . . .]) (DEPRECATED) Sort multilevel index by chosen

axis and primary level.
squeeze([axis]) Squeeze length 1 dimensions.
stack([level, dropna]) Stack the prescribed level(s) from columns to index.
std([axis, skipna, level, ddof, numeric_only]) Return sample standard deviation over requested

axis.
sub(other[, axis, level, fill_value]) Subtraction of dataframe and other, element-wise

(binary operator sub).
subtract(other[, axis, level, fill_value]) Subtraction of dataframe and other, element-wise

(binary operator sub).
sum([axis, skipna, level, numeric_only, . . .]) Return the sum of the values for the requested axis
swapaxes(axis1, axis2[, copy]) Interchange axes and swap values axes appropriately
swaplevel([i, j, axis]) Swap levels i and j in a MultiIndex on a particular

axis
tail([n]) Return the last n rows.
take(indices[, axis, convert, is_copy]) Return the elements in the given positional indices

along an axis.
to_clipboard([excel, sep]) Copy object to the system clipboard.
to_csv([path_or_buf, sep, na_rep, . . .]) Write DataFrame to a comma-separated values (csv)

file
to_dense() Return dense representation of NDFrame (as op-

posed to sparse)
to_dict([orient, into]) Convert the DataFrame to a dictionary.
to_excel(excel_writer[, sheet_name, na_rep,
. . .])

Write DataFrame to an excel sheet

to_feather(fname) write out the binary feather-format for DataFrames
to_gbq(destination_table, project_id[, . . .]) Write a DataFrame to a Google BigQuery table.

Continued on next page

1732 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

Table 61 – continued from previous page
to_hdf(path_or_buf, key, **kwargs) Write the contained data to an HDF5 file using HDF-

Store.
to_html([buf, columns, col_space, header, . . .]) Render a DataFrame as an HTML table.
to_json([path_or_buf, orient, date_format, . . .]) Convert the object to a JSON string.
to_latex([buf, columns, col_space, header, . . .]) Render an object to a tabular environment table.
to_msgpack([path_or_buf, encoding]) msgpack (serialize) object to input file path
to_panel() (DEPRECATED) Transform long (stacked) format

(DataFrame) into wide (3D, Panel) format.
to_parquet(fname[, engine, compression]) Write a DataFrame to the binary parquet format.
to_period([freq, axis, copy]) Convert DataFrame from DatetimeIndex to Peri-

odIndex with desired frequency (inferred from index
if not passed)

to_pickle(path[, compression, protocol]) Pickle (serialize) object to file.
to_records([index, convert_datetime64]) Convert DataFrame to a NumPy record array.
to_sparse([fill_value, kind]) Convert to SparseDataFrame
to_sql(name, con[, schema, if_exists, . . .]) Write records stored in a DataFrame to a SQL

database.
to_stata(fname[, convert_dates, . . .]) Export Stata binary dta files.
to_string([buf, columns, col_space, header,
. . .])

Render a DataFrame to a console-friendly tabular
output.

to_timestamp([freq, how, axis, copy]) Cast to DatetimeIndex of timestamps, at beginning
of period

to_xarray() Return an xarray object from the pandas object.
transform(func, *args, **kwargs) Call function producing a like-indexed NDFrame

and return a NDFrame with the transformed values
transpose(*args, **kwargs) Transpose index and columns.
truediv(other[, axis, level, fill_value]) Floating division of dataframe and other, element-

wise (binary operator truediv).
truncate([before, after, axis, copy]) Truncate a Series or DataFrame before and after

some index value.
tshift([periods, freq, axis]) Shift the time index, using the index’s frequency if

available.
tz_convert(tz[, axis, level, copy]) Convert tz-aware axis to target time zone.
tz_localize(tz[, axis, level, copy, ambiguous]) Localize tz-naive TimeSeries to target time zone.
unstack([level, fill_value]) Pivot a level of the (necessarily hierarchical) index

labels, returning a DataFrame having a new level of
column labels whose inner-most level consists of the
pivoted index labels.

update(other[, join, overwrite, . . .]) Modify in place using non-NA values from another
DataFrame.

var([axis, skipna, level, ddof, numeric_only]) Return unbiased variance over requested axis.
where(cond[, other, inplace, axis, level, . . .]) Return an object of same shape as self and whose

corresponding entries are from self where cond is
True and otherwise are from other.

xs(key[, axis, level, drop_level]) Returns a cross-section (row(s) or column(s)) from
the Series/DataFrame.

pandas.DataFrame.abs

DataFrame.abs()
Return a Series/DataFrame with absolute numeric value of each element.

34.4. DataFrame 1733

pandas: powerful Python data analysis toolkit, Release 0.23.4

This function only applies to elements that are all numeric.

Returns abs

Series/DataFrame containing the absolute value of each element.

See also:

numpy.absolute calculate the absolute value element-wise.

Notes

For complex inputs, 1.2 + 1j, the absolute value is
√
𝑎2 + 𝑏2.

Examples

Absolute numeric values in a Series.

>>> s = pd.Series([-1.10, 2, -3.33, 4])
>>> s.abs()
0 1.10
1 2.00
2 3.33
3 4.00
dtype: float64

Absolute numeric values in a Series with complex numbers.

>>> s = pd.Series([1.2 + 1j])
>>> s.abs()
0 1.56205
dtype: float64

Absolute numeric values in a Series with a Timedelta element.

>>> s = pd.Series([pd.Timedelta('1 days')])
>>> s.abs()
0 1 days
dtype: timedelta64[ns]

Select rows with data closest to certain value using argsort (from StackOverflow).

>>> df = pd.DataFrame({
... 'a': [4, 5, 6, 7],
... 'b': [10, 20, 30, 40],
... 'c': [100, 50, -30, -50]
... })
>>> df

a b c
0 4 10 100
1 5 20 50
2 6 30 -30
3 7 40 -50
>>> df.loc[(df.c - 43).abs().argsort()]

a b c
1 5 20 50

(continues on next page)

1734 Chapter 34. API Reference

https://docs.scipy.org/doc/numpy/reference/generated/numpy.absolute.html#numpy.absolute
https://stackoverflow.com/a/17758115

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

0 4 10 100
2 6 30 -30
3 7 40 -50

pandas.DataFrame.add

DataFrame.add(other, axis=’columns’, level=None, fill_value=None)
Addition of dataframe and other, element-wise (binary operator add).

Equivalent to dataframe + other, but with support to substitute a fill_value for missing data in one
of the inputs.

Parameters

other [Series, DataFrame, or constant]

axis : {0, 1, ‘index’, ‘columns’}

For Series input, axis to match Series index on

level : int or name

Broadcast across a level, matching Index values on the passed MultiIndex level

fill_value : None or float value, default None

Fill existing missing (NaN) values, and any new element needed for successful
DataFrame alignment, with this value before computation. If data in both corre-
sponding DataFrame locations is missing the result will be missing

Returns

result [DataFrame]

See also:

DataFrame.radd

Notes

Mismatched indices will be unioned together

Examples

>>> a = pd.DataFrame([1, 1, 1, np.nan], index=['a', 'b', 'c', 'd'],
... columns=['one'])
>>> a

one
a 1.0
b 1.0
c 1.0
d NaN
>>> b = pd.DataFrame(dict(one=[1, np.nan, 1, np.nan],
... two=[np.nan, 2, np.nan, 2]),
... index=['a', 'b', 'd', 'e'])
>>> b

(continues on next page)

34.4. DataFrame 1735

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

one two
a 1.0 NaN
b NaN 2.0
d 1.0 NaN
e NaN 2.0
>>> a.add(b, fill_value=0)

one two
a 2.0 NaN
b 1.0 2.0
c 1.0 NaN
d 1.0 NaN
e NaN 2.0

pandas.DataFrame.add_prefix

DataFrame.add_prefix(prefix)
Prefix labels with string prefix.

For Series, the row labels are prefixed. For DataFrame, the column labels are prefixed.

Parameters prefix : str

The string to add before each label.

Returns Series or DataFrame

New Series or DataFrame with updated labels.

See also:

Series.add_suffix Suffix row labels with string suffix.

DataFrame.add_suffix Suffix column labels with string suffix.

Examples

>>> s = pd.Series([1, 2, 3, 4])
>>> s
0 1
1 2
2 3
3 4
dtype: int64

>>> s.add_prefix('item_')
item_0 1
item_1 2
item_2 3
item_3 4
dtype: int64

>>> df = pd.DataFrame({'A': [1, 2, 3, 4], 'B': [3, 4, 5, 6]})
>>> df

A B

(continues on next page)

1736 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

0 1 3
1 2 4
2 3 5
3 4 6

>>> df.add_prefix('col_')
col_A col_B

0 1 3
1 2 4
2 3 5
3 4 6

pandas.DataFrame.add_suffix

DataFrame.add_suffix(suffix)
Suffix labels with string suffix.

For Series, the row labels are suffixed. For DataFrame, the column labels are suffixed.

Parameters suffix : str

The string to add after each label.

Returns Series or DataFrame

New Series or DataFrame with updated labels.

See also:

Series.add_prefix Prefix row labels with string prefix.

DataFrame.add_prefix Prefix column labels with string prefix.

Examples

>>> s = pd.Series([1, 2, 3, 4])
>>> s
0 1
1 2
2 3
3 4
dtype: int64

>>> s.add_suffix('_item')
0_item 1
1_item 2
2_item 3
3_item 4
dtype: int64

>>> df = pd.DataFrame({'A': [1, 2, 3, 4], 'B': [3, 4, 5, 6]})
>>> df

A B
0 1 3

(continues on next page)

34.4. DataFrame 1737

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

1 2 4
2 3 5
3 4 6

>>> df.add_suffix('_col')
A_col B_col

0 1 3
1 2 4
2 3 5
3 4 6

pandas.DataFrame.agg

DataFrame.agg(func, axis=0, *args, **kwargs)
Aggregate using one or more operations over the specified axis.

New in version 0.20.0.

Parameters func : function, string, dictionary, or list of string/functions

Function to use for aggregating the data. If a function, must either work when
passed a DataFrame or when passed to DataFrame.apply. For a DataFrame, can
pass a dict, if the keys are DataFrame column names.

Accepted combinations are:

• string function name.

• function.

• list of functions.

• dict of column names -> functions (or list of functions).

axis : {0 or ‘index’, 1 or ‘columns’}, default 0

• 0 or ‘index’: apply function to each column.

• 1 or ‘columns’: apply function to each row.

*args

Positional arguments to pass to func.

**kwargs

Keyword arguments to pass to func.

Returns

aggregated [DataFrame]

See also:

DataFrame.apply Perform any type of operations.

DataFrame.transform Perform transformation type operations.

pandas.core.groupby.GroupBy Perform operations over groups.

pandas.core.resample.Resampler Perform operations over resampled bins.

pandas.core.window.Rolling Perform operations over rolling window.

1738 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

pandas.core.window.Expanding Perform operations over expanding window.

pandas.core.window.EWM Perform operation over exponential weighted window.

Notes

agg is an alias for aggregate. Use the alias.

A passed user-defined-function will be passed a Series for evaluation.

The aggregation operations are always performed over an axis, either the index (default) or the column
axis. This behavior is different from numpy aggregation functions (mean, median, prod, sum, std, var),
where the default is to compute the aggregation of the flattened array, e.g., numpy.mean(arr_2d) as
opposed to numpy.mean(arr_2d, axis=0).

agg is an alias for aggregate. Use the alias.

Examples

>>> df = pd.DataFrame([[1, 2, 3],
... [4, 5, 6],
... [7, 8, 9],
... [np.nan, np.nan, np.nan]],
... columns=['A', 'B', 'C'])

Aggregate these functions over the rows.

>>> df.agg(['sum', 'min'])
A B C

sum 12.0 15.0 18.0
min 1.0 2.0 3.0

Different aggregations per column.

>>> df.agg({'A' : ['sum', 'min'], 'B' : ['min', 'max']})
A B

max NaN 8.0
min 1.0 2.0
sum 12.0 NaN

Aggregate over the columns.

>>> df.agg("mean", axis="columns")
0 2.0
1 5.0
2 8.0
3 NaN
dtype: float64

pandas.DataFrame.aggregate

DataFrame.aggregate(func, axis=0, *args, **kwargs)
Aggregate using one or more operations over the specified axis.

New in version 0.20.0.

34.4. DataFrame 1739

pandas: powerful Python data analysis toolkit, Release 0.23.4

Parameters func : function, string, dictionary, or list of string/functions

Function to use for aggregating the data. If a function, must either work when
passed a DataFrame or when passed to DataFrame.apply. For a DataFrame, can
pass a dict, if the keys are DataFrame column names.

Accepted combinations are:

• string function name.

• function.

• list of functions.

• dict of column names -> functions (or list of functions).

axis : {0 or ‘index’, 1 or ‘columns’}, default 0

• 0 or ‘index’: apply function to each column.

• 1 or ‘columns’: apply function to each row.

*args

Positional arguments to pass to func.

**kwargs

Keyword arguments to pass to func.

Returns

aggregated [DataFrame]

See also:

DataFrame.apply Perform any type of operations.

DataFrame.transform Perform transformation type operations.

pandas.core.groupby.GroupBy Perform operations over groups.

pandas.core.resample.Resampler Perform operations over resampled bins.

pandas.core.window.Rolling Perform operations over rolling window.

pandas.core.window.Expanding Perform operations over expanding window.

pandas.core.window.EWM Perform operation over exponential weighted window.

Notes

agg is an alias for aggregate. Use the alias.

A passed user-defined-function will be passed a Series for evaluation.

The aggregation operations are always performed over an axis, either the index (default) or the column
axis. This behavior is different from numpy aggregation functions (mean, median, prod, sum, std, var),
where the default is to compute the aggregation of the flattened array, e.g., numpy.mean(arr_2d) as
opposed to numpy.mean(arr_2d, axis=0).

agg is an alias for aggregate. Use the alias.

1740 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

Examples

>>> df = pd.DataFrame([[1, 2, 3],
... [4, 5, 6],
... [7, 8, 9],
... [np.nan, np.nan, np.nan]],
... columns=['A', 'B', 'C'])

Aggregate these functions over the rows.

>>> df.agg(['sum', 'min'])
A B C

sum 12.0 15.0 18.0
min 1.0 2.0 3.0

Different aggregations per column.

>>> df.agg({'A' : ['sum', 'min'], 'B' : ['min', 'max']})
A B

max NaN 8.0
min 1.0 2.0
sum 12.0 NaN

Aggregate over the columns.

>>> df.agg("mean", axis="columns")
0 2.0
1 5.0
2 8.0
3 NaN
dtype: float64

pandas.DataFrame.align

DataFrame.align(other, join=’outer’, axis=None, level=None, copy=True, fill_value=None,
method=None, limit=None, fill_axis=0, broadcast_axis=None)

Align two objects on their axes with the specified join method for each axis Index

Parameters

other [DataFrame or Series]

join [{‘outer’, ‘inner’, ‘left’, ‘right’}, default ‘outer’]

axis : allowed axis of the other object, default None

Align on index (0), columns (1), or both (None)

level : int or level name, default None

Broadcast across a level, matching Index values on the passed MultiIndex level

copy : boolean, default True

Always returns new objects. If copy=False and no reindexing is required then
original objects are returned.

fill_value : scalar, default np.NaN

34.4. DataFrame 1741

pandas: powerful Python data analysis toolkit, Release 0.23.4

Value to use for missing values. Defaults to NaN, but can be any “compatible”
value

method [str, default None]

limit [int, default None]

fill_axis : {0 or ‘index’, 1 or ‘columns’}, default 0

Filling axis, method and limit

broadcast_axis : {0 or ‘index’, 1 or ‘columns’}, default None

Broadcast values along this axis, if aligning two objects of different dimensions

Returns (left, right) : (DataFrame, type of other)

Aligned objects

pandas.DataFrame.all

DataFrame.all(axis=0, bool_only=None, skipna=True, level=None, **kwargs)
Return whether all elements are True, potentially over an axis.

Returns True if all elements within a series or along a Dataframe axis are non-zero, not-empty or not-False.

Parameters axis : {0 or ‘index’, 1 or ‘columns’, None}, default 0

Indicate which axis or axes should be reduced.

• 0 / ‘index’ : reduce the index, return a Series whose index is the original column
labels.

• 1 / ‘columns’ : reduce the columns, return a Series whose index is the original
index.

• None : reduce all axes, return a scalar.

skipna : boolean, default True

Exclude NA/null values. If an entire row/column is NA, the result will be NA.

level : int or level name, default None

If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing
into a Series.

bool_only : boolean, default None

Include only boolean columns. If None, will attempt to use everything, then use
only boolean data. Not implemented for Series.

**kwargs : any, default None

Additional keywords have no effect but might be accepted for compatibility with
NumPy.

Returns

all [Series or DataFrame (if level specified)]

See also:

pandas.Series.all Return True if all elements are True

1742 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

pandas.DataFrame.any Return True if one (or more) elements are True

Examples

Series

>>> pd.Series([True, True]).all()
True
>>> pd.Series([True, False]).all()
False

DataFrames

Create a dataframe from a dictionary.

>>> df = pd.DataFrame({'col1': [True, True], 'col2': [True, False]})
>>> df

col1 col2
0 True True
1 True False

Default behaviour checks if column-wise values all return True.

>>> df.all()
col1 True
col2 False
dtype: bool

Specify axis='columns' to check if row-wise values all return True.

>>> df.all(axis='columns')
0 True
1 False
dtype: bool

Or axis=None for whether every value is True.

>>> df.all(axis=None)
False

pandas.DataFrame.any

DataFrame.any(axis=0, bool_only=None, skipna=True, level=None, **kwargs)
Return whether any element is True over requested axis.

Unlike DataFrame.all(), this performs an or operation. If any of the values along the specified axis
is True, this will return True.

Parameters axis : {0 or ‘index’, 1 or ‘columns’, None}, default 0

Indicate which axis or axes should be reduced.

• 0 / ‘index’ : reduce the index, return a Series whose index is the original column
labels.

• 1 / ‘columns’ : reduce the columns, return a Series whose index is the original
index.

34.4. DataFrame 1743

pandas: powerful Python data analysis toolkit, Release 0.23.4

• None : reduce all axes, return a scalar.

skipna : boolean, default True

Exclude NA/null values. If an entire row/column is NA, the result will be NA.

level : int or level name, default None

If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing
into a Series.

bool_only : boolean, default None

Include only boolean columns. If None, will attempt to use everything, then use
only boolean data. Not implemented for Series.

**kwargs : any, default None

Additional keywords have no effect but might be accepted for compatibility with
NumPy.

Returns

any [Series or DataFrame (if level specified)]

See also:

pandas.DataFrame.all Return whether all elements are True.

Examples

Series

For Series input, the output is a scalar indicating whether any element is True.

>>> pd.Series([True, False]).any()
True

DataFrame

Whether each column contains at least one True element (the default).

>>> df = pd.DataFrame({"A": [1, 2], "B": [0, 2], "C": [0, 0]})
>>> df

A B C
0 1 0 0
1 2 2 0

>>> df.any()
A True
B True
C False
dtype: bool

Aggregating over the columns.

>>> df = pd.DataFrame({"A": [True, False], "B": [1, 2]})
>>> df

A B
0 True 1
1 False 2

1744 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

>>> df.any(axis='columns')
0 True
1 True
dtype: bool

>>> df = pd.DataFrame({"A": [True, False], "B": [1, 0]})
>>> df

A B
0 True 1
1 False 0

>>> df.any(axis='columns')
0 True
1 False
dtype: bool

Aggregating over the entire DataFrame with axis=None.

>>> df.any(axis=None)
True

any for an empty DataFrame is an empty Series.

>>> pd.DataFrame([]).any()
Series([], dtype: bool)

pandas.DataFrame.append

DataFrame.append(other, ignore_index=False, verify_integrity=False, sort=None)
Append rows of other to the end of this frame, returning a new object. Columns not in this frame are
added as new columns.

Parameters other : DataFrame or Series/dict-like object, or list of these

The data to append.

ignore_index : boolean, default False

If True, do not use the index labels.

verify_integrity : boolean, default False

If True, raise ValueError on creating index with duplicates.

sort : boolean, default None

Sort columns if the columns of self and other are not aligned. The default sort-
ing is deprecated and will change to not-sorting in a future version of pandas.
Explicitly pass sort=True to silence the warning and sort. Explicitly pass
sort=False to silence the warning and not sort.

New in version 0.23.0.

Returns

appended [DataFrame]

See also:

34.4. DataFrame 1745

pandas: powerful Python data analysis toolkit, Release 0.23.4

pandas.concat General function to concatenate DataFrame, Series or Panel objects

Notes

If a list of dict/series is passed and the keys are all contained in the DataFrame’s index, the order of the
columns in the resulting DataFrame will be unchanged.

Iteratively appending rows to a DataFrame can be more computationally intensive than a single concate-
nate. A better solution is to append those rows to a list and then concatenate the list with the original
DataFrame all at once.

Examples

>>> df = pd.DataFrame([[1, 2], [3, 4]], columns=list('AB'))
>>> df

A B
0 1 2
1 3 4
>>> df2 = pd.DataFrame([[5, 6], [7, 8]], columns=list('AB'))
>>> df.append(df2)

A B
0 1 2
1 3 4
0 5 6
1 7 8

With ignore_index set to True:

>>> df.append(df2, ignore_index=True)
A B

0 1 2
1 3 4
2 5 6
3 7 8

The following, while not recommended methods for generating DataFrames, show two ways to generate
a DataFrame from multiple data sources.

Less efficient:

>>> df = pd.DataFrame(columns=['A'])
>>> for i in range(5):
... df = df.append({'A': i}, ignore_index=True)
>>> df

A
0 0
1 1
2 2
3 3
4 4

More efficient:

>>> pd.concat([pd.DataFrame([i], columns=['A']) for i in range(5)],
... ignore_index=True)

(continues on next page)

1746 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

A
0 0
1 1
2 2
3 3
4 4

pandas.DataFrame.apply

DataFrame.apply(func, axis=0, broadcast=None, raw=False, reduce=None, result_type=None,
args=(), **kwds)

Apply a function along an axis of the DataFrame.

Objects passed to the function are Series objects whose index is either the DataFrame’s index (axis=0)
or the DataFrame’s columns (axis=1). By default (result_type=None), the final return type is
inferred from the return type of the applied function. Otherwise, it depends on the result_type argument.

Parameters func : function

Function to apply to each column or row.

axis : {0 or ‘index’, 1 or ‘columns’}, default 0

Axis along which the function is applied:

• 0 or ‘index’: apply function to each column.

• 1 or ‘columns’: apply function to each row.

broadcast : bool, optional

Only relevant for aggregation functions:

• False or None : returns a Series whose length is the length of the index or
the number of columns (based on the axis parameter)

• True : results will be broadcast to the original shape of the frame, the original
index and columns will be retained.

Deprecated since version 0.23.0: This argument will be removed in a future ver-
sion, replaced by result_type=’broadcast’.

raw : bool, default False

• False : passes each row or column as a Series to the function.

• True : the passed function will receive ndarray objects instead. If you are just apply-
ing a NumPy reduction function this will achieve much better performance.

reduce : bool or None, default None

Try to apply reduction procedures. If the DataFrame is empty, apply will use
reduce to determine whether the result should be a Series or a DataFrame.
If reduce=None (the default), apply’s return value will be guessed by call-
ing func on an empty Series (note: while guessing, exceptions raised by func
will be ignored). If reduce=True a Series will always be returned, and if
reduce=False a DataFrame will always be returned.

Deprecated since version 0.23.0: This argument will be removed in a future ver-
sion, replaced by result_type='reduce'.

34.4. DataFrame 1747

pandas: powerful Python data analysis toolkit, Release 0.23.4

result_type : {‘expand’, ‘reduce’, ‘broadcast’, None}, default None

These only act when axis=1 (columns):

• ‘expand’ : list-like results will be turned into columns.

• ‘reduce’ : returns a Series if possible rather than expanding list-like results.
This is the opposite of ‘expand’.

• ‘broadcast’ : results will be broadcast to the original shape of the DataFrame,
the original index and columns will be retained.

The default behaviour (None) depends on the return value of the applied function:
list-like results will be returned as a Series of those. However if the apply function
returns a Series these are expanded to columns.

New in version 0.23.0.

args : tuple

Positional arguments to pass to func in addition to the array/series.

**kwds

Additional keyword arguments to pass as keywords arguments to func.

Returns

applied [Series or DataFrame]

See also:

DataFrame.applymap For elementwise operations

DataFrame.aggregate only perform aggregating type operations

DataFrame.transform only perform transformating type operations

Notes

In the current implementation apply calls func twice on the first column/row to decide whether it can take
a fast or slow code path. This can lead to unexpected behavior if func has side-effects, as they will take
effect twice for the first column/row.

Examples

>>> df = pd.DataFrame([[4, 9],] * 3, columns=['A', 'B'])
>>> df

A B
0 4 9
1 4 9
2 4 9

Using a numpy universal function (in this case the same as np.sqrt(df)):

>>> df.apply(np.sqrt)
A B

0 2.0 3.0
1 2.0 3.0
2 2.0 3.0

1748 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

Using a reducing function on either axis

>>> df.apply(np.sum, axis=0)
A 12
B 27
dtype: int64

>>> df.apply(np.sum, axis=1)
0 13
1 13
2 13
dtype: int64

Retuning a list-like will result in a Series

>>> df.apply(lambda x: [1, 2], axis=1)
0 [1, 2]
1 [1, 2]
2 [1, 2]
dtype: object

Passing result_type=’expand’ will expand list-like results to columns of a Dataframe

>>> df.apply(lambda x: [1, 2], axis=1, result_type='expand')
0 1

0 1 2
1 1 2
2 1 2

Returning a Series inside the function is similar to passing result_type='expand'. The resulting
column names will be the Series index.

>>> df.apply(lambda x: pd.Series([1, 2], index=['foo', 'bar']), axis=1)
foo bar

0 1 2
1 1 2
2 1 2

Passing result_type='broadcast' will ensure the same shape result, whether list-like or scalar is
returned by the function, and broadcast it along the axis. The resulting column names will be the originals.

>>> df.apply(lambda x: [1, 2], axis=1, result_type='broadcast')
A B

0 1 2
1 1 2
2 1 2

pandas.DataFrame.applymap

DataFrame.applymap(func)
Apply a function to a Dataframe elementwise.

This method applies a function that accepts and returns a scalar to every element of a DataFrame.

Parameters func : callable

Python function, returns a single value from a single value.

34.4. DataFrame 1749

pandas: powerful Python data analysis toolkit, Release 0.23.4

Returns DataFrame

Transformed DataFrame.

See also:

DataFrame.apply Apply a function along input axis of DataFrame

Examples

>>> df = pd.DataFrame([[1, 2.12], [3.356, 4.567]])
>>> df

0 1
0 1.000 2.120
1 3.356 4.567

>>> df.applymap(lambda x: len(str(x)))
0 1

0 3 4
1 5 5

Note that a vectorized version of func often exists, which will be much faster. You could square each
number elementwise.

>>> df.applymap(lambda x: x**2)
0 1

0 1.000000 4.494400
1 11.262736 20.857489

But it’s better to avoid applymap in that case.

>>> df ** 2
0 1

0 1.000000 4.494400
1 11.262736 20.857489

pandas.DataFrame.as_blocks

DataFrame.as_blocks(copy=True)
Convert the frame to a dict of dtype -> Constructor Types that each has a homogeneous dtype.

Deprecated since version 0.21.0.

NOTE: the dtypes of the blocks WILL BE PRESERVED HERE (unlike in as_matrix)

Parameters

copy [boolean, default True]

Returns

values [a dict of dtype -> Constructor Types]

1750 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

pandas.DataFrame.as_matrix

DataFrame.as_matrix(columns=None)
Convert the frame to its Numpy-array representation.

Deprecated since version 0.23.0: Use DataFrame.values() instead.

Parameters columns: list, optional, default:None

If None, return all columns, otherwise, returns specified columns.

Returns values : ndarray

If the caller is heterogeneous and contains booleans or objects, the result will be
of dtype=object. See Notes.

See also:

pandas.DataFrame.values

Notes

Return is NOT a Numpy-matrix, rather, a Numpy-array.

The dtype will be a lower-common-denominator dtype (implicit upcasting); that is to say if the dtypes
(even of numeric types) are mixed, the one that accommodates all will be chosen. Use this with care if
you are not dealing with the blocks.

e.g. If the dtypes are float16 and float32, dtype will be upcast to float32. If dtypes are int32 and uint8,
dtype will be upcase to int32. By numpy.find_common_type convention, mixing int64 and uint64 will
result in a flot64 dtype.

This method is provided for backwards compatibility. Generally, it is recommended to use ‘.values’.

pandas.DataFrame.asfreq

DataFrame.asfreq(freq, method=None, how=None, normalize=False, fill_value=None)
Convert TimeSeries to specified frequency.

Optionally provide filling method to pad/backfill missing values.

Returns the original data conformed to a new index with the specified frequency. resample is more
appropriate if an operation, such as summarization, is necessary to represent the data at the new frequency.

Parameters

freq [DateOffset object, or string]

method : {‘backfill’/’bfill’, ‘pad’/’ffill’}, default None

Method to use for filling holes in reindexed Series (note this does not fill NaNs
that already were present):

• ‘pad’ / ‘ffill’: propagate last valid observation forward to next valid

• ‘backfill’ / ‘bfill’: use NEXT valid observation to fill

how : {‘start’, ‘end’}, default end

For PeriodIndex only, see PeriodIndex.asfreq

normalize : bool, default False

34.4. DataFrame 1751

pandas: powerful Python data analysis toolkit, Release 0.23.4

Whether to reset output index to midnight

fill_value: scalar, optional

Value to use for missing values, applied during upsampling (note this does not fill
NaNs that already were present).

New in version 0.20.0.

Returns

converted [type of caller]

See also:

reindex

Notes

To learn more about the frequency strings, please see this link.

Examples

Start by creating a series with 4 one minute timestamps.

>>> index = pd.date_range('1/1/2000', periods=4, freq='T')
>>> series = pd.Series([0.0, None, 2.0, 3.0], index=index)
>>> df = pd.DataFrame({'s':series})
>>> df

s
2000-01-01 00:00:00 0.0
2000-01-01 00:01:00 NaN
2000-01-01 00:02:00 2.0
2000-01-01 00:03:00 3.0

Upsample the series into 30 second bins.

>>> df.asfreq(freq='30S')
s

2000-01-01 00:00:00 0.0
2000-01-01 00:00:30 NaN
2000-01-01 00:01:00 NaN
2000-01-01 00:01:30 NaN
2000-01-01 00:02:00 2.0
2000-01-01 00:02:30 NaN
2000-01-01 00:03:00 3.0

Upsample again, providing a fill value.

>>> df.asfreq(freq='30S', fill_value=9.0)
s

2000-01-01 00:00:00 0.0
2000-01-01 00:00:30 9.0
2000-01-01 00:01:00 NaN
2000-01-01 00:01:30 9.0
2000-01-01 00:02:00 2.0
2000-01-01 00:02:30 9.0
2000-01-01 00:03:00 3.0

1752 Chapter 34. API Reference

http://pandas.pydata.org/pandas-docs/stable/timeseries.html#offset-aliases

pandas: powerful Python data analysis toolkit, Release 0.23.4

Upsample again, providing a method.

>>> df.asfreq(freq='30S', method='bfill')
s

2000-01-01 00:00:00 0.0
2000-01-01 00:00:30 NaN
2000-01-01 00:01:00 NaN
2000-01-01 00:01:30 2.0
2000-01-01 00:02:00 2.0
2000-01-01 00:02:30 3.0
2000-01-01 00:03:00 3.0

pandas.DataFrame.asof

DataFrame.asof(where, subset=None)
The last row without any NaN is taken (or the last row without NaN considering only the subset of
columns in the case of a DataFrame)

New in version 0.19.0: For DataFrame

If there is no good value, NaN is returned for a Series a Series of NaN values for a DataFrame

Parameters

where [date or array of dates]

subset : string or list of strings, default None

if not None use these columns for NaN propagation

Returns where is scalar

• value or NaN if input is Series

• Series if input is DataFrame

where is Index: same shape object as input

See also:

merge_asof

Notes

Dates are assumed to be sorted Raises if this is not the case

pandas.DataFrame.assign

DataFrame.assign(**kwargs)
Assign new columns to a DataFrame, returning a new object (a copy) with the new columns added to the
original ones. Existing columns that are re-assigned will be overwritten.

Parameters kwargs : keyword, value pairs

keywords are the column names. If the values are callable, they are computed on
the DataFrame and assigned to the new columns. The callable must not change
input DataFrame (though pandas doesn’t check it). If the values are not callable,
(e.g. a Series, scalar, or array), they are simply assigned.

34.4. DataFrame 1753

pandas: powerful Python data analysis toolkit, Release 0.23.4

Returns df : DataFrame

A new DataFrame with the new columns in addition to all the existing columns.

Notes

Assigning multiple columns within the same assign is possible. For Python 3.6 and above, later items
in ‘**kwargs’ may refer to newly created or modified columns in ‘df’; items are computed and assigned
into ‘df’ in order. For Python 3.5 and below, the order of keyword arguments is not specified, you cannot
refer to newly created or modified columns. All items are computed first, and then assigned in alphabetical
order.

Changed in version 0.23.0: Keyword argument order is maintained for Python 3.6 and later.

Examples

>>> df = pd.DataFrame({'A': range(1, 11), 'B': np.random.randn(10)})

Where the value is a callable, evaluated on df :

>>> df.assign(ln_A = lambda x: np.log(x.A))
A B ln_A

0 1 0.426905 0.000000
1 2 -0.780949 0.693147
2 3 -0.418711 1.098612
3 4 -0.269708 1.386294
4 5 -0.274002 1.609438
5 6 -0.500792 1.791759
6 7 1.649697 1.945910
7 8 -1.495604 2.079442
8 9 0.549296 2.197225
9 10 -0.758542 2.302585

Where the value already exists and is inserted:

>>> newcol = np.log(df['A'])
>>> df.assign(ln_A=newcol)

A B ln_A
0 1 0.426905 0.000000
1 2 -0.780949 0.693147
2 3 -0.418711 1.098612
3 4 -0.269708 1.386294
4 5 -0.274002 1.609438
5 6 -0.500792 1.791759
6 7 1.649697 1.945910
7 8 -1.495604 2.079442
8 9 0.549296 2.197225
9 10 -0.758542 2.302585

Where the keyword arguments depend on each other

>>> df = pd.DataFrame({'A': [1, 2, 3]})

1754 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

>>> df.assign(B=df.A, C=lambda x:x['A']+ x['B'])
A B C

0 1 1 2
1 2 2 4
2 3 3 6

pandas.DataFrame.astype

DataFrame.astype(dtype, copy=True, errors=’raise’, **kwargs)
Cast a pandas object to a specified dtype dtype.

Parameters dtype : data type, or dict of column name -> data type

Use a numpy.dtype or Python type to cast entire pandas object to the same type.
Alternatively, use {col: dtype, . . . }, where col is a column label and dtype is a
numpy.dtype or Python type to cast one or more of the DataFrame’s columns to
column-specific types.

copy : bool, default True.

Return a copy when copy=True (be very careful setting copy=False as
changes to values then may propagate to other pandas objects).

errors : {‘raise’, ‘ignore’}, default ‘raise’.

Control raising of exceptions on invalid data for provided dtype.

• raise : allow exceptions to be raised

• ignore : suppress exceptions. On error return original object

New in version 0.20.0.

raise_on_error : raise on invalid input

Deprecated since version 0.20.0: Use errors instead

kwargs [keyword arguments to pass on to the constructor]

Returns

casted [type of caller]

See also:

pandas.to_datetime Convert argument to datetime.

pandas.to_timedelta Convert argument to timedelta.

pandas.to_numeric Convert argument to a numeric type.

numpy.ndarray.astype Cast a numpy array to a specified type.

Examples

34.4. DataFrame 1755

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.astype.html#numpy.ndarray.astype

pandas: powerful Python data analysis toolkit, Release 0.23.4

>>> ser = pd.Series([1, 2], dtype='int32')
>>> ser
0 1
1 2
dtype: int32
>>> ser.astype('int64')
0 1
1 2
dtype: int64

Convert to categorical type:

>>> ser.astype('category')
0 1
1 2
dtype: category
Categories (2, int64): [1, 2]

Convert to ordered categorical type with custom ordering:

>>> ser.astype('category', ordered=True, categories=[2, 1])
0 1
1 2
dtype: category
Categories (2, int64): [2 < 1]

Note that using copy=False and changing data on a new pandas object may propagate changes:

>>> s1 = pd.Series([1,2])
>>> s2 = s1.astype('int64', copy=False)
>>> s2[0] = 10
>>> s1 # note that s1[0] has changed too
0 10
1 2
dtype: int64

pandas.DataFrame.at_time

DataFrame.at_time(time, asof=False)
Select values at particular time of day (e.g. 9:30AM).

Parameters

time [datetime.time or string]

Returns

values_at_time [type of caller]

Raises TypeError

If the index is not a DatetimeIndex

See also:

between_time Select values between particular times of the day

first Select initial periods of time series based on a date offset

1756 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

last Select final periods of time series based on a date offset

DatetimeIndex.indexer_at_time Get just the index locations for values at particular time of
the day

Examples

>>> i = pd.date_range('2018-04-09', periods=4, freq='12H')
>>> ts = pd.DataFrame({'A': [1,2,3,4]}, index=i)
>>> ts

A
2018-04-09 00:00:00 1
2018-04-09 12:00:00 2
2018-04-10 00:00:00 3
2018-04-10 12:00:00 4

>>> ts.at_time('12:00')
A

2018-04-09 12:00:00 2
2018-04-10 12:00:00 4

pandas.DataFrame.between_time

DataFrame.between_time(start_time, end_time, include_start=True, include_end=True)
Select values between particular times of the day (e.g., 9:00-9:30 AM).

By setting start_time to be later than end_time, you can get the times that are not between the two
times.

Parameters

start_time [datetime.time or string]

end_time [datetime.time or string]

include_start [boolean, default True]

include_end [boolean, default True]

Returns

values_between_time [type of caller]

Raises TypeError

If the index is not a DatetimeIndex

See also:

at_time Select values at a particular time of the day

first Select initial periods of time series based on a date offset

last Select final periods of time series based on a date offset

DatetimeIndex.indexer_between_time Get just the index locations for values between par-
ticular times of the day

34.4. DataFrame 1757

pandas: powerful Python data analysis toolkit, Release 0.23.4

Examples

>>> i = pd.date_range('2018-04-09', periods=4, freq='1D20min')
>>> ts = pd.DataFrame({'A': [1,2,3,4]}, index=i)
>>> ts

A
2018-04-09 00:00:00 1
2018-04-10 00:20:00 2
2018-04-11 00:40:00 3
2018-04-12 01:00:00 4

>>> ts.between_time('0:15', '0:45')
A

2018-04-10 00:20:00 2
2018-04-11 00:40:00 3

You get the times that are not between two times by setting start_time later than end_time:

>>> ts.between_time('0:45', '0:15')
A

2018-04-09 00:00:00 1
2018-04-12 01:00:00 4

pandas.DataFrame.bfill

DataFrame.bfill(axis=None, inplace=False, limit=None, downcast=None)
Synonym for DataFrame.fillna(method='bfill')

pandas.DataFrame.bool

DataFrame.bool()
Return the bool of a single element PandasObject.

This must be a boolean scalar value, either True or False. Raise a ValueError if the PandasObject does not
have exactly 1 element, or that element is not boolean

pandas.DataFrame.boxplot

DataFrame.boxplot(column=None, by=None, ax=None, fontsize=None, rot=0, grid=True, fig-
size=None, layout=None, return_type=None, **kwds)

Make a box plot from DataFrame columns.

Make a box-and-whisker plot from DataFrame columns, optionally grouped by some other columns. A
box plot is a method for graphically depicting groups of numerical data through their quartiles. The box
extends from the Q1 to Q3 quartile values of the data, with a line at the median (Q2). The whiskers extend
from the edges of box to show the range of the data. The position of the whiskers is set by default to 1.5
* IQR (IQR = Q3 - Q1) from the edges of the box. Outlier points are those past the end of the whiskers.

For further details see Wikipedia’s entry for boxplot.

Parameters column : str or list of str, optional

Column name or list of names, or vector. Can be any valid input to pandas.
DataFrame.groupby().

1758 Chapter 34. API Reference

https://en.wikipedia.org/wiki/Box_plot

pandas: powerful Python data analysis toolkit, Release 0.23.4

by : str or array-like, optional

Column in the DataFrame to pandas.DataFrame.groupby(). One box-
plot will be done per value of columns in by.

ax : object of class matplotlib.axes.Axes, optional

The matplotlib axes to be used by boxplot.

fontsize : float or str

Tick label font size in points or as a string (e.g., large).

rot : int or float, default 0

The rotation angle of labels (in degrees) with respect to the screen coordinate
sytem.

grid : boolean, default True

Setting this to True will show the grid.

figsize : A tuple (width, height) in inches

The size of the figure to create in matplotlib.

layout : tuple (rows, columns), optional

For example, (3, 5) will display the subplots using 3 columns and 5 rows, starting
from the top-left.

return_type : {‘axes’, ‘dict’, ‘both’} or None, default ‘axes’

The kind of object to return. The default is axes.

• ‘axes’ returns the matplotlib axes the boxplot is drawn on.

• ‘dict’ returns a dictionary whose values are the matplotlib Lines of the boxplot.

• ‘both’ returns a namedtuple with the axes and dict.

• when grouping with by, a Series mapping columns to return_type is re-
turned.

If return_type is None, a NumPy array of axes with the same shape as
layout is returned.

**kwds

All other plotting keyword arguments to be passed to matplotlib.pyplot.
boxplot().

Returns result :

The return type depends on the return_type parameter:

• ‘axes’ : object of class matplotlib.axes.Axes

• ‘dict’ : dict of matplotlib.lines.Line2D objects

• ‘both’ : a nametuple with strucure (ax, lines)

For data grouped with by:

• Series

• array (for return_type = None)

See also:

34.4. DataFrame 1759

https://matplotlib.org/api/_as_gen/matplotlib.pyplot.boxplot.html#matplotlib.pyplot.boxplot
https://matplotlib.org/api/_as_gen/matplotlib.pyplot.boxplot.html#matplotlib.pyplot.boxplot

pandas: powerful Python data analysis toolkit, Release 0.23.4

Series.plot.hist Make a histogram.

matplotlib.pyplot.boxplot Matplotlib equivalent plot.

Notes

Use return_type='dict' when you want to tweak the appearance of the lines after plotting. In this
case a dict containing the Lines making up the boxes, caps, fliers, medians, and whiskers is returned.

Examples

Boxplots can be created for every column in the dataframe by df.boxplot() or indicating the columns
to be used:

>>> np.random.seed(1234)
>>> df = pd.DataFrame(np.random.randn(10,4),
... columns=['Col1', 'Col2', 'Col3', 'Col4'])
>>> boxplot = df.boxplot(column=['Col1', 'Col2', 'Col3'])

Boxplots of variables distributions grouped by the values of a third variable can be created using the option
by. For instance:

>>> df = pd.DataFrame(np.random.randn(10, 2),
... columns=['Col1', 'Col2'])
>>> df['X'] = pd.Series(['A', 'A', 'A', 'A', 'A',
... 'B', 'B', 'B', 'B', 'B'])
>>> boxplot = df.boxplot(by='X')

A list of strings (i.e. ['X', 'Y']) can be passed to boxplot in order to group the data by combination
of the variables in the x-axis:

>>> df = pd.DataFrame(np.random.randn(10,3),
... columns=['Col1', 'Col2', 'Col3'])
>>> df['X'] = pd.Series(['A', 'A', 'A', 'A', 'A',
... 'B', 'B', 'B', 'B', 'B'])
>>> df['Y'] = pd.Series(['A', 'B', 'A', 'B', 'A',
... 'B', 'A', 'B', 'A', 'B'])
>>> boxplot = df.boxplot(column=['Col1', 'Col2'], by=['X', 'Y'])

The layout of boxplot can be adjusted giving a tuple to layout:

>>> boxplot = df.boxplot(column=['Col1', 'Col2'], by='X',
... layout=(2, 1))

Additional formatting can be done to the boxplot, like suppressing the grid (grid=False), rotating the
labels in the x-axis (i.e. rot=45) or changing the fontsize (i.e. fontsize=15):

>>> boxplot = df.boxplot(grid=False, rot=45, fontsize=15)

The parameter return_type can be used to select the type of element returned by boxplot. When
return_type='axes' is selected, the matplotlib axes on which the boxplot is drawn are returned:

>>> boxplot = df.boxplot(column=['Col1','Col2'], return_type='axes')
>>> type(boxplot)
<class 'matplotlib.axes._subplots.AxesSubplot'>

1760 Chapter 34. API Reference

https://matplotlib.org/api/_as_gen/matplotlib.pyplot.boxplot.html#matplotlib.pyplot.boxplot

pandas: powerful Python data analysis toolkit, Release 0.23.4

When grouping with by, a Series mapping columns to return_type is returned:

>>> boxplot = df.boxplot(column=['Col1', 'Col2'], by='X',
... return_type='axes')
>>> type(boxplot)
<class 'pandas.core.series.Series'>

If return_type is None, a NumPy array of axes with the same shape as layout is returned:

>>> boxplot = df.boxplot(column=['Col1', 'Col2'], by='X',
... return_type=None)
>>> type(boxplot)
<class 'numpy.ndarray'>

pandas.DataFrame.clip

DataFrame.clip(lower=None, upper=None, axis=None, inplace=False, *args, **kwargs)
Trim values at input threshold(s).

Assigns values outside boundary to boundary values. Thresholds can be singular values or array like, and
in the latter case the clipping is performed element-wise in the specified axis.

Parameters lower : float or array_like, default None

Minimum threshold value. All values below this threshold will be set to it.

upper : float or array_like, default None

Maximum threshold value. All values above this threshold will be set to it.

axis : int or string axis name, optional

Align object with lower and upper along the given axis.

inplace : boolean, default False

Whether to perform the operation in place on the data.

New in version 0.21.0.

*args, **kwargs

Additional keywords have no effect but might be accepted for compatibility with
numpy.

Returns Series or DataFrame

Same type as calling object with the values outside the clip boundaries replaced

See also:

clip_lower Clip values below specified threshold(s).

clip_upper Clip values above specified threshold(s).

Examples

34.4. DataFrame 1761

pandas: powerful Python data analysis toolkit, Release 0.23.4

>>> data = {'col_0': [9, -3, 0, -1, 5], 'col_1': [-2, -7, 6, 8, -5]}
>>> df = pd.DataFrame(data)
>>> df

col_0 col_1
0 9 -2
1 -3 -7
2 0 6
3 -1 8
4 5 -5

Clips per column using lower and upper thresholds:

>>> df.clip(-4, 6)
col_0 col_1

0 6 -2
1 -3 -4
2 0 6
3 -1 6
4 5 -4

Clips using specific lower and upper thresholds per column element:

>>> t = pd.Series([2, -4, -1, 6, 3])
>>> t
0 2
1 -4
2 -1
3 6
4 3
dtype: int64

>>> df.clip(t, t + 4, axis=0)
col_0 col_1

0 6 2
1 -3 -4
2 0 3
3 6 8
4 5 3

pandas.DataFrame.clip_lower

DataFrame.clip_lower(threshold, axis=None, inplace=False)
Return copy of the input with values below a threshold truncated.

Parameters threshold : numeric or array-like

Minimum value allowed. All values below threshold will be set to this value.

• float : every value is compared to threshold.

• array-like : The shape of threshold should match the object it’s compared
to. When self is a Series, threshold should be the length. When self is a
DataFrame, threshold should 2-D and the same shape as self for axis=None,
or 1-D and the same length as the axis being compared.

axis : {0 or ‘index’, 1 or ‘columns’}, default 0

Align self with threshold along the given axis.

1762 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

inplace : boolean, default False

Whether to perform the operation in place on the data.

New in version 0.21.0.

Returns

clipped [same type as input]

See also:

Series.clip Return copy of input with values below and above thresholds truncated.

Series.clip_upper Return copy of input with values above threshold truncated.

Examples

Series single threshold clipping:

>>> s = pd.Series([5, 6, 7, 8, 9])
>>> s.clip_lower(8)
0 8
1 8
2 8
3 8
4 9
dtype: int64

Series clipping element-wise using an array of thresholds. threshold should be the same length as the
Series.

>>> elemwise_thresholds = [4, 8, 7, 2, 5]
>>> s.clip_lower(elemwise_thresholds)
0 5
1 8
2 7
3 8
4 9
dtype: int64

DataFrames can be compared to a scalar.

>>> df = pd.DataFrame({"A": [1, 3, 5], "B": [2, 4, 6]})
>>> df

A B
0 1 2
1 3 4
2 5 6

>>> df.clip_lower(3)
A B

0 3 3
1 3 4
2 5 6

Or to an array of values. By default, threshold should be the same shape as the DataFrame.

34.4. DataFrame 1763

pandas: powerful Python data analysis toolkit, Release 0.23.4

>>> df.clip_lower(np.array([[3, 4], [2, 2], [6, 2]]))
A B

0 3 4
1 3 4
2 6 6

Control how threshold is broadcast with axis. In this case threshold should be the same length as the axis
specified by axis.

>>> df.clip_lower(np.array([3, 3, 5]), axis='index')
A B

0 3 3
1 3 4
2 5 6

>>> df.clip_lower(np.array([4, 5]), axis='columns')
A B

0 4 5
1 4 5
2 5 6

pandas.DataFrame.clip_upper

DataFrame.clip_upper(threshold, axis=None, inplace=False)
Return copy of input with values above given value(s) truncated.

Parameters

threshold [float or array_like]

axis : int or string axis name, optional

Align object with threshold along the given axis.

inplace : boolean, default False

Whether to perform the operation in place on the data

New in version 0.21.0.

Returns

clipped [same type as input]

See also:

clip

pandas.DataFrame.combine

DataFrame.combine(other, func, fill_value=None, overwrite=True)
Add two DataFrame objects and do not propagate NaN values, so if for a (column, time) one frame is
missing a value, it will default to the other frame’s value (which might be NaN as well)

Parameters

other [DataFrame]

func : function

1764 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

Function that takes two series as inputs and return a Series or a scalar

fill_value [scalar value]

overwrite : boolean, default True

If True then overwrite values for common keys in the calling frame

Returns

result [DataFrame]

See also:

DataFrame.combine_first Combine two DataFrame objects and default to non-null values in
frame calling the method

Examples

>>> df1 = DataFrame({'A': [0, 0], 'B': [4, 4]})
>>> df2 = DataFrame({'A': [1, 1], 'B': [3, 3]})
>>> df1.combine(df2, lambda s1, s2: s1 if s1.sum() < s2.sum() else s2)

A B
0 0 3
1 0 3

pandas.DataFrame.combine_first

DataFrame.combine_first(other)
Combine two DataFrame objects and default to non-null values in frame calling the method. Result index
columns will be the union of the respective indexes and columns

Parameters

other [DataFrame]

Returns

combined [DataFrame]

See also:

DataFrame.combine Perform series-wise operation on two DataFrames using a given function

Examples

df1’s values prioritized, use values from df2 to fill holes:

>>> df1 = pd.DataFrame([[1, np.nan]])
>>> df2 = pd.DataFrame([[3, 4]])
>>> df1.combine_first(df2)

0 1
0 1 4.0

34.4. DataFrame 1765

pandas: powerful Python data analysis toolkit, Release 0.23.4

pandas.DataFrame.compound

DataFrame.compound(axis=None, skipna=None, level=None)
Return the compound percentage of the values for the requested axis

Parameters

axis [{index (0), columns (1)}]

skipna : boolean, default True

Exclude NA/null values when computing the result.

level : int or level name, default None

If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing
into a Series

numeric_only : boolean, default None

Include only float, int, boolean columns. If None, will attempt to use everything,
then use only numeric data. Not implemented for Series.

Returns

compounded [Series or DataFrame (if level specified)]

pandas.DataFrame.consolidate

DataFrame.consolidate(inplace=False)
Compute NDFrame with “consolidated” internals (data of each dtype grouped together in a single ndar-
ray).

Deprecated since version 0.20.0: Consolidate will be an internal implementation only.

pandas.DataFrame.convert_objects

DataFrame.convert_objects(convert_dates=True, convert_numeric=False, con-
vert_timedeltas=True, copy=True)

Attempt to infer better dtype for object columns.

Deprecated since version 0.21.0.

Parameters convert_dates : boolean, default True

If True, convert to date where possible. If ‘coerce’, force conversion, with uncon-
vertible values becoming NaT.

convert_numeric : boolean, default False

If True, attempt to coerce to numbers (including strings), with unconvertible val-
ues becoming NaN.

convert_timedeltas : boolean, default True

If True, convert to timedelta where possible. If ‘coerce’, force conversion, with
unconvertible values becoming NaT.

copy : boolean, default True

If True, return a copy even if no copy is necessary (e.g. no conversion was done).
Note: This is meant for internal use, and should not be confused with inplace.

1766 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

Returns

converted [same as input object]

See also:

pandas.to_datetime Convert argument to datetime.

pandas.to_timedelta Convert argument to timedelta.

pandas.to_numeric Return a fixed frequency timedelta index, with day as the default.

pandas.DataFrame.copy

DataFrame.copy(deep=True)
Make a copy of this object’s indices and data.

When deep=True (default), a new object will be created with a copy of the calling object’s data and
indices. Modifications to the data or indices of the copy will not be reflected in the original object (see
notes below).

When deep=False, a new object will be created without copying the calling object’s data or index
(only references to the data and index are copied). Any changes to the data of the original will be reflected
in the shallow copy (and vice versa).

Parameters deep : bool, default True

Make a deep copy, including a copy of the data and the indices. With
deep=False neither the indices nor the data are copied.

Returns copy : Series, DataFrame or Panel

Object type matches caller.

Notes

When deep=True, data is copied but actual Python objects will not be copied recursively, only the
reference to the object. This is in contrast to copy.deepcopy in the Standard Library, which recursively
copies object data (see examples below).

While Index objects are copied when deep=True, the underlying numpy array is not copied for per-
formance reasons. Since Index is immutable, the underlying data can be safely shared and a copy is not
needed.

Examples

>>> s = pd.Series([1, 2], index=["a", "b"])
>>> s
a 1
b 2
dtype: int64

>>> s_copy = s.copy()
>>> s_copy
a 1

(continues on next page)

34.4. DataFrame 1767

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

b 2
dtype: int64

Shallow copy versus default (deep) copy:

>>> s = pd.Series([1, 2], index=["a", "b"])
>>> deep = s.copy()
>>> shallow = s.copy(deep=False)

Shallow copy shares data and index with original.

>>> s is shallow
False
>>> s.values is shallow.values and s.index is shallow.index
True

Deep copy has own copy of data and index.

>>> s is deep
False
>>> s.values is deep.values or s.index is deep.index
False

Updates to the data shared by shallow copy and original is reflected in both; deep copy remains unchanged.

>>> s[0] = 3
>>> shallow[1] = 4
>>> s
a 3
b 4
dtype: int64
>>> shallow
a 3
b 4
dtype: int64
>>> deep
a 1
b 2
dtype: int64

Note that when copying an object containing Python objects, a deep copy will copy the data, but will not
do so recursively. Updating a nested data object will be reflected in the deep copy.

>>> s = pd.Series([[1, 2], [3, 4]])
>>> deep = s.copy()
>>> s[0][0] = 10
>>> s
0 [10, 2]
1 [3, 4]
dtype: object
>>> deep
0 [10, 2]
1 [3, 4]
dtype: object

1768 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

pandas.DataFrame.corr

DataFrame.corr(method=’pearson’, min_periods=1)
Compute pairwise correlation of columns, excluding NA/null values

Parameters method : {‘pearson’, ‘kendall’, ‘spearman’}

• pearson : standard correlation coefficient

• kendall : Kendall Tau correlation coefficient

• spearman : Spearman rank correlation

min_periods : int, optional

Minimum number of observations required per pair of columns to have a valid
result. Currently only available for pearson and spearman correlation

Returns

y [DataFrame]

pandas.DataFrame.corrwith

DataFrame.corrwith(other, axis=0, drop=False)
Compute pairwise correlation between rows or columns of two DataFrame objects.

Parameters

other [DataFrame, Series]

axis : {0 or ‘index’, 1 or ‘columns’}, default 0

0 or ‘index’ to compute column-wise, 1 or ‘columns’ for row-wise

drop : boolean, default False

Drop missing indices from result, default returns union of all

Returns

correls [Series]

pandas.DataFrame.count

DataFrame.count(axis=0, level=None, numeric_only=False)
Count non-NA cells for each column or row.

The values None, NaN, NaT, and optionally numpy.inf (depending on pan-
das.options.mode.use_inf_as_na) are considered NA.

Parameters axis : {0 or ‘index’, 1 or ‘columns’}, default 0

If 0 or ‘index’ counts are generated for each column. If 1 or ‘columns’ counts are
generated for each row.

level : int or str, optional

If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing
into a DataFrame. A str specifies the level name.

numeric_only : boolean, default False

34.4. DataFrame 1769

pandas: powerful Python data analysis toolkit, Release 0.23.4

Include only float, int or boolean data.

Returns Series or DataFrame

For each column/row the number of non-NA/null entries. If level is specified
returns a DataFrame.

See also:

Series.count number of non-NA elements in a Series

DataFrame.shape number of DataFrame rows and columns (including NA elements)

DataFrame.isna boolean same-sized DataFrame showing places of NA elements

Examples

Constructing DataFrame from a dictionary:

>>> df = pd.DataFrame({"Person":
... ["John", "Myla", None, "John", "Myla"],
... "Age": [24., np.nan, 21., 33, 26],
... "Single": [False, True, True, True, False]})
>>> df

Person Age Single
0 John 24.0 False
1 Myla NaN True
2 None 21.0 True
3 John 33.0 True
4 Myla 26.0 False

Notice the uncounted NA values:

>>> df.count()
Person 4
Age 4
Single 5
dtype: int64

Counts for each row:

>>> df.count(axis='columns')
0 3
1 2
2 2
3 3
4 3
dtype: int64

Counts for one level of a MultiIndex:

>>> df.set_index(["Person", "Single"]).count(level="Person")
Age

Person
John 2
Myla 1

1770 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

pandas.DataFrame.cov

DataFrame.cov(min_periods=None)
Compute pairwise covariance of columns, excluding NA/null values.

Compute the pairwise covariance among the series of a DataFrame. The returned data frame is the co-
variance matrix of the columns of the DataFrame.

Both NA and null values are automatically excluded from the calculation. (See the note below about bias
from missing values.) A threshold can be set for the minimum number of observations for each value
created. Comparisons with observations below this threshold will be returned as NaN.

This method is generally used for the analysis of time series data to understand the relationship between
different measures across time.

Parameters min_periods : int, optional

Minimum number of observations required per pair of columns to have a valid
result.

Returns DataFrame

The covariance matrix of the series of the DataFrame.

See also:

pandas.Series.cov compute covariance with another Series

pandas.core.window.EWM.cov expoential weighted sample covariance

pandas.core.window.Expanding.cov expanding sample covariance

pandas.core.window.Rolling.cov rolling sample covariance

Notes

Returns the covariance matrix of the DataFrame’s time series. The covariance is normalized by N-1.

For DataFrames that have Series that are missing data (assuming that data is missing at random) the re-
turned covariance matrix will be an unbiased estimate of the variance and covariance between the member
Series.

However, for many applications this estimate may not be acceptable because the estimate covariance
matrix is not guaranteed to be positive semi-definite. This could lead to estimate correlations having
absolute values which are greater than one, and/or a non-invertible covariance matrix. See Estimation of
covariance matrices for more details.

Examples

>>> df = pd.DataFrame([(1, 2), (0, 3), (2, 0), (1, 1)],
... columns=['dogs', 'cats'])
>>> df.cov()

dogs cats
dogs 0.666667 -1.000000
cats -1.000000 1.666667

34.4. DataFrame 1771

https://en.wikipedia.org/wiki/Covariance_matrix
https://en.wikipedia.org/wiki/Covariance_matrix
https://en.wikipedia.org/wiki/Missing_data#Missing_at_random
http://en.wikipedia.org/w/index.php?title=Estimation_of_covariance_matrices
http://en.wikipedia.org/w/index.php?title=Estimation_of_covariance_matrices

pandas: powerful Python data analysis toolkit, Release 0.23.4

>>> np.random.seed(42)
>>> df = pd.DataFrame(np.random.randn(1000, 5),
... columns=['a', 'b', 'c', 'd', 'e'])
>>> df.cov()

a b c d e
a 0.998438 -0.020161 0.059277 -0.008943 0.014144
b -0.020161 1.059352 -0.008543 -0.024738 0.009826
c 0.059277 -0.008543 1.010670 -0.001486 -0.000271
d -0.008943 -0.024738 -0.001486 0.921297 -0.013692
e 0.014144 0.009826 -0.000271 -0.013692 0.977795

Minimum number of periods

This method also supports an optional min_periods keyword that specifies the required minimum
number of non-NA observations for each column pair in order to have a valid result:

>>> np.random.seed(42)
>>> df = pd.DataFrame(np.random.randn(20, 3),
... columns=['a', 'b', 'c'])
>>> df.loc[df.index[:5], 'a'] = np.nan
>>> df.loc[df.index[5:10], 'b'] = np.nan
>>> df.cov(min_periods=12)

a b c
a 0.316741 NaN -0.150812
b NaN 1.248003 0.191417
c -0.150812 0.191417 0.895202

pandas.DataFrame.cummax

DataFrame.cummax(axis=None, skipna=True, *args, **kwargs)
Return cumulative maximum over a DataFrame or Series axis.

Returns a DataFrame or Series of the same size containing the cumulative maximum.

Parameters axis : {0 or ‘index’, 1 or ‘columns’}, default 0

The index or the name of the axis. 0 is equivalent to None or ‘index’.

skipna : boolean, default True

Exclude NA/null values. If an entire row/column is NA, the result will be NA.

*args, **kwargs :

Additional keywords have no effect but might be accepted for compatibility with
NumPy.

Returns

cummax [Series or DataFrame]

See also:

pandas.core.window.Expanding.max Similar functionality but ignores NaN values.

DataFrame.max Return the maximum over DataFrame axis.

DataFrame.cummax Return cumulative maximum over DataFrame axis.

DataFrame.cummin Return cumulative minimum over DataFrame axis.

1772 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

DataFrame.cumsum Return cumulative sum over DataFrame axis.

DataFrame.cumprod Return cumulative product over DataFrame axis.

Examples

Series

>>> s = pd.Series([2, np.nan, 5, -1, 0])
>>> s
0 2.0
1 NaN
2 5.0
3 -1.0
4 0.0
dtype: float64

By default, NA values are ignored.

>>> s.cummax()
0 2.0
1 NaN
2 5.0
3 5.0
4 5.0
dtype: float64

To include NA values in the operation, use skipna=False

>>> s.cummax(skipna=False)
0 2.0
1 NaN
2 NaN
3 NaN
4 NaN
dtype: float64

DataFrame

>>> df = pd.DataFrame([[2.0, 1.0],
... [3.0, np.nan],
... [1.0, 0.0]],
... columns=list('AB'))
>>> df

A B
0 2.0 1.0
1 3.0 NaN
2 1.0 0.0

By default, iterates over rows and finds the maximum in each column. This is equivalent to axis=None
or axis='index'.

>>> df.cummax()
A B

0 2.0 1.0
1 3.0 NaN
2 3.0 1.0

34.4. DataFrame 1773

pandas: powerful Python data analysis toolkit, Release 0.23.4

To iterate over columns and find the maximum in each row, use axis=1

>>> df.cummax(axis=1)
A B

0 2.0 2.0
1 3.0 NaN
2 1.0 1.0

pandas.DataFrame.cummin

DataFrame.cummin(axis=None, skipna=True, *args, **kwargs)
Return cumulative minimum over a DataFrame or Series axis.

Returns a DataFrame or Series of the same size containing the cumulative minimum.

Parameters axis : {0 or ‘index’, 1 or ‘columns’}, default 0

The index or the name of the axis. 0 is equivalent to None or ‘index’.

skipna : boolean, default True

Exclude NA/null values. If an entire row/column is NA, the result will be NA.

*args, **kwargs :

Additional keywords have no effect but might be accepted for compatibility with
NumPy.

Returns

cummin [Series or DataFrame]

See also:

pandas.core.window.Expanding.min Similar functionality but ignores NaN values.

DataFrame.min Return the minimum over DataFrame axis.

DataFrame.cummax Return cumulative maximum over DataFrame axis.

DataFrame.cummin Return cumulative minimum over DataFrame axis.

DataFrame.cumsum Return cumulative sum over DataFrame axis.

DataFrame.cumprod Return cumulative product over DataFrame axis.

Examples

Series

>>> s = pd.Series([2, np.nan, 5, -1, 0])
>>> s
0 2.0
1 NaN
2 5.0
3 -1.0
4 0.0
dtype: float64

By default, NA values are ignored.

1774 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

>>> s.cummin()
0 2.0
1 NaN
2 2.0
3 -1.0
4 -1.0
dtype: float64

To include NA values in the operation, use skipna=False

>>> s.cummin(skipna=False)
0 2.0
1 NaN
2 NaN
3 NaN
4 NaN
dtype: float64

DataFrame

>>> df = pd.DataFrame([[2.0, 1.0],
... [3.0, np.nan],
... [1.0, 0.0]],
... columns=list('AB'))
>>> df

A B
0 2.0 1.0
1 3.0 NaN
2 1.0 0.0

By default, iterates over rows and finds the minimum in each column. This is equivalent to axis=None
or axis='index'.

>>> df.cummin()
A B

0 2.0 1.0
1 2.0 NaN
2 1.0 0.0

To iterate over columns and find the minimum in each row, use axis=1

>>> df.cummin(axis=1)
A B

0 2.0 1.0
1 3.0 NaN
2 1.0 0.0

pandas.DataFrame.cumprod

DataFrame.cumprod(axis=None, skipna=True, *args, **kwargs)
Return cumulative product over a DataFrame or Series axis.

Returns a DataFrame or Series of the same size containing the cumulative product.

Parameters axis : {0 or ‘index’, 1 or ‘columns’}, default 0

The index or the name of the axis. 0 is equivalent to None or ‘index’.

34.4. DataFrame 1775

pandas: powerful Python data analysis toolkit, Release 0.23.4

skipna : boolean, default True

Exclude NA/null values. If an entire row/column is NA, the result will be NA.

*args, **kwargs :

Additional keywords have no effect but might be accepted for compatibility with
NumPy.

Returns

cumprod [Series or DataFrame]

See also:

pandas.core.window.Expanding.prod Similar functionality but ignores NaN values.

DataFrame.prod Return the product over DataFrame axis.

DataFrame.cummax Return cumulative maximum over DataFrame axis.

DataFrame.cummin Return cumulative minimum over DataFrame axis.

DataFrame.cumsum Return cumulative sum over DataFrame axis.

DataFrame.cumprod Return cumulative product over DataFrame axis.

Examples

Series

>>> s = pd.Series([2, np.nan, 5, -1, 0])
>>> s
0 2.0
1 NaN
2 5.0
3 -1.0
4 0.0
dtype: float64

By default, NA values are ignored.

>>> s.cumprod()
0 2.0
1 NaN
2 10.0
3 -10.0
4 -0.0
dtype: float64

To include NA values in the operation, use skipna=False

>>> s.cumprod(skipna=False)
0 2.0
1 NaN
2 NaN
3 NaN
4 NaN
dtype: float64

DataFrame

1776 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

>>> df = pd.DataFrame([[2.0, 1.0],
... [3.0, np.nan],
... [1.0, 0.0]],
... columns=list('AB'))
>>> df

A B
0 2.0 1.0
1 3.0 NaN
2 1.0 0.0

By default, iterates over rows and finds the product in each column. This is equivalent to axis=None or
axis='index'.

>>> df.cumprod()
A B

0 2.0 1.0
1 6.0 NaN
2 6.0 0.0

To iterate over columns and find the product in each row, use axis=1

>>> df.cumprod(axis=1)
A B

0 2.0 2.0
1 3.0 NaN
2 1.0 0.0

pandas.DataFrame.cumsum

DataFrame.cumsum(axis=None, skipna=True, *args, **kwargs)
Return cumulative sum over a DataFrame or Series axis.

Returns a DataFrame or Series of the same size containing the cumulative sum.

Parameters axis : {0 or ‘index’, 1 or ‘columns’}, default 0

The index or the name of the axis. 0 is equivalent to None or ‘index’.

skipna : boolean, default True

Exclude NA/null values. If an entire row/column is NA, the result will be NA.

*args, **kwargs :

Additional keywords have no effect but might be accepted for compatibility with
NumPy.

Returns

cumsum [Series or DataFrame]

See also:

pandas.core.window.Expanding.sum Similar functionality but ignores NaN values.

DataFrame.sum Return the sum over DataFrame axis.

DataFrame.cummax Return cumulative maximum over DataFrame axis.

DataFrame.cummin Return cumulative minimum over DataFrame axis.

34.4. DataFrame 1777

pandas: powerful Python data analysis toolkit, Release 0.23.4

DataFrame.cumsum Return cumulative sum over DataFrame axis.

DataFrame.cumprod Return cumulative product over DataFrame axis.

Examples

Series

>>> s = pd.Series([2, np.nan, 5, -1, 0])
>>> s
0 2.0
1 NaN
2 5.0
3 -1.0
4 0.0
dtype: float64

By default, NA values are ignored.

>>> s.cumsum()
0 2.0
1 NaN
2 7.0
3 6.0
4 6.0
dtype: float64

To include NA values in the operation, use skipna=False

>>> s.cumsum(skipna=False)
0 2.0
1 NaN
2 NaN
3 NaN
4 NaN
dtype: float64

DataFrame

>>> df = pd.DataFrame([[2.0, 1.0],
... [3.0, np.nan],
... [1.0, 0.0]],
... columns=list('AB'))
>>> df

A B
0 2.0 1.0
1 3.0 NaN
2 1.0 0.0

By default, iterates over rows and finds the sum in each column. This is equivalent to axis=None or
axis='index'.

>>> df.cumsum()
A B

0 2.0 1.0
1 5.0 NaN
2 6.0 1.0

1778 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

To iterate over columns and find the sum in each row, use axis=1

>>> df.cumsum(axis=1)
A B

0 2.0 3.0
1 3.0 NaN
2 1.0 1.0

pandas.DataFrame.describe

DataFrame.describe(percentiles=None, include=None, exclude=None)
Generates descriptive statistics that summarize the central tendency, dispersion and shape of a dataset’s
distribution, excluding NaN values.

Analyzes both numeric and object series, as well as DataFrame column sets of mixed data types. The
output will vary depending on what is provided. Refer to the notes below for more detail.

Parameters percentiles : list-like of numbers, optional

The percentiles to include in the output. All should fall between 0 and 1. The de-
fault is [.25, .5, .75], which returns the 25th, 50th, and 75th percentiles.

include : ‘all’, list-like of dtypes or None (default), optional

A white list of data types to include in the result. Ignored for Series. Here are
the options:

• ‘all’ : All columns of the input will be included in the output.

• A list-like of dtypes : Limits the results to the provided data types. To limit the
result to numeric types submit numpy.number. To limit it instead to object
columns submit the numpy.object data type. Strings can also be used in
the style of select_dtypes (e.g. df.describe(include=['O'])).
To select pandas categorical columns, use 'category'

• None (default) : The result will include all numeric columns.

exclude : list-like of dtypes or None (default), optional,

A black list of data types to omit from the result. Ignored for Series. Here are
the options:

• A list-like of dtypes : Excludes the provided data types from the result. To
exclude numeric types submit numpy.number. To exclude object columns
submit the data type numpy.object. Strings can also be used in the style of
select_dtypes (e.g. df.describe(include=['O'])). To exclude
pandas categorical columns, use 'category'

• None (default) : The result will exclude nothing.

Returns

summary: Series/DataFrame of summary statistics

See also:

DataFrame.count, DataFrame.max, DataFrame.min, DataFrame.mean, DataFrame.
std, DataFrame.select_dtypes

34.4. DataFrame 1779

pandas: powerful Python data analysis toolkit, Release 0.23.4

Notes

For numeric data, the result’s index will include count, mean, std, min, max as well as lower, 50 and
upper percentiles. By default the lower percentile is 25 and the upper percentile is 75. The 50 percentile
is the same as the median.

For object data (e.g. strings or timestamps), the result’s index will include count, unique, top, and
freq. The top is the most common value. The freq is the most common value’s frequency. Times-
tamps also include the first and last items.

If multiple object values have the highest count, then the count and top results will be arbitrarily chosen
from among those with the highest count.

For mixed data types provided via a DataFrame, the default is to return only an analysis of numeric
columns. If the dataframe consists only of object and categorical data without any numeric columns,
the default is to return an analysis of both the object and categorical columns. If include='all' is
provided as an option, the result will include a union of attributes of each type.

The include and exclude parameters can be used to limit which columns in a DataFrame are analyzed
for the output. The parameters are ignored when analyzing a Series.

Examples

Describing a numeric Series.

>>> s = pd.Series([1, 2, 3])
>>> s.describe()
count 3.0
mean 2.0
std 1.0
min 1.0
25% 1.5
50% 2.0
75% 2.5
max 3.0

Describing a categorical Series.

>>> s = pd.Series(['a', 'a', 'b', 'c'])
>>> s.describe()
count 4
unique 3
top a
freq 2
dtype: object

Describing a timestamp Series.

>>> s = pd.Series([
... np.datetime64("2000-01-01"),
... np.datetime64("2010-01-01"),
... np.datetime64("2010-01-01")
...])
>>> s.describe()
count 3
unique 2
top 2010-01-01 00:00:00

(continues on next page)

1780 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

freq 2
first 2000-01-01 00:00:00
last 2010-01-01 00:00:00
dtype: object

Describing a DataFrame. By default only numeric fields are returned.

>>> df = pd.DataFrame({ 'object': ['a', 'b', 'c'],
... 'numeric': [1, 2, 3],
... 'categorical': pd.Categorical(['d','e','f'])
... })
>>> df.describe()

numeric
count 3.0
mean 2.0
std 1.0
min 1.0
25% 1.5
50% 2.0
75% 2.5
max 3.0

Describing all columns of a DataFrame regardless of data type.

>>> df.describe(include='all')
categorical numeric object

count 3 3.0 3
unique 3 NaN 3
top f NaN c
freq 1 NaN 1
mean NaN 2.0 NaN
std NaN 1.0 NaN
min NaN 1.0 NaN
25% NaN 1.5 NaN
50% NaN 2.0 NaN
75% NaN 2.5 NaN
max NaN 3.0 NaN

Describing a column from a DataFrame by accessing it as an attribute.

>>> df.numeric.describe()
count 3.0
mean 2.0
std 1.0
min 1.0
25% 1.5
50% 2.0
75% 2.5
max 3.0
Name: numeric, dtype: float64

Including only numeric columns in a DataFrame description.

>>> df.describe(include=[np.number])
numeric

count 3.0

(continues on next page)

34.4. DataFrame 1781

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

mean 2.0
std 1.0
min 1.0
25% 1.5
50% 2.0
75% 2.5
max 3.0

Including only string columns in a DataFrame description.

>>> df.describe(include=[np.object])
object

count 3
unique 3
top c
freq 1

Including only categorical columns from a DataFrame description.

>>> df.describe(include=['category'])
categorical

count 3
unique 3
top f
freq 1

Excluding numeric columns from a DataFrame description.

>>> df.describe(exclude=[np.number])
categorical object

count 3 3
unique 3 3
top f c
freq 1 1

Excluding object columns from a DataFrame description.

>>> df.describe(exclude=[np.object])
categorical numeric

count 3 3.0
unique 3 NaN
top f NaN
freq 1 NaN
mean NaN 2.0
std NaN 1.0
min NaN 1.0
25% NaN 1.5
50% NaN 2.0
75% NaN 2.5
max NaN 3.0

pandas.DataFrame.diff

DataFrame.diff(periods=1, axis=0)
First discrete difference of element.

1782 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

Calculates the difference of a DataFrame element compared with another element in the DataFrame (de-
fault is the element in the same column of the previous row).

Parameters periods : int, default 1

Periods to shift for calculating difference, accepts negative values.

axis : {0 or ‘index’, 1 or ‘columns’}, default 0

Take difference over rows (0) or columns (1).

New in version 0.16.1..

Returns

diffed [DataFrame]

See also:

Series.diff First discrete difference for a Series.

DataFrame.pct_change Percent change over given number of periods.

DataFrame.shift Shift index by desired number of periods with an optional time freq.

Examples

Difference with previous row

>>> df = pd.DataFrame({'a': [1, 2, 3, 4, 5, 6],
... 'b': [1, 1, 2, 3, 5, 8],
... 'c': [1, 4, 9, 16, 25, 36]})
>>> df

a b c
0 1 1 1
1 2 1 4
2 3 2 9
3 4 3 16
4 5 5 25
5 6 8 36

>>> df.diff()
a b c

0 NaN NaN NaN
1 1.0 0.0 3.0
2 1.0 1.0 5.0
3 1.0 1.0 7.0
4 1.0 2.0 9.0
5 1.0 3.0 11.0

Difference with previous column

>>> df.diff(axis=1)
a b c

0 NaN 0.0 0.0
1 NaN -1.0 3.0
2 NaN -1.0 7.0
3 NaN -1.0 13.0
4 NaN 0.0 20.0
5 NaN 2.0 28.0

34.4. DataFrame 1783

pandas: powerful Python data analysis toolkit, Release 0.23.4

Difference with 3rd previous row

>>> df.diff(periods=3)
a b c

0 NaN NaN NaN
1 NaN NaN NaN
2 NaN NaN NaN
3 3.0 2.0 15.0
4 3.0 4.0 21.0
5 3.0 6.0 27.0

Difference with following row

>>> df.diff(periods=-1)
a b c

0 -1.0 0.0 -3.0
1 -1.0 -1.0 -5.0
2 -1.0 -1.0 -7.0
3 -1.0 -2.0 -9.0
4 -1.0 -3.0 -11.0
5 NaN NaN NaN

pandas.DataFrame.div

DataFrame.div(other, axis=’columns’, level=None, fill_value=None)
Floating division of dataframe and other, element-wise (binary operator truediv).

Equivalent to dataframe / other, but with support to substitute a fill_value for missing data in one
of the inputs.

Parameters

other [Series, DataFrame, or constant]

axis : {0, 1, ‘index’, ‘columns’}

For Series input, axis to match Series index on

level : int or name

Broadcast across a level, matching Index values on the passed MultiIndex level

fill_value : None or float value, default None

Fill existing missing (NaN) values, and any new element needed for successful
DataFrame alignment, with this value before computation. If data in both corre-
sponding DataFrame locations is missing the result will be missing

Returns

result [DataFrame]

See also:

DataFrame.rtruediv

Notes

Mismatched indices will be unioned together

1784 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

Examples

None

pandas.DataFrame.divide

DataFrame.divide(other, axis=’columns’, level=None, fill_value=None)
Floating division of dataframe and other, element-wise (binary operator truediv).

Equivalent to dataframe / other, but with support to substitute a fill_value for missing data in one
of the inputs.

Parameters

other [Series, DataFrame, or constant]

axis : {0, 1, ‘index’, ‘columns’}

For Series input, axis to match Series index on

level : int or name

Broadcast across a level, matching Index values on the passed MultiIndex level

fill_value : None or float value, default None

Fill existing missing (NaN) values, and any new element needed for successful
DataFrame alignment, with this value before computation. If data in both corre-
sponding DataFrame locations is missing the result will be missing

Returns

result [DataFrame]

See also:

DataFrame.rtruediv

Notes

Mismatched indices will be unioned together

Examples

None

pandas.DataFrame.dot

DataFrame.dot(other)
Matrix multiplication with DataFrame or Series objects. Can also be called using self @ other in Python
>= 3.5.

Parameters

other [DataFrame or Series]

Returns

34.4. DataFrame 1785

pandas: powerful Python data analysis toolkit, Release 0.23.4

dot_product [DataFrame or Series]

pandas.DataFrame.drop

DataFrame.drop(labels=None, axis=0, index=None, columns=None, level=None, inplace=False,
errors=’raise’)

Drop specified labels from rows or columns.

Remove rows or columns by specifying label names and corresponding axis, or by specifying directly
index or column names. When using a multi-index, labels on different levels can be removed by specifying
the level.

Parameters labels : single label or list-like

Index or column labels to drop.

axis : {0 or ‘index’, 1 or ‘columns’}, default 0

Whether to drop labels from the index (0 or ‘index’) or columns (1 or ‘columns’).

index, columns : single label or list-like

Alternative to specifying axis (labels, axis=1 is equivalent to
columns=labels).

New in version 0.21.0.

level : int or level name, optional

For MultiIndex, level from which the labels will be removed.

inplace : bool, default False

If True, do operation inplace and return None.

errors : {‘ignore’, ‘raise’}, default ‘raise’

If ‘ignore’, suppress error and only existing labels are dropped.

Returns

dropped [pandas.DataFrame]

Raises KeyError

If none of the labels are found in the selected axis

See also:

DataFrame.loc Label-location based indexer for selection by label.

DataFrame.dropna Return DataFrame with labels on given axis omitted where (all or any) data are
missing

DataFrame.drop_duplicates Return DataFrame with duplicate rows removed, optionally only
considering certain columns

Series.drop Return Series with specified index labels removed.

Examples

1786 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

>>> df = pd.DataFrame(np.arange(12).reshape(3,4),
... columns=['A', 'B', 'C', 'D'])
>>> df

A B C D
0 0 1 2 3
1 4 5 6 7
2 8 9 10 11

Drop columns

>>> df.drop(['B', 'C'], axis=1)
A D

0 0 3
1 4 7
2 8 11

>>> df.drop(columns=['B', 'C'])
A D

0 0 3
1 4 7
2 8 11

Drop a row by index

>>> df.drop([0, 1])
A B C D

2 8 9 10 11

Drop columns and/or rows of MultiIndex DataFrame

>>> midx = pd.MultiIndex(levels=[['lama', 'cow', 'falcon'],
... ['speed', 'weight', 'length']],
... labels=[[0, 0, 0, 1, 1, 1, 2, 2, 2],
... [0, 1, 2, 0, 1, 2, 0, 1, 2]])
>>> df = pd.DataFrame(index=midx, columns=['big', 'small'],
... data=[[45, 30], [200, 100], [1.5, 1], [30, 20],
... [250, 150], [1.5, 0.8], [320, 250],
... [1, 0.8], [0.3,0.2]])
>>> df

big small
lama speed 45.0 30.0

weight 200.0 100.0
length 1.5 1.0

cow speed 30.0 20.0
weight 250.0 150.0
length 1.5 0.8

falcon speed 320.0 250.0
weight 1.0 0.8
length 0.3 0.2

>>> df.drop(index='cow', columns='small')
big

lama speed 45.0
weight 200.0
length 1.5

falcon speed 320.0

(continues on next page)

34.4. DataFrame 1787

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

weight 1.0
length 0.3

>>> df.drop(index='length', level=1)
big small

lama speed 45.0 30.0
weight 200.0 100.0

cow speed 30.0 20.0
weight 250.0 150.0

falcon speed 320.0 250.0
weight 1.0 0.8

pandas.DataFrame.drop_duplicates

DataFrame.drop_duplicates(subset=None, keep=’first’, inplace=False)
Return DataFrame with duplicate rows removed, optionally only considering certain columns

Parameters subset : column label or sequence of labels, optional

Only consider certain columns for identifying duplicates, by default use all of the
columns

keep : {‘first’, ‘last’, False}, default ‘first’

• first : Drop duplicates except for the first occurrence.

• last : Drop duplicates except for the last occurrence.

• False : Drop all duplicates.

inplace : boolean, default False

Whether to drop duplicates in place or to return a copy

Returns

deduplicated [DataFrame]

pandas.DataFrame.dropna

DataFrame.dropna(axis=0, how=’any’, thresh=None, subset=None, inplace=False)
Remove missing values.

See the User Guide for more on which values are considered missing, and how to work with missing data.

Parameters axis : {0 or ‘index’, 1 or ‘columns’}, default 0

Determine if rows or columns which contain missing values are removed.

• 0, or ‘index’ : Drop rows which contain missing values.

• 1, or ‘columns’ : Drop columns which contain missing value.

Deprecated since version 0.23.0:: Pass tuple or list to drop on multiple

axes.

how : {‘any’, ‘all’}, default ‘any’

1788 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

Determine if row or column is removed from DataFrame, when we have at least
one NA or all NA.

• ‘any’ : If any NA values are present, drop that row or column.

• ‘all’ : If all values are NA, drop that row or column.

thresh : int, optional

Require that many non-NA values.

subset : array-like, optional

Labels along other axis to consider, e.g. if you are dropping rows these would be
a list of columns to include.

inplace : bool, default False

If True, do operation inplace and return None.

Returns DataFrame

DataFrame with NA entries dropped from it.

See also:

DataFrame.isna Indicate missing values.

DataFrame.notna Indicate existing (non-missing) values.

DataFrame.fillna Replace missing values.

Series.dropna Drop missing values.

Index.dropna Drop missing indices.

Examples

>>> df = pd.DataFrame({"name": ['Alfred', 'Batman', 'Catwoman'],
... "toy": [np.nan, 'Batmobile', 'Bullwhip'],
... "born": [pd.NaT, pd.Timestamp("1940-04-25"),
... pd.NaT]})
>>> df

name toy born
0 Alfred NaN NaT
1 Batman Batmobile 1940-04-25
2 Catwoman Bullwhip NaT

Drop the rows where at least one element is missing.

>>> df.dropna()
name toy born

1 Batman Batmobile 1940-04-25

Drop the columns where at least one element is missing.

>>> df.dropna(axis='columns')
name

0 Alfred
1 Batman
2 Catwoman

34.4. DataFrame 1789

pandas: powerful Python data analysis toolkit, Release 0.23.4

Drop the rows where all elements are missing.

>>> df.dropna(how='all')
name toy born

0 Alfred NaN NaT
1 Batman Batmobile 1940-04-25
2 Catwoman Bullwhip NaT

Keep only the rows with at least 2 non-NA values.

>>> df.dropna(thresh=2)
name toy born

1 Batman Batmobile 1940-04-25
2 Catwoman Bullwhip NaT

Define in which columns to look for missing values.

>>> df.dropna(subset=['name', 'born'])
name toy born

1 Batman Batmobile 1940-04-25

Keep the DataFrame with valid entries in the same variable.

>>> df.dropna(inplace=True)
>>> df

name toy born
1 Batman Batmobile 1940-04-25

pandas.DataFrame.duplicated

DataFrame.duplicated(subset=None, keep=’first’)
Return boolean Series denoting duplicate rows, optionally only considering certain columns

Parameters subset : column label or sequence of labels, optional

Only consider certain columns for identifying duplicates, by default use all of the
columns

keep : {‘first’, ‘last’, False}, default ‘first’

• first : Mark duplicates as True except for the first occurrence.

• last : Mark duplicates as True except for the last occurrence.

• False : Mark all duplicates as True.

Returns

duplicated [Series]

pandas.DataFrame.eq

DataFrame.eq(other, axis=’columns’, level=None)
Wrapper for flexible comparison methods eq

1790 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

pandas.DataFrame.equals

DataFrame.equals(other)
Determines if two NDFrame objects contain the same elements. NaNs in the same location are considered
equal.

pandas.DataFrame.eval

DataFrame.eval(expr, inplace=False, **kwargs)
Evaluate a string describing operations on DataFrame columns.

Operates on columns only, not specific rows or elements. This allows eval to run arbitrary code, which
can make you vulnerable to code injection if you pass user input to this function.

Parameters expr : str

The expression string to evaluate.

inplace : bool, default False

If the expression contains an assignment, whether to perform the operation in-
place and mutate the existing DataFrame. Otherwise, a new DataFrame is re-
turned.

New in version 0.18.0..

kwargs : dict

See the documentation for eval() for complete details on the keyword argu-
ments accepted by query().

Returns ndarray, scalar, or pandas object

The result of the evaluation.

See also:

DataFrame.query Evaluates a boolean expression to query the columns of a frame.

DataFrame.assign Can evaluate an expression or function to create new values for a column.

pandas.eval Evaluate a Python expression as a string using various backends.

Notes

For more details see the API documentation for eval(). For detailed examples see enhancing perfor-
mance with eval.

Examples

>>> df = pd.DataFrame({'A': range(1, 6), 'B': range(10, 0, -2)})
>>> df

A B
0 1 10
1 2 8
2 3 6
3 4 4

(continues on next page)

34.4. DataFrame 1791

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

4 5 2
>>> df.eval('A + B')
0 11
1 10
2 9
3 8
4 7
dtype: int64

Assignment is allowed though by default the original DataFrame is not modified.

>>> df.eval('C = A + B')
A B C

0 1 10 11
1 2 8 10
2 3 6 9
3 4 4 8
4 5 2 7
>>> df

A B
0 1 10
1 2 8
2 3 6
3 4 4
4 5 2

Use inplace=True to modify the original DataFrame.

>>> df.eval('C = A + B', inplace=True)
>>> df

A B C
0 1 10 11
1 2 8 10
2 3 6 9
3 4 4 8
4 5 2 7

pandas.DataFrame.ewm

DataFrame.ewm(com=None, span=None, halflife=None, alpha=None, min_periods=0, adjust=True,
ignore_na=False, axis=0)

Provides exponential weighted functions

New in version 0.18.0.

Parameters com : float, optional

Specify decay in terms of center of mass, 𝛼 = 1/(1 + 𝑐𝑜𝑚), for 𝑐𝑜𝑚 ≥ 0

span : float, optional

Specify decay in terms of span, 𝛼 = 2/(𝑠𝑝𝑎𝑛+ 1), for 𝑠𝑝𝑎𝑛 ≥ 1

halflife : float, optional

Specify decay in terms of half-life, 𝛼 = 1 −
𝑒𝑥𝑝(𝑙𝑜𝑔(0.5)/ℎ𝑎𝑙𝑓𝑙𝑖𝑓𝑒), for ℎ𝑎𝑙𝑓𝑙𝑖𝑓𝑒 > 0

1792 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

alpha : float, optional

Specify smoothing factor 𝛼 directly, 0 < 𝛼 ≤ 1

New in version 0.18.0.

min_periods : int, default 0

Minimum number of observations in window required to have a value (otherwise
result is NA).

adjust : boolean, default True

Divide by decaying adjustment factor in beginning periods to account for imbal-
ance in relative weightings (viewing EWMA as a moving average)

ignore_na : boolean, default False

Ignore missing values when calculating weights; specify True to reproduce pre-
0.15.0 behavior

Returns

a Window sub-classed for the particular operation

See also:

rolling Provides rolling window calculations

expanding Provides expanding transformations.

Notes

Exactly one of center of mass, span, half-life, and alpha must be provided. Allowed values and relation-
ship between the parameters are specified in the parameter descriptions above; see the link at the end of
this section for a detailed explanation.

When adjust is True (default), weighted averages are calculated using weights (1-alpha)**(n-1), (1-
alpha)**(n-2), . . . , 1-alpha, 1.

When adjust is False, weighted averages are calculated recursively as: weighted_average[0] =
arg[0]; weighted_average[i] = (1-alpha)*weighted_average[i-1] + alpha*arg[i].

When ignore_na is False (default), weights are based on absolute positions. For example, the weights of
x and y used in calculating the final weighted average of [x, None, y] are (1-alpha)**2 and 1 (if adjust is
True), and (1-alpha)**2 and alpha (if adjust is False).

When ignore_na is True (reproducing pre-0.15.0 behavior), weights are based on relative positions. For
example, the weights of x and y used in calculating the final weighted average of [x, None, y] are 1-alpha
and 1 (if adjust is True), and 1-alpha and alpha (if adjust is False).

More details can be found at http://pandas.pydata.org/pandas-docs/stable/computation.html#
exponentially-weighted-windows

Examples

>>> df = DataFrame({'B': [0, 1, 2, np.nan, 4]})
B

0 0.0
1 1.0

(continues on next page)

34.4. DataFrame 1793

http://pandas.pydata.org/pandas-docs/stable/computation.html#exponentially-weighted-windows
http://pandas.pydata.org/pandas-docs/stable/computation.html#exponentially-weighted-windows

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

2 2.0
3 NaN
4 4.0

>>> df.ewm(com=0.5).mean()
B

0 0.000000
1 0.750000
2 1.615385
3 1.615385
4 3.670213

pandas.DataFrame.expanding

DataFrame.expanding(min_periods=1, center=False, axis=0)
Provides expanding transformations.

New in version 0.18.0.

Parameters min_periods : int, default 1

Minimum number of observations in window required to have a value (otherwise
result is NA).

center : boolean, default False

Set the labels at the center of the window.

axis [int or string, default 0]

Returns

a Window sub-classed for the particular operation

See also:

rolling Provides rolling window calculations

ewm Provides exponential weighted functions

Notes

By default, the result is set to the right edge of the window. This can be changed to the center of the
window by setting center=True.

Examples

>>> df = DataFrame({'B': [0, 1, 2, np.nan, 4]})
B

0 0.0
1 1.0
2 2.0
3 NaN
4 4.0

1794 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

>>> df.expanding(2).sum()
B

0 NaN
1 1.0
2 3.0
3 3.0
4 7.0

pandas.DataFrame.ffill

DataFrame.ffill(axis=None, inplace=False, limit=None, downcast=None)
Synonym for DataFrame.fillna(method='ffill')

pandas.DataFrame.fillna

DataFrame.fillna(value=None, method=None, axis=None, inplace=False, limit=None, down-
cast=None, **kwargs)

Fill NA/NaN values using the specified method

Parameters value : scalar, dict, Series, or DataFrame

Value to use to fill holes (e.g. 0), alternately a dict/Series/DataFrame of val-
ues specifying which value to use for each index (for a Series) or column (for
a DataFrame). (values not in the dict/Series/DataFrame will not be filled). This
value cannot be a list.

method : {‘backfill’, ‘bfill’, ‘pad’, ‘ffill’, None}, default None

Method to use for filling holes in reindexed Series pad / ffill: propagate last valid
observation forward to next valid backfill / bfill: use NEXT valid observation to
fill gap

axis [{0 or ‘index’, 1 or ‘columns’}]

inplace : boolean, default False

If True, fill in place. Note: this will modify any other views on this object, (e.g. a
no-copy slice for a column in a DataFrame).

limit : int, default None

If method is specified, this is the maximum number of consecutive NaN values to
forward/backward fill. In other words, if there is a gap with more than this number
of consecutive NaNs, it will only be partially filled. If method is not specified,
this is the maximum number of entries along the entire axis where NaNs will be
filled. Must be greater than 0 if not None.

downcast : dict, default is None

a dict of item->dtype of what to downcast if possible, or the string ‘infer’ which
will try to downcast to an appropriate equal type (e.g. float64 to int64 if possible)

Returns

filled [DataFrame]

See also:

34.4. DataFrame 1795

pandas: powerful Python data analysis toolkit, Release 0.23.4

interpolate Fill NaN values using interpolation.

reindex, asfreq

Examples

>>> df = pd.DataFrame([[np.nan, 2, np.nan, 0],
... [3, 4, np.nan, 1],
... [np.nan, np.nan, np.nan, 5],
... [np.nan, 3, np.nan, 4]],
... columns=list('ABCD'))
>>> df

A B C D
0 NaN 2.0 NaN 0
1 3.0 4.0 NaN 1
2 NaN NaN NaN 5
3 NaN 3.0 NaN 4

Replace all NaN elements with 0s.

>>> df.fillna(0)
A B C D

0 0.0 2.0 0.0 0
1 3.0 4.0 0.0 1
2 0.0 0.0 0.0 5
3 0.0 3.0 0.0 4

We can also propagate non-null values forward or backward.

>>> df.fillna(method='ffill')
A B C D

0 NaN 2.0 NaN 0
1 3.0 4.0 NaN 1
2 3.0 4.0 NaN 5
3 3.0 3.0 NaN 4

Replace all NaN elements in column ‘A’, ‘B’, ‘C’, and ‘D’, with 0, 1, 2, and 3 respectively.

>>> values = {'A': 0, 'B': 1, 'C': 2, 'D': 3}
>>> df.fillna(value=values)

A B C D
0 0.0 2.0 2.0 0
1 3.0 4.0 2.0 1
2 0.0 1.0 2.0 5
3 0.0 3.0 2.0 4

Only replace the first NaN element.

>>> df.fillna(value=values, limit=1)
A B C D

0 0.0 2.0 2.0 0
1 3.0 4.0 NaN 1
2 NaN 1.0 NaN 5
3 NaN 3.0 NaN 4

1796 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

pandas.DataFrame.filter

DataFrame.filter(items=None, like=None, regex=None, axis=None)
Subset rows or columns of dataframe according to labels in the specified index.

Note that this routine does not filter a dataframe on its contents. The filter is applied to the labels of the
index.

Parameters items : list-like

List of info axis to restrict to (must not all be present)

like : string

Keep info axis where “arg in col == True”

regex : string (regular expression)

Keep info axis with re.search(regex, col) == True

axis : int or string axis name

The axis to filter on. By default this is the info axis, ‘index’ for Series, ‘columns’
for DataFrame

Returns

same type as input object

See also:

pandas.DataFrame.loc

Notes

The items, like, and regex parameters are enforced to be mutually exclusive.

axis defaults to the info axis that is used when indexing with [].

Examples

>>> df
one two three
mouse 1 2 3
rabbit 4 5 6

>>> # select columns by name
>>> df.filter(items=['one', 'three'])
one three
mouse 1 3
rabbit 4 6

>>> # select columns by regular expression
>>> df.filter(regex='e$', axis=1)
one three
mouse 1 3
rabbit 4 6

34.4. DataFrame 1797

pandas: powerful Python data analysis toolkit, Release 0.23.4

>>> # select rows containing 'bbi'
>>> df.filter(like='bbi', axis=0)
one two three
rabbit 4 5 6

pandas.DataFrame.first

DataFrame.first(offset)
Convenience method for subsetting initial periods of time series data based on a date offset.

Parameters

offset [string, DateOffset, dateutil.relativedelta]

Returns

subset [type of caller]

Raises TypeError

If the index is not a DatetimeIndex

See also:

last Select final periods of time series based on a date offset

at_time Select values at a particular time of the day

between_time Select values between particular times of the day

Examples

>>> i = pd.date_range('2018-04-09', periods=4, freq='2D')
>>> ts = pd.DataFrame({'A': [1,2,3,4]}, index=i)
>>> ts

A
2018-04-09 1
2018-04-11 2
2018-04-13 3
2018-04-15 4

Get the rows for the first 3 days:

>>> ts.first('3D')
A

2018-04-09 1
2018-04-11 2

Notice the data for 3 first calender days were returned, not the first 3 days observed in the dataset, and
therefore data for 2018-04-13 was not returned.

pandas.DataFrame.first_valid_index

DataFrame.first_valid_index()
Return index for first non-NA/null value.

1798 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

Returns

scalar [type of index]

Notes

If all elements are non-NA/null, returns None. Also returns None for empty NDFrame.

pandas.DataFrame.floordiv

DataFrame.floordiv(other, axis=’columns’, level=None, fill_value=None)
Integer division of dataframe and other, element-wise (binary operator floordiv).

Equivalent to dataframe // other, but with support to substitute a fill_value for missing data in
one of the inputs.

Parameters

other [Series, DataFrame, or constant]

axis : {0, 1, ‘index’, ‘columns’}

For Series input, axis to match Series index on

level : int or name

Broadcast across a level, matching Index values on the passed MultiIndex level

fill_value : None or float value, default None

Fill existing missing (NaN) values, and any new element needed for successful
DataFrame alignment, with this value before computation. If data in both corre-
sponding DataFrame locations is missing the result will be missing

Returns

result [DataFrame]

See also:

DataFrame.rfloordiv

Notes

Mismatched indices will be unioned together

Examples

None

pandas.DataFrame.from_csv

classmethod DataFrame.from_csv(path, header=0, sep=’, ’, index_col=0, parse_dates=True,
encoding=None, tupleize_cols=None, in-
fer_datetime_format=False)

Read CSV file.

34.4. DataFrame 1799

pandas: powerful Python data analysis toolkit, Release 0.23.4

Deprecated since version 0.21.0: Use pandas.read_csv() instead.

It is preferable to use the more powerful pandas.read_csv() for most general purposes, but
from_csv makes for an easy roundtrip to and from a file (the exact counterpart of to_csv), espe-
cially with a DataFrame of time series data.

This method only differs from the preferred pandas.read_csv() in some defaults:

• index_col is 0 instead of None (take first column as index by default)

• parse_dates is True instead of False (try parsing the index as datetime by default)

So a pd.DataFrame.from_csv(path) can be replaced by pd.read_csv(path,
index_col=0, parse_dates=True).

Parameters

path [string file path or file handle / StringIO]

header : int, default 0

Row to use as header (skip prior rows)

sep : string, default ‘,’

Field delimiter

index_col : int or sequence, default 0

Column to use for index. If a sequence is given, a MultiIndex is used. Different
default from read_table

parse_dates : boolean, default True

Parse dates. Different default from read_table

tupleize_cols : boolean, default False

write multi_index columns as a list of tuples (if True) or new (expanded format)
if False)

infer_datetime_format: boolean, default False

If True and parse_dates is True for a column, try to infer the datetime format
based on the first datetime string. If the format can be inferred, there often will
be a large parsing speed-up.

Returns

y [DataFrame]

See also:

pandas.read_csv

pandas.DataFrame.from_dict

classmethod DataFrame.from_dict(data, orient=’columns’, dtype=None, columns=None)
Construct DataFrame from dict of array-like or dicts.

Creates DataFrame object from dictionary by columns or by index allowing dtype specification.

Parameters data : dict

Of the form {field : array-like} or {field : dict}.

1800 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

orient : {‘columns’, ‘index’}, default ‘columns’

The “orientation” of the data. If the keys of the passed dict should be the columns
of the resulting DataFrame, pass ‘columns’ (default). Otherwise if the keys
should be rows, pass ‘index’.

dtype : dtype, default None

Data type to force, otherwise infer.

columns : list, default None

Column labels to use when orient='index'. Raises a ValueError if used
with orient='columns'.

New in version 0.23.0.

Returns

pandas.DataFrame

See also:

DataFrame.from_records DataFrame from ndarray (structured dtype), list of tuples, dict, or
DataFrame

DataFrame DataFrame object creation using constructor

Examples

By default the keys of the dict become the DataFrame columns:

>>> data = {'col_1': [3, 2, 1, 0], 'col_2': ['a', 'b', 'c', 'd']}
>>> pd.DataFrame.from_dict(data)

col_1 col_2
0 3 a
1 2 b
2 1 c
3 0 d

Specify orient='index' to create the DataFrame using dictionary keys as rows:

>>> data = {'row_1': [3, 2, 1, 0], 'row_2': ['a', 'b', 'c', 'd']}
>>> pd.DataFrame.from_dict(data, orient='index')

0 1 2 3
row_1 3 2 1 0
row_2 a b c d

When using the ‘index’ orientation, the column names can be specified manually:

>>> pd.DataFrame.from_dict(data, orient='index',
... columns=['A', 'B', 'C', 'D'])

A B C D
row_1 3 2 1 0
row_2 a b c d

34.4. DataFrame 1801

pandas: powerful Python data analysis toolkit, Release 0.23.4

pandas.DataFrame.from_items

classmethod DataFrame.from_items(items, columns=None, orient=’columns’)
Construct a dataframe from a list of tuples

Deprecated since version 0.23.0: from_items is deprecated and will be removed in a fu-
ture version. Use DataFrame.from_dict(dict(items)) instead. DataFrame.
from_dict(OrderedDict(items)) may be used to preserve the key order.

Convert (key, value) pairs to DataFrame. The keys will be the axis index (usually the columns, but depends
on the specified orientation). The values should be arrays or Series.

Parameters items : sequence of (key, value) pairs

Values should be arrays or Series.

columns : sequence of column labels, optional

Must be passed if orient=’index’.

orient : {‘columns’, ‘index’}, default ‘columns’

The “orientation” of the data. If the keys of the input correspond to column
labels, pass ‘columns’ (default). Otherwise if the keys correspond to the index,
pass ‘index’.

Returns

frame [DataFrame]

pandas.DataFrame.from_records

classmethod DataFrame.from_records(data, index=None, exclude=None, columns=None,
coerce_float=False, nrows=None)

Convert structured or record ndarray to DataFrame

Parameters

data [ndarray (structured dtype), list of tuples, dict, or DataFrame]

index : string, list of fields, array-like

Field of array to use as the index, alternately a specific set of input labels to use

exclude : sequence, default None

Columns or fields to exclude

columns : sequence, default None

Column names to use. If the passed data do not have names associated with
them, this argument provides names for the columns. Otherwise this argument
indicates the order of the columns in the result (any names not found in the data
will become all-NA columns)

coerce_float : boolean, default False

Attempt to convert values of non-string, non-numeric objects (like deci-
mal.Decimal) to floating point, useful for SQL result sets

Returns

df [DataFrame]

1802 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

pandas.DataFrame.ge

DataFrame.ge(other, axis=’columns’, level=None)
Wrapper for flexible comparison methods ge

pandas.DataFrame.get

DataFrame.get(key, default=None)
Get item from object for given key (DataFrame column, Panel slice, etc.). Returns default value if not
found.

Parameters

key [object]

Returns

value [type of items contained in object]

pandas.DataFrame.get_dtype_counts

DataFrame.get_dtype_counts()
Return counts of unique dtypes in this object.

Returns dtype : Series

Series with the count of columns with each dtype.

See also:

dtypes Return the dtypes in this object.

Examples

>>> a = [['a', 1, 1.0], ['b', 2, 2.0], ['c', 3, 3.0]]
>>> df = pd.DataFrame(a, columns=['str', 'int', 'float'])
>>> df

str int float
0 a 1 1.0
1 b 2 2.0
2 c 3 3.0

>>> df.get_dtype_counts()
float64 1
int64 1
object 1
dtype: int64

pandas.DataFrame.get_ftype_counts

DataFrame.get_ftype_counts()
Return counts of unique ftypes in this object.

Deprecated since version 0.23.0.

34.4. DataFrame 1803

pandas: powerful Python data analysis toolkit, Release 0.23.4

This is useful for SparseDataFrame or for DataFrames containing sparse arrays.

Returns dtype : Series

Series with the count of columns with each type and sparsity (dense/sparse)

See also:

ftypes Return ftypes (indication of sparse/dense and dtype) in this object.

Examples

>>> a = [['a', 1, 1.0], ['b', 2, 2.0], ['c', 3, 3.0]]
>>> df = pd.DataFrame(a, columns=['str', 'int', 'float'])
>>> df

str int float
0 a 1 1.0
1 b 2 2.0
2 c 3 3.0

>>> df.get_ftype_counts()
float64:dense 1
int64:dense 1
object:dense 1
dtype: int64

pandas.DataFrame.get_value

DataFrame.get_value(index, col, takeable=False)
Quickly retrieve single value at passed column and index

Deprecated since version 0.21.0: Use .at[] or .iat[] accessors instead.

Parameters

index [row label]

col [column label]

takeable [interpret the index/col as indexers, default False]

Returns

value [scalar value]

pandas.DataFrame.get_values

DataFrame.get_values()
Return an ndarray after converting sparse values to dense.

This is the same as .values for non-sparse data. For sparse data contained in a pandas.SparseArray,
the data are first converted to a dense representation.

Returns numpy.ndarray

Numpy representation of DataFrame

See also:

1804 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

values Numpy representation of DataFrame.

pandas.SparseArray Container for sparse data.

Examples

>>> df = pd.DataFrame({'a': [1, 2], 'b': [True, False],
... 'c': [1.0, 2.0]})
>>> df

a b c
0 1 True 1.0
1 2 False 2.0

>>> df.get_values()
array([[1, True, 1.0], [2, False, 2.0]], dtype=object)

>>> df = pd.DataFrame({"a": pd.SparseArray([1, None, None]),
... "c": [1.0, 2.0, 3.0]})
>>> df

a c
0 1.0 1.0
1 NaN 2.0
2 NaN 3.0

>>> df.get_values()
array([[1., 1.],

[nan, 2.],
[nan, 3.]])

pandas.DataFrame.groupby

DataFrame.groupby(by=None, axis=0, level=None, as_index=True, sort=True, group_keys=True,
squeeze=False, observed=False, **kwargs)

Group series using mapper (dict or key function, apply given function to group, return result as series) or
by a series of columns.

Parameters by : mapping, function, label, or list of labels

Used to determine the groups for the groupby. If by is a function, it’s called
on each value of the object’s index. If a dict or Series is passed, the Series or
dict VALUES will be used to determine the groups (the Series’ values are first
aligned; see .align() method). If an ndarray is passed, the values are used
as-is determine the groups. A label or list of labels may be passed to group by the
columns in self. Notice that a tuple is interpreted a (single) key.

axis [int, default 0]

level : int, level name, or sequence of such, default None

If the axis is a MultiIndex (hierarchical), group by a particular level or levels

as_index : boolean, default True

For aggregated output, return object with group labels as the index. Only relevant
for DataFrame input. as_index=False is effectively “SQL-style” grouped output

34.4. DataFrame 1805

pandas: powerful Python data analysis toolkit, Release 0.23.4

sort : boolean, default True

Sort group keys. Get better performance by turning this off. Note this does not
influence the order of observations within each group. groupby preserves the
order of rows within each group.

group_keys : boolean, default True

When calling apply, add group keys to index to identify pieces

squeeze : boolean, default False

reduce the dimensionality of the return type if possible, otherwise return a con-
sistent type

observed : boolean, default False

This only applies if any of the groupers are Categoricals If True: only show ob-
served values for categorical groupers. If False: show all values for categorical
groupers.

New in version 0.23.0.

Returns

GroupBy object

See also:

resample Convenience method for frequency conversion and resampling of time series.

Notes

See the user guide for more.

Examples

DataFrame results

>>> data.groupby(func, axis=0).mean()
>>> data.groupby(['col1', 'col2'])['col3'].mean()

DataFrame with hierarchical index

>>> data.groupby(['col1', 'col2']).mean()

pandas.DataFrame.gt

DataFrame.gt(other, axis=’columns’, level=None)
Wrapper for flexible comparison methods gt

pandas.DataFrame.head

DataFrame.head(n=5)
Return the first n rows.

1806 Chapter 34. API Reference

http://pandas.pydata.org/pandas-docs/stable/groupby.html

pandas: powerful Python data analysis toolkit, Release 0.23.4

This function returns the first n rows for the object based on position. It is useful for quickly testing if
your object has the right type of data in it.

Parameters n : int, default 5

Number of rows to select.

Returns obj_head : type of caller

The first n rows of the caller object.

See also:

pandas.DataFrame.tail Returns the last n rows.

Examples

>>> df = pd.DataFrame({'animal':['alligator', 'bee', 'falcon', 'lion',
... 'monkey', 'parrot', 'shark', 'whale', 'zebra']})
>>> df

animal
0 alligator
1 bee
2 falcon
3 lion
4 monkey
5 parrot
6 shark
7 whale
8 zebra

Viewing the first 5 lines

>>> df.head()
animal

0 alligator
1 bee
2 falcon
3 lion
4 monkey

Viewing the first n lines (three in this case)

>>> df.head(3)
animal

0 alligator
1 bee
2 falcon

pandas.DataFrame.hist

DataFrame.hist(column=None, by=None, grid=True, xlabelsize=None, xrot=None, ylabel-
size=None, yrot=None, ax=None, sharex=False, sharey=False, figsize=None, lay-
out=None, bins=10, **kwds)

Make a histogram of the DataFrame’s.

34.4. DataFrame 1807

pandas: powerful Python data analysis toolkit, Release 0.23.4

A histogram is a representation of the distribution of data. This function calls matplotlib.pyplot.
hist(), on each series in the DataFrame, resulting in one histogram per column.

Parameters data : DataFrame

The pandas object holding the data.

column : string or sequence

If passed, will be used to limit data to a subset of columns.

by : object, optional

If passed, then used to form histograms for separate groups.

grid : boolean, default True

Whether to show axis grid lines.

xlabelsize : int, default None

If specified changes the x-axis label size.

xrot : float, default None

Rotation of x axis labels. For example, a value of 90 displays the x labels rotated
90 degrees clockwise.

ylabelsize : int, default None

If specified changes the y-axis label size.

yrot : float, default None

Rotation of y axis labels. For example, a value of 90 displays the y labels rotated
90 degrees clockwise.

ax : Matplotlib axes object, default None

The axes to plot the histogram on.

sharex : boolean, default True if ax is None else False

In case subplots=True, share x axis and set some x axis labels to invisible; defaults
to True if ax is None otherwise False if an ax is passed in. Note that passing in
both an ax and sharex=True will alter all x axis labels for all subplots in a figure.

sharey : boolean, default False

In case subplots=True, share y axis and set some y axis labels to invisible.

figsize : tuple

The size in inches of the figure to create. Uses the value in matplotlib.rcParams
by default.

layout : tuple, optional

Tuple of (rows, columns) for the layout of the histograms.

bins : integer or sequence, default 10

Number of histogram bins to be used. If an integer is given, bins + 1 bin edges are
calculated and returned. If bins is a sequence, gives bin edges, including left edge
of first bin and right edge of last bin. In this case, bins is returned unmodified.

**kwds

1808 Chapter 34. API Reference

https://en.wikipedia.org/wiki/Histogram

pandas: powerful Python data analysis toolkit, Release 0.23.4

All other plotting keyword arguments to be passed to matplotlib.pyplot.
hist().

Returns

axes [matplotlib.AxesSubplot or numpy.ndarray of them]

See also:

matplotlib.pyplot.hist Plot a histogram using matplotlib.

Examples

This example draws a histogram based on the length and width of some animals, displayed in three bins

>>> df = pd.DataFrame({
... 'length': [1.5, 0.5, 1.2, 0.9, 3],
... 'width': [0.7, 0.2, 0.15, 0.2, 1.1]
... }, index= ['pig', 'rabbit', 'duck', 'chicken', 'horse'])
>>> hist = df.hist(bins=3)

pandas.DataFrame.idxmax

DataFrame.idxmax(axis=0, skipna=True)
Return index of first occurrence of maximum over requested axis. NA/null values are excluded.

Parameters axis : {0 or ‘index’, 1 or ‘columns’}, default 0

0 or ‘index’ for row-wise, 1 or ‘columns’ for column-wise

skipna : boolean, default True

Exclude NA/null values. If an entire row/column is NA, the result will be NA.

Returns

idxmax [Series]

Raises ValueError

• If the row/column is empty

See also:

Series.idxmax

Notes

This method is the DataFrame version of ndarray.argmax.

pandas.DataFrame.idxmin

DataFrame.idxmin(axis=0, skipna=True)
Return index of first occurrence of minimum over requested axis. NA/null values are excluded.

Parameters axis : {0 or ‘index’, 1 or ‘columns’}, default 0

0 or ‘index’ for row-wise, 1 or ‘columns’ for column-wise

34.4. DataFrame 1809

https://matplotlib.org/api/_as_gen/matplotlib.pyplot.hist.html#matplotlib.pyplot.hist

pandas: powerful Python data analysis toolkit, Release 0.23.4

skipna : boolean, default True

Exclude NA/null values. If an entire row/column is NA, the result will be NA.

Returns

idxmin [Series]

Raises ValueError

• If the row/column is empty

See also:

Series.idxmin

Notes

This method is the DataFrame version of ndarray.argmin.

pandas.DataFrame.infer_objects

DataFrame.infer_objects()
Attempt to infer better dtypes for object columns.

Attempts soft conversion of object-dtyped columns, leaving non-object and unconvertible columns un-
changed. The inference rules are the same as during normal Series/DataFrame construction.

New in version 0.21.0.

Returns

converted [same type as input object]

See also:

pandas.to_datetime Convert argument to datetime.

pandas.to_timedelta Convert argument to timedelta.

pandas.to_numeric Convert argument to numeric typeR

Examples

>>> df = pd.DataFrame({"A": ["a", 1, 2, 3]})
>>> df = df.iloc[1:]
>>> df

A
1 1
2 2
3 3

>>> df.dtypes
A object
dtype: object

1810 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

>>> df.infer_objects().dtypes
A int64
dtype: object

pandas.DataFrame.info

DataFrame.info(verbose=None, buf=None, max_cols=None, memory_usage=None,
null_counts=None)

Print a concise summary of a DataFrame.

This method prints information about a DataFrame including the index dtype and column dtypes, non-null
values and memory usage.

Parameters verbose : bool, optional

Whether to print the full summary. By default, the setting in pandas.
options.display.max_info_columns is followed.

buf : writable buffer, defaults to sys.stdout

Where to send the output. By default, the output is printed to sys.stdout. Pass a
writable buffer if you need to further process the output.

max_cols : int, optional

When to switch from the verbose to the truncated output. If the DataFrame has
more than max_cols columns, the truncated output is used. By default, the setting
in pandas.options.display.max_info_columns is used.

memory_usage : bool, str, optional

Specifies whether total memory usage of the DataFrame elements (including the
index) should be displayed. By default, this follows the pandas.options.
display.memory_usage setting.

True always show memory usage. False never shows memory usage. A value of
‘deep’ is equivalent to “True with deep introspection”. Memory usage is shown
in human-readable units (base-2 representation). Without deep introspection a
memory estimation is made based in column dtype and number of rows assuming
values consume the same memory amount for corresponding dtypes. With deep
memory introspection, a real memory usage calculation is performed at the cost
of computational resources.

null_counts : bool, optional

Whether to show the non-null counts. By default, this is shown only if the
frame is smaller than pandas.options.display.max_info_rows and
pandas.options.display.max_info_columns. A value of True al-
ways shows the counts, and False never shows the counts.

Returns None

This method prints a summary of a DataFrame and returns None.

See also:

DataFrame.describe Generate descriptive statistics of DataFrame columns.

DataFrame.memory_usage Memory usage of DataFrame columns.

34.4. DataFrame 1811

pandas: powerful Python data analysis toolkit, Release 0.23.4

Examples

>>> int_values = [1, 2, 3, 4, 5]
>>> text_values = ['alpha', 'beta', 'gamma', 'delta', 'epsilon']
>>> float_values = [0.0, 0.25, 0.5, 0.75, 1.0]
>>> df = pd.DataFrame({"int_col": int_values, "text_col": text_values,
... "float_col": float_values})
>>> df

int_col text_col float_col
0 1 alpha 0.00
1 2 beta 0.25
2 3 gamma 0.50
3 4 delta 0.75
4 5 epsilon 1.00

Prints information of all columns:

>>> df.info(verbose=True)
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 5 entries, 0 to 4
Data columns (total 3 columns):
int_col 5 non-null int64
text_col 5 non-null object
float_col 5 non-null float64
dtypes: float64(1), int64(1), object(1)
memory usage: 200.0+ bytes

Prints a summary of columns count and its dtypes but not per column information:

>>> df.info(verbose=False)
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 5 entries, 0 to 4
Columns: 3 entries, int_col to float_col
dtypes: float64(1), int64(1), object(1)
memory usage: 200.0+ bytes

Pipe output of DataFrame.info to buffer instead of sys.stdout, get buffer content and writes to a text file:

>>> import io
>>> buffer = io.StringIO()
>>> df.info(buf=buffer)
>>> s = buffer.getvalue()
>>> with open("df_info.txt", "w", encoding="utf-8") as f:
... f.write(s)
260

The memory_usage parameter allows deep introspection mode, specially useful for big DataFrames and
fine-tune memory optimization:

>>> random_strings_array = np.random.choice(['a', 'b', 'c'], 10 ** 6)
>>> df = pd.DataFrame({
... 'column_1': np.random.choice(['a', 'b', 'c'], 10 ** 6),
... 'column_2': np.random.choice(['a', 'b', 'c'], 10 ** 6),
... 'column_3': np.random.choice(['a', 'b', 'c'], 10 ** 6)
... })
>>> df.info()
<class 'pandas.core.frame.DataFrame'>

(continues on next page)

1812 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

RangeIndex: 1000000 entries, 0 to 999999
Data columns (total 3 columns):
column_1 1000000 non-null object
column_2 1000000 non-null object
column_3 1000000 non-null object
dtypes: object(3)
memory usage: 22.9+ MB

>>> df.info(memory_usage='deep')
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1000000 entries, 0 to 999999
Data columns (total 3 columns):
column_1 1000000 non-null object
column_2 1000000 non-null object
column_3 1000000 non-null object
dtypes: object(3)
memory usage: 188.8 MB

pandas.DataFrame.insert

DataFrame.insert(loc, column, value, allow_duplicates=False)
Insert column into DataFrame at specified location.

Raises a ValueError if column is already contained in the DataFrame, unless allow_duplicates is set to
True.

Parameters loc : int

Insertion index. Must verify 0 <= loc <= len(columns)

column : string, number, or hashable object

label of the inserted column

value [int, Series, or array-like]

allow_duplicates [bool, optional]

pandas.DataFrame.interpolate

DataFrame.interpolate(method=’linear’, axis=0, limit=None, inplace=False,
limit_direction=’forward’, limit_area=None, downcast=None,
**kwargs)

Interpolate values according to different methods.

Please note that only method='linear' is supported for DataFrames/Series with a MultiIndex.

Parameters method : {‘linear’, ‘time’, ‘index’, ‘values’, ‘nearest’, ‘zero’,

‘slinear’, ‘quadratic’, ‘cubic’, ‘barycentric’, ‘krogh’, ‘polynomial’, ‘spline’,
‘piecewise_polynomial’, ‘from_derivatives’, ‘pchip’, ‘akima’}

• ‘linear’: ignore the index and treat the values as equally spaced. This is the
only method supported on MultiIndexes. default

34.4. DataFrame 1813

pandas: powerful Python data analysis toolkit, Release 0.23.4

• ‘time’: interpolation works on daily and higher resolution data to interpolate
given length of interval

• ‘index’, ‘values’: use the actual numerical values of the index

• ‘nearest’, ‘zero’, ‘slinear’, ‘quadratic’, ‘cubic’, ‘barycentric’, ‘polyno-
mial’ is passed to scipy.interpolate.interp1d. Both ‘poly-
nomial’ and ‘spline’ require that you also specify an order (int), e.g.
df.interpolate(method=’polynomial’, order=4). These use the actual numeri-
cal values of the index.

• ‘krogh’, ‘piecewise_polynomial’, ‘spline’, ‘pchip’ and ‘akima’ are all wrap-
pers around the scipy interpolation methods of similar names. These use the
actual numerical values of the index. For more information on their behavior,
see the scipy documentation and tutorial documentation

• ‘from_derivatives’ refers to BPoly.from_derivatives which replaces ‘piece-
wise_polynomial’ interpolation method in scipy 0.18

New in version 0.18.1: Added support for the ‘akima’ method Added interpolate
method ‘from_derivatives’ which replaces ‘piecewise_polynomial’ in scipy 0.18;
backwards-compatible with scipy < 0.18

axis : {0, 1}, default 0

• 0: fill column-by-column

• 1: fill row-by-row

limit : int, default None.

Maximum number of consecutive NaNs to fill. Must be greater than 0.

limit_direction [{‘forward’, ‘backward’, ‘both’}, default ‘forward’]

limit_area : {‘inside’, ‘outside’}, default None

• None: (default) no fill restriction

• ‘inside’ Only fill NaNs surrounded by valid values (interpolate).

• ‘outside’ Only fill NaNs outside valid values (extrapolate).

If limit is specified, consecutive NaNs will be filled in this direction.

New in version 0.21.0.

inplace : bool, default False

Update the NDFrame in place if possible.

downcast : optional, ‘infer’ or None, defaults to None

Downcast dtypes if possible.

kwargs [keyword arguments to pass on to the interpolating function.]

Returns

Series or DataFrame of same shape interpolated at the NaNs

See also:

reindex, replace, fillna

1814 Chapter 34. API Reference

http://docs.scipy.org/doc/scipy/reference/interpolate.html#univariate-interpolation
http://docs.scipy.org/doc/scipy/reference/tutorial/interpolate.html

pandas: powerful Python data analysis toolkit, Release 0.23.4

Examples

Filling in NaNs

>>> s = pd.Series([0, 1, np.nan, 3])
>>> s.interpolate()
0 0
1 1
2 2
3 3
dtype: float64

pandas.DataFrame.isin

DataFrame.isin(values)
Return boolean DataFrame showing whether each element in the DataFrame is contained in values.

Parameters values : iterable, Series, DataFrame or dictionary

The result will only be true at a location if all the labels match. If values is a
Series, that’s the index. If values is a dictionary, the keys must be the column
names, which must match. If values is a DataFrame, then both the index and
column labels must match.

Returns

DataFrame of booleans

Examples

When values is a list:

>>> df = pd.DataFrame({'A': [1, 2, 3], 'B': ['a', 'b', 'f']})
>>> df.isin([1, 3, 12, 'a'])

A B
0 True True
1 False False
2 True False

When values is a dict:

>>> df = pd.DataFrame({'A': [1, 2, 3], 'B': [1, 4, 7]})
>>> df.isin({'A': [1, 3], 'B': [4, 7, 12]})

A B
0 True False # Note that B didn't match the 1 here.
1 False True
2 True True

When values is a Series or DataFrame:

>>> df = pd.DataFrame({'A': [1, 2, 3], 'B': ['a', 'b', 'f']})
>>> other = DataFrame({'A': [1, 3, 3, 2], 'B': ['e', 'f', 'f', 'e']})
>>> df.isin(other)

A B
0 True False

(continues on next page)

34.4. DataFrame 1815

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

1 False False # Column A in `other` has a 3, but not at index 1.
2 True True

pandas.DataFrame.isna

DataFrame.isna()
Detect missing values.

Return a boolean same-sized object indicating if the values are NA. NA values, such as None or numpy.
NaN, gets mapped to True values. Everything else gets mapped to False values. Characters such as empty
strings '' or numpy.inf are not considered NA values (unless you set pandas.options.mode.
use_inf_as_na = True).

Returns DataFrame

Mask of bool values for each element in DataFrame that indicates whether an
element is not an NA value.

See also:

DataFrame.isnull alias of isna

DataFrame.notna boolean inverse of isna

DataFrame.dropna omit axes labels with missing values

isna top-level isna

Examples

Show which entries in a DataFrame are NA.

>>> df = pd.DataFrame({'age': [5, 6, np.NaN],
... 'born': [pd.NaT, pd.Timestamp('1939-05-27'),
... pd.Timestamp('1940-04-25')],
... 'name': ['Alfred', 'Batman', ''],
... 'toy': [None, 'Batmobile', 'Joker']})
>>> df

age born name toy
0 5.0 NaT Alfred None
1 6.0 1939-05-27 Batman Batmobile
2 NaN 1940-04-25 Joker

>>> df.isna()
age born name toy

0 False True False True
1 False False False False
2 True False False False

Show which entries in a Series are NA.

>>> ser = pd.Series([5, 6, np.NaN])
>>> ser
0 5.0
1 6.0

(continues on next page)

1816 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

2 NaN
dtype: float64

>>> ser.isna()
0 False
1 False
2 True
dtype: bool

pandas.DataFrame.isnull

DataFrame.isnull()
Detect missing values.

Return a boolean same-sized object indicating if the values are NA. NA values, such as None or numpy.
NaN, gets mapped to True values. Everything else gets mapped to False values. Characters such as empty
strings '' or numpy.inf are not considered NA values (unless you set pandas.options.mode.
use_inf_as_na = True).

Returns DataFrame

Mask of bool values for each element in DataFrame that indicates whether an
element is not an NA value.

See also:

DataFrame.isnull alias of isna

DataFrame.notna boolean inverse of isna

DataFrame.dropna omit axes labels with missing values

isna top-level isna

Examples

Show which entries in a DataFrame are NA.

>>> df = pd.DataFrame({'age': [5, 6, np.NaN],
... 'born': [pd.NaT, pd.Timestamp('1939-05-27'),
... pd.Timestamp('1940-04-25')],
... 'name': ['Alfred', 'Batman', ''],
... 'toy': [None, 'Batmobile', 'Joker']})
>>> df

age born name toy
0 5.0 NaT Alfred None
1 6.0 1939-05-27 Batman Batmobile
2 NaN 1940-04-25 Joker

>>> df.isna()
age born name toy

0 False True False True
1 False False False False
2 True False False False

34.4. DataFrame 1817

pandas: powerful Python data analysis toolkit, Release 0.23.4

Show which entries in a Series are NA.

>>> ser = pd.Series([5, 6, np.NaN])
>>> ser
0 5.0
1 6.0
2 NaN
dtype: float64

>>> ser.isna()
0 False
1 False
2 True
dtype: bool

pandas.DataFrame.items

DataFrame.items()
Iterator over (column name, Series) pairs.

See also:

iterrows Iterate over DataFrame rows as (index, Series) pairs.

itertuples Iterate over DataFrame rows as namedtuples of the values.

pandas.DataFrame.iteritems

DataFrame.iteritems()
Iterator over (column name, Series) pairs.

See also:

iterrows Iterate over DataFrame rows as (index, Series) pairs.

itertuples Iterate over DataFrame rows as namedtuples of the values.

pandas.DataFrame.iterrows

DataFrame.iterrows()
Iterate over DataFrame rows as (index, Series) pairs.

Returns it : generator

A generator that iterates over the rows of the frame.

See also:

itertuples Iterate over DataFrame rows as namedtuples of the values.

iteritems Iterate over (column name, Series) pairs.

1818 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

Notes

1. Because iterrows returns a Series for each row, it does not preserve dtypes across the rows
(dtypes are preserved across columns for DataFrames). For example,

>>> df = pd.DataFrame([[1, 1.5]], columns=['int', 'float'])
>>> row = next(df.iterrows())[1]
>>> row
int 1.0
float 1.5
Name: 0, dtype: float64
>>> print(row['int'].dtype)
float64
>>> print(df['int'].dtype)
int64

To preserve dtypes while iterating over the rows, it is better to use itertuples() which returns
namedtuples of the values and which is generally faster than iterrows.

2. You should never modify something you are iterating over. This is not guaranteed to work in all
cases. Depending on the data types, the iterator returns a copy and not a view, and writing to it will
have no effect.

pandas.DataFrame.itertuples

DataFrame.itertuples(index=True, name=’Pandas’)
Iterate over DataFrame rows as namedtuples, with index value as first element of the tuple.

Parameters index : boolean, default True

If True, return the index as the first element of the tuple.

name : string, default “Pandas”

The name of the returned namedtuples or None to return regular tuples.

See also:

iterrows Iterate over DataFrame rows as (index, Series) pairs.

iteritems Iterate over (column name, Series) pairs.

Notes

The column names will be renamed to positional names if they are invalid Python identifiers, repeated, or
start with an underscore. With a large number of columns (>255), regular tuples are returned.

Examples

>>> df = pd.DataFrame({'col1': [1, 2], 'col2': [0.1, 0.2]},
index=['a', 'b'])

>>> df
col1 col2

a 1 0.1

(continues on next page)

34.4. DataFrame 1819

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

b 2 0.2
>>> for row in df.itertuples():
... print(row)
...
Pandas(Index='a', col1=1, col2=0.10000000000000001)
Pandas(Index='b', col1=2, col2=0.20000000000000001)

pandas.DataFrame.join

DataFrame.join(other, on=None, how=’left’, lsuffix=”, rsuffix=”, sort=False)
Join columns with other DataFrame either on index or on a key column. Efficiently Join multiple
DataFrame objects by index at once by passing a list.

Parameters other : DataFrame, Series with name field set, or list of DataFrame

Index should be similar to one of the columns in this one. If a Series is passed,
its name attribute must be set, and that will be used as the column name in the
resulting joined DataFrame

on : name, tuple/list of names, or array-like

Column or index level name(s) in the caller to join on the index in other, otherwise
joins index-on-index. If multiple values given, the other DataFrame must have a
MultiIndex. Can pass an array as the join key if it is not already contained in the
calling DataFrame. Like an Excel VLOOKUP operation

how : {‘left’, ‘right’, ‘outer’, ‘inner’}, default: ‘left’

How to handle the operation of the two objects.

• left: use calling frame’s index (or column if on is specified)

• right: use other frame’s index

• outer: form union of calling frame’s index (or column if on is specified) with
other frame’s index, and sort it lexicographically

• inner: form intersection of calling frame’s index (or column if on is specified)
with other frame’s index, preserving the order of the calling’s one

lsuffix : string

Suffix to use from left frame’s overlapping columns

rsuffix : string

Suffix to use from right frame’s overlapping columns

sort : boolean, default False

Order result DataFrame lexicographically by the join key. If False, the order of
the join key depends on the join type (how keyword)

Returns

joined [DataFrame]

See also:

DataFrame.merge For column(s)-on-columns(s) operations

1820 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

Notes

on, lsuffix, and rsuffix options are not supported when passing a list of DataFrame objects

Support for specifying index levels as the on parameter was added in version 0.23.0

Examples

>>> caller = pd.DataFrame({'key': ['K0', 'K1', 'K2', 'K3', 'K4', 'K5'],
... 'A': ['A0', 'A1', 'A2', 'A3', 'A4', 'A5']})

>>> caller
A key

0 A0 K0
1 A1 K1
2 A2 K2
3 A3 K3
4 A4 K4
5 A5 K5

>>> other = pd.DataFrame({'key': ['K0', 'K1', 'K2'],
... 'B': ['B0', 'B1', 'B2']})

>>> other
B key

0 B0 K0
1 B1 K1
2 B2 K2

Join DataFrames using their indexes.

>>> caller.join(other, lsuffix='_caller', rsuffix='_other')

>>> A key_caller B key_other
0 A0 K0 B0 K0
1 A1 K1 B1 K1
2 A2 K2 B2 K2
3 A3 K3 NaN NaN
4 A4 K4 NaN NaN
5 A5 K5 NaN NaN

If we want to join using the key columns, we need to set key to be the index in both caller and other. The
joined DataFrame will have key as its index.

>>> caller.set_index('key').join(other.set_index('key'))

>>> A B
key
K0 A0 B0
K1 A1 B1
K2 A2 B2
K3 A3 NaN
K4 A4 NaN
K5 A5 NaN

34.4. DataFrame 1821

pandas: powerful Python data analysis toolkit, Release 0.23.4

Another option to join using the key columns is to use the on parameter. DataFrame.join always uses
other’s index but we can use any column in the caller. This method preserves the original caller’s index in
the result.

>>> caller.join(other.set_index('key'), on='key')

>>> A key B
0 A0 K0 B0
1 A1 K1 B1
2 A2 K2 B2
3 A3 K3 NaN
4 A4 K4 NaN
5 A5 K5 NaN

pandas.DataFrame.keys

DataFrame.keys()
Get the ‘info axis’ (see Indexing for more)

This is index for Series, columns for DataFrame and major_axis for Panel.

pandas.DataFrame.kurt

DataFrame.kurt(axis=None, skipna=None, level=None, numeric_only=None, **kwargs)
Return unbiased kurtosis over requested axis using Fisher’s definition of kurtosis (kurtosis of normal ==
0.0). Normalized by N-1

Parameters

axis [{index (0), columns (1)}]

skipna : boolean, default True

Exclude NA/null values when computing the result.

level : int or level name, default None

If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing
into a Series

numeric_only : boolean, default None

Include only float, int, boolean columns. If None, will attempt to use everything,
then use only numeric data. Not implemented for Series.

Returns

kurt [Series or DataFrame (if level specified)]

pandas.DataFrame.kurtosis

DataFrame.kurtosis(axis=None, skipna=None, level=None, numeric_only=None, **kwargs)
Return unbiased kurtosis over requested axis using Fisher’s definition of kurtosis (kurtosis of normal ==
0.0). Normalized by N-1

Parameters

axis [{index (0), columns (1)}]

1822 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

skipna : boolean, default True

Exclude NA/null values when computing the result.

level : int or level name, default None

If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing
into a Series

numeric_only : boolean, default None

Include only float, int, boolean columns. If None, will attempt to use everything,
then use only numeric data. Not implemented for Series.

Returns

kurt [Series or DataFrame (if level specified)]

pandas.DataFrame.last

DataFrame.last(offset)
Convenience method for subsetting final periods of time series data based on a date offset.

Parameters

offset [string, DateOffset, dateutil.relativedelta]

Returns

subset [type of caller]

Raises TypeError

If the index is not a DatetimeIndex

See also:

first Select initial periods of time series based on a date offset

at_time Select values at a particular time of the day

between_time Select values between particular times of the day

Examples

>>> i = pd.date_range('2018-04-09', periods=4, freq='2D')
>>> ts = pd.DataFrame({'A': [1,2,3,4]}, index=i)
>>> ts

A
2018-04-09 1
2018-04-11 2
2018-04-13 3
2018-04-15 4

Get the rows for the last 3 days:

>>> ts.last('3D')
A

2018-04-13 3
2018-04-15 4

34.4. DataFrame 1823

pandas: powerful Python data analysis toolkit, Release 0.23.4

Notice the data for 3 last calender days were returned, not the last 3 observed days in the dataset, and
therefore data for 2018-04-11 was not returned.

pandas.DataFrame.last_valid_index

DataFrame.last_valid_index()
Return index for last non-NA/null value.

Returns

scalar [type of index]

Notes

If all elements are non-NA/null, returns None. Also returns None for empty NDFrame.

pandas.DataFrame.le

DataFrame.le(other, axis=’columns’, level=None)
Wrapper for flexible comparison methods le

pandas.DataFrame.lookup

DataFrame.lookup(row_labels, col_labels)
Label-based “fancy indexing” function for DataFrame. Given equal-length arrays of row and column
labels, return an array of the values corresponding to each (row, col) pair.

Parameters row_labels : sequence

The row labels to use for lookup

col_labels : sequence

The column labels to use for lookup

Notes

Akin to:

result = []
for row, col in zip(row_labels, col_labels):

result.append(df.get_value(row, col))

Examples

values [ndarray] The found values

1824 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

pandas.DataFrame.lt

DataFrame.lt(other, axis=’columns’, level=None)
Wrapper for flexible comparison methods lt

pandas.DataFrame.mad

DataFrame.mad(axis=None, skipna=None, level=None)
Return the mean absolute deviation of the values for the requested axis

Parameters

axis [{index (0), columns (1)}]

skipna : boolean, default True

Exclude NA/null values when computing the result.

level : int or level name, default None

If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing
into a Series

numeric_only : boolean, default None

Include only float, int, boolean columns. If None, will attempt to use everything,
then use only numeric data. Not implemented for Series.

Returns

mad [Series or DataFrame (if level specified)]

pandas.DataFrame.mask

DataFrame.mask(cond, other=nan, inplace=False, axis=None, level=None, errors=’raise’,
try_cast=False, raise_on_error=None)

Return an object of same shape as self and whose corresponding entries are from self where cond is False
and otherwise are from other.

Parameters cond : boolean NDFrame, array-like, or callable

Where cond is False, keep the original value. Where True, replace with corre-
sponding value from other. If cond is callable, it is computed on the NDFrame
and should return boolean NDFrame or array. The callable must not change input
NDFrame (though pandas doesn’t check it).

New in version 0.18.1: A callable can be used as cond.

other : scalar, NDFrame, or callable

Entries where cond is True are replaced with corresponding value from other.
If other is callable, it is computed on the NDFrame and should return scalar or
NDFrame. The callable must not change input NDFrame (though pandas doesn’t
check it).

New in version 0.18.1: A callable can be used as other.

inplace : boolean, default False

Whether to perform the operation in place on the data

34.4. DataFrame 1825

pandas: powerful Python data analysis toolkit, Release 0.23.4

axis [alignment axis if needed, default None]

level [alignment level if needed, default None]

errors : str, {‘raise’, ‘ignore’}, default ‘raise’

• raise : allow exceptions to be raised

• ignore : suppress exceptions. On error return original object

Note that currently this parameter won’t affect the results and will always coerce
to a suitable dtype.

try_cast : boolean, default False

try to cast the result back to the input type (if possible),

raise_on_error : boolean, default True

Whether to raise on invalid data types (e.g. trying to where on strings)

Deprecated since version 0.21.0.

Returns

wh [same type as caller]

See also:

DataFrame.where()

Notes

The mask method is an application of the if-then idiom. For each element in the calling DataFrame, if
cond is False the element is used; otherwise the corresponding element from the DataFrame other
is used.

The signature for DataFrame.where() differs from numpy.where(). Roughly df1.where(m,
df2) is equivalent to np.where(m, df1, df2).

For further details and examples see the mask documentation in indexing.

Examples

>>> s = pd.Series(range(5))
>>> s.where(s > 0)
0 NaN
1 1.0
2 2.0
3 3.0
4 4.0

>>> s.mask(s > 0)
0 0.0
1 NaN
2 NaN
3 NaN
4 NaN

1826 Chapter 34. API Reference

https://docs.scipy.org/doc/numpy/reference/generated/numpy.where.html#numpy.where

pandas: powerful Python data analysis toolkit, Release 0.23.4

>>> s.where(s > 1, 10)
0 10.0
1 10.0
2 2.0
3 3.0
4 4.0

>>> df = pd.DataFrame(np.arange(10).reshape(-1, 2), columns=['A', 'B'])
>>> m = df % 3 == 0
>>> df.where(m, -df)

A B
0 0 -1
1 -2 3
2 -4 -5
3 6 -7
4 -8 9
>>> df.where(m, -df) == np.where(m, df, -df)

A B
0 True True
1 True True
2 True True
3 True True
4 True True
>>> df.where(m, -df) == df.mask(~m, -df)

A B
0 True True
1 True True
2 True True
3 True True
4 True True

pandas.DataFrame.max

DataFrame.max(axis=None, skipna=None, level=None, numeric_only=None, **kwargs)

This method returns the maximum of the values in the object. If you want the index of the maximum,
use idxmax. This is the equivalent of the numpy.ndarray method argmax.

Parameters

axis [{index (0), columns (1)}]

skipna : boolean, default True

Exclude NA/null values when computing the result.

level : int or level name, default None

If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing
into a Series

numeric_only : boolean, default None

Include only float, int, boolean columns. If None, will attempt to use everything,
then use only numeric data. Not implemented for Series.

Returns

max [Series or DataFrame (if level specified)]

34.4. DataFrame 1827

pandas: powerful Python data analysis toolkit, Release 0.23.4

pandas.DataFrame.mean

DataFrame.mean(axis=None, skipna=None, level=None, numeric_only=None, **kwargs)
Return the mean of the values for the requested axis

Parameters

axis [{index (0), columns (1)}]

skipna : boolean, default True

Exclude NA/null values when computing the result.

level : int or level name, default None

If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing
into a Series

numeric_only : boolean, default None

Include only float, int, boolean columns. If None, will attempt to use everything,
then use only numeric data. Not implemented for Series.

Returns

mean [Series or DataFrame (if level specified)]

pandas.DataFrame.median

DataFrame.median(axis=None, skipna=None, level=None, numeric_only=None, **kwargs)
Return the median of the values for the requested axis

Parameters

axis [{index (0), columns (1)}]

skipna : boolean, default True

Exclude NA/null values when computing the result.

level : int or level name, default None

If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing
into a Series

numeric_only : boolean, default None

Include only float, int, boolean columns. If None, will attempt to use everything,
then use only numeric data. Not implemented for Series.

Returns

median [Series or DataFrame (if level specified)]

pandas.DataFrame.melt

DataFrame.melt(id_vars=None, value_vars=None, var_name=None, value_name=’value’,
col_level=None)

“Unpivots” a DataFrame from wide format to long format, optionally leaving identifier variables set.

1828 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

This function is useful to massage a DataFrame into a format where one or more columns are identifier
variables (id_vars), while all other columns, considered measured variables (value_vars), are “unpivoted”
to the row axis, leaving just two non-identifier columns, ‘variable’ and ‘value’.

New in version 0.20.0.

Parameters

frame [DataFrame]

id_vars : tuple, list, or ndarray, optional

Column(s) to use as identifier variables.

value_vars : tuple, list, or ndarray, optional

Column(s) to unpivot. If not specified, uses all columns that are not set as id_vars.

var_name : scalar

Name to use for the ‘variable’ column. If None it uses frame.columns.name
or ‘variable’.

value_name : scalar, default ‘value’

Name to use for the ‘value’ column.

col_level : int or string, optional

If columns are a MultiIndex then use this level to melt.

See also:

melt, pivot_table, DataFrame.pivot

Examples

>>> import pandas as pd
>>> df = pd.DataFrame({'A': {0: 'a', 1: 'b', 2: 'c'},
... 'B': {0: 1, 1: 3, 2: 5},
... 'C': {0: 2, 1: 4, 2: 6}})
>>> df

A B C
0 a 1 2
1 b 3 4
2 c 5 6

>>> df.melt(id_vars=['A'], value_vars=['B'])
A variable value

0 a B 1
1 b B 3
2 c B 5

>>> df.melt(id_vars=['A'], value_vars=['B', 'C'])
A variable value

0 a B 1
1 b B 3
2 c B 5
3 a C 2
4 b C 4
5 c C 6

34.4. DataFrame 1829

pandas: powerful Python data analysis toolkit, Release 0.23.4

The names of ‘variable’ and ‘value’ columns can be customized:

>>> df.melt(id_vars=['A'], value_vars=['B'],
... var_name='myVarname', value_name='myValname')

A myVarname myValname
0 a B 1
1 b B 3
2 c B 5

If you have multi-index columns:

>>> df.columns = [list('ABC'), list('DEF')]
>>> df

A B C
D E F

0 a 1 2
1 b 3 4
2 c 5 6

>>> df.melt(col_level=0, id_vars=['A'], value_vars=['B'])
A variable value

0 a B 1
1 b B 3
2 c B 5

>>> df.melt(id_vars=[('A', 'D')], value_vars=[('B', 'E')])
(A, D) variable_0 variable_1 value

0 a B E 1
1 b B E 3
2 c B E 5

pandas.DataFrame.memory_usage

DataFrame.memory_usage(index=True, deep=False)
Return the memory usage of each column in bytes.

The memory usage can optionally include the contribution of the index and elements of object dtype.

This value is displayed in DataFrame.info by default. This can be suppressed by setting pandas.
options.display.memory_usage to False.

Parameters index : bool, default True

Specifies whether to include the memory usage of the DataFrame’s index in re-
turned Series. If index=True the memory usage of the index the first item in
the output.

deep : bool, default False

If True, introspect the data deeply by interrogating object dtypes for system-level
memory consumption, and include it in the returned values.

Returns sizes : Series

A Series whose index is the original column names and whose values is the mem-
ory usage of each column in bytes.

See also:

1830 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

numpy.ndarray.nbytes Total bytes consumed by the elements of an ndarray.

Series.memory_usage Bytes consumed by a Series.

pandas.Categorical Memory-efficient array for string values with many repeated values.

DataFrame.info Concise summary of a DataFrame.

Examples

>>> dtypes = ['int64', 'float64', 'complex128', 'object', 'bool']
>>> data = dict([(t, np.ones(shape=5000).astype(t))
... for t in dtypes])
>>> df = pd.DataFrame(data)
>>> df.head()

int64 float64 complex128 object bool
0 1 1.0 (1+0j) 1 True
1 1 1.0 (1+0j) 1 True
2 1 1.0 (1+0j) 1 True
3 1 1.0 (1+0j) 1 True
4 1 1.0 (1+0j) 1 True

>>> df.memory_usage()
Index 80
int64 40000
float64 40000
complex128 80000
object 40000
bool 5000
dtype: int64

>>> df.memory_usage(index=False)
int64 40000
float64 40000
complex128 80000
object 40000
bool 5000
dtype: int64

The memory footprint of object dtype columns is ignored by default:

>>> df.memory_usage(deep=True)
Index 80
int64 40000
float64 40000
complex128 80000
object 160000
bool 5000
dtype: int64

Use a Categorical for efficient storage of an object-dtype column with many repeated values.

>>> df['object'].astype('category').memory_usage(deep=True)
5168

34.4. DataFrame 1831

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.nbytes.html#numpy.ndarray.nbytes

pandas: powerful Python data analysis toolkit, Release 0.23.4

pandas.DataFrame.merge

DataFrame.merge(right, how=’inner’, on=None, left_on=None, right_on=None, left_index=False,
right_index=False, sort=False, suffixes=(’_x’, ’_y’), copy=True, indica-
tor=False, validate=None)

Merge DataFrame objects by performing a database-style join operation by columns or indexes.

If joining columns on columns, the DataFrame indexes will be ignored. Otherwise if joining indexes on
indexes or indexes on a column or columns, the index will be passed on.

Parameters

right [DataFrame]

how : {‘left’, ‘right’, ‘outer’, ‘inner’}, default ‘inner’

• left: use only keys from left frame, similar to a SQL left outer join; preserve key order

• right: use only keys from right frame, similar to a SQL right outer join; preserve key
order

• outer: use union of keys from both frames, similar to a SQL full outer join; sort keys
lexicographically

• inner: use intersection of keys from both frames, similar to a SQL inner join; preserve
the order of the left keys

on : label or list

Column or index level names to join on. These must be found in both
DataFrames. If on is None and not merging on indexes then this defaults to the
intersection of the columns in both DataFrames.

left_on : label or list, or array-like

Column or index level names to join on in the left DataFrame. Can also be an
array or list of arrays of the length of the left DataFrame. These arrays are treated
as if they are columns.

right_on : label or list, or array-like

Column or index level names to join on in the right DataFrame. Can also be
an array or list of arrays of the length of the right DataFrame. These arrays are
treated as if they are columns.

left_index : boolean, default False

Use the index from the left DataFrame as the join key(s). If it is a MultiIndex, the
number of keys in the other DataFrame (either the index or a number of columns)
must match the number of levels

right_index : boolean, default False

Use the index from the right DataFrame as the join key. Same caveats as
left_index

sort : boolean, default False

Sort the join keys lexicographically in the result DataFrame. If False, the order
of the join keys depends on the join type (how keyword)

suffixes : 2-length sequence (tuple, list, . . .)

Suffix to apply to overlapping column names in the left and right side, respectively

1832 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

copy : boolean, default True

If False, do not copy data unnecessarily

indicator : boolean or string, default False

If True, adds a column to output DataFrame called “_merge” with information on
the source of each row. If string, column with information on source of each row
will be added to output DataFrame, and column will be named value of string.
Information column is Categorical-type and takes on a value of “left_only” for
observations whose merge key only appears in ‘left’ DataFrame, “right_only” for
observations whose merge key only appears in ‘right’ DataFrame, and “both” if
the observation’s merge key is found in both.

validate : string, default None

If specified, checks if merge is of specified type.

• “one_to_one” or “1:1”: check if merge keys are unique in both left and right
datasets.

• “one_to_many” or “1:m”: check if merge keys are unique in left dataset.

• “many_to_one” or “m:1”: check if merge keys are unique in right dataset.

• “many_to_many” or “m:m”: allowed, but does not result in checks.

New in version 0.21.0.

Returns merged : DataFrame

The output type will the be same as ‘left’, if it is a subclass of DataFrame.

See also:

merge_ordered, merge_asof, DataFrame.join

Notes

Support for specifying index levels as the on, left_on, and right_on parameters was added in version 0.23.0

Examples

>>> A >>> B
lkey value rkey value

0 foo 1 0 foo 5
1 bar 2 1 bar 6
2 baz 3 2 qux 7
3 foo 4 3 bar 8

>>> A.merge(B, left_on='lkey', right_on='rkey', how='outer')
lkey value_x rkey value_y

0 foo 1 foo 5
1 foo 4 foo 5
2 bar 2 bar 6
3 bar 2 bar 8
4 baz 3 NaN NaN
5 NaN NaN qux 7

34.4. DataFrame 1833

pandas: powerful Python data analysis toolkit, Release 0.23.4

pandas.DataFrame.min

DataFrame.min(axis=None, skipna=None, level=None, numeric_only=None, **kwargs)

This method returns the minimum of the values in the object. If you want the index of the minimum,
use idxmin. This is the equivalent of the numpy.ndarray method argmin.

Parameters

axis [{index (0), columns (1)}]

skipna : boolean, default True

Exclude NA/null values when computing the result.

level : int or level name, default None

If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing
into a Series

numeric_only : boolean, default None

Include only float, int, boolean columns. If None, will attempt to use everything,
then use only numeric data. Not implemented for Series.

Returns

min [Series or DataFrame (if level specified)]

pandas.DataFrame.mod

DataFrame.mod(other, axis=’columns’, level=None, fill_value=None)
Modulo of dataframe and other, element-wise (binary operator mod).

Equivalent to dataframe % other, but with support to substitute a fill_value for missing data in one
of the inputs.

Parameters

other [Series, DataFrame, or constant]

axis : {0, 1, ‘index’, ‘columns’}

For Series input, axis to match Series index on

level : int or name

Broadcast across a level, matching Index values on the passed MultiIndex level

fill_value : None or float value, default None

Fill existing missing (NaN) values, and any new element needed for successful
DataFrame alignment, with this value before computation. If data in both corre-
sponding DataFrame locations is missing the result will be missing

Returns

result [DataFrame]

See also:

DataFrame.rmod

1834 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

Notes

Mismatched indices will be unioned together

Examples

None

pandas.DataFrame.mode

DataFrame.mode(axis=0, numeric_only=False)
Gets the mode(s) of each element along the axis selected. Adds a row for each mode per label, fills in
gaps with nan.

Note that there could be multiple values returned for the selected axis (when more than one item share
the maximum frequency), which is the reason why a dataframe is returned. If you want to impute missing
values with the mode in a dataframe df, you can just do this: df.fillna(df.mode().iloc[0])

Parameters axis : {0 or ‘index’, 1 or ‘columns’}, default 0

• 0 or ‘index’ : get mode of each column

• 1 or ‘columns’ : get mode of each row

numeric_only : boolean, default False

if True, only apply to numeric columns

Returns

modes [DataFrame (sorted)]

Examples

>>> df = pd.DataFrame({'A': [1, 2, 1, 2, 1, 2, 3]})
>>> df.mode()

A
0 1
1 2

pandas.DataFrame.mul

DataFrame.mul(other, axis=’columns’, level=None, fill_value=None)
Multiplication of dataframe and other, element-wise (binary operator mul).

Equivalent to dataframe * other, but with support to substitute a fill_value for missing data in one
of the inputs.

Parameters

other [Series, DataFrame, or constant]

axis : {0, 1, ‘index’, ‘columns’}

For Series input, axis to match Series index on

34.4. DataFrame 1835

pandas: powerful Python data analysis toolkit, Release 0.23.4

level : int or name

Broadcast across a level, matching Index values on the passed MultiIndex level

fill_value : None or float value, default None

Fill existing missing (NaN) values, and any new element needed for successful
DataFrame alignment, with this value before computation. If data in both corre-
sponding DataFrame locations is missing the result will be missing

Returns

result [DataFrame]

See also:

DataFrame.rmul

Notes

Mismatched indices will be unioned together

Examples

None

pandas.DataFrame.multiply

DataFrame.multiply(other, axis=’columns’, level=None, fill_value=None)
Multiplication of dataframe and other, element-wise (binary operator mul).

Equivalent to dataframe * other, but with support to substitute a fill_value for missing data in one
of the inputs.

Parameters

other [Series, DataFrame, or constant]

axis : {0, 1, ‘index’, ‘columns’}

For Series input, axis to match Series index on

level : int or name

Broadcast across a level, matching Index values on the passed MultiIndex level

fill_value : None or float value, default None

Fill existing missing (NaN) values, and any new element needed for successful
DataFrame alignment, with this value before computation. If data in both corre-
sponding DataFrame locations is missing the result will be missing

Returns

result [DataFrame]

See also:

DataFrame.rmul

1836 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

Notes

Mismatched indices will be unioned together

Examples

None

pandas.DataFrame.ne

DataFrame.ne(other, axis=’columns’, level=None)
Wrapper for flexible comparison methods ne

pandas.DataFrame.nlargest

DataFrame.nlargest(n, columns, keep=’first’)
Return the first n rows ordered by columns in descending order.

Return the first n rows with the largest values in columns, in descending order. The columns that are not
specified are returned as well, but not used for ordering.

This method is equivalent to df.sort_values(columns, ascending=False).head(n), but
more performant.

Parameters n : int

Number of rows to return.

columns : label or list of labels

Column label(s) to order by.

keep : {‘first’, ‘last’}, default ‘first’

Where there are duplicate values:

• first : prioritize the first occurrence(s)

• last : prioritize the last occurrence(s)

Returns DataFrame

The first n rows ordered by the given columns in descending order.

See also:

DataFrame.nsmallest Return the first n rows ordered by columns in ascending order.

DataFrame.sort_values Sort DataFrame by the values

DataFrame.head Return the first n rows without re-ordering.

Notes

This function cannot be used with all column types. For example, when specifying columns with object
or category dtypes, TypeError is raised.

34.4. DataFrame 1837

pandas: powerful Python data analysis toolkit, Release 0.23.4

Examples

>>> df = pd.DataFrame({'a': [1, 10, 8, 10, -1],
... 'b': list('abdce'),
... 'c': [1.0, 2.0, np.nan, 3.0, 4.0]})
>>> df

a b c
0 1 a 1.0
1 10 b 2.0
2 8 d NaN
3 10 c 3.0
4 -1 e 4.0

In the following example, we will use nlargest to select the three rows having the largest values in
column “a”.

>>> df.nlargest(3, 'a')
a b c

1 10 b 2.0
3 10 c 3.0
2 8 d NaN

When using keep='last', ties are resolved in reverse order:

>>> df.nlargest(3, 'a', keep='last')
a b c

3 10 c 3.0
1 10 b 2.0
2 8 d NaN

To order by the largest values in column “a” and then “c”, we can specify multiple columns like in the
next example.

>>> df.nlargest(3, ['a', 'c'])
a b c

3 10 c 3.0
1 10 b 2.0
2 8 d NaN

Attempting to use nlargest on non-numeric dtypes will raise a TypeError:

>>> df.nlargest(3, 'b')
Traceback (most recent call last):
TypeError: Column 'b' has dtype object, cannot use method 'nlargest'

pandas.DataFrame.notna

DataFrame.notna()
Detect existing (non-missing) values.

Return a boolean same-sized object indicating if the values are not NA. Non-missing values get mapped to
True. Characters such as empty strings '' or numpy.inf are not considered NA values (unless you set
pandas.options.mode.use_inf_as_na = True). NA values, such as None or numpy.NaN,
get mapped to False values.

Returns DataFrame

1838 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

Mask of bool values for each element in DataFrame that indicates whether an
element is not an NA value.

See also:

DataFrame.notnull alias of notna

DataFrame.isna boolean inverse of notna

DataFrame.dropna omit axes labels with missing values

notna top-level notna

Examples

Show which entries in a DataFrame are not NA.

>>> df = pd.DataFrame({'age': [5, 6, np.NaN],
... 'born': [pd.NaT, pd.Timestamp('1939-05-27'),
... pd.Timestamp('1940-04-25')],
... 'name': ['Alfred', 'Batman', ''],
... 'toy': [None, 'Batmobile', 'Joker']})
>>> df

age born name toy
0 5.0 NaT Alfred None
1 6.0 1939-05-27 Batman Batmobile
2 NaN 1940-04-25 Joker

>>> df.notna()
age born name toy

0 True False True False
1 True True True True
2 False True True True

Show which entries in a Series are not NA.

>>> ser = pd.Series([5, 6, np.NaN])
>>> ser
0 5.0
1 6.0
2 NaN
dtype: float64

>>> ser.notna()
0 True
1 True
2 False
dtype: bool

pandas.DataFrame.notnull

DataFrame.notnull()
Detect existing (non-missing) values.

Return a boolean same-sized object indicating if the values are not NA. Non-missing values get mapped to
True. Characters such as empty strings '' or numpy.inf are not considered NA values (unless you set

34.4. DataFrame 1839

pandas: powerful Python data analysis toolkit, Release 0.23.4

pandas.options.mode.use_inf_as_na = True). NA values, such as None or numpy.NaN,
get mapped to False values.

Returns DataFrame

Mask of bool values for each element in DataFrame that indicates whether an
element is not an NA value.

See also:

DataFrame.notnull alias of notna

DataFrame.isna boolean inverse of notna

DataFrame.dropna omit axes labels with missing values

notna top-level notna

Examples

Show which entries in a DataFrame are not NA.

>>> df = pd.DataFrame({'age': [5, 6, np.NaN],
... 'born': [pd.NaT, pd.Timestamp('1939-05-27'),
... pd.Timestamp('1940-04-25')],
... 'name': ['Alfred', 'Batman', ''],
... 'toy': [None, 'Batmobile', 'Joker']})
>>> df

age born name toy
0 5.0 NaT Alfred None
1 6.0 1939-05-27 Batman Batmobile
2 NaN 1940-04-25 Joker

>>> df.notna()
age born name toy

0 True False True False
1 True True True True
2 False True True True

Show which entries in a Series are not NA.

>>> ser = pd.Series([5, 6, np.NaN])
>>> ser
0 5.0
1 6.0
2 NaN
dtype: float64

>>> ser.notna()
0 True
1 True
2 False
dtype: bool

1840 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

pandas.DataFrame.nsmallest

DataFrame.nsmallest(n, columns, keep=’first’)
Get the rows of a DataFrame sorted by the n smallest values of columns.

Parameters n : int

Number of items to retrieve

columns : list or str

Column name or names to order by

keep : {‘first’, ‘last’}, default ‘first’

Where there are duplicate values: - first : take the first occurrence. - last :
take the last occurrence.

Returns

DataFrame

Examples

>>> df = pd.DataFrame({'a': [1, 10, 8, 11, -1],
... 'b': list('abdce'),
... 'c': [1.0, 2.0, np.nan, 3.0, 4.0]})
>>> df.nsmallest(3, 'a')

a b c
4 -1 e 4
0 1 a 1
2 8 d NaN

pandas.DataFrame.nunique

DataFrame.nunique(axis=0, dropna=True)
Return Series with number of distinct observations over requested axis.

New in version 0.20.0.

Parameters

axis [{0 or ‘index’, 1 or ‘columns’}, default 0]

dropna : boolean, default True

Don’t include NaN in the counts.

Returns

nunique [Series]

Examples

>>> df = pd.DataFrame({'A': [1, 2, 3], 'B': [1, 1, 1]})
>>> df.nunique()
A 3
B 1

34.4. DataFrame 1841

pandas: powerful Python data analysis toolkit, Release 0.23.4

>>> df.nunique(axis=1)
0 1
1 2
2 2

pandas.DataFrame.pct_change

DataFrame.pct_change(periods=1, fill_method=’pad’, limit=None, freq=None, **kwargs)
Percentage change between the current and a prior element.

Computes the percentage change from the immediately previous row by default. This is useful in com-
paring the percentage of change in a time series of elements.

Parameters periods : int, default 1

Periods to shift for forming percent change.

fill_method : str, default ‘pad’

How to handle NAs before computing percent changes.

limit : int, default None

The number of consecutive NAs to fill before stopping.

freq : DateOffset, timedelta, or offset alias string, optional

Increment to use from time series API (e.g. ‘M’ or BDay()).

**kwargs

Additional keyword arguments are passed into DataFrame.shift or Series.shift.

Returns chg : Series or DataFrame

The same type as the calling object.

See also:

Series.diff Compute the difference of two elements in a Series.

DataFrame.diff Compute the difference of two elements in a DataFrame.

Series.shift Shift the index by some number of periods.

DataFrame.shift Shift the index by some number of periods.

Examples

Series

>>> s = pd.Series([90, 91, 85])
>>> s
0 90
1 91
2 85
dtype: int64

1842 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

>>> s.pct_change()
0 NaN
1 0.011111
2 -0.065934
dtype: float64

>>> s.pct_change(periods=2)
0 NaN
1 NaN
2 -0.055556
dtype: float64

See the percentage change in a Series where filling NAs with last valid observation forward to next valid.

>>> s = pd.Series([90, 91, None, 85])
>>> s
0 90.0
1 91.0
2 NaN
3 85.0
dtype: float64

>>> s.pct_change(fill_method='ffill')
0 NaN
1 0.011111
2 0.000000
3 -0.065934
dtype: float64

DataFrame

Percentage change in French franc, Deutsche Mark, and Italian lira from 1980-01-01 to 1980-03-01.

>>> df = pd.DataFrame({
... 'FR': [4.0405, 4.0963, 4.3149],
... 'GR': [1.7246, 1.7482, 1.8519],
... 'IT': [804.74, 810.01, 860.13]},
... index=['1980-01-01', '1980-02-01', '1980-03-01'])
>>> df

FR GR IT
1980-01-01 4.0405 1.7246 804.74
1980-02-01 4.0963 1.7482 810.01
1980-03-01 4.3149 1.8519 860.13

>>> df.pct_change()
FR GR IT

1980-01-01 NaN NaN NaN
1980-02-01 0.013810 0.013684 0.006549
1980-03-01 0.053365 0.059318 0.061876

Percentage of change in GOOG and APPL stock volume. Shows computing the percentage change be-
tween columns.

>>> df = pd.DataFrame({
... '2016': [1769950, 30586265],
... '2015': [1500923, 40912316],

(continues on next page)

34.4. DataFrame 1843

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

... '2014': [1371819, 41403351]},

... index=['GOOG', 'APPL'])
>>> df

2016 2015 2014
GOOG 1769950 1500923 1371819
APPL 30586265 40912316 41403351

>>> df.pct_change(axis='columns')
2016 2015 2014

GOOG NaN -0.151997 -0.086016
APPL NaN 0.337604 0.012002

pandas.DataFrame.pipe

DataFrame.pipe(func, *args, **kwargs)
Apply func(self, *args, **kwargs)

Parameters func : function

function to apply to the NDFrame. args, and kwargs are passed
into func. Alternatively a (callable, data_keyword) tuple where
data_keyword is a string indicating the keyword of callable that expects
the NDFrame.

args : iterable, optional

positional arguments passed into func.

kwargs : mapping, optional

a dictionary of keyword arguments passed into func.

Returns

object [the return type of func.]

See also:

pandas.DataFrame.apply , pandas.DataFrame.applymap, pandas.Series.map

Notes

Use .pipewhen chaining together functions that expect Series, DataFrames or GroupBy objects. Instead
of writing

>>> f(g(h(df), arg1=a), arg2=b, arg3=c)

You can write

>>> (df.pipe(h)
... .pipe(g, arg1=a)
... .pipe(f, arg2=b, arg3=c)
...)

If you have a function that takes the data as (say) the second argument, pass a tuple indicating which
keyword expects the data. For example, suppose f takes its data as arg2:

1844 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

>>> (df.pipe(h)
... .pipe(g, arg1=a)
... .pipe((f, 'arg2'), arg1=a, arg3=c)
...)

pandas.DataFrame.pivot

DataFrame.pivot(index=None, columns=None, values=None)
Return reshaped DataFrame organized by given index / column values.

Reshape data (produce a “pivot” table) based on column values. Uses unique values from specified index
/ columns to form axes of the resulting DataFrame. This function does not support data aggregation,
multiple values will result in a MultiIndex in the columns. See the User Guide for more on reshaping.

Parameters index : string or object, optional

Column to use to make new frame’s index. If None, uses existing index.

columns : string or object

Column to use to make new frame’s columns.

values : string, object or a list of the previous, optional

Column(s) to use for populating new frame’s values. If not specified, all remain-
ing columns will be used and the result will have hierarchically indexed columns.

Changed in version 0.23.0: Also accept list of column names.

Returns DataFrame

Returns reshaped DataFrame.

Raises ValueError:

When there are any index, columns combinations with multiple values.
DataFrame.pivot_table when you need to aggregate.

See also:

DataFrame.pivot_table generalization of pivot that can handle duplicate values for one in-
dex/column pair.

DataFrame.unstack pivot based on the index values instead of a column.

Notes

For finer-tuned control, see hierarchical indexing documentation along with the related stack/unstack
methods.

Examples

>>> df = pd.DataFrame({'foo': ['one', 'one', 'one', 'two', 'two',
... 'two'],
... 'bar': ['A', 'B', 'C', 'A', 'B', 'C'],
... 'baz': [1, 2, 3, 4, 5, 6],

(continues on next page)

34.4. DataFrame 1845

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

... 'zoo': ['x', 'y', 'z', 'q', 'w', 't']})
>>> df

foo bar baz zoo
0 one A 1 x
1 one B 2 y
2 one C 3 z
3 two A 4 q
4 two B 5 w
5 two C 6 t

>>> df.pivot(index='foo', columns='bar', values='baz')
bar A B C
foo
one 1 2 3
two 4 5 6

>>> df.pivot(index='foo', columns='bar')['baz']
bar A B C
foo
one 1 2 3
two 4 5 6

>>> df.pivot(index='foo', columns='bar', values=['baz', 'zoo'])
baz zoo

bar A B C A B C
foo
one 1 2 3 x y z
two 4 5 6 q w t

A ValueError is raised if there are any duplicates.

>>> df = pd.DataFrame({"foo": ['one', 'one', 'two', 'two'],
... "bar": ['A', 'A', 'B', 'C'],
... "baz": [1, 2, 3, 4]})
>>> df

foo bar baz
0 one A 1
1 one A 2
2 two B 3
3 two C 4

Notice that the first two rows are the same for our index and columns arguments.

>>> df.pivot(index='foo', columns='bar', values='baz')
Traceback (most recent call last):

...
ValueError: Index contains duplicate entries, cannot reshape

pandas.DataFrame.pivot_table

DataFrame.pivot_table(values=None, index=None, columns=None, aggfunc=’mean’,
fill_value=None, margins=False, dropna=True, margins_name=’All’)

Create a spreadsheet-style pivot table as a DataFrame. The levels in the pivot table will be stored in
MultiIndex objects (hierarchical indexes) on the index and columns of the result DataFrame

1846 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

Parameters

values [column to aggregate, optional]

index : column, Grouper, array, or list of the previous

If an array is passed, it must be the same length as the data. The list can contain
any of the other types (except list). Keys to group by on the pivot table index. If
an array is passed, it is being used as the same manner as column values.

columns : column, Grouper, array, or list of the previous

If an array is passed, it must be the same length as the data. The list can contain
any of the other types (except list). Keys to group by on the pivot table column.
If an array is passed, it is being used as the same manner as column values.

aggfunc : function, list of functions, dict, default numpy.mean

If list of functions passed, the resulting pivot table will have hierarchical columns
whose top level are the function names (inferred from the function objects them-
selves) If dict is passed, the key is column to aggregate and value is function or
list of functions

fill_value : scalar, default None

Value to replace missing values with

margins : boolean, default False

Add all row / columns (e.g. for subtotal / grand totals)

dropna : boolean, default True

Do not include columns whose entries are all NaN

margins_name : string, default ‘All’

Name of the row / column that will contain the totals when margins is True.

Returns

table [DataFrame]

See also:

DataFrame.pivot pivot without aggregation that can handle non-numeric data

Examples

>>> df = pd.DataFrame({"A": ["foo", "foo", "foo", "foo", "foo",
... "bar", "bar", "bar", "bar"],
... "B": ["one", "one", "one", "two", "two",
... "one", "one", "two", "two"],
... "C": ["small", "large", "large", "small",
... "small", "large", "small", "small",
... "large"],
... "D": [1, 2, 2, 3, 3, 4, 5, 6, 7]})
>>> df

A B C D
0 foo one small 1
1 foo one large 2
2 foo one large 2

(continues on next page)

34.4. DataFrame 1847

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

3 foo two small 3
4 foo two small 3
5 bar one large 4
6 bar one small 5
7 bar two small 6
8 bar two large 7

>>> table = pivot_table(df, values='D', index=['A', 'B'],
... columns=['C'], aggfunc=np.sum)
>>> table
C large small
A B
bar one 4.0 5.0

two 7.0 6.0
foo one 4.0 1.0

two NaN 6.0

>>> table = pivot_table(df, values='D', index=['A', 'B'],
... columns=['C'], aggfunc=np.sum)
>>> table
C large small
A B
bar one 4.0 5.0

two 7.0 6.0
foo one 4.0 1.0

two NaN 6.0

>>> table = pivot_table(df, values=['D', 'E'], index=['A', 'C'],
... aggfunc={'D': np.mean,
... 'E': [min, max, np.mean]})
>>> table

D E
mean max median min

A C
bar large 5.500000 16 14.5 13

small 5.500000 15 14.5 14
foo large 2.000000 10 9.5 9

small 2.333333 12 11.0 8

pandas.DataFrame.plot

DataFrame.plot(x=None, y=None, kind=’line’, ax=None, subplots=False, sharex=None,
sharey=False, layout=None, figsize=None, use_index=True, title=None,
grid=None, legend=True, style=None, logx=False, logy=False, loglog=False,
xticks=None, yticks=None, xlim=None, ylim=None, rot=None, fontsize=None,
colormap=None, table=False, yerr=None, xerr=None, secondary_y=False,
sort_columns=False, **kwds)

Make plots of DataFrame using matplotlib / pylab.

New in version 0.17.0: Each plot kind has a corresponding method on the DataFrame.plot accessor:
df.plot(kind='line') is equivalent to df.plot.line().

Parameters

data [DataFrame]

1848 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

x [label or position, default None]

y : label, position or list of label, positions, default None

Allows plotting of one column versus another

kind : str

• ‘line’ : line plot (default)

• ‘bar’ : vertical bar plot

• ‘barh’ : horizontal bar plot

• ‘hist’ : histogram

• ‘box’ : boxplot

• ‘kde’ : Kernel Density Estimation plot

• ‘density’ : same as ‘kde’

• ‘area’ : area plot

• ‘pie’ : pie plot

• ‘scatter’ : scatter plot

• ‘hexbin’ : hexbin plot

ax [matplotlib axes object, default None]

subplots : boolean, default False

Make separate subplots for each column

sharex : boolean, default True if ax is None else False

In case subplots=True, share x axis and set some x axis labels to invisible; defaults
to True if ax is None otherwise False if an ax is passed in; Be aware, that passing
in both an ax and sharex=True will alter all x axis labels for all axis in a figure!

sharey : boolean, default False

In case subplots=True, share y axis and set some y axis labels to invisible

layout : tuple (optional)

(rows, columns) for the layout of subplots

figsize [a tuple (width, height) in inches]

use_index : boolean, default True

Use index as ticks for x axis

title : string or list

Title to use for the plot. If a string is passed, print the string at the top of the
figure. If a list is passed and subplots is True, print each item in the list above the
corresponding subplot.

grid : boolean, default None (matlab style default)

Axis grid lines

legend : False/True/’reverse’

34.4. DataFrame 1849

pandas: powerful Python data analysis toolkit, Release 0.23.4

Place legend on axis subplots

style : list or dict

matplotlib line style per column

logx : boolean, default False

Use log scaling on x axis

logy : boolean, default False

Use log scaling on y axis

loglog : boolean, default False

Use log scaling on both x and y axes

xticks : sequence

Values to use for the xticks

yticks : sequence

Values to use for the yticks

xlim [2-tuple/list]

ylim [2-tuple/list]

rot : int, default None

Rotation for ticks (xticks for vertical, yticks for horizontal plots)

fontsize : int, default None

Font size for xticks and yticks

colormap : str or matplotlib colormap object, default None

Colormap to select colors from. If string, load colormap with that name from
matplotlib.

colorbar : boolean, optional

If True, plot colorbar (only relevant for ‘scatter’ and ‘hexbin’ plots)

position : float

Specify relative alignments for bar plot layout. From 0 (left/bottom-end) to 1
(right/top-end). Default is 0.5 (center)

table : boolean, Series or DataFrame, default False

If True, draw a table using the data in the DataFrame and the data will be trans-
posed to meet matplotlib’s default layout. If a Series or DataFrame is passed, use
passed data to draw a table.

yerr : DataFrame, Series, array-like, dict and str

See Plotting with Error Bars for detail.

xerr [same types as yerr.]

stacked : boolean, default False in line and

bar plots, and True in area plot. If True, create stacked plot.

1850 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

sort_columns : boolean, default False

Sort column names to determine plot ordering

secondary_y : boolean or sequence, default False

Whether to plot on the secondary y-axis If a list/tuple, which columns to plot on
secondary y-axis

mark_right : boolean, default True

When using a secondary_y axis, automatically mark the column labels with
“(right)” in the legend

‘**kwds‘ : keywords

Options to pass to matplotlib plotting method

Returns

axes [matplotlib.axes.Axes or numpy.ndarray of them]

Notes

• See matplotlib documentation online for more on this subject

• If kind = ‘bar’ or ‘barh’, you can specify relative alignments for bar plot layout by position keyword.
From 0 (left/bottom-end) to 1 (right/top-end). Default is 0.5 (center)

• If kind = ‘scatter’ and the argument c is the name of a dataframe column, the values of that column
are used to color each point.

• If kind = ‘hexbin’, you can control the size of the bins with the gridsize argument. By default, a his-
togram of the counts around each (x, y) point is computed. You can specify alternative aggregations
by passing values to the C and reduce_C_function arguments. C specifies the value at each (x, y)
point and reduce_C_function is a function of one argument that reduces all the values in a bin to a
single number (e.g. mean, max, sum, std).

pandas.DataFrame.pop

DataFrame.pop(item)
Return item and drop from frame. Raise KeyError if not found.

Parameters item : str

Column label to be popped

Returns

popped [Series]

Examples

>>> df = pd.DataFrame([('falcon', 'bird', 389.0),
... ('parrot', 'bird', 24.0),
... ('lion', 'mammal', 80.5),
... ('monkey', 'mammal', np.nan)],
... columns=('name', 'class', 'max_speed'))

(continues on next page)

34.4. DataFrame 1851

https://matplotlib.org/api/axes_api.html#matplotlib.axes.Axes

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

>>> df
name class max_speed

0 falcon bird 389.0
1 parrot bird 24.0
2 lion mammal 80.5
3 monkey mammal NaN

>>> df.pop('class')
0 bird
1 bird
2 mammal
3 mammal
Name: class, dtype: object

>>> df
name max_speed

0 falcon 389.0
1 parrot 24.0
2 lion 80.5
3 monkey NaN

pandas.DataFrame.pow

DataFrame.pow(other, axis=’columns’, level=None, fill_value=None)
Exponential power of dataframe and other, element-wise (binary operator pow).

Equivalent to dataframe ** other, but with support to substitute a fill_value for missing data in
one of the inputs.

Parameters

other [Series, DataFrame, or constant]

axis : {0, 1, ‘index’, ‘columns’}

For Series input, axis to match Series index on

level : int or name

Broadcast across a level, matching Index values on the passed MultiIndex level

fill_value : None or float value, default None

Fill existing missing (NaN) values, and any new element needed for successful
DataFrame alignment, with this value before computation. If data in both corre-
sponding DataFrame locations is missing the result will be missing

Returns

result [DataFrame]

See also:

DataFrame.rpow

Notes

Mismatched indices will be unioned together

1852 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

Examples

None

pandas.DataFrame.prod

DataFrame.prod(axis=None, skipna=None, level=None, numeric_only=None, min_count=0,
**kwargs)

Return the product of the values for the requested axis

Parameters

axis [{index (0), columns (1)}]

skipna : boolean, default True

Exclude NA/null values when computing the result.

level : int or level name, default None

If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing
into a Series

numeric_only : boolean, default None

Include only float, int, boolean columns. If None, will attempt to use everything,
then use only numeric data. Not implemented for Series.

min_count : int, default 0

The required number of valid values to perform the operation. If fewer than
min_count non-NA values are present the result will be NA.

New in version 0.22.0: Added with the default being 0. This means the sum of
an all-NA or empty Series is 0, and the product of an all-NA or empty Series is 1.

Returns

prod [Series or DataFrame (if level specified)]

Examples

By default, the product of an empty or all-NA Series is 1

>>> pd.Series([]).prod()
1.0

This can be controlled with the min_count parameter

>>> pd.Series([]).prod(min_count=1)
nan

Thanks to the skipna parameter, min_count handles all-NA and empty series identically.

>>> pd.Series([np.nan]).prod()
1.0

>>> pd.Series([np.nan]).prod(min_count=1)
nan

34.4. DataFrame 1853

pandas: powerful Python data analysis toolkit, Release 0.23.4

pandas.DataFrame.product

DataFrame.product(axis=None, skipna=None, level=None, numeric_only=None, min_count=0,
**kwargs)

Return the product of the values for the requested axis

Parameters

axis [{index (0), columns (1)}]

skipna : boolean, default True

Exclude NA/null values when computing the result.

level : int or level name, default None

If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing
into a Series

numeric_only : boolean, default None

Include only float, int, boolean columns. If None, will attempt to use everything,
then use only numeric data. Not implemented for Series.

min_count : int, default 0

The required number of valid values to perform the operation. If fewer than
min_count non-NA values are present the result will be NA.

New in version 0.22.0: Added with the default being 0. This means the sum of
an all-NA or empty Series is 0, and the product of an all-NA or empty Series is 1.

Returns

prod [Series or DataFrame (if level specified)]

Examples

By default, the product of an empty or all-NA Series is 1

>>> pd.Series([]).prod()
1.0

This can be controlled with the min_count parameter

>>> pd.Series([]).prod(min_count=1)
nan

Thanks to the skipna parameter, min_count handles all-NA and empty series identically.

>>> pd.Series([np.nan]).prod()
1.0

>>> pd.Series([np.nan]).prod(min_count=1)
nan

1854 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

pandas.DataFrame.quantile

DataFrame.quantile(q=0.5, axis=0, numeric_only=True, interpolation=’linear’)
Return values at the given quantile over requested axis, a la numpy.percentile.

Parameters q : float or array-like, default 0.5 (50% quantile)

0 <= q <= 1, the quantile(s) to compute

axis : {0, 1, ‘index’, ‘columns’} (default 0)

0 or ‘index’ for row-wise, 1 or ‘columns’ for column-wise

numeric_only : boolean, default True

If False, the quantile of datetime and timedelta data will be computed as well

interpolation : {‘linear’, ‘lower’, ‘higher’, ‘midpoint’, ‘nearest’}

New in version 0.18.0.

This optional parameter specifies the interpolation method to use, when the de-
sired quantile lies between two data points i and j:

• linear: i + (j - i) * fraction, where fraction is the fractional part of the index
surrounded by i and j.

• lower: i.

• higher: j.

• nearest: i or j whichever is nearest.

• midpoint: (i + j) / 2.

Returns quantiles : Series or DataFrame

• If q is an array, a DataFrame will be returned where the index is q, the columns are
the columns of self, and the values are the quantiles.

• If q is a float, a Series will be returned where the index is the columns of self and the
values are the quantiles.

See also:

pandas.core.window.Rolling.quantile

Examples

>>> df = pd.DataFrame(np.array([[1, 1], [2, 10], [3, 100], [4, 100]]),
columns=['a', 'b'])

>>> df.quantile(.1)
a 1.3
b 3.7
dtype: float64
>>> df.quantile([.1, .5])

a b
0.1 1.3 3.7
0.5 2.5 55.0

Specifying numeric_only=False will also compute the quantile of datetime and timedelta data.

34.4. DataFrame 1855

pandas: powerful Python data analysis toolkit, Release 0.23.4

>>> df = pd.DataFrame({'A': [1, 2],
'B': [pd.Timestamp('2010'),

pd.Timestamp('2011')],
'C': [pd.Timedelta('1 days'),

pd.Timedelta('2 days')]})
>>> df.quantile(0.5, numeric_only=False)
A 1.5
B 2010-07-02 12:00:00
C 1 days 12:00:00
Name: 0.5, dtype: object

pandas.DataFrame.query

DataFrame.query(expr, inplace=False, **kwargs)
Query the columns of a frame with a boolean expression.

Parameters expr : string

The query string to evaluate. You can refer to variables in the environment by
prefixing them with an ‘@’ character like @a + b.

inplace : bool

Whether the query should modify the data in place or return a modified copy

New in version 0.18.0.

kwargs : dict

See the documentation for pandas.eval() for complete details on the key-
word arguments accepted by DataFrame.query().

Returns

q [DataFrame]

See also:

pandas.eval, DataFrame.eval

Notes

The result of the evaluation of this expression is first passed to DataFrame.loc and if that fails be-
cause of a multidimensional key (e.g., a DataFrame) then the result will be passed to DataFrame.
__getitem__().

This method uses the top-level pandas.eval() function to evaluate the passed query.

The query() method uses a slightly modified Python syntax by default. For example, the & and |
(bitwise) operators have the precedence of their boolean cousins, and and or. This is syntactically valid
Python, however the semantics are different.

You can change the semantics of the expression by passing the keyword argument parser='python'.
This enforces the same semantics as evaluation in Python space. Likewise, you can pass
engine='python' to evaluate an expression using Python itself as a backend. This is not recom-
mended as it is inefficient compared to using numexpr as the engine.

The DataFrame.index and DataFrame.columns attributes of the DataFrame instance are
placed in the query namespace by default, which allows you to treat both the index and columns of

1856 Chapter 34. API Reference

https://docs.python.org/3/reference/expressions.html#and
https://docs.python.org/3/reference/expressions.html#or

pandas: powerful Python data analysis toolkit, Release 0.23.4

the frame as a column in the frame. The identifier index is used for the frame index; you can also use
the name of the index to identify it in a query. Please note that Python keywords may not be used as
identifiers.

For further details and examples see the query documentation in indexing.

Examples

>>> from numpy.random import randn
>>> from pandas import DataFrame
>>> df = pd.DataFrame(randn(10, 2), columns=list('ab'))
>>> df.query('a > b')
>>> df[df.a > df.b] # same result as the previous expression

pandas.DataFrame.radd

DataFrame.radd(other, axis=’columns’, level=None, fill_value=None)
Addition of dataframe and other, element-wise (binary operator radd).

Equivalent to other + dataframe, but with support to substitute a fill_value for missing data in one
of the inputs.

Parameters

other [Series, DataFrame, or constant]

axis : {0, 1, ‘index’, ‘columns’}

For Series input, axis to match Series index on

level : int or name

Broadcast across a level, matching Index values on the passed MultiIndex level

fill_value : None or float value, default None

Fill existing missing (NaN) values, and any new element needed for successful
DataFrame alignment, with this value before computation. If data in both corre-
sponding DataFrame locations is missing the result will be missing

Returns

result [DataFrame]

See also:

DataFrame.add

Notes

Mismatched indices will be unioned together

Examples

34.4. DataFrame 1857

pandas: powerful Python data analysis toolkit, Release 0.23.4

>>> a = pd.DataFrame([1, 1, 1, np.nan], index=['a', 'b', 'c', 'd'],
... columns=['one'])
>>> a

one
a 1.0
b 1.0
c 1.0
d NaN
>>> b = pd.DataFrame(dict(one=[1, np.nan, 1, np.nan],
... two=[np.nan, 2, np.nan, 2]),
... index=['a', 'b', 'd', 'e'])
>>> b

one two
a 1.0 NaN
b NaN 2.0
d 1.0 NaN
e NaN 2.0
>>> a.add(b, fill_value=0)

one two
a 2.0 NaN
b 1.0 2.0
c 1.0 NaN
d 1.0 NaN
e NaN 2.0

pandas.DataFrame.rank

DataFrame.rank(axis=0, method=’average’, numeric_only=None, na_option=’keep’, ascend-
ing=True, pct=False)

Compute numerical data ranks (1 through n) along axis. Equal values are assigned a rank that is the
average of the ranks of those values

Parameters axis : {0 or ‘index’, 1 or ‘columns’}, default 0

index to direct ranking

method : {‘average’, ‘min’, ‘max’, ‘first’, ‘dense’}

• average: average rank of group

• min: lowest rank in group

• max: highest rank in group

• first: ranks assigned in order they appear in the array

• dense: like ‘min’, but rank always increases by 1 between groups

numeric_only : boolean, default None

Include only float, int, boolean data. Valid only for DataFrame or Panel objects

na_option : {‘keep’, ‘top’, ‘bottom’}

• keep: leave NA values where they are

• top: smallest rank if ascending

• bottom: smallest rank if descending

ascending : boolean, default True

1858 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

False for ranks by high (1) to low (N)

pct : boolean, default False

Computes percentage rank of data

Returns

ranks [same type as caller]

pandas.DataFrame.rdiv

DataFrame.rdiv(other, axis=’columns’, level=None, fill_value=None)
Floating division of dataframe and other, element-wise (binary operator rtruediv).

Equivalent to other / dataframe, but with support to substitute a fill_value for missing data in one
of the inputs.

Parameters

other [Series, DataFrame, or constant]

axis : {0, 1, ‘index’, ‘columns’}

For Series input, axis to match Series index on

level : int or name

Broadcast across a level, matching Index values on the passed MultiIndex level

fill_value : None or float value, default None

Fill existing missing (NaN) values, and any new element needed for successful
DataFrame alignment, with this value before computation. If data in both corre-
sponding DataFrame locations is missing the result will be missing

Returns

result [DataFrame]

See also:

DataFrame.truediv

Notes

Mismatched indices will be unioned together

Examples

None

pandas.DataFrame.reindex

DataFrame.reindex(labels=None, index=None, columns=None, axis=None, method=None,
copy=True, level=None, fill_value=nan, limit=None, tolerance=None)

Conform DataFrame to new index with optional filling logic, placing NA/NaN in locations having no
value in the previous index. A new object is produced unless the new index is equivalent to the current
one and copy=False

34.4. DataFrame 1859

pandas: powerful Python data analysis toolkit, Release 0.23.4

Parameters labels : array-like, optional

New labels / index to conform the axis specified by ‘axis’ to.

index, columns : array-like, optional (should be specified using keywords)

New labels / index to conform to. Preferably an Index object to avoid duplicating
data

axis : int or str, optional

Axis to target. Can be either the axis name (‘index’, ‘columns’) or number (0, 1).

method : {None, ‘backfill’/’bfill’, ‘pad’/’ffill’, ‘nearest’}, optional

method to use for filling holes in reindexed DataFrame. Please note: this is only
applicable to DataFrames/Series with a monotonically increasing/decreasing in-
dex.

• default: don’t fill gaps

• pad / ffill: propagate last valid observation forward to next valid

• backfill / bfill: use next valid observation to fill gap

• nearest: use nearest valid observations to fill gap

copy : boolean, default True

Return a new object, even if the passed indexes are the same

level : int or name

Broadcast across a level, matching Index values on the passed MultiIndex level

fill_value : scalar, default np.NaN

Value to use for missing values. Defaults to NaN, but can be any “compatible”
value

limit : int, default None

Maximum number of consecutive elements to forward or backward fill

tolerance : optional

Maximum distance between original and new labels for inexact matches.
The values of the index at the matching locations most satisfy the equation
abs(index[indexer] - target) <= tolerance.

Tolerance may be a scalar value, which applies the same tolerance to all values,
or list-like, which applies variable tolerance per element. List-like includes list,
tuple, array, Series, and must be the same size as the index and its dtype must
exactly match the index’s type.

New in version 0.21.0: (list-like tolerance)

Returns

reindexed [DataFrame]

Examples

DataFrame.reindex supports two calling conventions

• (index=index_labels, columns=column_labels, ...)

1860 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

• (labels, axis={'index', 'columns'}, ...)

We highly recommend using keyword arguments to clarify your intent.

Create a dataframe with some fictional data.

>>> index = ['Firefox', 'Chrome', 'Safari', 'IE10', 'Konqueror']
>>> df = pd.DataFrame({
... 'http_status': [200,200,404,404,301],
... 'response_time': [0.04, 0.02, 0.07, 0.08, 1.0]},
... index=index)
>>> df

http_status response_time
Firefox 200 0.04
Chrome 200 0.02
Safari 404 0.07
IE10 404 0.08
Konqueror 301 1.00

Create a new index and reindex the dataframe. By default values in the new index that do not have
corresponding records in the dataframe are assigned NaN.

>>> new_index= ['Safari', 'Iceweasel', 'Comodo Dragon', 'IE10',
... 'Chrome']
>>> df.reindex(new_index)

http_status response_time
Safari 404.0 0.07
Iceweasel NaN NaN
Comodo Dragon NaN NaN
IE10 404.0 0.08
Chrome 200.0 0.02

We can fill in the missing values by passing a value to the keyword fill_value. Because the index is
not monotonically increasing or decreasing, we cannot use arguments to the keyword method to fill the
NaN values.

>>> df.reindex(new_index, fill_value=0)
http_status response_time

Safari 404 0.07
Iceweasel 0 0.00
Comodo Dragon 0 0.00
IE10 404 0.08
Chrome 200 0.02

>>> df.reindex(new_index, fill_value='missing')
http_status response_time

Safari 404 0.07
Iceweasel missing missing
Comodo Dragon missing missing
IE10 404 0.08
Chrome 200 0.02

We can also reindex the columns.

>>> df.reindex(columns=['http_status', 'user_agent'])
http_status user_agent

Firefox 200 NaN
Chrome 200 NaN

(continues on next page)

34.4. DataFrame 1861

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

Safari 404 NaN
IE10 404 NaN
Konqueror 301 NaN

Or we can use “axis-style” keyword arguments

>>> df.reindex(['http_status', 'user_agent'], axis="columns")
http_status user_agent

Firefox 200 NaN
Chrome 200 NaN
Safari 404 NaN
IE10 404 NaN
Konqueror 301 NaN

To further illustrate the filling functionality in reindex, we will create a dataframe with a monotonically
increasing index (for example, a sequence of dates).

>>> date_index = pd.date_range('1/1/2010', periods=6, freq='D')
>>> df2 = pd.DataFrame({"prices": [100, 101, np.nan, 100, 89, 88]},
... index=date_index)
>>> df2

prices
2010-01-01 100
2010-01-02 101
2010-01-03 NaN
2010-01-04 100
2010-01-05 89
2010-01-06 88

Suppose we decide to expand the dataframe to cover a wider date range.

>>> date_index2 = pd.date_range('12/29/2009', periods=10, freq='D')
>>> df2.reindex(date_index2)

prices
2009-12-29 NaN
2009-12-30 NaN
2009-12-31 NaN
2010-01-01 100
2010-01-02 101
2010-01-03 NaN
2010-01-04 100
2010-01-05 89
2010-01-06 88
2010-01-07 NaN

The index entries that did not have a value in the original data frame (for example, ‘2009-12-29’) are by
default filled with NaN. If desired, we can fill in the missing values using one of several options.

For example, to backpropagate the last valid value to fill the NaN values, pass bfill as an argument to
the method keyword.

>>> df2.reindex(date_index2, method='bfill')
prices

2009-12-29 100
2009-12-30 100
2009-12-31 100
2010-01-01 100

(continues on next page)

1862 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

2010-01-02 101
2010-01-03 NaN
2010-01-04 100
2010-01-05 89
2010-01-06 88
2010-01-07 NaN

Please note that the NaN value present in the original dataframe (at index value 2010-01-03) will not be
filled by any of the value propagation schemes. This is because filling while reindexing does not look at
dataframe values, but only compares the original and desired indexes. If you do want to fill in the NaN
values present in the original dataframe, use the fillna() method.

See the user guide for more.

pandas.DataFrame.reindex_axis

DataFrame.reindex_axis(labels, axis=0, method=None, level=None, copy=True, limit=None,
fill_value=nan)

Conform input object to new index with optional filling logic, placing NA/NaN in locations having no
value in the previous index. A new object is produced unless the new index is equivalent to the current
one and copy=False

Parameters labels : array-like

New labels / index to conform to. Preferably an Index object to avoid duplicating
data

axis [{0 or ‘index’, 1 or ‘columns’}]

method : {None, ‘backfill’/’bfill’, ‘pad’/’ffill’, ‘nearest’}, optional

Method to use for filling holes in reindexed DataFrame:

• default: don’t fill gaps

• pad / ffill: propagate last valid observation forward to next valid

• backfill / bfill: use next valid observation to fill gap

• nearest: use nearest valid observations to fill gap

copy : boolean, default True

Return a new object, even if the passed indexes are the same

level : int or name

Broadcast across a level, matching Index values on the passed MultiIndex level

limit : int, default None

Maximum number of consecutive elements to forward or backward fill

tolerance : optional

Maximum distance between original and new labels for inexact matches.
The values of the index at the matching locations most satisfy the equation
abs(index[indexer] - target) <= tolerance.

Tolerance may be a scalar value, which applies the same tolerance to all values,
or list-like, which applies variable tolerance per element. List-like includes list,

34.4. DataFrame 1863

pandas: powerful Python data analysis toolkit, Release 0.23.4

tuple, array, Series, and must be the same size as the index and its dtype must
exactly match the index’s type.

New in version 0.21.0: (list-like tolerance)

Returns

reindexed [DataFrame]

See also:

reindex, reindex_like

Examples

>>> df.reindex_axis(['A', 'B', 'C'], axis=1)

pandas.DataFrame.reindex_like

DataFrame.reindex_like(other, method=None, copy=True, limit=None, tolerance=None)
Return an object with matching indices to myself.

Parameters

other [Object]

method [string or None]

copy [boolean, default True]

limit : int, default None

Maximum number of consecutive labels to fill for inexact matches.

tolerance : optional

Maximum distance between labels of the other object and this object for inexact
matches. Can be list-like.

New in version 0.21.0: (list-like tolerance)

Returns

reindexed [same as input]

Notes

Like calling s.reindex(index=other.index, columns=other.columns, method=. . .)

pandas.DataFrame.rename

DataFrame.rename(mapper=None, index=None, columns=None, axis=None, copy=True, in-
place=False, level=None)

Alter axes labels.

Function / dict values must be unique (1-to-1). Labels not contained in a dict / Series will be left as-is.
Extra labels listed don’t throw an error.

See the user guide for more.

1864 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

Parameters mapper, index, columns : dict-like or function, optional

dict-like or functions transformations to apply to that axis’ values. Use either
mapper and axis to specify the axis to target with mapper, or index and
columns.

axis : int or str, optional

Axis to target with mapper. Can be either the axis name (‘index’, ‘columns’) or
number (0, 1). The default is ‘index’.

copy : boolean, default True

Also copy underlying data

inplace : boolean, default False

Whether to return a new DataFrame. If True then value of copy is ignored.

level : int or level name, default None

In case of a MultiIndex, only rename labels in the specified level.

Returns

renamed [DataFrame]

See also:

pandas.DataFrame.rename_axis

Examples

DataFrame.rename supports two calling conventions

• (index=index_mapper, columns=columns_mapper, ...)

• (mapper, axis={'index', 'columns'}, ...)

We highly recommend using keyword arguments to clarify your intent.

>>> df = pd.DataFrame({"A": [1, 2, 3], "B": [4, 5, 6]})
>>> df.rename(index=str, columns={"A": "a", "B": "c"})

a c
0 1 4
1 2 5
2 3 6

>>> df.rename(index=str, columns={"A": "a", "C": "c"})
a B

0 1 4
1 2 5
2 3 6

Using axis-style parameters

>>> df.rename(str.lower, axis='columns')
a b

0 1 4
1 2 5
2 3 6

34.4. DataFrame 1865

pandas: powerful Python data analysis toolkit, Release 0.23.4

>>> df.rename({1: 2, 2: 4}, axis='index')
A B

0 1 4
2 2 5
4 3 6

pandas.DataFrame.rename_axis

DataFrame.rename_axis(mapper, axis=0, copy=True, inplace=False)
Alter the name of the index or columns.

Parameters mapper : scalar, list-like, optional

Value to set as the axis name attribute.

axis : {0 or ‘index’, 1 or ‘columns’}, default 0

The index or the name of the axis.

copy : boolean, default True

Also copy underlying data.

inplace : boolean, default False

Modifies the object directly, instead of creating a new Series or DataFrame.

Returns renamed : Series, DataFrame, or None

The same type as the caller or None if inplace is True.

See also:

pandas.Series.rename Alter Series index labels or name

pandas.DataFrame.rename Alter DataFrame index labels or name

pandas.Index.rename Set new names on index

Notes

Prior to version 0.21.0, rename_axis could also be used to change the axis labels by passing a mapping
or scalar. This behavior is deprecated and will be removed in a future version. Use rename instead.

Examples

Series

>>> s = pd.Series([1, 2, 3])
>>> s.rename_axis("foo")
foo
0 1
1 2
2 3
dtype: int64

DataFrame

1866 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

>>> df = pd.DataFrame({"A": [1, 2, 3], "B": [4, 5, 6]})
>>> df.rename_axis("foo")

A B
foo
0 1 4
1 2 5
2 3 6

>>> df.rename_axis("bar", axis="columns")
bar A B
0 1 4
1 2 5
2 3 6

pandas.DataFrame.reorder_levels

DataFrame.reorder_levels(order, axis=0)
Rearrange index levels using input order. May not drop or duplicate levels

Parameters order : list of int or list of str

List representing new level order. Reference level by number (position) or by key
(label).

axis : int

Where to reorder levels.

Returns

type of caller (new object)

pandas.DataFrame.replace

DataFrame.replace(to_replace=None, value=None, inplace=False, limit=None, regex=False,
method=’pad’)

Replace values given in to_replace with value.

Values of the DataFrame are replaced with other values dynamically. This differs from updating with
.loc or .iloc, which require you to specify a location to update with some value.

Parameters to_replace : str, regex, list, dict, Series, int, float, or None

How to find the values that will be replaced.

• numeric, str or regex:

– numeric: numeric values equal to to_replace will be replaced with value

– str: string exactly matching to_replace will be replaced with value

– regex: regexs matching to_replace will be replaced with value

• list of str, regex, or numeric:

– First, if to_replace and value are both lists, they must be the same length.

– Second, if regex=True then all of the strings in both lists will be in-
terpreted as regexs otherwise they will match directly. This doesn’t matter

34.4. DataFrame 1867

pandas: powerful Python data analysis toolkit, Release 0.23.4

much for value since there are only a few possible substitution regexes you
can use.

– str, regex and numeric rules apply as above.

• dict:

– Dicts can be used to specify different replacement values for different ex-
isting values. For example, {'a': 'b', 'y': 'z'} replaces the
value ‘a’ with ‘b’ and ‘y’ with ‘z’. To use a dict in this way the value param-
eter should be None.

– For a DataFrame a dict can specify that different values should be replaced
in different columns. For example, {'a': 1, 'b': 'z'} looks for
the value 1 in column ‘a’ and the value ‘z’ in column ‘b’ and replaces these
values with whatever is specified in value. The value parameter should not
be None in this case. You can treat this as a special case of passing two lists
except that you are specifying the column to search in.

– For a DataFrame nested dictionaries, e.g., {'a': {'b': np.nan}},
are read as follows: look in column ‘a’ for the value ‘b’ and replace it with
NaN. The value parameter should be None to use a nested dict in this way.
You can nest regular expressions as well. Note that column names (the top-
level dictionary keys in a nested dictionary) cannot be regular expressions.

• None:

– This means that the regex argument must be a string, compiled regular ex-
pression, or list, dict, ndarray or Series of such elements. If value is also
None then this must be a nested dictionary or Series.

See the examples section for examples of each of these.

value : scalar, dict, list, str, regex, default None

Value to replace any values matching to_replace with. For a DataFrame a dict of
values can be used to specify which value to use for each column (columns not in
the dict will not be filled). Regular expressions, strings and lists or dicts of such
objects are also allowed.

inplace : boolean, default False

If True, in place. Note: this will modify any other views on this object (e.g. a
column from a DataFrame). Returns the caller if this is True.

limit : int, default None

Maximum size gap to forward or backward fill.

regex : bool or same types as to_replace, default False

Whether to interpret to_replace and/or value as regular expressions. If this is
True then to_replace must be a string. Alternatively, this could be a regular
expression or a list, dict, or array of regular expressions in which case to_replace
must be None.

method : {‘pad’, ‘ffill’, ‘bfill’, None}

The method to use when for replacement, when to_replace is a scalar, list or tuple
and value is None.

Changed in version 0.23.0: Added to DataFrame.

Returns DataFrame

1868 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

Object after replacement.

Raises AssertionError

• If regex is not a bool and to_replace is not None.

TypeError

• If to_replace is a dict and value is not a list, dict, ndarray, or Series

• If to_replace is None and regex is not compilable into a regular expression or is a list,
dict, ndarray, or Series.

• When replacing multiple bool or datetime64 objects and the arguments to
to_replace does not match the type of the value being replaced

ValueError

• If a list or an ndarray is passed to to_replace and value but they are not the same
length.

See also:

DataFrame.fillna Fill NA values

DataFrame.where Replace values based on boolean condition

Series.str.replace Simple string replacement.

Notes

• Regex substitution is performed under the hood with re.sub. The rules for substitution for re.
sub are the same.

• Regular expressions will only substitute on strings, meaning you cannot provide, for example, a
regular expression matching floating point numbers and expect the columns in your frame that have
a numeric dtype to be matched. However, if those floating point numbers are strings, then you can
do this.

• This method has a lot of options. You are encouraged to experiment and play with this method to
gain intuition about how it works.

• When dict is used as the to_replace value, it is like key(s) in the dict are the to_replace part and
value(s) in the dict are the value parameter.

Examples

Scalar ‘to_replace‘ and ‘value‘

>>> s = pd.Series([0, 1, 2, 3, 4])
>>> s.replace(0, 5)
0 5
1 1
2 2
3 3
4 4
dtype: int64

34.4. DataFrame 1869

pandas: powerful Python data analysis toolkit, Release 0.23.4

>>> df = pd.DataFrame({'A': [0, 1, 2, 3, 4],
... 'B': [5, 6, 7, 8, 9],
... 'C': ['a', 'b', 'c', 'd', 'e']})
>>> df.replace(0, 5)

A B C
0 5 5 a
1 1 6 b
2 2 7 c
3 3 8 d
4 4 9 e

List-like ‘to_replace‘

>>> df.replace([0, 1, 2, 3], 4)
A B C

0 4 5 a
1 4 6 b
2 4 7 c
3 4 8 d
4 4 9 e

>>> df.replace([0, 1, 2, 3], [4, 3, 2, 1])
A B C

0 4 5 a
1 3 6 b
2 2 7 c
3 1 8 d
4 4 9 e

>>> s.replace([1, 2], method='bfill')
0 0
1 3
2 3
3 3
4 4
dtype: int64

dict-like ‘to_replace‘

>>> df.replace({0: 10, 1: 100})
A B C

0 10 5 a
1 100 6 b
2 2 7 c
3 3 8 d
4 4 9 e

>>> df.replace({'A': 0, 'B': 5}, 100)
A B C

0 100 100 a
1 1 6 b
2 2 7 c
3 3 8 d
4 4 9 e

1870 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

>>> df.replace({'A': {0: 100, 4: 400}})
A B C

0 100 5 a
1 1 6 b
2 2 7 c
3 3 8 d
4 400 9 e

Regular expression ‘to_replace‘

>>> df = pd.DataFrame({'A': ['bat', 'foo', 'bait'],
... 'B': ['abc', 'bar', 'xyz']})
>>> df.replace(to_replace=r'^ba.$', value='new', regex=True)

A B
0 new abc
1 foo new
2 bait xyz

>>> df.replace({'A': r'^ba.$'}, {'A': 'new'}, regex=True)
A B

0 new abc
1 foo bar
2 bait xyz

>>> df.replace(regex=r'^ba.$', value='new')
A B

0 new abc
1 foo new
2 bait xyz

>>> df.replace(regex={r'^ba.$':'new', 'foo':'xyz'})
A B

0 new abc
1 xyz new
2 bait xyz

>>> df.replace(regex=[r'^ba.$', 'foo'], value='new')
A B

0 new abc
1 new new
2 bait xyz

Note that when replacing multiple bool or datetime64 objects, the data types in the to_replace pa-
rameter must match the data type of the value being replaced:

>>> df = pd.DataFrame({'A': [True, False, True],
... 'B': [False, True, False]})
>>> df.replace({'a string': 'new value', True: False}) # raises
Traceback (most recent call last):

...
TypeError: Cannot compare types 'ndarray(dtype=bool)' and 'str'

This raises a TypeError because one of the dict keys is not of the correct type for replacement.

Compare the behavior of s.replace({'a': None}) and s.replace('a', None) to under-
stand the pecularities of the to_replace parameter:

34.4. DataFrame 1871

pandas: powerful Python data analysis toolkit, Release 0.23.4

>>> s = pd.Series([10, 'a', 'a', 'b', 'a'])

When one uses a dict as the to_replace value, it is like the value(s) in the dict are equal to the value
parameter. s.replace({'a': None}) is equivalent to s.replace(to_replace={'a':
None}, value=None, method=None):

>>> s.replace({'a': None})
0 10
1 None
2 None
3 b
4 None
dtype: object

When value=None and to_replace is a scalar, list or tuple, replace uses the method parameter (default
‘pad’) to do the replacement. So this is why the ‘a’ values are being replaced by 10 in rows 1 and 2
and ‘b’ in row 4 in this case. The command s.replace('a', None) is actually equivalent to s.
replace(to_replace='a', value=None, method='pad'):

>>> s.replace('a', None)
0 10
1 10
2 10
3 b
4 b
dtype: object

pandas.DataFrame.resample

DataFrame.resample(rule, how=None, axis=0, fill_method=None, closed=None, label=None,
convention=’start’, kind=None, loffset=None, limit=None, base=0,
on=None, level=None)

Convenience method for frequency conversion and resampling of time series. Object must have a
datetime-like index (DatetimeIndex, PeriodIndex, or TimedeltaIndex), or pass datetime-like values to
the on or level keyword.

Parameters rule : string

the offset string or object representing target conversion

axis [int, optional, default 0]

closed : {‘right’, ‘left’}

Which side of bin interval is closed. The default is ‘left’ for all frequency offsets
except for ‘M’, ‘A’, ‘Q’, ‘BM’, ‘BA’, ‘BQ’, and ‘W’ which all have a default of
‘right’.

label : {‘right’, ‘left’}

Which bin edge label to label bucket with. The default is ‘left’ for all frequency
offsets except for ‘M’, ‘A’, ‘Q’, ‘BM’, ‘BA’, ‘BQ’, and ‘W’ which all have a
default of ‘right’.

convention : {‘start’, ‘end’, ‘s’, ‘e’}

For PeriodIndex only, controls whether to use the start or end of rule

1872 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

kind: {‘timestamp’, ‘period’}, optional

Pass ‘timestamp’ to convert the resulting index to a DateTimeIndex or ‘pe-
riod’ to convert it to a PeriodIndex. By default the input representation is
retained.

loffset : timedelta

Adjust the resampled time labels

base : int, default 0

For frequencies that evenly subdivide 1 day, the “origin” of the aggregated in-
tervals. For example, for ‘5min’ frequency, base could range from 0 through 4.
Defaults to 0

on : string, optional

For a DataFrame, column to use instead of index for resampling. Column must
be datetime-like.

New in version 0.19.0.

level : string or int, optional

For a MultiIndex, level (name or number) to use for resampling. Level must be
datetime-like.

New in version 0.19.0.

Returns

Resampler object

See also:

groupby Group by mapping, function, label, or list of labels.

Notes

See the user guide for more.

To learn more about the offset strings, please see this link.

Examples

Start by creating a series with 9 one minute timestamps.

>>> index = pd.date_range('1/1/2000', periods=9, freq='T')
>>> series = pd.Series(range(9), index=index)
>>> series
2000-01-01 00:00:00 0
2000-01-01 00:01:00 1
2000-01-01 00:02:00 2
2000-01-01 00:03:00 3
2000-01-01 00:04:00 4
2000-01-01 00:05:00 5
2000-01-01 00:06:00 6
2000-01-01 00:07:00 7

(continues on next page)

34.4. DataFrame 1873

http://pandas.pydata.org/pandas-docs/stable/timeseries.html#resampling
http://pandas.pydata.org/pandas-docs/stable/timeseries.html#offset-aliases

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

2000-01-01 00:08:00 8
Freq: T, dtype: int64

Downsample the series into 3 minute bins and sum the values of the timestamps falling into a bin.

>>> series.resample('3T').sum()
2000-01-01 00:00:00 3
2000-01-01 00:03:00 12
2000-01-01 00:06:00 21
Freq: 3T, dtype: int64

Downsample the series into 3 minute bins as above, but label each bin using the right edge instead of the
left. Please note that the value in the bucket used as the label is not included in the bucket, which it labels.
For example, in the original series the bucket 2000-01-01 00:03:00 contains the value 3, but the
summed value in the resampled bucket with the label 2000-01-01 00:03:00 does not include 3 (if
it did, the summed value would be 6, not 3). To include this value close the right side of the bin interval
as illustrated in the example below this one.

>>> series.resample('3T', label='right').sum()
2000-01-01 00:03:00 3
2000-01-01 00:06:00 12
2000-01-01 00:09:00 21
Freq: 3T, dtype: int64

Downsample the series into 3 minute bins as above, but close the right side of the bin interval.

>>> series.resample('3T', label='right', closed='right').sum()
2000-01-01 00:00:00 0
2000-01-01 00:03:00 6
2000-01-01 00:06:00 15
2000-01-01 00:09:00 15
Freq: 3T, dtype: int64

Upsample the series into 30 second bins.

>>> series.resample('30S').asfreq()[0:5] #select first 5 rows
2000-01-01 00:00:00 0.0
2000-01-01 00:00:30 NaN
2000-01-01 00:01:00 1.0
2000-01-01 00:01:30 NaN
2000-01-01 00:02:00 2.0
Freq: 30S, dtype: float64

Upsample the series into 30 second bins and fill the NaN values using the pad method.

>>> series.resample('30S').pad()[0:5]
2000-01-01 00:00:00 0
2000-01-01 00:00:30 0
2000-01-01 00:01:00 1
2000-01-01 00:01:30 1
2000-01-01 00:02:00 2
Freq: 30S, dtype: int64

Upsample the series into 30 second bins and fill the NaN values using the bfill method.

1874 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

>>> series.resample('30S').bfill()[0:5]
2000-01-01 00:00:00 0
2000-01-01 00:00:30 1
2000-01-01 00:01:00 1
2000-01-01 00:01:30 2
2000-01-01 00:02:00 2
Freq: 30S, dtype: int64

Pass a custom function via apply

>>> def custom_resampler(array_like):
... return np.sum(array_like)+5

>>> series.resample('3T').apply(custom_resampler)
2000-01-01 00:00:00 8
2000-01-01 00:03:00 17
2000-01-01 00:06:00 26
Freq: 3T, dtype: int64

For a Series with a PeriodIndex, the keyword convention can be used to control whether to use the start or
end of rule.

>>> s = pd.Series([1, 2], index=pd.period_range('2012-01-01',
freq='A',
periods=2))

>>> s
2012 1
2013 2
Freq: A-DEC, dtype: int64

Resample by month using ‘start’ convention. Values are assigned to the first month of the period.

>>> s.resample('M', convention='start').asfreq().head()
2012-01 1.0
2012-02 NaN
2012-03 NaN
2012-04 NaN
2012-05 NaN
Freq: M, dtype: float64

Resample by month using ‘end’ convention. Values are assigned to the last month of the period.

>>> s.resample('M', convention='end').asfreq()
2012-12 1.0
2013-01 NaN
2013-02 NaN
2013-03 NaN
2013-04 NaN
2013-05 NaN
2013-06 NaN
2013-07 NaN
2013-08 NaN
2013-09 NaN
2013-10 NaN
2013-11 NaN
2013-12 2.0
Freq: M, dtype: float64

34.4. DataFrame 1875

pandas: powerful Python data analysis toolkit, Release 0.23.4

For DataFrame objects, the keyword on can be used to specify the column instead of the index for resam-
pling.

>>> df = pd.DataFrame(data=9*[range(4)], columns=['a', 'b', 'c', 'd'])
>>> df['time'] = pd.date_range('1/1/2000', periods=9, freq='T')
>>> df.resample('3T', on='time').sum()

a b c d
time
2000-01-01 00:00:00 0 3 6 9
2000-01-01 00:03:00 0 3 6 9
2000-01-01 00:06:00 0 3 6 9

For a DataFrame with MultiIndex, the keyword level can be used to specify on level the resampling
needs to take place.

>>> time = pd.date_range('1/1/2000', periods=5, freq='T')
>>> df2 = pd.DataFrame(data=10*[range(4)],

columns=['a', 'b', 'c', 'd'],
index=pd.MultiIndex.from_product([time, [1, 2]])
)

>>> df2.resample('3T', level=0).sum()
a b c d

2000-01-01 00:00:00 0 6 12 18
2000-01-01 00:03:00 0 4 8 12

pandas.DataFrame.reset_index

DataFrame.reset_index(level=None, drop=False, inplace=False, col_level=0, col_fill=”)
For DataFrame with multi-level index, return new DataFrame with labeling information in the columns
under the index names, defaulting to ‘level_0’, ‘level_1’, etc. if any are None. For a standard index, the
index name will be used (if set), otherwise a default ‘index’ or ‘level_0’ (if ‘index’ is already taken) will
be used.

Parameters level : int, str, tuple, or list, default None

Only remove the given levels from the index. Removes all levels by default

drop : boolean, default False

Do not try to insert index into dataframe columns. This resets the index to the
default integer index.

inplace : boolean, default False

Modify the DataFrame in place (do not create a new object)

col_level : int or str, default 0

If the columns have multiple levels, determines which level the labels are inserted
into. By default it is inserted into the first level.

col_fill : object, default ‘’

If the columns have multiple levels, determines how the other levels are named.
If None then the index name is repeated.

Returns

resetted [DataFrame]

1876 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

Examples

>>> df = pd.DataFrame([('bird', 389.0),
... ('bird', 24.0),
... ('mammal', 80.5),
... ('mammal', np.nan)],
... index=['falcon', 'parrot', 'lion', 'monkey'],
... columns=('class', 'max_speed'))
>>> df

class max_speed
falcon bird 389.0
parrot bird 24.0
lion mammal 80.5
monkey mammal NaN

When we reset the index, the old index is added as a column, and a new sequential index is used:

>>> df.reset_index()
index class max_speed

0 falcon bird 389.0
1 parrot bird 24.0
2 lion mammal 80.5
3 monkey mammal NaN

We can use the drop parameter to avoid the old index being added as a column:

>>> df.reset_index(drop=True)
class max_speed

0 bird 389.0
1 bird 24.0
2 mammal 80.5
3 mammal NaN

You can also use reset_index with MultiIndex.

>>> index = pd.MultiIndex.from_tuples([('bird', 'falcon'),
... ('bird', 'parrot'),
... ('mammal', 'lion'),
... ('mammal', 'monkey')],
... names=['class', 'name'])
>>> columns = pd.MultiIndex.from_tuples([('speed', 'max'),
... ('species', 'type')])
>>> df = pd.DataFrame([(389.0, 'fly'),
... (24.0, 'fly'),
... (80.5, 'run'),
... (np.nan, 'jump')],
... index=index,
... columns=columns)
>>> df

speed species
max type

class name
bird falcon 389.0 fly

parrot 24.0 fly
mammal lion 80.5 run

monkey NaN jump

If the index has multiple levels, we can reset a subset of them:

34.4. DataFrame 1877

pandas: powerful Python data analysis toolkit, Release 0.23.4

>>> df.reset_index(level='class')
class speed species

max type
name
falcon bird 389.0 fly
parrot bird 24.0 fly
lion mammal 80.5 run
monkey mammal NaN jump

If we are not dropping the index, by default, it is placed in the top level. We can place it in another level:

>>> df.reset_index(level='class', col_level=1)
speed species

class max type
name
falcon bird 389.0 fly
parrot bird 24.0 fly
lion mammal 80.5 run
monkey mammal NaN jump

When the index is inserted under another level, we can specify under which one with the parameter
col_fill:

>>> df.reset_index(level='class', col_level=1, col_fill='species')
species speed species
class max type

name
falcon bird 389.0 fly
parrot bird 24.0 fly
lion mammal 80.5 run
monkey mammal NaN jump

If we specify a nonexistent level for col_fill, it is created:

>>> df.reset_index(level='class', col_level=1, col_fill='genus')
genus speed species
class max type

name
falcon bird 389.0 fly
parrot bird 24.0 fly
lion mammal 80.5 run
monkey mammal NaN jump

pandas.DataFrame.rfloordiv

DataFrame.rfloordiv(other, axis=’columns’, level=None, fill_value=None)
Integer division of dataframe and other, element-wise (binary operator rfloordiv).

Equivalent to other // dataframe, but with support to substitute a fill_value for missing data in
one of the inputs.

Parameters

other [Series, DataFrame, or constant]

axis : {0, 1, ‘index’, ‘columns’}

For Series input, axis to match Series index on

1878 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

level : int or name

Broadcast across a level, matching Index values on the passed MultiIndex level

fill_value : None or float value, default None

Fill existing missing (NaN) values, and any new element needed for successful
DataFrame alignment, with this value before computation. If data in both corre-
sponding DataFrame locations is missing the result will be missing

Returns

result [DataFrame]

See also:

DataFrame.floordiv

Notes

Mismatched indices will be unioned together

Examples

None

pandas.DataFrame.rmod

DataFrame.rmod(other, axis=’columns’, level=None, fill_value=None)
Modulo of dataframe and other, element-wise (binary operator rmod).

Equivalent to other % dataframe, but with support to substitute a fill_value for missing data in one
of the inputs.

Parameters

other [Series, DataFrame, or constant]

axis : {0, 1, ‘index’, ‘columns’}

For Series input, axis to match Series index on

level : int or name

Broadcast across a level, matching Index values on the passed MultiIndex level

fill_value : None or float value, default None

Fill existing missing (NaN) values, and any new element needed for successful
DataFrame alignment, with this value before computation. If data in both corre-
sponding DataFrame locations is missing the result will be missing

Returns

result [DataFrame]

See also:

DataFrame.mod

34.4. DataFrame 1879

pandas: powerful Python data analysis toolkit, Release 0.23.4

Notes

Mismatched indices will be unioned together

Examples

None

pandas.DataFrame.rmul

DataFrame.rmul(other, axis=’columns’, level=None, fill_value=None)
Multiplication of dataframe and other, element-wise (binary operator rmul).

Equivalent to other * dataframe, but with support to substitute a fill_value for missing data in one
of the inputs.

Parameters

other [Series, DataFrame, or constant]

axis : {0, 1, ‘index’, ‘columns’}

For Series input, axis to match Series index on

level : int or name

Broadcast across a level, matching Index values on the passed MultiIndex level

fill_value : None or float value, default None

Fill existing missing (NaN) values, and any new element needed for successful
DataFrame alignment, with this value before computation. If data in both corre-
sponding DataFrame locations is missing the result will be missing

Returns

result [DataFrame]

See also:

DataFrame.mul

Notes

Mismatched indices will be unioned together

Examples

None

pandas.DataFrame.rolling

DataFrame.rolling(window, min_periods=None, center=False, win_type=None, on=None,
axis=0, closed=None)

Provides rolling window calculations.

1880 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

New in version 0.18.0.

Parameters window : int, or offset

Size of the moving window. This is the number of observations used for calculat-
ing the statistic. Each window will be a fixed size.

If its an offset then this will be the time period of each window. Each window will
be a variable sized based on the observations included in the time-period. This is
only valid for datetimelike indexes. This is new in 0.19.0

min_periods : int, default None

Minimum number of observations in window required to have a value (otherwise
result is NA). For a window that is specified by an offset, this will default to 1.

center : boolean, default False

Set the labels at the center of the window.

win_type : string, default None

Provide a window type. If None, all points are evenly weighted. See the notes
below for further information.

on : string, optional

For a DataFrame, column on which to calculate the rolling window, rather than
the index

closed : string, default None

Make the interval closed on the ‘right’, ‘left’, ‘both’ or ‘neither’ endpoints. For
offset-based windows, it defaults to ‘right’. For fixed windows, defaults to ‘both’.
Remaining cases not implemented for fixed windows.

New in version 0.20.0.

axis [int or string, default 0]

Returns

a Window or Rolling sub-classed for the particular operation

See also:

expanding Provides expanding transformations.

ewm Provides exponential weighted functions

Notes

By default, the result is set to the right edge of the window. This can be changed to the center of the
window by setting center=True.

To learn more about the offsets & frequency strings, please see this link.

The recognized win_types are:

• boxcar

• triang

• blackman

34.4. DataFrame 1881

http://pandas.pydata.org/pandas-docs/stable/timeseries.html#offset-aliases

pandas: powerful Python data analysis toolkit, Release 0.23.4

• hamming

• bartlett

• parzen

• bohman

• blackmanharris

• nuttall

• barthann

• kaiser (needs beta)

• gaussian (needs std)

• general_gaussian (needs power, width)

• slepian (needs width).

If win_type=None all points are evenly weighted. To learn more about different window types see
scipy.signal window functions.

Examples

>>> df = pd.DataFrame({'B': [0, 1, 2, np.nan, 4]})
>>> df

B
0 0.0
1 1.0
2 2.0
3 NaN
4 4.0

Rolling sum with a window length of 2, using the ‘triang’ window type.

>>> df.rolling(2, win_type='triang').sum()
B

0 NaN
1 1.0
2 2.5
3 NaN
4 NaN

Rolling sum with a window length of 2, min_periods defaults to the window length.

>>> df.rolling(2).sum()
B

0 NaN
1 1.0
2 3.0
3 NaN
4 NaN

Same as above, but explicitly set the min_periods

1882 Chapter 34. API Reference

https://docs.scipy.org/doc/scipy/reference/signal.html#window-functions

pandas: powerful Python data analysis toolkit, Release 0.23.4

>>> df.rolling(2, min_periods=1).sum()
B

0 0.0
1 1.0
2 3.0
3 2.0
4 4.0

A ragged (meaning not-a-regular frequency), time-indexed DataFrame

>>> df = pd.DataFrame({'B': [0, 1, 2, np.nan, 4]},
... index = [pd.Timestamp('20130101 09:00:00'),
... pd.Timestamp('20130101 09:00:02'),
... pd.Timestamp('20130101 09:00:03'),
... pd.Timestamp('20130101 09:00:05'),
... pd.Timestamp('20130101 09:00:06')])

>>> df
B

2013-01-01 09:00:00 0.0
2013-01-01 09:00:02 1.0
2013-01-01 09:00:03 2.0
2013-01-01 09:00:05 NaN
2013-01-01 09:00:06 4.0

Contrasting to an integer rolling window, this will roll a variable length window corresponding to the time
period. The default for min_periods is 1.

>>> df.rolling('2s').sum()
B

2013-01-01 09:00:00 0.0
2013-01-01 09:00:02 1.0
2013-01-01 09:00:03 3.0
2013-01-01 09:00:05 NaN
2013-01-01 09:00:06 4.0

pandas.DataFrame.round

DataFrame.round(decimals=0, *args, **kwargs)
Round a DataFrame to a variable number of decimal places.

Parameters decimals : int, dict, Series

Number of decimal places to round each column to. If an int is given, round each
column to the same number of places. Otherwise dict and Series round to variable
numbers of places. Column names should be in the keys if decimals is a dict-like,
or in the index if decimals is a Series. Any columns not included in decimals will
be left as is. Elements of decimals which are not columns of the input will be
ignored.

Returns

DataFrame object

See also:

numpy.around, Series.round

34.4. DataFrame 1883

https://docs.scipy.org/doc/numpy/reference/generated/numpy.around.html#numpy.around

pandas: powerful Python data analysis toolkit, Release 0.23.4

Examples

>>> df = pd.DataFrame(np.random.random([3, 3]),
... columns=['A', 'B', 'C'], index=['first', 'second', 'third'])
>>> df

A B C
first 0.028208 0.992815 0.173891
second 0.038683 0.645646 0.577595
third 0.877076 0.149370 0.491027
>>> df.round(2)

A B C
first 0.03 0.99 0.17
second 0.04 0.65 0.58
third 0.88 0.15 0.49
>>> df.round({'A': 1, 'C': 2})

A B C
first 0.0 0.992815 0.17
second 0.0 0.645646 0.58
third 0.9 0.149370 0.49
>>> decimals = pd.Series([1, 0, 2], index=['A', 'B', 'C'])
>>> df.round(decimals)

A B C
first 0.0 1 0.17
second 0.0 1 0.58
third 0.9 0 0.49

pandas.DataFrame.rpow

DataFrame.rpow(other, axis=’columns’, level=None, fill_value=None)
Exponential power of dataframe and other, element-wise (binary operator rpow).

Equivalent to other ** dataframe, but with support to substitute a fill_value for missing data in
one of the inputs.

Parameters

other [Series, DataFrame, or constant]

axis : {0, 1, ‘index’, ‘columns’}

For Series input, axis to match Series index on

level : int or name

Broadcast across a level, matching Index values on the passed MultiIndex level

fill_value : None or float value, default None

Fill existing missing (NaN) values, and any new element needed for successful
DataFrame alignment, with this value before computation. If data in both corre-
sponding DataFrame locations is missing the result will be missing

Returns

result [DataFrame]

See also:

DataFrame.pow

1884 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

Notes

Mismatched indices will be unioned together

Examples

None

pandas.DataFrame.rsub

DataFrame.rsub(other, axis=’columns’, level=None, fill_value=None)
Subtraction of dataframe and other, element-wise (binary operator rsub).

Equivalent to other - dataframe, but with support to substitute a fill_value for missing data in one
of the inputs.

Parameters

other [Series, DataFrame, or constant]

axis : {0, 1, ‘index’, ‘columns’}

For Series input, axis to match Series index on

level : int or name

Broadcast across a level, matching Index values on the passed MultiIndex level

fill_value : None or float value, default None

Fill existing missing (NaN) values, and any new element needed for successful
DataFrame alignment, with this value before computation. If data in both corre-
sponding DataFrame locations is missing the result will be missing

Returns

result [DataFrame]

See also:

DataFrame.sub

Notes

Mismatched indices will be unioned together

Examples

>>> a = pd.DataFrame([2, 1, 1, np.nan], index=['a', 'b', 'c', 'd'],
... columns=['one'])
>>> a

one
a 2.0
b 1.0
c 1.0
d NaN

(continues on next page)

34.4. DataFrame 1885

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

>>> b = pd.DataFrame(dict(one=[1, np.nan, 1, np.nan],
... two=[3, 2, np.nan, 2]),
... index=['a', 'b', 'd', 'e'])
>>> b

one two
a 1.0 3.0
b NaN 2.0
d 1.0 NaN
e NaN 2.0
>>> a.sub(b, fill_value=0)

one two
a 1.0 -3.0
b 1.0 -2.0
c 1.0 NaN
d -1.0 NaN
e NaN -2.0

pandas.DataFrame.rtruediv

DataFrame.rtruediv(other, axis=’columns’, level=None, fill_value=None)
Floating division of dataframe and other, element-wise (binary operator rtruediv).

Equivalent to other / dataframe, but with support to substitute a fill_value for missing data in one
of the inputs.

Parameters

other [Series, DataFrame, or constant]

axis : {0, 1, ‘index’, ‘columns’}

For Series input, axis to match Series index on

level : int or name

Broadcast across a level, matching Index values on the passed MultiIndex level

fill_value : None or float value, default None

Fill existing missing (NaN) values, and any new element needed for successful
DataFrame alignment, with this value before computation. If data in both corre-
sponding DataFrame locations is missing the result will be missing

Returns

result [DataFrame]

See also:

DataFrame.truediv

Notes

Mismatched indices will be unioned together

1886 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

Examples

None

pandas.DataFrame.sample

DataFrame.sample(n=None, frac=None, replace=False, weights=None, random_state=None,
axis=None)

Return a random sample of items from an axis of object.

You can use random_state for reproducibility.

Parameters n : int, optional

Number of items from axis to return. Cannot be used with frac. Default = 1 if
frac = None.

frac : float, optional

Fraction of axis items to return. Cannot be used with n.

replace : boolean, optional

Sample with or without replacement. Default = False.

weights : str or ndarray-like, optional

Default ‘None’ results in equal probability weighting. If passed a Series, will
align with target object on index. Index values in weights not found in sampled
object will be ignored and index values in sampled object not in weights will be
assigned weights of zero. If called on a DataFrame, will accept the name of a
column when axis = 0. Unless weights are a Series, weights must be same length
as axis being sampled. If weights do not sum to 1, they will be normalized to sum
to 1. Missing values in the weights column will be treated as zero. inf and -inf
values not allowed.

random_state : int or numpy.random.RandomState, optional

Seed for the random number generator (if int), or numpy RandomState object.

axis : int or string, optional

Axis to sample. Accepts axis number or name. Default is stat axis for given data
type (0 for Series and DataFrames, 1 for Panels).

Returns

A new object of same type as caller.

Examples

Generate an example Series and DataFrame:

>>> s = pd.Series(np.random.randn(50))
>>> s.head()
0 -0.038497
1 1.820773
2 -0.972766
3 -1.598270

(continues on next page)

34.4. DataFrame 1887

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

4 -1.095526
dtype: float64
>>> df = pd.DataFrame(np.random.randn(50, 4), columns=list('ABCD'))
>>> df.head()

A B C D
0 0.016443 -2.318952 -0.566372 -1.028078
1 -1.051921 0.438836 0.658280 -0.175797
2 -1.243569 -0.364626 -0.215065 0.057736
3 1.768216 0.404512 -0.385604 -1.457834
4 1.072446 -1.137172 0.314194 -0.046661

Next extract a random sample from both of these objects. . .

3 random elements from the Series:

>>> s.sample(n=3)
27 -0.994689
55 -1.049016
67 -0.224565
dtype: float64

And a random 10% of the DataFrame with replacement:

>>> df.sample(frac=0.1, replace=True)
A B C D

35 1.981780 0.142106 1.817165 -0.290805
49 -1.336199 -0.448634 -0.789640 0.217116
40 0.823173 -0.078816 1.009536 1.015108
15 1.421154 -0.055301 -1.922594 -0.019696
6 -0.148339 0.832938 1.787600 -1.383767

You can use random state for reproducibility:

>>> df.sample(random_state=1)
A B C D
37 -2.027662 0.103611 0.237496 -0.165867
43 -0.259323 -0.583426 1.516140 -0.479118
12 -1.686325 -0.579510 0.985195 -0.460286
8 1.167946 0.429082 1.215742 -1.636041
9 1.197475 -0.864188 1.554031 -1.505264

pandas.DataFrame.select

DataFrame.select(crit, axis=0)
Return data corresponding to axis labels matching criteria

Deprecated since version 0.21.0: Use df.loc[df.index.map(crit)] to select via labels

Parameters crit : function

To be called on each index (label). Should return True or False

axis [int]

Returns

selection [type of caller]

1888 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

pandas.DataFrame.select_dtypes

DataFrame.select_dtypes(include=None, exclude=None)
Return a subset of the DataFrame’s columns based on the column dtypes.

Parameters include, exclude : scalar or list-like

A selection of dtypes or strings to be included/excluded. At least one of these
parameters must be supplied.

Returns subset : DataFrame

The subset of the frame including the dtypes in include and excluding the
dtypes in exclude.

Raises ValueError

• If both of include and exclude are empty

• If include and exclude have overlapping elements

• If any kind of string dtype is passed in.

Notes

• To select all numeric types, use np.number or 'number'

• To select strings you must use the object dtype, but note that this will return all object dtype
columns

• See the numpy dtype hierarchy

• To select datetimes, use np.datetime64, 'datetime' or 'datetime64'

• To select timedeltas, use np.timedelta64, 'timedelta' or 'timedelta64'

• To select Pandas categorical dtypes, use 'category'

• To select Pandas datetimetz dtypes, use 'datetimetz' (new in 0.20.0) or 'datetime64[ns,
tz]'

Examples

>>> df = pd.DataFrame({'a': [1, 2] * 3,
... 'b': [True, False] * 3,
... 'c': [1.0, 2.0] * 3})
>>> df

a b c
0 1 True 1.0
1 2 False 2.0
2 1 True 1.0
3 2 False 2.0
4 1 True 1.0
5 2 False 2.0

>>> df.select_dtypes(include='bool')
b

0 True

(continues on next page)

34.4. DataFrame 1889

http://docs.scipy.org/doc/numpy/reference/arrays.scalars.html

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

1 False
2 True
3 False
4 True
5 False

>>> df.select_dtypes(include=['float64'])
c

0 1.0
1 2.0
2 1.0
3 2.0
4 1.0
5 2.0

>>> df.select_dtypes(exclude=['int'])
b c

0 True 1.0
1 False 2.0
2 True 1.0
3 False 2.0
4 True 1.0
5 False 2.0

pandas.DataFrame.sem

DataFrame.sem(axis=None, skipna=None, level=None, ddof=1, numeric_only=None, **kwargs)
Return unbiased standard error of the mean over requested axis.

Normalized by N-1 by default. This can be changed using the ddof argument

Parameters

axis [{index (0), columns (1)}]

skipna : boolean, default True

Exclude NA/null values. If an entire row/column is NA, the result will be NA

level : int or level name, default None

If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing
into a Series

ddof : int, default 1

Delta Degrees of Freedom. The divisor used in calculations is N - ddof, where N
represents the number of elements.

numeric_only : boolean, default None

Include only float, int, boolean columns. If None, will attempt to use everything,
then use only numeric data. Not implemented for Series.

Returns

sem [Series or DataFrame (if level specified)]

1890 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

pandas.DataFrame.set_axis

DataFrame.set_axis(labels, axis=0, inplace=None)
Assign desired index to given axis.

Indexes for column or row labels can be changed by assigning a list-like or Index.

Changed in version 0.21.0: The signature is now labels and axis, consistent with the rest of pandas API.
Previously, the axis and labels arguments were respectively the first and second positional arguments.

Parameters labels : list-like, Index

The values for the new index.

axis : {0 or ‘index’, 1 or ‘columns’}, default 0

The axis to update. The value 0 identifies the rows, and 1 identifies the columns.

inplace : boolean, default None

Whether to return a new %(klass)s instance.

Warning: inplace=None currently falls back to to True, but in a future
version, will default to False. Use inplace=True explicitly rather than relying
on the default.

Returns renamed : %(klass)s or None

An object of same type as caller if inplace=False, None otherwise.

See also:

pandas.DataFrame.rename_axis Alter the name of the index or columns.

Examples

Series

>>> s = pd.Series([1, 2, 3])
>>> s
0 1
1 2
2 3
dtype: int64

>>> s.set_axis(['a', 'b', 'c'], axis=0, inplace=False)
a 1
b 2
c 3
dtype: int64

The original object is not modified.

>>> s
0 1
1 2

(continues on next page)

34.4. DataFrame 1891

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

2 3
dtype: int64

DataFrame

>>> df = pd.DataFrame({"A": [1, 2, 3], "B": [4, 5, 6]})

Change the row labels.

>>> df.set_axis(['a', 'b', 'c'], axis='index', inplace=False)
A B

a 1 4
b 2 5
c 3 6

Change the column labels.

>>> df.set_axis(['I', 'II'], axis='columns', inplace=False)
I II

0 1 4
1 2 5
2 3 6

Now, update the labels inplace.

>>> df.set_axis(['i', 'ii'], axis='columns', inplace=True)
>>> df

i ii
0 1 4
1 2 5
2 3 6

pandas.DataFrame.set_index

DataFrame.set_index(keys, drop=True, append=False, inplace=False, verify_integrity=False)
Set the DataFrame index (row labels) using one or more existing columns. By default yields a new object.

Parameters

keys [column label or list of column labels / arrays]

drop : boolean, default True

Delete columns to be used as the new index

append : boolean, default False

Whether to append columns to existing index

inplace : boolean, default False

Modify the DataFrame in place (do not create a new object)

verify_integrity : boolean, default False

Check the new index for duplicates. Otherwise defer the check until necessary.
Setting to False will improve the performance of this method

Returns

1892 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

dataframe [DataFrame]

Examples

>>> df = pd.DataFrame({'month': [1, 4, 7, 10],
... 'year': [2012, 2014, 2013, 2014],
... 'sale':[55, 40, 84, 31]})

month sale year
0 1 55 2012
1 4 40 2014
2 7 84 2013
3 10 31 2014

Set the index to become the ‘month’ column:

>>> df.set_index('month')
sale year

month
1 55 2012
4 40 2014
7 84 2013
10 31 2014

Create a multi-index using columns ‘year’ and ‘month’:

>>> df.set_index(['year', 'month'])
sale

year month
2012 1 55
2014 4 40
2013 7 84
2014 10 31

Create a multi-index using a set of values and a column:

>>> df.set_index([[1, 2, 3, 4], 'year'])
month sale

year
1 2012 1 55
2 2014 4 40
3 2013 7 84
4 2014 10 31

pandas.DataFrame.set_value

DataFrame.set_value(index, col, value, takeable=False)
Put single value at passed column and index

Deprecated since version 0.21.0: Use .at[] or .iat[] accessors instead.

Parameters

index [row label]

col [column label]

value [scalar value]

34.4. DataFrame 1893

pandas: powerful Python data analysis toolkit, Release 0.23.4

takeable [interpret the index/col as indexers, default False]

Returns frame : DataFrame

If label pair is contained, will be reference to calling DataFrame, otherwise a new
object

pandas.DataFrame.shift

DataFrame.shift(periods=1, freq=None, axis=0)
Shift index by desired number of periods with an optional time freq

Parameters periods : int

Number of periods to move, can be positive or negative

freq : DateOffset, timedelta, or time rule string, optional

Increment to use from the tseries module or time rule (e.g. ‘EOM’). See Notes.

axis [{0 or ‘index’, 1 or ‘columns’}]

Returns

shifted [DataFrame]

Notes

If freq is specified then the index values are shifted but the data is not realigned. That is, use freq if you
would like to extend the index when shifting and preserve the original data.

pandas.DataFrame.skew

DataFrame.skew(axis=None, skipna=None, level=None, numeric_only=None, **kwargs)
Return unbiased skew over requested axis Normalized by N-1

Parameters

axis [{index (0), columns (1)}]

skipna : boolean, default True

Exclude NA/null values when computing the result.

level : int or level name, default None

If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing
into a Series

numeric_only : boolean, default None

Include only float, int, boolean columns. If None, will attempt to use everything,
then use only numeric data. Not implemented for Series.

Returns

skew [Series or DataFrame (if level specified)]

1894 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

pandas.DataFrame.slice_shift

DataFrame.slice_shift(periods=1, axis=0)
Equivalent to shift without copying data. The shifted data will not include the dropped periods and the
shifted axis will be smaller than the original.

Parameters periods : int

Number of periods to move, can be positive or negative

Returns

shifted [same type as caller]

Notes

While the slice_shift is faster than shift, you may pay for it later during alignment.

pandas.DataFrame.sort_index

DataFrame.sort_index(axis=0, level=None, ascending=True, inplace=False, kind=’quicksort’,
na_position=’last’, sort_remaining=True, by=None)

Sort object by labels (along an axis)

Parameters

axis [index, columns to direct sorting]

level : int or level name or list of ints or list of level names

if not None, sort on values in specified index level(s)

ascending : boolean, default True

Sort ascending vs. descending

inplace : bool, default False

if True, perform operation in-place

kind : {‘quicksort’, ‘mergesort’, ‘heapsort’}, default ‘quicksort’

Choice of sorting algorithm. See also ndarray.np.sort for more information.
mergesort is the only stable algorithm. For DataFrames, this option is only ap-
plied when sorting on a single column or label.

na_position : {‘first’, ‘last’}, default ‘last’

first puts NaNs at the beginning, last puts NaNs at the end. Not implemented for
MultiIndex.

sort_remaining : bool, default True

if true and sorting by level and index is multilevel, sort by other levels too (in
order) after sorting by specified level

Returns

sorted_obj [DataFrame]

34.4. DataFrame 1895

pandas: powerful Python data analysis toolkit, Release 0.23.4

pandas.DataFrame.sort_values

DataFrame.sort_values(by, axis=0, ascending=True, inplace=False, kind=’quicksort’,
na_position=’last’)

Sort by the values along either axis

Parameters by : str or list of str

Name or list of names to sort by.

• if axis is 0 or ‘index’ then by may contain index levels and/or column labels

• if axis is 1 or ‘columns’ then by may contain column levels and/or index labels

Changed in version 0.23.0: Allow specifying index or column level names.

axis : {0 or ‘index’, 1 or ‘columns’}, default 0

Axis to be sorted

ascending : bool or list of bool, default True

Sort ascending vs. descending. Specify list for multiple sort orders. If this is a
list of bools, must match the length of the by.

inplace : bool, default False

if True, perform operation in-place

kind : {‘quicksort’, ‘mergesort’, ‘heapsort’}, default ‘quicksort’

Choice of sorting algorithm. See also ndarray.np.sort for more information.
mergesort is the only stable algorithm. For DataFrames, this option is only ap-
plied when sorting on a single column or label.

na_position : {‘first’, ‘last’}, default ‘last’

first puts NaNs at the beginning, last puts NaNs at the end

Returns

sorted_obj [DataFrame]

Examples

>>> df = pd.DataFrame({
... 'col1' : ['A', 'A', 'B', np.nan, 'D', 'C'],
... 'col2' : [2, 1, 9, 8, 7, 4],
... 'col3': [0, 1, 9, 4, 2, 3],
... })
>>> df

col1 col2 col3
0 A 2 0
1 A 1 1
2 B 9 9
3 NaN 8 4
4 D 7 2
5 C 4 3

Sort by col1

1896 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

>>> df.sort_values(by=['col1'])
col1 col2 col3

0 A 2 0
1 A 1 1
2 B 9 9
5 C 4 3
4 D 7 2
3 NaN 8 4

Sort by multiple columns

>>> df.sort_values(by=['col1', 'col2'])
col1 col2 col3

1 A 1 1
0 A 2 0
2 B 9 9
5 C 4 3
4 D 7 2
3 NaN 8 4

Sort Descending

>>> df.sort_values(by='col1', ascending=False)
col1 col2 col3

4 D 7 2
5 C 4 3
2 B 9 9
0 A 2 0
1 A 1 1
3 NaN 8 4

Putting NAs first

>>> df.sort_values(by='col1', ascending=False, na_position='first')
col1 col2 col3

3 NaN 8 4
4 D 7 2
5 C 4 3
2 B 9 9
0 A 2 0
1 A 1 1

pandas.DataFrame.sortlevel

DataFrame.sortlevel(level=0, axis=0, ascending=True, inplace=False, sort_remaining=True)
Sort multilevel index by chosen axis and primary level. Data will be lexicographically sorted by the
chosen level followed by the other levels (in order).

Deprecated since version 0.20.0: Use DataFrame.sort_index()

Parameters

level [int]

axis [{0 or ‘index’, 1 or ‘columns’}, default 0]

ascending [boolean, default True]

34.4. DataFrame 1897

pandas: powerful Python data analysis toolkit, Release 0.23.4

inplace : boolean, default False

Sort the DataFrame without creating a new instance

sort_remaining : boolean, default True

Sort by the other levels too.

Returns

sorted [DataFrame]

See also:

DataFrame.sort_index

pandas.DataFrame.squeeze

DataFrame.squeeze(axis=None)
Squeeze length 1 dimensions.

Parameters axis : None, integer or string axis name, optional

The axis to squeeze if 1-sized.

New in version 0.20.0.

Returns

scalar if 1-sized, else original object

pandas.DataFrame.stack

DataFrame.stack(level=-1, dropna=True)
Stack the prescribed level(s) from columns to index.

Return a reshaped DataFrame or Series having a multi-level index with one or more new inner-most levels
compared to the current DataFrame. The new inner-most levels are created by pivoting the columns of
the current dataframe:

• if the columns have a single level, the output is a Series;

• if the columns have multiple levels, the new index level(s) is (are) taken from the prescribed level(s)
and the output is a DataFrame.

The new index levels are sorted.

Parameters level : int, str, list, default -1

Level(s) to stack from the column axis onto the index axis, defined as one index
or label, or a list of indices or labels.

dropna : bool, default True

Whether to drop rows in the resulting Frame/Series with missing values. Stacking
a column level onto the index axis can create combinations of index and column
values that are missing from the original dataframe. See Examples section.

Returns DataFrame or Series

Stacked dataframe or series.

See also:

1898 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

DataFrame.unstack Unstack prescribed level(s) from index axis onto column axis.

DataFrame.pivot Reshape dataframe from long format to wide format.

DataFrame.pivot_table Create a spreadsheet-style pivot table as a DataFrame.

Notes

The function is named by analogy with a collection of books being re-organised from being side by side
on a horizontal position (the columns of the dataframe) to being stacked vertically on top of of each other
(in the index of the dataframe).

Examples

Single level columns

>>> df_single_level_cols = pd.DataFrame([[0, 1], [2, 3]],
... index=['cat', 'dog'],
... columns=['weight', 'height'])

Stacking a dataframe with a single level column axis returns a Series:

>>> df_single_level_cols
weight height

cat 0 1
dog 2 3
>>> df_single_level_cols.stack()
cat weight 0

height 1
dog weight 2

height 3
dtype: int64

Multi level columns: simple case

>>> multicol1 = pd.MultiIndex.from_tuples([('weight', 'kg'),
... ('weight', 'pounds')])
>>> df_multi_level_cols1 = pd.DataFrame([[1, 2], [2, 4]],
... index=['cat', 'dog'],
... columns=multicol1)

Stacking a dataframe with a multi-level column axis:

>>> df_multi_level_cols1
weight

kg pounds
cat 1 2
dog 2 4
>>> df_multi_level_cols1.stack()

weight
cat kg 1

pounds 2
dog kg 2

pounds 4

Missing values

34.4. DataFrame 1899

pandas: powerful Python data analysis toolkit, Release 0.23.4

>>> multicol2 = pd.MultiIndex.from_tuples([('weight', 'kg'),
... ('height', 'm')])
>>> df_multi_level_cols2 = pd.DataFrame([[1.0, 2.0], [3.0, 4.0]],
... index=['cat', 'dog'],
... columns=multicol2)

It is common to have missing values when stacking a dataframe with multi-level columns, as the stacked
dataframe typically has more values than the original dataframe. Missing values are filled with NaNs:

>>> df_multi_level_cols2
weight height

kg m
cat 1.0 2.0
dog 3.0 4.0
>>> df_multi_level_cols2.stack()

height weight
cat kg NaN 1.0

m 2.0 NaN
dog kg NaN 3.0

m 4.0 NaN

Prescribing the level(s) to be stacked

The first parameter controls which level or levels are stacked:

>>> df_multi_level_cols2.stack(0)
kg m

cat height NaN 2.0
weight 1.0 NaN

dog height NaN 4.0
weight 3.0 NaN

>>> df_multi_level_cols2.stack([0, 1])
cat height m 2.0

weight kg 1.0
dog height m 4.0

weight kg 3.0
dtype: float64

Dropping missing values

>>> df_multi_level_cols3 = pd.DataFrame([[None, 1.0], [2.0, 3.0]],
... index=['cat', 'dog'],
... columns=multicol2)

Note that rows where all values are missing are dropped by default but this behaviour can be controlled
via the dropna keyword parameter:

>>> df_multi_level_cols3
weight height

kg m
cat NaN 1.0
dog 2.0 3.0
>>> df_multi_level_cols3.stack(dropna=False)

height weight
cat kg NaN NaN

m 1.0 NaN
dog kg NaN 2.0

(continues on next page)

1900 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

m 3.0 NaN
>>> df_multi_level_cols3.stack(dropna=True)

height weight
cat m 1.0 NaN
dog kg NaN 2.0

m 3.0 NaN

pandas.DataFrame.std

DataFrame.std(axis=None, skipna=None, level=None, ddof=1, numeric_only=None, **kwargs)
Return sample standard deviation over requested axis.

Normalized by N-1 by default. This can be changed using the ddof argument

Parameters

axis [{index (0), columns (1)}]

skipna : boolean, default True

Exclude NA/null values. If an entire row/column is NA, the result will be NA

level : int or level name, default None

If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing
into a Series

ddof : int, default 1

Delta Degrees of Freedom. The divisor used in calculations is N - ddof, where N
represents the number of elements.

numeric_only : boolean, default None

Include only float, int, boolean columns. If None, will attempt to use everything,
then use only numeric data. Not implemented for Series.

Returns

std [Series or DataFrame (if level specified)]

pandas.DataFrame.sub

DataFrame.sub(other, axis=’columns’, level=None, fill_value=None)
Subtraction of dataframe and other, element-wise (binary operator sub).

Equivalent to dataframe - other, but with support to substitute a fill_value for missing data in one
of the inputs.

Parameters

other [Series, DataFrame, or constant]

axis : {0, 1, ‘index’, ‘columns’}

For Series input, axis to match Series index on

level : int or name

Broadcast across a level, matching Index values on the passed MultiIndex level

34.4. DataFrame 1901

pandas: powerful Python data analysis toolkit, Release 0.23.4

fill_value : None or float value, default None

Fill existing missing (NaN) values, and any new element needed for successful
DataFrame alignment, with this value before computation. If data in both corre-
sponding DataFrame locations is missing the result will be missing

Returns

result [DataFrame]

See also:

DataFrame.rsub

Notes

Mismatched indices will be unioned together

Examples

>>> a = pd.DataFrame([2, 1, 1, np.nan], index=['a', 'b', 'c', 'd'],
... columns=['one'])
>>> a

one
a 2.0
b 1.0
c 1.0
d NaN
>>> b = pd.DataFrame(dict(one=[1, np.nan, 1, np.nan],
... two=[3, 2, np.nan, 2]),
... index=['a', 'b', 'd', 'e'])
>>> b

one two
a 1.0 3.0
b NaN 2.0
d 1.0 NaN
e NaN 2.0
>>> a.sub(b, fill_value=0)

one two
a 1.0 -3.0
b 1.0 -2.0
c 1.0 NaN
d -1.0 NaN
e NaN -2.0

pandas.DataFrame.subtract

DataFrame.subtract(other, axis=’columns’, level=None, fill_value=None)
Subtraction of dataframe and other, element-wise (binary operator sub).

Equivalent to dataframe - other, but with support to substitute a fill_value for missing data in one
of the inputs.

Parameters

other [Series, DataFrame, or constant]

1902 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

axis : {0, 1, ‘index’, ‘columns’}

For Series input, axis to match Series index on

level : int or name

Broadcast across a level, matching Index values on the passed MultiIndex level

fill_value : None or float value, default None

Fill existing missing (NaN) values, and any new element needed for successful
DataFrame alignment, with this value before computation. If data in both corre-
sponding DataFrame locations is missing the result will be missing

Returns

result [DataFrame]

See also:

DataFrame.rsub

Notes

Mismatched indices will be unioned together

Examples

>>> a = pd.DataFrame([2, 1, 1, np.nan], index=['a', 'b', 'c', 'd'],
... columns=['one'])
>>> a

one
a 2.0
b 1.0
c 1.0
d NaN
>>> b = pd.DataFrame(dict(one=[1, np.nan, 1, np.nan],
... two=[3, 2, np.nan, 2]),
... index=['a', 'b', 'd', 'e'])
>>> b

one two
a 1.0 3.0
b NaN 2.0
d 1.0 NaN
e NaN 2.0
>>> a.sub(b, fill_value=0)

one two
a 1.0 -3.0
b 1.0 -2.0
c 1.0 NaN
d -1.0 NaN
e NaN -2.0

34.4. DataFrame 1903

pandas: powerful Python data analysis toolkit, Release 0.23.4

pandas.DataFrame.sum

DataFrame.sum(axis=None, skipna=None, level=None, numeric_only=None, min_count=0,
**kwargs)

Return the sum of the values for the requested axis

Parameters

axis [{index (0), columns (1)}]

skipna : boolean, default True

Exclude NA/null values when computing the result.

level : int or level name, default None

If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing
into a Series

numeric_only : boolean, default None

Include only float, int, boolean columns. If None, will attempt to use everything,
then use only numeric data. Not implemented for Series.

min_count : int, default 0

The required number of valid values to perform the operation. If fewer than
min_count non-NA values are present the result will be NA.

New in version 0.22.0: Added with the default being 0. This means the sum of
an all-NA or empty Series is 0, and the product of an all-NA or empty Series is 1.

Returns

sum [Series or DataFrame (if level specified)]

Examples

By default, the sum of an empty or all-NA Series is 0.

>>> pd.Series([]).sum() # min_count=0 is the default
0.0

This can be controlled with the min_count parameter. For example, if you’d like the sum of an empty
series to be NaN, pass min_count=1.

>>> pd.Series([]).sum(min_count=1)
nan

Thanks to the skipna parameter, min_count handles all-NA and empty series identically.

>>> pd.Series([np.nan]).sum()
0.0

>>> pd.Series([np.nan]).sum(min_count=1)
nan

1904 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

pandas.DataFrame.swapaxes

DataFrame.swapaxes(axis1, axis2, copy=True)
Interchange axes and swap values axes appropriately

Returns

y [same as input]

pandas.DataFrame.swaplevel

DataFrame.swaplevel(i=-2, j=-1, axis=0)
Swap levels i and j in a MultiIndex on a particular axis

Parameters i, j : int, string (can be mixed)

Level of index to be swapped. Can pass level name as string.

Returns

swapped [type of caller (new object)]

.. versionchanged:: 0.18.1

The indexes i and j are now optional, and default to the two innermost levels of
the index.

pandas.DataFrame.tail

DataFrame.tail(n=5)
Return the last n rows.

This function returns last n rows from the object based on position. It is useful for quickly verifying data,
for example, after sorting or appending rows.

Parameters n : int, default 5

Number of rows to select.

Returns type of caller

The last n rows of the caller object.

See also:

pandas.DataFrame.head The first n rows of the caller object.

Examples

>>> df = pd.DataFrame({'animal':['alligator', 'bee', 'falcon', 'lion',
... 'monkey', 'parrot', 'shark', 'whale', 'zebra']})
>>> df

animal
0 alligator
1 bee
2 falcon
3 lion

(continues on next page)

34.4. DataFrame 1905

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

4 monkey
5 parrot
6 shark
7 whale
8 zebra

Viewing the last 5 lines

>>> df.tail()
animal

4 monkey
5 parrot
6 shark
7 whale
8 zebra

Viewing the last n lines (three in this case)

>>> df.tail(3)
animal

6 shark
7 whale
8 zebra

pandas.DataFrame.take

DataFrame.take(indices, axis=0, convert=None, is_copy=True, **kwargs)
Return the elements in the given positional indices along an axis.

This means that we are not indexing according to actual values in the index attribute of the object. We are
indexing according to the actual position of the element in the object.

Parameters indices : array-like

An array of ints indicating which positions to take.

axis : {0 or ‘index’, 1 or ‘columns’, None}, default 0

The axis on which to select elements. 0 means that we are selecting rows, 1
means that we are selecting columns.

convert : bool, default True

Whether to convert negative indices into positive ones. For example, -1 would
map to the len(axis) - 1. The conversions are similar to the behavior of
indexing a regular Python list.

Deprecated since version 0.21.0: In the future, negative indices will always be
converted.

is_copy : bool, default True

Whether to return a copy of the original object or not.

**kwargs

For compatibility with numpy.take(). Has no effect on the output.

Returns taken : type of caller

1906 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

An array-like containing the elements taken from the object.

See also:

DataFrame.loc Select a subset of a DataFrame by labels.

DataFrame.iloc Select a subset of a DataFrame by positions.

numpy.take Take elements from an array along an axis.

Examples

>>> df = pd.DataFrame([('falcon', 'bird', 389.0),
... ('parrot', 'bird', 24.0),
... ('lion', 'mammal', 80.5),
... ('monkey', 'mammal', np.nan)],
... columns=['name', 'class', 'max_speed'],
... index=[0, 2, 3, 1])
>>> df

name class max_speed
0 falcon bird 389.0
2 parrot bird 24.0
3 lion mammal 80.5
1 monkey mammal NaN

Take elements at positions 0 and 3 along the axis 0 (default).

Note how the actual indices selected (0 and 1) do not correspond to our selected indices 0 and 3. That’s
because we are selecting the 0th and 3rd rows, not rows whose indices equal 0 and 3.

>>> df.take([0, 3])
name class max_speed

0 falcon bird 389.0
1 monkey mammal NaN

Take elements at indices 1 and 2 along the axis 1 (column selection).

>>> df.take([1, 2], axis=1)
class max_speed

0 bird 389.0
2 bird 24.0
3 mammal 80.5
1 mammal NaN

We may take elements using negative integers for positive indices, starting from the end of the object, just
like with Python lists.

>>> df.take([-1, -2])
name class max_speed

1 monkey mammal NaN
3 lion mammal 80.5

pandas.DataFrame.to_clipboard

DataFrame.to_clipboard(excel=True, sep=None, **kwargs)
Copy object to the system clipboard.

34.4. DataFrame 1907

https://docs.scipy.org/doc/numpy/reference/generated/numpy.take.html#numpy.take

pandas: powerful Python data analysis toolkit, Release 0.23.4

Write a text representation of object to the system clipboard. This can be pasted into Excel, for example.

Parameters excel : bool, default True

• True, use the provided separator, writing in a csv format for allowing easy pasting
into excel.

• False, write a string representation of the object to the clipboard.

sep : str, default '\t'

Field delimiter.

**kwargs

These parameters will be passed to DataFrame.to_csv.

See also:

DataFrame.to_csv Write a DataFrame to a comma-separated values (csv) file.

read_clipboard Read text from clipboard and pass to read_table.

Notes

Requirements for your platform.

• Linux : xclip, or xsel (with gtk or PyQt4 modules)

• Windows : none

• OS X : none

Examples

Copy the contents of a DataFrame to the clipboard.

>>> df = pd.DataFrame([[1, 2, 3], [4, 5, 6]], columns=['A', 'B', 'C'])
>>> df.to_clipboard(sep=',')
... # Wrote the following to the system clipboard:
... # ,A,B,C
... # 0,1,2,3
... # 1,4,5,6

We can omit the the index by passing the keyword index and setting it to false.

>>> df.to_clipboard(sep=',', index=False)
... # Wrote the following to the system clipboard:
... # A,B,C
... # 1,2,3
... # 4,5,6

1908 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

pandas.DataFrame.to_csv

DataFrame.to_csv(path_or_buf=None, sep=’, ’, na_rep=”, float_format=None, columns=None,
header=True, index=True, index_label=None, mode=’w’, encoding=None,
compression=None, quoting=None, quotechar=’"’, line_terminator=’\n’,
chunksize=None, tupleize_cols=None, date_format=None, doublequote=True,
escapechar=None, decimal=’.’)

Write DataFrame to a comma-separated values (csv) file

Parameters path_or_buf : string or file handle, default None

File path or object, if None is provided the result is returned as a string.

sep : character, default ‘,’

Field delimiter for the output file.

na_rep : string, default ‘’

Missing data representation

float_format : string, default None

Format string for floating point numbers

columns : sequence, optional

Columns to write

header : boolean or list of string, default True

Write out the column names. If a list of strings is given it is assumed to be aliases
for the column names

index : boolean, default True

Write row names (index)

index_label : string or sequence, or False, default None

Column label for index column(s) if desired. If None is given, and header and
index are True, then the index names are used. A sequence should be given if
the DataFrame uses MultiIndex. If False do not print fields for index names. Use
index_label=False for easier importing in R

mode : str

Python write mode, default ‘w’

encoding : string, optional

A string representing the encoding to use in the output file, defaults to ‘ascii’ on
Python 2 and ‘utf-8’ on Python 3.

compression : string, optional

A string representing the compression to use in the output file. Allowed values
are ‘gzip’, ‘bz2’, ‘zip’, ‘xz’. This input is only used when the first argument is a
filename.

line_terminator : string, default '\n'

The newline character or character sequence to use in the output file

quoting : optional constant from csv module

34.4. DataFrame 1909

pandas: powerful Python data analysis toolkit, Release 0.23.4

defaults to csv.QUOTE_MINIMAL. If you have set a float_format then floats
are converted to strings and thus csv.QUOTE_NONNUMERIC will treat them as
non-numeric

quotechar : string (length 1), default ‘”’

character used to quote fields

doublequote : boolean, default True

Control quoting of quotechar inside a field

escapechar : string (length 1), default None

character used to escape sep and quotechar when appropriate

chunksize : int or None

rows to write at a time

tupleize_cols : boolean, default False

Deprecated since version 0.21.0: This argument will be removed and will always
write each row of the multi-index as a separate row in the CSV file.

Write MultiIndex columns as a list of tuples (if True) or in the new, expanded
format, where each MultiIndex column is a row in the CSV (if False).

date_format : string, default None

Format string for datetime objects

decimal: string, default ‘.’

Character recognized as decimal separator. E.g. use ‘,’ for European data

pandas.DataFrame.to_dense

DataFrame.to_dense()
Return dense representation of NDFrame (as opposed to sparse)

pandas.DataFrame.to_dict

DataFrame.to_dict(orient=’dict’, into=<class ’dict’>)
Convert the DataFrame to a dictionary.

The type of the key-value pairs can be customized with the parameters (see below).

Parameters orient : str {‘dict’, ‘list’, ‘series’, ‘split’, ‘records’, ‘index’}

Determines the type of the values of the dictionary.

• ‘dict’ (default) : dict like {column -> {index -> value}}

• ‘list’ : dict like {column -> [values]}

• ‘series’ : dict like {column -> Series(values)}

• ‘split’ : dict like {‘index’ -> [index], ‘columns’ -> [columns], ‘data’ -> [val-
ues]}

• ‘records’ : list like [{column -> value}, . . . , {column -> value}]

• ‘index’ : dict like {index -> {column -> value}}

1910 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

Abbreviations are allowed. s indicates series and sp indicates split.

into : class, default dict

The collections.Mapping subclass used for all Mappings in the return value. Can
be the actual class or an empty instance of the mapping type you want. If you
want a collections.defaultdict, you must pass it initialized.

New in version 0.21.0.

Returns

result [collections.Mapping like {column -> {index -> value}}]

See also:

DataFrame.from_dict create a DataFrame from a dictionary

DataFrame.to_json convert a DataFrame to JSON format

Examples

>>> df = pd.DataFrame({'col1': [1, 2],
... 'col2': [0.5, 0.75]},
... index=['a', 'b'])
>>> df

col1 col2
a 1 0.50
b 2 0.75
>>> df.to_dict()
{'col1': {'a': 1, 'b': 2}, 'col2': {'a': 0.5, 'b': 0.75}}

You can specify the return orientation.

>>> df.to_dict('series')
{'col1': a 1

b 2
Name: col1, dtype: int64,

'col2': a 0.50
b 0.75
Name: col2, dtype: float64}

>>> df.to_dict('split')
{'index': ['a', 'b'], 'columns': ['col1', 'col2'],
'data': [[1.0, 0.5], [2.0, 0.75]]}

>>> df.to_dict('records')
[{'col1': 1.0, 'col2': 0.5}, {'col1': 2.0, 'col2': 0.75}]

>>> df.to_dict('index')
{'a': {'col1': 1.0, 'col2': 0.5}, 'b': {'col1': 2.0, 'col2': 0.75}}

You can also specify the mapping type.

>>> from collections import OrderedDict, defaultdict
>>> df.to_dict(into=OrderedDict)
OrderedDict([('col1', OrderedDict([('a', 1), ('b', 2)])),

('col2', OrderedDict([('a', 0.5), ('b', 0.75)]))])

34.4. DataFrame 1911

pandas: powerful Python data analysis toolkit, Release 0.23.4

If you want a defaultdict, you need to initialize it:

>>> dd = defaultdict(list)
>>> df.to_dict('records', into=dd)
[defaultdict(<class 'list'>, {'col1': 1.0, 'col2': 0.5}),
defaultdict(<class 'list'>, {'col1': 2.0, 'col2': 0.75})]

pandas.DataFrame.to_excel

DataFrame.to_excel(excel_writer, sheet_name=’Sheet1’, na_rep=”, float_format=None,
columns=None, header=True, index=True, index_label=None,
startrow=0, startcol=0, engine=None, merge_cells=True, encoding=None,
inf_rep=’inf’, verbose=True, freeze_panes=None)

Write DataFrame to an excel sheet

Parameters excel_writer : string or ExcelWriter object

File path or existing ExcelWriter

sheet_name : string, default ‘Sheet1’

Name of sheet which will contain DataFrame

na_rep : string, default ‘’

Missing data representation

float_format : string, default None

Format string for floating point numbers

columns : sequence, optional

Columns to write

header : boolean or list of string, default True

Write out the column names. If a list of strings is given it is assumed to be aliases
for the column names

index : boolean, default True

Write row names (index)

index_label : string or sequence, default None

Column label for index column(s) if desired. If None is given, and header and
index are True, then the index names are used. A sequence should be given if the
DataFrame uses MultiIndex.

startrow :

upper left cell row to dump data frame

startcol :

upper left cell column to dump data frame

engine : string, default None

write engine to use - you can also set this via the options io.excel.xlsx.
writer, io.excel.xls.writer, and io.excel.xlsm.writer.

merge_cells : boolean, default True

1912 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

Write MultiIndex and Hierarchical Rows as merged cells.

encoding: string, default None

encoding of the resulting excel file. Only necessary for xlwt, other writers support
unicode natively.

inf_rep : string, default ‘inf’

Representation for infinity (there is no native representation for infinity in Excel)

freeze_panes : tuple of integer (length 2), default None

Specifies the one-based bottommost row and rightmost column that is to be frozen

New in version 0.20.0.

Notes

If passing an existing ExcelWriter object, then the sheet will be added to the existing workbook. This can
be used to save different DataFrames to one workbook:

>>> writer = pd.ExcelWriter('output.xlsx')
>>> df1.to_excel(writer,'Sheet1')
>>> df2.to_excel(writer,'Sheet2')
>>> writer.save()

For compatibility with to_csv, to_excel serializes lists and dicts to strings before writing.

pandas.DataFrame.to_feather

DataFrame.to_feather(fname)
write out the binary feather-format for DataFrames

New in version 0.20.0.

Parameters fname : str

string file path

pandas.DataFrame.to_gbq

DataFrame.to_gbq(destination_table, project_id, chunksize=None, verbose=None, reauth=False,
if_exists=’fail’, private_key=None, auth_local_webserver=False, ta-
ble_schema=None)

Write a DataFrame to a Google BigQuery table.

This function requires the pandas-gbq package.

Authentication to the Google BigQuery service is via OAuth 2.0.

• If private_key is provided, the library loads the JSON service account credentials and uses those
to authenticate.

• If no private_key is provided, the library tries application default credentials.

• If application default credentials are not found or cannot be used with BigQuery, the library authen-
ticates with user account credentials. In this case, you will be asked to grant permissions for product
name ‘pandas GBQ’.

34.4. DataFrame 1913

https://pandas-gbq.readthedocs.io
https://cloud.google.com/docs/authentication/production#providing_credentials_to_your_application

pandas: powerful Python data analysis toolkit, Release 0.23.4

Parameters destination_table : str

Name of table to be written, in the form ‘dataset.tablename’.

project_id : str

Google BigQuery Account project ID.

chunksize : int, optional

Number of rows to be inserted in each chunk from the dataframe. Set to None to
load the whole dataframe at once.

reauth : bool, default False

Force Google BigQuery to reauthenticate the user. This is useful if multiple ac-
counts are used.

if_exists : str, default ‘fail’

Behavior when the destination table exists. Value can be one of:

'fail' If table exists, do nothing.

'replace' If table exists, drop it, recreate it, and insert data.

'append' If table exists, insert data. Create if does not exist.

private_key : str, optional

Service account private key in JSON format. Can be file path or string contents.
This is useful for remote server authentication (eg. Jupyter/IPython notebook on
remote host).

auth_local_webserver : bool, default False

Use the local webserver flow instead of the console flow when getting user cre-
dentials.

New in version 0.2.0 of pandas-gbq.

table_schema : list of dicts, optional

List of BigQuery table fields to which according DataFrame columns conform to,
e.g. [{'name': 'col1', 'type': 'STRING'},...]. If schema is
not provided, it will be generated according to dtypes of DataFrame columns. See
BigQuery API documentation on available names of a field.

New in version 0.3.1 of pandas-gbq.

verbose : boolean, deprecated

Deprecated in Pandas-GBQ 0.4.0. Use the logging module to adjust verbosity
instead.

See also:

pandas_gbq.to_gbq This function in the pandas-gbq library.

pandas.read_gbq Read a DataFrame from Google BigQuery.

1914 Chapter 34. API Reference

http://google-auth-oauthlib.readthedocs.io/en/latest/reference/google_auth_oauthlib.flow.html#google_auth_oauthlib.flow.InstalledAppFlow.run_local_server
http://google-auth-oauthlib.readthedocs.io/en/latest/reference/google_auth_oauthlib.flow.html#google_auth_oauthlib.flow.InstalledAppFlow.run_console
https://pandas-gbq.readthedocs.io/en/latest/intro.html#logging
https://pandas-gbq.readthedocs.io/en/latest/intro.html#logging
https://pandas-gbq.readthedocs.io/en/latest/api.html#pandas_gbq.to_gbq

pandas: powerful Python data analysis toolkit, Release 0.23.4

pandas.DataFrame.to_hdf

DataFrame.to_hdf(path_or_buf, key, **kwargs)
Write the contained data to an HDF5 file using HDFStore.

Hierarchical Data Format (HDF) is self-describing, allowing an application to interpret the structure and
contents of a file with no outside information. One HDF file can hold a mix of related objects which can
be accessed as a group or as individual objects.

In order to add another DataFrame or Series to an existing HDF file please use append mode and a different
a key.

For more information see the user guide.

Parameters path_or_buf : str or pandas.HDFStore

File path or HDFStore object.

key : str

Identifier for the group in the store.

mode : {‘a’, ‘w’, ‘r+’}, default ‘a’

Mode to open file:

• ‘w’: write, a new file is created (an existing file with the same name would be
deleted).

• ‘a’: append, an existing file is opened for reading and writing, and if the file
does not exist it is created.

• ‘r+’: similar to ‘a’, but the file must already exist.

format : {‘fixed’, ‘table’}, default ‘fixed’

Possible values:

• ‘fixed’: Fixed format. Fast writing/reading. Not-appendable, nor searchable.

• ‘table’: Table format. Write as a PyTables Table structure which may perform
worse but allow more flexible operations like searching / selecting subsets of
the data.

append : bool, default False

For Table formats, append the input data to the existing.

data_columns : list of columns or True, optional

List of columns to create as indexed data columns for on-disk queries, or True to
use all columns. By default only the axes of the object are indexed. See Query
via Data Columns. Applicable only to format=’table’.

complevel : {0-9}, optional

Specifies a compression level for data. A value of 0 disables compression.

complib : {‘zlib’, ‘lzo’, ‘bzip2’, ‘blosc’}, default ‘zlib’

Specifies the compression library to be used. As of v0.20.2 these addi-
tional compressors for Blosc are supported (default if no compressor speci-
fied: ‘blosc:blosclz’): {‘blosc:blosclz’, ‘blosc:lz4’, ‘blosc:lz4hc’, ‘blosc:snappy’,
‘blosc:zlib’, ‘blosc:zstd’}. Specifying a compression library which is not avail-
able issues a ValueError.

34.4. DataFrame 1915

pandas: powerful Python data analysis toolkit, Release 0.23.4

fletcher32 : bool, default False

If applying compression use the fletcher32 checksum.

dropna : bool, default False

If true, ALL nan rows will not be written to store.

errors : str, default ‘strict’

Specifies how encoding and decoding errors are to be handled. See the errors
argument for open() for a full list of options.

See also:

DataFrame.read_hdf Read from HDF file.

DataFrame.to_parquet Write a DataFrame to the binary parquet format.

DataFrame.to_sql Write to a sql table.

DataFrame.to_feather Write out feather-format for DataFrames.

DataFrame.to_csv Write out to a csv file.

Examples

>>> df = pd.DataFrame({'A': [1, 2, 3], 'B': [4, 5, 6]},
... index=['a', 'b', 'c'])
>>> df.to_hdf('data.h5', key='df', mode='w')

We can add another object to the same file:

>>> s = pd.Series([1, 2, 3, 4])
>>> s.to_hdf('data.h5', key='s')

Reading from HDF file:

>>> pd.read_hdf('data.h5', 'df')
A B
a 1 4
b 2 5
c 3 6
>>> pd.read_hdf('data.h5', 's')
0 1
1 2
2 3
3 4
dtype: int64

Deleting file with data:

>>> import os
>>> os.remove('data.h5')

1916 Chapter 34. API Reference

https://docs.python.org/3/library/functions.html#open

pandas: powerful Python data analysis toolkit, Release 0.23.4

pandas.DataFrame.to_html

DataFrame.to_html(buf=None, columns=None, col_space=None, header=True, index=True,
na_rep=’NaN’, formatters=None, float_format=None, sparsify=None,
index_names=True, justify=None, bold_rows=True, classes=None, es-
cape=True, max_rows=None, max_cols=None, show_dimensions=False,
notebook=False, decimal=’.’, border=None, table_id=None)

Render a DataFrame as an HTML table.

to_html-specific options:

bold_rows [boolean, default True] Make the row labels bold in the output

classes [str or list or tuple, default None] CSS class(es) to apply to the resulting html table

escape [boolean, default True] Convert the characters <, >, and & to HTML-safe sequences.

max_rows [int, optional] Maximum number of rows to show before truncating. If None, show all.

max_cols [int, optional] Maximum number of columns to show before truncating. If None, show all.

decimal [string, default ‘.’] Character recognized as decimal separator, e.g. ‘,’ in Europe

New in version 0.18.0.

border [int] A border=border attribute is included in the opening <table> tag. Default pd.
options.html.border.

New in version 0.19.0.

table_id [str, optional] A css id is included in the opening <table> tag if specified.

New in version 0.23.0.

Parameters buf : StringIO-like, optional

buffer to write to

columns : sequence, optional

the subset of columns to write; default None writes all columns

col_space : int, optional

the minimum width of each column

header : bool, optional

whether to print column labels, default True

index : bool, optional

whether to print index (row) labels, default True

na_rep : string, optional

string representation of NAN to use, default ‘NaN’

formatters : list or dict of one-parameter functions, optional

formatter functions to apply to columns’ elements by position or name, default
None. The result of each function must be a unicode string. List must be of length
equal to the number of columns.

float_format : one-parameter function, optional

34.4. DataFrame 1917

pandas: powerful Python data analysis toolkit, Release 0.23.4

formatter function to apply to columns’ elements if they are floats, default None.
The result of this function must be a unicode string.

sparsify : bool, optional

Set to False for a DataFrame with a hierarchical index to print every multiindex
key at each row, default True

index_names : bool, optional

Prints the names of the indexes, default True

line_width : int, optional

Width to wrap a line in characters, default no wrap

table_id : str, optional

id for the <table> element create by to_html

New in version 0.23.0.

justify : str, default None

How to justify the column labels. If None uses the option from the print configu-
ration (controlled by set_option), ‘right’ out of the box. Valid values are

• left

• right

• center

• justify

• justify-all

• start

• end

• inherit

• match-parent

• initial

• unset

Returns

formatted [string (or unicode, depending on data and options)]

pandas.DataFrame.to_json

DataFrame.to_json(path_or_buf=None, orient=None, date_format=None, double_precision=10,
force_ascii=True, date_unit=’ms’, default_handler=None, lines=False, com-
pression=None, index=True)

Convert the object to a JSON string.

Note NaN’s and None will be converted to null and datetime objects will be converted to UNIX times-
tamps.

Parameters path_or_buf : string or file handle, optional

File path or object. If not specified, the result is returned as a string.

1918 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

orient : string

Indication of expected JSON string format.

• Series

– default is ‘index’

– allowed values are: {‘split’,’records’,’index’}

• DataFrame

– default is ‘columns’

– allowed values are: {‘split’,’records’,’index’,’columns’,’values’}

• The format of the JSON string

– ‘split’ : dict like {‘index’ -> [index], ‘columns’ -> [columns], ‘data’ -> [val-
ues]}

– ‘records’ : list like [{column -> value}, . . . , {column -> value}]

– ‘index’ : dict like {index -> {column -> value}}

– ‘columns’ : dict like {column -> {index -> value}}

– ‘values’ : just the values array

– ‘table’ : dict like {‘schema’: {schema}, ‘data’: {data}} describing the data,
and the data component is like orient='records'.

Changed in version 0.20.0.

date_format : {None, ‘epoch’, ‘iso’}

Type of date conversion. ‘epoch’ = epoch milliseconds, ‘iso’ = ISO8601. The
default depends on the orient. For orient='table', the default is ‘iso’. For
all other orients, the default is ‘epoch’.

double_precision : int, default 10

The number of decimal places to use when encoding floating point values.

force_ascii : boolean, default True

Force encoded string to be ASCII.

date_unit : string, default ‘ms’ (milliseconds)

The time unit to encode to, governs timestamp and ISO8601 precision. One of
‘s’, ‘ms’, ‘us’, ‘ns’ for second, millisecond, microsecond, and nanosecond re-
spectively.

default_handler : callable, default None

Handler to call if object cannot otherwise be converted to a suitable format for
JSON. Should receive a single argument which is the object to convert and return
a serialisable object.

lines : boolean, default False

If ‘orient’ is ‘records’ write out line delimited json format. Will throw ValueError
if incorrect ‘orient’ since others are not list like.

New in version 0.19.0.

compression : {None, ‘gzip’, ‘bz2’, ‘zip’, ‘xz’}

34.4. DataFrame 1919

pandas: powerful Python data analysis toolkit, Release 0.23.4

A string representing the compression to use in the output file, only used when
the first argument is a filename.

New in version 0.21.0.

index : boolean, default True

Whether to include the index values in the JSON string. Not including the index
(index=False) is only supported when orient is ‘split’ or ‘table’.

New in version 0.23.0.

See also:

pandas.read_json

Examples

>>> df = pd.DataFrame([['a', 'b'], ['c', 'd']],
... index=['row 1', 'row 2'],
... columns=['col 1', 'col 2'])
>>> df.to_json(orient='split')
'{"columns":["col 1","col 2"],
"index":["row 1","row 2"],
"data":[["a","b"],["c","d"]]}'

Encoding/decoding a Dataframe using 'records' formatted JSON. Note that index labels are not pre-
served with this encoding.

>>> df.to_json(orient='records')
'[{"col 1":"a","col 2":"b"},{"col 1":"c","col 2":"d"}]'

Encoding/decoding a Dataframe using 'index' formatted JSON:

>>> df.to_json(orient='index')
'{"row 1":{"col 1":"a","col 2":"b"},"row 2":{"col 1":"c","col 2":"d"}}'

Encoding/decoding a Dataframe using 'columns' formatted JSON:

>>> df.to_json(orient='columns')
'{"col 1":{"row 1":"a","row 2":"c"},"col 2":{"row 1":"b","row 2":"d"}}'

Encoding/decoding a Dataframe using 'values' formatted JSON:

>>> df.to_json(orient='values')
'[["a","b"],["c","d"]]'

Encoding with Table Schema

>>> df.to_json(orient='table')
'{"schema": {"fields": [{"name": "index", "type": "string"},

{"name": "col 1", "type": "string"},
{"name": "col 2", "type": "string"}],

"primaryKey": "index",
"pandas_version": "0.20.0"},

"data": [{"index": "row 1", "col 1": "a", "col 2": "b"},
{"index": "row 2", "col 1": "c", "col 2": "d"}]}'

1920 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

pandas.DataFrame.to_latex

DataFrame.to_latex(buf=None, columns=None, col_space=None, header=True, in-
dex=True, na_rep=’NaN’, formatters=None, float_format=None, spar-
sify=None, index_names=True, bold_rows=False, column_format=None,
longtable=None, escape=None, encoding=None, decimal=’.’, multicol-
umn=None, multicolumn_format=None, multirow=None)

Render an object to a tabular environment table. You can splice this into a LaTeX document. Requires
\usepackage{booktabs}.

Changed in version 0.20.2: Added to Series

to_latex-specific options:

bold_rows [boolean, default False] Make the row labels bold in the output

column_format [str, default None] The columns format as specified in LaTeX table format e.g ‘rcl’ for
3 columns

longtable [boolean, default will be read from the pandas config module] Default: False. Use a longtable
environment instead of tabular. Requires adding a \usepackage{longtable} to your LaTeX preamble.

escape [boolean, default will be read from the pandas config module] Default: True. When set to False
prevents from escaping latex special characters in column names.

encoding [str, default None] A string representing the encoding to use in the output file, defaults to ‘ascii’
on Python 2 and ‘utf-8’ on Python 3.

decimal [string, default ‘.’] Character recognized as decimal separator, e.g. ‘,’ in Europe.

New in version 0.18.0.

multicolumn [boolean, default True] Use multicolumn to enhance MultiIndex columns. The default will
be read from the config module.

New in version 0.20.0.

multicolumn_format [str, default ‘l’] The alignment for multicolumns, similar to column_format The
default will be read from the config module.

New in version 0.20.0.

multirow [boolean, default False] Use multirow to enhance MultiIndex rows. Requires adding a \usepa-
ckage{multirow} to your LaTeX preamble. Will print centered labels (instead of top-aligned) across
the contained rows, separating groups via clines. The default will be read from the pandas config
module.

New in version 0.20.0.

pandas.DataFrame.to_msgpack

DataFrame.to_msgpack(path_or_buf=None, encoding=’utf-8’, **kwargs)
msgpack (serialize) object to input file path

THIS IS AN EXPERIMENTAL LIBRARY and the storage format may not be stable until a future release.

Parameters path : string File path, buffer-like, or None

if None, return generated string

append : boolean whether to append to an existing msgpack

(default is False)

34.4. DataFrame 1921

https://en.wikibooks.org/wiki/LaTeX/Tables

pandas: powerful Python data analysis toolkit, Release 0.23.4

compress : type of compressor (zlib or blosc), default to None (no

compression)

pandas.DataFrame.to_panel

DataFrame.to_panel()
Transform long (stacked) format (DataFrame) into wide (3D, Panel) format.

Deprecated since version 0.20.0.

Currently the index of the DataFrame must be a 2-level MultiIndex. This may be generalized later

Returns

panel [Panel]

pandas.DataFrame.to_parquet

DataFrame.to_parquet(fname, engine=’auto’, compression=’snappy’, **kwargs)
Write a DataFrame to the binary parquet format.

New in version 0.21.0.

This function writes the dataframe as a parquet file. You can choose different parquet backends, and have
the option of compression. See the user guide for more details.

Parameters fname : str

String file path.

engine : {‘auto’, ‘pyarrow’, ‘fastparquet’}, default ‘auto’

Parquet library to use. If ‘auto’, then the option io.parquet.engine is used.
The default io.parquet.engine behavior is to try ‘pyarrow’, falling back to
‘fastparquet’ if ‘pyarrow’ is unavailable.

compression : {‘snappy’, ‘gzip’, ‘brotli’, None}, default ‘snappy’

Name of the compression to use. Use None for no compression.

**kwargs

Additional arguments passed to the parquet library. See pandas io for more de-
tails.

See also:

read_parquet Read a parquet file.

DataFrame.to_csv Write a csv file.

DataFrame.to_sql Write to a sql table.

DataFrame.to_hdf Write to hdf.

Notes

This function requires either the fastparquet or pyarrow library.

1922 Chapter 34. API Reference

https://parquet.apache.org/
https://pypi.org/project/fastparquet
https://arrow.apache.org/docs/python/

pandas: powerful Python data analysis toolkit, Release 0.23.4

Examples

>>> df = pd.DataFrame(data={'col1': [1, 2], 'col2': [3, 4]})
>>> df.to_parquet('df.parquet.gzip', compression='gzip')
>>> pd.read_parquet('df.parquet.gzip')

col1 col2
0 1 3
1 2 4

pandas.DataFrame.to_period

DataFrame.to_period(freq=None, axis=0, copy=True)
Convert DataFrame from DatetimeIndex to PeriodIndex with desired frequency (inferred from index if
not passed)

Parameters

freq [string, default]

axis : {0 or ‘index’, 1 or ‘columns’}, default 0

The axis to convert (the index by default)

copy : boolean, default True

If False then underlying input data is not copied

Returns

ts [TimeSeries with PeriodIndex]

pandas.DataFrame.to_pickle

DataFrame.to_pickle(path, compression=’infer’, protocol=4)
Pickle (serialize) object to file.

Parameters path : str

File path where the pickled object will be stored.

compression : {‘infer’, ‘gzip’, ‘bz2’, ‘zip’, ‘xz’, None}, default ‘infer’

A string representing the compression to use in the output file. By default, infers
from the file extension in specified path.

New in version 0.20.0.

protocol : int

Int which indicates which protocol should be used by the pickler, default HIGH-
EST_PROTOCOL (see [R15] paragraph 12.1.2). The possible values for this
parameter depend on the version of Python. For Python 2.x, possible values are
0, 1, 2. For Python>=3.0, 3 is a valid value. For Python >= 3.4, 4 is a valid value.
A negative value for the protocol parameter is equivalent to setting its value to
HIGHEST_PROTOCOL.

New in version 0.21.0.

See also:

34.4. DataFrame 1923

pandas: powerful Python data analysis toolkit, Release 0.23.4

read_pickle Load pickled pandas object (or any object) from file.

DataFrame.to_hdf Write DataFrame to an HDF5 file.

DataFrame.to_sql Write DataFrame to a SQL database.

DataFrame.to_parquet Write a DataFrame to the binary parquet format.

Examples

>>> original_df = pd.DataFrame({"foo": range(5), "bar": range(5, 10)})
>>> original_df

foo bar
0 0 5
1 1 6
2 2 7
3 3 8
4 4 9
>>> original_df.to_pickle("./dummy.pkl")

>>> unpickled_df = pd.read_pickle("./dummy.pkl")
>>> unpickled_df

foo bar
0 0 5
1 1 6
2 2 7
3 3 8
4 4 9

>>> import os
>>> os.remove("./dummy.pkl")

pandas.DataFrame.to_records

DataFrame.to_records(index=True, convert_datetime64=None)
Convert DataFrame to a NumPy record array.

Index will be put in the ‘index’ field of the record array if requested.

Parameters index : boolean, default True

Include index in resulting record array, stored in ‘index’ field.

convert_datetime64 : boolean, default None

Deprecated since version 0.23.0.

Whether to convert the index to datetime.datetime if it is a DatetimeIndex.

Returns

y [numpy.recarray]

See also:

DataFrame.from_records convert structured or record ndarray to DataFrame.

numpy.recarray ndarray that allows field access using attributes, analogous to typed columns in a
spreadsheet.

1924 Chapter 34. API Reference

https://docs.scipy.org/doc/numpy/reference/generated/numpy.recarray.html#numpy.recarray

pandas: powerful Python data analysis toolkit, Release 0.23.4

Examples

>>> df = pd.DataFrame({'A': [1, 2], 'B': [0.5, 0.75]},
... index=['a', 'b'])
>>> df

A B
a 1 0.50
b 2 0.75
>>> df.to_records()
rec.array([('a', 1, 0.5), ('b', 2, 0.75)],

dtype=[('index', 'O'), ('A', '<i8'), ('B', '<f8')])

The index can be excluded from the record array:

>>> df.to_records(index=False)
rec.array([(1, 0.5), (2, 0.75)],

dtype=[('A', '<i8'), ('B', '<f8')])

By default, timestamps are converted to datetime.datetime:

>>> df.index = pd.date_range('2018-01-01 09:00', periods=2, freq='min')
>>> df

A B
2018-01-01 09:00:00 1 0.50
2018-01-01 09:01:00 2 0.75
>>> df.to_records()
rec.array([(datetime.datetime(2018, 1, 1, 9, 0), 1, 0.5),

(datetime.datetime(2018, 1, 1, 9, 1), 2, 0.75)],
dtype=[('index', 'O'), ('A', '<i8'), ('B', '<f8')])

The timestamp conversion can be disabled so NumPy’s datetime64 data type is used instead:

>>> df.to_records(convert_datetime64=False)
rec.array([('2018-01-01T09:00:00.000000000', 1, 0.5),

('2018-01-01T09:01:00.000000000', 2, 0.75)],
dtype=[('index', '<M8[ns]'), ('A', '<i8'), ('B', '<f8')])

pandas.DataFrame.to_sparse

DataFrame.to_sparse(fill_value=None, kind=’block’)
Convert to SparseDataFrame

Parameters

fill_value [float, default NaN]

kind [{‘block’, ‘integer’}]

Returns

y [SparseDataFrame]

34.4. DataFrame 1925

pandas: powerful Python data analysis toolkit, Release 0.23.4

pandas.DataFrame.to_stata

DataFrame.to_stata(fname, convert_dates=None, write_index=True, encoding=’latin-1’, byte-
order=None, time_stamp=None, data_label=None, variable_labels=None,
version=114, convert_strl=None)

Export Stata binary dta files.

Parameters fname : path (string), buffer or path object

string, path object (pathlib.Path or py._path.local.LocalPath) or object implement-
ing a binary write() functions. If using a buffer then the buffer will not be auto-
matically closed after the file data has been written.

convert_dates : dict

Dictionary mapping columns containing datetime types to stata internal format
to use when writing the dates. Options are ‘tc’, ‘td’, ‘tm’, ‘tw’, ‘th’, ‘tq’, ‘ty’.
Column can be either an integer or a name. Datetime columns that do not have a
conversion type specified will be converted to ‘tc’. Raises NotImplementedError
if a datetime column has timezone information.

write_index : bool

Write the index to Stata dataset.

encoding : str

Default is latin-1. Unicode is not supported.

byteorder : str

Can be “>”, “<”, “little”, or “big”. default is sys.byteorder.

time_stamp : datetime

A datetime to use as file creation date. Default is the current time.

data_label : str

A label for the data set. Must be 80 characters or smaller.

variable_labels : dict

Dictionary containing columns as keys and variable labels as values. Each label
must be 80 characters or smaller.

New in version 0.19.0.

version : {114, 117}

Version to use in the output dta file. Version 114 can be used read by Stata 10
and later. Version 117 can be read by Stata 13 or later. Version 114 limits string
variables to 244 characters or fewer while 117 allows strings with lengths up to
2,000,000 characters.

New in version 0.23.0.

convert_strl : list, optional

List of column names to convert to string columns to Stata StrL format. Only
available if version is 117. Storing strings in the StrL format can produce smaller
dta files if strings have more than 8 characters and values are repeated.

New in version 0.23.0.

Raises NotImplementedError

1926 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

• If datetimes contain timezone information

• Column dtype is not representable in Stata

ValueError

• Columns listed in convert_dates are neither datetime64[ns] or date-
time.datetime

• Column listed in convert_dates is not in DataFrame

• Categorical label contains more than 32,000 characters

New in version 0.19.0.

See also:

pandas.read_stata Import Stata data files

pandas.io.stata.StataWriter low-level writer for Stata data files

pandas.io.stata.StataWriter117 low-level writer for version 117 files

Examples

>>> data.to_stata('./data_file.dta')

Or with dates

>>> data.to_stata('./date_data_file.dta', {2 : 'tw'})

Alternatively you can create an instance of the StataWriter class

>>> writer = StataWriter('./data_file.dta', data)
>>> writer.write_file()

With dates:

>>> writer = StataWriter('./date_data_file.dta', data, {2 : 'tw'})
>>> writer.write_file()

pandas.DataFrame.to_string

DataFrame.to_string(buf=None, columns=None, col_space=None, header=True, index=True,
na_rep=’NaN’, formatters=None, float_format=None, sparsify=None,
index_names=True, justify=None, line_width=None, max_rows=None,
max_cols=None, show_dimensions=False)

Render a DataFrame to a console-friendly tabular output.

Parameters buf : StringIO-like, optional

buffer to write to

columns : sequence, optional

the subset of columns to write; default None writes all columns

col_space : int, optional

the minimum width of each column

34.4. DataFrame 1927

pandas: powerful Python data analysis toolkit, Release 0.23.4

header : bool, optional

Write out the column names. If a list of strings is given, it is assumed to be aliases
for the column names

index : bool, optional

whether to print index (row) labels, default True

na_rep : string, optional

string representation of NAN to use, default ‘NaN’

formatters : list or dict of one-parameter functions, optional

formatter functions to apply to columns’ elements by position or name, default
None. The result of each function must be a unicode string. List must be of length
equal to the number of columns.

float_format : one-parameter function, optional

formatter function to apply to columns’ elements if they are floats, default None.
The result of this function must be a unicode string.

sparsify : bool, optional

Set to False for a DataFrame with a hierarchical index to print every multiindex
key at each row, default True

index_names : bool, optional

Prints the names of the indexes, default True

line_width : int, optional

Width to wrap a line in characters, default no wrap

table_id : str, optional

id for the <table> element create by to_html

New in version 0.23.0.

justify : str, default None

How to justify the column labels. If None uses the option from the print configu-
ration (controlled by set_option), ‘right’ out of the box. Valid values are

• left

• right

• center

• justify

• justify-all

• start

• end

• inherit

• match-parent

• initial

• unset

1928 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

Returns

formatted [string (or unicode, depending on data and options)]

pandas.DataFrame.to_timestamp

DataFrame.to_timestamp(freq=None, how=’start’, axis=0, copy=True)
Cast to DatetimeIndex of timestamps, at beginning of period

Parameters freq : string, default frequency of PeriodIndex

Desired frequency

how : {‘s’, ‘e’, ‘start’, ‘end’}

Convention for converting period to timestamp; start of period vs. end

axis : {0 or ‘index’, 1 or ‘columns’}, default 0

The axis to convert (the index by default)

copy : boolean, default True

If false then underlying input data is not copied

Returns

df [DataFrame with DatetimeIndex]

pandas.DataFrame.to_xarray

DataFrame.to_xarray()
Return an xarray object from the pandas object.

Returns

a DataArray for a Series

a Dataset for a DataFrame

a DataArray for higher dims

Notes

See the xarray docs

Examples

>>> df = pd.DataFrame({'A' : [1, 1, 2],
'B' : ['foo', 'bar', 'foo'],
'C' : np.arange(4.,7)})

>>> df
A B C

0 1 foo 4.0
1 1 bar 5.0
2 2 foo 6.0

34.4. DataFrame 1929

http://xarray.pydata.org/en/stable/

pandas: powerful Python data analysis toolkit, Release 0.23.4

>>> df.to_xarray()
<xarray.Dataset>
Dimensions: (index: 3)
Coordinates:

* index (index) int64 0 1 2
Data variables:

A (index) int64 1 1 2
B (index) object 'foo' 'bar' 'foo'
C (index) float64 4.0 5.0 6.0

>>> df = pd.DataFrame({'A' : [1, 1, 2],
'B' : ['foo', 'bar', 'foo'],
'C' : np.arange(4.,7)}

).set_index(['B','A'])
>>> df

C
B A
foo 1 4.0
bar 1 5.0
foo 2 6.0

>>> df.to_xarray()
<xarray.Dataset>
Dimensions: (A: 2, B: 2)
Coordinates:

* B (B) object 'bar' 'foo'

* A (A) int64 1 2
Data variables:

C (B, A) float64 5.0 nan 4.0 6.0

>>> p = pd.Panel(np.arange(24).reshape(4,3,2),
items=list('ABCD'),
major_axis=pd.date_range('20130101', periods=3),
minor_axis=['first', 'second'])

>>> p
<class 'pandas.core.panel.Panel'>
Dimensions: 4 (items) x 3 (major_axis) x 2 (minor_axis)
Items axis: A to D
Major_axis axis: 2013-01-01 00:00:00 to 2013-01-03 00:00:00
Minor_axis axis: first to second

>>> p.to_xarray()
<xarray.DataArray (items: 4, major_axis: 3, minor_axis: 2)>
array([[[0, 1],

[2, 3],
[4, 5]],

[[6, 7],
[8, 9],
[10, 11]],

[[12, 13],
[14, 15],
[16, 17]],

[[18, 19],
[20, 21],
[22, 23]]])

Coordinates:

(continues on next page)

1930 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

* items (items) object 'A' 'B' 'C' 'D'

* major_axis (major_axis) datetime64[ns] 2013-01-01 2013-01-02 2013-01-03
→˓ # noqa

* minor_axis (minor_axis) object 'first' 'second'

pandas.DataFrame.transform

DataFrame.transform(func, *args, **kwargs)
Call function producing a like-indexed NDFrame and return a NDFrame with the transformed values

New in version 0.20.0.

Parameters func : callable, string, dictionary, or list of string/callables

To apply to column

Accepted Combinations are:

• string function name

• function

• list of functions

• dict of column names -> functions (or list of functions)

Returns

transformed [NDFrame]

See also:

pandas.NDFrame.aggregate, pandas.NDFrame.apply

Examples

>>> df = pd.DataFrame(np.random.randn(10, 3), columns=['A', 'B', 'C'],
... index=pd.date_range('1/1/2000', periods=10))
df.iloc[3:7] = np.nan

>>> df.transform(lambda x: (x - x.mean()) / x.std())
A B C

2000-01-01 0.579457 1.236184 0.123424
2000-01-02 0.370357 -0.605875 -1.231325
2000-01-03 1.455756 -0.277446 0.288967
2000-01-04 NaN NaN NaN
2000-01-05 NaN NaN NaN
2000-01-06 NaN NaN NaN
2000-01-07 NaN NaN NaN
2000-01-08 -0.498658 1.274522 1.642524
2000-01-09 -0.540524 -1.012676 -0.828968
2000-01-10 -1.366388 -0.614710 0.005378

34.4. DataFrame 1931

pandas: powerful Python data analysis toolkit, Release 0.23.4

pandas.DataFrame.transpose

DataFrame.transpose(*args, **kwargs)
Transpose index and columns.

Reflect the DataFrame over its main diagonal by writing rows as columns and vice-versa. The property T
is an accessor to the method transpose().

Parameters copy : bool, default False

If True, the underlying data is copied. Otherwise (default), no copy is made if
possible.

*args, **kwargs

Additional keywords have no effect but might be accepted for compatibility with
numpy.

Returns DataFrame

The transposed DataFrame.

See also:

numpy.transpose Permute the dimensions of a given array.

Notes

Transposing a DataFrame with mixed dtypes will result in a homogeneous DataFrame with the object
dtype. In such a case, a copy of the data is always made.

Examples

Square DataFrame with homogeneous dtype

>>> d1 = {'col1': [1, 2], 'col2': [3, 4]}
>>> df1 = pd.DataFrame(data=d1)
>>> df1

col1 col2
0 1 3
1 2 4

>>> df1_transposed = df1.T # or df1.transpose()
>>> df1_transposed

0 1
col1 1 2
col2 3 4

When the dtype is homogeneous in the original DataFrame, we get a transposed DataFrame with the same
dtype:

>>> df1.dtypes
col1 int64
col2 int64
dtype: object
>>> df1_transposed.dtypes

(continues on next page)

1932 Chapter 34. API Reference

https://docs.scipy.org/doc/numpy/reference/generated/numpy.transpose.html#numpy.transpose

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

0 int64
1 int64
dtype: object

Non-square DataFrame with mixed dtypes

>>> d2 = {'name': ['Alice', 'Bob'],
... 'score': [9.5, 8],
... 'employed': [False, True],
... 'kids': [0, 0]}
>>> df2 = pd.DataFrame(data=d2)
>>> df2

name score employed kids
0 Alice 9.5 False 0
1 Bob 8.0 True 0

>>> df2_transposed = df2.T # or df2.transpose()
>>> df2_transposed

0 1
name Alice Bob
score 9.5 8
employed False True
kids 0 0

When the DataFrame has mixed dtypes, we get a transposed DataFrame with the object dtype:

>>> df2.dtypes
name object
score float64
employed bool
kids int64
dtype: object
>>> df2_transposed.dtypes
0 object
1 object
dtype: object

pandas.DataFrame.truediv

DataFrame.truediv(other, axis=’columns’, level=None, fill_value=None)
Floating division of dataframe and other, element-wise (binary operator truediv).

Equivalent to dataframe / other, but with support to substitute a fill_value for missing data in one
of the inputs.

Parameters

other [Series, DataFrame, or constant]

axis : {0, 1, ‘index’, ‘columns’}

For Series input, axis to match Series index on

level : int or name

Broadcast across a level, matching Index values on the passed MultiIndex level

fill_value : None or float value, default None

34.4. DataFrame 1933

pandas: powerful Python data analysis toolkit, Release 0.23.4

Fill existing missing (NaN) values, and any new element needed for successful
DataFrame alignment, with this value before computation. If data in both corre-
sponding DataFrame locations is missing the result will be missing

Returns

result [DataFrame]

See also:

DataFrame.rtruediv

Notes

Mismatched indices will be unioned together

Examples

None

pandas.DataFrame.truncate

DataFrame.truncate(before=None, after=None, axis=None, copy=True)
Truncate a Series or DataFrame before and after some index value.

This is a useful shorthand for boolean indexing based on index values above or below certain thresholds.

Parameters before : date, string, int

Truncate all rows before this index value.

after : date, string, int

Truncate all rows after this index value.

axis : {0 or ‘index’, 1 or ‘columns’}, optional

Axis to truncate. Truncates the index (rows) by default.

copy : boolean, default is True,

Return a copy of the truncated section.

Returns type of caller

The truncated Series or DataFrame.

See also:

DataFrame.loc Select a subset of a DataFrame by label.

DataFrame.iloc Select a subset of a DataFrame by position.

Notes

If the index being truncated contains only datetime values, before and after may be specified as strings
instead of Timestamps.

1934 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

Examples

>>> df = pd.DataFrame({'A': ['a', 'b', 'c', 'd', 'e'],
... 'B': ['f', 'g', 'h', 'i', 'j'],
... 'C': ['k', 'l', 'm', 'n', 'o']},
... index=[1, 2, 3, 4, 5])
>>> df

A B C
1 a f k
2 b g l
3 c h m
4 d i n
5 e j o

>>> df.truncate(before=2, after=4)
A B C

2 b g l
3 c h m
4 d i n

The columns of a DataFrame can be truncated.

>>> df.truncate(before="A", after="B", axis="columns")
A B

1 a f
2 b g
3 c h
4 d i
5 e j

For Series, only rows can be truncated.

>>> df['A'].truncate(before=2, after=4)
2 b
3 c
4 d
Name: A, dtype: object

The index values in truncate can be datetimes or string dates.

>>> dates = pd.date_range('2016-01-01', '2016-02-01', freq='s')
>>> df = pd.DataFrame(index=dates, data={'A': 1})
>>> df.tail()

A
2016-01-31 23:59:56 1
2016-01-31 23:59:57 1
2016-01-31 23:59:58 1
2016-01-31 23:59:59 1
2016-02-01 00:00:00 1

>>> df.truncate(before=pd.Timestamp('2016-01-05'),
... after=pd.Timestamp('2016-01-10')).tail()

A
2016-01-09 23:59:56 1
2016-01-09 23:59:57 1
2016-01-09 23:59:58 1

(continues on next page)

34.4. DataFrame 1935

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

2016-01-09 23:59:59 1
2016-01-10 00:00:00 1

Because the index is a DatetimeIndex containing only dates, we can specify before and after as strings.
They will be coerced to Timestamps before truncation.

>>> df.truncate('2016-01-05', '2016-01-10').tail()
A

2016-01-09 23:59:56 1
2016-01-09 23:59:57 1
2016-01-09 23:59:58 1
2016-01-09 23:59:59 1
2016-01-10 00:00:00 1

Note that truncate assumes a 0 value for any unspecified time component (midnight). This differs
from partial string slicing, which returns any partially matching dates.

>>> df.loc['2016-01-05':'2016-01-10', :].tail()
A

2016-01-10 23:59:55 1
2016-01-10 23:59:56 1
2016-01-10 23:59:57 1
2016-01-10 23:59:58 1
2016-01-10 23:59:59 1

pandas.DataFrame.tshift

DataFrame.tshift(periods=1, freq=None, axis=0)
Shift the time index, using the index’s frequency if available.

Parameters periods : int

Number of periods to move, can be positive or negative

freq : DateOffset, timedelta, or time rule string, default None

Increment to use from the tseries module or time rule (e.g. ‘EOM’)

axis : int or basestring

Corresponds to the axis that contains the Index

Returns

shifted [NDFrame]

Notes

If freq is not specified then tries to use the freq or inferred_freq attributes of the index. If neither of those
attributes exist, a ValueError is thrown

pandas.DataFrame.tz_convert

DataFrame.tz_convert(tz, axis=0, level=None, copy=True)
Convert tz-aware axis to target time zone.

1936 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

Parameters

tz [string or pytz.timezone object]

axis [the axis to convert]

level : int, str, default None

If axis ia a MultiIndex, convert a specific level. Otherwise must be None

copy : boolean, default True

Also make a copy of the underlying data

Raises TypeError

If the axis is tz-naive.

pandas.DataFrame.tz_localize

DataFrame.tz_localize(tz, axis=0, level=None, copy=True, ambiguous=’raise’)
Localize tz-naive TimeSeries to target time zone.

Parameters

tz [string or pytz.timezone object]

axis [the axis to localize]

level : int, str, default None

If axis ia a MultiIndex, localize a specific level. Otherwise must be None

copy : boolean, default True

Also make a copy of the underlying data

ambiguous : ‘infer’, bool-ndarray, ‘NaT’, default ‘raise’

• ‘infer’ will attempt to infer fall dst-transition hours based on order

• bool-ndarray where True signifies a DST time, False designates a non-DST time (note
that this flag is only applicable for ambiguous times)

• ‘NaT’ will return NaT where there are ambiguous times

• ‘raise’ will raise an AmbiguousTimeError if there are ambiguous times

Raises TypeError

If the TimeSeries is tz-aware and tz is not None.

pandas.DataFrame.unstack

DataFrame.unstack(level=-1, fill_value=None)
Pivot a level of the (necessarily hierarchical) index labels, returning a DataFrame having a new level of
column labels whose inner-most level consists of the pivoted index labels. If the index is not a MultiIndex,
the output will be a Series (the analogue of stack when the columns are not a MultiIndex). The level
involved will automatically get sorted.

Parameters level : int, string, or list of these, default -1 (last level)

Level(s) of index to unstack, can pass level name

34.4. DataFrame 1937

pandas: powerful Python data analysis toolkit, Release 0.23.4

fill_value : replace NaN with this value if the unstack produces

missing values

New in version 0.18.0.

Returns

unstacked [DataFrame or Series]

See also:

DataFrame.pivot Pivot a table based on column values.

DataFrame.stack Pivot a level of the column labels (inverse operation from unstack).

Examples

>>> index = pd.MultiIndex.from_tuples([('one', 'a'), ('one', 'b'),
... ('two', 'a'), ('two', 'b')])
>>> s = pd.Series(np.arange(1.0, 5.0), index=index)
>>> s
one a 1.0

b 2.0
two a 3.0

b 4.0
dtype: float64

>>> s.unstack(level=-1)
a b

one 1.0 2.0
two 3.0 4.0

>>> s.unstack(level=0)
one two

a 1.0 3.0
b 2.0 4.0

>>> df = s.unstack(level=0)
>>> df.unstack()
one a 1.0

b 2.0
two a 3.0

b 4.0
dtype: float64

pandas.DataFrame.update

DataFrame.update(other, join=’left’, overwrite=True, filter_func=None, raise_conflict=False)
Modify in place using non-NA values from another DataFrame.

Aligns on indices. There is no return value.

Parameters other : DataFrame, or object coercible into a DataFrame

1938 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

Should have at least one matching index/column label with the original
DataFrame. If a Series is passed, its name attribute must be set, and that will
be used as the column name to align with the original DataFrame.

join : {‘left’}, default ‘left’

Only left join is implemented, keeping the index and columns of the original
object.

overwrite : bool, default True

How to handle non-NA values for overlapping keys:

• True: overwrite original DataFrame’s values with values from other.

• False: only update values that are NA in the original DataFrame.

filter_func : callable(1d-array) -> boolean 1d-array, optional

Can choose to replace values other than NA. Return True for values that should
be updated.

raise_conflict : bool, default False

If True, will raise a ValueError if the DataFrame and other both contain non-NA
data in the same place.

Raises ValueError

When raise_conflict is True and there’s overlapping non-NA data.

See also:

dict.update Similar method for dictionaries.

DataFrame.merge For column(s)-on-columns(s) operations.

Examples

>>> df = pd.DataFrame({'A': [1, 2, 3],
... 'B': [400, 500, 600]})
>>> new_df = pd.DataFrame({'B': [4, 5, 6],
... 'C': [7, 8, 9]})
>>> df.update(new_df)
>>> df

A B
0 1 4
1 2 5
2 3 6

The DataFrame’s length does not increase as a result of the update, only values at matching index/column
labels are updated.

>>> df = pd.DataFrame({'A': ['a', 'b', 'c'],
... 'B': ['x', 'y', 'z']})
>>> new_df = pd.DataFrame({'B': ['d', 'e', 'f', 'g', 'h', 'i']})
>>> df.update(new_df)
>>> df

A B
0 a d

(continues on next page)

34.4. DataFrame 1939

https://docs.python.org/3/library/stdtypes.html#dict.update

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

1 b e
2 c f

For Series, it’s name attribute must be set.

>>> df = pd.DataFrame({'A': ['a', 'b', 'c'],
... 'B': ['x', 'y', 'z']})
>>> new_column = pd.Series(['d', 'e'], name='B', index=[0, 2])
>>> df.update(new_column)
>>> df

A B
0 a d
1 b y
2 c e
>>> df = pd.DataFrame({'A': ['a', 'b', 'c'],
... 'B': ['x', 'y', 'z']})
>>> new_df = pd.DataFrame({'B': ['d', 'e']}, index=[1, 2])
>>> df.update(new_df)
>>> df

A B
0 a x
1 b d
2 c e

If other contains NaNs the corresponding values are not updated in the original dataframe.

>>> df = pd.DataFrame({'A': [1, 2, 3],
... 'B': [400, 500, 600]})
>>> new_df = pd.DataFrame({'B': [4, np.nan, 6]})
>>> df.update(new_df)
>>> df

A B
0 1 4.0
1 2 500.0
2 3 6.0

pandas.DataFrame.var

DataFrame.var(axis=None, skipna=None, level=None, ddof=1, numeric_only=None, **kwargs)
Return unbiased variance over requested axis.

Normalized by N-1 by default. This can be changed using the ddof argument

Parameters

axis [{index (0), columns (1)}]

skipna : boolean, default True

Exclude NA/null values. If an entire row/column is NA, the result will be NA

level : int or level name, default None

If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing
into a Series

ddof : int, default 1

1940 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

Delta Degrees of Freedom. The divisor used in calculations is N - ddof, where N
represents the number of elements.

numeric_only : boolean, default None

Include only float, int, boolean columns. If None, will attempt to use everything,
then use only numeric data. Not implemented for Series.

Returns

var [Series or DataFrame (if level specified)]

pandas.DataFrame.where

DataFrame.where(cond, other=nan, inplace=False, axis=None, level=None, errors=’raise’,
try_cast=False, raise_on_error=None)

Return an object of same shape as self and whose corresponding entries are from self where cond is True
and otherwise are from other.

Parameters cond : boolean NDFrame, array-like, or callable

Where cond is True, keep the original value. Where False, replace with corre-
sponding value from other. If cond is callable, it is computed on the NDFrame
and should return boolean NDFrame or array. The callable must not change input
NDFrame (though pandas doesn’t check it).

New in version 0.18.1: A callable can be used as cond.

other : scalar, NDFrame, or callable

Entries where cond is False are replaced with corresponding value from other.
If other is callable, it is computed on the NDFrame and should return scalar or
NDFrame. The callable must not change input NDFrame (though pandas doesn’t
check it).

New in version 0.18.1: A callable can be used as other.

inplace : boolean, default False

Whether to perform the operation in place on the data

axis [alignment axis if needed, default None]

level [alignment level if needed, default None]

errors : str, {‘raise’, ‘ignore’}, default ‘raise’

• raise : allow exceptions to be raised

• ignore : suppress exceptions. On error return original object

Note that currently this parameter won’t affect the results and will always coerce
to a suitable dtype.

try_cast : boolean, default False

try to cast the result back to the input type (if possible),

raise_on_error : boolean, default True

Whether to raise on invalid data types (e.g. trying to where on strings)

Deprecated since version 0.21.0.

34.4. DataFrame 1941

pandas: powerful Python data analysis toolkit, Release 0.23.4

Returns

wh [same type as caller]

See also:

DataFrame.mask()

Notes

The where method is an application of the if-then idiom. For each element in the calling DataFrame, if
cond is True the element is used; otherwise the corresponding element from the DataFrame other is
used.

The signature for DataFrame.where() differs from numpy.where(). Roughly df1.where(m,
df2) is equivalent to np.where(m, df1, df2).

For further details and examples see the where documentation in indexing.

Examples

>>> s = pd.Series(range(5))
>>> s.where(s > 0)
0 NaN
1 1.0
2 2.0
3 3.0
4 4.0

>>> s.mask(s > 0)
0 0.0
1 NaN
2 NaN
3 NaN
4 NaN

>>> s.where(s > 1, 10)
0 10.0
1 10.0
2 2.0
3 3.0
4 4.0

>>> df = pd.DataFrame(np.arange(10).reshape(-1, 2), columns=['A', 'B'])
>>> m = df % 3 == 0
>>> df.where(m, -df)

A B
0 0 -1
1 -2 3
2 -4 -5
3 6 -7
4 -8 9
>>> df.where(m, -df) == np.where(m, df, -df)

A B
0 True True

(continues on next page)

1942 Chapter 34. API Reference

https://docs.scipy.org/doc/numpy/reference/generated/numpy.where.html#numpy.where

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

1 True True
2 True True
3 True True
4 True True
>>> df.where(m, -df) == df.mask(~m, -df)

A B
0 True True
1 True True
2 True True
3 True True
4 True True

pandas.DataFrame.xs

DataFrame.xs(key, axis=0, level=None, drop_level=True)
Returns a cross-section (row(s) or column(s)) from the Series/DataFrame. Defaults to cross-section on
the rows (axis=0).

Parameters key : object

Some label contained in the index, or partially in a MultiIndex

axis : int, default 0

Axis to retrieve cross-section on

level : object, defaults to first n levels (n=1 or len(key))

In case of a key partially contained in a MultiIndex, indicate which levels are
used. Levels can be referred by label or position.

drop_level : boolean, default True

If False, returns object with same levels as self.

Returns

xs [Series or DataFrame]

Notes

xs is only for getting, not setting values.

MultiIndex Slicers is a generic way to get/set values on any level or levels. It is a superset of xs function-
ality, see MultiIndex Slicers

Examples

>>> df
A B C

a 4 5 2
b 4 0 9
c 9 7 3
>>> df.xs('a')
A 4

(continues on next page)

34.4. DataFrame 1943

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

B 5
C 2
Name: a
>>> df.xs('C', axis=1)
a 2
b 9
c 3
Name: C

>>> df
A B C D

first second third
bar one 1 4 1 8 9

two 1 7 5 5 0
baz one 1 6 6 8 0

three 2 5 3 5 3
>>> df.xs(('baz', 'three'))

A B C D
third
2 5 3 5 3
>>> df.xs('one', level=1)

A B C D
first third
bar 1 4 1 8 9
baz 1 6 6 8 0
>>> df.xs(('baz', 2), level=[0, 'third'])

A B C D
second
three 5 3 5 3

34.4.2 Attributes and underlying data

Axes

DataFrame.index The index (row labels) of the DataFrame.
DataFrame.columns The column labels of the DataFrame.

DataFrame.dtypes Return the dtypes in the DataFrame.
DataFrame.ftypes Return the ftypes (indication of sparse/dense and dtype)

in DataFrame.
DataFrame.get_dtype_counts() Return counts of unique dtypes in this object.
DataFrame.get_ftype_counts() (DEPRECATED) Return counts of unique ftypes in this

object.
DataFrame.select_dtypes([include, exclude]) Return a subset of the DataFrame’s columns based on

the column dtypes.
DataFrame.values Return a Numpy representation of the DataFrame.
DataFrame.get_values() Return an ndarray after converting sparse values to

dense.
DataFrame.axes Return a list representing the axes of the DataFrame.
DataFrame.ndim Return an int representing the number of axes / array

dimensions.
Continued on next page

1944 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

Table 63 – continued from previous page
DataFrame.size Return an int representing the number of elements in

this object.
DataFrame.shape Return a tuple representing the dimensionality of the

DataFrame.
DataFrame.memory_usage([index, deep]) Return the memory usage of each column in bytes.
DataFrame.empty Indicator whether DataFrame is empty.
DataFrame.is_copy

34.4.2.1 pandas.DataFrame.is_copy

DataFrame.is_copy

34.4.3 Conversion

DataFrame.astype(dtype[, copy, errors]) Cast a pandas object to a specified dtype dtype.
DataFrame.convert_objects([convert_dates,
. . .])

(DEPRECATED) Attempt to infer better dtype for ob-
ject columns.

DataFrame.infer_objects() Attempt to infer better dtypes for object columns.
DataFrame.copy([deep]) Make a copy of this object’s indices and data.
DataFrame.isna() Detect missing values.
DataFrame.notna() Detect existing (non-missing) values.
DataFrame.bool() Return the bool of a single element PandasObject.

34.4.4 Indexing, iteration

DataFrame.head([n]) Return the first n rows.
DataFrame.at Access a single value for a row/column label pair.
DataFrame.iat Access a single value for a row/column pair by integer

position.
DataFrame.loc Access a group of rows and columns by label(s) or a

boolean array.
DataFrame.iloc Purely integer-location based indexing for selection by

position.
DataFrame.insert(loc, column, value[, . . .]) Insert column into DataFrame at specified location.
DataFrame.insert(loc, column, value[, . . .]) Insert column into DataFrame at specified location.
DataFrame.__iter__() Iterate over infor axis
DataFrame.items() Iterator over (column name, Series) pairs.
DataFrame.keys() Get the ‘info axis’ (see Indexing for more)
DataFrame.iteritems() Iterator over (column name, Series) pairs.
DataFrame.iterrows() Iterate over DataFrame rows as (index, Series) pairs.
DataFrame.itertuples([index, name]) Iterate over DataFrame rows as namedtuples, with index

value as first element of the tuple.
DataFrame.lookup(row_labels, col_labels) Label-based “fancy indexing” function for DataFrame.
DataFrame.pop(item) Return item and drop from frame.
DataFrame.tail([n]) Return the last n rows.
DataFrame.xs(key[, axis, level, drop_level]) Returns a cross-section (row(s) or column(s)) from the

Series/DataFrame.
Continued on next page

34.4. DataFrame 1945

pandas: powerful Python data analysis toolkit, Release 0.23.4

Table 65 – continued from previous page
DataFrame.get(key[, default]) Get item from object for given key (DataFrame column,

Panel slice, etc.).
DataFrame.isin(values) Return boolean DataFrame showing whether each ele-

ment in the DataFrame is contained in values.
DataFrame.where(cond[, other, inplace, . . .]) Return an object of same shape as self and whose cor-

responding entries are from self where cond is True and
otherwise are from other.

DataFrame.mask(cond[, other, inplace, axis, . . .]) Return an object of same shape as self and whose corre-
sponding entries are from self where cond is False and
otherwise are from other.

DataFrame.query(expr[, inplace]) Query the columns of a frame with a boolean expres-
sion.

34.4.4.1 pandas.DataFrame.__iter__

DataFrame.__iter__()
Iterate over infor axis

For more information on .at, .iat, .loc, and .iloc, see the indexing documentation.

34.4.5 Binary operator functions

DataFrame.add(other[, axis, level, fill_value]) Addition of dataframe and other, element-wise (binary
operator add).

DataFrame.sub(other[, axis, level, fill_value]) Subtraction of dataframe and other, element-wise (bi-
nary operator sub).

DataFrame.mul(other[, axis, level, fill_value]) Multiplication of dataframe and other, element-wise (bi-
nary operator mul).

DataFrame.div(other[, axis, level, fill_value]) Floating division of dataframe and other, element-wise
(binary operator truediv).

DataFrame.truediv(other[, axis, level, . . .]) Floating division of dataframe and other, element-wise
(binary operator truediv).

DataFrame.floordiv(other[, axis, level, . . .]) Integer division of dataframe and other, element-wise
(binary operator floordiv).

DataFrame.mod(other[, axis, level, fill_value]) Modulo of dataframe and other, element-wise (binary
operator mod).

DataFrame.pow(other[, axis, level, fill_value]) Exponential power of dataframe and other, element-
wise (binary operator pow).

DataFrame.dot(other) Matrix multiplication with DataFrame or Series objects.
DataFrame.radd(other[, axis, level, fill_value]) Addition of dataframe and other, element-wise (binary

operator radd).
DataFrame.rsub(other[, axis, level, fill_value]) Subtraction of dataframe and other, element-wise (bi-

nary operator rsub).
DataFrame.rmul(other[, axis, level, fill_value]) Multiplication of dataframe and other, element-wise (bi-

nary operator rmul).
DataFrame.rdiv(other[, axis, level, fill_value]) Floating division of dataframe and other, element-wise

(binary operator rtruediv).
DataFrame.rtruediv(other[, axis, level, . . .]) Floating division of dataframe and other, element-wise

(binary operator rtruediv).
Continued on next page

1946 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

Table 66 – continued from previous page
DataFrame.rfloordiv(other[, axis, level, . . .]) Integer division of dataframe and other, element-wise

(binary operator rfloordiv).
DataFrame.rmod(other[, axis, level, fill_value]) Modulo of dataframe and other, element-wise (binary

operator rmod).
DataFrame.rpow(other[, axis, level, fill_value]) Exponential power of dataframe and other, element-

wise (binary operator rpow).
DataFrame.lt(other[, axis, level]) Wrapper for flexible comparison methods lt
DataFrame.gt(other[, axis, level]) Wrapper for flexible comparison methods gt
DataFrame.le(other[, axis, level]) Wrapper for flexible comparison methods le
DataFrame.ge(other[, axis, level]) Wrapper for flexible comparison methods ge
DataFrame.ne(other[, axis, level]) Wrapper for flexible comparison methods ne
DataFrame.eq(other[, axis, level]) Wrapper for flexible comparison methods eq
DataFrame.combine(other, func[, fill_value, . . .]) Add two DataFrame objects and do not propagate NaN

values, so if for a (column, time) one frame is missing
a value, it will default to the other frame’s value (which
might be NaN as well)

DataFrame.combine_first(other) Combine two DataFrame objects and default to non-null
values in frame calling the method.

34.4.6 Function application, GroupBy & Window

DataFrame.apply(func[, axis, broadcast, . . .]) Apply a function along an axis of the DataFrame.
DataFrame.applymap(func) Apply a function to a Dataframe elementwise.
DataFrame.pipe(func, *args, **kwargs) Apply func(self, *args, **kwargs)
DataFrame.agg(func[, axis]) Aggregate using one or more operations over the speci-

fied axis.
DataFrame.aggregate(func[, axis]) Aggregate using one or more operations over the speci-

fied axis.
DataFrame.transform(func, *args, **kwargs) Call function producing a like-indexed NDFrame and

return a NDFrame with the transformed values
DataFrame.groupby([by, axis, level, . . .]) Group series using mapper (dict or key function, apply

given function to group, return result as series) or by a
series of columns.

DataFrame.rolling(window[, min_periods, . . .]) Provides rolling window calculations.
DataFrame.expanding([min_periods, center,
axis])

Provides expanding transformations.

DataFrame.ewm([com, span, halflife, alpha, . . .]) Provides exponential weighted functions

34.4.7 Computations / Descriptive Stats

DataFrame.abs() Return a Series/DataFrame with absolute numeric value
of each element.

DataFrame.all([axis, bool_only, skipna, level]) Return whether all elements are True, potentially over
an axis.

DataFrame.any([axis, bool_only, skipna, level]) Return whether any element is True over requested axis.
DataFrame.clip([lower, upper, axis, inplace]) Trim values at input threshold(s).
DataFrame.clip_lower(threshold[, axis, in-
place])

Return copy of the input with values below a threshold
truncated.

Continued on next page

34.4. DataFrame 1947

pandas: powerful Python data analysis toolkit, Release 0.23.4

Table 68 – continued from previous page
DataFrame.clip_upper(threshold[, axis, in-
place])

Return copy of input with values above given value(s)
truncated.

DataFrame.compound([axis, skipna, level]) Return the compound percentage of the values for the
requested axis

DataFrame.corr([method, min_periods]) Compute pairwise correlation of columns, excluding
NA/null values

DataFrame.corrwith(other[, axis, drop]) Compute pairwise correlation between rows or columns
of two DataFrame objects.

DataFrame.count([axis, level, numeric_only]) Count non-NA cells for each column or row.
DataFrame.cov([min_periods]) Compute pairwise covariance of columns, excluding

NA/null values.
DataFrame.cummax([axis, skipna]) Return cumulative maximum over a DataFrame or Se-

ries axis.
DataFrame.cummin([axis, skipna]) Return cumulative minimum over a DataFrame or Se-

ries axis.
DataFrame.cumprod([axis, skipna]) Return cumulative product over a DataFrame or Series

axis.
DataFrame.cumsum([axis, skipna]) Return cumulative sum over a DataFrame or Series axis.
DataFrame.describe([percentiles, include, . . .]) Generates descriptive statistics that summarize the cen-

tral tendency, dispersion and shape of a dataset’s distri-
bution, excluding NaN values.

DataFrame.diff([periods, axis]) First discrete difference of element.
DataFrame.eval(expr[, inplace]) Evaluate a string describing operations on DataFrame

columns.
DataFrame.kurt([axis, skipna, level, . . .]) Return unbiased kurtosis over requested axis using

Fisher’s definition of kurtosis (kurtosis of normal ==
0.0).

DataFrame.kurtosis([axis, skipna, level, . . .]) Return unbiased kurtosis over requested axis using
Fisher’s definition of kurtosis (kurtosis of normal ==
0.0).

DataFrame.mad([axis, skipna, level]) Return the mean absolute deviation of the values for the
requested axis

DataFrame.max([axis, skipna, level, . . .]) This method returns the maximum of the values in the
object.

DataFrame.mean([axis, skipna, level, . . .]) Return the mean of the values for the requested axis
DataFrame.median([axis, skipna, level, . . .]) Return the median of the values for the requested axis
DataFrame.min([axis, skipna, level, . . .]) This method returns the minimum of the values in the

object.
DataFrame.mode([axis, numeric_only]) Gets the mode(s) of each element along the axis se-

lected.
DataFrame.pct_change([periods, fill_method,
. . .])

Percentage change between the current and a prior ele-
ment.

DataFrame.prod([axis, skipna, level, . . .]) Return the product of the values for the requested axis
DataFrame.product([axis, skipna, level, . . .]) Return the product of the values for the requested axis
DataFrame.quantile([q, axis, numeric_only,
. . .])

Return values at the given quantile over requested axis,
a la numpy.percentile.

DataFrame.rank([axis, method, numeric_only,
. . .])

Compute numerical data ranks (1 through n) along axis.

DataFrame.round([decimals]) Round a DataFrame to a variable number of decimal
places.

Continued on next page

1948 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

Table 68 – continued from previous page
DataFrame.sem([axis, skipna, level, ddof, . . .]) Return unbiased standard error of the mean over re-

quested axis.
DataFrame.skew([axis, skipna, level, . . .]) Return unbiased skew over requested axis Normalized

by N-1
DataFrame.sum([axis, skipna, level, . . .]) Return the sum of the values for the requested axis
DataFrame.std([axis, skipna, level, ddof, . . .]) Return sample standard deviation over requested axis.
DataFrame.var([axis, skipna, level, ddof, . . .]) Return unbiased variance over requested axis.
DataFrame.nunique([axis, dropna]) Return Series with number of distinct observations over

requested axis.

34.4.8 Reindexing / Selection / Label manipulation

DataFrame.add_prefix(prefix) Prefix labels with string prefix.
DataFrame.add_suffix(suffix) Suffix labels with string suffix.
DataFrame.align(other[, join, axis, level, . . .]) Align two objects on their axes with the specified join

method for each axis Index
DataFrame.at_time(time[, asof]) Select values at particular time of day (e.g.
DataFrame.between_time(start_time, end_time) Select values between particular times of the day (e.g.,

9:00-9:30 AM).
DataFrame.drop([labels, axis, index, . . .]) Drop specified labels from rows or columns.
DataFrame.drop_duplicates([subset, keep,
. . .])

Return DataFrame with duplicate rows removed, op-
tionally only considering certain columns

DataFrame.duplicated([subset, keep]) Return boolean Series denoting duplicate rows, option-
ally only considering certain columns

DataFrame.equals(other) Determines if two NDFrame objects contain the same
elements.

DataFrame.filter([items, like, regex, axis]) Subset rows or columns of dataframe according to labels
in the specified index.

DataFrame.first(offset) Convenience method for subsetting initial periods of
time series data based on a date offset.

DataFrame.head([n]) Return the first n rows.
DataFrame.idxmax([axis, skipna]) Return index of first occurrence of maximum over re-

quested axis.
DataFrame.idxmin([axis, skipna]) Return index of first occurrence of minimum over re-

quested axis.
DataFrame.last(offset) Convenience method for subsetting final periods of time

series data based on a date offset.
DataFrame.reindex([labels, index, columns, . . .]) Conform DataFrame to new index with optional filling

logic, placing NA/NaN in locations having no value in
the previous index.

DataFrame.reindex_axis(labels[, axis, . . .]) Conform input object to new index with optional filling
logic, placing NA/NaN in locations having no value in
the previous index.

DataFrame.reindex_like(other[, method, . . .]) Return an object with matching indices to myself.
DataFrame.rename([mapper, index, columns, . . .]) Alter axes labels.
DataFrame.rename_axis(mapper[, axis, copy,
. . .])

Alter the name of the index or columns.

Continued on next page

34.4. DataFrame 1949

pandas: powerful Python data analysis toolkit, Release 0.23.4

Table 69 – continued from previous page
DataFrame.reset_index([level, drop, . . .]) For DataFrame with multi-level index, return new

DataFrame with labeling information in the columns un-
der the index names, defaulting to ‘level_0’, ‘level_1’,
etc.

DataFrame.sample([n, frac, replace, . . .]) Return a random sample of items from an axis of object.
DataFrame.select(crit[, axis]) (DEPRECATED) Return data corresponding to axis la-

bels matching criteria
DataFrame.set_axis(labels[, axis, inplace]) Assign desired index to given axis.
DataFrame.set_index(keys[, drop, append, . . .]) Set the DataFrame index (row labels) using one or more

existing columns.
DataFrame.tail([n]) Return the last n rows.
DataFrame.take(indices[, axis, convert, is_copy]) Return the elements in the given positional indices

along an axis.
DataFrame.truncate([before, after, axis, copy]) Truncate a Series or DataFrame before and after some

index value.

34.4.9 Missing data handling

DataFrame.dropna([axis, how, thresh, . . .]) Remove missing values.
DataFrame.fillna([value, method, axis, . . .]) Fill NA/NaN values using the specified method
DataFrame.replace([to_replace, value, . . .]) Replace values given in to_replace with value.
DataFrame.interpolate([method, axis, limit,
. . .])

Interpolate values according to different methods.

34.4.10 Reshaping, sorting, transposing

DataFrame.pivot([index, columns, values]) Return reshaped DataFrame organized by given index /
column values.

DataFrame.pivot_table([values, index, . . .]) Create a spreadsheet-style pivot table as a DataFrame.
DataFrame.reorder_levels(order[, axis]) Rearrange index levels using input order.
DataFrame.sort_values(by[, axis, ascending,
. . .])

Sort by the values along either axis

DataFrame.sort_index([axis, level, . . .]) Sort object by labels (along an axis)
DataFrame.nlargest(n, columns[, keep]) Return the first n rows ordered by columns in descend-

ing order.
DataFrame.nsmallest(n, columns[, keep]) Get the rows of a DataFrame sorted by the n smallest

values of columns.
DataFrame.swaplevel([i, j, axis]) Swap levels i and j in a MultiIndex on a particular axis
DataFrame.stack([level, dropna]) Stack the prescribed level(s) from columns to index.
DataFrame.unstack([level, fill_value]) Pivot a level of the (necessarily hierarchical) index la-

bels, returning a DataFrame having a new level of col-
umn labels whose inner-most level consists of the piv-
oted index labels.

DataFrame.swapaxes(axis1, axis2[, copy]) Interchange axes and swap values axes appropriately
DataFrame.melt([id_vars, value_vars, . . .]) “Unpivots” a DataFrame from wide format to long for-

mat, optionally leaving identifier variables set.
DataFrame.squeeze([axis]) Squeeze length 1 dimensions.
DataFrame.to_panel() (DEPRECATED) Transform long (stacked) format

(DataFrame) into wide (3D, Panel) format.
Continued on next page

1950 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

Table 71 – continued from previous page
DataFrame.to_xarray() Return an xarray object from the pandas object.
DataFrame.T Transpose index and columns.
DataFrame.transpose(*args, **kwargs) Transpose index and columns.

34.4.11 Combining / joining / merging

DataFrame.append(other[, ignore_index, . . .]) Append rows of other to the end of this frame, returning
a new object.

DataFrame.assign(**kwargs) Assign new columns to a DataFrame, returning a new
object (a copy) with the new columns added to the orig-
inal ones.

DataFrame.join(other[, on, how, lsuffix, . . .]) Join columns with other DataFrame either on index or
on a key column.

DataFrame.merge(right[, how, on, left_on, . . .]) Merge DataFrame objects by performing a database-
style join operation by columns or indexes.

DataFrame.update(other[, join, overwrite, . . .]) Modify in place using non-NA values from another
DataFrame.

34.4.12 Time series-related

DataFrame.asfreq(freq[, method, how, . . .]) Convert TimeSeries to specified frequency.
DataFrame.asof(where[, subset]) The last row without any NaN is taken (or the last row

without NaN considering only the subset of columns in
the case of a DataFrame)

DataFrame.shift([periods, freq, axis]) Shift index by desired number of periods with an op-
tional time freq

DataFrame.slice_shift([periods, axis]) Equivalent to shift without copying data.
DataFrame.tshift([periods, freq, axis]) Shift the time index, using the index’s frequency if avail-

able.
DataFrame.first_valid_index() Return index for first non-NA/null value.
DataFrame.last_valid_index() Return index for last non-NA/null value.
DataFrame.resample(rule[, how, axis, . . .]) Convenience method for frequency conversion and re-

sampling of time series.
DataFrame.to_period([freq, axis, copy]) Convert DataFrame from DatetimeIndex to PeriodIn-

dex with desired frequency (inferred from index if not
passed)

DataFrame.to_timestamp([freq, how, axis,
copy])

Cast to DatetimeIndex of timestamps, at beginning of
period

DataFrame.tz_convert(tz[, axis, level, copy]) Convert tz-aware axis to target time zone.
DataFrame.tz_localize(tz[, axis, level, . . .]) Localize tz-naive TimeSeries to target time zone.

34.4.13 Plotting

DataFrame.plot is both a callable method and a namespace attribute for specific plotting methods of the form
DataFrame.plot.<kind>.

DataFrame.plot([x, y, kind, ax,]) DataFrame plotting accessor and method

34.4. DataFrame 1951

pandas: powerful Python data analysis toolkit, Release 0.23.4

DataFrame.plot.area([x, y]) Area plot
DataFrame.plot.bar([x, y]) Vertical bar plot.
DataFrame.plot.barh([x, y]) Make a horizontal bar plot.
DataFrame.plot.box([by]) Make a box plot of the DataFrame columns.
DataFrame.plot.density([bw_method, ind]) Generate Kernel Density Estimate plot using Gaussian

kernels.
DataFrame.plot.hexbin(x, y[, C, . . .]) Generate a hexagonal binning plot.
DataFrame.plot.hist([by, bins]) Draw one histogram of the DataFrame’s columns.
DataFrame.plot.kde([bw_method, ind]) Generate Kernel Density Estimate plot using Gaussian

kernels.
DataFrame.plot.line([x, y]) Plot DataFrame columns as lines.
DataFrame.plot.pie([y]) Generate a pie plot.
DataFrame.plot.scatter(x, y[, s, c]) Create a scatter plot with varying marker point size and

color.

34.4.13.1 pandas.DataFrame.plot.area

DataFrame.plot.area(x=None, y=None, **kwds)
Area plot

Parameters x, y : label or position, optional

Coordinates for each point.

‘**kwds‘ : optional

Additional keyword arguments are documented in pandas.DataFrame.
plot().

Returns

axes [matplotlib.axes.Axes or numpy.ndarray of them]

34.4.13.2 pandas.DataFrame.plot.bar

DataFrame.plot.bar(x=None, y=None, **kwds)
Vertical bar plot.

A bar plot is a plot that presents categorical data with rectangular bars with lengths proportional to the values
that they represent. A bar plot shows comparisons among discrete categories. One axis of the plot shows the
specific categories being compared, and the other axis represents a measured value.

Parameters x : label or position, optional

Allows plotting of one column versus another. If not specified, the index of the
DataFrame is used.

y : label or position, optional

Allows plotting of one column versus another. If not specified, all numerical columns
are used.

**kwds

Additional keyword arguments are documented in pandas.DataFrame.
plot().

Returns axes : matplotlib.axes.Axes or np.ndarray of them

1952 Chapter 34. API Reference

https://matplotlib.org/api/axes_api.html#matplotlib.axes.Axes

pandas: powerful Python data analysis toolkit, Release 0.23.4

An ndarray is returned with one matplotlib.axes.Axes per column when
subplots=True.

See also:

pandas.DataFrame.plot.barh Horizontal bar plot.

pandas.DataFrame.plot Make plots of a DataFrame.

matplotlib.pyplot.bar Make a bar plot with matplotlib.

Examples

Basic plot.

>>> df = pd.DataFrame({'lab':['A', 'B', 'C'], 'val':[10, 30, 20]})
>>> ax = df.plot.bar(x='lab', y='val', rot=0)

Plot a whole dataframe to a bar plot. Each column is assigned a distinct color, and each row is nested in a group
along the horizontal axis.

>>> speed = [0.1, 17.5, 40, 48, 52, 69, 88]
>>> lifespan = [2, 8, 70, 1.5, 25, 12, 28]
>>> index = ['snail', 'pig', 'elephant',
... 'rabbit', 'giraffe', 'coyote', 'horse']
>>> df = pd.DataFrame({'speed': speed,
... 'lifespan': lifespan}, index=index)
>>> ax = df.plot.bar(rot=0)

Instead of nesting, the figure can be split by column with subplots=True. In this case, a numpy.ndarray
of matplotlib.axes.Axes are returned.

>>> axes = df.plot.bar(rot=0, subplots=True)
>>> axes[1].legend(loc=2)

Plot a single column.

>>> ax = df.plot.bar(y='speed', rot=0)

Plot only selected categories for the DataFrame.

>>> ax = df.plot.bar(x='lifespan', rot=0)

34.4.13.3 pandas.DataFrame.plot.barh

DataFrame.plot.barh(x=None, y=None, **kwds)
Make a horizontal bar plot.

A horizontal bar plot is a plot that presents quantitative data with rectangular bars with lengths proportional to
the values that they represent. A bar plot shows comparisons among discrete categories. One axis of the plot
shows the specific categories being compared, and the other axis represents a measured value.

Parameters x : label or position, default DataFrame.index

Column to be used for categories.

y : label or position, default All numeric columns in dataframe

34.4. DataFrame 1953

https://matplotlib.org/api/axes_api.html#matplotlib.axes.Axes
https://matplotlib.org/api/_as_gen/matplotlib.pyplot.bar.html#matplotlib.pyplot.bar
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://matplotlib.org/api/axes_api.html#matplotlib.axes.Axes

pandas: powerful Python data analysis toolkit, Release 0.23.4

Columns to be plotted from the DataFrame.

**kwds

Keyword arguments to pass on to pandas.DataFrame.plot().

Returns

axes [matplotlib.axes.Axes or numpy.ndarray of them.]

See also:

pandas.DataFrame.plot.bar Vertical bar plot.

pandas.DataFrame.plot Make plots of DataFrame using matplotlib.

matplotlib.axes.Axes.bar Plot a vertical bar plot using matplotlib.

Examples

Basic example

>>> df = pd.DataFrame({'lab':['A', 'B', 'C'], 'val':[10, 30, 20]})
>>> ax = df.plot.barh(x='lab', y='val')

Plot a whole DataFrame to a horizontal bar plot

>>> speed = [0.1, 17.5, 40, 48, 52, 69, 88]
>>> lifespan = [2, 8, 70, 1.5, 25, 12, 28]
>>> index = ['snail', 'pig', 'elephant',
... 'rabbit', 'giraffe', 'coyote', 'horse']
>>> df = pd.DataFrame({'speed': speed,
... 'lifespan': lifespan}, index=index)
>>> ax = df.plot.barh()

Plot a column of the DataFrame to a horizontal bar plot

>>> speed = [0.1, 17.5, 40, 48, 52, 69, 88]
>>> lifespan = [2, 8, 70, 1.5, 25, 12, 28]
>>> index = ['snail', 'pig', 'elephant',
... 'rabbit', 'giraffe', 'coyote', 'horse']
>>> df = pd.DataFrame({'speed': speed,
... 'lifespan': lifespan}, index=index)
>>> ax = df.plot.barh(y='speed')

Plot DataFrame versus the desired column

>>> speed = [0.1, 17.5, 40, 48, 52, 69, 88]
>>> lifespan = [2, 8, 70, 1.5, 25, 12, 28]
>>> index = ['snail', 'pig', 'elephant',
... 'rabbit', 'giraffe', 'coyote', 'horse']
>>> df = pd.DataFrame({'speed': speed,
... 'lifespan': lifespan}, index=index)
>>> ax = df.plot.barh(x='lifespan')

1954 Chapter 34. API Reference

https://matplotlib.org/api/axes_api.html#matplotlib.axes.Axes
https://matplotlib.org/api/_as_gen/matplotlib.axes.Axes.bar.html#matplotlib.axes.Axes.bar

pandas: powerful Python data analysis toolkit, Release 0.23.4

34.4.13.4 pandas.DataFrame.plot.box

DataFrame.plot.box(by=None, **kwds)
Make a box plot of the DataFrame columns.

A box plot is a method for graphically depicting groups of numerical data through their quartiles. The box
extends from the Q1 to Q3 quartile values of the data, with a line at the median (Q2). The whiskers extend from
the edges of box to show the range of the data. The position of the whiskers is set by default to 1.5*IQR (IQR
= Q3 - Q1) from the edges of the box. Outlier points are those past the end of the whiskers.

For further details see Wikipedia’s entry for boxplot.

A consideration when using this chart is that the box and the whiskers can overlap, which is very common when
plotting small sets of data.

Parameters by : string or sequence

Column in the DataFrame to group by.

**kwds : optional

Additional keywords are documented in pandas.DataFrame.plot().

Returns

axes [matplotlib.axes.Axes or numpy.ndarray of them]

See also:

pandas.DataFrame.boxplot Another method to draw a box plot.

pandas.Series.plot.box Draw a box plot from a Series object.

matplotlib.pyplot.boxplot Draw a box plot in matplotlib.

Examples

Draw a box plot from a DataFrame with four columns of randomly generated data.

>>> data = np.random.randn(25, 4)
>>> df = pd.DataFrame(data, columns=list('ABCD'))
>>> ax = df.plot.box()

34.4.13.5 pandas.DataFrame.plot.density

DataFrame.plot.density(bw_method=None, ind=None, **kwds)
Generate Kernel Density Estimate plot using Gaussian kernels.

In statistics, kernel density estimation (KDE) is a non-parametric way to estimate the probability density function
(PDF) of a random variable. This function uses Gaussian kernels and includes automatic bandwith determina-
tion.

Parameters bw_method : str, scalar or callable, optional

The method used to calculate the estimator bandwidth. This can be ‘scott’, ‘sil-
verman’, a scalar constant or a callable. If None (default), ‘scott’ is used. See
scipy.stats.gaussian_kde for more information.

ind : NumPy array or integer, optional

34.4. DataFrame 1955

https://en.wikipedia.org/wiki/Box_plot
https://matplotlib.org/api/axes_api.html#matplotlib.axes.Axes
https://matplotlib.org/api/_as_gen/matplotlib.pyplot.boxplot.html#matplotlib.pyplot.boxplot
https://en.wikipedia.org/wiki/Kernel_density_estimation
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.gaussian_kde.html#scipy.stats.gaussian_kde

pandas: powerful Python data analysis toolkit, Release 0.23.4

Evaluation points for the estimated PDF. If None (default), 1000 equally spaced
points are used. If ind is a NumPy array, the KDE is evaluated at the points passed.
If ind is an integer, ind number of equally spaced points are used.

**kwds : optional

Additional keyword arguments are documented in pandas.DataFrame.
plot().

Returns

axes [matplotlib.axes.Axes or numpy.ndarray of them]

See also:

scipy.stats.gaussian_kde Representation of a kernel-density estimate using Gaussian kernels. This
is the function used internally to estimate the PDF.

Series.plot.kde Generate a KDE plot for a Series.

Examples

Given several Series of points randomly sampled from unknown distributions, estimate their PDFs using KDE
with automatic bandwidth determination and plot the results, evaluating them at 1000 equally spaced points
(default):

>>> df = pd.DataFrame({
... 'x': [1, 2, 2.5, 3, 3.5, 4, 5],
... 'y': [4, 4, 4.5, 5, 5.5, 6, 6],
... })
>>> ax = df.plot.kde()

A scalar bandwidth can be specified. Using a small bandwidth value can lead to overfitting, while using a large
bandwidth value may result in underfitting:

>>> ax = df.plot.kde(bw_method=0.3)

>>> ax = df.plot.kde(bw_method=3)

Finally, the ind parameter determines the evaluation points for the plot of the estimated PDF:

>>> ax = df.plot.kde(ind=[1, 2, 3, 4, 5, 6])

34.4.13.6 pandas.DataFrame.plot.hexbin

DataFrame.plot.hexbin(x, y, C=None, reduce_C_function=None, gridsize=None, **kwds)
Generate a hexagonal binning plot.

Generate a hexagonal binning plot of x versus y. If C is None (the default), this is a histogram of the number of
occurrences of the observations at (x[i], y[i]).

If C is specified, specifies values at given coordinates (x[i], y[i]). These values are accumulated for each
hexagonal bin and then reduced according to reduce_C_function, having as default the NumPy’s mean function
(numpy.mean()). (If C is specified, it must also be a 1-D sequence of the same length as x and y, or a column
label.)

Parameters x : int or str

1956 Chapter 34. API Reference

https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.gaussian_kde.html#scipy.stats.gaussian_kde

pandas: powerful Python data analysis toolkit, Release 0.23.4

The column label or position for x points.

y : int or str

The column label or position for y points.

C : int or str, optional

The column label or position for the value of (x, y) point.

reduce_C_function : callable, default np.mean

Function of one argument that reduces all the values in a bin to a single number (e.g.
np.mean, np.max, np.sum, np.std).

gridsize : int or tuple of (int, int), default 100

The number of hexagons in the x-direction. The corresponding number of hexagons
in the y-direction is chosen in a way that the hexagons are approximately regular.
Alternatively, gridsize can be a tuple with two elements specifying the number of
hexagons in the x-direction and the y-direction.

**kwds

Additional keyword arguments are documented in pandas.DataFrame.
plot().

Returns matplotlib.AxesSubplot

The matplotlib Axes on which the hexbin is plotted.

See also:

DataFrame.plot Make plots of a DataFrame.

matplotlib.pyplot.hexbin hexagonal binning plot using matplotlib, the matplotlib function that is
used under the hood.

Examples

The following examples are generated with random data from a normal distribution.

>>> n = 10000
>>> df = pd.DataFrame({'x': np.random.randn(n),
... 'y': np.random.randn(n)})
>>> ax = df.plot.hexbin(x='x', y='y', gridsize=20)

The next example uses C and np.sum as reduce_C_function. Note that ‘observations’ values ranges from 1 to 5
but the result plot shows values up to more than 25. This is because of the reduce_C_function.

>>> n = 500
>>> df = pd.DataFrame({
... 'coord_x': np.random.uniform(-3, 3, size=n),
... 'coord_y': np.random.uniform(30, 50, size=n),
... 'observations': np.random.randint(1,5, size=n)
... })
>>> ax = df.plot.hexbin(x='coord_x',
... y='coord_y',
... C='observations',
... reduce_C_function=np.sum,

(continues on next page)

34.4. DataFrame 1957

https://matplotlib.org/api/_as_gen/matplotlib.pyplot.hexbin.html#matplotlib.pyplot.hexbin

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

... gridsize=10,

... cmap="viridis")

34.4.13.7 pandas.DataFrame.plot.hist

DataFrame.plot.hist(by=None, bins=10, **kwds)
Draw one histogram of the DataFrame’s columns.

A histogram is a representation of the distribution of data. This function groups the values of all given Series
in the DataFrame into bins and draws all bins in one matplotlib.axes.Axes. This is useful when the
DataFrame’s Series are in a similar scale.

Parameters by : str or sequence, optional

Column in the DataFrame to group by.

bins : int, default 10

Number of histogram bins to be used.

**kwds

Additional keyword arguments are documented in pandas.DataFrame.
plot().

Returns

axes [matplotlib.AxesSubplot histogram.]

See also:

DataFrame.hist Draw histograms per DataFrame’s Series.

Series.hist Draw a histogram with Series’ data.

Examples

When we draw a dice 6000 times, we expect to get each value around 1000 times. But when we draw two dices
and sum the result, the distribution is going to be quite different. A histogram illustrates those distributions.

>>> df = pd.DataFrame(
... np.random.randint(1, 7, 6000),
... columns = ['one'])
>>> df['two'] = df['one'] + np.random.randint(1, 7, 6000)
>>> ax = df.plot.hist(bins=12, alpha=0.5)

34.4.13.8 pandas.DataFrame.plot.kde

DataFrame.plot.kde(bw_method=None, ind=None, **kwds)
Generate Kernel Density Estimate plot using Gaussian kernels.

In statistics, kernel density estimation (KDE) is a non-parametric way to estimate the probability density function
(PDF) of a random variable. This function uses Gaussian kernels and includes automatic bandwith determina-
tion.

Parameters bw_method : str, scalar or callable, optional

1958 Chapter 34. API Reference

https://matplotlib.org/api/axes_api.html#matplotlib.axes.Axes
https://en.wikipedia.org/wiki/Kernel_density_estimation

pandas: powerful Python data analysis toolkit, Release 0.23.4

The method used to calculate the estimator bandwidth. This can be ‘scott’, ‘sil-
verman’, a scalar constant or a callable. If None (default), ‘scott’ is used. See
scipy.stats.gaussian_kde for more information.

ind : NumPy array or integer, optional

Evaluation points for the estimated PDF. If None (default), 1000 equally spaced
points are used. If ind is a NumPy array, the KDE is evaluated at the points passed.
If ind is an integer, ind number of equally spaced points are used.

**kwds : optional

Additional keyword arguments are documented in pandas.DataFrame.
plot().

Returns

axes [matplotlib.axes.Axes or numpy.ndarray of them]

See also:

scipy.stats.gaussian_kde Representation of a kernel-density estimate using Gaussian kernels. This
is the function used internally to estimate the PDF.

Series.plot.kde Generate a KDE plot for a Series.

Examples

Given several Series of points randomly sampled from unknown distributions, estimate their PDFs using KDE
with automatic bandwidth determination and plot the results, evaluating them at 1000 equally spaced points
(default):

>>> df = pd.DataFrame({
... 'x': [1, 2, 2.5, 3, 3.5, 4, 5],
... 'y': [4, 4, 4.5, 5, 5.5, 6, 6],
... })
>>> ax = df.plot.kde()

A scalar bandwidth can be specified. Using a small bandwidth value can lead to overfitting, while using a large
bandwidth value may result in underfitting:

>>> ax = df.plot.kde(bw_method=0.3)

>>> ax = df.plot.kde(bw_method=3)

Finally, the ind parameter determines the evaluation points for the plot of the estimated PDF:

>>> ax = df.plot.kde(ind=[1, 2, 3, 4, 5, 6])

34.4.13.9 pandas.DataFrame.plot.line

DataFrame.plot.line(x=None, y=None, **kwds)
Plot DataFrame columns as lines.

This function is useful to plot lines using DataFrame’s values as coordinates.

Parameters x : int or str, optional

34.4. DataFrame 1959

https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.gaussian_kde.html#scipy.stats.gaussian_kde
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.gaussian_kde.html#scipy.stats.gaussian_kde

pandas: powerful Python data analysis toolkit, Release 0.23.4

Columns to use for the horizontal axis. Either the location or the label of the columns
to be used. By default, it will use the DataFrame indices.

y : int, str, or list of them, optional

The values to be plotted. Either the location or the label of the columns to be used.
By default, it will use the remaining DataFrame numeric columns.

**kwds

Keyword arguments to pass on to pandas.DataFrame.plot().

Returns axes : matplotlib.axes.Axes or numpy.ndarray

Returns an ndarray when subplots=True.

See also:

matplotlib.pyplot.plot Plot y versus x as lines and/or markers.

Examples

The following example shows the populations for some animals over the years.

>>> df = pd.DataFrame({
... 'pig': [20, 18, 489, 675, 1776],
... 'horse': [4, 25, 281, 600, 1900]
... }, index=[1990, 1997, 2003, 2009, 2014])
>>> lines = df.plot.line()

An example with subplots, so an array of axes is returned.

>>> axes = df.plot.line(subplots=True)
>>> type(axes)
<class 'numpy.ndarray'>

The following example shows the relationship between both populations.

>>> lines = df.plot.line(x='pig', y='horse')

34.4.13.10 pandas.DataFrame.plot.pie

DataFrame.plot.pie(y=None, **kwds)
Generate a pie plot.

A pie plot is a proportional representation of the numerical data in a column. This function wraps
matplotlib.pyplot.pie() for the specified column. If no column reference is passed and
subplots=True a pie plot is drawn for each numerical column independently.

Parameters y : int or label, optional

Label or position of the column to plot. If not provided, subplots=True argu-
ment must be passed.

**kwds

Keyword arguments to pass on to pandas.DataFrame.plot().

Returns axes : matplotlib.axes.Axes or np.ndarray of them.

1960 Chapter 34. API Reference

https://matplotlib.org/api/axes_api.html#matplotlib.axes.Axes
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://matplotlib.org/api/_as_gen/matplotlib.pyplot.plot.html#matplotlib.pyplot.plot

pandas: powerful Python data analysis toolkit, Release 0.23.4

A NumPy array is returned when subplots is True.

See also:

Series.plot.pie Generate a pie plot for a Series.

DataFrame.plot Make plots of a DataFrame.

Examples

In the example below we have a DataFrame with the information about planet’s mass and radius. We pass the
the ‘mass’ column to the pie function to get a pie plot.

>>> df = pd.DataFrame({'mass': [0.330, 4.87 , 5.97],
... 'radius': [2439.7, 6051.8, 6378.1]},
... index=['Mercury', 'Venus', 'Earth'])
>>> plot = df.plot.pie(y='mass', figsize=(5, 5))

>>> plot = df.plot.pie(subplots=True, figsize=(6, 3))

34.4.13.11 pandas.DataFrame.plot.scatter

DataFrame.plot.scatter(x, y, s=None, c=None, **kwds)
Create a scatter plot with varying marker point size and color.

The coordinates of each point are defined by two dataframe columns and filled circles are used to represent each
point. This kind of plot is useful to see complex correlations between two variables. Points could be for instance
natural 2D coordinates like longitude and latitude in a map or, in general, any pair of metrics that can be plotted
against each other.

Parameters x : int or str

The column name or column position to be used as horizontal coordinates for each
point.

y : int or str

The column name or column position to be used as vertical coordinates for each
point.

s : scalar or array_like, optional

The size of each point. Possible values are:

• A single scalar so all points have the same size.

• A sequence of scalars, which will be used for each point’s size recursively. For
instance, when passing [2,14] all points size will be either 2 or 14, alternatively.

c : str, int or array_like, optional

The color of each point. Possible values are:

• A single color string referred to by name, RGB or RGBA code, for instance ‘red’
or ‘#a98d19’.

• A sequence of color strings referred to by name, RGB or RGBA code, which
will be used for each point’s color recursively. For intance [‘green’,’yellow’] all
points will be filled in green or yellow, alternatively.

34.4. DataFrame 1961

pandas: powerful Python data analysis toolkit, Release 0.23.4

• A column name or position whose values will be used to color the marker points
according to a colormap.

**kwds

Keyword arguments to pass on to pandas.DataFrame.plot().

Returns

axes [matplotlib.axes.Axes or numpy.ndarray of them]

See also:

matplotlib.pyplot.scatter scatter plot using multiple input data formats.

Examples

Let’s see how to draw a scatter plot using coordinates from the values in a DataFrame’s columns.

>>> df = pd.DataFrame([[5.1, 3.5, 0], [4.9, 3.0, 0], [7.0, 3.2, 1],
... [6.4, 3.2, 1], [5.9, 3.0, 2]],
... columns=['length', 'width', 'species'])
>>> ax1 = df.plot.scatter(x='length',
... y='width',
... c='DarkBlue')

And now with the color determined by a column as well.

>>> ax2 = df.plot.scatter(x='length',
... y='width',
... c='species',
... colormap='viridis')

DataFrame.boxplot([column, by, ax, . . .]) Make a box plot from DataFrame columns.
DataFrame.hist([column, by, grid, . . .]) Make a histogram of the DataFrame’s.

34.4.14 Serialization / IO / Conversion

DataFrame.from_csv(path[, header, sep, . . .]) (DEPRECATED) Read CSV file.
DataFrame.from_dict(data[, orient, dtype, . . .]) Construct DataFrame from dict of array-like or dicts.
DataFrame.from_items(items[, columns, orient]) (DEPRECATED) Construct a dataframe from a list of

tuples
DataFrame.from_records(data[, index, . . .]) Convert structured or record ndarray to DataFrame
DataFrame.info([verbose, buf, max_cols, . . .]) Print a concise summary of a DataFrame.
DataFrame.to_parquet(fname[, engine, . . .]) Write a DataFrame to the binary parquet format.
DataFrame.to_pickle(path[, compression, . . .]) Pickle (serialize) object to file.
DataFrame.to_csv([path_or_buf, sep, na_rep,
. . .])

Write DataFrame to a comma-separated values (csv) file

DataFrame.to_hdf(path_or_buf, key, **kwargs) Write the contained data to an HDF5 file using HDFS-
tore.

DataFrame.to_sql(name, con[, schema, . . .]) Write records stored in a DataFrame to a SQL database.
DataFrame.to_dict([orient, into]) Convert the DataFrame to a dictionary.
DataFrame.to_excel(excel_writer[, . . .]) Write DataFrame to an excel sheet

Continued on next page

1962 Chapter 34. API Reference

https://matplotlib.org/api/axes_api.html#matplotlib.axes.Axes
https://matplotlib.org/api/_as_gen/matplotlib.pyplot.scatter.html#matplotlib.pyplot.scatter

pandas: powerful Python data analysis toolkit, Release 0.23.4

Table 77 – continued from previous page
DataFrame.to_json([path_or_buf, orient, . . .]) Convert the object to a JSON string.
DataFrame.to_html([buf, columns, col_space,
. . .])

Render a DataFrame as an HTML table.

DataFrame.to_feather(fname) write out the binary feather-format for DataFrames
DataFrame.to_latex([buf, columns, . . .]) Render an object to a tabular environment table.
DataFrame.to_stata(fname[, convert_dates,
. . .])

Export Stata binary dta files.

DataFrame.to_msgpack([path_or_buf, encod-
ing])

msgpack (serialize) object to input file path

DataFrame.to_gbq(destination_table, project_id) Write a DataFrame to a Google BigQuery table.
DataFrame.to_records([index, con-
vert_datetime64])

Convert DataFrame to a NumPy record array.

DataFrame.to_sparse([fill_value, kind]) Convert to SparseDataFrame
DataFrame.to_dense() Return dense representation of NDFrame (as opposed to

sparse)
DataFrame.to_string([buf, columns, . . .]) Render a DataFrame to a console-friendly tabular out-

put.
DataFrame.to_clipboard([excel, sep]) Copy object to the system clipboard.
DataFrame.style Property returning a Styler object containing meth-

ods for building a styled HTML representation fo the
DataFrame.

34.4.15 Sparse

SparseDataFrame.to_coo() Return the contents of the frame as a sparse SciPy COO
matrix.

34.4.15.1 pandas.SparseDataFrame.to_coo

SparseDataFrame.to_coo()
Return the contents of the frame as a sparse SciPy COO matrix.

New in version 0.20.0.

Returns coo_matrix : scipy.sparse.spmatrix

If the caller is heterogeneous and contains booleans or objects, the result will be of
dtype=object. See Notes.

Notes

The dtype will be the lowest-common-denominator type (implicit upcasting); that is to say if the dtypes (even
of numeric types) are mixed, the one that accommodates all will be chosen.

e.g. If the dtypes are float16 and float32, dtype will be upcast to float32. By numpy.find_common_type conven-
tion, mixing int64 and and uint64 will result in a float64 dtype.

34.4. DataFrame 1963

pandas: powerful Python data analysis toolkit, Release 0.23.4

34.5 Panel

34.5.1 Constructor

Panel([data, items, major_axis, minor_axis, . . .]) (DEPRECATED) Represents wide format panel data,
stored as 3-dimensional array

34.5.1.1 pandas.Panel

class pandas.Panel(data=None, items=None, major_axis=None, minor_axis=None, copy=False,
dtype=None)

Represents wide format panel data, stored as 3-dimensional array

Deprecated since version 0.20.0: The recommended way to represent 3-D data are with a MultiIndex on a
DataFrame via the to_frame() method or with the xarray package. Pandas provides a to_xarray()
method to automate this conversion.

Parameters data : ndarray (items x major x minor), or dict of DataFrames

items [Index or array-like] axis=0

major_axis [Index or array-like] axis=1

minor_axis [Index or array-like] axis=2

dtype [dtype, default None] Data type to force, otherwise infer

copy [boolean, default False] Copy data from inputs. Only affects DataFrame / 2d
ndarray input

Attributes

at Access a single value for a row/column label pair.
axes Return index label(s) of the internal NDFrame
blocks (DEPRECATED) Internal property, property syn-

onym for as_blocks()
dtypes Return the dtypes in the DataFrame.
empty Indicator whether DataFrame is empty.
ftypes Return the ftypes (indication of sparse/dense and

dtype) in DataFrame.
iat Access a single value for a row/column pair by inte-

ger position.
iloc Purely integer-location based indexing for selection

by position.
items
ix A primarily label-location based indexer, with inte-

ger position fallback.
loc Access a group of rows and columns by label(s) or a

boolean array.
major_axis
minor_axis

Continued on next page

1964 Chapter 34. API Reference

http://xarray.pydata.org/en/stable/

pandas: powerful Python data analysis toolkit, Release 0.23.4

Table 80 – continued from previous page
ndim Return an int representing the number of axes / array

dimensions.
shape Return a tuple of axis dimensions
size Return an int representing the number of elements in

this object.
values Return a Numpy representation of the DataFrame.

pandas.Panel.at

Panel.at
Access a single value for a row/column label pair.

Similar to loc, in that both provide label-based lookups. Use at if you only need to get or set a single
value in a DataFrame or Series.

Raises KeyError

When label does not exist in DataFrame

See also:

DataFrame.iat Access a single value for a row/column pair by integer position

DataFrame.loc Access a group of rows and columns by label(s)

Series.at Access a single value using a label

Examples

>>> df = pd.DataFrame([[0, 2, 3], [0, 4, 1], [10, 20, 30]],
... index=[4, 5, 6], columns=['A', 'B', 'C'])
>>> df

A B C
4 0 2 3
5 0 4 1
6 10 20 30

Get value at specified row/column pair

>>> df.at[4, 'B']
2

Set value at specified row/column pair

>>> df.at[4, 'B'] = 10
>>> df.at[4, 'B']
10

Get value within a Series

>>> df.loc[5].at['B']
4

34.5. Panel 1965

pandas: powerful Python data analysis toolkit, Release 0.23.4

pandas.Panel.axes

Panel.axes
Return index label(s) of the internal NDFrame

pandas.Panel.blocks

Panel.blocks
Internal property, property synonym for as_blocks()

Deprecated since version 0.21.0.

pandas.Panel.dtypes

Panel.dtypes
Return the dtypes in the DataFrame.

This returns a Series with the data type of each column. The result’s index is the original DataFrame’s
columns. Columns with mixed types are stored with the object dtype. See the User Guide for more.

Returns pandas.Series

The data type of each column.

See also:

pandas.DataFrame.ftypes dtype and sparsity information.

Examples

>>> df = pd.DataFrame({'float': [1.0],
... 'int': [1],
... 'datetime': [pd.Timestamp('20180310')],
... 'string': ['foo']})
>>> df.dtypes
float float64
int int64
datetime datetime64[ns]
string object
dtype: object

pandas.Panel.empty

Panel.empty
Indicator whether DataFrame is empty.

True if DataFrame is entirely empty (no items), meaning any of the axes are of length 0.

Returns bool

If DataFrame is empty, return True, if not return False.

See also:

pandas.Series.dropna, pandas.DataFrame.dropna

1966 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

Notes

If DataFrame contains only NaNs, it is still not considered empty. See the example below.

Examples

An example of an actual empty DataFrame. Notice the index is empty:

>>> df_empty = pd.DataFrame({'A' : []})
>>> df_empty
Empty DataFrame
Columns: [A]
Index: []
>>> df_empty.empty
True

If we only have NaNs in our DataFrame, it is not considered empty! We will need to drop the NaNs to
make the DataFrame empty:

>>> df = pd.DataFrame({'A' : [np.nan]})
>>> df

A
0 NaN
>>> df.empty
False
>>> df.dropna().empty
True

pandas.Panel.ftypes

Panel.ftypes
Return the ftypes (indication of sparse/dense and dtype) in DataFrame.

This returns a Series with the data type of each column. The result’s index is the original DataFrame’s
columns. Columns with mixed types are stored with the object dtype. See the User Guide for more.

Returns pandas.Series

The data type and indication of sparse/dense of each column.

See also:

pandas.DataFrame.dtypes Series with just dtype information.

pandas.SparseDataFrame Container for sparse tabular data.

Notes

Sparse data should have the same dtypes as its dense representation.

34.5. Panel 1967

pandas: powerful Python data analysis toolkit, Release 0.23.4

Examples

>>> import numpy as np
>>> arr = np.random.RandomState(0).randn(100, 4)
>>> arr[arr < .8] = np.nan
>>> pd.DataFrame(arr).ftypes
0 float64:dense
1 float64:dense
2 float64:dense
3 float64:dense
dtype: object

>>> pd.SparseDataFrame(arr).ftypes
0 float64:sparse
1 float64:sparse
2 float64:sparse
3 float64:sparse
dtype: object

pandas.Panel.iat

Panel.iat
Access a single value for a row/column pair by integer position.

Similar to iloc, in that both provide integer-based lookups. Use iat if you only need to get or set a
single value in a DataFrame or Series.

Raises IndexError

When integer position is out of bounds

See also:

DataFrame.at Access a single value for a row/column label pair

DataFrame.loc Access a group of rows and columns by label(s)

DataFrame.iloc Access a group of rows and columns by integer position(s)

Examples

>>> df = pd.DataFrame([[0, 2, 3], [0, 4, 1], [10, 20, 30]],
... columns=['A', 'B', 'C'])
>>> df

A B C
0 0 2 3
1 0 4 1
2 10 20 30

Get value at specified row/column pair

>>> df.iat[1, 2]
1

Set value at specified row/column pair

1968 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

>>> df.iat[1, 2] = 10
>>> df.iat[1, 2]
10

Get value within a series

>>> df.loc[0].iat[1]
2

pandas.Panel.iloc

Panel.iloc
Purely integer-location based indexing for selection by position.

.iloc[] is primarily integer position based (from 0 to length-1 of the axis), but may also be used
with a boolean array.

Allowed inputs are:

• An integer, e.g. 5.

• A list or array of integers, e.g. [4, 3, 0].

• A slice object with ints, e.g. 1:7.

• A boolean array.

• A callable function with one argument (the calling Series, DataFrame or Panel) and that returns
valid output for indexing (one of the above)

.iloc will raise IndexError if a requested indexer is out-of-bounds, except slice indexers which
allow out-of-bounds indexing (this conforms with python/numpy slice semantics).

See more at Selection by Position

pandas.Panel.items

Panel.items

pandas.Panel.ix

Panel.ix
A primarily label-location based indexer, with integer position fallback.

Warning: Starting in 0.20.0, the .ix indexer is deprecated, in favor of the more strict .iloc and .loc indexers.

.ix[] supports mixed integer and label based access. It is primarily label based, but will fall back to
integer positional access unless the corresponding axis is of integer type.

.ix is the most general indexer and will support any of the inputs in .loc and .iloc. .ix also
supports floating point label schemes. .ix is exceptionally useful when dealing with mixed positional
and label based hierarchical indexes.

However, when an axis is integer based, ONLY label based access and not positional access is supported.
Thus, in such cases, it’s usually better to be explicit and use .iloc or .loc.

See more at Advanced Indexing.

34.5. Panel 1969

pandas: powerful Python data analysis toolkit, Release 0.23.4

pandas.Panel.loc

Panel.loc
Access a group of rows and columns by label(s) or a boolean array.

.loc[] is primarily label based, but may also be used with a boolean array.

Allowed inputs are:

• A single label, e.g. 5 or 'a', (note that 5 is interpreted as a label of the index, and never as an
integer position along the index).

• A list or array of labels, e.g. ['a', 'b', 'c'].

• A slice object with labels, e.g. 'a':'f'.

Warning: Note that contrary to usual python slices, both the start and the stop are included

• A boolean array of the same length as the axis being sliced, e.g. [True, False, True].

• A callable function with one argument (the calling Series, DataFrame or Panel) and that returns
valid output for indexing (one of the above)

See more at Selection by Label

Raises KeyError:

when any items are not found

See also:

DataFrame.at Access a single value for a row/column label pair

DataFrame.iloc Access group of rows and columns by integer position(s)

DataFrame.xs Returns a cross-section (row(s) or column(s)) from the Series/DataFrame.

Series.loc Access group of values using labels

Examples

Getting values

>>> df = pd.DataFrame([[1, 2], [4, 5], [7, 8]],
... index=['cobra', 'viper', 'sidewinder'],
... columns=['max_speed', 'shield'])
>>> df

max_speed shield
cobra 1 2
viper 4 5
sidewinder 7 8

Single label. Note this returns the row as a Series.

>>> df.loc['viper']
max_speed 4
shield 5
Name: viper, dtype: int64

1970 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

List of labels. Note using [[]] returns a DataFrame.

>>> df.loc[['viper', 'sidewinder']]
max_speed shield

viper 4 5
sidewinder 7 8

Single label for row and column

>>> df.loc['cobra', 'shield']
2

Slice with labels for row and single label for column. As mentioned above, note that both the start and
stop of the slice are included.

>>> df.loc['cobra':'viper', 'max_speed']
cobra 1
viper 4
Name: max_speed, dtype: int64

Boolean list with the same length as the row axis

>>> df.loc[[False, False, True]]
max_speed shield

sidewinder 7 8

Conditional that returns a boolean Series

>>> df.loc[df['shield'] > 6]
max_speed shield

sidewinder 7 8

Conditional that returns a boolean Series with column labels specified

>>> df.loc[df['shield'] > 6, ['max_speed']]
max_speed

sidewinder 7

Callable that returns a boolean Series

>>> df.loc[lambda df: df['shield'] == 8]
max_speed shield

sidewinder 7 8

Setting values

Set value for all items matching the list of labels

>>> df.loc[['viper', 'sidewinder'], ['shield']] = 50
>>> df

max_speed shield
cobra 1 2
viper 4 50
sidewinder 7 50

Set value for an entire row

34.5. Panel 1971

pandas: powerful Python data analysis toolkit, Release 0.23.4

>>> df.loc['cobra'] = 10
>>> df

max_speed shield
cobra 10 10
viper 4 50
sidewinder 7 50

Set value for an entire column

>>> df.loc[:, 'max_speed'] = 30
>>> df

max_speed shield
cobra 30 10
viper 30 50
sidewinder 30 50

Set value for rows matching callable condition

>>> df.loc[df['shield'] > 35] = 0
>>> df

max_speed shield
cobra 30 10
viper 0 0
sidewinder 0 0

Getting values on a DataFrame with an index that has integer labels

Another example using integers for the index

>>> df = pd.DataFrame([[1, 2], [4, 5], [7, 8]],
... index=[7, 8, 9], columns=['max_speed', 'shield'])
>>> df

max_speed shield
7 1 2
8 4 5
9 7 8

Slice with integer labels for rows. As mentioned above, note that both the start and stop of the slice are
included.

>>> df.loc[7:9]
max_speed shield

7 1 2
8 4 5
9 7 8

Getting values with a MultiIndex

A number of examples using a DataFrame with a MultiIndex

>>> tuples = [
... ('cobra', 'mark i'), ('cobra', 'mark ii'),
... ('sidewinder', 'mark i'), ('sidewinder', 'mark ii'),
... ('viper', 'mark ii'), ('viper', 'mark iii')
...]
>>> index = pd.MultiIndex.from_tuples(tuples)
>>> values = [[12, 2], [0, 4], [10, 20],
... [1, 4], [7, 1], [16, 36]]

(continues on next page)

1972 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

>>> df = pd.DataFrame(values, columns=['max_speed', 'shield'], index=index)
>>> df

max_speed shield
cobra mark i 12 2

mark ii 0 4
sidewinder mark i 10 20

mark ii 1 4
viper mark ii 7 1

mark iii 16 36

Single label. Note this returns a DataFrame with a single index.

>>> df.loc['cobra']
max_speed shield

mark i 12 2
mark ii 0 4

Single index tuple. Note this returns a Series.

>>> df.loc[('cobra', 'mark ii')]
max_speed 0
shield 4
Name: (cobra, mark ii), dtype: int64

Single label for row and column. Similar to passing in a tuple, this returns a Series.

>>> df.loc['cobra', 'mark i']
max_speed 12
shield 2
Name: (cobra, mark i), dtype: int64

Single tuple. Note using [[]] returns a DataFrame.

>>> df.loc[[('cobra', 'mark ii')]]
max_speed shield

cobra mark ii 0 4

Single tuple for the index with a single label for the column

>>> df.loc[('cobra', 'mark i'), 'shield']
2

Slice from index tuple to single label

>>> df.loc[('cobra', 'mark i'):'viper']
max_speed shield

cobra mark i 12 2
mark ii 0 4

sidewinder mark i 10 20
mark ii 1 4

viper mark ii 7 1
mark iii 16 36

Slice from index tuple to index tuple

34.5. Panel 1973

pandas: powerful Python data analysis toolkit, Release 0.23.4

>>> df.loc[('cobra', 'mark i'):('viper', 'mark ii')]
max_speed shield

cobra mark i 12 2
mark ii 0 4

sidewinder mark i 10 20
mark ii 1 4

viper mark ii 7 1

pandas.Panel.major_axis

Panel.major_axis

pandas.Panel.minor_axis

Panel.minor_axis

pandas.Panel.ndim

Panel.ndim
Return an int representing the number of axes / array dimensions.

Return 1 if Series. Otherwise return 2 if DataFrame.

See also:

ndarray.ndim

Examples

>>> s = pd.Series({'a': 1, 'b': 2, 'c': 3})
>>> s.ndim
1

>>> df = pd.DataFrame({'col1': [1, 2], 'col2': [3, 4]})
>>> df.ndim
2

pandas.Panel.shape

Panel.shape
Return a tuple of axis dimensions

pandas.Panel.size

Panel.size
Return an int representing the number of elements in this object.

Return the number of rows if Series. Otherwise return the number of rows times number of columns if
DataFrame.

1974 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

See also:

ndarray.size

Examples

>>> s = pd.Series({'a': 1, 'b': 2, 'c': 3})
>>> s.size
3

>>> df = pd.DataFrame({'col1': [1, 2], 'col2': [3, 4]})
>>> df.size
4

pandas.Panel.values

Panel.values
Return a Numpy representation of the DataFrame.

Only the values in the DataFrame will be returned, the axes labels will be removed.

Returns numpy.ndarray

The values of the DataFrame.

See also:

pandas.DataFrame.index Retrievie the index labels

pandas.DataFrame.columns Retrieving the column names

Notes

The dtype will be a lower-common-denominator dtype (implicit upcasting); that is to say if the dtypes
(even of numeric types) are mixed, the one that accommodates all will be chosen. Use this with care if
you are not dealing with the blocks.

e.g. If the dtypes are float16 and float32, dtype will be upcast to float32. If dtypes are int32 and uint8,
dtype will be upcast to int32. By numpy.find_common_type() convention, mixing int64 and uint64
will result in a float64 dtype.

Examples

A DataFrame where all columns are the same type (e.g., int64) results in an array of the same type.

>>> df = pd.DataFrame({'age': [3, 29],
... 'height': [94, 170],
... 'weight': [31, 115]})
>>> df

age height weight
0 3 94 31
1 29 170 115
>>> df.dtypes

(continues on next page)

34.5. Panel 1975

https://docs.scipy.org/doc/numpy/reference/generated/numpy.find_common_type.html#numpy.find_common_type

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

age int64
height int64
weight int64
dtype: object
>>> df.values
array([[3, 94, 31],

[29, 170, 115]], dtype=int64)

A DataFrame with mixed type columns(e.g., str/object, int64, float32) results in an ndarray of the broadest
type that accommodates these mixed types (e.g., object).

>>> df2 = pd.DataFrame([('parrot', 24.0, 'second'),
... ('lion', 80.5, 1),
... ('monkey', np.nan, None)],
... columns=('name', 'max_speed', 'rank'))
>>> df2.dtypes
name object
max_speed float64
rank object
dtype: object
>>> df2.values
array([['parrot', 24.0, 'second'],

['lion', 80.5, 1],
['monkey', nan, None]], dtype=object)

is_copy

Methods

abs() Return a Series/DataFrame with absolute numeric
value of each element.

add(other[, axis]) Addition of series and other, element-wise (binary
operator add).

add_prefix(prefix) Prefix labels with string prefix.
add_suffix(suffix) Suffix labels with string suffix.
align(other, **kwargs) Align two objects on their axes with the specified

join method for each axis Index
all([axis, bool_only, skipna, level]) Return whether all elements are True, potentially

over an axis.
any([axis, bool_only, skipna, level]) Return whether any element is True over requested

axis.
apply(func[, axis]) Applies function along axis (or axes) of the Panel
as_blocks([copy]) (DEPRECATED) Convert the frame to a dict of

dtype -> Constructor Types that each has a homo-
geneous dtype.

as_matrix() Convert the frame to its Numpy-array representation.
asfreq(freq[, method, how, normalize, . . .]) Convert TimeSeries to specified frequency.
asof(where[, subset]) The last row without any NaN is taken (or the last

row without NaN considering only the subset of
columns in the case of a DataFrame)

Continued on next page

1976 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

Table 81 – continued from previous page
astype(dtype[, copy, errors]) Cast a pandas object to a specified dtype dtype.
at_time(time[, asof]) Select values at particular time of day (e.g.
between_time(start_time, end_time[, . . .]) Select values between particular times of the day

(e.g., 9:00-9:30 AM).
bfill([axis, inplace, limit, downcast]) Synonym for DataFrame.

fillna(method='bfill')
bool() Return the bool of a single element PandasObject.
clip([lower, upper, axis, inplace]) Trim values at input threshold(s).
clip_lower(threshold[, axis, inplace]) Return copy of the input with values below a thresh-

old truncated.
clip_upper(threshold[, axis, inplace]) Return copy of input with values above given

value(s) truncated.
compound([axis, skipna, level]) Return the compound percentage of the values for

the requested axis
conform(frame[, axis]) Conform input DataFrame to align with chosen axis

pair.
consolidate([inplace]) (DEPRECATED) Compute NDFrame with “consoli-

dated” internals (data of each dtype grouped together
in a single ndarray).

convert_objects([convert_dates, . . .]) (DEPRECATED) Attempt to infer better dtype for
object columns.

copy([deep]) Make a copy of this object’s indices and data.
count([axis]) Return number of observations over requested axis.
cummax([axis, skipna]) Return cumulative maximum over a DataFrame or

Series axis.
cummin([axis, skipna]) Return cumulative minimum over a DataFrame or

Series axis.
cumprod([axis, skipna]) Return cumulative product over a DataFrame or Se-

ries axis.
cumsum([axis, skipna]) Return cumulative sum over a DataFrame or Series

axis.
describe([percentiles, include, exclude]) Generates descriptive statistics that summarize the

central tendency, dispersion and shape of a dataset’s
distribution, excluding NaN values.

div(other[, axis]) Floating division of series and other, element-wise
(binary operator truediv).

divide(other[, axis]) Floating division of series and other, element-wise
(binary operator truediv).

dropna([axis, how, inplace]) Drop 2D from panel, holding passed axis constant
eq(other[, axis]) Wrapper for comparison method eq
equals(other) Determines if two NDFrame objects contain the

same elements.
ffill([axis, inplace, limit, downcast]) Synonym for DataFrame.

fillna(method='ffill')
fillna([value, method, axis, inplace, . . .]) Fill NA/NaN values using the specified method
filter([items, like, regex, axis]) Subset rows or columns of dataframe according to

labels in the specified index.
first(offset) Convenience method for subsetting initial periods of

time series data based on a date offset.
first_valid_index() Return index for first non-NA/null value.

Continued on next page

34.5. Panel 1977

pandas: powerful Python data analysis toolkit, Release 0.23.4

Table 81 – continued from previous page
floordiv(other[, axis]) Integer division of series and other, element-wise (bi-

nary operator floordiv).
fromDict(data[, intersect, orient, dtype]) Construct Panel from dict of DataFrame objects
from_dict(data[, intersect, orient, dtype]) Construct Panel from dict of DataFrame objects
ge(other[, axis]) Wrapper for comparison method ge
get(key[, default]) Get item from object for given key (DataFrame col-

umn, Panel slice, etc.).
get_dtype_counts() Return counts of unique dtypes in this object.
get_ftype_counts() (DEPRECATED) Return counts of unique ftypes in

this object.
get_value(*args, **kwargs) (DEPRECATED) Quickly retrieve single value at

(item, major, minor) location
get_values() Return an ndarray after converting sparse values to

dense.
groupby(function[, axis]) Group data on given axis, returning GroupBy object
gt(other[, axis]) Wrapper for comparison method gt
head([n]) Return the first n rows.
infer_objects() Attempt to infer better dtypes for object columns.
interpolate([method, axis, limit, inplace, . . .]) Interpolate values according to different methods.
isna() Detect missing values.
isnull() Detect missing values.
iteritems() Iterate over (label, values) on info axis
join(other[, how, lsuffix, rsuffix]) Join items with other Panel either on major and mi-

nor axes column
keys() Get the ‘info axis’ (see Indexing for more)
kurt([axis, skipna, level, numeric_only]) Return unbiased kurtosis over requested axis using

Fisher’s definition of kurtosis (kurtosis of normal ==
0.0).

kurtosis([axis, skipna, level, numeric_only]) Return unbiased kurtosis over requested axis using
Fisher’s definition of kurtosis (kurtosis of normal ==
0.0).

last(offset) Convenience method for subsetting final periods of
time series data based on a date offset.

last_valid_index() Return index for last non-NA/null value.
le(other[, axis]) Wrapper for comparison method le
lt(other[, axis]) Wrapper for comparison method lt
mad([axis, skipna, level]) Return the mean absolute deviation of the values for

the requested axis
major_xs(key) Return slice of panel along major axis
mask(cond[, other, inplace, axis, level, . . .]) Return an object of same shape as self and whose

corresponding entries are from self where cond is
False and otherwise are from other.

max([axis, skipna, level, numeric_only]) This method returns the maximum of the values in
the object.

mean([axis, skipna, level, numeric_only]) Return the mean of the values for the requested axis
median([axis, skipna, level, numeric_only]) Return the median of the values for the requested

axis
min([axis, skipna, level, numeric_only]) This method returns the minimum of the values in

the object.
minor_xs(key) Return slice of panel along minor axis

Continued on next page

1978 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

Table 81 – continued from previous page
mod(other[, axis]) Modulo of series and other, element-wise (binary op-

erator mod).
mul(other[, axis]) Multiplication of series and other, element-wise (bi-

nary operator mul).
multiply(other[, axis]) Multiplication of series and other, element-wise (bi-

nary operator mul).
ne(other[, axis]) Wrapper for comparison method ne
notna() Detect existing (non-missing) values.
notnull() Detect existing (non-missing) values.
pct_change([periods, fill_method, limit, freq]) Percentage change between the current and a prior

element.
pipe(func, *args, **kwargs) Apply func(self, *args, **kwargs)
pop(item) Return item and drop from frame.
pow(other[, axis]) Exponential power of series and other, element-wise

(binary operator pow).
prod([axis, skipna, level, numeric_only, . . .]) Return the product of the values for the requested

axis
product([axis, skipna, level, numeric_only, . . .]) Return the product of the values for the requested

axis
radd(other[, axis]) Addition of series and other, element-wise (binary

operator radd).
rank([axis, method, numeric_only, . . .]) Compute numerical data ranks (1 through n) along

axis.
rdiv(other[, axis]) Floating division of series and other, element-wise

(binary operator rtruediv).
reindex(*args, **kwargs) Conform Panel to new index with optional filling

logic, placing NA/NaN in locations having no value
in the previous index.

reindex_axis(labels[, axis, method, level, . . .]) Conform input object to new index with optional fill-
ing logic, placing NA/NaN in locations having no
value in the previous index.

reindex_like(other[, method, copy, limit, . . .]) Return an object with matching indices to myself.
rename([items, major_axis, minor_axis]) Alter axes input function or functions.
rename_axis(mapper[, axis, copy, inplace]) Alter the name of the index or columns.
replace([to_replace, value, inplace, limit, . . .]) Replace values given in to_replace with value.
resample(rule[, how, axis, fill_method, . . .]) Convenience method for frequency conversion and

resampling of time series.
rfloordiv(other[, axis]) Integer division of series and other, element-wise (bi-

nary operator rfloordiv).
rmod(other[, axis]) Modulo of series and other, element-wise (binary op-

erator rmod).
rmul(other[, axis]) Multiplication of series and other, element-wise (bi-

nary operator rmul).
round([decimals]) Round each value in Panel to a specified number of

decimal places.
rpow(other[, axis]) Exponential power of series and other, element-wise

(binary operator rpow).
rsub(other[, axis]) Subtraction of series and other, element-wise (binary

operator rsub).
rtruediv(other[, axis]) Floating division of series and other, element-wise

(binary operator rtruediv).
Continued on next page

34.5. Panel 1979

pandas: powerful Python data analysis toolkit, Release 0.23.4

Table 81 – continued from previous page
sample([n, frac, replace, weights, . . .]) Return a random sample of items from an axis of

object.
select(crit[, axis]) (DEPRECATED) Return data corresponding to axis

labels matching criteria
sem([axis, skipna, level, ddof, numeric_only]) Return unbiased standard error of the mean over re-

quested axis.
set_axis(labels[, axis, inplace]) Assign desired index to given axis.
set_value(*args, **kwargs) (DEPRECATED) Quickly set single value at (item,

major, minor) location
shift([periods, freq, axis]) Shift index by desired number of periods with an op-

tional time freq.
skew([axis, skipna, level, numeric_only]) Return unbiased skew over requested axis Normal-

ized by N-1
slice_shift([periods, axis]) Equivalent to shift without copying data.
sort_index([axis, level, ascending, . . .]) Sort object by labels (along an axis)
sort_values([by, axis, ascending, inplace, . . .]) NOT IMPLEMENTED: do not call this method, as

sorting values is not supported for Panel objects and
will raise an error.

squeeze([axis]) Squeeze length 1 dimensions.
std([axis, skipna, level, ddof, numeric_only]) Return sample standard deviation over requested

axis.
sub(other[, axis]) Subtraction of series and other, element-wise (binary

operator sub).
subtract(other[, axis]) Subtraction of series and other, element-wise (binary

operator sub).
sum([axis, skipna, level, numeric_only, . . .]) Return the sum of the values for the requested axis
swapaxes(axis1, axis2[, copy]) Interchange axes and swap values axes appropriately
swaplevel([i, j, axis]) Swap levels i and j in a MultiIndex on a particular

axis
tail([n]) Return the last n rows.
take(indices[, axis, convert, is_copy]) Return the elements in the given positional indices

along an axis.
to_clipboard([excel, sep]) Copy object to the system clipboard.
to_dense() Return dense representation of NDFrame (as op-

posed to sparse)
to_excel(path[, na_rep, engine]) Write each DataFrame in Panel to a separate excel

sheet
to_frame([filter_observations]) Transform wide format into long (stacked) format as

DataFrame whose columns are the Panel’s items and
whose index is a MultiIndex formed of the Panel’s
major and minor axes.

to_hdf(path_or_buf, key, **kwargs) Write the contained data to an HDF5 file using HDF-
Store.

to_json([path_or_buf, orient, date_format, . . .]) Convert the object to a JSON string.
to_latex([buf, columns, col_space, header, . . .]) Render an object to a tabular environment table.
to_msgpack([path_or_buf, encoding]) msgpack (serialize) object to input file path
to_pickle(path[, compression, protocol]) Pickle (serialize) object to file.
to_sparse(*args, **kwargs) NOT IMPLEMENTED: do not call this method, as

sparsifying is not supported for Panel objects and
will raise an error.

Continued on next page

1980 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

Table 81 – continued from previous page
to_sql(name, con[, schema, if_exists, . . .]) Write records stored in a DataFrame to a SQL

database.
to_xarray() Return an xarray object from the pandas object.
transpose(*args, **kwargs) Permute the dimensions of the Panel
truediv(other[, axis]) Floating division of series and other, element-wise

(binary operator truediv).
truncate([before, after, axis, copy]) Truncate a Series or DataFrame before and after

some index value.
tshift([periods, freq, axis]) Shift the time index, using the index’s frequency if

available.
tz_convert(tz[, axis, level, copy]) Convert tz-aware axis to target time zone.
tz_localize(tz[, axis, level, copy, ambiguous]) Localize tz-naive TimeSeries to target time zone.
update(other[, join, overwrite, . . .]) Modify Panel in place using non-NA values from

passed Panel, or object coercible to Panel.
var([axis, skipna, level, ddof, numeric_only]) Return unbiased variance over requested axis.
where(cond[, other, inplace, axis, level, . . .]) Return an object of same shape as self and whose

corresponding entries are from self where cond is
True and otherwise are from other.

xs(key[, axis]) Return slice of panel along selected axis

pandas.Panel.abs

Panel.abs()
Return a Series/DataFrame with absolute numeric value of each element.

This function only applies to elements that are all numeric.

Returns abs

Series/DataFrame containing the absolute value of each element.

See also:

numpy.absolute calculate the absolute value element-wise.

Notes

For complex inputs, 1.2 + 1j, the absolute value is
√
𝑎2 + 𝑏2.

Examples

Absolute numeric values in a Series.

>>> s = pd.Series([-1.10, 2, -3.33, 4])
>>> s.abs()
0 1.10
1 2.00
2 3.33
3 4.00
dtype: float64

Absolute numeric values in a Series with complex numbers.

34.5. Panel 1981

https://docs.scipy.org/doc/numpy/reference/generated/numpy.absolute.html#numpy.absolute

pandas: powerful Python data analysis toolkit, Release 0.23.4

>>> s = pd.Series([1.2 + 1j])
>>> s.abs()
0 1.56205
dtype: float64

Absolute numeric values in a Series with a Timedelta element.

>>> s = pd.Series([pd.Timedelta('1 days')])
>>> s.abs()
0 1 days
dtype: timedelta64[ns]

Select rows with data closest to certain value using argsort (from StackOverflow).

>>> df = pd.DataFrame({
... 'a': [4, 5, 6, 7],
... 'b': [10, 20, 30, 40],
... 'c': [100, 50, -30, -50]
... })
>>> df

a b c
0 4 10 100
1 5 20 50
2 6 30 -30
3 7 40 -50
>>> df.loc[(df.c - 43).abs().argsort()]

a b c
1 5 20 50
0 4 10 100
2 6 30 -30
3 7 40 -50

pandas.Panel.add

Panel.add(other, axis=0)
Addition of series and other, element-wise (binary operator add). Equivalent to panel + other.

Parameters

other [DataFrame or Panel]

axis : {items, major_axis, minor_axis}

Axis to broadcast over

Returns

Panel

See also:

Panel.radd

pandas.Panel.add_prefix

Panel.add_prefix(prefix)
Prefix labels with string prefix.

1982 Chapter 34. API Reference

https://stackoverflow.com/a/17758115

pandas: powerful Python data analysis toolkit, Release 0.23.4

For Series, the row labels are prefixed. For DataFrame, the column labels are prefixed.

Parameters prefix : str

The string to add before each label.

Returns Series or DataFrame

New Series or DataFrame with updated labels.

See also:

Series.add_suffix Suffix row labels with string suffix.

DataFrame.add_suffix Suffix column labels with string suffix.

Examples

>>> s = pd.Series([1, 2, 3, 4])
>>> s
0 1
1 2
2 3
3 4
dtype: int64

>>> s.add_prefix('item_')
item_0 1
item_1 2
item_2 3
item_3 4
dtype: int64

>>> df = pd.DataFrame({'A': [1, 2, 3, 4], 'B': [3, 4, 5, 6]})
>>> df

A B
0 1 3
1 2 4
2 3 5
3 4 6

>>> df.add_prefix('col_')
col_A col_B

0 1 3
1 2 4
2 3 5
3 4 6

pandas.Panel.add_suffix

Panel.add_suffix(suffix)
Suffix labels with string suffix.

For Series, the row labels are suffixed. For DataFrame, the column labels are suffixed.

Parameters suffix : str

34.5. Panel 1983

pandas: powerful Python data analysis toolkit, Release 0.23.4

The string to add after each label.

Returns Series or DataFrame

New Series or DataFrame with updated labels.

See also:

Series.add_prefix Prefix row labels with string prefix.

DataFrame.add_prefix Prefix column labels with string prefix.

Examples

>>> s = pd.Series([1, 2, 3, 4])
>>> s
0 1
1 2
2 3
3 4
dtype: int64

>>> s.add_suffix('_item')
0_item 1
1_item 2
2_item 3
3_item 4
dtype: int64

>>> df = pd.DataFrame({'A': [1, 2, 3, 4], 'B': [3, 4, 5, 6]})
>>> df

A B
0 1 3
1 2 4
2 3 5
3 4 6

>>> df.add_suffix('_col')
A_col B_col

0 1 3
1 2 4
2 3 5
3 4 6

pandas.Panel.align

Panel.align(other, **kwargs)
Align two objects on their axes with the specified join method for each axis Index

Parameters

other [DataFrame or Series]

join [{‘outer’, ‘inner’, ‘left’, ‘right’}, default ‘outer’]

axis : allowed axis of the other object, default None

1984 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

Align on index (0), columns (1), or both (None)

level : int or level name, default None

Broadcast across a level, matching Index values on the passed MultiIndex level

copy : boolean, default True

Always returns new objects. If copy=False and no reindexing is required then
original objects are returned.

fill_value : scalar, default np.NaN

Value to use for missing values. Defaults to NaN, but can be any “compatible”
value

method [str, default None]

limit [int, default None]

fill_axis : int or labels for object, default 0

Filling axis, method and limit

broadcast_axis : int or labels for object, default None

Broadcast values along this axis, if aligning two objects of different dimensions

Returns (left, right) : (NDFrame, type of other)

Aligned objects

pandas.Panel.all

Panel.all(axis=0, bool_only=None, skipna=True, level=None, **kwargs)
Return whether all elements are True, potentially over an axis.

Returns True if all elements within a series or along a Dataframe axis are non-zero, not-empty or not-False.

Parameters axis : {0 or ‘index’, 1 or ‘columns’, None}, default 0

Indicate which axis or axes should be reduced.

• 0 / ‘index’ : reduce the index, return a Series whose index is the original column
labels.

• 1 / ‘columns’ : reduce the columns, return a Series whose index is the original
index.

• None : reduce all axes, return a scalar.

skipna : boolean, default True

Exclude NA/null values. If an entire row/column is NA, the result will be NA.

level : int or level name, default None

If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing
into a DataFrame.

bool_only : boolean, default None

Include only boolean columns. If None, will attempt to use everything, then use
only boolean data. Not implemented for Series.

34.5. Panel 1985

pandas: powerful Python data analysis toolkit, Release 0.23.4

**kwargs : any, default None

Additional keywords have no effect but might be accepted for compatibility with
NumPy.

Returns

all [DataFrame or Panel (if level specified)]

See also:

pandas.Series.all Return True if all elements are True

pandas.DataFrame.any Return True if one (or more) elements are True

Examples

Series

>>> pd.Series([True, True]).all()
True
>>> pd.Series([True, False]).all()
False

DataFrames

Create a dataframe from a dictionary.

>>> df = pd.DataFrame({'col1': [True, True], 'col2': [True, False]})
>>> df

col1 col2
0 True True
1 True False

Default behaviour checks if column-wise values all return True.

>>> df.all()
col1 True
col2 False
dtype: bool

Specify axis='columns' to check if row-wise values all return True.

>>> df.all(axis='columns')
0 True
1 False
dtype: bool

Or axis=None for whether every value is True.

>>> df.all(axis=None)
False

pandas.Panel.any

Panel.any(axis=0, bool_only=None, skipna=True, level=None, **kwargs)
Return whether any element is True over requested axis.

1986 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

Unlike DataFrame.all(), this performs an or operation. If any of the values along the specified axis
is True, this will return True.

Parameters axis : {0 or ‘index’, 1 or ‘columns’, None}, default 0

Indicate which axis or axes should be reduced.

• 0 / ‘index’ : reduce the index, return a Series whose index is the original column
labels.

• 1 / ‘columns’ : reduce the columns, return a Series whose index is the original
index.

• None : reduce all axes, return a scalar.

skipna : boolean, default True

Exclude NA/null values. If an entire row/column is NA, the result will be NA.

level : int or level name, default None

If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing
into a DataFrame.

bool_only : boolean, default None

Include only boolean columns. If None, will attempt to use everything, then use
only boolean data. Not implemented for Series.

**kwargs : any, default None

Additional keywords have no effect but might be accepted for compatibility with
NumPy.

Returns

any [DataFrame or Panel (if level specified)]

See also:

pandas.DataFrame.all Return whether all elements are True.

Examples

Series

For Series input, the output is a scalar indicating whether any element is True.

>>> pd.Series([True, False]).any()
True

DataFrame

Whether each column contains at least one True element (the default).

>>> df = pd.DataFrame({"A": [1, 2], "B": [0, 2], "C": [0, 0]})
>>> df

A B C
0 1 0 0
1 2 2 0

34.5. Panel 1987

pandas: powerful Python data analysis toolkit, Release 0.23.4

>>> df.any()
A True
B True
C False
dtype: bool

Aggregating over the columns.

>>> df = pd.DataFrame({"A": [True, False], "B": [1, 2]})
>>> df

A B
0 True 1
1 False 2

>>> df.any(axis='columns')
0 True
1 True
dtype: bool

>>> df = pd.DataFrame({"A": [True, False], "B": [1, 0]})
>>> df

A B
0 True 1
1 False 0

>>> df.any(axis='columns')
0 True
1 False
dtype: bool

Aggregating over the entire DataFrame with axis=None.

>>> df.any(axis=None)
True

any for an empty DataFrame is an empty Series.

>>> pd.DataFrame([]).any()
Series([], dtype: bool)

pandas.Panel.apply

Panel.apply(func, axis=’major’, **kwargs)
Applies function along axis (or axes) of the Panel

Parameters func : function

Function to apply to each combination of ‘other’ axes e.g. if axis = ‘items’, the
combination of major_axis/minor_axis will each be passed as a Series; if axis =
(‘items’, ‘major’), DataFrames of items & major axis will be passed

axis : {‘items’, ‘minor’, ‘major’}, or {0, 1, 2}, or a tuple with two

axes

Additional keyword arguments will be passed as keywords to the function

1988 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

Returns

result [Panel, DataFrame, or Series]

Examples

Returns a Panel with the square root of each element

>>> p = pd.Panel(np.random.rand(4,3,2))
>>> p.apply(np.sqrt)

Equivalent to p.sum(1), returning a DataFrame

>>> p.apply(lambda x: x.sum(), axis=1)

Equivalent to previous:

>>> p.apply(lambda x: x.sum(), axis='major')

Return the shapes of each DataFrame over axis 2 (i.e the shapes of items x major), as a Series

>>> p.apply(lambda x: x.shape, axis=(0,1))

pandas.Panel.as_blocks

Panel.as_blocks(copy=True)
Convert the frame to a dict of dtype -> Constructor Types that each has a homogeneous dtype.

Deprecated since version 0.21.0.

NOTE: the dtypes of the blocks WILL BE PRESERVED HERE (unlike in as_matrix)

Parameters

copy [boolean, default True]

Returns

values [a dict of dtype -> Constructor Types]

pandas.Panel.as_matrix

Panel.as_matrix()
Convert the frame to its Numpy-array representation.

Deprecated since version 0.23.0: Use DataFrame.values() instead.

Parameters columns: list, optional, default:None

If None, return all columns, otherwise, returns specified columns.

Returns values : ndarray

If the caller is heterogeneous and contains booleans or objects, the result will be
of dtype=object. See Notes.

See also:

pandas.DataFrame.values

34.5. Panel 1989

pandas: powerful Python data analysis toolkit, Release 0.23.4

Notes

Return is NOT a Numpy-matrix, rather, a Numpy-array.

The dtype will be a lower-common-denominator dtype (implicit upcasting); that is to say if the dtypes
(even of numeric types) are mixed, the one that accommodates all will be chosen. Use this with care if
you are not dealing with the blocks.

e.g. If the dtypes are float16 and float32, dtype will be upcast to float32. If dtypes are int32 and uint8,
dtype will be upcase to int32. By numpy.find_common_type convention, mixing int64 and uint64 will
result in a flot64 dtype.

This method is provided for backwards compatibility. Generally, it is recommended to use ‘.values’.

pandas.Panel.asfreq

Panel.asfreq(freq, method=None, how=None, normalize=False, fill_value=None)
Convert TimeSeries to specified frequency.

Optionally provide filling method to pad/backfill missing values.

Returns the original data conformed to a new index with the specified frequency. resample is more
appropriate if an operation, such as summarization, is necessary to represent the data at the new frequency.

Parameters

freq [DateOffset object, or string]

method : {‘backfill’/’bfill’, ‘pad’/’ffill’}, default None

Method to use for filling holes in reindexed Series (note this does not fill NaNs
that already were present):

• ‘pad’ / ‘ffill’: propagate last valid observation forward to next valid

• ‘backfill’ / ‘bfill’: use NEXT valid observation to fill

how : {‘start’, ‘end’}, default end

For PeriodIndex only, see PeriodIndex.asfreq

normalize : bool, default False

Whether to reset output index to midnight

fill_value: scalar, optional

Value to use for missing values, applied during upsampling (note this does not fill
NaNs that already were present).

New in version 0.20.0.

Returns

converted [type of caller]

See also:

reindex

Notes

To learn more about the frequency strings, please see this link.

1990 Chapter 34. API Reference

http://pandas.pydata.org/pandas-docs/stable/timeseries.html#offset-aliases

pandas: powerful Python data analysis toolkit, Release 0.23.4

Examples

Start by creating a series with 4 one minute timestamps.

>>> index = pd.date_range('1/1/2000', periods=4, freq='T')
>>> series = pd.Series([0.0, None, 2.0, 3.0], index=index)
>>> df = pd.DataFrame({'s':series})
>>> df

s
2000-01-01 00:00:00 0.0
2000-01-01 00:01:00 NaN
2000-01-01 00:02:00 2.0
2000-01-01 00:03:00 3.0

Upsample the series into 30 second bins.

>>> df.asfreq(freq='30S')
s

2000-01-01 00:00:00 0.0
2000-01-01 00:00:30 NaN
2000-01-01 00:01:00 NaN
2000-01-01 00:01:30 NaN
2000-01-01 00:02:00 2.0
2000-01-01 00:02:30 NaN
2000-01-01 00:03:00 3.0

Upsample again, providing a fill value.

>>> df.asfreq(freq='30S', fill_value=9.0)
s

2000-01-01 00:00:00 0.0
2000-01-01 00:00:30 9.0
2000-01-01 00:01:00 NaN
2000-01-01 00:01:30 9.0
2000-01-01 00:02:00 2.0
2000-01-01 00:02:30 9.0
2000-01-01 00:03:00 3.0

Upsample again, providing a method.

>>> df.asfreq(freq='30S', method='bfill')
s

2000-01-01 00:00:00 0.0
2000-01-01 00:00:30 NaN
2000-01-01 00:01:00 NaN
2000-01-01 00:01:30 2.0
2000-01-01 00:02:00 2.0
2000-01-01 00:02:30 3.0
2000-01-01 00:03:00 3.0

pandas.Panel.asof

Panel.asof(where, subset=None)
The last row without any NaN is taken (or the last row without NaN considering only the subset of
columns in the case of a DataFrame)

New in version 0.19.0: For DataFrame

34.5. Panel 1991

pandas: powerful Python data analysis toolkit, Release 0.23.4

If there is no good value, NaN is returned for a Series a Series of NaN values for a DataFrame

Parameters

where [date or array of dates]

subset : string or list of strings, default None

if not None use these columns for NaN propagation

Returns where is scalar

• value or NaN if input is Series

• Series if input is DataFrame

where is Index: same shape object as input

See also:

merge_asof

Notes

Dates are assumed to be sorted Raises if this is not the case

pandas.Panel.astype

Panel.astype(dtype, copy=True, errors=’raise’, **kwargs)
Cast a pandas object to a specified dtype dtype.

Parameters dtype : data type, or dict of column name -> data type

Use a numpy.dtype or Python type to cast entire pandas object to the same type.
Alternatively, use {col: dtype, . . . }, where col is a column label and dtype is a
numpy.dtype or Python type to cast one or more of the DataFrame’s columns to
column-specific types.

copy : bool, default True.

Return a copy when copy=True (be very careful setting copy=False as
changes to values then may propagate to other pandas objects).

errors : {‘raise’, ‘ignore’}, default ‘raise’.

Control raising of exceptions on invalid data for provided dtype.

• raise : allow exceptions to be raised

• ignore : suppress exceptions. On error return original object

New in version 0.20.0.

raise_on_error : raise on invalid input

Deprecated since version 0.20.0: Use errors instead

kwargs [keyword arguments to pass on to the constructor]

Returns

casted [type of caller]

1992 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

See also:

pandas.to_datetime Convert argument to datetime.

pandas.to_timedelta Convert argument to timedelta.

pandas.to_numeric Convert argument to a numeric type.

numpy.ndarray.astype Cast a numpy array to a specified type.

Examples

>>> ser = pd.Series([1, 2], dtype='int32')
>>> ser
0 1
1 2
dtype: int32
>>> ser.astype('int64')
0 1
1 2
dtype: int64

Convert to categorical type:

>>> ser.astype('category')
0 1
1 2
dtype: category
Categories (2, int64): [1, 2]

Convert to ordered categorical type with custom ordering:

>>> ser.astype('category', ordered=True, categories=[2, 1])
0 1
1 2
dtype: category
Categories (2, int64): [2 < 1]

Note that using copy=False and changing data on a new pandas object may propagate changes:

>>> s1 = pd.Series([1,2])
>>> s2 = s1.astype('int64', copy=False)
>>> s2[0] = 10
>>> s1 # note that s1[0] has changed too
0 10
1 2
dtype: int64

pandas.Panel.at_time

Panel.at_time(time, asof=False)
Select values at particular time of day (e.g. 9:30AM).

Parameters

time [datetime.time or string]

34.5. Panel 1993

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.astype.html#numpy.ndarray.astype

pandas: powerful Python data analysis toolkit, Release 0.23.4

Returns

values_at_time [type of caller]

Raises TypeError

If the index is not a DatetimeIndex

See also:

between_time Select values between particular times of the day

first Select initial periods of time series based on a date offset

last Select final periods of time series based on a date offset

DatetimeIndex.indexer_at_time Get just the index locations for values at particular time of
the day

Examples

>>> i = pd.date_range('2018-04-09', periods=4, freq='12H')
>>> ts = pd.DataFrame({'A': [1,2,3,4]}, index=i)
>>> ts

A
2018-04-09 00:00:00 1
2018-04-09 12:00:00 2
2018-04-10 00:00:00 3
2018-04-10 12:00:00 4

>>> ts.at_time('12:00')
A

2018-04-09 12:00:00 2
2018-04-10 12:00:00 4

pandas.Panel.between_time

Panel.between_time(start_time, end_time, include_start=True, include_end=True)
Select values between particular times of the day (e.g., 9:00-9:30 AM).

By setting start_time to be later than end_time, you can get the times that are not between the two
times.

Parameters

start_time [datetime.time or string]

end_time [datetime.time or string]

include_start [boolean, default True]

include_end [boolean, default True]

Returns

values_between_time [type of caller]

Raises TypeError

If the index is not a DatetimeIndex

1994 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

See also:

at_time Select values at a particular time of the day

first Select initial periods of time series based on a date offset

last Select final periods of time series based on a date offset

DatetimeIndex.indexer_between_time Get just the index locations for values between par-
ticular times of the day

Examples

>>> i = pd.date_range('2018-04-09', periods=4, freq='1D20min')
>>> ts = pd.DataFrame({'A': [1,2,3,4]}, index=i)
>>> ts

A
2018-04-09 00:00:00 1
2018-04-10 00:20:00 2
2018-04-11 00:40:00 3
2018-04-12 01:00:00 4

>>> ts.between_time('0:15', '0:45')
A

2018-04-10 00:20:00 2
2018-04-11 00:40:00 3

You get the times that are not between two times by setting start_time later than end_time:

>>> ts.between_time('0:45', '0:15')
A

2018-04-09 00:00:00 1
2018-04-12 01:00:00 4

pandas.Panel.bfill

Panel.bfill(axis=None, inplace=False, limit=None, downcast=None)
Synonym for DataFrame.fillna(method='bfill')

pandas.Panel.bool

Panel.bool()
Return the bool of a single element PandasObject.

This must be a boolean scalar value, either True or False. Raise a ValueError if the PandasObject does not
have exactly 1 element, or that element is not boolean

pandas.Panel.clip

Panel.clip(lower=None, upper=None, axis=None, inplace=False, *args, **kwargs)
Trim values at input threshold(s).

34.5. Panel 1995

pandas: powerful Python data analysis toolkit, Release 0.23.4

Assigns values outside boundary to boundary values. Thresholds can be singular values or array like, and
in the latter case the clipping is performed element-wise in the specified axis.

Parameters lower : float or array_like, default None

Minimum threshold value. All values below this threshold will be set to it.

upper : float or array_like, default None

Maximum threshold value. All values above this threshold will be set to it.

axis : int or string axis name, optional

Align object with lower and upper along the given axis.

inplace : boolean, default False

Whether to perform the operation in place on the data.

New in version 0.21.0.

*args, **kwargs

Additional keywords have no effect but might be accepted for compatibility with
numpy.

Returns Series or DataFrame

Same type as calling object with the values outside the clip boundaries replaced

See also:

clip_lower Clip values below specified threshold(s).

clip_upper Clip values above specified threshold(s).

Examples

>>> data = {'col_0': [9, -3, 0, -1, 5], 'col_1': [-2, -7, 6, 8, -5]}
>>> df = pd.DataFrame(data)
>>> df

col_0 col_1
0 9 -2
1 -3 -7
2 0 6
3 -1 8
4 5 -5

Clips per column using lower and upper thresholds:

>>> df.clip(-4, 6)
col_0 col_1

0 6 -2
1 -3 -4
2 0 6
3 -1 6
4 5 -4

Clips using specific lower and upper thresholds per column element:

1996 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

>>> t = pd.Series([2, -4, -1, 6, 3])
>>> t
0 2
1 -4
2 -1
3 6
4 3
dtype: int64

>>> df.clip(t, t + 4, axis=0)
col_0 col_1

0 6 2
1 -3 -4
2 0 3
3 6 8
4 5 3

pandas.Panel.clip_lower

Panel.clip_lower(threshold, axis=None, inplace=False)
Return copy of the input with values below a threshold truncated.

Parameters threshold : numeric or array-like

Minimum value allowed. All values below threshold will be set to this value.

• float : every value is compared to threshold.

• array-like : The shape of threshold should match the object it’s compared
to. When self is a Series, threshold should be the length. When self is a
DataFrame, threshold should 2-D and the same shape as self for axis=None,
or 1-D and the same length as the axis being compared.

axis : {0 or ‘index’, 1 or ‘columns’}, default 0

Align self with threshold along the given axis.

inplace : boolean, default False

Whether to perform the operation in place on the data.

New in version 0.21.0.

Returns

clipped [same type as input]

See also:

Series.clip Return copy of input with values below and above thresholds truncated.

Series.clip_upper Return copy of input with values above threshold truncated.

Examples

Series single threshold clipping:

34.5. Panel 1997

pandas: powerful Python data analysis toolkit, Release 0.23.4

>>> s = pd.Series([5, 6, 7, 8, 9])
>>> s.clip_lower(8)
0 8
1 8
2 8
3 8
4 9
dtype: int64

Series clipping element-wise using an array of thresholds. threshold should be the same length as the
Series.

>>> elemwise_thresholds = [4, 8, 7, 2, 5]
>>> s.clip_lower(elemwise_thresholds)
0 5
1 8
2 7
3 8
4 9
dtype: int64

DataFrames can be compared to a scalar.

>>> df = pd.DataFrame({"A": [1, 3, 5], "B": [2, 4, 6]})
>>> df

A B
0 1 2
1 3 4
2 5 6

>>> df.clip_lower(3)
A B

0 3 3
1 3 4
2 5 6

Or to an array of values. By default, threshold should be the same shape as the DataFrame.

>>> df.clip_lower(np.array([[3, 4], [2, 2], [6, 2]]))
A B

0 3 4
1 3 4
2 6 6

Control how threshold is broadcast with axis. In this case threshold should be the same length as the axis
specified by axis.

>>> df.clip_lower(np.array([3, 3, 5]), axis='index')
A B

0 3 3
1 3 4
2 5 6

>>> df.clip_lower(np.array([4, 5]), axis='columns')
A B

0 4 5

(continues on next page)

1998 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

1 4 5
2 5 6

pandas.Panel.clip_upper

Panel.clip_upper(threshold, axis=None, inplace=False)
Return copy of input with values above given value(s) truncated.

Parameters

threshold [float or array_like]

axis : int or string axis name, optional

Align object with threshold along the given axis.

inplace : boolean, default False

Whether to perform the operation in place on the data

New in version 0.21.0.

Returns

clipped [same type as input]

See also:

clip

pandas.Panel.compound

Panel.compound(axis=None, skipna=None, level=None)
Return the compound percentage of the values for the requested axis

Parameters

axis [{items (0), major_axis (1), minor_axis (2)}]

skipna : boolean, default True

Exclude NA/null values when computing the result.

level : int or level name, default None

If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing
into a DataFrame

numeric_only : boolean, default None

Include only float, int, boolean columns. If None, will attempt to use everything,
then use only numeric data. Not implemented for Series.

Returns

compounded [DataFrame or Panel (if level specified)]

34.5. Panel 1999

pandas: powerful Python data analysis toolkit, Release 0.23.4

pandas.Panel.conform

Panel.conform(frame, axis=’items’)
Conform input DataFrame to align with chosen axis pair.

Parameters

frame [DataFrame]

axis : {‘items’, ‘major’, ‘minor’}

Axis the input corresponds to. E.g., if axis=’major’, then the frame’s columns
would be items, and the index would be values of the minor axis

Returns

DataFrame

pandas.Panel.consolidate

Panel.consolidate(inplace=False)
Compute NDFrame with “consolidated” internals (data of each dtype grouped together in a single ndar-
ray).

Deprecated since version 0.20.0: Consolidate will be an internal implementation only.

pandas.Panel.convert_objects

Panel.convert_objects(convert_dates=True, convert_numeric=False, con-
vert_timedeltas=True, copy=True)

Attempt to infer better dtype for object columns.

Deprecated since version 0.21.0.

Parameters convert_dates : boolean, default True

If True, convert to date where possible. If ‘coerce’, force conversion, with uncon-
vertible values becoming NaT.

convert_numeric : boolean, default False

If True, attempt to coerce to numbers (including strings), with unconvertible val-
ues becoming NaN.

convert_timedeltas : boolean, default True

If True, convert to timedelta where possible. If ‘coerce’, force conversion, with
unconvertible values becoming NaT.

copy : boolean, default True

If True, return a copy even if no copy is necessary (e.g. no conversion was done).
Note: This is meant for internal use, and should not be confused with inplace.

Returns

converted [same as input object]

See also:

pandas.to_datetime Convert argument to datetime.

2000 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

pandas.to_timedelta Convert argument to timedelta.

pandas.to_numeric Return a fixed frequency timedelta index, with day as the default.

pandas.Panel.copy

Panel.copy(deep=True)
Make a copy of this object’s indices and data.

When deep=True (default), a new object will be created with a copy of the calling object’s data and
indices. Modifications to the data or indices of the copy will not be reflected in the original object (see
notes below).

When deep=False, a new object will be created without copying the calling object’s data or index
(only references to the data and index are copied). Any changes to the data of the original will be reflected
in the shallow copy (and vice versa).

Parameters deep : bool, default True

Make a deep copy, including a copy of the data and the indices. With
deep=False neither the indices nor the data are copied.

Returns copy : Series, DataFrame or Panel

Object type matches caller.

Notes

When deep=True, data is copied but actual Python objects will not be copied recursively, only the
reference to the object. This is in contrast to copy.deepcopy in the Standard Library, which recursively
copies object data (see examples below).

While Index objects are copied when deep=True, the underlying numpy array is not copied for per-
formance reasons. Since Index is immutable, the underlying data can be safely shared and a copy is not
needed.

Examples

>>> s = pd.Series([1, 2], index=["a", "b"])
>>> s
a 1
b 2
dtype: int64

>>> s_copy = s.copy()
>>> s_copy
a 1
b 2
dtype: int64

Shallow copy versus default (deep) copy:

>>> s = pd.Series([1, 2], index=["a", "b"])
>>> deep = s.copy()
>>> shallow = s.copy(deep=False)

34.5. Panel 2001

pandas: powerful Python data analysis toolkit, Release 0.23.4

Shallow copy shares data and index with original.

>>> s is shallow
False
>>> s.values is shallow.values and s.index is shallow.index
True

Deep copy has own copy of data and index.

>>> s is deep
False
>>> s.values is deep.values or s.index is deep.index
False

Updates to the data shared by shallow copy and original is reflected in both; deep copy remains unchanged.

>>> s[0] = 3
>>> shallow[1] = 4
>>> s
a 3
b 4
dtype: int64
>>> shallow
a 3
b 4
dtype: int64
>>> deep
a 1
b 2
dtype: int64

Note that when copying an object containing Python objects, a deep copy will copy the data, but will not
do so recursively. Updating a nested data object will be reflected in the deep copy.

>>> s = pd.Series([[1, 2], [3, 4]])
>>> deep = s.copy()
>>> s[0][0] = 10
>>> s
0 [10, 2]
1 [3, 4]
dtype: object
>>> deep
0 [10, 2]
1 [3, 4]
dtype: object

pandas.Panel.count

Panel.count(axis=’major’)
Return number of observations over requested axis.

Parameters

axis [{‘items’, ‘major’, ‘minor’} or {0, 1, 2}]

Returns

count [DataFrame]

2002 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

pandas.Panel.cummax

Panel.cummax(axis=None, skipna=True, *args, **kwargs)
Return cumulative maximum over a DataFrame or Series axis.

Returns a DataFrame or Series of the same size containing the cumulative maximum.

Parameters axis : {0 or ‘index’, 1 or ‘columns’}, default 0

The index or the name of the axis. 0 is equivalent to None or ‘index’.

skipna : boolean, default True

Exclude NA/null values. If an entire row/column is NA, the result will be NA.

*args, **kwargs :

Additional keywords have no effect but might be accepted for compatibility with
NumPy.

Returns

cummax [DataFrame or Panel]

See also:

pandas.core.window.Expanding.max Similar functionality but ignores NaN values.

Panel.max Return the maximum over Panel axis.

Panel.cummax Return cumulative maximum over Panel axis.

Panel.cummin Return cumulative minimum over Panel axis.

Panel.cumsum Return cumulative sum over Panel axis.

Panel.cumprod Return cumulative product over Panel axis.

Examples

Series

>>> s = pd.Series([2, np.nan, 5, -1, 0])
>>> s
0 2.0
1 NaN
2 5.0
3 -1.0
4 0.0
dtype: float64

By default, NA values are ignored.

>>> s.cummax()
0 2.0
1 NaN
2 5.0
3 5.0
4 5.0
dtype: float64

To include NA values in the operation, use skipna=False

34.5. Panel 2003

pandas: powerful Python data analysis toolkit, Release 0.23.4

>>> s.cummax(skipna=False)
0 2.0
1 NaN
2 NaN
3 NaN
4 NaN
dtype: float64

DataFrame

>>> df = pd.DataFrame([[2.0, 1.0],
... [3.0, np.nan],
... [1.0, 0.0]],
... columns=list('AB'))
>>> df

A B
0 2.0 1.0
1 3.0 NaN
2 1.0 0.0

By default, iterates over rows and finds the maximum in each column. This is equivalent to axis=None
or axis='index'.

>>> df.cummax()
A B

0 2.0 1.0
1 3.0 NaN
2 3.0 1.0

To iterate over columns and find the maximum in each row, use axis=1

>>> df.cummax(axis=1)
A B

0 2.0 2.0
1 3.0 NaN
2 1.0 1.0

pandas.Panel.cummin

Panel.cummin(axis=None, skipna=True, *args, **kwargs)
Return cumulative minimum over a DataFrame or Series axis.

Returns a DataFrame or Series of the same size containing the cumulative minimum.

Parameters axis : {0 or ‘index’, 1 or ‘columns’}, default 0

The index or the name of the axis. 0 is equivalent to None or ‘index’.

skipna : boolean, default True

Exclude NA/null values. If an entire row/column is NA, the result will be NA.

*args, **kwargs :

Additional keywords have no effect but might be accepted for compatibility with
NumPy.

Returns

2004 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

cummin [DataFrame or Panel]

See also:

pandas.core.window.Expanding.min Similar functionality but ignores NaN values.

Panel.min Return the minimum over Panel axis.

Panel.cummax Return cumulative maximum over Panel axis.

Panel.cummin Return cumulative minimum over Panel axis.

Panel.cumsum Return cumulative sum over Panel axis.

Panel.cumprod Return cumulative product over Panel axis.

Examples

Series

>>> s = pd.Series([2, np.nan, 5, -1, 0])
>>> s
0 2.0
1 NaN
2 5.0
3 -1.0
4 0.0
dtype: float64

By default, NA values are ignored.

>>> s.cummin()
0 2.0
1 NaN
2 2.0
3 -1.0
4 -1.0
dtype: float64

To include NA values in the operation, use skipna=False

>>> s.cummin(skipna=False)
0 2.0
1 NaN
2 NaN
3 NaN
4 NaN
dtype: float64

DataFrame

>>> df = pd.DataFrame([[2.0, 1.0],
... [3.0, np.nan],
... [1.0, 0.0]],
... columns=list('AB'))
>>> df

A B
0 2.0 1.0

(continues on next page)

34.5. Panel 2005

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

1 3.0 NaN
2 1.0 0.0

By default, iterates over rows and finds the minimum in each column. This is equivalent to axis=None
or axis='index'.

>>> df.cummin()
A B

0 2.0 1.0
1 2.0 NaN
2 1.0 0.0

To iterate over columns and find the minimum in each row, use axis=1

>>> df.cummin(axis=1)
A B

0 2.0 1.0
1 3.0 NaN
2 1.0 0.0

pandas.Panel.cumprod

Panel.cumprod(axis=None, skipna=True, *args, **kwargs)
Return cumulative product over a DataFrame or Series axis.

Returns a DataFrame or Series of the same size containing the cumulative product.

Parameters axis : {0 or ‘index’, 1 or ‘columns’}, default 0

The index or the name of the axis. 0 is equivalent to None or ‘index’.

skipna : boolean, default True

Exclude NA/null values. If an entire row/column is NA, the result will be NA.

*args, **kwargs :

Additional keywords have no effect but might be accepted for compatibility with
NumPy.

Returns

cumprod [DataFrame or Panel]

See also:

pandas.core.window.Expanding.prod Similar functionality but ignores NaN values.

Panel.prod Return the product over Panel axis.

Panel.cummax Return cumulative maximum over Panel axis.

Panel.cummin Return cumulative minimum over Panel axis.

Panel.cumsum Return cumulative sum over Panel axis.

Panel.cumprod Return cumulative product over Panel axis.

2006 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

Examples

Series

>>> s = pd.Series([2, np.nan, 5, -1, 0])
>>> s
0 2.0
1 NaN
2 5.0
3 -1.0
4 0.0
dtype: float64

By default, NA values are ignored.

>>> s.cumprod()
0 2.0
1 NaN
2 10.0
3 -10.0
4 -0.0
dtype: float64

To include NA values in the operation, use skipna=False

>>> s.cumprod(skipna=False)
0 2.0
1 NaN
2 NaN
3 NaN
4 NaN
dtype: float64

DataFrame

>>> df = pd.DataFrame([[2.0, 1.0],
... [3.0, np.nan],
... [1.0, 0.0]],
... columns=list('AB'))
>>> df

A B
0 2.0 1.0
1 3.0 NaN
2 1.0 0.0

By default, iterates over rows and finds the product in each column. This is equivalent to axis=None or
axis='index'.

>>> df.cumprod()
A B

0 2.0 1.0
1 6.0 NaN
2 6.0 0.0

To iterate over columns and find the product in each row, use axis=1

34.5. Panel 2007

pandas: powerful Python data analysis toolkit, Release 0.23.4

>>> df.cumprod(axis=1)
A B

0 2.0 2.0
1 3.0 NaN
2 1.0 0.0

pandas.Panel.cumsum

Panel.cumsum(axis=None, skipna=True, *args, **kwargs)
Return cumulative sum over a DataFrame or Series axis.

Returns a DataFrame or Series of the same size containing the cumulative sum.

Parameters axis : {0 or ‘index’, 1 or ‘columns’}, default 0

The index or the name of the axis. 0 is equivalent to None or ‘index’.

skipna : boolean, default True

Exclude NA/null values. If an entire row/column is NA, the result will be NA.

*args, **kwargs :

Additional keywords have no effect but might be accepted for compatibility with
NumPy.

Returns

cumsum [DataFrame or Panel]

See also:

pandas.core.window.Expanding.sum Similar functionality but ignores NaN values.

Panel.sum Return the sum over Panel axis.

Panel.cummax Return cumulative maximum over Panel axis.

Panel.cummin Return cumulative minimum over Panel axis.

Panel.cumsum Return cumulative sum over Panel axis.

Panel.cumprod Return cumulative product over Panel axis.

Examples

Series

>>> s = pd.Series([2, np.nan, 5, -1, 0])
>>> s
0 2.0
1 NaN
2 5.0
3 -1.0
4 0.0
dtype: float64

By default, NA values are ignored.

2008 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

>>> s.cumsum()
0 2.0
1 NaN
2 7.0
3 6.0
4 6.0
dtype: float64

To include NA values in the operation, use skipna=False

>>> s.cumsum(skipna=False)
0 2.0
1 NaN
2 NaN
3 NaN
4 NaN
dtype: float64

DataFrame

>>> df = pd.DataFrame([[2.0, 1.0],
... [3.0, np.nan],
... [1.0, 0.0]],
... columns=list('AB'))
>>> df

A B
0 2.0 1.0
1 3.0 NaN
2 1.0 0.0

By default, iterates over rows and finds the sum in each column. This is equivalent to axis=None or
axis='index'.

>>> df.cumsum()
A B

0 2.0 1.0
1 5.0 NaN
2 6.0 1.0

To iterate over columns and find the sum in each row, use axis=1

>>> df.cumsum(axis=1)
A B

0 2.0 3.0
1 3.0 NaN
2 1.0 1.0

pandas.Panel.describe

Panel.describe(percentiles=None, include=None, exclude=None)
Generates descriptive statistics that summarize the central tendency, dispersion and shape of a dataset’s
distribution, excluding NaN values.

Analyzes both numeric and object series, as well as DataFrame column sets of mixed data types. The
output will vary depending on what is provided. Refer to the notes below for more detail.

Parameters percentiles : list-like of numbers, optional

34.5. Panel 2009

pandas: powerful Python data analysis toolkit, Release 0.23.4

The percentiles to include in the output. All should fall between 0 and 1. The de-
fault is [.25, .5, .75], which returns the 25th, 50th, and 75th percentiles.

include : ‘all’, list-like of dtypes or None (default), optional

A white list of data types to include in the result. Ignored for Series. Here are
the options:

• ‘all’ : All columns of the input will be included in the output.

• A list-like of dtypes : Limits the results to the provided data types. To limit the
result to numeric types submit numpy.number. To limit it instead to object
columns submit the numpy.object data type. Strings can also be used in
the style of select_dtypes (e.g. df.describe(include=['O'])).
To select pandas categorical columns, use 'category'

• None (default) : The result will include all numeric columns.

exclude : list-like of dtypes or None (default), optional,

A black list of data types to omit from the result. Ignored for Series. Here are
the options:

• A list-like of dtypes : Excludes the provided data types from the result. To
exclude numeric types submit numpy.number. To exclude object columns
submit the data type numpy.object. Strings can also be used in the style of
select_dtypes (e.g. df.describe(include=['O'])). To exclude
pandas categorical columns, use 'category'

• None (default) : The result will exclude nothing.

Returns

summary: Series/DataFrame of summary statistics

See also:

DataFrame.count, DataFrame.max, DataFrame.min, DataFrame.mean, DataFrame.
std, DataFrame.select_dtypes

Notes

For numeric data, the result’s index will include count, mean, std, min, max as well as lower, 50 and
upper percentiles. By default the lower percentile is 25 and the upper percentile is 75. The 50 percentile
is the same as the median.

For object data (e.g. strings or timestamps), the result’s index will include count, unique, top, and
freq. The top is the most common value. The freq is the most common value’s frequency. Times-
tamps also include the first and last items.

If multiple object values have the highest count, then the count and top results will be arbitrarily chosen
from among those with the highest count.

For mixed data types provided via a DataFrame, the default is to return only an analysis of numeric
columns. If the dataframe consists only of object and categorical data without any numeric columns,
the default is to return an analysis of both the object and categorical columns. If include='all' is
provided as an option, the result will include a union of attributes of each type.

The include and exclude parameters can be used to limit which columns in a DataFrame are analyzed
for the output. The parameters are ignored when analyzing a Series.

2010 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

Examples

Describing a numeric Series.

>>> s = pd.Series([1, 2, 3])
>>> s.describe()
count 3.0
mean 2.0
std 1.0
min 1.0
25% 1.5
50% 2.0
75% 2.5
max 3.0

Describing a categorical Series.

>>> s = pd.Series(['a', 'a', 'b', 'c'])
>>> s.describe()
count 4
unique 3
top a
freq 2
dtype: object

Describing a timestamp Series.

>>> s = pd.Series([
... np.datetime64("2000-01-01"),
... np.datetime64("2010-01-01"),
... np.datetime64("2010-01-01")
...])
>>> s.describe()
count 3
unique 2
top 2010-01-01 00:00:00
freq 2
first 2000-01-01 00:00:00
last 2010-01-01 00:00:00
dtype: object

Describing a DataFrame. By default only numeric fields are returned.

>>> df = pd.DataFrame({ 'object': ['a', 'b', 'c'],
... 'numeric': [1, 2, 3],
... 'categorical': pd.Categorical(['d','e','f'])
... })
>>> df.describe()

numeric
count 3.0
mean 2.0
std 1.0
min 1.0
25% 1.5
50% 2.0
75% 2.5
max 3.0

34.5. Panel 2011

pandas: powerful Python data analysis toolkit, Release 0.23.4

Describing all columns of a DataFrame regardless of data type.

>>> df.describe(include='all')
categorical numeric object

count 3 3.0 3
unique 3 NaN 3
top f NaN c
freq 1 NaN 1
mean NaN 2.0 NaN
std NaN 1.0 NaN
min NaN 1.0 NaN
25% NaN 1.5 NaN
50% NaN 2.0 NaN
75% NaN 2.5 NaN
max NaN 3.0 NaN

Describing a column from a DataFrame by accessing it as an attribute.

>>> df.numeric.describe()
count 3.0
mean 2.0
std 1.0
min 1.0
25% 1.5
50% 2.0
75% 2.5
max 3.0
Name: numeric, dtype: float64

Including only numeric columns in a DataFrame description.

>>> df.describe(include=[np.number])
numeric

count 3.0
mean 2.0
std 1.0
min 1.0
25% 1.5
50% 2.0
75% 2.5
max 3.0

Including only string columns in a DataFrame description.

>>> df.describe(include=[np.object])
object

count 3
unique 3
top c
freq 1

Including only categorical columns from a DataFrame description.

>>> df.describe(include=['category'])
categorical

count 3
unique 3

(continues on next page)

2012 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

top f
freq 1

Excluding numeric columns from a DataFrame description.

>>> df.describe(exclude=[np.number])
categorical object

count 3 3
unique 3 3
top f c
freq 1 1

Excluding object columns from a DataFrame description.

>>> df.describe(exclude=[np.object])
categorical numeric

count 3 3.0
unique 3 NaN
top f NaN
freq 1 NaN
mean NaN 2.0
std NaN 1.0
min NaN 1.0
25% NaN 1.5
50% NaN 2.0
75% NaN 2.5
max NaN 3.0

pandas.Panel.div

Panel.div(other, axis=0)
Floating division of series and other, element-wise (binary operator truediv). Equivalent to panel /
other.

Parameters

other [DataFrame or Panel]

axis : {items, major_axis, minor_axis}

Axis to broadcast over

Returns

Panel

See also:

Panel.rtruediv

pandas.Panel.divide

Panel.divide(other, axis=0)
Floating division of series and other, element-wise (binary operator truediv). Equivalent to panel /
other.

Parameters

34.5. Panel 2013

pandas: powerful Python data analysis toolkit, Release 0.23.4

other [DataFrame or Panel]

axis : {items, major_axis, minor_axis}

Axis to broadcast over

Returns

Panel

See also:

Panel.rtruediv

pandas.Panel.dropna

Panel.dropna(axis=0, how=’any’, inplace=False)
Drop 2D from panel, holding passed axis constant

Parameters axis : int, default 0

Axis to hold constant. E.g. axis=1 will drop major_axis entries having a certain
amount of NA data

how : {‘all’, ‘any’}, default ‘any’

‘any’: one or more values are NA in the DataFrame along the axis. For ‘all’ they
all must be.

inplace : bool, default False

If True, do operation inplace and return None.

Returns

dropped [Panel]

pandas.Panel.eq

Panel.eq(other, axis=None)
Wrapper for comparison method eq

pandas.Panel.equals

Panel.equals(other)
Determines if two NDFrame objects contain the same elements. NaNs in the same location are considered
equal.

pandas.Panel.ffill

Panel.ffill(axis=None, inplace=False, limit=None, downcast=None)
Synonym for DataFrame.fillna(method='ffill')

2014 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

pandas.Panel.fillna

Panel.fillna(value=None, method=None, axis=None, inplace=False, limit=None, down-
cast=None, **kwargs)

Fill NA/NaN values using the specified method

Parameters value : scalar, dict, Series, or DataFrame

Value to use to fill holes (e.g. 0), alternately a dict/Series/DataFrame of val-
ues specifying which value to use for each index (for a Series) or column (for
a DataFrame). (values not in the dict/Series/DataFrame will not be filled). This
value cannot be a list.

method : {‘backfill’, ‘bfill’, ‘pad’, ‘ffill’, None}, default None

Method to use for filling holes in reindexed Series pad / ffill: propagate last valid
observation forward to next valid backfill / bfill: use NEXT valid observation to
fill gap

axis [{0, 1, 2, ‘items’, ‘major_axis’, ‘minor_axis’}]

inplace : boolean, default False

If True, fill in place. Note: this will modify any other views on this object, (e.g. a
no-copy slice for a column in a DataFrame).

limit : int, default None

If method is specified, this is the maximum number of consecutive NaN values to
forward/backward fill. In other words, if there is a gap with more than this number
of consecutive NaNs, it will only be partially filled. If method is not specified,
this is the maximum number of entries along the entire axis where NaNs will be
filled. Must be greater than 0 if not None.

downcast : dict, default is None

a dict of item->dtype of what to downcast if possible, or the string ‘infer’ which
will try to downcast to an appropriate equal type (e.g. float64 to int64 if possible)

Returns

filled [Panel]

See also:

interpolate Fill NaN values using interpolation.

reindex, asfreq

Examples

>>> df = pd.DataFrame([[np.nan, 2, np.nan, 0],
... [3, 4, np.nan, 1],
... [np.nan, np.nan, np.nan, 5],
... [np.nan, 3, np.nan, 4]],
... columns=list('ABCD'))
>>> df

A B C D

(continues on next page)

34.5. Panel 2015

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

0 NaN 2.0 NaN 0
1 3.0 4.0 NaN 1
2 NaN NaN NaN 5
3 NaN 3.0 NaN 4

Replace all NaN elements with 0s.

>>> df.fillna(0)
A B C D

0 0.0 2.0 0.0 0
1 3.0 4.0 0.0 1
2 0.0 0.0 0.0 5
3 0.0 3.0 0.0 4

We can also propagate non-null values forward or backward.

>>> df.fillna(method='ffill')
A B C D

0 NaN 2.0 NaN 0
1 3.0 4.0 NaN 1
2 3.0 4.0 NaN 5
3 3.0 3.0 NaN 4

Replace all NaN elements in column ‘A’, ‘B’, ‘C’, and ‘D’, with 0, 1, 2, and 3 respectively.

>>> values = {'A': 0, 'B': 1, 'C': 2, 'D': 3}
>>> df.fillna(value=values)

A B C D
0 0.0 2.0 2.0 0
1 3.0 4.0 2.0 1
2 0.0 1.0 2.0 5
3 0.0 3.0 2.0 4

Only replace the first NaN element.

>>> df.fillna(value=values, limit=1)
A B C D

0 0.0 2.0 2.0 0
1 3.0 4.0 NaN 1
2 NaN 1.0 NaN 5
3 NaN 3.0 NaN 4

pandas.Panel.filter

Panel.filter(items=None, like=None, regex=None, axis=None)
Subset rows or columns of dataframe according to labels in the specified index.

Note that this routine does not filter a dataframe on its contents. The filter is applied to the labels of the
index.

Parameters items : list-like

List of info axis to restrict to (must not all be present)

like : string

Keep info axis where “arg in col == True”

2016 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

regex : string (regular expression)

Keep info axis with re.search(regex, col) == True

axis : int or string axis name

The axis to filter on. By default this is the info axis, ‘index’ for Series, ‘columns’
for DataFrame

Returns

same type as input object

See also:

pandas.DataFrame.loc

Notes

The items, like, and regex parameters are enforced to be mutually exclusive.

axis defaults to the info axis that is used when indexing with [].

Examples

>>> df
one two three
mouse 1 2 3
rabbit 4 5 6

>>> # select columns by name
>>> df.filter(items=['one', 'three'])
one three
mouse 1 3
rabbit 4 6

>>> # select columns by regular expression
>>> df.filter(regex='e$', axis=1)
one three
mouse 1 3
rabbit 4 6

>>> # select rows containing 'bbi'
>>> df.filter(like='bbi', axis=0)
one two three
rabbit 4 5 6

pandas.Panel.first

Panel.first(offset)
Convenience method for subsetting initial periods of time series data based on a date offset.

Parameters

offset [string, DateOffset, dateutil.relativedelta]

34.5. Panel 2017

pandas: powerful Python data analysis toolkit, Release 0.23.4

Returns

subset [type of caller]

Raises TypeError

If the index is not a DatetimeIndex

See also:

last Select final periods of time series based on a date offset

at_time Select values at a particular time of the day

between_time Select values between particular times of the day

Examples

>>> i = pd.date_range('2018-04-09', periods=4, freq='2D')
>>> ts = pd.DataFrame({'A': [1,2,3,4]}, index=i)
>>> ts

A
2018-04-09 1
2018-04-11 2
2018-04-13 3
2018-04-15 4

Get the rows for the first 3 days:

>>> ts.first('3D')
A

2018-04-09 1
2018-04-11 2

Notice the data for 3 first calender days were returned, not the first 3 days observed in the dataset, and
therefore data for 2018-04-13 was not returned.

pandas.Panel.first_valid_index

Panel.first_valid_index()
Return index for first non-NA/null value.

Returns

scalar [type of index]

Notes

If all elements are non-NA/null, returns None. Also returns None for empty NDFrame.

pandas.Panel.floordiv

Panel.floordiv(other, axis=0)
Integer division of series and other, element-wise (binary operator floordiv). Equivalent to panel //
other.

2018 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

Parameters

other [DataFrame or Panel]

axis : {items, major_axis, minor_axis}

Axis to broadcast over

Returns

Panel

See also:

Panel.rfloordiv

pandas.Panel.fromDict

classmethod Panel.fromDict(data, intersect=False, orient=’items’, dtype=None)
Construct Panel from dict of DataFrame objects

Parameters data : dict

{field : DataFrame}

intersect : boolean

Intersect indexes of input DataFrames

orient : {‘items’, ‘minor’}, default ‘items’

The “orientation” of the data. If the keys of the passed dict should be the items of
the result panel, pass ‘items’ (default). Otherwise if the columns of the values of
the passed DataFrame objects should be the items (which in the case of mixed-
dtype data you should do), instead pass ‘minor’

dtype : dtype, default None

Data type to force, otherwise infer

Returns

Panel

pandas.Panel.from_dict

classmethod Panel.from_dict(data, intersect=False, orient=’items’, dtype=None)
Construct Panel from dict of DataFrame objects

Parameters data : dict

{field : DataFrame}

intersect : boolean

Intersect indexes of input DataFrames

orient : {‘items’, ‘minor’}, default ‘items’

The “orientation” of the data. If the keys of the passed dict should be the items of
the result panel, pass ‘items’ (default). Otherwise if the columns of the values of
the passed DataFrame objects should be the items (which in the case of mixed-
dtype data you should do), instead pass ‘minor’

34.5. Panel 2019

pandas: powerful Python data analysis toolkit, Release 0.23.4

dtype : dtype, default None

Data type to force, otherwise infer

Returns

Panel

pandas.Panel.ge

Panel.ge(other, axis=None)
Wrapper for comparison method ge

pandas.Panel.get

Panel.get(key, default=None)
Get item from object for given key (DataFrame column, Panel slice, etc.). Returns default value if not
found.

Parameters

key [object]

Returns

value [type of items contained in object]

pandas.Panel.get_dtype_counts

Panel.get_dtype_counts()
Return counts of unique dtypes in this object.

Returns dtype : Series

Series with the count of columns with each dtype.

See also:

dtypes Return the dtypes in this object.

Examples

>>> a = [['a', 1, 1.0], ['b', 2, 2.0], ['c', 3, 3.0]]
>>> df = pd.DataFrame(a, columns=['str', 'int', 'float'])
>>> df

str int float
0 a 1 1.0
1 b 2 2.0
2 c 3 3.0

>>> df.get_dtype_counts()
float64 1
int64 1
object 1
dtype: int64

2020 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

pandas.Panel.get_ftype_counts

Panel.get_ftype_counts()
Return counts of unique ftypes in this object.

Deprecated since version 0.23.0.

This is useful for SparseDataFrame or for DataFrames containing sparse arrays.

Returns dtype : Series

Series with the count of columns with each type and sparsity (dense/sparse)

See also:

ftypes Return ftypes (indication of sparse/dense and dtype) in this object.

Examples

>>> a = [['a', 1, 1.0], ['b', 2, 2.0], ['c', 3, 3.0]]
>>> df = pd.DataFrame(a, columns=['str', 'int', 'float'])
>>> df

str int float
0 a 1 1.0
1 b 2 2.0
2 c 3 3.0

>>> df.get_ftype_counts()
float64:dense 1
int64:dense 1
object:dense 1
dtype: int64

pandas.Panel.get_value

Panel.get_value(*args, **kwargs)
Quickly retrieve single value at (item, major, minor) location

Deprecated since version 0.21.0.

Please use .at[] or .iat[] accessors.

Parameters

item [item label (panel item)]

major [major axis label (panel item row)]

minor [minor axis label (panel item column)]

takeable [interpret the passed labels as indexers, default False]

Returns

value [scalar value]

34.5. Panel 2021

pandas: powerful Python data analysis toolkit, Release 0.23.4

pandas.Panel.get_values

Panel.get_values()
Return an ndarray after converting sparse values to dense.

This is the same as .values for non-sparse data. For sparse data contained in a pandas.SparseArray,
the data are first converted to a dense representation.

Returns numpy.ndarray

Numpy representation of DataFrame

See also:

values Numpy representation of DataFrame.

pandas.SparseArray Container for sparse data.

Examples

>>> df = pd.DataFrame({'a': [1, 2], 'b': [True, False],
... 'c': [1.0, 2.0]})
>>> df

a b c
0 1 True 1.0
1 2 False 2.0

>>> df.get_values()
array([[1, True, 1.0], [2, False, 2.0]], dtype=object)

>>> df = pd.DataFrame({"a": pd.SparseArray([1, None, None]),
... "c": [1.0, 2.0, 3.0]})
>>> df

a c
0 1.0 1.0
1 NaN 2.0
2 NaN 3.0

>>> df.get_values()
array([[1., 1.],

[nan, 2.],
[nan, 3.]])

pandas.Panel.groupby

Panel.groupby(function, axis=’major’)
Group data on given axis, returning GroupBy object

Parameters function : callable

Mapping function for chosen access

axis [{‘major’, ‘minor’, ‘items’}, default ‘major’]

Returns

2022 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

grouped [PanelGroupBy]

pandas.Panel.gt

Panel.gt(other, axis=None)
Wrapper for comparison method gt

pandas.Panel.head

Panel.head(n=5)
Return the first n rows.

This function returns the first n rows for the object based on position. It is useful for quickly testing if
your object has the right type of data in it.

Parameters n : int, default 5

Number of rows to select.

Returns obj_head : type of caller

The first n rows of the caller object.

See also:

pandas.DataFrame.tail Returns the last n rows.

Examples

>>> df = pd.DataFrame({'animal':['alligator', 'bee', 'falcon', 'lion',
... 'monkey', 'parrot', 'shark', 'whale', 'zebra']})
>>> df

animal
0 alligator
1 bee
2 falcon
3 lion
4 monkey
5 parrot
6 shark
7 whale
8 zebra

Viewing the first 5 lines

>>> df.head()
animal

0 alligator
1 bee
2 falcon
3 lion
4 monkey

Viewing the first n lines (three in this case)

34.5. Panel 2023

pandas: powerful Python data analysis toolkit, Release 0.23.4

>>> df.head(3)
animal

0 alligator
1 bee
2 falcon

pandas.Panel.infer_objects

Panel.infer_objects()
Attempt to infer better dtypes for object columns.

Attempts soft conversion of object-dtyped columns, leaving non-object and unconvertible columns un-
changed. The inference rules are the same as during normal Series/DataFrame construction.

New in version 0.21.0.

Returns

converted [same type as input object]

See also:

pandas.to_datetime Convert argument to datetime.

pandas.to_timedelta Convert argument to timedelta.

pandas.to_numeric Convert argument to numeric typeR

Examples

>>> df = pd.DataFrame({"A": ["a", 1, 2, 3]})
>>> df = df.iloc[1:]
>>> df

A
1 1
2 2
3 3

>>> df.dtypes
A object
dtype: object

>>> df.infer_objects().dtypes
A int64
dtype: object

pandas.Panel.interpolate

Panel.interpolate(method=’linear’, axis=0, limit=None, inplace=False,
limit_direction=’forward’, limit_area=None, downcast=None, **kwargs)

Interpolate values according to different methods.

Please note that only method='linear' is supported for DataFrames/Series with a MultiIndex.

Parameters method : {‘linear’, ‘time’, ‘index’, ‘values’, ‘nearest’, ‘zero’,

2024 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

‘slinear’, ‘quadratic’, ‘cubic’, ‘barycentric’, ‘krogh’, ‘polynomial’, ‘spline’,
‘piecewise_polynomial’, ‘from_derivatives’, ‘pchip’, ‘akima’}

• ‘linear’: ignore the index and treat the values as equally spaced. This is the
only method supported on MultiIndexes. default

• ‘time’: interpolation works on daily and higher resolution data to interpolate
given length of interval

• ‘index’, ‘values’: use the actual numerical values of the index

• ‘nearest’, ‘zero’, ‘slinear’, ‘quadratic’, ‘cubic’, ‘barycentric’, ‘polyno-
mial’ is passed to scipy.interpolate.interp1d. Both ‘poly-
nomial’ and ‘spline’ require that you also specify an order (int), e.g.
df.interpolate(method=’polynomial’, order=4). These use the actual numeri-
cal values of the index.

• ‘krogh’, ‘piecewise_polynomial’, ‘spline’, ‘pchip’ and ‘akima’ are all wrap-
pers around the scipy interpolation methods of similar names. These use the
actual numerical values of the index. For more information on their behavior,
see the scipy documentation and tutorial documentation

• ‘from_derivatives’ refers to BPoly.from_derivatives which replaces ‘piece-
wise_polynomial’ interpolation method in scipy 0.18

New in version 0.18.1: Added support for the ‘akima’ method Added interpolate
method ‘from_derivatives’ which replaces ‘piecewise_polynomial’ in scipy 0.18;
backwards-compatible with scipy < 0.18

axis : {0, 1}, default 0

• 0: fill column-by-column

• 1: fill row-by-row

limit : int, default None.

Maximum number of consecutive NaNs to fill. Must be greater than 0.

limit_direction [{‘forward’, ‘backward’, ‘both’}, default ‘forward’]

limit_area : {‘inside’, ‘outside’}, default None

• None: (default) no fill restriction

• ‘inside’ Only fill NaNs surrounded by valid values (interpolate).

• ‘outside’ Only fill NaNs outside valid values (extrapolate).

If limit is specified, consecutive NaNs will be filled in this direction.

New in version 0.21.0.

inplace : bool, default False

Update the NDFrame in place if possible.

downcast : optional, ‘infer’ or None, defaults to None

Downcast dtypes if possible.

kwargs [keyword arguments to pass on to the interpolating function.]

34.5. Panel 2025

http://docs.scipy.org/doc/scipy/reference/interpolate.html#univariate-interpolation
http://docs.scipy.org/doc/scipy/reference/tutorial/interpolate.html

pandas: powerful Python data analysis toolkit, Release 0.23.4

Returns

Series or DataFrame of same shape interpolated at the NaNs

See also:

reindex, replace, fillna

Examples

Filling in NaNs

>>> s = pd.Series([0, 1, np.nan, 3])
>>> s.interpolate()
0 0
1 1
2 2
3 3
dtype: float64

pandas.Panel.isna

Panel.isna()
Detect missing values.

Return a boolean same-sized object indicating if the values are NA. NA values, such as None or numpy.
NaN, gets mapped to True values. Everything else gets mapped to False values. Characters such as empty
strings '' or numpy.inf are not considered NA values (unless you set pandas.options.mode.
use_inf_as_na = True).

Returns NDFrame

Mask of bool values for each element in NDFrame that indicates whether an
element is not an NA value.

See also:

NDFrame.isnull alias of isna

NDFrame.notna boolean inverse of isna

NDFrame.dropna omit axes labels with missing values

isna top-level isna

Examples

Show which entries in a DataFrame are NA.

>>> df = pd.DataFrame({'age': [5, 6, np.NaN],
... 'born': [pd.NaT, pd.Timestamp('1939-05-27'),
... pd.Timestamp('1940-04-25')],
... 'name': ['Alfred', 'Batman', ''],
... 'toy': [None, 'Batmobile', 'Joker']})
>>> df

age born name toy

(continues on next page)

2026 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

0 5.0 NaT Alfred None
1 6.0 1939-05-27 Batman Batmobile
2 NaN 1940-04-25 Joker

>>> df.isna()
age born name toy

0 False True False True
1 False False False False
2 True False False False

Show which entries in a Series are NA.

>>> ser = pd.Series([5, 6, np.NaN])
>>> ser
0 5.0
1 6.0
2 NaN
dtype: float64

>>> ser.isna()
0 False
1 False
2 True
dtype: bool

pandas.Panel.isnull

Panel.isnull()
Detect missing values.

Return a boolean same-sized object indicating if the values are NA. NA values, such as None or numpy.
NaN, gets mapped to True values. Everything else gets mapped to False values. Characters such as empty
strings '' or numpy.inf are not considered NA values (unless you set pandas.options.mode.
use_inf_as_na = True).

Returns NDFrame

Mask of bool values for each element in NDFrame that indicates whether an
element is not an NA value.

See also:

NDFrame.isnull alias of isna

NDFrame.notna boolean inverse of isna

NDFrame.dropna omit axes labels with missing values

isna top-level isna

Examples

Show which entries in a DataFrame are NA.

34.5. Panel 2027

pandas: powerful Python data analysis toolkit, Release 0.23.4

>>> df = pd.DataFrame({'age': [5, 6, np.NaN],
... 'born': [pd.NaT, pd.Timestamp('1939-05-27'),
... pd.Timestamp('1940-04-25')],
... 'name': ['Alfred', 'Batman', ''],
... 'toy': [None, 'Batmobile', 'Joker']})
>>> df

age born name toy
0 5.0 NaT Alfred None
1 6.0 1939-05-27 Batman Batmobile
2 NaN 1940-04-25 Joker

>>> df.isna()
age born name toy

0 False True False True
1 False False False False
2 True False False False

Show which entries in a Series are NA.

>>> ser = pd.Series([5, 6, np.NaN])
>>> ser
0 5.0
1 6.0
2 NaN
dtype: float64

>>> ser.isna()
0 False
1 False
2 True
dtype: bool

pandas.Panel.iteritems

Panel.iteritems()
Iterate over (label, values) on info axis

This is index for Series, columns for DataFrame, major_axis for Panel, and so on.

pandas.Panel.join

Panel.join(other, how=’left’, lsuffix=”, rsuffix=”)
Join items with other Panel either on major and minor axes column

Parameters other : Panel or list of Panels

Index should be similar to one of the columns in this one

how : {‘left’, ‘right’, ‘outer’, ‘inner’}

How to handle indexes of the two objects. Default: ‘left’ for joining on index,
None otherwise * left: use calling frame’s index * right: use input frame’s index
* outer: form union of indexes * inner: use intersection of indexes

lsuffix : string

2028 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

Suffix to use from left frame’s overlapping columns

rsuffix : string

Suffix to use from right frame’s overlapping columns

Returns

joined [Panel]

pandas.Panel.keys

Panel.keys()
Get the ‘info axis’ (see Indexing for more)

This is index for Series, columns for DataFrame and major_axis for Panel.

pandas.Panel.kurt

Panel.kurt(axis=None, skipna=None, level=None, numeric_only=None, **kwargs)
Return unbiased kurtosis over requested axis using Fisher’s definition of kurtosis (kurtosis of normal ==
0.0). Normalized by N-1

Parameters

axis [{items (0), major_axis (1), minor_axis (2)}]

skipna : boolean, default True

Exclude NA/null values when computing the result.

level : int or level name, default None

If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing
into a DataFrame

numeric_only : boolean, default None

Include only float, int, boolean columns. If None, will attempt to use everything,
then use only numeric data. Not implemented for Series.

Returns

kurt [DataFrame or Panel (if level specified)]

pandas.Panel.kurtosis

Panel.kurtosis(axis=None, skipna=None, level=None, numeric_only=None, **kwargs)
Return unbiased kurtosis over requested axis using Fisher’s definition of kurtosis (kurtosis of normal ==
0.0). Normalized by N-1

Parameters

axis [{items (0), major_axis (1), minor_axis (2)}]

skipna : boolean, default True

Exclude NA/null values when computing the result.

level : int or level name, default None

34.5. Panel 2029

pandas: powerful Python data analysis toolkit, Release 0.23.4

If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing
into a DataFrame

numeric_only : boolean, default None

Include only float, int, boolean columns. If None, will attempt to use everything,
then use only numeric data. Not implemented for Series.

Returns

kurt [DataFrame or Panel (if level specified)]

pandas.Panel.last

Panel.last(offset)
Convenience method for subsetting final periods of time series data based on a date offset.

Parameters

offset [string, DateOffset, dateutil.relativedelta]

Returns

subset [type of caller]

Raises TypeError

If the index is not a DatetimeIndex

See also:

first Select initial periods of time series based on a date offset

at_time Select values at a particular time of the day

between_time Select values between particular times of the day

Examples

>>> i = pd.date_range('2018-04-09', periods=4, freq='2D')
>>> ts = pd.DataFrame({'A': [1,2,3,4]}, index=i)
>>> ts

A
2018-04-09 1
2018-04-11 2
2018-04-13 3
2018-04-15 4

Get the rows for the last 3 days:

>>> ts.last('3D')
A

2018-04-13 3
2018-04-15 4

Notice the data for 3 last calender days were returned, not the last 3 observed days in the dataset, and
therefore data for 2018-04-11 was not returned.

2030 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

pandas.Panel.last_valid_index

Panel.last_valid_index()
Return index for last non-NA/null value.

Returns

scalar [type of index]

Notes

If all elements are non-NA/null, returns None. Also returns None for empty NDFrame.

pandas.Panel.le

Panel.le(other, axis=None)
Wrapper for comparison method le

pandas.Panel.lt

Panel.lt(other, axis=None)
Wrapper for comparison method lt

pandas.Panel.mad

Panel.mad(axis=None, skipna=None, level=None)
Return the mean absolute deviation of the values for the requested axis

Parameters

axis [{items (0), major_axis (1), minor_axis (2)}]

skipna : boolean, default True

Exclude NA/null values when computing the result.

level : int or level name, default None

If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing
into a DataFrame

numeric_only : boolean, default None

Include only float, int, boolean columns. If None, will attempt to use everything,
then use only numeric data. Not implemented for Series.

Returns

mad [DataFrame or Panel (if level specified)]

pandas.Panel.major_xs

Panel.major_xs(key)
Return slice of panel along major axis

34.5. Panel 2031

pandas: powerful Python data analysis toolkit, Release 0.23.4

Parameters key : object

Major axis label

Returns y : DataFrame

index -> minor axis, columns -> items

Notes

major_xs is only for getting, not setting values.

MultiIndex Slicers is a generic way to get/set values on any level or levels and is a superset of major_xs
functionality, see MultiIndex Slicers

pandas.Panel.mask

Panel.mask(cond, other=nan, inplace=False, axis=None, level=None, errors=’raise’,
try_cast=False, raise_on_error=None)

Return an object of same shape as self and whose corresponding entries are from self where cond is False
and otherwise are from other.

Parameters cond : boolean NDFrame, array-like, or callable

Where cond is False, keep the original value. Where True, replace with corre-
sponding value from other. If cond is callable, it is computed on the NDFrame
and should return boolean NDFrame or array. The callable must not change input
NDFrame (though pandas doesn’t check it).

New in version 0.18.1: A callable can be used as cond.

other : scalar, NDFrame, or callable

Entries where cond is True are replaced with corresponding value from other.
If other is callable, it is computed on the NDFrame and should return scalar or
NDFrame. The callable must not change input NDFrame (though pandas doesn’t
check it).

New in version 0.18.1: A callable can be used as other.

inplace : boolean, default False

Whether to perform the operation in place on the data

axis [alignment axis if needed, default None]

level [alignment level if needed, default None]

errors : str, {‘raise’, ‘ignore’}, default ‘raise’

• raise : allow exceptions to be raised

• ignore : suppress exceptions. On error return original object

Note that currently this parameter won’t affect the results and will always coerce
to a suitable dtype.

try_cast : boolean, default False

try to cast the result back to the input type (if possible),

raise_on_error : boolean, default True

2032 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

Whether to raise on invalid data types (e.g. trying to where on strings)

Deprecated since version 0.21.0.

Returns

wh [same type as caller]

See also:

DataFrame.where()

Notes

The mask method is an application of the if-then idiom. For each element in the calling DataFrame, if
cond is False the element is used; otherwise the corresponding element from the DataFrame other
is used.

The signature for DataFrame.where() differs from numpy.where(). Roughly df1.where(m,
df2) is equivalent to np.where(m, df1, df2).

For further details and examples see the mask documentation in indexing.

Examples

>>> s = pd.Series(range(5))
>>> s.where(s > 0)
0 NaN
1 1.0
2 2.0
3 3.0
4 4.0

>>> s.mask(s > 0)
0 0.0
1 NaN
2 NaN
3 NaN
4 NaN

>>> s.where(s > 1, 10)
0 10.0
1 10.0
2 2.0
3 3.0
4 4.0

>>> df = pd.DataFrame(np.arange(10).reshape(-1, 2), columns=['A', 'B'])
>>> m = df % 3 == 0
>>> df.where(m, -df)

A B
0 0 -1
1 -2 3
2 -4 -5
3 6 -7
4 -8 9

(continues on next page)

34.5. Panel 2033

https://docs.scipy.org/doc/numpy/reference/generated/numpy.where.html#numpy.where

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

>>> df.where(m, -df) == np.where(m, df, -df)
A B

0 True True
1 True True
2 True True
3 True True
4 True True
>>> df.where(m, -df) == df.mask(~m, -df)

A B
0 True True
1 True True
2 True True
3 True True
4 True True

pandas.Panel.max

Panel.max(axis=None, skipna=None, level=None, numeric_only=None, **kwargs)

This method returns the maximum of the values in the object. If you want the index of the maximum,
use idxmax. This is the equivalent of the numpy.ndarray method argmax.

Parameters

axis [{items (0), major_axis (1), minor_axis (2)}]

skipna : boolean, default True

Exclude NA/null values when computing the result.

level : int or level name, default None

If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing
into a DataFrame

numeric_only : boolean, default None

Include only float, int, boolean columns. If None, will attempt to use everything,
then use only numeric data. Not implemented for Series.

Returns

max [DataFrame or Panel (if level specified)]

pandas.Panel.mean

Panel.mean(axis=None, skipna=None, level=None, numeric_only=None, **kwargs)
Return the mean of the values for the requested axis

Parameters

axis [{items (0), major_axis (1), minor_axis (2)}]

skipna : boolean, default True

Exclude NA/null values when computing the result.

level : int or level name, default None

2034 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing
into a DataFrame

numeric_only : boolean, default None

Include only float, int, boolean columns. If None, will attempt to use everything,
then use only numeric data. Not implemented for Series.

Returns

mean [DataFrame or Panel (if level specified)]

pandas.Panel.median

Panel.median(axis=None, skipna=None, level=None, numeric_only=None, **kwargs)
Return the median of the values for the requested axis

Parameters

axis [{items (0), major_axis (1), minor_axis (2)}]

skipna : boolean, default True

Exclude NA/null values when computing the result.

level : int or level name, default None

If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing
into a DataFrame

numeric_only : boolean, default None

Include only float, int, boolean columns. If None, will attempt to use everything,
then use only numeric data. Not implemented for Series.

Returns

median [DataFrame or Panel (if level specified)]

pandas.Panel.min

Panel.min(axis=None, skipna=None, level=None, numeric_only=None, **kwargs)

This method returns the minimum of the values in the object. If you want the index of the minimum,
use idxmin. This is the equivalent of the numpy.ndarray method argmin.

Parameters

axis [{items (0), major_axis (1), minor_axis (2)}]

skipna : boolean, default True

Exclude NA/null values when computing the result.

level : int or level name, default None

If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing
into a DataFrame

numeric_only : boolean, default None

Include only float, int, boolean columns. If None, will attempt to use everything,
then use only numeric data. Not implemented for Series.

34.5. Panel 2035

pandas: powerful Python data analysis toolkit, Release 0.23.4

Returns

min [DataFrame or Panel (if level specified)]

pandas.Panel.minor_xs

Panel.minor_xs(key)
Return slice of panel along minor axis

Parameters key : object

Minor axis label

Returns y : DataFrame

index -> major axis, columns -> items

Notes

minor_xs is only for getting, not setting values.

MultiIndex Slicers is a generic way to get/set values on any level or levels and is a superset of minor_xs
functionality, see MultiIndex Slicers

pandas.Panel.mod

Panel.mod(other, axis=0)
Modulo of series and other, element-wise (binary operator mod). Equivalent to panel % other.

Parameters

other [DataFrame or Panel]

axis : {items, major_axis, minor_axis}

Axis to broadcast over

Returns

Panel

See also:

Panel.rmod

pandas.Panel.mul

Panel.mul(other, axis=0)
Multiplication of series and other, element-wise (binary operator mul). Equivalent to panel * other.

Parameters

other [DataFrame or Panel]

axis : {items, major_axis, minor_axis}

Axis to broadcast over

Returns

2036 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

Panel

See also:

Panel.rmul

pandas.Panel.multiply

Panel.multiply(other, axis=0)
Multiplication of series and other, element-wise (binary operator mul). Equivalent to panel * other.

Parameters

other [DataFrame or Panel]

axis : {items, major_axis, minor_axis}

Axis to broadcast over

Returns

Panel

See also:

Panel.rmul

pandas.Panel.ne

Panel.ne(other, axis=None)
Wrapper for comparison method ne

pandas.Panel.notna

Panel.notna()
Detect existing (non-missing) values.

Return a boolean same-sized object indicating if the values are not NA. Non-missing values get mapped to
True. Characters such as empty strings '' or numpy.inf are not considered NA values (unless you set
pandas.options.mode.use_inf_as_na = True). NA values, such as None or numpy.NaN,
get mapped to False values.

Returns NDFrame

Mask of bool values for each element in NDFrame that indicates whether an
element is not an NA value.

See also:

NDFrame.notnull alias of notna

NDFrame.isna boolean inverse of notna

NDFrame.dropna omit axes labels with missing values

notna top-level notna

34.5. Panel 2037

pandas: powerful Python data analysis toolkit, Release 0.23.4

Examples

Show which entries in a DataFrame are not NA.

>>> df = pd.DataFrame({'age': [5, 6, np.NaN],
... 'born': [pd.NaT, pd.Timestamp('1939-05-27'),
... pd.Timestamp('1940-04-25')],
... 'name': ['Alfred', 'Batman', ''],
... 'toy': [None, 'Batmobile', 'Joker']})
>>> df

age born name toy
0 5.0 NaT Alfred None
1 6.0 1939-05-27 Batman Batmobile
2 NaN 1940-04-25 Joker

>>> df.notna()
age born name toy

0 True False True False
1 True True True True
2 False True True True

Show which entries in a Series are not NA.

>>> ser = pd.Series([5, 6, np.NaN])
>>> ser
0 5.0
1 6.0
2 NaN
dtype: float64

>>> ser.notna()
0 True
1 True
2 False
dtype: bool

pandas.Panel.notnull

Panel.notnull()
Detect existing (non-missing) values.

Return a boolean same-sized object indicating if the values are not NA. Non-missing values get mapped to
True. Characters such as empty strings '' or numpy.inf are not considered NA values (unless you set
pandas.options.mode.use_inf_as_na = True). NA values, such as None or numpy.NaN,
get mapped to False values.

Returns NDFrame

Mask of bool values for each element in NDFrame that indicates whether an
element is not an NA value.

See also:

NDFrame.notnull alias of notna

NDFrame.isna boolean inverse of notna

2038 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

NDFrame.dropna omit axes labels with missing values

notna top-level notna

Examples

Show which entries in a DataFrame are not NA.

>>> df = pd.DataFrame({'age': [5, 6, np.NaN],
... 'born': [pd.NaT, pd.Timestamp('1939-05-27'),
... pd.Timestamp('1940-04-25')],
... 'name': ['Alfred', 'Batman', ''],
... 'toy': [None, 'Batmobile', 'Joker']})
>>> df

age born name toy
0 5.0 NaT Alfred None
1 6.0 1939-05-27 Batman Batmobile
2 NaN 1940-04-25 Joker

>>> df.notna()
age born name toy

0 True False True False
1 True True True True
2 False True True True

Show which entries in a Series are not NA.

>>> ser = pd.Series([5, 6, np.NaN])
>>> ser
0 5.0
1 6.0
2 NaN
dtype: float64

>>> ser.notna()
0 True
1 True
2 False
dtype: bool

pandas.Panel.pct_change

Panel.pct_change(periods=1, fill_method=’pad’, limit=None, freq=None, **kwargs)
Percentage change between the current and a prior element.

Computes the percentage change from the immediately previous row by default. This is useful in com-
paring the percentage of change in a time series of elements.

Parameters periods : int, default 1

Periods to shift for forming percent change.

fill_method : str, default ‘pad’

How to handle NAs before computing percent changes.

limit : int, default None

34.5. Panel 2039

pandas: powerful Python data analysis toolkit, Release 0.23.4

The number of consecutive NAs to fill before stopping.

freq : DateOffset, timedelta, or offset alias string, optional

Increment to use from time series API (e.g. ‘M’ or BDay()).

**kwargs

Additional keyword arguments are passed into DataFrame.shift or Series.shift.

Returns chg : Series or DataFrame

The same type as the calling object.

See also:

Series.diff Compute the difference of two elements in a Series.

DataFrame.diff Compute the difference of two elements in a DataFrame.

Series.shift Shift the index by some number of periods.

DataFrame.shift Shift the index by some number of periods.

Examples

Series

>>> s = pd.Series([90, 91, 85])
>>> s
0 90
1 91
2 85
dtype: int64

>>> s.pct_change()
0 NaN
1 0.011111
2 -0.065934
dtype: float64

>>> s.pct_change(periods=2)
0 NaN
1 NaN
2 -0.055556
dtype: float64

See the percentage change in a Series where filling NAs with last valid observation forward to next valid.

>>> s = pd.Series([90, 91, None, 85])
>>> s
0 90.0
1 91.0
2 NaN
3 85.0
dtype: float64

2040 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

>>> s.pct_change(fill_method='ffill')
0 NaN
1 0.011111
2 0.000000
3 -0.065934
dtype: float64

DataFrame

Percentage change in French franc, Deutsche Mark, and Italian lira from 1980-01-01 to 1980-03-01.

>>> df = pd.DataFrame({
... 'FR': [4.0405, 4.0963, 4.3149],
... 'GR': [1.7246, 1.7482, 1.8519],
... 'IT': [804.74, 810.01, 860.13]},
... index=['1980-01-01', '1980-02-01', '1980-03-01'])
>>> df

FR GR IT
1980-01-01 4.0405 1.7246 804.74
1980-02-01 4.0963 1.7482 810.01
1980-03-01 4.3149 1.8519 860.13

>>> df.pct_change()
FR GR IT

1980-01-01 NaN NaN NaN
1980-02-01 0.013810 0.013684 0.006549
1980-03-01 0.053365 0.059318 0.061876

Percentage of change in GOOG and APPL stock volume. Shows computing the percentage change be-
tween columns.

>>> df = pd.DataFrame({
... '2016': [1769950, 30586265],
... '2015': [1500923, 40912316],
... '2014': [1371819, 41403351]},
... index=['GOOG', 'APPL'])
>>> df

2016 2015 2014
GOOG 1769950 1500923 1371819
APPL 30586265 40912316 41403351

>>> df.pct_change(axis='columns')
2016 2015 2014

GOOG NaN -0.151997 -0.086016
APPL NaN 0.337604 0.012002

pandas.Panel.pipe

Panel.pipe(func, *args, **kwargs)
Apply func(self, *args, **kwargs)

Parameters func : function

function to apply to the NDFrame. args, and kwargs are passed
into func. Alternatively a (callable, data_keyword) tuple where

34.5. Panel 2041

pandas: powerful Python data analysis toolkit, Release 0.23.4

data_keyword is a string indicating the keyword of callable that expects
the NDFrame.

args : iterable, optional

positional arguments passed into func.

kwargs : mapping, optional

a dictionary of keyword arguments passed into func.

Returns

object [the return type of func.]

See also:

pandas.DataFrame.apply , pandas.DataFrame.applymap, pandas.Series.map

Notes

Use .pipewhen chaining together functions that expect Series, DataFrames or GroupBy objects. Instead
of writing

>>> f(g(h(df), arg1=a), arg2=b, arg3=c)

You can write

>>> (df.pipe(h)
... .pipe(g, arg1=a)
... .pipe(f, arg2=b, arg3=c)
...)

If you have a function that takes the data as (say) the second argument, pass a tuple indicating which
keyword expects the data. For example, suppose f takes its data as arg2:

>>> (df.pipe(h)
... .pipe(g, arg1=a)
... .pipe((f, 'arg2'), arg1=a, arg3=c)
...)

pandas.Panel.pop

Panel.pop(item)
Return item and drop from frame. Raise KeyError if not found.

Parameters item : str

Column label to be popped

Returns

popped [Series]

Examples

2042 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

>>> df = pd.DataFrame([('falcon', 'bird', 389.0),
... ('parrot', 'bird', 24.0),
... ('lion', 'mammal', 80.5),
... ('monkey', 'mammal', np.nan)],
... columns=('name', 'class', 'max_speed'))
>>> df

name class max_speed
0 falcon bird 389.0
1 parrot bird 24.0
2 lion mammal 80.5
3 monkey mammal NaN

>>> df.pop('class')
0 bird
1 bird
2 mammal
3 mammal
Name: class, dtype: object

>>> df
name max_speed

0 falcon 389.0
1 parrot 24.0
2 lion 80.5
3 monkey NaN

pandas.Panel.pow

Panel.pow(other, axis=0)
Exponential power of series and other, element-wise (binary operator pow). Equivalent to panel **
other.

Parameters

other [DataFrame or Panel]

axis : {items, major_axis, minor_axis}

Axis to broadcast over

Returns

Panel

See also:

Panel.rpow

pandas.Panel.prod

Panel.prod(axis=None, skipna=None, level=None, numeric_only=None, min_count=0, **kwargs)
Return the product of the values for the requested axis

Parameters

axis [{items (0), major_axis (1), minor_axis (2)}]

skipna : boolean, default True

34.5. Panel 2043

pandas: powerful Python data analysis toolkit, Release 0.23.4

Exclude NA/null values when computing the result.

level : int or level name, default None

If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing
into a DataFrame

numeric_only : boolean, default None

Include only float, int, boolean columns. If None, will attempt to use everything,
then use only numeric data. Not implemented for Series.

min_count : int, default 0

The required number of valid values to perform the operation. If fewer than
min_count non-NA values are present the result will be NA.

New in version 0.22.0: Added with the default being 0. This means the sum of
an all-NA or empty Series is 0, and the product of an all-NA or empty Series is 1.

Returns

prod [DataFrame or Panel (if level specified)]

Examples

By default, the product of an empty or all-NA Series is 1

>>> pd.Series([]).prod()
1.0

This can be controlled with the min_count parameter

>>> pd.Series([]).prod(min_count=1)
nan

Thanks to the skipna parameter, min_count handles all-NA and empty series identically.

>>> pd.Series([np.nan]).prod()
1.0

>>> pd.Series([np.nan]).prod(min_count=1)
nan

pandas.Panel.product

Panel.product(axis=None, skipna=None, level=None, numeric_only=None, min_count=0,
**kwargs)

Return the product of the values for the requested axis

Parameters

axis [{items (0), major_axis (1), minor_axis (2)}]

skipna : boolean, default True

Exclude NA/null values when computing the result.

level : int or level name, default None

2044 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing
into a DataFrame

numeric_only : boolean, default None

Include only float, int, boolean columns. If None, will attempt to use everything,
then use only numeric data. Not implemented for Series.

min_count : int, default 0

The required number of valid values to perform the operation. If fewer than
min_count non-NA values are present the result will be NA.

New in version 0.22.0: Added with the default being 0. This means the sum of
an all-NA or empty Series is 0, and the product of an all-NA or empty Series is 1.

Returns

prod [DataFrame or Panel (if level specified)]

Examples

By default, the product of an empty or all-NA Series is 1

>>> pd.Series([]).prod()
1.0

This can be controlled with the min_count parameter

>>> pd.Series([]).prod(min_count=1)
nan

Thanks to the skipna parameter, min_count handles all-NA and empty series identically.

>>> pd.Series([np.nan]).prod()
1.0

>>> pd.Series([np.nan]).prod(min_count=1)
nan

pandas.Panel.radd

Panel.radd(other, axis=0)
Addition of series and other, element-wise (binary operator radd). Equivalent to other + panel.

Parameters

other [DataFrame or Panel]

axis : {items, major_axis, minor_axis}

Axis to broadcast over

Returns

Panel

See also:

Panel.add

34.5. Panel 2045

pandas: powerful Python data analysis toolkit, Release 0.23.4

pandas.Panel.rank

Panel.rank(axis=0, method=’average’, numeric_only=None, na_option=’keep’, ascending=True,
pct=False)

Compute numerical data ranks (1 through n) along axis. Equal values are assigned a rank that is the
average of the ranks of those values

Parameters axis : {0 or ‘index’, 1 or ‘columns’}, default 0

index to direct ranking

method : {‘average’, ‘min’, ‘max’, ‘first’, ‘dense’}

• average: average rank of group

• min: lowest rank in group

• max: highest rank in group

• first: ranks assigned in order they appear in the array

• dense: like ‘min’, but rank always increases by 1 between groups

numeric_only : boolean, default None

Include only float, int, boolean data. Valid only for DataFrame or Panel objects

na_option : {‘keep’, ‘top’, ‘bottom’}

• keep: leave NA values where they are

• top: smallest rank if ascending

• bottom: smallest rank if descending

ascending : boolean, default True

False for ranks by high (1) to low (N)

pct : boolean, default False

Computes percentage rank of data

Returns

ranks [same type as caller]

pandas.Panel.rdiv

Panel.rdiv(other, axis=0)
Floating division of series and other, element-wise (binary operator rtruediv). Equivalent to other /
panel.

Parameters

other [DataFrame or Panel]

axis : {items, major_axis, minor_axis}

Axis to broadcast over

Returns

Panel

2046 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

See also:

Panel.truediv

pandas.Panel.reindex

Panel.reindex(*args, **kwargs)
Conform Panel to new index with optional filling logic, placing NA/NaN in locations having no value in
the previous index. A new object is produced unless the new index is equivalent to the current one and
copy=False

Parameters items, major_axis, minor_axis : array-like, optional (should be specified using
keywords)

New labels / index to conform to. Preferably an Index object to avoid duplicating
data

method : {None, ‘backfill’/’bfill’, ‘pad’/’ffill’, ‘nearest’}, optional

method to use for filling holes in reindexed DataFrame. Please note: this is only
applicable to DataFrames/Series with a monotonically increasing/decreasing in-
dex.

• default: don’t fill gaps

• pad / ffill: propagate last valid observation forward to next valid

• backfill / bfill: use next valid observation to fill gap

• nearest: use nearest valid observations to fill gap

copy : boolean, default True

Return a new object, even if the passed indexes are the same

level : int or name

Broadcast across a level, matching Index values on the passed MultiIndex level

fill_value : scalar, default np.NaN

Value to use for missing values. Defaults to NaN, but can be any “compatible”
value

limit : int, default None

Maximum number of consecutive elements to forward or backward fill

tolerance : optional

Maximum distance between original and new labels for inexact matches.
The values of the index at the matching locations most satisfy the equation
abs(index[indexer] - target) <= tolerance.

Tolerance may be a scalar value, which applies the same tolerance to all values,
or list-like, which applies variable tolerance per element. List-like includes list,
tuple, array, Series, and must be the same size as the index and its dtype must
exactly match the index’s type.

New in version 0.21.0: (list-like tolerance)

Returns

reindexed [Panel]

34.5. Panel 2047

pandas: powerful Python data analysis toolkit, Release 0.23.4

Examples

DataFrame.reindex supports two calling conventions

• (index=index_labels, columns=column_labels, ...)

• (labels, axis={'index', 'columns'}, ...)

We highly recommend using keyword arguments to clarify your intent.

Create a dataframe with some fictional data.

>>> index = ['Firefox', 'Chrome', 'Safari', 'IE10', 'Konqueror']
>>> df = pd.DataFrame({
... 'http_status': [200,200,404,404,301],
... 'response_time': [0.04, 0.02, 0.07, 0.08, 1.0]},
... index=index)
>>> df

http_status response_time
Firefox 200 0.04
Chrome 200 0.02
Safari 404 0.07
IE10 404 0.08
Konqueror 301 1.00

Create a new index and reindex the dataframe. By default values in the new index that do not have
corresponding records in the dataframe are assigned NaN.

>>> new_index= ['Safari', 'Iceweasel', 'Comodo Dragon', 'IE10',
... 'Chrome']
>>> df.reindex(new_index)

http_status response_time
Safari 404.0 0.07
Iceweasel NaN NaN
Comodo Dragon NaN NaN
IE10 404.0 0.08
Chrome 200.0 0.02

We can fill in the missing values by passing a value to the keyword fill_value. Because the index is
not monotonically increasing or decreasing, we cannot use arguments to the keyword method to fill the
NaN values.

>>> df.reindex(new_index, fill_value=0)
http_status response_time

Safari 404 0.07
Iceweasel 0 0.00
Comodo Dragon 0 0.00
IE10 404 0.08
Chrome 200 0.02

>>> df.reindex(new_index, fill_value='missing')
http_status response_time

Safari 404 0.07
Iceweasel missing missing
Comodo Dragon missing missing
IE10 404 0.08
Chrome 200 0.02

We can also reindex the columns.

2048 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

>>> df.reindex(columns=['http_status', 'user_agent'])
http_status user_agent

Firefox 200 NaN
Chrome 200 NaN
Safari 404 NaN
IE10 404 NaN
Konqueror 301 NaN

Or we can use “axis-style” keyword arguments

>>> df.reindex(['http_status', 'user_agent'], axis="columns")
http_status user_agent

Firefox 200 NaN
Chrome 200 NaN
Safari 404 NaN
IE10 404 NaN
Konqueror 301 NaN

To further illustrate the filling functionality in reindex, we will create a dataframe with a monotonically
increasing index (for example, a sequence of dates).

>>> date_index = pd.date_range('1/1/2010', periods=6, freq='D')
>>> df2 = pd.DataFrame({"prices": [100, 101, np.nan, 100, 89, 88]},
... index=date_index)
>>> df2

prices
2010-01-01 100
2010-01-02 101
2010-01-03 NaN
2010-01-04 100
2010-01-05 89
2010-01-06 88

Suppose we decide to expand the dataframe to cover a wider date range.

>>> date_index2 = pd.date_range('12/29/2009', periods=10, freq='D')
>>> df2.reindex(date_index2)

prices
2009-12-29 NaN
2009-12-30 NaN
2009-12-31 NaN
2010-01-01 100
2010-01-02 101
2010-01-03 NaN
2010-01-04 100
2010-01-05 89
2010-01-06 88
2010-01-07 NaN

The index entries that did not have a value in the original data frame (for example, ‘2009-12-29’) are by
default filled with NaN. If desired, we can fill in the missing values using one of several options.

For example, to backpropagate the last valid value to fill the NaN values, pass bfill as an argument to
the method keyword.

>>> df2.reindex(date_index2, method='bfill')
prices

(continues on next page)

34.5. Panel 2049

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

2009-12-29 100
2009-12-30 100
2009-12-31 100
2010-01-01 100
2010-01-02 101
2010-01-03 NaN
2010-01-04 100
2010-01-05 89
2010-01-06 88
2010-01-07 NaN

Please note that the NaN value present in the original dataframe (at index value 2010-01-03) will not be
filled by any of the value propagation schemes. This is because filling while reindexing does not look at
dataframe values, but only compares the original and desired indexes. If you do want to fill in the NaN
values present in the original dataframe, use the fillna() method.

See the user guide for more.

pandas.Panel.reindex_axis

Panel.reindex_axis(labels, axis=0, method=None, level=None, copy=True, limit=None,
fill_value=nan)

Conform input object to new index with optional filling logic, placing NA/NaN in locations having no
value in the previous index. A new object is produced unless the new index is equivalent to the current
one and copy=False

Parameters labels : array-like

New labels / index to conform to. Preferably an Index object to avoid duplicating
data

axis [{0, 1, 2, ‘items’, ‘major_axis’, ‘minor_axis’}]

method : {None, ‘backfill’/’bfill’, ‘pad’/’ffill’, ‘nearest’}, optional

Method to use for filling holes in reindexed DataFrame:

• default: don’t fill gaps

• pad / ffill: propagate last valid observation forward to next valid

• backfill / bfill: use next valid observation to fill gap

• nearest: use nearest valid observations to fill gap

copy : boolean, default True

Return a new object, even if the passed indexes are the same

level : int or name

Broadcast across a level, matching Index values on the passed MultiIndex level

limit : int, default None

Maximum number of consecutive elements to forward or backward fill

tolerance : optional

2050 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

Maximum distance between original and new labels for inexact matches.
The values of the index at the matching locations most satisfy the equation
abs(index[indexer] - target) <= tolerance.

Tolerance may be a scalar value, which applies the same tolerance to all values,
or list-like, which applies variable tolerance per element. List-like includes list,
tuple, array, Series, and must be the same size as the index and its dtype must
exactly match the index’s type.

New in version 0.21.0: (list-like tolerance)

Returns

reindexed [Panel]

See also:

reindex, reindex_like

Examples

>>> df.reindex_axis(['A', 'B', 'C'], axis=1)

pandas.Panel.reindex_like

Panel.reindex_like(other, method=None, copy=True, limit=None, tolerance=None)
Return an object with matching indices to myself.

Parameters

other [Object]

method [string or None]

copy [boolean, default True]

limit : int, default None

Maximum number of consecutive labels to fill for inexact matches.

tolerance : optional

Maximum distance between labels of the other object and this object for inexact
matches. Can be list-like.

New in version 0.21.0: (list-like tolerance)

Returns

reindexed [same as input]

Notes

Like calling s.reindex(index=other.index, columns=other.columns, method=. . .)

34.5. Panel 2051

pandas: powerful Python data analysis toolkit, Release 0.23.4

pandas.Panel.rename

Panel.rename(items=None, major_axis=None, minor_axis=None, **kwargs)
Alter axes input function or functions. Function / dict values must be unique (1-to-1). Labels not contained
in a dict / Series will be left as-is. Extra labels listed don’t throw an error. Alternatively, change Series.
name with a scalar value (Series only).

Parameters items, major_axis, minor_axis : scalar, list-like, dict-like or function, optional

Scalar or list-like will alter the Series.name attribute, and raise on DataFrame
or Panel. dict-like or functions are transformations to apply to that axis’ values

copy : boolean, default True

Also copy underlying data

inplace : boolean, default False

Whether to return a new Panel. If True then value of copy is ignored.

level : int or level name, default None

In case of a MultiIndex, only rename labels in the specified level.

Returns

renamed [Panel (new object)]

See also:

pandas.NDFrame.rename_axis

Examples

>>> s = pd.Series([1, 2, 3])
>>> s
0 1
1 2
2 3
dtype: int64
>>> s.rename("my_name") # scalar, changes Series.name
0 1
1 2
2 3
Name: my_name, dtype: int64
>>> s.rename(lambda x: x ** 2) # function, changes labels
0 1
1 2
4 3
dtype: int64
>>> s.rename({1: 3, 2: 5}) # mapping, changes labels
0 1
3 2
5 3
dtype: int64

Since DataFrame doesn’t have a .name attribute, only mapping-type arguments are allowed.

2052 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

>>> df = pd.DataFrame({"A": [1, 2, 3], "B": [4, 5, 6]})
>>> df.rename(2)
Traceback (most recent call last):
...
TypeError: 'int' object is not callable

DataFrame.rename supports two calling conventions

• (index=index_mapper, columns=columns_mapper, ...)

• (mapper, axis={'index', 'columns'}, ...)

We highly recommend using keyword arguments to clarify your intent.

>>> df.rename(index=str, columns={"A": "a", "B": "c"})
a c

0 1 4
1 2 5
2 3 6

>>> df.rename(index=str, columns={"A": "a", "C": "c"})
a B

0 1 4
1 2 5
2 3 6

Using axis-style parameters

>>> df.rename(str.lower, axis='columns')
a b

0 1 4
1 2 5
2 3 6

>>> df.rename({1: 2, 2: 4}, axis='index')
A B

0 1 4
2 2 5
4 3 6

See the user guide for more.

pandas.Panel.rename_axis

Panel.rename_axis(mapper, axis=0, copy=True, inplace=False)
Alter the name of the index or columns.

Parameters mapper : scalar, list-like, optional

Value to set as the axis name attribute.

axis : {0 or ‘index’, 1 or ‘columns’}, default 0

The index or the name of the axis.

copy : boolean, default True

Also copy underlying data.

34.5. Panel 2053

pandas: powerful Python data analysis toolkit, Release 0.23.4

inplace : boolean, default False

Modifies the object directly, instead of creating a new Series or DataFrame.

Returns renamed : Series, DataFrame, or None

The same type as the caller or None if inplace is True.

See also:

pandas.Series.rename Alter Series index labels or name

pandas.DataFrame.rename Alter DataFrame index labels or name

pandas.Index.rename Set new names on index

Notes

Prior to version 0.21.0, rename_axis could also be used to change the axis labels by passing a mapping
or scalar. This behavior is deprecated and will be removed in a future version. Use rename instead.

Examples

Series

>>> s = pd.Series([1, 2, 3])
>>> s.rename_axis("foo")
foo
0 1
1 2
2 3
dtype: int64

DataFrame

>>> df = pd.DataFrame({"A": [1, 2, 3], "B": [4, 5, 6]})
>>> df.rename_axis("foo")

A B
foo
0 1 4
1 2 5
2 3 6

>>> df.rename_axis("bar", axis="columns")
bar A B
0 1 4
1 2 5
2 3 6

pandas.Panel.replace

Panel.replace(to_replace=None, value=None, inplace=False, limit=None, regex=False,
method=’pad’)

Replace values given in to_replace with value.

2054 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

Values of the NDFrame are replaced with other values dynamically. This differs from updating with .loc
or .iloc, which require you to specify a location to update with some value.

Parameters to_replace : str, regex, list, dict, Series, int, float, or None

How to find the values that will be replaced.

• numeric, str or regex:

– numeric: numeric values equal to to_replace will be replaced with value

– str: string exactly matching to_replace will be replaced with value

– regex: regexs matching to_replace will be replaced with value

• list of str, regex, or numeric:

– First, if to_replace and value are both lists, they must be the same length.

– Second, if regex=True then all of the strings in both lists will be in-
terpreted as regexs otherwise they will match directly. This doesn’t matter
much for value since there are only a few possible substitution regexes you
can use.

– str, regex and numeric rules apply as above.

• dict:

– Dicts can be used to specify different replacement values for different ex-
isting values. For example, {'a': 'b', 'y': 'z'} replaces the
value ‘a’ with ‘b’ and ‘y’ with ‘z’. To use a dict in this way the value param-
eter should be None.

– For a DataFrame a dict can specify that different values should be replaced
in different columns. For example, {'a': 1, 'b': 'z'} looks for
the value 1 in column ‘a’ and the value ‘z’ in column ‘b’ and replaces these
values with whatever is specified in value. The value parameter should not
be None in this case. You can treat this as a special case of passing two lists
except that you are specifying the column to search in.

– For a DataFrame nested dictionaries, e.g., {'a': {'b': np.nan}},
are read as follows: look in column ‘a’ for the value ‘b’ and replace it with
NaN. The value parameter should be None to use a nested dict in this way.
You can nest regular expressions as well. Note that column names (the top-
level dictionary keys in a nested dictionary) cannot be regular expressions.

• None:

– This means that the regex argument must be a string, compiled regular ex-
pression, or list, dict, ndarray or Series of such elements. If value is also
None then this must be a nested dictionary or Series.

See the examples section for examples of each of these.

value : scalar, dict, list, str, regex, default None

Value to replace any values matching to_replace with. For a DataFrame a dict of
values can be used to specify which value to use for each column (columns not in
the dict will not be filled). Regular expressions, strings and lists or dicts of such
objects are also allowed.

inplace : boolean, default False

34.5. Panel 2055

pandas: powerful Python data analysis toolkit, Release 0.23.4

If True, in place. Note: this will modify any other views on this object (e.g. a
column from a DataFrame). Returns the caller if this is True.

limit : int, default None

Maximum size gap to forward or backward fill.

regex : bool or same types as to_replace, default False

Whether to interpret to_replace and/or value as regular expressions. If this is
True then to_replace must be a string. Alternatively, this could be a regular
expression or a list, dict, or array of regular expressions in which case to_replace
must be None.

method : {‘pad’, ‘ffill’, ‘bfill’, None}

The method to use when for replacement, when to_replace is a scalar, list or tuple
and value is None.

Changed in version 0.23.0: Added to DataFrame.

Returns NDFrame

Object after replacement.

Raises AssertionError

• If regex is not a bool and to_replace is not None.

TypeError

• If to_replace is a dict and value is not a list, dict, ndarray, or Series

• If to_replace is None and regex is not compilable into a regular expression or is a list,
dict, ndarray, or Series.

• When replacing multiple bool or datetime64 objects and the arguments to
to_replace does not match the type of the value being replaced

ValueError

• If a list or an ndarray is passed to to_replace and value but they are not the same
length.

See also:

NDFrame.fillna Fill NA values

NDFrame.where Replace values based on boolean condition

Series.str.replace Simple string replacement.

Notes

• Regex substitution is performed under the hood with re.sub. The rules for substitution for re.
sub are the same.

• Regular expressions will only substitute on strings, meaning you cannot provide, for example, a
regular expression matching floating point numbers and expect the columns in your frame that have
a numeric dtype to be matched. However, if those floating point numbers are strings, then you can
do this.

• This method has a lot of options. You are encouraged to experiment and play with this method to
gain intuition about how it works.

2056 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

• When dict is used as the to_replace value, it is like key(s) in the dict are the to_replace part and
value(s) in the dict are the value parameter.

Examples

Scalar ‘to_replace‘ and ‘value‘

>>> s = pd.Series([0, 1, 2, 3, 4])
>>> s.replace(0, 5)
0 5
1 1
2 2
3 3
4 4
dtype: int64

>>> df = pd.DataFrame({'A': [0, 1, 2, 3, 4],
... 'B': [5, 6, 7, 8, 9],
... 'C': ['a', 'b', 'c', 'd', 'e']})
>>> df.replace(0, 5)

A B C
0 5 5 a
1 1 6 b
2 2 7 c
3 3 8 d
4 4 9 e

List-like ‘to_replace‘

>>> df.replace([0, 1, 2, 3], 4)
A B C

0 4 5 a
1 4 6 b
2 4 7 c
3 4 8 d
4 4 9 e

>>> df.replace([0, 1, 2, 3], [4, 3, 2, 1])
A B C

0 4 5 a
1 3 6 b
2 2 7 c
3 1 8 d
4 4 9 e

>>> s.replace([1, 2], method='bfill')
0 0
1 3
2 3
3 3
4 4
dtype: int64

dict-like ‘to_replace‘

34.5. Panel 2057

pandas: powerful Python data analysis toolkit, Release 0.23.4

>>> df.replace({0: 10, 1: 100})
A B C

0 10 5 a
1 100 6 b
2 2 7 c
3 3 8 d
4 4 9 e

>>> df.replace({'A': 0, 'B': 5}, 100)
A B C

0 100 100 a
1 1 6 b
2 2 7 c
3 3 8 d
4 4 9 e

>>> df.replace({'A': {0: 100, 4: 400}})
A B C

0 100 5 a
1 1 6 b
2 2 7 c
3 3 8 d
4 400 9 e

Regular expression ‘to_replace‘

>>> df = pd.DataFrame({'A': ['bat', 'foo', 'bait'],
... 'B': ['abc', 'bar', 'xyz']})
>>> df.replace(to_replace=r'^ba.$', value='new', regex=True)

A B
0 new abc
1 foo new
2 bait xyz

>>> df.replace({'A': r'^ba.$'}, {'A': 'new'}, regex=True)
A B

0 new abc
1 foo bar
2 bait xyz

>>> df.replace(regex=r'^ba.$', value='new')
A B

0 new abc
1 foo new
2 bait xyz

>>> df.replace(regex={r'^ba.$':'new', 'foo':'xyz'})
A B

0 new abc
1 xyz new
2 bait xyz

>>> df.replace(regex=[r'^ba.$', 'foo'], value='new')
A B

0 new abc

(continues on next page)

2058 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

1 new new
2 bait xyz

Note that when replacing multiple bool or datetime64 objects, the data types in the to_replace pa-
rameter must match the data type of the value being replaced:

>>> df = pd.DataFrame({'A': [True, False, True],
... 'B': [False, True, False]})
>>> df.replace({'a string': 'new value', True: False}) # raises
Traceback (most recent call last):

...
TypeError: Cannot compare types 'ndarray(dtype=bool)' and 'str'

This raises a TypeError because one of the dict keys is not of the correct type for replacement.

Compare the behavior of s.replace({'a': None}) and s.replace('a', None) to under-
stand the pecularities of the to_replace parameter:

>>> s = pd.Series([10, 'a', 'a', 'b', 'a'])

When one uses a dict as the to_replace value, it is like the value(s) in the dict are equal to the value
parameter. s.replace({'a': None}) is equivalent to s.replace(to_replace={'a':
None}, value=None, method=None):

>>> s.replace({'a': None})
0 10
1 None
2 None
3 b
4 None
dtype: object

When value=None and to_replace is a scalar, list or tuple, replace uses the method parameter (default
‘pad’) to do the replacement. So this is why the ‘a’ values are being replaced by 10 in rows 1 and 2
and ‘b’ in row 4 in this case. The command s.replace('a', None) is actually equivalent to s.
replace(to_replace='a', value=None, method='pad'):

>>> s.replace('a', None)
0 10
1 10
2 10
3 b
4 b
dtype: object

pandas.Panel.resample

Panel.resample(rule, how=None, axis=0, fill_method=None, closed=None, label=None, con-
vention=’start’, kind=None, loffset=None, limit=None, base=0, on=None,
level=None)

Convenience method for frequency conversion and resampling of time series. Object must have a
datetime-like index (DatetimeIndex, PeriodIndex, or TimedeltaIndex), or pass datetime-like values to
the on or level keyword.

Parameters rule : string

34.5. Panel 2059

pandas: powerful Python data analysis toolkit, Release 0.23.4

the offset string or object representing target conversion

axis [int, optional, default 0]

closed : {‘right’, ‘left’}

Which side of bin interval is closed. The default is ‘left’ for all frequency offsets
except for ‘M’, ‘A’, ‘Q’, ‘BM’, ‘BA’, ‘BQ’, and ‘W’ which all have a default of
‘right’.

label : {‘right’, ‘left’}

Which bin edge label to label bucket with. The default is ‘left’ for all frequency
offsets except for ‘M’, ‘A’, ‘Q’, ‘BM’, ‘BA’, ‘BQ’, and ‘W’ which all have a
default of ‘right’.

convention : {‘start’, ‘end’, ‘s’, ‘e’}

For PeriodIndex only, controls whether to use the start or end of rule

kind: {‘timestamp’, ‘period’}, optional

Pass ‘timestamp’ to convert the resulting index to a DateTimeIndex or ‘pe-
riod’ to convert it to a PeriodIndex. By default the input representation is
retained.

loffset : timedelta

Adjust the resampled time labels

base : int, default 0

For frequencies that evenly subdivide 1 day, the “origin” of the aggregated in-
tervals. For example, for ‘5min’ frequency, base could range from 0 through 4.
Defaults to 0

on : string, optional

For a DataFrame, column to use instead of index for resampling. Column must
be datetime-like.

New in version 0.19.0.

level : string or int, optional

For a MultiIndex, level (name or number) to use for resampling. Level must be
datetime-like.

New in version 0.19.0.

Returns

Resampler object

See also:

groupby Group by mapping, function, label, or list of labels.

Notes

See the user guide for more.

To learn more about the offset strings, please see this link.

2060 Chapter 34. API Reference

http://pandas.pydata.org/pandas-docs/stable/timeseries.html#resampling
http://pandas.pydata.org/pandas-docs/stable/timeseries.html#offset-aliases

pandas: powerful Python data analysis toolkit, Release 0.23.4

Examples

Start by creating a series with 9 one minute timestamps.

>>> index = pd.date_range('1/1/2000', periods=9, freq='T')
>>> series = pd.Series(range(9), index=index)
>>> series
2000-01-01 00:00:00 0
2000-01-01 00:01:00 1
2000-01-01 00:02:00 2
2000-01-01 00:03:00 3
2000-01-01 00:04:00 4
2000-01-01 00:05:00 5
2000-01-01 00:06:00 6
2000-01-01 00:07:00 7
2000-01-01 00:08:00 8
Freq: T, dtype: int64

Downsample the series into 3 minute bins and sum the values of the timestamps falling into a bin.

>>> series.resample('3T').sum()
2000-01-01 00:00:00 3
2000-01-01 00:03:00 12
2000-01-01 00:06:00 21
Freq: 3T, dtype: int64

Downsample the series into 3 minute bins as above, but label each bin using the right edge instead of the
left. Please note that the value in the bucket used as the label is not included in the bucket, which it labels.
For example, in the original series the bucket 2000-01-01 00:03:00 contains the value 3, but the
summed value in the resampled bucket with the label 2000-01-01 00:03:00 does not include 3 (if
it did, the summed value would be 6, not 3). To include this value close the right side of the bin interval
as illustrated in the example below this one.

>>> series.resample('3T', label='right').sum()
2000-01-01 00:03:00 3
2000-01-01 00:06:00 12
2000-01-01 00:09:00 21
Freq: 3T, dtype: int64

Downsample the series into 3 minute bins as above, but close the right side of the bin interval.

>>> series.resample('3T', label='right', closed='right').sum()
2000-01-01 00:00:00 0
2000-01-01 00:03:00 6
2000-01-01 00:06:00 15
2000-01-01 00:09:00 15
Freq: 3T, dtype: int64

Upsample the series into 30 second bins.

>>> series.resample('30S').asfreq()[0:5] #select first 5 rows
2000-01-01 00:00:00 0.0
2000-01-01 00:00:30 NaN
2000-01-01 00:01:00 1.0
2000-01-01 00:01:30 NaN
2000-01-01 00:02:00 2.0
Freq: 30S, dtype: float64

34.5. Panel 2061

pandas: powerful Python data analysis toolkit, Release 0.23.4

Upsample the series into 30 second bins and fill the NaN values using the pad method.

>>> series.resample('30S').pad()[0:5]
2000-01-01 00:00:00 0
2000-01-01 00:00:30 0
2000-01-01 00:01:00 1
2000-01-01 00:01:30 1
2000-01-01 00:02:00 2
Freq: 30S, dtype: int64

Upsample the series into 30 second bins and fill the NaN values using the bfill method.

>>> series.resample('30S').bfill()[0:5]
2000-01-01 00:00:00 0
2000-01-01 00:00:30 1
2000-01-01 00:01:00 1
2000-01-01 00:01:30 2
2000-01-01 00:02:00 2
Freq: 30S, dtype: int64

Pass a custom function via apply

>>> def custom_resampler(array_like):
... return np.sum(array_like)+5

>>> series.resample('3T').apply(custom_resampler)
2000-01-01 00:00:00 8
2000-01-01 00:03:00 17
2000-01-01 00:06:00 26
Freq: 3T, dtype: int64

For a Series with a PeriodIndex, the keyword convention can be used to control whether to use the start or
end of rule.

>>> s = pd.Series([1, 2], index=pd.period_range('2012-01-01',
freq='A',
periods=2))

>>> s
2012 1
2013 2
Freq: A-DEC, dtype: int64

Resample by month using ‘start’ convention. Values are assigned to the first month of the period.

>>> s.resample('M', convention='start').asfreq().head()
2012-01 1.0
2012-02 NaN
2012-03 NaN
2012-04 NaN
2012-05 NaN
Freq: M, dtype: float64

Resample by month using ‘end’ convention. Values are assigned to the last month of the period.

>>> s.resample('M', convention='end').asfreq()
2012-12 1.0
2013-01 NaN

(continues on next page)

2062 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

2013-02 NaN
2013-03 NaN
2013-04 NaN
2013-05 NaN
2013-06 NaN
2013-07 NaN
2013-08 NaN
2013-09 NaN
2013-10 NaN
2013-11 NaN
2013-12 2.0
Freq: M, dtype: float64

For DataFrame objects, the keyword on can be used to specify the column instead of the index for resam-
pling.

>>> df = pd.DataFrame(data=9*[range(4)], columns=['a', 'b', 'c', 'd'])
>>> df['time'] = pd.date_range('1/1/2000', periods=9, freq='T')
>>> df.resample('3T', on='time').sum()

a b c d
time
2000-01-01 00:00:00 0 3 6 9
2000-01-01 00:03:00 0 3 6 9
2000-01-01 00:06:00 0 3 6 9

For a DataFrame with MultiIndex, the keyword level can be used to specify on level the resampling
needs to take place.

>>> time = pd.date_range('1/1/2000', periods=5, freq='T')
>>> df2 = pd.DataFrame(data=10*[range(4)],

columns=['a', 'b', 'c', 'd'],
index=pd.MultiIndex.from_product([time, [1, 2]])
)

>>> df2.resample('3T', level=0).sum()
a b c d

2000-01-01 00:00:00 0 6 12 18
2000-01-01 00:03:00 0 4 8 12

pandas.Panel.rfloordiv

Panel.rfloordiv(other, axis=0)
Integer division of series and other, element-wise (binary operator rfloordiv). Equivalent to other //
panel.

Parameters

other [DataFrame or Panel]

axis : {items, major_axis, minor_axis}

Axis to broadcast over

Returns

Panel

See also:

34.5. Panel 2063

pandas: powerful Python data analysis toolkit, Release 0.23.4

Panel.floordiv

pandas.Panel.rmod

Panel.rmod(other, axis=0)
Modulo of series and other, element-wise (binary operator rmod). Equivalent to other % panel.

Parameters

other [DataFrame or Panel]

axis : {items, major_axis, minor_axis}

Axis to broadcast over

Returns

Panel

See also:

Panel.mod

pandas.Panel.rmul

Panel.rmul(other, axis=0)
Multiplication of series and other, element-wise (binary operator rmul). Equivalent to other * panel.

Parameters

other [DataFrame or Panel]

axis : {items, major_axis, minor_axis}

Axis to broadcast over

Returns

Panel

See also:

Panel.mul

pandas.Panel.round

Panel.round(decimals=0, *args, **kwargs)
Round each value in Panel to a specified number of decimal places.

New in version 0.18.0.

Parameters decimals : int

Number of decimal places to round to (default: 0). If decimals is negative, it
specifies the number of positions to the left of the decimal point.

Returns

Panel object

2064 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

See also:

numpy.around

pandas.Panel.rpow

Panel.rpow(other, axis=0)
Exponential power of series and other, element-wise (binary operator rpow). Equivalent to other **
panel.

Parameters

other [DataFrame or Panel]

axis : {items, major_axis, minor_axis}

Axis to broadcast over

Returns

Panel

See also:

Panel.pow

pandas.Panel.rsub

Panel.rsub(other, axis=0)
Subtraction of series and other, element-wise (binary operator rsub). Equivalent to other - panel.

Parameters

other [DataFrame or Panel]

axis : {items, major_axis, minor_axis}

Axis to broadcast over

Returns

Panel

See also:

Panel.sub

pandas.Panel.rtruediv

Panel.rtruediv(other, axis=0)
Floating division of series and other, element-wise (binary operator rtruediv). Equivalent to other /
panel.

Parameters

other [DataFrame or Panel]

axis : {items, major_axis, minor_axis}

Axis to broadcast over

Returns

34.5. Panel 2065

https://docs.scipy.org/doc/numpy/reference/generated/numpy.around.html#numpy.around

pandas: powerful Python data analysis toolkit, Release 0.23.4

Panel

See also:

Panel.truediv

pandas.Panel.sample

Panel.sample(n=None, frac=None, replace=False, weights=None, random_state=None,
axis=None)

Return a random sample of items from an axis of object.

You can use random_state for reproducibility.

Parameters n : int, optional

Number of items from axis to return. Cannot be used with frac. Default = 1 if
frac = None.

frac : float, optional

Fraction of axis items to return. Cannot be used with n.

replace : boolean, optional

Sample with or without replacement. Default = False.

weights : str or ndarray-like, optional

Default ‘None’ results in equal probability weighting. If passed a Series, will
align with target object on index. Index values in weights not found in sampled
object will be ignored and index values in sampled object not in weights will be
assigned weights of zero. If called on a DataFrame, will accept the name of a
column when axis = 0. Unless weights are a Series, weights must be same length
as axis being sampled. If weights do not sum to 1, they will be normalized to sum
to 1. Missing values in the weights column will be treated as zero. inf and -inf
values not allowed.

random_state : int or numpy.random.RandomState, optional

Seed for the random number generator (if int), or numpy RandomState object.

axis : int or string, optional

Axis to sample. Accepts axis number or name. Default is stat axis for given data
type (0 for Series and DataFrames, 1 for Panels).

Returns

A new object of same type as caller.

Examples

Generate an example Series and DataFrame:

>>> s = pd.Series(np.random.randn(50))
>>> s.head()
0 -0.038497
1 1.820773
2 -0.972766
3 -1.598270

(continues on next page)

2066 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

4 -1.095526
dtype: float64
>>> df = pd.DataFrame(np.random.randn(50, 4), columns=list('ABCD'))
>>> df.head()

A B C D
0 0.016443 -2.318952 -0.566372 -1.028078
1 -1.051921 0.438836 0.658280 -0.175797
2 -1.243569 -0.364626 -0.215065 0.057736
3 1.768216 0.404512 -0.385604 -1.457834
4 1.072446 -1.137172 0.314194 -0.046661

Next extract a random sample from both of these objects. . .

3 random elements from the Series:

>>> s.sample(n=3)
27 -0.994689
55 -1.049016
67 -0.224565
dtype: float64

And a random 10% of the DataFrame with replacement:

>>> df.sample(frac=0.1, replace=True)
A B C D

35 1.981780 0.142106 1.817165 -0.290805
49 -1.336199 -0.448634 -0.789640 0.217116
40 0.823173 -0.078816 1.009536 1.015108
15 1.421154 -0.055301 -1.922594 -0.019696
6 -0.148339 0.832938 1.787600 -1.383767

You can use random state for reproducibility:

>>> df.sample(random_state=1)
A B C D
37 -2.027662 0.103611 0.237496 -0.165867
43 -0.259323 -0.583426 1.516140 -0.479118
12 -1.686325 -0.579510 0.985195 -0.460286
8 1.167946 0.429082 1.215742 -1.636041
9 1.197475 -0.864188 1.554031 -1.505264

pandas.Panel.select

Panel.select(crit, axis=0)
Return data corresponding to axis labels matching criteria

Deprecated since version 0.21.0: Use df.loc[df.index.map(crit)] to select via labels

Parameters crit : function

To be called on each index (label). Should return True or False

axis [int]

Returns

selection [type of caller]

34.5. Panel 2067

pandas: powerful Python data analysis toolkit, Release 0.23.4

pandas.Panel.sem

Panel.sem(axis=None, skipna=None, level=None, ddof=1, numeric_only=None, **kwargs)
Return unbiased standard error of the mean over requested axis.

Normalized by N-1 by default. This can be changed using the ddof argument

Parameters

axis [{items (0), major_axis (1), minor_axis (2)}]

skipna : boolean, default True

Exclude NA/null values. If an entire row/column is NA, the result will be NA

level : int or level name, default None

If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing
into a DataFrame

ddof : int, default 1

Delta Degrees of Freedom. The divisor used in calculations is N - ddof, where N
represents the number of elements.

numeric_only : boolean, default None

Include only float, int, boolean columns. If None, will attempt to use everything,
then use only numeric data. Not implemented for Series.

Returns

sem [DataFrame or Panel (if level specified)]

pandas.Panel.set_axis

Panel.set_axis(labels, axis=0, inplace=None)
Assign desired index to given axis.

Indexes for column or row labels can be changed by assigning a list-like or Index.

Changed in version 0.21.0: The signature is now labels and axis, consistent with the rest of pandas API.
Previously, the axis and labels arguments were respectively the first and second positional arguments.

Parameters labels : list-like, Index

The values for the new index.

axis : {0 or ‘index’, 1 or ‘columns’}, default 0

The axis to update. The value 0 identifies the rows, and 1 identifies the columns.

inplace : boolean, default None

Whether to return a new %(klass)s instance.

Warning: inplace=None currently falls back to to True, but in a future
version, will default to False. Use inplace=True explicitly rather than relying
on the default.

Returns renamed : %(klass)s or None

2068 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

An object of same type as caller if inplace=False, None otherwise.

See also:

pandas.DataFrame.rename_axis Alter the name of the index or columns.

Examples

Series

>>> s = pd.Series([1, 2, 3])
>>> s
0 1
1 2
2 3
dtype: int64

>>> s.set_axis(['a', 'b', 'c'], axis=0, inplace=False)
a 1
b 2
c 3
dtype: int64

The original object is not modified.

>>> s
0 1
1 2
2 3
dtype: int64

DataFrame

>>> df = pd.DataFrame({"A": [1, 2, 3], "B": [4, 5, 6]})

Change the row labels.

>>> df.set_axis(['a', 'b', 'c'], axis='index', inplace=False)
A B

a 1 4
b 2 5
c 3 6

Change the column labels.

>>> df.set_axis(['I', 'II'], axis='columns', inplace=False)
I II

0 1 4
1 2 5
2 3 6

Now, update the labels inplace.

>>> df.set_axis(['i', 'ii'], axis='columns', inplace=True)
>>> df

i ii

(continues on next page)

34.5. Panel 2069

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

0 1 4
1 2 5
2 3 6

pandas.Panel.set_value

Panel.set_value(*args, **kwargs)
Quickly set single value at (item, major, minor) location

Deprecated since version 0.21.0.

Please use .at[] or .iat[] accessors.

Parameters

item [item label (panel item)]

major [major axis label (panel item row)]

minor [minor axis label (panel item column)]

value [scalar]

takeable [interpret the passed labels as indexers, default False]

Returns panel : Panel

If label combo is contained, will be reference to calling Panel, otherwise a new
object

pandas.Panel.shift

Panel.shift(periods=1, freq=None, axis=’major’)
Shift index by desired number of periods with an optional time freq. The shifted data will not include the
dropped periods and the shifted axis will be smaller than the original. This is different from the behavior
of DataFrame.shift()

Parameters periods : int

Number of periods to move, can be positive or negative

freq [DateOffset, timedelta, or time rule string, optional]

axis [{‘items’, ‘major’, ‘minor’} or {0, 1, 2}]

Returns

shifted [Panel]

pandas.Panel.skew

Panel.skew(axis=None, skipna=None, level=None, numeric_only=None, **kwargs)
Return unbiased skew over requested axis Normalized by N-1

Parameters

axis [{items (0), major_axis (1), minor_axis (2)}]

2070 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

skipna : boolean, default True

Exclude NA/null values when computing the result.

level : int or level name, default None

If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing
into a DataFrame

numeric_only : boolean, default None

Include only float, int, boolean columns. If None, will attempt to use everything,
then use only numeric data. Not implemented for Series.

Returns

skew [DataFrame or Panel (if level specified)]

pandas.Panel.slice_shift

Panel.slice_shift(periods=1, axis=0)
Equivalent to shift without copying data. The shifted data will not include the dropped periods and the
shifted axis will be smaller than the original.

Parameters periods : int

Number of periods to move, can be positive or negative

Returns

shifted [same type as caller]

Notes

While the slice_shift is faster than shift, you may pay for it later during alignment.

pandas.Panel.sort_index

Panel.sort_index(axis=0, level=None, ascending=True, inplace=False, kind=’quicksort’,
na_position=’last’, sort_remaining=True)

Sort object by labels (along an axis)

Parameters

axis [axes to direct sorting]

level : int or level name or list of ints or list of level names

if not None, sort on values in specified index level(s)

ascending : boolean, default True

Sort ascending vs. descending

inplace : bool, default False

if True, perform operation in-place

kind : {‘quicksort’, ‘mergesort’, ‘heapsort’}, default ‘quicksort’

34.5. Panel 2071

pandas: powerful Python data analysis toolkit, Release 0.23.4

Choice of sorting algorithm. See also ndarray.np.sort for more information.
mergesort is the only stable algorithm. For DataFrames, this option is only ap-
plied when sorting on a single column or label.

na_position : {‘first’, ‘last’}, default ‘last’

first puts NaNs at the beginning, last puts NaNs at the end. Not implemented for
MultiIndex.

sort_remaining : bool, default True

if true and sorting by level and index is multilevel, sort by other levels too (in
order) after sorting by specified level

Returns

sorted_obj [NDFrame]

pandas.Panel.sort_values

Panel.sort_values(by=None, axis=0, ascending=True, inplace=False, kind=’quicksort’,
na_position=’last’)

NOT IMPLEMENTED: do not call this method, as sorting values is not supported for Panel objects and
will raise an error.

pandas.Panel.squeeze

Panel.squeeze(axis=None)
Squeeze length 1 dimensions.

Parameters axis : None, integer or string axis name, optional

The axis to squeeze if 1-sized.

New in version 0.20.0.

Returns

scalar if 1-sized, else original object

pandas.Panel.std

Panel.std(axis=None, skipna=None, level=None, ddof=1, numeric_only=None, **kwargs)
Return sample standard deviation over requested axis.

Normalized by N-1 by default. This can be changed using the ddof argument

Parameters

axis [{items (0), major_axis (1), minor_axis (2)}]

skipna : boolean, default True

Exclude NA/null values. If an entire row/column is NA, the result will be NA

level : int or level name, default None

If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing
into a DataFrame

ddof : int, default 1

2072 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

Delta Degrees of Freedom. The divisor used in calculations is N - ddof, where N
represents the number of elements.

numeric_only : boolean, default None

Include only float, int, boolean columns. If None, will attempt to use everything,
then use only numeric data. Not implemented for Series.

Returns

std [DataFrame or Panel (if level specified)]

pandas.Panel.sub

Panel.sub(other, axis=0)
Subtraction of series and other, element-wise (binary operator sub). Equivalent to panel - other.

Parameters

other [DataFrame or Panel]

axis : {items, major_axis, minor_axis}

Axis to broadcast over

Returns

Panel

See also:

Panel.rsub

pandas.Panel.subtract

Panel.subtract(other, axis=0)
Subtraction of series and other, element-wise (binary operator sub). Equivalent to panel - other.

Parameters

other [DataFrame or Panel]

axis : {items, major_axis, minor_axis}

Axis to broadcast over

Returns

Panel

See also:

Panel.rsub

pandas.Panel.sum

Panel.sum(axis=None, skipna=None, level=None, numeric_only=None, min_count=0, **kwargs)
Return the sum of the values for the requested axis

Parameters

axis [{items (0), major_axis (1), minor_axis (2)}]

34.5. Panel 2073

pandas: powerful Python data analysis toolkit, Release 0.23.4

skipna : boolean, default True

Exclude NA/null values when computing the result.

level : int or level name, default None

If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing
into a DataFrame

numeric_only : boolean, default None

Include only float, int, boolean columns. If None, will attempt to use everything,
then use only numeric data. Not implemented for Series.

min_count : int, default 0

The required number of valid values to perform the operation. If fewer than
min_count non-NA values are present the result will be NA.

New in version 0.22.0: Added with the default being 0. This means the sum of
an all-NA or empty Series is 0, and the product of an all-NA or empty Series is 1.

Returns

sum [DataFrame or Panel (if level specified)]

Examples

By default, the sum of an empty or all-NA Series is 0.

>>> pd.Series([]).sum() # min_count=0 is the default
0.0

This can be controlled with the min_count parameter. For example, if you’d like the sum of an empty
series to be NaN, pass min_count=1.

>>> pd.Series([]).sum(min_count=1)
nan

Thanks to the skipna parameter, min_count handles all-NA and empty series identically.

>>> pd.Series([np.nan]).sum()
0.0

>>> pd.Series([np.nan]).sum(min_count=1)
nan

pandas.Panel.swapaxes

Panel.swapaxes(axis1, axis2, copy=True)
Interchange axes and swap values axes appropriately

Returns

y [same as input]

2074 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

pandas.Panel.swaplevel

Panel.swaplevel(i=-2, j=-1, axis=0)
Swap levels i and j in a MultiIndex on a particular axis

Parameters i, j : int, string (can be mixed)

Level of index to be swapped. Can pass level name as string.

Returns

swapped [type of caller (new object)]

.. versionchanged:: 0.18.1

The indexes i and j are now optional, and default to the two innermost levels of
the index.

pandas.Panel.tail

Panel.tail(n=5)
Return the last n rows.

This function returns last n rows from the object based on position. It is useful for quickly verifying data,
for example, after sorting or appending rows.

Parameters n : int, default 5

Number of rows to select.

Returns type of caller

The last n rows of the caller object.

See also:

pandas.DataFrame.head The first n rows of the caller object.

Examples

>>> df = pd.DataFrame({'animal':['alligator', 'bee', 'falcon', 'lion',
... 'monkey', 'parrot', 'shark', 'whale', 'zebra']})
>>> df

animal
0 alligator
1 bee
2 falcon
3 lion
4 monkey
5 parrot
6 shark
7 whale
8 zebra

Viewing the last 5 lines

34.5. Panel 2075

pandas: powerful Python data analysis toolkit, Release 0.23.4

>>> df.tail()
animal

4 monkey
5 parrot
6 shark
7 whale
8 zebra

Viewing the last n lines (three in this case)

>>> df.tail(3)
animal

6 shark
7 whale
8 zebra

pandas.Panel.take

Panel.take(indices, axis=0, convert=None, is_copy=True, **kwargs)
Return the elements in the given positional indices along an axis.

This means that we are not indexing according to actual values in the index attribute of the object. We are
indexing according to the actual position of the element in the object.

Parameters indices : array-like

An array of ints indicating which positions to take.

axis : {0 or ‘index’, 1 or ‘columns’, None}, default 0

The axis on which to select elements. 0 means that we are selecting rows, 1
means that we are selecting columns.

convert : bool, default True

Whether to convert negative indices into positive ones. For example, -1 would
map to the len(axis) - 1. The conversions are similar to the behavior of
indexing a regular Python list.

Deprecated since version 0.21.0: In the future, negative indices will always be
converted.

is_copy : bool, default True

Whether to return a copy of the original object or not.

**kwargs

For compatibility with numpy.take(). Has no effect on the output.

Returns taken : type of caller

An array-like containing the elements taken from the object.

See also:

DataFrame.loc Select a subset of a DataFrame by labels.

DataFrame.iloc Select a subset of a DataFrame by positions.

numpy.take Take elements from an array along an axis.

2076 Chapter 34. API Reference

https://docs.scipy.org/doc/numpy/reference/generated/numpy.take.html#numpy.take

pandas: powerful Python data analysis toolkit, Release 0.23.4

Examples

>>> df = pd.DataFrame([('falcon', 'bird', 389.0),
... ('parrot', 'bird', 24.0),
... ('lion', 'mammal', 80.5),
... ('monkey', 'mammal', np.nan)],
... columns=['name', 'class', 'max_speed'],
... index=[0, 2, 3, 1])
>>> df

name class max_speed
0 falcon bird 389.0
2 parrot bird 24.0
3 lion mammal 80.5
1 monkey mammal NaN

Take elements at positions 0 and 3 along the axis 0 (default).

Note how the actual indices selected (0 and 1) do not correspond to our selected indices 0 and 3. That’s
because we are selecting the 0th and 3rd rows, not rows whose indices equal 0 and 3.

>>> df.take([0, 3])
name class max_speed

0 falcon bird 389.0
1 monkey mammal NaN

Take elements at indices 1 and 2 along the axis 1 (column selection).

>>> df.take([1, 2], axis=1)
class max_speed

0 bird 389.0
2 bird 24.0
3 mammal 80.5
1 mammal NaN

We may take elements using negative integers for positive indices, starting from the end of the object, just
like with Python lists.

>>> df.take([-1, -2])
name class max_speed

1 monkey mammal NaN
3 lion mammal 80.5

pandas.Panel.to_clipboard

Panel.to_clipboard(excel=True, sep=None, **kwargs)
Copy object to the system clipboard.

Write a text representation of object to the system clipboard. This can be pasted into Excel, for example.

Parameters excel : bool, default True

• True, use the provided separator, writing in a csv format for allowing easy pasting
into excel.

• False, write a string representation of the object to the clipboard.

sep : str, default '\t'

34.5. Panel 2077

pandas: powerful Python data analysis toolkit, Release 0.23.4

Field delimiter.

**kwargs

These parameters will be passed to DataFrame.to_csv.

See also:

DataFrame.to_csv Write a DataFrame to a comma-separated values (csv) file.

read_clipboard Read text from clipboard and pass to read_table.

Notes

Requirements for your platform.

• Linux : xclip, or xsel (with gtk or PyQt4 modules)

• Windows : none

• OS X : none

Examples

Copy the contents of a DataFrame to the clipboard.

>>> df = pd.DataFrame([[1, 2, 3], [4, 5, 6]], columns=['A', 'B', 'C'])
>>> df.to_clipboard(sep=',')
... # Wrote the following to the system clipboard:
... # ,A,B,C
... # 0,1,2,3
... # 1,4,5,6

We can omit the the index by passing the keyword index and setting it to false.

>>> df.to_clipboard(sep=',', index=False)
... # Wrote the following to the system clipboard:
... # A,B,C
... # 1,2,3
... # 4,5,6

pandas.Panel.to_dense

Panel.to_dense()
Return dense representation of NDFrame (as opposed to sparse)

pandas.Panel.to_excel

Panel.to_excel(path, na_rep=”, engine=None, **kwargs)
Write each DataFrame in Panel to a separate excel sheet

Parameters path : string or ExcelWriter object

File path or existing ExcelWriter

na_rep : string, default ‘’

2078 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

Missing data representation

engine : string, default None

write engine to use - you can also set this via the options io.excel.xlsx.
writer, io.excel.xls.writer, and io.excel.xlsm.writer.

Other Parameters float_format : string, default None

Format string for floating point numbers

cols : sequence, optional

Columns to write

header : boolean or list of string, default True

Write out column names. If a list of string is given it is assumed to be aliases for
the column names

index : boolean, default True

Write row names (index)

index_label : string or sequence, default None

Column label for index column(s) if desired. If None is given, and header and
index are True, then the index names are used. A sequence should be given if the
DataFrame uses MultiIndex.

startrow [upper left cell row to dump data frame]

startcol [upper left cell column to dump data frame]

Notes

Keyword arguments (and na_rep) are passed to the to_excel method for each DataFrame written.

pandas.Panel.to_frame

Panel.to_frame(filter_observations=True)
Transform wide format into long (stacked) format as DataFrame whose columns are the Panel’s items and
whose index is a MultiIndex formed of the Panel’s major and minor axes.

Parameters filter_observations : boolean, default True

Drop (major, minor) pairs without a complete set of observations across all the
items

Returns

y [DataFrame]

pandas.Panel.to_hdf

Panel.to_hdf(path_or_buf, key, **kwargs)
Write the contained data to an HDF5 file using HDFStore.

34.5. Panel 2079

pandas: powerful Python data analysis toolkit, Release 0.23.4

Hierarchical Data Format (HDF) is self-describing, allowing an application to interpret the structure and
contents of a file with no outside information. One HDF file can hold a mix of related objects which can
be accessed as a group or as individual objects.

In order to add another DataFrame or Series to an existing HDF file please use append mode and a different
a key.

For more information see the user guide.

Parameters path_or_buf : str or pandas.HDFStore

File path or HDFStore object.

key : str

Identifier for the group in the store.

mode : {‘a’, ‘w’, ‘r+’}, default ‘a’

Mode to open file:

• ‘w’: write, a new file is created (an existing file with the same name would be
deleted).

• ‘a’: append, an existing file is opened for reading and writing, and if the file
does not exist it is created.

• ‘r+’: similar to ‘a’, but the file must already exist.

format : {‘fixed’, ‘table’}, default ‘fixed’

Possible values:

• ‘fixed’: Fixed format. Fast writing/reading. Not-appendable, nor searchable.

• ‘table’: Table format. Write as a PyTables Table structure which may perform
worse but allow more flexible operations like searching / selecting subsets of
the data.

append : bool, default False

For Table formats, append the input data to the existing.

data_columns : list of columns or True, optional

List of columns to create as indexed data columns for on-disk queries, or True to
use all columns. By default only the axes of the object are indexed. See Query
via Data Columns. Applicable only to format=’table’.

complevel : {0-9}, optional

Specifies a compression level for data. A value of 0 disables compression.

complib : {‘zlib’, ‘lzo’, ‘bzip2’, ‘blosc’}, default ‘zlib’

Specifies the compression library to be used. As of v0.20.2 these addi-
tional compressors for Blosc are supported (default if no compressor speci-
fied: ‘blosc:blosclz’): {‘blosc:blosclz’, ‘blosc:lz4’, ‘blosc:lz4hc’, ‘blosc:snappy’,
‘blosc:zlib’, ‘blosc:zstd’}. Specifying a compression library which is not avail-
able issues a ValueError.

fletcher32 : bool, default False

If applying compression use the fletcher32 checksum.

dropna : bool, default False

2080 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

If true, ALL nan rows will not be written to store.

errors : str, default ‘strict’

Specifies how encoding and decoding errors are to be handled. See the errors
argument for open() for a full list of options.

See also:

DataFrame.read_hdf Read from HDF file.

DataFrame.to_parquet Write a DataFrame to the binary parquet format.

DataFrame.to_sql Write to a sql table.

DataFrame.to_feather Write out feather-format for DataFrames.

DataFrame.to_csv Write out to a csv file.

Examples

>>> df = pd.DataFrame({'A': [1, 2, 3], 'B': [4, 5, 6]},
... index=['a', 'b', 'c'])
>>> df.to_hdf('data.h5', key='df', mode='w')

We can add another object to the same file:

>>> s = pd.Series([1, 2, 3, 4])
>>> s.to_hdf('data.h5', key='s')

Reading from HDF file:

>>> pd.read_hdf('data.h5', 'df')
A B
a 1 4
b 2 5
c 3 6
>>> pd.read_hdf('data.h5', 's')
0 1
1 2
2 3
3 4
dtype: int64

Deleting file with data:

>>> import os
>>> os.remove('data.h5')

pandas.Panel.to_json

Panel.to_json(path_or_buf=None, orient=None, date_format=None, double_precision=10,
force_ascii=True, date_unit=’ms’, default_handler=None, lines=False, compres-
sion=None, index=True)

Convert the object to a JSON string.

Note NaN’s and None will be converted to null and datetime objects will be converted to UNIX times-
tamps.

34.5. Panel 2081

https://docs.python.org/3/library/functions.html#open

pandas: powerful Python data analysis toolkit, Release 0.23.4

Parameters path_or_buf : string or file handle, optional

File path or object. If not specified, the result is returned as a string.

orient : string

Indication of expected JSON string format.

• Series

– default is ‘index’

– allowed values are: {‘split’,’records’,’index’}

• DataFrame

– default is ‘columns’

– allowed values are: {‘split’,’records’,’index’,’columns’,’values’}

• The format of the JSON string

– ‘split’ : dict like {‘index’ -> [index], ‘columns’ -> [columns], ‘data’ -> [val-
ues]}

– ‘records’ : list like [{column -> value}, . . . , {column -> value}]

– ‘index’ : dict like {index -> {column -> value}}

– ‘columns’ : dict like {column -> {index -> value}}

– ‘values’ : just the values array

– ‘table’ : dict like {‘schema’: {schema}, ‘data’: {data}} describing the data,
and the data component is like orient='records'.

Changed in version 0.20.0.

date_format : {None, ‘epoch’, ‘iso’}

Type of date conversion. ‘epoch’ = epoch milliseconds, ‘iso’ = ISO8601. The
default depends on the orient. For orient='table', the default is ‘iso’. For
all other orients, the default is ‘epoch’.

double_precision : int, default 10

The number of decimal places to use when encoding floating point values.

force_ascii : boolean, default True

Force encoded string to be ASCII.

date_unit : string, default ‘ms’ (milliseconds)

The time unit to encode to, governs timestamp and ISO8601 precision. One of
‘s’, ‘ms’, ‘us’, ‘ns’ for second, millisecond, microsecond, and nanosecond re-
spectively.

default_handler : callable, default None

Handler to call if object cannot otherwise be converted to a suitable format for
JSON. Should receive a single argument which is the object to convert and return
a serialisable object.

lines : boolean, default False

2082 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

If ‘orient’ is ‘records’ write out line delimited json format. Will throw ValueError
if incorrect ‘orient’ since others are not list like.

New in version 0.19.0.

compression : {None, ‘gzip’, ‘bz2’, ‘zip’, ‘xz’}

A string representing the compression to use in the output file, only used when
the first argument is a filename.

New in version 0.21.0.

index : boolean, default True

Whether to include the index values in the JSON string. Not including the index
(index=False) is only supported when orient is ‘split’ or ‘table’.

New in version 0.23.0.

See also:

pandas.read_json

Examples

>>> df = pd.DataFrame([['a', 'b'], ['c', 'd']],
... index=['row 1', 'row 2'],
... columns=['col 1', 'col 2'])
>>> df.to_json(orient='split')
'{"columns":["col 1","col 2"],
"index":["row 1","row 2"],
"data":[["a","b"],["c","d"]]}'

Encoding/decoding a Dataframe using 'records' formatted JSON. Note that index labels are not pre-
served with this encoding.

>>> df.to_json(orient='records')
'[{"col 1":"a","col 2":"b"},{"col 1":"c","col 2":"d"}]'

Encoding/decoding a Dataframe using 'index' formatted JSON:

>>> df.to_json(orient='index')
'{"row 1":{"col 1":"a","col 2":"b"},"row 2":{"col 1":"c","col 2":"d"}}'

Encoding/decoding a Dataframe using 'columns' formatted JSON:

>>> df.to_json(orient='columns')
'{"col 1":{"row 1":"a","row 2":"c"},"col 2":{"row 1":"b","row 2":"d"}}'

Encoding/decoding a Dataframe using 'values' formatted JSON:

>>> df.to_json(orient='values')
'[["a","b"],["c","d"]]'

Encoding with Table Schema

>>> df.to_json(orient='table')
'{"schema": {"fields": [{"name": "index", "type": "string"},

{"name": "col 1", "type": "string"},

(continues on next page)

34.5. Panel 2083

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

{"name": "col 2", "type": "string"}],
"primaryKey": "index",
"pandas_version": "0.20.0"},

"data": [{"index": "row 1", "col 1": "a", "col 2": "b"},
{"index": "row 2", "col 1": "c", "col 2": "d"}]}'

pandas.Panel.to_latex

Panel.to_latex(buf=None, columns=None, col_space=None, header=True, index=True,
na_rep=’NaN’, formatters=None, float_format=None, sparsify=None, in-
dex_names=True, bold_rows=False, column_format=None, longtable=None,
escape=None, encoding=None, decimal=’.’, multicolumn=None, multicol-
umn_format=None, multirow=None)

Render an object to a tabular environment table. You can splice this into a LaTeX document. Requires
\usepackage{booktabs}.

Changed in version 0.20.2: Added to Series

to_latex-specific options:

bold_rows [boolean, default False] Make the row labels bold in the output

column_format [str, default None] The columns format as specified in LaTeX table format e.g ‘rcl’ for
3 columns

longtable [boolean, default will be read from the pandas config module] Default: False. Use a longtable
environment instead of tabular. Requires adding a \usepackage{longtable} to your LaTeX preamble.

escape [boolean, default will be read from the pandas config module] Default: True. When set to False
prevents from escaping latex special characters in column names.

encoding [str, default None] A string representing the encoding to use in the output file, defaults to ‘ascii’
on Python 2 and ‘utf-8’ on Python 3.

decimal [string, default ‘.’] Character recognized as decimal separator, e.g. ‘,’ in Europe.

New in version 0.18.0.

multicolumn [boolean, default True] Use multicolumn to enhance MultiIndex columns. The default will
be read from the config module.

New in version 0.20.0.

multicolumn_format [str, default ‘l’] The alignment for multicolumns, similar to column_format The
default will be read from the config module.

New in version 0.20.0.

multirow [boolean, default False] Use multirow to enhance MultiIndex rows. Requires adding a \usepa-
ckage{multirow} to your LaTeX preamble. Will print centered labels (instead of top-aligned) across
the contained rows, separating groups via clines. The default will be read from the pandas config
module.

New in version 0.20.0.

2084 Chapter 34. API Reference

https://en.wikibooks.org/wiki/LaTeX/Tables

pandas: powerful Python data analysis toolkit, Release 0.23.4

pandas.Panel.to_msgpack

Panel.to_msgpack(path_or_buf=None, encoding=’utf-8’, **kwargs)
msgpack (serialize) object to input file path

THIS IS AN EXPERIMENTAL LIBRARY and the storage format may not be stable until a future release.

Parameters path : string File path, buffer-like, or None

if None, return generated string

append : boolean whether to append to an existing msgpack

(default is False)

compress : type of compressor (zlib or blosc), default to None (no

compression)

pandas.Panel.to_pickle

Panel.to_pickle(path, compression=’infer’, protocol=4)
Pickle (serialize) object to file.

Parameters path : str

File path where the pickled object will be stored.

compression : {‘infer’, ‘gzip’, ‘bz2’, ‘zip’, ‘xz’, None}, default ‘infer’

A string representing the compression to use in the output file. By default, infers
from the file extension in specified path.

New in version 0.20.0.

protocol : int

Int which indicates which protocol should be used by the pickler, default HIGH-
EST_PROTOCOL (see [R21] paragraph 12.1.2). The possible values for this
parameter depend on the version of Python. For Python 2.x, possible values are
0, 1, 2. For Python>=3.0, 3 is a valid value. For Python >= 3.4, 4 is a valid value.
A negative value for the protocol parameter is equivalent to setting its value to
HIGHEST_PROTOCOL.

New in version 0.21.0.

See also:

read_pickle Load pickled pandas object (or any object) from file.

DataFrame.to_hdf Write DataFrame to an HDF5 file.

DataFrame.to_sql Write DataFrame to a SQL database.

DataFrame.to_parquet Write a DataFrame to the binary parquet format.

Examples

34.5. Panel 2085

pandas: powerful Python data analysis toolkit, Release 0.23.4

>>> original_df = pd.DataFrame({"foo": range(5), "bar": range(5, 10)})
>>> original_df

foo bar
0 0 5
1 1 6
2 2 7
3 3 8
4 4 9
>>> original_df.to_pickle("./dummy.pkl")

>>> unpickled_df = pd.read_pickle("./dummy.pkl")
>>> unpickled_df

foo bar
0 0 5
1 1 6
2 2 7
3 3 8
4 4 9

>>> import os
>>> os.remove("./dummy.pkl")

pandas.Panel.to_sparse

Panel.to_sparse(*args, **kwargs)
NOT IMPLEMENTED: do not call this method, as sparsifying is not supported for Panel objects and will
raise an error.

Convert to SparsePanel

pandas.Panel.to_sql

Panel.to_sql(name, con, schema=None, if_exists=’fail’, index=True, index_label=None, chunk-
size=None, dtype=None)

Write records stored in a DataFrame to a SQL database.

Databases supported by SQLAlchemy [R22] are supported. Tables can be newly created, appended to, or
overwritten.

Parameters name : string

Name of SQL table.

con : sqlalchemy.engine.Engine or sqlite3.Connection

Using SQLAlchemy makes it possible to use any DB supported by that library.
Legacy support is provided for sqlite3.Connection objects.

schema : string, optional

Specify the schema (if database flavor supports this). If None, use default schema.

if_exists : {‘fail’, ‘replace’, ‘append’}, default ‘fail’

How to behave if the table already exists.

• fail: Raise a ValueError.

2086 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

• replace: Drop the table before inserting new values.

• append: Insert new values to the existing table.

index : boolean, default True

Write DataFrame index as a column. Uses index_label as the column name in the
table.

index_label : string or sequence, default None

Column label for index column(s). If None is given (default) and index is True,
then the index names are used. A sequence should be given if the DataFrame uses
MultiIndex.

chunksize : int, optional

Rows will be written in batches of this size at a time. By default, all rows will be
written at once.

dtype : dict, optional

Specifying the datatype for columns. The keys should be the column names
and the values should be the SQLAlchemy types or strings for the sqlite3 legacy
mode.

Raises ValueError

When the table already exists and if_exists is ‘fail’ (the default).

See also:

pandas.read_sql read a DataFrame from a table

References

[R22], [R23]

Examples

Create an in-memory SQLite database.

>>> from sqlalchemy import create_engine
>>> engine = create_engine('sqlite://', echo=False)

Create a table from scratch with 3 rows.

>>> df = pd.DataFrame({'name' : ['User 1', 'User 2', 'User 3']})
>>> df

name
0 User 1
1 User 2
2 User 3

>>> df.to_sql('users', con=engine)
>>> engine.execute("SELECT * FROM users").fetchall()
[(0, 'User 1'), (1, 'User 2'), (2, 'User 3')]

34.5. Panel 2087

pandas: powerful Python data analysis toolkit, Release 0.23.4

>>> df1 = pd.DataFrame({'name' : ['User 4', 'User 5']})
>>> df1.to_sql('users', con=engine, if_exists='append')
>>> engine.execute("SELECT * FROM users").fetchall()
[(0, 'User 1'), (1, 'User 2'), (2, 'User 3'),
(0, 'User 4'), (1, 'User 5')]

Overwrite the table with just df1.

>>> df1.to_sql('users', con=engine, if_exists='replace',
... index_label='id')
>>> engine.execute("SELECT * FROM users").fetchall()
[(0, 'User 4'), (1, 'User 5')]

Specify the dtype (especially useful for integers with missing values). Notice that while pandas is forced
to store the data as floating point, the database supports nullable integers. When fetching the data with
Python, we get back integer scalars.

>>> df = pd.DataFrame({"A": [1, None, 2]})
>>> df

A
0 1.0
1 NaN
2 2.0

>>> from sqlalchemy.types import Integer
>>> df.to_sql('integers', con=engine, index=False,
... dtype={"A": Integer()})

>>> engine.execute("SELECT * FROM integers").fetchall()
[(1,), (None,), (2,)]

pandas.Panel.to_xarray

Panel.to_xarray()
Return an xarray object from the pandas object.

Returns

a DataArray for a Series

a Dataset for a DataFrame

a DataArray for higher dims

Notes

See the xarray docs

Examples

>>> df = pd.DataFrame({'A' : [1, 1, 2],
'B' : ['foo', 'bar', 'foo'],

(continues on next page)

2088 Chapter 34. API Reference

http://xarray.pydata.org/en/stable/

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

'C' : np.arange(4.,7)})
>>> df

A B C
0 1 foo 4.0
1 1 bar 5.0
2 2 foo 6.0

>>> df.to_xarray()
<xarray.Dataset>
Dimensions: (index: 3)
Coordinates:

* index (index) int64 0 1 2
Data variables:

A (index) int64 1 1 2
B (index) object 'foo' 'bar' 'foo'
C (index) float64 4.0 5.0 6.0

>>> df = pd.DataFrame({'A' : [1, 1, 2],
'B' : ['foo', 'bar', 'foo'],
'C' : np.arange(4.,7)}

).set_index(['B','A'])
>>> df

C
B A
foo 1 4.0
bar 1 5.0
foo 2 6.0

>>> df.to_xarray()
<xarray.Dataset>
Dimensions: (A: 2, B: 2)
Coordinates:

* B (B) object 'bar' 'foo'

* A (A) int64 1 2
Data variables:

C (B, A) float64 5.0 nan 4.0 6.0

>>> p = pd.Panel(np.arange(24).reshape(4,3,2),
items=list('ABCD'),
major_axis=pd.date_range('20130101', periods=3),
minor_axis=['first', 'second'])

>>> p
<class 'pandas.core.panel.Panel'>
Dimensions: 4 (items) x 3 (major_axis) x 2 (minor_axis)
Items axis: A to D
Major_axis axis: 2013-01-01 00:00:00 to 2013-01-03 00:00:00
Minor_axis axis: first to second

>>> p.to_xarray()
<xarray.DataArray (items: 4, major_axis: 3, minor_axis: 2)>
array([[[0, 1],

[2, 3],
[4, 5]],

[[6, 7],
[8, 9],

(continues on next page)

34.5. Panel 2089

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

[10, 11]],
[[12, 13],
[14, 15],
[16, 17]],

[[18, 19],
[20, 21],
[22, 23]]])

Coordinates:

* items (items) object 'A' 'B' 'C' 'D'

* major_axis (major_axis) datetime64[ns] 2013-01-01 2013-01-02 2013-01-03
→˓ # noqa

* minor_axis (minor_axis) object 'first' 'second'

pandas.Panel.transpose

Panel.transpose(*args, **kwargs)

Permute the dimensions of the Panel

Parameters

args [three positional arguments: each one of]

{0, 1, 2, ‘items’, ‘major_axis’, ‘minor_axis’}

copy [boolean, default False] Make a copy of the underlying data. Mixed-dtype
data will always result in a copy

Returns

y [same as input]

Examples

>>> p.transpose(2, 0, 1)
>>> p.transpose(2, 0, 1, copy=True)

pandas.Panel.truediv

Panel.truediv(other, axis=0)
Floating division of series and other, element-wise (binary operator truediv). Equivalent to panel /
other.

Parameters

other [DataFrame or Panel]

axis : {items, major_axis, minor_axis}

Axis to broadcast over

Returns

Panel

2090 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

See also:

Panel.rtruediv

pandas.Panel.truncate

Panel.truncate(before=None, after=None, axis=None, copy=True)
Truncate a Series or DataFrame before and after some index value.

This is a useful shorthand for boolean indexing based on index values above or below certain thresholds.

Parameters before : date, string, int

Truncate all rows before this index value.

after : date, string, int

Truncate all rows after this index value.

axis : {0 or ‘index’, 1 or ‘columns’}, optional

Axis to truncate. Truncates the index (rows) by default.

copy : boolean, default is True,

Return a copy of the truncated section.

Returns type of caller

The truncated Series or DataFrame.

See also:

DataFrame.loc Select a subset of a DataFrame by label.

DataFrame.iloc Select a subset of a DataFrame by position.

Notes

If the index being truncated contains only datetime values, before and after may be specified as strings
instead of Timestamps.

Examples

>>> df = pd.DataFrame({'A': ['a', 'b', 'c', 'd', 'e'],
... 'B': ['f', 'g', 'h', 'i', 'j'],
... 'C': ['k', 'l', 'm', 'n', 'o']},
... index=[1, 2, 3, 4, 5])
>>> df

A B C
1 a f k
2 b g l
3 c h m
4 d i n
5 e j o

34.5. Panel 2091

pandas: powerful Python data analysis toolkit, Release 0.23.4

>>> df.truncate(before=2, after=4)
A B C

2 b g l
3 c h m
4 d i n

The columns of a DataFrame can be truncated.

>>> df.truncate(before="A", after="B", axis="columns")
A B

1 a f
2 b g
3 c h
4 d i
5 e j

For Series, only rows can be truncated.

>>> df['A'].truncate(before=2, after=4)
2 b
3 c
4 d
Name: A, dtype: object

The index values in truncate can be datetimes or string dates.

>>> dates = pd.date_range('2016-01-01', '2016-02-01', freq='s')
>>> df = pd.DataFrame(index=dates, data={'A': 1})
>>> df.tail()

A
2016-01-31 23:59:56 1
2016-01-31 23:59:57 1
2016-01-31 23:59:58 1
2016-01-31 23:59:59 1
2016-02-01 00:00:00 1

>>> df.truncate(before=pd.Timestamp('2016-01-05'),
... after=pd.Timestamp('2016-01-10')).tail()

A
2016-01-09 23:59:56 1
2016-01-09 23:59:57 1
2016-01-09 23:59:58 1
2016-01-09 23:59:59 1
2016-01-10 00:00:00 1

Because the index is a DatetimeIndex containing only dates, we can specify before and after as strings.
They will be coerced to Timestamps before truncation.

>>> df.truncate('2016-01-05', '2016-01-10').tail()
A

2016-01-09 23:59:56 1
2016-01-09 23:59:57 1
2016-01-09 23:59:58 1
2016-01-09 23:59:59 1
2016-01-10 00:00:00 1

Note that truncate assumes a 0 value for any unspecified time component (midnight). This differs
from partial string slicing, which returns any partially matching dates.

2092 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

>>> df.loc['2016-01-05':'2016-01-10', :].tail()
A

2016-01-10 23:59:55 1
2016-01-10 23:59:56 1
2016-01-10 23:59:57 1
2016-01-10 23:59:58 1
2016-01-10 23:59:59 1

pandas.Panel.tshift

Panel.tshift(periods=1, freq=None, axis=’major’)
Shift the time index, using the index’s frequency if available.

Parameters periods : int

Number of periods to move, can be positive or negative

freq : DateOffset, timedelta, or time rule string, default None

Increment to use from the tseries module or time rule (e.g. ‘EOM’)

axis : int or basestring

Corresponds to the axis that contains the Index

Returns

shifted [NDFrame]

Notes

If freq is not specified then tries to use the freq or inferred_freq attributes of the index. If neither of those
attributes exist, a ValueError is thrown

pandas.Panel.tz_convert

Panel.tz_convert(tz, axis=0, level=None, copy=True)
Convert tz-aware axis to target time zone.

Parameters

tz [string or pytz.timezone object]

axis [the axis to convert]

level : int, str, default None

If axis ia a MultiIndex, convert a specific level. Otherwise must be None

copy : boolean, default True

Also make a copy of the underlying data

Raises TypeError

If the axis is tz-naive.

34.5. Panel 2093

pandas: powerful Python data analysis toolkit, Release 0.23.4

pandas.Panel.tz_localize

Panel.tz_localize(tz, axis=0, level=None, copy=True, ambiguous=’raise’)
Localize tz-naive TimeSeries to target time zone.

Parameters

tz [string or pytz.timezone object]

axis [the axis to localize]

level : int, str, default None

If axis ia a MultiIndex, localize a specific level. Otherwise must be None

copy : boolean, default True

Also make a copy of the underlying data

ambiguous : ‘infer’, bool-ndarray, ‘NaT’, default ‘raise’

• ‘infer’ will attempt to infer fall dst-transition hours based on order

• bool-ndarray where True signifies a DST time, False designates a non-DST time (note
that this flag is only applicable for ambiguous times)

• ‘NaT’ will return NaT where there are ambiguous times

• ‘raise’ will raise an AmbiguousTimeError if there are ambiguous times

Raises TypeError

If the TimeSeries is tz-aware and tz is not None.

pandas.Panel.update

Panel.update(other, join=’left’, overwrite=True, filter_func=None, raise_conflict=False)
Modify Panel in place using non-NA values from passed Panel, or object coercible to Panel. Aligns on
items

Parameters

other [Panel, or object coercible to Panel]

join : How to join individual DataFrames

{‘left’, ‘right’, ‘outer’, ‘inner’}, default ‘left’

overwrite : boolean, default True

If True then overwrite values for common keys in the calling panel

filter_func : callable(1d-array) -> 1d-array<boolean>, default None

Can choose to replace values other than NA. Return True for values that should
be updated

raise_conflict : bool

If True, will raise an error if a DataFrame and other both contain data in the same
place.

2094 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

pandas.Panel.var

Panel.var(axis=None, skipna=None, level=None, ddof=1, numeric_only=None, **kwargs)
Return unbiased variance over requested axis.

Normalized by N-1 by default. This can be changed using the ddof argument

Parameters

axis [{items (0), major_axis (1), minor_axis (2)}]

skipna : boolean, default True

Exclude NA/null values. If an entire row/column is NA, the result will be NA

level : int or level name, default None

If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing
into a DataFrame

ddof : int, default 1

Delta Degrees of Freedom. The divisor used in calculations is N - ddof, where N
represents the number of elements.

numeric_only : boolean, default None

Include only float, int, boolean columns. If None, will attempt to use everything,
then use only numeric data. Not implemented for Series.

Returns

var [DataFrame or Panel (if level specified)]

pandas.Panel.where

Panel.where(cond, other=nan, inplace=False, axis=None, level=None, errors=’raise’,
try_cast=False, raise_on_error=None)

Return an object of same shape as self and whose corresponding entries are from self where cond is True
and otherwise are from other.

Parameters cond : boolean NDFrame, array-like, or callable

Where cond is True, keep the original value. Where False, replace with corre-
sponding value from other. If cond is callable, it is computed on the NDFrame
and should return boolean NDFrame or array. The callable must not change input
NDFrame (though pandas doesn’t check it).

New in version 0.18.1: A callable can be used as cond.

other : scalar, NDFrame, or callable

Entries where cond is False are replaced with corresponding value from other.
If other is callable, it is computed on the NDFrame and should return scalar or
NDFrame. The callable must not change input NDFrame (though pandas doesn’t
check it).

New in version 0.18.1: A callable can be used as other.

inplace : boolean, default False

Whether to perform the operation in place on the data

34.5. Panel 2095

pandas: powerful Python data analysis toolkit, Release 0.23.4

axis [alignment axis if needed, default None]

level [alignment level if needed, default None]

errors : str, {‘raise’, ‘ignore’}, default ‘raise’

• raise : allow exceptions to be raised

• ignore : suppress exceptions. On error return original object

Note that currently this parameter won’t affect the results and will always coerce
to a suitable dtype.

try_cast : boolean, default False

try to cast the result back to the input type (if possible),

raise_on_error : boolean, default True

Whether to raise on invalid data types (e.g. trying to where on strings)

Deprecated since version 0.21.0.

Returns

wh [same type as caller]

See also:

DataFrame.mask()

Notes

The where method is an application of the if-then idiom. For each element in the calling DataFrame, if
cond is True the element is used; otherwise the corresponding element from the DataFrame other is
used.

The signature for DataFrame.where() differs from numpy.where(). Roughly df1.where(m,
df2) is equivalent to np.where(m, df1, df2).

For further details and examples see the where documentation in indexing.

Examples

>>> s = pd.Series(range(5))
>>> s.where(s > 0)
0 NaN
1 1.0
2 2.0
3 3.0
4 4.0

>>> s.mask(s > 0)
0 0.0
1 NaN
2 NaN
3 NaN
4 NaN

2096 Chapter 34. API Reference

https://docs.scipy.org/doc/numpy/reference/generated/numpy.where.html#numpy.where

pandas: powerful Python data analysis toolkit, Release 0.23.4

>>> s.where(s > 1, 10)
0 10.0
1 10.0
2 2.0
3 3.0
4 4.0

>>> df = pd.DataFrame(np.arange(10).reshape(-1, 2), columns=['A', 'B'])
>>> m = df % 3 == 0
>>> df.where(m, -df)

A B
0 0 -1
1 -2 3
2 -4 -5
3 6 -7
4 -8 9
>>> df.where(m, -df) == np.where(m, df, -df)

A B
0 True True
1 True True
2 True True
3 True True
4 True True
>>> df.where(m, -df) == df.mask(~m, -df)

A B
0 True True
1 True True
2 True True
3 True True
4 True True

pandas.Panel.xs

Panel.xs(key, axis=1)
Return slice of panel along selected axis

Parameters key : object

Label

axis [{‘items’, ‘major’, ‘minor}, default 1/’major’]

Returns

y [ndim(self)-1]

Notes

xs is only for getting, not setting values.

MultiIndex Slicers is a generic way to get/set values on any level or levels and is a superset of xs func-
tionality, see MultiIndex Slicers

34.5. Panel 2097

pandas: powerful Python data analysis toolkit, Release 0.23.4

agg
aggregate
drop

34.5.2 Attributes and underlying data

Axes

• items: axis 0; each item corresponds to a DataFrame contained inside

• major_axis: axis 1; the index (rows) of each of the DataFrames

• minor_axis: axis 2; the columns of each of the DataFrames

Panel.values Return a Numpy representation of the DataFrame.
Panel.axes Return index label(s) of the internal NDFrame
Panel.ndim Return an int representing the number of axes / array

dimensions.
Panel.size Return an int representing the number of elements in

this object.
Panel.shape Return a tuple of axis dimensions
Panel.dtypes Return the dtypes in the DataFrame.
Panel.ftypes Return the ftypes (indication of sparse/dense and dtype)

in DataFrame.
Panel.get_dtype_counts() Return counts of unique dtypes in this object.
Panel.get_ftype_counts() (DEPRECATED) Return counts of unique ftypes in this

object.

34.5.3 Conversion

Panel.astype(dtype[, copy, errors]) Cast a pandas object to a specified dtype dtype.
Panel.copy([deep]) Make a copy of this object’s indices and data.
Panel.isna() Detect missing values.
Panel.notna() Detect existing (non-missing) values.

34.5.4 Getting and setting

Panel.get_value(*args, **kwargs) (DEPRECATED) Quickly retrieve single value at (item,
major, minor) location

Panel.set_value(*args, **kwargs) (DEPRECATED) Quickly set single value at (item, ma-
jor, minor) location

34.5.5 Indexing, iteration, slicing

Panel.at Access a single value for a row/column label pair.
Panel.iat Access a single value for a row/column pair by integer

position.
Continued on next page

2098 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

Table 85 – continued from previous page
Panel.loc Access a group of rows and columns by label(s) or a

boolean array.
Panel.iloc Purely integer-location based indexing for selection by

position.
Panel.__iter__() Iterate over infor axis
Panel.iteritems() Iterate over (label, values) on info axis
Panel.pop(item) Return item and drop from frame.
Panel.xs(key[, axis]) Return slice of panel along selected axis
Panel.major_xs(key) Return slice of panel along major axis
Panel.minor_xs(key) Return slice of panel along minor axis

34.5.5.1 pandas.Panel.__iter__

Panel.__iter__()
Iterate over infor axis

For more information on .at, .iat, .loc, and .iloc, see the indexing documentation.

34.5.6 Binary operator functions

Panel.add(other[, axis]) Addition of series and other, element-wise (binary oper-
ator add).

Panel.sub(other[, axis]) Subtraction of series and other, element-wise (binary
operator sub).

Panel.mul(other[, axis]) Multiplication of series and other, element-wise (binary
operator mul).

Panel.div(other[, axis]) Floating division of series and other, element-wise (bi-
nary operator truediv).

Panel.truediv(other[, axis]) Floating division of series and other, element-wise (bi-
nary operator truediv).

Panel.floordiv(other[, axis]) Integer division of series and other, element-wise (bi-
nary operator floordiv).

Panel.mod(other[, axis]) Modulo of series and other, element-wise (binary oper-
ator mod).

Panel.pow(other[, axis]) Exponential power of series and other, element-wise
(binary operator pow).

Panel.radd(other[, axis]) Addition of series and other, element-wise (binary oper-
ator radd).

Panel.rsub(other[, axis]) Subtraction of series and other, element-wise (binary
operator rsub).

Panel.rmul(other[, axis]) Multiplication of series and other, element-wise (binary
operator rmul).

Panel.rdiv(other[, axis]) Floating division of series and other, element-wise (bi-
nary operator rtruediv).

Panel.rtruediv(other[, axis]) Floating division of series and other, element-wise (bi-
nary operator rtruediv).

Panel.rfloordiv(other[, axis]) Integer division of series and other, element-wise (bi-
nary operator rfloordiv).

Panel.rmod(other[, axis]) Modulo of series and other, element-wise (binary oper-
ator rmod).

Continued on next page

34.5. Panel 2099

pandas: powerful Python data analysis toolkit, Release 0.23.4

Table 86 – continued from previous page
Panel.rpow(other[, axis]) Exponential power of series and other, element-wise

(binary operator rpow).
Panel.lt(other[, axis]) Wrapper for comparison method lt
Panel.gt(other[, axis]) Wrapper for comparison method gt
Panel.le(other[, axis]) Wrapper for comparison method le
Panel.ge(other[, axis]) Wrapper for comparison method ge
Panel.ne(other[, axis]) Wrapper for comparison method ne
Panel.eq(other[, axis]) Wrapper for comparison method eq

34.5.7 Function application, GroupBy

Panel.apply(func[, axis]) Applies function along axis (or axes) of the Panel
Panel.groupby(function[, axis]) Group data on given axis, returning GroupBy object

34.5.8 Computations / Descriptive Stats

Panel.abs() Return a Series/DataFrame with absolute numeric value
of each element.

Panel.clip([lower, upper, axis, inplace]) Trim values at input threshold(s).
Panel.clip_lower(threshold[, axis, inplace]) Return copy of the input with values below a threshold

truncated.
Panel.clip_upper(threshold[, axis, inplace]) Return copy of input with values above given value(s)

truncated.
Panel.count([axis]) Return number of observations over requested axis.
Panel.cummax([axis, skipna]) Return cumulative maximum over a DataFrame or Se-

ries axis.
Panel.cummin([axis, skipna]) Return cumulative minimum over a DataFrame or Se-

ries axis.
Panel.cumprod([axis, skipna]) Return cumulative product over a DataFrame or Series

axis.
Panel.cumsum([axis, skipna]) Return cumulative sum over a DataFrame or Series axis.
Panel.max([axis, skipna, level, numeric_only]) This method returns the maximum of the values in the

object.
Panel.mean([axis, skipna, level, numeric_only]) Return the mean of the values for the requested axis
Panel.median([axis, skipna, level, numeric_only]) Return the median of the values for the requested axis
Panel.min([axis, skipna, level, numeric_only]) This method returns the minimum of the values in the

object.
Panel.pct_change([periods, fill_method, . . .]) Percentage change between the current and a prior ele-

ment.
Panel.prod([axis, skipna, level, . . .]) Return the product of the values for the requested axis
Panel.sem([axis, skipna, level, ddof, . . .]) Return unbiased standard error of the mean over re-

quested axis.
Panel.skew([axis, skipna, level, numeric_only]) Return unbiased skew over requested axis Normalized

by N-1
Panel.sum([axis, skipna, level, . . .]) Return the sum of the values for the requested axis
Panel.std([axis, skipna, level, ddof, . . .]) Return sample standard deviation over requested axis.
Panel.var([axis, skipna, level, ddof, . . .]) Return unbiased variance over requested axis.

2100 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

34.5.9 Reindexing / Selection / Label manipulation

Panel.add_prefix(prefix) Prefix labels with string prefix.
Panel.add_suffix(suffix) Suffix labels with string suffix.
Panel.drop([labels, axis, index, columns, . . .])
Panel.equals(other) Determines if two NDFrame objects contain the same

elements.
Panel.filter([items, like, regex, axis]) Subset rows or columns of dataframe according to labels

in the specified index.
Panel.first(offset) Convenience method for subsetting initial periods of

time series data based on a date offset.
Panel.last(offset) Convenience method for subsetting final periods of time

series data based on a date offset.
Panel.reindex(*args, **kwargs) Conform Panel to new index with optional filling logic,

placing NA/NaN in locations having no value in the pre-
vious index.

Panel.reindex_axis(labels[, axis, method, . . .]) Conform input object to new index with optional filling
logic, placing NA/NaN in locations having no value in
the previous index.

Panel.reindex_like(other[, method, copy, . . .]) Return an object with matching indices to myself.
Panel.rename([items, major_axis, minor_axis]) Alter axes input function or functions.
Panel.sample([n, frac, replace, weights, . . .]) Return a random sample of items from an axis of object.
Panel.select(crit[, axis]) (DEPRECATED) Return data corresponding to axis la-

bels matching criteria
Panel.take(indices[, axis, convert, is_copy]) Return the elements in the given positional indices

along an axis.
Panel.truncate([before, after, axis, copy]) Truncate a Series or DataFrame before and after some

index value.

34.5.9.1 pandas.Panel.drop

Panel.drop(labels=None, axis=0, index=None, columns=None, level=None, inplace=False, er-
rors=’raise’)

34.5.10 Missing data handling

Panel.dropna([axis, how, inplace]) Drop 2D from panel, holding passed axis constant

34.5.11 Reshaping, sorting, transposing

Panel.sort_index([axis, level, ascending, . . .]) Sort object by labels (along an axis)
Panel.swaplevel([i, j, axis]) Swap levels i and j in a MultiIndex on a particular axis
Panel.transpose(*args, **kwargs) Permute the dimensions of the Panel
Panel.swapaxes(axis1, axis2[, copy]) Interchange axes and swap values axes appropriately
Panel.conform(frame[, axis]) Conform input DataFrame to align with chosen axis

pair.

34.5. Panel 2101

pandas: powerful Python data analysis toolkit, Release 0.23.4

34.5.12 Combining / joining / merging

Panel.join(other[, how, lsuffix, rsuffix]) Join items with other Panel either on major and minor
axes column

Panel.update(other[, join, overwrite, . . .]) Modify Panel in place using non-NA values from passed
Panel, or object coercible to Panel.

34.5.13 Time series-related

Panel.asfreq(freq[, method, how, normalize, . . .]) Convert TimeSeries to specified frequency.
Panel.shift([periods, freq, axis]) Shift index by desired number of periods with an op-

tional time freq.
Panel.resample(rule[, how, axis, . . .]) Convenience method for frequency conversion and re-

sampling of time series.
Panel.tz_convert(tz[, axis, level, copy]) Convert tz-aware axis to target time zone.
Panel.tz_localize(tz[, axis, level, copy, . . .]) Localize tz-naive TimeSeries to target time zone.

34.5.14 Serialization / IO / Conversion

Panel.from_dict(data[, intersect, orient, dtype]) Construct Panel from dict of DataFrame objects
Panel.to_pickle(path[, compression, protocol]) Pickle (serialize) object to file.
Panel.to_excel(path[, na_rep, engine]) Write each DataFrame in Panel to a separate excel sheet
Panel.to_hdf(path_or_buf, key, **kwargs) Write the contained data to an HDF5 file using HDFS-

tore.
Panel.to_sparse(*args, **kwargs) NOT IMPLEMENTED: do not call this method, as spar-

sifying is not supported for Panel objects and will raise
an error.

Panel.to_frame([filter_observations]) Transform wide format into long (stacked) format as
DataFrame whose columns are the Panel’s items and
whose index is a MultiIndex formed of the Panel’s ma-
jor and minor axes.

Panel.to_clipboard([excel, sep]) Copy object to the system clipboard.

34.6 Index

Many of these methods or variants thereof are available on the objects that contain an index (Series/DataFrame)
and those should most likely be used before calling these methods directly.

Index Immutable ndarray implementing an ordered, sliceable
set.

34.6.1 pandas.Index

class pandas.Index
Immutable ndarray implementing an ordered, sliceable set. The basic object storing axis labels for all pandas
objects

Parameters

2102 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

data [array-like (1-dimensional)]

dtype : NumPy dtype (default: object)

If dtype is None, we find the dtype that best fits the data. If an actual dtype is
provided, we coerce to that dtype if it’s safe. Otherwise, an error will be raised.

copy : bool

Make a copy of input ndarray

name : object

Name to be stored in the index

tupleize_cols : bool (default: True)

When True, attempt to create a MultiIndex if possible

See also:

RangeIndex Index implementing a monotonic integer range

CategoricalIndex Index of Categorical s.

MultiIndex A multi-level, or hierarchical, Index

IntervalIndex an Index of Interval s.

DatetimeIndex, TimedeltaIndex, PeriodIndex, Int64Index, UInt64Index,
Float64Index

Notes

An Index instance can only contain hashable objects

Examples

>>> pd.Index([1, 2, 3])
Int64Index([1, 2, 3], dtype='int64')

>>> pd.Index(list('abc'))
Index(['a', 'b', 'c'], dtype='object')

Attributes

T return the transpose, which is by definition self
base return the base object if the memory of the underly-

ing data is shared
data return the data pointer of the underlying data
dtype return the dtype object of the underlying data
dtype_str return the dtype str of the underlying data
flags

Continued on next page

34.6. Index 2103

pandas: powerful Python data analysis toolkit, Release 0.23.4

Table 96 – continued from previous page
hasnans return if I have any nans; enables various perf

speedups
inferred_type return a string of the type inferred from the values
is_monotonic alias for is_monotonic_increasing (deprecated)
is_monotonic_decreasing return if the index is monotonic decreasing (only

equal or decreasing) values.
is_monotonic_increasing return if the index is monotonic increasing (only

equal or increasing) values.
is_unique return if the index has unique values
itemsize return the size of the dtype of the item of the under-

lying data
nbytes return the number of bytes in the underlying data
ndim return the number of dimensions of the underlying

data, by definition 1
shape return a tuple of the shape of the underlying data
size return the number of elements in the underlying data
strides return the strides of the underlying data
values return the underlying data as an ndarray

34.6.1.1 pandas.Index.T

Index.T
return the transpose, which is by definition self

34.6.1.2 pandas.Index.base

Index.base
return the base object if the memory of the underlying data is shared

34.6.1.3 pandas.Index.data

Index.data
return the data pointer of the underlying data

34.6.1.4 pandas.Index.dtype

Index.dtype
return the dtype object of the underlying data

34.6.1.5 pandas.Index.dtype_str

Index.dtype_str
return the dtype str of the underlying data

34.6.1.6 pandas.Index.flags

Index.flags

2104 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

34.6.1.7 pandas.Index.hasnans

Index.hasnans
return if I have any nans; enables various perf speedups

34.6.1.8 pandas.Index.inferred_type

Index.inferred_type
return a string of the type inferred from the values

34.6.1.9 pandas.Index.is_monotonic

Index.is_monotonic
alias for is_monotonic_increasing (deprecated)

34.6.1.10 pandas.Index.is_monotonic_decreasing

Index.is_monotonic_decreasing
return if the index is monotonic decreasing (only equal or decreasing) values.

Examples

>>> Index([3, 2, 1]).is_monotonic_decreasing
True
>>> Index([3, 2, 2]).is_monotonic_decreasing
True
>>> Index([3, 1, 2]).is_monotonic_decreasing
False

34.6.1.11 pandas.Index.is_monotonic_increasing

Index.is_monotonic_increasing
return if the index is monotonic increasing (only equal or increasing) values.

Examples

>>> Index([1, 2, 3]).is_monotonic_increasing
True
>>> Index([1, 2, 2]).is_monotonic_increasing
True
>>> Index([1, 3, 2]).is_monotonic_increasing
False

34.6.1.12 pandas.Index.is_unique

Index.is_unique
return if the index has unique values

34.6. Index 2105

pandas: powerful Python data analysis toolkit, Release 0.23.4

34.6.1.13 pandas.Index.itemsize

Index.itemsize
return the size of the dtype of the item of the underlying data

34.6.1.14 pandas.Index.nbytes

Index.nbytes
return the number of bytes in the underlying data

34.6.1.15 pandas.Index.ndim

Index.ndim
return the number of dimensions of the underlying data, by definition 1

34.6.1.16 pandas.Index.shape

Index.shape
return a tuple of the shape of the underlying data

34.6.1.17 pandas.Index.size

Index.size
return the number of elements in the underlying data

34.6.1.18 pandas.Index.strides

Index.strides
return the strides of the underlying data

34.6.1.19 pandas.Index.values

Index.values
return the underlying data as an ndarray

asi8
empty
has_duplicates
is_all_dates
name
names
nlevels

Methods

all(*args, **kwargs) Return whether all elements are True.
Continued on next page

2106 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

Table 97 – continued from previous page
any(*args, **kwargs) Return whether any element is True.
append(other) Append a collection of Index options together
argmax([axis]) return a ndarray of the maximum argument indexer
argmin([axis]) return a ndarray of the minimum argument indexer
argsort(*args, **kwargs) Return the integer indicies that would sort the index.
asof(label) For a sorted index, return the most recent label up to

and including the passed label.
asof_locs(where, mask) where : array of timestamps mask : array of booleans

where data is not NA
astype(dtype[, copy]) Create an Index with values cast to dtypes.
contains(key) return a boolean if this key is IN the index
copy([name, deep, dtype]) Make a copy of this object.
delete(loc) Make new Index with passed location(-s) deleted
difference(other) Return a new Index with elements from the index

that are not in other.
drop(labels[, errors]) Make new Index with passed list of labels deleted
drop_duplicates([keep]) Return Index with duplicate values removed.
dropna([how]) Return Index without NA/NaN values
duplicated([keep]) Indicate duplicate index values.
equals(other) Determines if two Index objects contain the same el-

ements.
factorize([sort, na_sentinel]) Encode the object as an enumerated type or categor-

ical variable.
fillna([value, downcast]) Fill NA/NaN values with the specified value
format([name, formatter]) Render a string representation of the Index
get_duplicates() (DEPRECATED) Extract duplicated index elements.
get_indexer(target[, method, limit, tolerance]) Compute indexer and mask for new index given the

current index.
get_indexer_for(target, **kwargs) guaranteed return of an indexer even when

non-unique This dispatches to get_indexer or
get_indexer_nonunique as appropriate

get_indexer_non_unique(target) Compute indexer and mask for new index given the
current index.

get_level_values(level) Return an Index of values for requested level, equal
to the length of the index.

get_loc(key[, method, tolerance]) Get integer location, slice or boolean mask for re-
quested label.

get_slice_bound(label, side, kind) Calculate slice bound that corresponds to given label.
get_value(series, key) Fast lookup of value from 1-dimensional ndarray.
get_values() Return Index data as an numpy.ndarray.
groupby(values) Group the index labels by a given array of values.
identical(other) Similar to equals, but check that other comparable

attributes are also equal
insert(loc, item) Make new Index inserting new item at location.
intersection(other) Form the intersection of two Index objects.
is_(other) More flexible, faster check like is but that works

through views
is_categorical() Check if the Index holds categorical data.
isin(values[, level]) Return a boolean array where the index values are in

values.
isna() Detect missing values.

Continued on next page

34.6. Index 2107

pandas: powerful Python data analysis toolkit, Release 0.23.4

Table 97 – continued from previous page
isnull() Detect missing values.
item() return the first element of the underlying data as a

python scalar
join(other[, how, level, return_indexers, sort]) this is an internal non-public method
map(mapper[, na_action]) Map values using input correspondence (a dict, Se-

ries, or function).
max() Return the maximum value of the Index.
memory_usage([deep]) Memory usage of the values
min() Return the minimum value of the Index.
notna() Detect existing (non-missing) values.
notnull() Detect existing (non-missing) values.
nunique([dropna]) Return number of unique elements in the object.
putmask(mask, value) return a new Index of the values set with the mask
ravel([order]) return an ndarray of the flattened values of the under-

lying data
reindex(target[, method, level, limit, . . .]) Create index with target’s values (move/add/delete

values as necessary)
rename(name[, inplace]) Set new names on index.
repeat(repeats, *args, **kwargs) Repeat elements of an Index.
searchsorted(value[, side, sorter]) Find indices where elements should be inserted to

maintain order.
set_names(names[, level, inplace]) Set new names on index.
set_value(arr, key, value) Fast lookup of value from 1-dimensional ndarray.
shift([periods, freq]) Shift index by desired number of time frequency in-

crements.
slice_indexer([start, end, step, kind]) For an ordered or unique index, compute the slice

indexer for input labels and step.
slice_locs([start, end, step, kind]) Compute slice locations for input labels.
sort_values([return_indexer, ascending]) Return a sorted copy of the index.
sortlevel([level, ascending, sort_remaining]) For internal compatibility with with the Index API
str alias of pandas.core.strings.

StringMethods
summary([name]) (DEPRECATED) Return a summarized representa-

tion ..
symmetric_difference(other[, result_name]) Compute the symmetric difference of two Index ob-

jects.
take(indices[, axis, allow_fill, fill_value]) return a new Index of the values selected by the in-

dices
to_frame([index]) Create a DataFrame with a column containing the In-

dex.
to_native_types([slicer]) Format specified values of self and return them.
to_series([index, name]) Create a Series with both index and values equal to

the index keys useful with map for returning an in-
dexer based on an index

tolist() Return a list of the values.
transpose(*args, **kwargs) return the transpose, which is by definition self
union(other) Form the union of two Index objects and sorts if pos-

sible.
unique([level]) Return unique values in the index.
value_counts([normalize, sort, ascending, . . .]) Returns object containing counts of unique values.

Continued on next page

2108 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

Table 97 – continued from previous page
where(cond[, other]) New in version 0.19.0.

34.6.1.20 pandas.Index.all

Index.all(*args, **kwargs)
Return whether all elements are True.

Parameters *args

These parameters will be passed to numpy.all.

**kwargs

These parameters will be passed to numpy.all.

Returns all : bool or array_like (if axis is specified)

A single element array_like may be converted to bool.

See also:

pandas.Index.any Return whether any element in an Index is True.

pandas.Series.any Return whether any element in a Series is True.

pandas.Series.all Return whether all elements in a Series are True.

Notes

Not a Number (NaN), positive infinity and negative infinity evaluate to True because these are not equal
to zero.

Examples

all

True, because nonzero integers are considered True.

>>> pd.Index([1, 2, 3]).all()
True

False, because 0 is considered False.

>>> pd.Index([0, 1, 2]).all()
False

any

True, because 1 is considered True.

>>> pd.Index([0, 0, 1]).any()
True

False, because 0 is considered False.

34.6. Index 2109

pandas: powerful Python data analysis toolkit, Release 0.23.4

>>> pd.Index([0, 0, 0]).any()
False

34.6.1.21 pandas.Index.any

Index.any(*args, **kwargs)
Return whether any element is True.

Parameters *args

These parameters will be passed to numpy.any.

**kwargs

These parameters will be passed to numpy.any.

Returns any : bool or array_like (if axis is specified)

A single element array_like may be converted to bool.

See also:

pandas.Index.all Return whether all elements are True.

pandas.Series.all Return whether all elements are True.

Notes

Not a Number (NaN), positive infinity and negative infinity evaluate to True because these are not equal
to zero.

Examples

>>> index = pd.Index([0, 1, 2])
>>> index.any()
True

>>> index = pd.Index([0, 0, 0])
>>> index.any()
False

34.6.1.22 pandas.Index.append

Index.append(other)
Append a collection of Index options together

Parameters

other [Index or list/tuple of indices]

Returns

appended [Index]

2110 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

34.6.1.23 pandas.Index.argmax

Index.argmax(axis=None)
return a ndarray of the maximum argument indexer

See also:

numpy.ndarray.argmax

34.6.1.24 pandas.Index.argmin

Index.argmin(axis=None)
return a ndarray of the minimum argument indexer

See also:

numpy.ndarray.argmin

34.6.1.25 pandas.Index.argsort

Index.argsort(*args, **kwargs)
Return the integer indicies that would sort the index.

Parameters *args

Passed to numpy.ndarray.argsort.

**kwargs

Passed to numpy.ndarray.argsort.

Returns numpy.ndarray

Integer indicies that would sort the index if used as an indexer.

See also:

numpy.argsort Similar method for NumPy arrays.

Index.sort_values Return sorted copy of Index.

Examples

>>> idx = pd.Index(['b', 'a', 'd', 'c'])
>>> idx
Index(['b', 'a', 'd', 'c'], dtype='object')

>>> order = idx.argsort()
>>> order
array([1, 0, 3, 2])

>>> idx[order]
Index(['a', 'b', 'c', 'd'], dtype='object')

34.6. Index 2111

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.argmax.html#numpy.ndarray.argmax
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.argmin.html#numpy.ndarray.argmin
https://docs.scipy.org/doc/numpy/reference/generated/numpy.argsort.html#numpy.argsort

pandas: powerful Python data analysis toolkit, Release 0.23.4

34.6.1.26 pandas.Index.asof

Index.asof(label)
For a sorted index, return the most recent label up to and including the passed label. Return NaN if not
found.

See also:

get_loc asof is a thin wrapper around get_loc with method=’pad’

34.6.1.27 pandas.Index.asof_locs

Index.asof_locs(where, mask)
where : array of timestamps mask : array of booleans where data is not NA

34.6.1.28 pandas.Index.astype

Index.astype(dtype, copy=True)
Create an Index with values cast to dtypes. The class of a new Index is determined by dtype. When
conversion is impossible, a ValueError exception is raised.

Parameters

dtype [numpy dtype or pandas type]

copy : bool, default True

By default, astype always returns a newly allocated object. If copy is set to False
and internal requirements on dtype are satisfied, the original data is used to create
a new Index or the original Index is returned.

New in version 0.19.0.

34.6.1.29 pandas.Index.contains

Index.contains(key)
return a boolean if this key is IN the index

Parameters

key [object]

Returns

boolean

34.6.1.30 pandas.Index.copy

Index.copy(name=None, deep=False, dtype=None, **kwargs)
Make a copy of this object. Name and dtype sets those attributes on the new object.

Parameters

name [string, optional]

deep [boolean, default False]

dtype [numpy dtype or pandas type]

2112 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

Returns

copy [Index]

Notes

In most cases, there should be no functional difference from using deep, but if deep is passed it will
attempt to deepcopy.

34.6.1.31 pandas.Index.delete

Index.delete(loc)
Make new Index with passed location(-s) deleted

Returns

new_index [Index]

34.6.1.32 pandas.Index.difference

Index.difference(other)
Return a new Index with elements from the index that are not in other.

This is the set difference of two Index objects. It’s sorted if sorting is possible.

Parameters

other [Index or array-like]

Returns

difference [Index]

Examples

>>> idx1 = pd.Index([1, 2, 3, 4])
>>> idx2 = pd.Index([3, 4, 5, 6])
>>> idx1.difference(idx2)
Int64Index([1, 2], dtype='int64')

34.6.1.33 pandas.Index.drop

Index.drop(labels, errors=’raise’)
Make new Index with passed list of labels deleted

Parameters

labels [array-like]

errors : {‘ignore’, ‘raise’}, default ‘raise’

If ‘ignore’, suppress error and existing labels are dropped.

Returns

dropped [Index]

34.6. Index 2113

pandas: powerful Python data analysis toolkit, Release 0.23.4

Raises KeyError

If not all of the labels are found in the selected axis

34.6.1.34 pandas.Index.drop_duplicates

Index.drop_duplicates(keep=’first’)
Return Index with duplicate values removed.

Parameters keep : {‘first’, ‘last’, False}, default ‘first’

• ‘first’ : Drop duplicates except for the first occurrence.

• ‘last’ : Drop duplicates except for the last occurrence.

• False : Drop all duplicates.

Returns

deduplicated [Index]

See also:

Series.drop_duplicates equivalent method on Series

DataFrame.drop_duplicates equivalent method on DataFrame

Index.duplicated related method on Index, indicating duplicate Index values.

Examples

Generate an pandas.Index with duplicate values.

>>> idx = pd.Index(['lama', 'cow', 'lama', 'beetle', 'lama', 'hippo'])

The keep parameter controls which duplicate values are removed. The value ‘first’ keeps the first occur-
rence for each set of duplicated entries. The default value of keep is ‘first’.

>>> idx.drop_duplicates(keep='first')
Index(['lama', 'cow', 'beetle', 'hippo'], dtype='object')

The value ‘last’ keeps the last occurrence for each set of duplicated entries.

>>> idx.drop_duplicates(keep='last')
Index(['cow', 'beetle', 'lama', 'hippo'], dtype='object')

The value False discards all sets of duplicated entries.

>>> idx.drop_duplicates(keep=False)
Index(['cow', 'beetle', 'hippo'], dtype='object')

34.6.1.35 pandas.Index.dropna

Index.dropna(how=’any’)
Return Index without NA/NaN values

Parameters how : {‘any’, ‘all’}, default ‘any’

2114 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

If the Index is a MultiIndex, drop the value when any or all levels are NaN.

Returns

valid [Index]

34.6.1.36 pandas.Index.duplicated

Index.duplicated(keep=’first’)
Indicate duplicate index values.

Duplicated values are indicated as True values in the resulting array. Either all duplicates, all except the
first, or all except the last occurrence of duplicates can be indicated.

Parameters keep : {‘first’, ‘last’, False}, default ‘first’

The value or values in a set of duplicates to mark as missing.

• ‘first’ : Mark duplicates as True except for the first occurrence.

• ‘last’ : Mark duplicates as True except for the last occurrence.

• False : Mark all duplicates as True.

Returns

numpy.ndarray

See also:

pandas.Series.duplicated Equivalent method on pandas.Series

pandas.DataFrame.duplicated Equivalent method on pandas.DataFrame

pandas.Index.drop_duplicates Remove duplicate values from Index

Examples

By default, for each set of duplicated values, the first occurrence is set to False and all others to True:

>>> idx = pd.Index(['lama', 'cow', 'lama', 'beetle', 'lama'])
>>> idx.duplicated()
array([False, False, True, False, True])

which is equivalent to

>>> idx.duplicated(keep='first')
array([False, False, True, False, True])

By using ‘last’, the last occurrence of each set of duplicated values is set on False and all others on True:

>>> idx.duplicated(keep='last')
array([True, False, True, False, False])

By setting keep on False, all duplicates are True:

>>> idx.duplicated(keep=False)
array([True, False, True, False, True])

34.6. Index 2115

pandas: powerful Python data analysis toolkit, Release 0.23.4

34.6.1.37 pandas.Index.equals

Index.equals(other)
Determines if two Index objects contain the same elements.

34.6.1.38 pandas.Index.factorize

Index.factorize(sort=False, na_sentinel=-1)
Encode the object as an enumerated type or categorical variable.

This method is useful for obtaining a numeric representation of an array when all that matters is identifying
distinct values. factorize is available as both a top-level function pandas.factorize(), and as a
method Series.factorize() and Index.factorize().

Parameters sort : boolean, default False

Sort uniques and shuffle labels to maintain the relationship.

na_sentinel : int, default -1

Value to mark “not found”.

Returns labels : ndarray

An integer ndarray that’s an indexer into uniques. uniques.take(labels)
will have the same values as values.

uniques : ndarray, Index, or Categorical

The unique valid values. When values is Categorical, uniques is a Categorical.
When values is some other pandas object, an Index is returned. Otherwise, a 1-D
ndarray is returned.

Note: Even if there’s a missing value in values, uniques will not contain an entry
for it.

See also:

pandas.cut Discretize continuous-valued array.

pandas.unique Find the unique valuse in an array.

Examples

These examples all show factorize as a top-level method like pd.factorize(values). The results
are identical for methods like Series.factorize().

>>> labels, uniques = pd.factorize(['b', 'b', 'a', 'c', 'b'])
>>> labels
array([0, 0, 1, 2, 0])
>>> uniques
array(['b', 'a', 'c'], dtype=object)

With sort=True, the uniques will be sorted, and labels will be shuffled so that the relationship is the
maintained.

2116 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

>>> labels, uniques = pd.factorize(['b', 'b', 'a', 'c', 'b'], sort=True)
>>> labels
array([1, 1, 0, 2, 1])
>>> uniques
array(['a', 'b', 'c'], dtype=object)

Missing values are indicated in labels with na_sentinel (-1 by default). Note that missing values are
never included in uniques.

>>> labels, uniques = pd.factorize(['b', None, 'a', 'c', 'b'])
>>> labels
array([0, -1, 1, 2, 0])
>>> uniques
array(['b', 'a', 'c'], dtype=object)

Thus far, we’ve only factorized lists (which are internally coerced to NumPy arrays). When factorizing
pandas objects, the type of uniques will differ. For Categoricals, a Categorical is returned.

>>> cat = pd.Categorical(['a', 'a', 'c'], categories=['a', 'b', 'c'])
>>> labels, uniques = pd.factorize(cat)
>>> labels
array([0, 0, 1])
>>> uniques
[a, c]
Categories (3, object): [a, b, c]

Notice that 'b' is in uniques.categories, desipite not being present in cat.values.

For all other pandas objects, an Index of the appropriate type is returned.

>>> cat = pd.Series(['a', 'a', 'c'])
>>> labels, uniques = pd.factorize(cat)
>>> labels
array([0, 0, 1])
>>> uniques
Index(['a', 'c'], dtype='object')

34.6.1.39 pandas.Index.fillna

Index.fillna(value=None, downcast=None)
Fill NA/NaN values with the specified value

Parameters value : scalar

Scalar value to use to fill holes (e.g. 0). This value cannot be a list-likes.

downcast : dict, default is None

a dict of item->dtype of what to downcast if possible, or the string ‘infer’ which
will try to downcast to an appropriate equal type (e.g. float64 to int64 if possible)

Returns

filled [%(klass)s]

34.6. Index 2117

pandas: powerful Python data analysis toolkit, Release 0.23.4

34.6.1.40 pandas.Index.format

Index.format(name=False, formatter=None, **kwargs)
Render a string representation of the Index

34.6.1.41 pandas.Index.get_duplicates

Index.get_duplicates()
Extract duplicated index elements.

Returns a sorted list of index elements which appear more than once in the index.

Deprecated since version 0.23.0: Use idx[idx.duplicated()].unique() instead

Returns array-like

List of duplicated indexes.

See also:

Index.duplicated Return boolean array denoting duplicates.

Index.drop_duplicates Return Index with duplicates removed.

Examples

Works on different Index of types.

>>> pd.Index([1, 2, 2, 3, 3, 3, 4]).get_duplicates()
[2, 3]
>>> pd.Index([1., 2., 2., 3., 3., 3., 4.]).get_duplicates()
[2.0, 3.0]
>>> pd.Index(['a', 'b', 'b', 'c', 'c', 'c', 'd']).get_duplicates()
['b', 'c']

Note that for a DatetimeIndex, it does not return a list but a new DatetimeIndex:

>>> dates = pd.to_datetime(['2018-01-01', '2018-01-02', '2018-01-03',
... '2018-01-03', '2018-01-04', '2018-01-04'],
... format='%Y-%m-%d')
>>> pd.Index(dates).get_duplicates()
DatetimeIndex(['2018-01-03', '2018-01-04'],

dtype='datetime64[ns]', freq=None)

Sorts duplicated elements even when indexes are unordered.

>>> pd.Index([1, 2, 3, 2, 3, 4, 3]).get_duplicates()
[2, 3]

Return empty array-like structure when all elements are unique.

>>> pd.Index([1, 2, 3, 4]).get_duplicates()
[]
>>> dates = pd.to_datetime(['2018-01-01', '2018-01-02', '2018-01-03'],
... format='%Y-%m-%d')
>>> pd.Index(dates).get_duplicates()
DatetimeIndex([], dtype='datetime64[ns]', freq=None)

2118 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

34.6.1.42 pandas.Index.get_indexer

Index.get_indexer(target, method=None, limit=None, tolerance=None)
Compute indexer and mask for new index given the current index. The indexer should be then used as an
input to ndarray.take to align the current data to the new index.

Parameters

target [Index]

method : {None, ‘pad’/’ffill’, ‘backfill’/’bfill’, ‘nearest’}, optional

• default: exact matches only.

• pad / ffill: find the PREVIOUS index value if no exact match.

• backfill / bfill: use NEXT index value if no exact match

• nearest: use the NEAREST index value if no exact match. Tied distances are broken
by preferring the larger index value.

limit : int, optional

Maximum number of consecutive labels in target to match for inexact
matches.

tolerance : optional

Maximum distance between original and new labels for inexact matches.
The values of the index at the matching locations most satisfy the equation
abs(index[indexer] - target) <= tolerance.

Tolerance may be a scalar value, which applies the same tolerance to all values,
or list-like, which applies variable tolerance per element. List-like includes list,
tuple, array, Series, and must be the same size as the index and its dtype must
exactly match the index’s type.

New in version 0.21.0: (list-like tolerance)

Returns indexer : ndarray of int

Integers from 0 to n - 1 indicating that the index at these positions matches the
corresponding target values. Missing values in the target are marked by -1.

Examples

>>> indexer = index.get_indexer(new_index)
>>> new_values = cur_values.take(indexer)

34.6.1.43 pandas.Index.get_indexer_for

Index.get_indexer_for(target, **kwargs)
guaranteed return of an indexer even when non-unique This dispatches to get_indexer or
get_indexer_nonunique as appropriate

34.6. Index 2119

pandas: powerful Python data analysis toolkit, Release 0.23.4

34.6.1.44 pandas.Index.get_indexer_non_unique

Index.get_indexer_non_unique(target)
Compute indexer and mask for new index given the current index. The indexer should be then used as an
input to ndarray.take to align the current data to the new index.

Parameters

target [Index]

Returns indexer : ndarray of int

Integers from 0 to n - 1 indicating that the index at these positions matches the
corresponding target values. Missing values in the target are marked by -1.

missing : ndarray of int

An indexer into the target of the values not found. These correspond to the -1 in
the indexer array

34.6.1.45 pandas.Index.get_level_values

Index.get_level_values(level)
Return an Index of values for requested level, equal to the length of the index.

Parameters level : int or str

level is either the integer position of the level in the MultiIndex, or the name
of the level.

Returns values : Index

self, as there is only one level in the Index.

See also:

pandas.MultiIndex.get_level_values get values for a level of a MultiIndex

34.6.1.46 pandas.Index.get_loc

Index.get_loc(key, method=None, tolerance=None)
Get integer location, slice or boolean mask for requested label.

Parameters

key [label]

method : {None, ‘pad’/’ffill’, ‘backfill’/’bfill’, ‘nearest’}, optional

• default: exact matches only.

• pad / ffill: find the PREVIOUS index value if no exact match.

• backfill / bfill: use NEXT index value if no exact match

• nearest: use the NEAREST index value if no exact match. Tied distances are broken
by preferring the larger index value.

tolerance : optional

2120 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

Maximum distance from index value for inexact matches. The value of the index
at the matching location most satisfy the equation abs(index[loc] - key)
<= tolerance.

Tolerance may be a scalar value, which applies the same tolerance to all values,
or list-like, which applies variable tolerance per element. List-like includes list,
tuple, array, Series, and must be the same size as the index and its dtype must
exactly match the index’s type.

New in version 0.21.0: (list-like tolerance)

Returns

loc [int if unique index, slice if monotonic index, else mask]

Examples

>>> unique_index = pd.Index(list('abc'))
>>> unique_index.get_loc('b')
1

>>> monotonic_index = pd.Index(list('abbc'))
>>> monotonic_index.get_loc('b')
slice(1, 3, None)

>>> non_monotonic_index = pd.Index(list('abcb'))
>>> non_monotonic_index.get_loc('b')
array([False, True, False, True], dtype=bool)

34.6.1.47 pandas.Index.get_slice_bound

Index.get_slice_bound(label, side, kind)
Calculate slice bound that corresponds to given label.

Returns leftmost (one-past-the-rightmost if side=='right') position of given label.

Parameters

label [object]

side [{‘left’, ‘right’}]

kind [{‘ix’, ‘loc’, ‘getitem’}]

34.6.1.48 pandas.Index.get_value

Index.get_value(series, key)
Fast lookup of value from 1-dimensional ndarray. Only use this if you know what you’re doing

34.6.1.49 pandas.Index.get_values

Index.get_values()
Return Index data as an numpy.ndarray.

Returns numpy.ndarray

34.6. Index 2121

pandas: powerful Python data analysis toolkit, Release 0.23.4

A one-dimensional numpy array of the Index values.

See also:

Index.values The attribute that get_values wraps.

Examples

Getting the Index values of a DataFrame:

>>> df = pd.DataFrame([[1, 2, 3], [4, 5, 6], [7, 8, 9]],
... index=['a', 'b', 'c'], columns=['A', 'B', 'C'])
>>> df

A B C
a 1 2 3
b 4 5 6
c 7 8 9
>>> df.index.get_values()
array(['a', 'b', 'c'], dtype=object)

Standalone Index values:

>>> idx = pd.Index(['1', '2', '3'])
>>> idx.get_values()
array(['1', '2', '3'], dtype=object)

MultiIndex arrays also have only one dimension:

>>> midx = pd.MultiIndex.from_arrays([[1, 2, 3], ['a', 'b', 'c']],
... names=('number', 'letter'))
>>> midx.get_values()
array([(1, 'a'), (2, 'b'), (3, 'c')], dtype=object)
>>> midx.get_values().ndim
1

34.6.1.50 pandas.Index.groupby

Index.groupby(values)
Group the index labels by a given array of values.

Parameters values : array

Values used to determine the groups.

Returns groups : dict

{group name -> group labels}

34.6.1.51 pandas.Index.identical

Index.identical(other)
Similar to equals, but check that other comparable attributes are also equal

2122 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

34.6.1.52 pandas.Index.insert

Index.insert(loc, item)
Make new Index inserting new item at location. Follows Python list.append semantics for negative values

Parameters

loc [int]

item [object]

Returns

new_index [Index]

34.6.1.53 pandas.Index.intersection

Index.intersection(other)
Form the intersection of two Index objects.

This returns a new Index with elements common to the index and other, preserving the order of the calling
index.

Parameters

other [Index or array-like]

Returns

intersection [Index]

Examples

>>> idx1 = pd.Index([1, 2, 3, 4])
>>> idx2 = pd.Index([3, 4, 5, 6])
>>> idx1.intersection(idx2)
Int64Index([3, 4], dtype='int64')

34.6.1.54 pandas.Index.is_

Index.is_(other)
More flexible, faster check like is but that works through views

Note: this is not the same as Index.identical(), which checks that metadata is also the same.

Parameters other : object

other object to compare against.

Returns

True if both have same underlying data, False otherwise [bool]

34.6.1.55 pandas.Index.is_categorical

Index.is_categorical()
Check if the Index holds categorical data.

34.6. Index 2123

pandas: powerful Python data analysis toolkit, Release 0.23.4

Returns boolean

True if the Index is categorical.

See also:

CategoricalIndex Index for categorical data.

Examples

>>> idx = pd.Index(["Watermelon", "Orange", "Apple",
... "Watermelon"]).astype("category")
>>> idx.is_categorical()
True

>>> idx = pd.Index([1, 3, 5, 7])
>>> idx.is_categorical()
False

>>> s = pd.Series(["Peter", "Victor", "Elisabeth", "Mar"])
>>> s
0 Peter
1 Victor
2 Elisabeth
3 Mar
dtype: object
>>> s.index.is_categorical()
False

34.6.1.56 pandas.Index.isin

Index.isin(values, level=None)
Return a boolean array where the index values are in values.

Compute boolean array of whether each index value is found in the passed set of values. The length of
the returned boolean array matches the length of the index.

Parameters values : set or list-like

Sought values.

New in version 0.18.1: Support for values as a set.

level : str or int, optional

Name or position of the index level to use (if the index is a MultiIndex).

Returns is_contained : ndarray

NumPy array of boolean values.

See also:

Series.isin Same for Series.

DataFrame.isin Same method for DataFrames.

2124 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

Notes

In the case of MultiIndex you must either specify values as a list-like object containing tuples that are the
same length as the number of levels, or specify level. Otherwise it will raise a ValueError.

If level is specified:

• if it is the name of one and only one index level, use that level;

• otherwise it should be a number indicating level position.

Examples

>>> idx = pd.Index([1,2,3])
>>> idx
Int64Index([1, 2, 3], dtype='int64')

Check whether each index value in a list of values. >>> idx.isin([1, 4]) array([True, False, False])

>>> midx = pd.MultiIndex.from_arrays([[1,2,3],
... ['red', 'blue', 'green']],
... names=('number', 'color'))
>>> midx
MultiIndex(levels=[[1, 2, 3], ['blue', 'green', 'red']],

labels=[[0, 1, 2], [2, 0, 1]],
names=['number', 'color'])

Check whether the strings in the ‘color’ level of the MultiIndex are in a list of colors.

>>> midx.isin(['red', 'orange', 'yellow'], level='color')
array([True, False, False])

To check across the levels of a MultiIndex, pass a list of tuples:

>>> midx.isin([(1, 'red'), (3, 'red')])
array([True, False, False])

For a DatetimeIndex, string values in values are converted to Timestamps.

>>> dates = ['2000-03-11', '2000-03-12', '2000-03-13']
>>> dti = pd.to_datetime(dates)
>>> dti
DatetimeIndex(['2000-03-11', '2000-03-12', '2000-03-13'],
dtype='datetime64[ns]', freq=None)

>>> dti.isin(['2000-03-11'])
array([True, False, False])

34.6.1.57 pandas.Index.isna

Index.isna()
Detect missing values.

Return a boolean same-sized object indicating if the values are NA. NA values, such as None, numpy.
NaN or pd.NaT, get mapped to True values. Everything else get mapped to False values. Charac-

34.6. Index 2125

pandas: powerful Python data analysis toolkit, Release 0.23.4

ters such as empty strings ‘’ or numpy.inf are not considered NA values (unless you set pandas.
options.mode.use_inf_as_na = True).

New in version 0.20.0.

Returns numpy.ndarray

A boolean array of whether my values are NA

See also:

pandas.Index.notna boolean inverse of isna.

pandas.Index.dropna omit entries with missing values.

pandas.isna top-level isna.

Series.isna detect missing values in Series object.

Examples

Show which entries in a pandas.Index are NA. The result is an array.

>>> idx = pd.Index([5.2, 6.0, np.NaN])
>>> idx
Float64Index([5.2, 6.0, nan], dtype='float64')
>>> idx.isna()
array([False, False, True], dtype=bool)

Empty strings are not considered NA values. None is considered an NA value.

>>> idx = pd.Index(['black', '', 'red', None])
>>> idx
Index(['black', '', 'red', None], dtype='object')
>>> idx.isna()
array([False, False, False, True], dtype=bool)

For datetimes, NaT (Not a Time) is considered as an NA value.

>>> idx = pd.DatetimeIndex([pd.Timestamp('1940-04-25'),
... pd.Timestamp(''), None, pd.NaT])
>>> idx
DatetimeIndex(['1940-04-25', 'NaT', 'NaT', 'NaT'],

dtype='datetime64[ns]', freq=None)
>>> idx.isna()
array([False, True, True, True], dtype=bool)

34.6.1.58 pandas.Index.isnull

Index.isnull()
Detect missing values.

Return a boolean same-sized object indicating if the values are NA. NA values, such as None, numpy.
NaN or pd.NaT, get mapped to True values. Everything else get mapped to False values. Charac-
ters such as empty strings ‘’ or numpy.inf are not considered NA values (unless you set pandas.
options.mode.use_inf_as_na = True).

New in version 0.20.0.

2126 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

Returns numpy.ndarray

A boolean array of whether my values are NA

See also:

pandas.Index.notna boolean inverse of isna.

pandas.Index.dropna omit entries with missing values.

pandas.isna top-level isna.

Series.isna detect missing values in Series object.

Examples

Show which entries in a pandas.Index are NA. The result is an array.

>>> idx = pd.Index([5.2, 6.0, np.NaN])
>>> idx
Float64Index([5.2, 6.0, nan], dtype='float64')
>>> idx.isna()
array([False, False, True], dtype=bool)

Empty strings are not considered NA values. None is considered an NA value.

>>> idx = pd.Index(['black', '', 'red', None])
>>> idx
Index(['black', '', 'red', None], dtype='object')
>>> idx.isna()
array([False, False, False, True], dtype=bool)

For datetimes, NaT (Not a Time) is considered as an NA value.

>>> idx = pd.DatetimeIndex([pd.Timestamp('1940-04-25'),
... pd.Timestamp(''), None, pd.NaT])
>>> idx
DatetimeIndex(['1940-04-25', 'NaT', 'NaT', 'NaT'],

dtype='datetime64[ns]', freq=None)
>>> idx.isna()
array([False, True, True, True], dtype=bool)

34.6.1.59 pandas.Index.item

Index.item()
return the first element of the underlying data as a python scalar

34.6.1.60 pandas.Index.join

Index.join(other, how=’left’, level=None, return_indexers=False, sort=False)
this is an internal non-public method

Compute join_index and indexers to conform data structures to the new index.

Parameters

other [Index]

34.6. Index 2127

pandas: powerful Python data analysis toolkit, Release 0.23.4

how [{‘left’, ‘right’, ‘inner’, ‘outer’}]

level [int or level name, default None]

return_indexers [boolean, default False]

sort : boolean, default False

Sort the join keys lexicographically in the result Index. If False, the order of the
join keys depends on the join type (how keyword)

New in version 0.20.0.

Returns

join_index, (left_indexer, right_indexer)

34.6.1.61 pandas.Index.map

Index.map(mapper, na_action=None)
Map values using input correspondence (a dict, Series, or function).

Parameters mapper : function, dict, or Series

Mapping correspondence.

na_action : {None, ‘ignore’}

If ‘ignore’, propagate NA values, without passing them to the mapping corre-
spondence.

Returns applied : Union[Index, MultiIndex], inferred

The output of the mapping function applied to the index. If the function returns a
tuple with more than one element a MultiIndex will be returned.

34.6.1.62 pandas.Index.max

Index.max()
Return the maximum value of the Index.

Returns scalar

Maximum value.

See also:

Index.min Return the minimum value in an Index.

Series.max Return the maximum value in a Series.

DataFrame.max Return the maximum values in a DataFrame.

Examples

>>> idx = pd.Index([3, 2, 1])
>>> idx.max()
3

2128 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

>>> idx = pd.Index(['c', 'b', 'a'])
>>> idx.max()
'c'

For a MultiIndex, the maximum is determined lexicographically.

>>> idx = pd.MultiIndex.from_product([('a', 'b'), (2, 1)])
>>> idx.max()
('b', 2)

34.6.1.63 pandas.Index.memory_usage

Index.memory_usage(deep=False)
Memory usage of the values

Parameters deep : bool

Introspect the data deeply, interrogate object dtypes for system-level memory
consumption

Returns

bytes used

See also:

numpy.ndarray.nbytes

Notes

Memory usage does not include memory consumed by elements that are not components of the array if
deep=False or if used on PyPy

34.6.1.64 pandas.Index.min

Index.min()
Return the minimum value of the Index.

Returns scalar

Minimum value.

See also:

Index.max Return the maximum value of the object.

Series.min Return the minimum value in a Series.

DataFrame.min Return the minimum values in a DataFrame.

Examples

>>> idx = pd.Index([3, 2, 1])
>>> idx.min()
1

34.6. Index 2129

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.nbytes.html#numpy.ndarray.nbytes

pandas: powerful Python data analysis toolkit, Release 0.23.4

>>> idx = pd.Index(['c', 'b', 'a'])
>>> idx.min()
'a'

For a MultiIndex, the minimum is determined lexicographically.

>>> idx = pd.MultiIndex.from_product([('a', 'b'), (2, 1)])
>>> idx.min()
('a', 1)

34.6.1.65 pandas.Index.notna

Index.notna()
Detect existing (non-missing) values.

Return a boolean same-sized object indicating if the values are not NA. Non-missing values get mapped to
True. Characters such as empty strings '' or numpy.inf are not considered NA values (unless you set
pandas.options.mode.use_inf_as_na = True). NA values, such as None or numpy.NaN,
get mapped to False values.

New in version 0.20.0.

Returns numpy.ndarray

Boolean array to indicate which entries are not NA.

See also:

Index.notnull alias of notna

Index.isna inverse of notna

pandas.notna top-level notna

Examples

Show which entries in an Index are not NA. The result is an array.

>>> idx = pd.Index([5.2, 6.0, np.NaN])
>>> idx
Float64Index([5.2, 6.0, nan], dtype='float64')
>>> idx.notna()
array([True, True, False])

Empty strings are not considered NA values. None is considered a NA value.

>>> idx = pd.Index(['black', '', 'red', None])
>>> idx
Index(['black', '', 'red', None], dtype='object')
>>> idx.notna()
array([True, True, True, False])

34.6.1.66 pandas.Index.notnull

Index.notnull()
Detect existing (non-missing) values.

2130 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

Return a boolean same-sized object indicating if the values are not NA. Non-missing values get mapped to
True. Characters such as empty strings '' or numpy.inf are not considered NA values (unless you set
pandas.options.mode.use_inf_as_na = True). NA values, such as None or numpy.NaN,
get mapped to False values.

New in version 0.20.0.

Returns numpy.ndarray

Boolean array to indicate which entries are not NA.

See also:

Index.notnull alias of notna

Index.isna inverse of notna

pandas.notna top-level notna

Examples

Show which entries in an Index are not NA. The result is an array.

>>> idx = pd.Index([5.2, 6.0, np.NaN])
>>> idx
Float64Index([5.2, 6.0, nan], dtype='float64')
>>> idx.notna()
array([True, True, False])

Empty strings are not considered NA values. None is considered a NA value.

>>> idx = pd.Index(['black', '', 'red', None])
>>> idx
Index(['black', '', 'red', None], dtype='object')
>>> idx.notna()
array([True, True, True, False])

34.6.1.67 pandas.Index.nunique

Index.nunique(dropna=True)
Return number of unique elements in the object.

Excludes NA values by default.

Parameters dropna : boolean, default True

Don’t include NaN in the count.

Returns

nunique [int]

34.6.1.68 pandas.Index.putmask

Index.putmask(mask, value)
return a new Index of the values set with the mask

See also:

34.6. Index 2131

pandas: powerful Python data analysis toolkit, Release 0.23.4

numpy.ndarray.putmask

34.6.1.69 pandas.Index.ravel

Index.ravel(order=’C’)
return an ndarray of the flattened values of the underlying data

See also:

numpy.ndarray.ravel

34.6.1.70 pandas.Index.reindex

Index.reindex(target, method=None, level=None, limit=None, tolerance=None)
Create index with target’s values (move/add/delete values as necessary)

Parameters

target [an iterable]

Returns new_index : pd.Index

Resulting index

indexer : np.ndarray or None

Indices of output values in original index

34.6.1.71 pandas.Index.rename

Index.rename(name, inplace=False)
Set new names on index. Defaults to returning new index.

Parameters name : str or list

name to set

inplace : bool

if True, mutates in place

Returns

new index (of same type and class. . . etc) [if inplace, returns None]

34.6.1.72 pandas.Index.repeat

Index.repeat(repeats, *args, **kwargs)
Repeat elements of an Index.

Returns a new index where each element of the current index is repeated consecutively a given number of
times.

Parameters repeats : int

The number of repetitions for each element.

**kwargs

Additional keywords have no effect but might be accepted for compatibility with
numpy.

2132 Chapter 34. API Reference

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.ravel.html#numpy.ndarray.ravel

pandas: powerful Python data analysis toolkit, Release 0.23.4

Returns pandas.Index

Newly created Index with repeated elements.

See also:

Series.repeat Equivalent function for Series

numpy.repeat Underlying implementation

Examples

>>> idx = pd.Index([1, 2, 3])
>>> idx
Int64Index([1, 2, 3], dtype='int64')
>>> idx.repeat(2)
Int64Index([1, 1, 2, 2, 3, 3], dtype='int64')
>>> idx.repeat(3)
Int64Index([1, 1, 1, 2, 2, 2, 3, 3, 3], dtype='int64')

34.6.1.73 pandas.Index.searchsorted

Index.searchsorted(value, side=’left’, sorter=None)
Find indices where elements should be inserted to maintain order.

Find the indices into a sorted IndexOpsMixin self such that, if the corresponding elements in value were
inserted before the indices, the order of self would be preserved.

Parameters value : array_like

Values to insert into self.

side : {‘left’, ‘right’}, optional

If ‘left’, the index of the first suitable location found is given. If ‘right’, return the
last such index. If there is no suitable index, return either 0 or N (where N is the
length of self).

sorter : 1-D array_like, optional

Optional array of integer indices that sort self into ascending order. They are
typically the result of np.argsort.

Returns indices : array of ints

Array of insertion points with the same shape as value.

See also:

numpy.searchsorted

Notes

Binary search is used to find the required insertion points.

34.6. Index 2133

https://docs.scipy.org/doc/numpy/reference/generated/numpy.repeat.html#numpy.repeat
https://docs.scipy.org/doc/numpy/reference/generated/numpy.searchsorted.html#numpy.searchsorted

pandas: powerful Python data analysis toolkit, Release 0.23.4

Examples

>>> x = pd.Series([1, 2, 3])
>>> x
0 1
1 2
2 3
dtype: int64

>>> x.searchsorted(4)
array([3])

>>> x.searchsorted([0, 4])
array([0, 3])

>>> x.searchsorted([1, 3], side='left')
array([0, 2])

>>> x.searchsorted([1, 3], side='right')
array([1, 3])

>>> x = pd.Categorical(['apple', 'bread', 'bread',
'cheese', 'milk'], ordered=True)

[apple, bread, bread, cheese, milk]
Categories (4, object): [apple < bread < cheese < milk]

>>> x.searchsorted('bread')
array([1]) # Note: an array, not a scalar

>>> x.searchsorted(['bread'], side='right')
array([3])

34.6.1.74 pandas.Index.set_names

Index.set_names(names, level=None, inplace=False)
Set new names on index. Defaults to returning new index.

Parameters names : str or sequence

name(s) to set

level : int, level name, or sequence of int/level names (default None)

If the index is a MultiIndex (hierarchical), level(s) to set (None for all levels).
Otherwise level must be None

inplace : bool

if True, mutates in place

Returns

new index (of same type and class. . . etc) [if inplace, returns None]

2134 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

Examples

>>> Index([1, 2, 3, 4]).set_names('foo')
Int64Index([1, 2, 3, 4], dtype='int64', name='foo')
>>> Index([1, 2, 3, 4]).set_names(['foo'])
Int64Index([1, 2, 3, 4], dtype='int64', name='foo')
>>> idx = MultiIndex.from_tuples([(1, u'one'), (1, u'two'),

(2, u'one'), (2, u'two')],
names=['foo', 'bar'])

>>> idx.set_names(['baz', 'quz'])
MultiIndex(levels=[[1, 2], [u'one', u'two']],

labels=[[0, 0, 1, 1], [0, 1, 0, 1]],
names=[u'baz', u'quz'])

>>> idx.set_names('baz', level=0)
MultiIndex(levels=[[1, 2], [u'one', u'two']],

labels=[[0, 0, 1, 1], [0, 1, 0, 1]],
names=[u'baz', u'bar'])

34.6.1.75 pandas.Index.set_value

Index.set_value(arr, key, value)
Fast lookup of value from 1-dimensional ndarray. Only use this if you know what you’re doing

34.6.1.76 pandas.Index.shift

Index.shift(periods=1, freq=None)
Shift index by desired number of time frequency increments.

This method is for shifting the values of datetime-like indexes by a specified time increment a given
number of times.

Parameters periods : int, default 1

Number of periods (or increments) to shift by, can be positive or negative.

freq : pandas.DateOffset, pandas.Timedelta or string, optional

Frequency increment to shift by. If None, the index is shifted by its own freq
attribute. Offset aliases are valid strings, e.g., ‘D’, ‘W’, ‘M’ etc.

Returns pandas.Index

shifted index

See also:

Series.shift Shift values of Series.

Notes

This method is only implemented for datetime-like index classes, i.e., DatetimeIndex, PeriodIndex and
TimedeltaIndex.

34.6. Index 2135

pandas: powerful Python data analysis toolkit, Release 0.23.4

Examples

Put the first 5 month starts of 2011 into an index.

>>> month_starts = pd.date_range('1/1/2011', periods=5, freq='MS')
>>> month_starts
DatetimeIndex(['2011-01-01', '2011-02-01', '2011-03-01', '2011-04-01',

'2011-05-01'],
dtype='datetime64[ns]', freq='MS')

Shift the index by 10 days.

>>> month_starts.shift(10, freq='D')
DatetimeIndex(['2011-01-11', '2011-02-11', '2011-03-11', '2011-04-11',

'2011-05-11'],
dtype='datetime64[ns]', freq=None)

The default value of freq is the freq attribute of the index, which is ‘MS’ (month start) in this example.

>>> month_starts.shift(10)
DatetimeIndex(['2011-11-01', '2011-12-01', '2012-01-01', '2012-02-01',

'2012-03-01'],
dtype='datetime64[ns]', freq='MS')

34.6.1.77 pandas.Index.slice_indexer

Index.slice_indexer(start=None, end=None, step=None, kind=None)
For an ordered or unique index, compute the slice indexer for input labels and step.

Parameters start : label, default None

If None, defaults to the beginning

end : label, default None

If None, defaults to the end

step [int, default None]

kind [string, default None]

Returns

indexer [slice]

Raises KeyError : If key does not exist, or key is not unique and index is

not ordered.

Notes

This function assumes that the data is sorted, so use at your own peril

2136 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

Examples

This is a method on all index types. For example you can do:

>>> idx = pd.Index(list('abcd'))
>>> idx.slice_indexer(start='b', end='c')
slice(1, 3)

>>> idx = pd.MultiIndex.from_arrays([list('abcd'), list('efgh')])
>>> idx.slice_indexer(start='b', end=('c', 'g'))
slice(1, 3)

34.6.1.78 pandas.Index.slice_locs

Index.slice_locs(start=None, end=None, step=None, kind=None)
Compute slice locations for input labels.

Parameters start : label, default None

If None, defaults to the beginning

end : label, default None

If None, defaults to the end

step : int, defaults None

If None, defaults to 1

kind [{‘ix’, ‘loc’, ‘getitem’} or None]

Returns

start, end [int]

See also:

Index.get_loc Get location for a single label

Notes

This method only works if the index is monotonic or unique.

Examples

>>> idx = pd.Index(list('abcd'))
>>> idx.slice_locs(start='b', end='c')
(1, 3)

34.6. Index 2137

pandas: powerful Python data analysis toolkit, Release 0.23.4

34.6.1.79 pandas.Index.sort_values

Index.sort_values(return_indexer=False, ascending=True)
Return a sorted copy of the index.

Return a sorted copy of the index, and optionally return the indices that sorted the index itself.

Parameters return_indexer : bool, default False

Should the indices that would sort the index be returned.

ascending : bool, default True

Should the index values be sorted in an ascending order.

Returns sorted_index : pandas.Index

Sorted copy of the index.

indexer : numpy.ndarray, optional

The indices that the index itself was sorted by.

See also:

pandas.Series.sort_values Sort values of a Series.

pandas.DataFrame.sort_values Sort values in a DataFrame.

Examples

>>> idx = pd.Index([10, 100, 1, 1000])
>>> idx
Int64Index([10, 100, 1, 1000], dtype='int64')

Sort values in ascending order (default behavior).

>>> idx.sort_values()
Int64Index([1, 10, 100, 1000], dtype='int64')

Sort values in descending order, and also get the indices idx was sorted by.

>>> idx.sort_values(ascending=False, return_indexer=True)
(Int64Index([1000, 100, 10, 1], dtype='int64'), array([3, 1, 0, 2]))

34.6.1.80 pandas.Index.sortlevel

Index.sortlevel(level=None, ascending=True, sort_remaining=None)
For internal compatibility with with the Index API

Sort the Index. This is for compat with MultiIndex

Parameters ascending : boolean, default True

False to sort in descending order

level, sort_remaining are compat parameters

Returns

2138 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

sorted_index [Index]

34.6.1.81 pandas.Index.str

Index.str()
Vectorized string functions for Series and Index. NAs stay NA unless handled otherwise by a particular
method. Patterned after Python’s string methods, with some inspiration from R’s stringr package.

Examples

>>> s.str.split('_')
>>> s.str.replace('_', '')

34.6.1.82 pandas.Index.summary

Index.summary(name=None)
Return a summarized representation .. deprecated:: 0.23.0

34.6.1.83 pandas.Index.symmetric_difference

Index.symmetric_difference(other, result_name=None)
Compute the symmetric difference of two Index objects. It’s sorted if sorting is possible.

Parameters

other [Index or array-like]

result_name [str]

Returns

symmetric_difference [Index]

Notes

symmetric_difference contains elements that appear in either idx1 or idx2 but not both. Equiv-
alent to the Index created by idx1.difference(idx2) | idx2.difference(idx1) with du-
plicates dropped.

Examples

>>> idx1 = Index([1, 2, 3, 4])
>>> idx2 = Index([2, 3, 4, 5])
>>> idx1.symmetric_difference(idx2)
Int64Index([1, 5], dtype='int64')

You can also use the ^ operator:

>>> idx1 ^ idx2
Int64Index([1, 5], dtype='int64')

34.6. Index 2139

pandas: powerful Python data analysis toolkit, Release 0.23.4

34.6.1.84 pandas.Index.take

Index.take(indices, axis=0, allow_fill=True, fill_value=None, **kwargs)
return a new Index of the values selected by the indices

For internal compatibility with numpy arrays.

Parameters indices : list

Indices to be taken

axis : int, optional

The axis over which to select values, always 0.

allow_fill [bool, default True]

fill_value : bool, default None

If allow_fill=True and fill_value is not None, indices specified by -1 is regarded
as NA. If Index doesn’t hold NA, raise ValueError

See also:

numpy.ndarray.take

34.6.1.85 pandas.Index.to_frame

Index.to_frame(index=True)
Create a DataFrame with a column containing the Index.

New in version 0.21.0.

Parameters index : boolean, default True

Set the index of the returned DataFrame as the original Index.

Returns DataFrame

DataFrame containing the original Index data.

See also:

Index.to_series Convert an Index to a Series.

Series.to_frame Convert Series to DataFrame.

Examples

>>> idx = pd.Index(['Ant', 'Bear', 'Cow'], name='animal')
>>> idx.to_frame()

animal
animal
Ant Ant
Bear Bear
Cow Cow

By default, the original Index is reused. To enforce a new Index:

2140 Chapter 34. API Reference

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.take.html#numpy.ndarray.take

pandas: powerful Python data analysis toolkit, Release 0.23.4

>>> idx.to_frame(index=False)
animal

0 Ant
1 Bear
2 Cow

34.6.1.86 pandas.Index.to_native_types

Index.to_native_types(slicer=None, **kwargs)
Format specified values of self and return them.

Parameters slicer : int, array-like

An indexer into self that specifies which values are used in the formatting process.

kwargs : dict

Options for specifying how the values should be formatted. These options include
the following:

1. na_rep [str] The value that serves as a placeholder for NULL values

2. quoting [bool or None] Whether or not there are quoted values in self

3. date_format [str] The format used to represent date-like values

34.6.1.87 pandas.Index.to_series

Index.to_series(index=None, name=None)
Create a Series with both index and values equal to the index keys useful with map for returning an indexer
based on an index

Parameters index : Index, optional

index of resulting Series. If None, defaults to original index

name : string, optional

name of resulting Series. If None, defaults to name of original index

Returns

Series [dtype will be based on the type of the Index values.]

34.6.1.88 pandas.Index.tolist

Index.tolist()
Return a list of the values.

These are each a scalar type, which is a Python scalar (for str, int, float) or a pandas scalar (for Times-
tamp/Timedelta/Interval/Period)

See also:

numpy.ndarray.tolist

34.6. Index 2141

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.tolist.html#numpy.ndarray.tolist

pandas: powerful Python data analysis toolkit, Release 0.23.4

34.6.1.89 pandas.Index.transpose

Index.transpose(*args, **kwargs)
return the transpose, which is by definition self

34.6.1.90 pandas.Index.union

Index.union(other)
Form the union of two Index objects and sorts if possible.

Parameters

other [Index or array-like]

Returns

union [Index]

Examples

>>> idx1 = pd.Index([1, 2, 3, 4])
>>> idx2 = pd.Index([3, 4, 5, 6])
>>> idx1.union(idx2)
Int64Index([1, 2, 3, 4, 5, 6], dtype='int64')

34.6.1.91 pandas.Index.unique

Index.unique(level=None)
Return unique values in the index. Uniques are returned in order of appearance, this does NOT sort.

Parameters level : int or str, optional, default None

Only return values from specified level (for MultiIndex)

New in version 0.23.0.

Returns

Index without duplicates

See also:

unique, Series.unique

34.6.1.92 pandas.Index.value_counts

Index.value_counts(normalize=False, sort=True, ascending=False, bins=None, dropna=True)
Returns object containing counts of unique values.

The resulting object will be in descending order so that the first element is the most frequently-occurring
element. Excludes NA values by default.

Parameters normalize : boolean, default False

If True then the object returned will contain the relative frequencies of the unique
values.

sort : boolean, default True

2142 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

Sort by values

ascending : boolean, default False

Sort in ascending order

bins : integer, optional

Rather than count values, group them into half-open bins, a convenience for
pd.cut, only works with numeric data

dropna : boolean, default True

Don’t include counts of NaN.

Returns

counts [Series]

34.6.1.93 pandas.Index.where

Index.where(cond, other=None)
New in version 0.19.0.

Return an Index of same shape as self and whose corresponding entries are from self where cond is True
and otherwise are from other.

Parameters

cond [boolean array-like with the same length as self]

other [scalar, or array-like]

holds_integer
is_boolean
is_floating
is_integer
is_interval
is_lexsorted_for_tuple
is_mixed
is_numeric
is_object
is_type_compatible
sort
view

34.6.2 Attributes

Index.values return the underlying data as an ndarray
Index.is_monotonic alias for is_monotonic_increasing (deprecated)
Index.is_monotonic_increasing return if the index is monotonic increasing (only equal

or increasing) values.
Index.is_monotonic_decreasing return if the index is monotonic decreasing (only equal

or decreasing) values.
Index.is_unique return if the index has unique values

Continued on next page

34.6. Index 2143

pandas: powerful Python data analysis toolkit, Release 0.23.4

Table 98 – continued from previous page
Index.has_duplicates
Index.hasnans return if I have any nans; enables various perf speedups
Index.dtype return the dtype object of the underlying data
Index.dtype_str return the dtype str of the underlying data
Index.inferred_type return a string of the type inferred from the values
Index.is_all_dates
Index.shape return a tuple of the shape of the underlying data
Index.name
Index.names
Index.nbytes return the number of bytes in the underlying data
Index.ndim return the number of dimensions of the underlying data,

by definition 1
Index.size return the number of elements in the underlying data
Index.empty
Index.strides return the strides of the underlying data
Index.itemsize return the size of the dtype of the item of the underlying

data
Index.base return the base object if the memory of the underlying

data is shared
Index.T return the transpose, which is by definition self
Index.memory_usage([deep]) Memory usage of the values

34.6.2.1 pandas.Index.has_duplicates

Index.has_duplicates

34.6.2.2 pandas.Index.is_all_dates

Index.is_all_dates

34.6.2.3 pandas.Index.name

Index.name = None

34.6.2.4 pandas.Index.names

Index.names

34.6.2.5 pandas.Index.empty

Index.empty

34.6.3 Modifying and Computations

Index.all(*args, **kwargs) Return whether all elements are True.
Index.any(*args, **kwargs) Return whether any element is True.
Index.argmin([axis]) return a ndarray of the minimum argument indexer

Continued on next page

2144 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

Table 99 – continued from previous page
Index.argmax([axis]) return a ndarray of the maximum argument indexer
Index.copy([name, deep, dtype]) Make a copy of this object.
Index.delete(loc) Make new Index with passed location(-s) deleted
Index.drop(labels[, errors]) Make new Index with passed list of labels deleted
Index.drop_duplicates([keep]) Return Index with duplicate values removed.
Index.duplicated([keep]) Indicate duplicate index values.
Index.equals(other) Determines if two Index objects contain the same ele-

ments.
Index.factorize([sort, na_sentinel]) Encode the object as an enumerated type or categorical

variable.
Index.identical(other) Similar to equals, but check that other comparable at-

tributes are also equal
Index.insert(loc, item) Make new Index inserting new item at location.
Index.is_(other) More flexible, faster check like is but that works

through views
Index.is_boolean()
Index.is_categorical() Check if the Index holds categorical data.
Index.is_floating()
Index.is_integer()
Index.is_interval()
Index.is_lexsorted_for_tuple(tup)
Index.is_mixed()
Index.is_numeric()
Index.is_object()
Index.min() Return the minimum value of the Index.
Index.max() Return the maximum value of the Index.
Index.reindex(target[, method, level, . . .]) Create index with target’s values (move/add/delete val-

ues as necessary)
Index.rename(name[, inplace]) Set new names on index.
Index.repeat(repeats, *args, **kwargs) Repeat elements of an Index.
Index.where(cond[, other]) New in version 0.19.0.

Index.take(indices[, axis, allow_fill, . . .]) return a new Index of the values selected by the indices
Index.putmask(mask, value) return a new Index of the values set with the mask
Index.set_names(names[, level, inplace]) Set new names on index.
Index.unique([level]) Return unique values in the index.
Index.nunique([dropna]) Return number of unique elements in the object.
Index.value_counts([normalize, sort, . . .]) Returns object containing counts of unique values.

34.6.3.1 pandas.Index.is_boolean

Index.is_boolean()

34.6.3.2 pandas.Index.is_floating

Index.is_floating()

34.6.3.3 pandas.Index.is_integer

Index.is_integer()

34.6. Index 2145

pandas: powerful Python data analysis toolkit, Release 0.23.4

34.6.3.4 pandas.Index.is_interval

Index.is_interval()

34.6.3.5 pandas.Index.is_lexsorted_for_tuple

Index.is_lexsorted_for_tuple(tup)

34.6.3.6 pandas.Index.is_mixed

Index.is_mixed()

34.6.3.7 pandas.Index.is_numeric

Index.is_numeric()

34.6.3.8 pandas.Index.is_object

Index.is_object()

34.6.4 Missing Values

Index.fillna([value, downcast]) Fill NA/NaN values with the specified value
Index.dropna([how]) Return Index without NA/NaN values
Index.isna() Detect missing values.
Index.notna() Detect existing (non-missing) values.

34.6.5 Conversion

Index.astype(dtype[, copy]) Create an Index with values cast to dtypes.
Index.item() return the first element of the underlying data as a

python scalar
Index.map(mapper[, na_action]) Map values using input correspondence (a dict, Series,

or function).
Index.ravel([order]) return an ndarray of the flattened values of the underly-

ing data
Index.tolist() Return a list of the values.
Index.to_native_types([slicer]) Format specified values of self and return them.
Index.to_series([index, name]) Create a Series with both index and values equal to the

index keys useful with map for returning an indexer
based on an index

Index.to_frame([index]) Create a DataFrame with a column containing the Index.
Index.view([cls])

34.6.5.1 pandas.Index.view

Index.view(cls=None)

2146 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

34.6.6 Sorting

Index.argsort(*args, **kwargs) Return the integer indicies that would sort the index.
Index.searchsorted(value[, side, sorter]) Find indices where elements should be inserted to main-

tain order.
Index.sort_values([return_indexer, ascending]) Return a sorted copy of the index.

34.6.7 Time-specific operations

Index.shift([periods, freq]) Shift index by desired number of time frequency incre-
ments.

34.6.8 Combining / joining / set operations

Index.append(other) Append a collection of Index options together
Index.join(other[, how, level, . . .]) this is an internal non-public method
Index.intersection(other) Form the intersection of two Index objects.
Index.union(other) Form the union of two Index objects and sorts if possi-

ble.
Index.difference(other) Return a new Index with elements from the index that

are not in other.
Index.symmetric_difference(other[, re-
sult_name])

Compute the symmetric difference of two Index objects.

34.6.9 Selecting

Index.asof(label) For a sorted index, return the most recent label up to and
including the passed label.

Index.asof_locs(where, mask) where : array of timestamps mask : array of booleans
where data is not NA

Index.contains(key) return a boolean if this key is IN the index
Index.get_duplicates() (DEPRECATED) Extract duplicated index elements.
Index.get_indexer(target[, method, limit, . . .]) Compute indexer and mask for new index given the cur-

rent index.
Index.get_indexer_for(target, **kwargs) guaranteed return of an indexer even when

non-unique This dispatches to get_indexer or
get_indexer_nonunique as appropriate

Index.get_indexer_non_unique(target) Compute indexer and mask for new index given the cur-
rent index.

Index.get_level_values(level) Return an Index of values for requested level, equal to
the length of the index.

Index.get_loc(key[, method, tolerance]) Get integer location, slice or boolean mask for requested
label.

Index.get_slice_bound(label, side, kind) Calculate slice bound that corresponds to given label.
Index.get_value(series, key) Fast lookup of value from 1-dimensional ndarray.
Index.get_values() Return Index data as an numpy.ndarray.
Index.set_value(arr, key, value) Fast lookup of value from 1-dimensional ndarray.

Continued on next page

34.6. Index 2147

pandas: powerful Python data analysis toolkit, Release 0.23.4

Table 105 – continued from previous page
Index.isin(values[, level]) Return a boolean array where the index values are in

values.
Index.slice_indexer([start, end, step, kind]) For an ordered or unique index, compute the slice in-

dexer for input labels and step.
Index.slice_locs([start, end, step, kind]) Compute slice locations for input labels.

34.7 Numeric Index

RangeIndex Immutable Index implementing a monotonic integer
range.

Int64Index Immutable ndarray implementing an ordered, sliceable
set.

UInt64Index Immutable ndarray implementing an ordered, sliceable
set.

Float64Index Immutable ndarray implementing an ordered, sliceable
set.

34.7.1 pandas.RangeIndex

class pandas.RangeIndex
Immutable Index implementing a monotonic integer range.

RangeIndex is a memory-saving special case of Int64Index limited to representing monotonic ranges. Using
RangeIndex may in some instances improve computing speed.

This is the default index type used by DataFrame and Series when no explicit index is provided by the user.

Parameters start : int (default: 0), or other RangeIndex instance.

If int and “stop” is not given, interpreted as “stop” instead.

stop [int (default: 0)]

step [int (default: 1)]

name : object, optional

Name to be stored in the index

copy : bool, default False

Unused, accepted for homogeneity with other index types.

See also:

Index The base pandas Index type

Int64Index Index of int64 data

Attributes

None

2148 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

Methods

from_range(data[, name, dtype]) create RangeIndex from a range (py3), or xrange
(py2) object

34.7.1.1 pandas.RangeIndex.from_range

classmethod RangeIndex.from_range(data, name=None, dtype=None, **kwargs)
create RangeIndex from a range (py3), or xrange (py2) object

34.7.2 pandas.Int64Index

class pandas.Int64Index
Immutable ndarray implementing an ordered, sliceable set. The basic object storing axis labels for all pandas
objects. Int64Index is a special case of Index with purely integer labels.

Parameters

data [array-like (1-dimensional)]

dtype [NumPy dtype (default: int64)]

copy : bool

Make a copy of input ndarray

name : object

Name to be stored in the index

See also:

Index The base pandas Index type

Notes

An Index instance can only contain hashable objects.

Attributes

None

Methods

None

34.7. Numeric Index 2149

pandas: powerful Python data analysis toolkit, Release 0.23.4

34.7.3 pandas.UInt64Index

class pandas.UInt64Index
Immutable ndarray implementing an ordered, sliceable set. The basic object storing axis labels for all pandas
objects. UInt64Index is a special case of Index with purely unsigned integer labels.

Parameters

data [array-like (1-dimensional)]

dtype [NumPy dtype (default: uint64)]

copy : bool

Make a copy of input ndarray

name : object

Name to be stored in the index

See also:

Index The base pandas Index type

Notes

An Index instance can only contain hashable objects.

Attributes

None

Methods

None

34.7.4 pandas.Float64Index

class pandas.Float64Index
Immutable ndarray implementing an ordered, sliceable set. The basic object storing axis labels for all pandas
objects. Float64Index is a special case of Index with purely float labels.

Parameters

data [array-like (1-dimensional)]

dtype [NumPy dtype (default: float64)]

copy : bool

Make a copy of input ndarray

name : object

Name to be stored in the index

2150 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

See also:

Index The base pandas Index type

Notes

An Index instance can only contain hashable objects.

Attributes

None

Methods

None

RangeIndex.from_range(data[, name, dtype]) create RangeIndex from a range (py3), or xrange (py2)
object

34.8 CategoricalIndex

CategoricalIndex Immutable Index implementing an ordered, sliceable
set.

34.8.1 pandas.CategoricalIndex

class pandas.CategoricalIndex
Immutable Index implementing an ordered, sliceable set. CategoricalIndex represents a sparsely populated
Index with an underlying Categorical.

Parameters

data [array-like or Categorical, (1-dimensional)]

categories : optional, array-like

categories for the CategoricalIndex

ordered : boolean,

designating if the categories are ordered

copy : bool

Make a copy of input ndarray

name : object

Name to be stored in the index

34.8. CategoricalIndex 2151

pandas: powerful Python data analysis toolkit, Release 0.23.4

See also:

Categorical, Index

Attributes

codes
categories
ordered

Methods

rename_categories(*args, **kwargs) Renames categories.
reorder_categories(*args, **kwargs) Reorders categories as specified in new_categories.
add_categories(*args, **kwargs) Add new categories.
remove_categories(*args, **kwargs) Removes the specified categories.
remove_unused_categories(*args,
**kwargs)

Removes categories which are not used.

set_categories(*args, **kwargs) Sets the categories to the specified new_categories.
as_ordered(*args, **kwargs) Sets the Categorical to be ordered
as_unordered(*args, **kwargs) Sets the Categorical to be unordered
map(mapper) Map values using input correspondence (a dict, Se-

ries, or function).

34.8.1.1 pandas.CategoricalIndex.rename_categories

CategoricalIndex.rename_categories(*args, **kwargs)
Renames categories.

Parameters new_categories : list-like, dict-like or callable

• list-like: all items must be unique and the number of items in the new categories
must match the existing number of categories.

• dict-like: specifies a mapping from old categories to new. Categories not con-
tained in the mapping are passed through and extra categories in the mapping
are ignored.

New in version 0.21.0.

• callable : a callable that is called on all items in the old categories and whose
return values comprise the new categories.

New in version 0.23.0.

Warning: Currently, Series are considered list like. In a future version of
pandas they’ll be considered dict-like.

inplace : boolean (default: False)

Whether or not to rename the categories inplace or return a copy of this categori-
cal with renamed categories.

2152 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

Returns cat : Categorical or None

With inplace=False, the new categorical is returned. With
inplace=True, there is no return value.

Raises ValueError

If new categories are list-like and do not have the same number of items than the
current categories or do not validate as categories

See also:

reorder_categories, add_categories, remove_categories,
remove_unused_categories, set_categories

Examples

>>> c = Categorical(['a', 'a', 'b'])
>>> c.rename_categories([0, 1])
[0, 0, 1]
Categories (2, int64): [0, 1]

For dict-like new_categories, extra keys are ignored and categories not in the dictionary are passed
through

>>> c.rename_categories({'a': 'A', 'c': 'C'})
[A, A, b]
Categories (2, object): [A, b]

You may also provide a callable to create the new categories

>>> c.rename_categories(lambda x: x.upper())
[A, A, B]
Categories (2, object): [A, B]

34.8.1.2 pandas.CategoricalIndex.reorder_categories

CategoricalIndex.reorder_categories(*args, **kwargs)
Reorders categories as specified in new_categories.

new_categories need to include all old categories and no new category items.

Parameters new_categories : Index-like

The categories in new order.

ordered : boolean, optional

Whether or not the categorical is treated as a ordered categorical. If not given, do
not change the ordered information.

inplace : boolean (default: False)

Whether or not to reorder the categories inplace or return a copy of this categorical
with reordered categories.

Returns

cat [Categorical with reordered categories or None if inplace.]

34.8. CategoricalIndex 2153

pandas: powerful Python data analysis toolkit, Release 0.23.4

Raises ValueError

If the new categories do not contain all old category items or any new ones

See also:

rename_categories, add_categories, remove_categories,
remove_unused_categories, set_categories

34.8.1.3 pandas.CategoricalIndex.add_categories

CategoricalIndex.add_categories(*args, **kwargs)
Add new categories.

new_categories will be included at the last/highest place in the categories and will be unused directly after
this call.

Parameters new_categories : category or list-like of category

The new categories to be included.

inplace : boolean (default: False)

Whether or not to add the categories inplace or return a copy of this categorical
with added categories.

Returns

cat [Categorical with new categories added or None if inplace.]

Raises ValueError

If the new categories include old categories or do not validate as categories

See also:

rename_categories, reorder_categories, remove_categories,
remove_unused_categories, set_categories

34.8.1.4 pandas.CategoricalIndex.remove_categories

CategoricalIndex.remove_categories(*args, **kwargs)
Removes the specified categories.

removals must be included in the old categories. Values which were in the removed categories will be set
to NaN

Parameters removals : category or list of categories

The categories which should be removed.

inplace : boolean (default: False)

Whether or not to remove the categories inplace or return a copy of this categori-
cal with removed categories.

Returns

cat [Categorical with removed categories or None if inplace.]

Raises ValueError

If the removals are not contained in the categories

2154 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

See also:

rename_categories, reorder_categories, add_categories,
remove_unused_categories, set_categories

34.8.1.5 pandas.CategoricalIndex.remove_unused_categories

CategoricalIndex.remove_unused_categories(*args, **kwargs)
Removes categories which are not used.

Parameters inplace : boolean (default: False)

Whether or not to drop unused categories inplace or return a copy of this categor-
ical with unused categories dropped.

Returns

cat [Categorical with unused categories dropped or None if inplace.]

See also:

rename_categories, reorder_categories, add_categories, remove_categories,
set_categories

34.8.1.6 pandas.CategoricalIndex.set_categories

CategoricalIndex.set_categories(*args, **kwargs)
Sets the categories to the specified new_categories.

new_categories can include new categories (which will result in unused categories) or remove old cate-
gories (which results in values set to NaN). If rename==True, the categories will simple be renamed (less
or more items than in old categories will result in values set to NaN or in unused categories respectively).

This method can be used to perform more than one action of adding, removing, and reordering simulta-
neously and is therefore faster than performing the individual steps via the more specialised methods.

On the other hand this methods does not do checks (e.g., whether the old categories are included in the
new categories on a reorder), which can result in surprising changes, for example when using special
string dtypes on python3, which does not considers a S1 string equal to a single char python string.

Parameters new_categories : Index-like

The categories in new order.

ordered : boolean, (default: False)

Whether or not the categorical is treated as a ordered categorical. If not given, do
not change the ordered information.

rename : boolean (default: False)

Whether or not the new_categories should be considered as a rename of the old
categories or as reordered categories.

inplace : boolean (default: False)

Whether or not to reorder the categories inplace or return a copy of this categorical
with reordered categories.

Returns

cat [Categorical with reordered categories or None if inplace.]

34.8. CategoricalIndex 2155

pandas: powerful Python data analysis toolkit, Release 0.23.4

Raises ValueError

If new_categories does not validate as categories

See also:

rename_categories, reorder_categories, add_categories, remove_categories,
remove_unused_categories

34.8.1.7 pandas.CategoricalIndex.as_ordered

CategoricalIndex.as_ordered(*args, **kwargs)
Sets the Categorical to be ordered

Parameters inplace : boolean (default: False)

Whether or not to set the ordered attribute inplace or return a copy of this cate-
gorical with ordered set to True

34.8.1.8 pandas.CategoricalIndex.as_unordered

CategoricalIndex.as_unordered(*args, **kwargs)
Sets the Categorical to be unordered

Parameters inplace : boolean (default: False)

Whether or not to set the ordered attribute inplace or return a copy of this cate-
gorical with ordered set to False

34.8.1.9 pandas.CategoricalIndex.map

CategoricalIndex.map(mapper)
Map values using input correspondence (a dict, Series, or function).

Maps the values (their categories, not the codes) of the index to new categories. If the mapping corre-
spondence is one-to-one the result is a CategoricalIndex which has the same order property as the
original, otherwise an Index is returned.

If a dict or Series is used any unmapped category is mapped to NaN. Note that if this happens an
Index will be returned.

Parameters mapper : function, dict, or Series

Mapping correspondence.

Returns pandas.CategoricalIndex or pandas.Index

Mapped index.

See also:

Index.map Apply a mapping correspondence on an Index.

Series.map Apply a mapping correspondence on a Series.

Series.apply Apply more complex functions on a Series.

2156 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

Examples

>>> idx = pd.CategoricalIndex(['a', 'b', 'c'])
>>> idx
CategoricalIndex(['a', 'b', 'c'], categories=['a', 'b', 'c'],

ordered=False, dtype='category')
>>> idx.map(lambda x: x.upper())
CategoricalIndex(['A', 'B', 'C'], categories=['A', 'B', 'C'],

ordered=False, dtype='category')
>>> idx.map({'a': 'first', 'b': 'second', 'c': 'third'})
CategoricalIndex(['first', 'second', 'third'], categories=['first',

'second', 'third'], ordered=False, dtype='category')

If the mapping is one-to-one the ordering of the categories is preserved:

>>> idx = pd.CategoricalIndex(['a', 'b', 'c'], ordered=True)
>>> idx
CategoricalIndex(['a', 'b', 'c'], categories=['a', 'b', 'c'],

ordered=True, dtype='category')
>>> idx.map({'a': 3, 'b': 2, 'c': 1})
CategoricalIndex([3, 2, 1], categories=[3, 2, 1], ordered=True,

dtype='category')

If the mapping is not one-to-one an Index is returned:

>>> idx.map({'a': 'first', 'b': 'second', 'c': 'first'})
Index(['first', 'second', 'first'], dtype='object')

If a dict is used, all unmapped categories are mapped to NaN and the result is an Index:

>>> idx.map({'a': 'first', 'b': 'second'})
Index(['first', 'second', nan], dtype='object')

34.8.2 Categorical Components

CategoricalIndex.codes
CategoricalIndex.categories
CategoricalIndex.ordered
CategoricalIndex.
rename_categories(*args, . . .)

Renames categories.

CategoricalIndex.
reorder_categories(*args, . . .)

Reorders categories as specified in new_categories.

CategoricalIndex.add_categories(*args,
**kwargs)

Add new categories.

CategoricalIndex.
remove_categories(*args, . . .)

Removes the specified categories.

CategoricalIndex.
remove_unused_categories(. . .)

Removes categories which are not used.

CategoricalIndex.set_categories(*args,
**kwargs)

Sets the categories to the specified new_categories.

CategoricalIndex.as_ordered(*args,
**kwargs)

Sets the Categorical to be ordered

Continued on next page

34.8. CategoricalIndex 2157

pandas: powerful Python data analysis toolkit, Release 0.23.4

Table 111 – continued from previous page
CategoricalIndex.as_unordered(*args,
**kwargs)

Sets the Categorical to be unordered

CategoricalIndex.map(mapper) Map values using input correspondence (a dict, Series,
or function).

34.8.2.1 pandas.CategoricalIndex.codes

CategoricalIndex.codes

34.8.2.2 pandas.CategoricalIndex.categories

CategoricalIndex.categories

34.8.2.3 pandas.CategoricalIndex.ordered

CategoricalIndex.ordered

34.9 IntervalIndex

IntervalIndex Immutable Index implementing an ordered, sliceable
set.

34.9.1 pandas.IntervalIndex

class pandas.IntervalIndex
Immutable Index implementing an ordered, sliceable set. IntervalIndex represents an Index of Interval objects
that are all closed on the same side.

New in version 0.20.0.

Warning: The indexing behaviors are provisional and may change in a future version of pandas.

Parameters data : array-like (1-dimensional)

Array-like containing Interval objects from which to build the IntervalIndex

closed : {‘left’, ‘right’, ‘both’, ‘neither’}, default ‘right’

Whether the intervals are closed on the left-side, right-side, both or neither.

name : object, optional

Name to be stored in the index.

copy : boolean, default False

Copy the meta-data

dtype : dtype or None, default None

If None, dtype will be inferred

2158 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

New in version 0.23.0.

See also:

Index The base pandas Index type

Interval A bounded slice-like interval; the elements of an IntervalIndex

interval_range Function to create a fixed frequency IntervalIndex

cut, qcut

Notes

See the user guide for more.

Examples

A new IntervalIndex is typically constructed using interval_range():

>>> pd.interval_range(start=0, end=5)
IntervalIndex([(0, 1], (1, 2], (2, 3], (3, 4], (4, 5]]

closed='right', dtype='interval[int64]')

It may also be constructed using one of the constructor methods: IntervalIndex.from_arrays(),
IntervalIndex.from_breaks(), and IntervalIndex.from_tuples().

See further examples in the doc strings of interval_range and the mentioned constructor methods.

Attributes

closed Whether the intervals are closed on the left-side,
right-side, both or neither

is_non_overlapping_monotonic Return True if the IntervalIndex is non-overlapping
(no Intervals share points) and is either monotonic
increasing or monotonic decreasing, else False

left Return the left endpoints of each Interval in the In-
tervalIndex as an Index

length Return an Index with entries denoting the length of
each Interval in the IntervalIndex

mid Return the midpoint of each Interval in the Inter-
valIndex as an Index

right Return the right endpoints of each Interval in the In-
tervalIndex as an Index

values Return the IntervalIndex’s data as a numpy array of
Interval objects (with dtype=’object’)

34.9.1.1 pandas.IntervalIndex.closed

IntervalIndex.closed
Whether the intervals are closed on the left-side, right-side, both or neither

34.9. IntervalIndex 2159

http://pandas.pydata.org/pandas-docs/stable/advanced.html#intervalindex

pandas: powerful Python data analysis toolkit, Release 0.23.4

34.9.1.2 pandas.IntervalIndex.is_non_overlapping_monotonic

IntervalIndex.is_non_overlapping_monotonic
Return True if the IntervalIndex is non-overlapping (no Intervals share points) and is either monotonic
increasing or monotonic decreasing, else False

34.9.1.3 pandas.IntervalIndex.left

IntervalIndex.left
Return the left endpoints of each Interval in the IntervalIndex as an Index

34.9.1.4 pandas.IntervalIndex.length

IntervalIndex.length
Return an Index with entries denoting the length of each Interval in the IntervalIndex

34.9.1.5 pandas.IntervalIndex.mid

IntervalIndex.mid
Return the midpoint of each Interval in the IntervalIndex as an Index

34.9.1.6 pandas.IntervalIndex.right

IntervalIndex.right
Return the right endpoints of each Interval in the IntervalIndex as an Index

34.9.1.7 pandas.IntervalIndex.values

IntervalIndex.values
Return the IntervalIndex’s data as a numpy array of Interval objects (with dtype=’object’)

Methods

contains(key) Return a boolean indicating if the key is IN the index
from_arrays(left, right[, closed, name, . . .]) Construct from two arrays defining the left and right

bounds.
from_breaks(breaks[, closed, name, copy,
dtype])

Construct an IntervalIndex from an array of splits

from_tuples(data[, closed, name, copy, dtype]) Construct an IntervalIndex from a list/array of tuples
get_indexer(target[, method, limit, tolerance]) Compute indexer and mask for new index given the

current index.
get_loc(key[, method]) Get integer location, slice or boolean mask for re-

quested label.

34.9.1.8 pandas.IntervalIndex.contains

IntervalIndex.contains(key)
Return a boolean indicating if the key is IN the index

2160 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

We accept / allow keys to be not just actual objects.

Parameters

key [int, float, Interval]

Returns

boolean

34.9.1.9 pandas.IntervalIndex.from_arrays

classmethod IntervalIndex.from_arrays(left, right, closed=’right’, name=None,
copy=False, dtype=None)

Construct from two arrays defining the left and right bounds.

Parameters left : array-like (1-dimensional)

Left bounds for each interval.

right : array-like (1-dimensional)

Right bounds for each interval.

closed : {‘left’, ‘right’, ‘both’, ‘neither’}, default ‘right’

Whether the intervals are closed on the left-side, right-side, both or neither.

name : object, optional

Name to be stored in the index.

copy : boolean, default False

Copy the data.

dtype : dtype, optional

If None, dtype will be inferred.

New in version 0.23.0.

Returns

index [IntervalIndex]

Raises ValueError

When a value is missing in only one of left or right. When a value in left is greater
than the corresponding value in right.

See also:

interval_range Function to create a fixed frequency IntervalIndex.

IntervalIndex.from_breaks Construct an IntervalIndex from an array of splits.

IntervalIndex.from_tuples Construct an IntervalIndex from a list/array of tuples.

Notes

Each element of left must be less than or equal to the right element at the same position. If an element is
missing, it must be missing in both left and right. A TypeError is raised when using an unsupported type
for left or right. At the moment, ‘category’, ‘object’, and ‘string’ subtypes are not supported.

34.9. IntervalIndex 2161

pandas: powerful Python data analysis toolkit, Release 0.23.4

Examples

>>> pd.IntervalIndex.from_arrays([0, 1, 2], [1, 2, 3])
IntervalIndex([(0, 1], (1, 2], (2, 3]]

closed='right',
dtype='interval[int64]')

If you want to segment different groups of people based on ages, you can apply the method as follows:

>>> ages = pd.IntervalIndex.from_arrays([0, 2, 13],
... [2, 13, 19], closed='left')
>>> ages
IntervalIndex([[0, 2), [2, 13), [13, 19)]

closed='left',
dtype='interval[int64]')

>>> s = pd.Series(['baby', 'kid', 'teen'], ages)
>>> s
[0, 2) baby
[2, 13) kid
[13, 19) teen
dtype: object

Values may be missing, but they must be missing in both arrays.

>>> pd.IntervalIndex.from_arrays([0, np.nan, 13],
... [2, np.nan, 19])
IntervalIndex([(0.0, 2.0], nan, (13.0, 19.0]]

closed='right',
dtype='interval[float64]')

34.9.1.10 pandas.IntervalIndex.from_breaks

classmethod IntervalIndex.from_breaks(breaks, closed=’right’, name=None,
copy=False, dtype=None)

Construct an IntervalIndex from an array of splits

Parameters breaks : array-like (1-dimensional)

Left and right bounds for each interval.

closed : {‘left’, ‘right’, ‘both’, ‘neither’}, default ‘right’

Whether the intervals are closed on the left-side, right-side, both or neither.

name : object, optional

Name to be stored in the index.

copy : boolean, default False

copy the data

dtype : dtype or None, default None

If None, dtype will be inferred

New in version 0.23.0.

See also:

2162 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

interval_range Function to create a fixed frequency IntervalIndex

IntervalIndex.from_arrays Construct an IntervalIndex from a left and right array

IntervalIndex.from_tuples Construct an IntervalIndex from a list/array of tuples

Examples

>>> pd.IntervalIndex.from_breaks([0, 1, 2, 3])
IntervalIndex([(0, 1], (1, 2], (2, 3]]

closed='right',
dtype='interval[int64]')

34.9.1.11 pandas.IntervalIndex.from_tuples

classmethod IntervalIndex.from_tuples(data, closed=’right’, name=None, copy=False,
dtype=None)

Construct an IntervalIndex from a list/array of tuples

Parameters data : array-like (1-dimensional)

Array of tuples

closed : {‘left’, ‘right’, ‘both’, ‘neither’}, default ‘right’

Whether the intervals are closed on the left-side, right-side, both or neither.

name : object, optional

Name to be stored in the index.

copy : boolean, default False

by-default copy the data, this is compat only and ignored

dtype : dtype or None, default None

If None, dtype will be inferred

New in version 0.23.0.

See also:

interval_range Function to create a fixed frequency IntervalIndex

IntervalIndex.from_arrays Construct an IntervalIndex from a left and right array

IntervalIndex.from_breaks Construct an IntervalIndex from an array of splits

Examples

>>> pd.IntervalIndex.from_tuples([(0, 1), (1, 2)])
IntervalIndex([(0, 1], (1, 2]],

closed='right', dtype='interval[int64]')

34.9. IntervalIndex 2163

pandas: powerful Python data analysis toolkit, Release 0.23.4

34.9.1.12 pandas.IntervalIndex.get_indexer

IntervalIndex.get_indexer(target, method=None, limit=None, tolerance=None)
Compute indexer and mask for new index given the current index. The indexer should be then used as an
input to ndarray.take to align the current data to the new index.

Parameters

target [IntervalIndex or list of Intervals]

method : {None, ‘pad’/’ffill’, ‘backfill’/’bfill’, ‘nearest’}, optional

• default: exact matches only.

• pad / ffill: find the PREVIOUS index value if no exact match.

• backfill / bfill: use NEXT index value if no exact match

• nearest: use the NEAREST index value if no exact match. Tied distances are broken
by preferring the larger index value.

limit : int, optional

Maximum number of consecutive labels in target to match for inexact
matches.

tolerance : optional

Maximum distance between original and new labels for inexact matches.
The values of the index at the matching locations most satisfy the equation
abs(index[indexer] - target) <= tolerance.

Tolerance may be a scalar value, which applies the same tolerance to all values,
or list-like, which applies variable tolerance per element. List-like includes list,
tuple, array, Series, and must be the same size as the index and its dtype must
exactly match the index’s type.

New in version 0.21.0: (list-like tolerance)

Returns indexer : ndarray of int

Integers from 0 to n - 1 indicating that the index at these positions matches the
corresponding target values. Missing values in the target are marked by -1.

Examples

>>> indexer = index.get_indexer(new_index)
>>> new_values = cur_values.take(indexer)

34.9.1.13 pandas.IntervalIndex.get_loc

IntervalIndex.get_loc(key, method=None)
Get integer location, slice or boolean mask for requested label.

Parameters

key [label]

method : {None}, optional

• default: matches where the label is within an interval only.

2164 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

Returns

loc [int if unique index, slice if monotonic index, else mask]

Examples

>>> i1, i2 = pd.Interval(0, 1), pd.Interval(1, 2)
>>> index = pd.IntervalIndex([i1, i2])
>>> index.get_loc(1)
0

You can also supply an interval or an location for a point inside an interval.

>>> index.get_loc(pd.Interval(0, 2))
array([0, 1], dtype=int64)
>>> index.get_loc(1.5)
1

If a label is in several intervals, you get the locations of all the relevant intervals.

>>> i3 = pd.Interval(0, 2)
>>> overlapping_index = pd.IntervalIndex([i2, i3])
>>> overlapping_index.get_loc(1.5)
array([0, 1], dtype=int64)

34.9.2 IntervalIndex Components

IntervalIndex.from_arrays(left, right[, . . .]) Construct from two arrays defining the left and right
bounds.

IntervalIndex.from_tuples(data[, closed,
. . .])

Construct an IntervalIndex from a list/array of tuples

IntervalIndex.from_breaks(breaks[, closed,
. . .])

Construct an IntervalIndex from an array of splits

IntervalIndex.contains(key) Return a boolean indicating if the key is IN the index
IntervalIndex.left Return the left endpoints of each Interval in the Inter-

valIndex as an Index
IntervalIndex.right Return the right endpoints of each Interval in the Inter-

valIndex as an Index
IntervalIndex.mid Return the midpoint of each Interval in the IntervalIndex

as an Index
IntervalIndex.closed Whether the intervals are closed on the left-side, right-

side, both or neither
IntervalIndex.length Return an Index with entries denoting the length of each

Interval in the IntervalIndex
IntervalIndex.values Return the IntervalIndex’s data as a numpy array of In-

terval objects (with dtype=’object’)
IntervalIndex.is_non_overlapping_monotonicReturn True if the IntervalIndex is non-overlapping (no

Intervals share points) and is either monotonic increas-
ing or monotonic decreasing, else False

IntervalIndex.get_loc(key[, method]) Get integer location, slice or boolean mask for requested
label.

Continued on next page

34.9. IntervalIndex 2165

pandas: powerful Python data analysis toolkit, Release 0.23.4

Table 115 – continued from previous page
IntervalIndex.get_indexer(target[, method,
. . .])

Compute indexer and mask for new index given the cur-
rent index.

34.10 MultiIndex

MultiIndex A multi-level, or hierarchical, index object for pandas
objects

34.10.1 pandas.MultiIndex

class pandas.MultiIndex
A multi-level, or hierarchical, index object for pandas objects

Parameters levels : sequence of arrays

The unique labels for each level

labels : sequence of arrays

Integers for each level designating which label at each location

sortorder : optional int

Level of sortedness (must be lexicographically sorted by that level)

names : optional sequence of objects

Names for each of the index levels. (name is accepted for compat)

copy : boolean, default False

Copy the meta-data

verify_integrity : boolean, default True

Check that the levels/labels are consistent and valid

See also:

MultiIndex.from_arrays Convert list of arrays to MultiIndex

MultiIndex.from_product Create a MultiIndex from the cartesian product of iterables

MultiIndex.from_tuples Convert list of tuples to a MultiIndex

Index The base pandas Index type

Notes

See the user guide for more.

Examples

A new MultiIndex is typically constructed using one of the helper methods MultiIndex.
from_arrays(), MultiIndex.from_product() and MultiIndex.from_tuples(). For exam-
ple (using .from_arrays):

2166 Chapter 34. API Reference

http://pandas.pydata.org/pandas-docs/stable/advanced.html

pandas: powerful Python data analysis toolkit, Release 0.23.4

>>> arrays = [[1, 1, 2, 2], ['red', 'blue', 'red', 'blue']]
>>> pd.MultiIndex.from_arrays(arrays, names=('number', 'color'))
MultiIndex(levels=[[1, 2], ['blue', 'red']],

labels=[[0, 0, 1, 1], [1, 0, 1, 0]],
names=['number', 'color'])

See further examples for how to construct a MultiIndex in the doc strings of the mentioned helper methods.

Attributes

names Names of levels in MultiIndex
nlevels Integer number of levels in this MultiIndex.
levshape A tuple with the length of each level.

34.10.1.1 pandas.MultiIndex.names

MultiIndex.names
Names of levels in MultiIndex

34.10.1.2 pandas.MultiIndex.nlevels

MultiIndex.nlevels
Integer number of levels in this MultiIndex.

34.10.1.3 pandas.MultiIndex.levshape

MultiIndex.levshape
A tuple with the length of each level.

levels
labels

Methods

from_arrays(arrays[, sortorder, names]) Convert arrays to MultiIndex
from_tuples(tuples[, sortorder, names]) Convert list of tuples to MultiIndex
from_product(iterables[, sortorder, names]) Make a MultiIndex from the cartesian product of

multiple iterables
set_levels(levels[, level, inplace, . . .]) Set new levels on MultiIndex.
set_labels(labels[, level, inplace, . . .]) Set new labels on MultiIndex.
to_hierarchical(n_repeat[, n_shuffle]) Return a MultiIndex reshaped to conform to the

shapes given by n_repeat and n_shuffle.
to_frame([index]) Create a DataFrame with the levels of the MultiIndex

as columns.
is_lexsorted() Return True if the labels are lexicographically sorted
sortlevel([level, ascending, sort_remaining]) Sort MultiIndex at the requested level.
droplevel([level]) Return Index with requested level removed.

Continued on next page

34.10. MultiIndex 2167

pandas: powerful Python data analysis toolkit, Release 0.23.4

Table 118 – continued from previous page
swaplevel([i, j]) Swap level i with level j.
reorder_levels(order) Rearrange levels using input order.
remove_unused_levels() create a new MultiIndex from the current that re-

moving unused levels, meaning that they are not ex-
pressed in the labels

34.10.1.4 pandas.MultiIndex.from_arrays

classmethod MultiIndex.from_arrays(arrays, sortorder=None, names=None)
Convert arrays to MultiIndex

Parameters arrays : list / sequence of array-likes

Each array-like gives one level’s value for each data point. len(arrays) is the
number of levels.

sortorder : int or None

Level of sortedness (must be lexicographically sorted by that level)

Returns

index [MultiIndex]

See also:

MultiIndex.from_tuples Convert list of tuples to MultiIndex

MultiIndex.from_product Make a MultiIndex from cartesian product of iterables

Examples

>>> arrays = [[1, 1, 2, 2], ['red', 'blue', 'red', 'blue']]
>>> MultiIndex.from_arrays(arrays, names=('number', 'color'))

34.10.1.5 pandas.MultiIndex.from_tuples

classmethod MultiIndex.from_tuples(tuples, sortorder=None, names=None)
Convert list of tuples to MultiIndex

Parameters tuples : list / sequence of tuple-likes

Each tuple is the index of one row/column.

sortorder : int or None

Level of sortedness (must be lexicographically sorted by that level)

Returns

index [MultiIndex]

See also:

MultiIndex.from_arrays Convert list of arrays to MultiIndex

MultiIndex.from_product Make a MultiIndex from cartesian product of iterables

2168 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

Examples

>>> tuples = [(1, u'red'), (1, u'blue'),
(2, u'red'), (2, u'blue')]

>>> MultiIndex.from_tuples(tuples, names=('number', 'color'))

34.10.1.6 pandas.MultiIndex.from_product

classmethod MultiIndex.from_product(iterables, sortorder=None, names=None)
Make a MultiIndex from the cartesian product of multiple iterables

Parameters iterables : list / sequence of iterables

Each iterable has unique labels for each level of the index.

sortorder : int or None

Level of sortedness (must be lexicographically sorted by that level).

names : list / sequence of strings or None

Names for the levels in the index.

Returns

index [MultiIndex]

See also:

MultiIndex.from_arrays Convert list of arrays to MultiIndex

MultiIndex.from_tuples Convert list of tuples to MultiIndex

Examples

>>> numbers = [0, 1, 2]
>>> colors = [u'green', u'purple']
>>> MultiIndex.from_product([numbers, colors],

names=['number', 'color'])
MultiIndex(levels=[[0, 1, 2], [u'green', u'purple']],

labels=[[0, 0, 1, 1, 2, 2], [0, 1, 0, 1, 0, 1]],
names=[u'number', u'color'])

34.10.1.7 pandas.MultiIndex.set_levels

MultiIndex.set_levels(levels, level=None, inplace=False, verify_integrity=True)
Set new levels on MultiIndex. Defaults to returning new index.

Parameters levels : sequence or list of sequence

new level(s) to apply

level : int, level name, or sequence of int/level names (default None)

level(s) to set (None for all levels)

inplace : bool

34.10. MultiIndex 2169

pandas: powerful Python data analysis toolkit, Release 0.23.4

if True, mutates in place

verify_integrity : bool (default True)

if True, checks that levels and labels are compatible

Returns

new index (of same type and class. . . etc)

Examples

>>> idx = MultiIndex.from_tuples([(1, u'one'), (1, u'two'),
(2, u'one'), (2, u'two')],
names=['foo', 'bar'])

>>> idx.set_levels([['a','b'], [1,2]])
MultiIndex(levels=[[u'a', u'b'], [1, 2]],

labels=[[0, 0, 1, 1], [0, 1, 0, 1]],
names=[u'foo', u'bar'])

>>> idx.set_levels(['a','b'], level=0)
MultiIndex(levels=[[u'a', u'b'], [u'one', u'two']],

labels=[[0, 0, 1, 1], [0, 1, 0, 1]],
names=[u'foo', u'bar'])

>>> idx.set_levels(['a','b'], level='bar')
MultiIndex(levels=[[1, 2], [u'a', u'b']],

labels=[[0, 0, 1, 1], [0, 1, 0, 1]],
names=[u'foo', u'bar'])

>>> idx.set_levels([['a','b'], [1,2]], level=[0,1])
MultiIndex(levels=[[u'a', u'b'], [1, 2]],

labels=[[0, 0, 1, 1], [0, 1, 0, 1]],
names=[u'foo', u'bar'])

34.10.1.8 pandas.MultiIndex.set_labels

MultiIndex.set_labels(labels, level=None, inplace=False, verify_integrity=True)
Set new labels on MultiIndex. Defaults to returning new index.

Parameters labels : sequence or list of sequence

new labels to apply

level : int, level name, or sequence of int/level names (default None)

level(s) to set (None for all levels)

inplace : bool

if True, mutates in place

verify_integrity : bool (default True)

if True, checks that levels and labels are compatible

Returns

new index (of same type and class. . . etc)

2170 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

Examples

>>> idx = MultiIndex.from_tuples([(1, u'one'), (1, u'two'),
(2, u'one'), (2, u'two')],
names=['foo', 'bar'])

>>> idx.set_labels([[1,0,1,0], [0,0,1,1]])
MultiIndex(levels=[[1, 2], [u'one', u'two']],

labels=[[1, 0, 1, 0], [0, 0, 1, 1]],
names=[u'foo', u'bar'])

>>> idx.set_labels([1,0,1,0], level=0)
MultiIndex(levels=[[1, 2], [u'one', u'two']],

labels=[[1, 0, 1, 0], [0, 1, 0, 1]],
names=[u'foo', u'bar'])

>>> idx.set_labels([0,0,1,1], level='bar')
MultiIndex(levels=[[1, 2], [u'one', u'two']],

labels=[[0, 0, 1, 1], [0, 0, 1, 1]],
names=[u'foo', u'bar'])

>>> idx.set_labels([[1,0,1,0], [0,0,1,1]], level=[0,1])
MultiIndex(levels=[[1, 2], [u'one', u'two']],

labels=[[1, 0, 1, 0], [0, 0, 1, 1]],
names=[u'foo', u'bar'])

34.10.1.9 pandas.MultiIndex.to_hierarchical

MultiIndex.to_hierarchical(n_repeat, n_shuffle=1)
Return a MultiIndex reshaped to conform to the shapes given by n_repeat and n_shuffle.

Useful to replicate and rearrange a MultiIndex for combination with another Index with n_repeat items.

Parameters n_repeat : int

Number of times to repeat the labels on self

n_shuffle : int

Controls the reordering of the labels. If the result is going to be an inner level in
a MultiIndex, n_shuffle will need to be greater than one. The size of each label
must divisible by n_shuffle.

Returns

MultiIndex

Examples

>>> idx = MultiIndex.from_tuples([(1, u'one'), (1, u'two'),
(2, u'one'), (2, u'two')])

>>> idx.to_hierarchical(3)
MultiIndex(levels=[[1, 2], [u'one', u'two']],

labels=[[0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1],
[0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1]])

34.10. MultiIndex 2171

pandas: powerful Python data analysis toolkit, Release 0.23.4

34.10.1.10 pandas.MultiIndex.to_frame

MultiIndex.to_frame(index=True)
Create a DataFrame with the levels of the MultiIndex as columns.

New in version 0.20.0.

Parameters index : boolean, default True

Set the index of the returned DataFrame as the original MultiIndex.

Returns

DataFrame [a DataFrame containing the original MultiIndex data.]

34.10.1.11 pandas.MultiIndex.is_lexsorted

MultiIndex.is_lexsorted()
Return True if the labels are lexicographically sorted

34.10.1.12 pandas.MultiIndex.sortlevel

MultiIndex.sortlevel(level=0, ascending=True, sort_remaining=True)
Sort MultiIndex at the requested level. The result will respect the original ordering of the associated factor
at that level.

Parameters level : list-like, int or str, default 0

If a string is given, must be a name of the level If list-like must be names or ints
of levels.

ascending : boolean, default True

False to sort in descending order Can also be a list to specify a directed ordering

sort_remaining [sort by the remaining levels after level.]

Returns sorted_index : pd.MultiIndex

Resulting index

indexer : np.ndarray

Indices of output values in original index

34.10.1.13 pandas.MultiIndex.droplevel

MultiIndex.droplevel(level=0)
Return Index with requested level removed. If MultiIndex has only 2 levels, the result will be of Index
type not MultiIndex.

Parameters

level [int/level name or list thereof]

Returns

index [Index or MultiIndex]

2172 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

Notes

Does not check if result index is unique or not

34.10.1.14 pandas.MultiIndex.swaplevel

MultiIndex.swaplevel(i=-2, j=-1)
Swap level i with level j.

Calling this method does not change the ordering of the values.

Parameters i : int, str, default -2

First level of index to be swapped. Can pass level name as string. Type of param-
eters can be mixed.

j : int, str, default -1

Second level of index to be swapped. Can pass level name as string. Type of
parameters can be mixed.

Returns MultiIndex

A new MultiIndex

.. versionchanged:: 0.18.1

The indexes i and j are now optional, and default to the two innermost levels of
the index.

See also:

Series.swaplevel Swap levels i and j in a MultiIndex

Dataframe.swaplevel Swap levels i and j in a MultiIndex on a particular axis

Examples

>>> mi = pd.MultiIndex(levels=[['a', 'b'], ['bb', 'aa']],
... labels=[[0, 0, 1, 1], [0, 1, 0, 1]])
>>> mi
MultiIndex(levels=[['a', 'b'], ['bb', 'aa']],

labels=[[0, 0, 1, 1], [0, 1, 0, 1]])
>>> mi.swaplevel(0, 1)
MultiIndex(levels=[['bb', 'aa'], ['a', 'b']],

labels=[[0, 1, 0, 1], [0, 0, 1, 1]])

34.10.1.15 pandas.MultiIndex.reorder_levels

MultiIndex.reorder_levels(order)
Rearrange levels using input order. May not drop or duplicate levels

34.10. MultiIndex 2173

pandas: powerful Python data analysis toolkit, Release 0.23.4

34.10.1.16 pandas.MultiIndex.remove_unused_levels

MultiIndex.remove_unused_levels()
create a new MultiIndex from the current that removing unused levels, meaning that they are not expressed
in the labels

The resulting MultiIndex will have the same outward appearance, meaning the same .values and ordering.
It will also be .equals() to the original.

New in version 0.20.0.

Returns

MultiIndex

Examples

>>> i = pd.MultiIndex.from_product([range(2), list('ab')])
MultiIndex(levels=[[0, 1], ['a', 'b']],

labels=[[0, 0, 1, 1], [0, 1, 0, 1]])

>>> i[2:]
MultiIndex(levels=[[0, 1], ['a', 'b']],

labels=[[1, 1], [0, 1]])

The 0 from the first level is not represented and can be removed

>>> i[2:].remove_unused_levels()
MultiIndex(levels=[[1], ['a', 'b']],

labels=[[0, 0], [0, 1]])

IndexSlice Create an object to more easily perform multi-index
slicing

34.10.2 pandas.IndexSlice

pandas.IndexSlice = <pandas.core.indexing._IndexSlice object>
Create an object to more easily perform multi-index slicing

Examples

>>> midx = pd.MultiIndex.from_product([['A0','A1'], ['B0','B1','B2','B3']])
>>> columns = ['foo', 'bar']
>>> dfmi = pd.DataFrame(np.arange(16).reshape((len(midx), len(columns))),

index=midx, columns=columns)

Using the default slice command:

>>> dfmi.loc[(slice(None), slice('B0', 'B1')), :]
foo bar

A0 B0 0 1
B1 2 3

(continues on next page)

2174 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

A1 B0 8 9
B1 10 11

Using the IndexSlice class for a more intuitive command:

>>> idx = pd.IndexSlice
>>> dfmi.loc[idx[:, 'B0':'B1'], :]

foo bar
A0 B0 0 1

B1 2 3
A1 B0 8 9

B1 10 11

34.10.3 MultiIndex Constructors

MultiIndex.from_arrays(arrays[, sortorder,
. . .])

Convert arrays to MultiIndex

MultiIndex.from_tuples(tuples[, sortorder,
. . .])

Convert list of tuples to MultiIndex

MultiIndex.from_product(iterables[, . . .]) Make a MultiIndex from the cartesian product of multi-
ple iterables

34.10.4 MultiIndex Attributes

MultiIndex.names Names of levels in MultiIndex
MultiIndex.levels
MultiIndex.labels
MultiIndex.nlevels Integer number of levels in this MultiIndex.
MultiIndex.levshape A tuple with the length of each level.

34.10.4.1 pandas.MultiIndex.levels

MultiIndex.levels

34.10.4.2 pandas.MultiIndex.labels

MultiIndex.labels

34.10.5 MultiIndex Components

MultiIndex.set_levels(levels[, level, . . .]) Set new levels on MultiIndex.
MultiIndex.set_labels(labels[, level, . . .]) Set new labels on MultiIndex.
MultiIndex.to_hierarchical(n_repeat[,
n_shuffle])

Return a MultiIndex reshaped to conform to the shapes
given by n_repeat and n_shuffle.

MultiIndex.to_frame([index]) Create a DataFrame with the levels of the MultiIndex as
columns.

Continued on next page

34.10. MultiIndex 2175

pandas: powerful Python data analysis toolkit, Release 0.23.4

Table 122 – continued from previous page
MultiIndex.is_lexsorted() Return True if the labels are lexicographically sorted
MultiIndex.sortlevel([level, ascending, . . .]) Sort MultiIndex at the requested level.
MultiIndex.droplevel([level]) Return Index with requested level removed.
MultiIndex.swaplevel([i, j]) Swap level i with level j.
MultiIndex.reorder_levels(order) Rearrange levels using input order.
MultiIndex.remove_unused_levels() create a new MultiIndex from the current that removing

unused levels, meaning that they are not expressed in
the labels

MultiIndex.unique([level]) Return unique values in the index.

34.10.5.1 pandas.MultiIndex.unique

MultiIndex.unique(level=None)
Return unique values in the index. Uniques are returned in order of appearance, this does NOT sort.

Parameters level : int or str, optional, default None

Only return values from specified level (for MultiIndex)

New in version 0.23.0.

Returns

Index without duplicates

See also:

unique, Series.unique

34.10.6 MultiIndex Selecting

MultiIndex.get_loc(key[, method]) Get location for a label or a tuple of labels as an integer,
slice or boolean mask.

MultiIndex.get_indexer(target[, method, . . .]) Compute indexer and mask for new index given the cur-
rent index.

MultiIndex.get_level_values(level) Return vector of label values for requested level, equal
to the length of the index.

34.10.6.1 pandas.MultiIndex.get_loc

MultiIndex.get_loc(key, method=None)
Get location for a label or a tuple of labels as an integer, slice or boolean mask.

Parameters

key [label or tuple of labels (one for each level)]

method [None]

Returns loc : int, slice object or boolean mask

If the key is past the lexsort depth, the return may be a boolean mask array, otherwise
it is always a slice or int.

See also:

Index.get_loc get_loc method for (single-level) index.

2176 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

MultiIndex.slice_locs Get slice location given start label(s) and end label(s).

MultiIndex.get_locs Get location for a label/slice/list/mask or a sequence of such.

Notes

The key cannot be a slice, list of same-level labels, a boolean mask, or a sequence of such. If you want to use
those, use MultiIndex.get_locs() instead.

Examples

>>> mi = pd.MultiIndex.from_arrays([list('abb'), list('def')])

>>> mi.get_loc('b')
slice(1, 3, None)

>>> mi.get_loc(('b', 'e'))
1

34.10.6.2 pandas.MultiIndex.get_indexer

MultiIndex.get_indexer(target, method=None, limit=None, tolerance=None)
Compute indexer and mask for new index given the current index. The indexer should be then used as an input
to ndarray.take to align the current data to the new index.

Parameters

target [MultiIndex or list of tuples]

method : {None, ‘pad’/’ffill’, ‘backfill’/’bfill’, ‘nearest’}, optional

• default: exact matches only.

• pad / ffill: find the PREVIOUS index value if no exact match.

• backfill / bfill: use NEXT index value if no exact match

• nearest: use the NEAREST index value if no exact match. Tied distances are broken by
preferring the larger index value.

limit : int, optional

Maximum number of consecutive labels in target to match for inexact matches.

tolerance : optional

Maximum distance between original and new labels for inexact matches.
The values of the index at the matching locations most satisfy the equation
abs(index[indexer] - target) <= tolerance.

Tolerance may be a scalar value, which applies the same tolerance to all values, or
list-like, which applies variable tolerance per element. List-like includes list, tuple,
array, Series, and must be the same size as the index and its dtype must exactly match
the index’s type.

New in version 0.21.0: (list-like tolerance)

Returns indexer : ndarray of int

34.10. MultiIndex 2177

pandas: powerful Python data analysis toolkit, Release 0.23.4

Integers from 0 to n - 1 indicating that the index at these positions matches the
corresponding target values. Missing values in the target are marked by -1.

Examples

>>> indexer = index.get_indexer(new_index)
>>> new_values = cur_values.take(indexer)

34.10.6.3 pandas.MultiIndex.get_level_values

MultiIndex.get_level_values(level)
Return vector of label values for requested level, equal to the length of the index.

Parameters level : int or str

level is either the integer position of the level in the MultiIndex, or the name of
the level.

Returns values : Index

values is a level of this MultiIndex converted to a single Index (or subclass
thereof).

Examples

Create a MultiIndex:

>>> mi = pd.MultiIndex.from_arrays((list('abc'), list('def')))
>>> mi.names = ['level_1', 'level_2']

Get level values by supplying level as either integer or name:

>>> mi.get_level_values(0)
Index(['a', 'b', 'c'], dtype='object', name='level_1')
>>> mi.get_level_values('level_2')
Index(['d', 'e', 'f'], dtype='object', name='level_2')

34.11 DatetimeIndex

DatetimeIndex Immutable ndarray of datetime64 data, represented in-
ternally as int64, and which can be boxed to Timestamp
objects that are subclasses of datetime and carry meta-
data such as frequency information.

34.11.1 pandas.DatetimeIndex

class pandas.DatetimeIndex
Immutable ndarray of datetime64 data, represented internally as int64, and which can be boxed to Timestamp
objects that are subclasses of datetime and carry metadata such as frequency information.

Parameters data : array-like (1-dimensional), optional

2178 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

Optional datetime-like data to construct index with

copy : bool

Make a copy of input ndarray

freq : string or pandas offset object, optional

One of pandas date offset strings or corresponding objects

start : starting value, datetime-like, optional

If data is None, start is used as the start point in generating regular timestamp data.

periods : int, optional, > 0

Number of periods to generate, if generating index. Takes precedence over end
argument

end : end time, datetime-like, optional

If periods is none, generated index will extend to first conforming time on or just
past end argument

closed : string or None, default None

Make the interval closed with respect to the given frequency to the ‘left’, ‘right’, or
both sides (None)

tz [pytz.timezone or dateutil.tz.tzfile]

ambiguous : ‘infer’, bool-ndarray, ‘NaT’, default ‘raise’

• ‘infer’ will attempt to infer fall dst-transition hours based on order

• bool-ndarray where True signifies a DST time, False signifies a non-DST time (note that
this flag is only applicable for ambiguous times)

• ‘NaT’ will return NaT where there are ambiguous times

• ‘raise’ will raise an AmbiguousTimeError if there are ambiguous times

name : object

Name to be stored in the index

dayfirst : bool, default False

If True, parse dates in data with the day first order

yearfirst : bool, default False

If True parse dates in data with the year first order

See also:

Index The base pandas Index type

TimedeltaIndex Index of timedelta64 data

PeriodIndex Index of Period data

pandas.to_datetime Convert argument to datetime

34.11. DatetimeIndex 2179

pandas: powerful Python data analysis toolkit, Release 0.23.4

Notes

To learn more about the frequency strings, please see this link.

Attributes

year The year of the datetime
month The month as January=1, December=12
day The days of the datetime
hour The hours of the datetime
minute The minutes of the datetime
second The seconds of the datetime
microsecond The microseconds of the datetime
nanosecond The nanoseconds of the datetime
date Returns numpy array of python datetime.date objects

(namely, the date part of Timestamps without time-
zone information).

time Returns numpy array of datetime.time.
dayofyear The ordinal day of the year
weekofyear The week ordinal of the year
week The week ordinal of the year
dayofweek The day of the week with Monday=0, Sunday=6
weekday The day of the week with Monday=0, Sunday=6
quarter The quarter of the date
freq Return the frequency object if it is set, otherwise

None
freqstr Return the frequency object as a string if it is set,

otherwise None
is_month_start Logical indicating if first day of month (defined by

frequency)
is_month_end Indicator for whether the date is the last day of the

month.
is_quarter_start Indicator for whether the date is the first day of a

quarter.
is_quarter_end Indicator for whether the date is the last day of a

quarter.
is_year_start Indicate whether the date is the first day of a year.
is_year_end Indicate whether the date is the last day of the year.
is_leap_year Boolean indicator if the date belongs to a leap year.
inferred_freq Tries to return a string representing a frequency

guess, generated by infer_freq.

34.11.1.1 pandas.DatetimeIndex.year

DatetimeIndex.year
The year of the datetime

2180 Chapter 34. API Reference

http://pandas.pydata.org/pandas-docs/stable/timeseries.html#offset-aliases

pandas: powerful Python data analysis toolkit, Release 0.23.4

34.11.1.2 pandas.DatetimeIndex.month

DatetimeIndex.month
The month as January=1, December=12

34.11.1.3 pandas.DatetimeIndex.day

DatetimeIndex.day
The days of the datetime

34.11.1.4 pandas.DatetimeIndex.hour

DatetimeIndex.hour
The hours of the datetime

34.11.1.5 pandas.DatetimeIndex.minute

DatetimeIndex.minute
The minutes of the datetime

34.11.1.6 pandas.DatetimeIndex.second

DatetimeIndex.second
The seconds of the datetime

34.11.1.7 pandas.DatetimeIndex.microsecond

DatetimeIndex.microsecond
The microseconds of the datetime

34.11.1.8 pandas.DatetimeIndex.nanosecond

DatetimeIndex.nanosecond
The nanoseconds of the datetime

34.11.1.9 pandas.DatetimeIndex.date

DatetimeIndex.date
Returns numpy array of python datetime.date objects (namely, the date part of Timestamps without time-
zone information).

34.11.1.10 pandas.DatetimeIndex.time

DatetimeIndex.time
Returns numpy array of datetime.time. The time part of the Timestamps.

34.11. DatetimeIndex 2181

pandas: powerful Python data analysis toolkit, Release 0.23.4

34.11.1.11 pandas.DatetimeIndex.dayofyear

DatetimeIndex.dayofyear
The ordinal day of the year

34.11.1.12 pandas.DatetimeIndex.weekofyear

DatetimeIndex.weekofyear
The week ordinal of the year

34.11.1.13 pandas.DatetimeIndex.week

DatetimeIndex.week
The week ordinal of the year

34.11.1.14 pandas.DatetimeIndex.dayofweek

DatetimeIndex.dayofweek
The day of the week with Monday=0, Sunday=6

34.11.1.15 pandas.DatetimeIndex.weekday

DatetimeIndex.weekday
The day of the week with Monday=0, Sunday=6

34.11.1.16 pandas.DatetimeIndex.quarter

DatetimeIndex.quarter
The quarter of the date

34.11.1.17 pandas.DatetimeIndex.freq

DatetimeIndex.freq
Return the frequency object if it is set, otherwise None

34.11.1.18 pandas.DatetimeIndex.freqstr

DatetimeIndex.freqstr
Return the frequency object as a string if it is set, otherwise None

34.11.1.19 pandas.DatetimeIndex.is_month_start

DatetimeIndex.is_month_start
Logical indicating if first day of month (defined by frequency)

2182 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

34.11.1.20 pandas.DatetimeIndex.is_month_end

DatetimeIndex.is_month_end
Indicator for whether the date is the last day of the month.

Returns Series or array

For Series, returns a Series with boolean values. For DatetimeIndex, returns a
boolean array.

See also:

is_month_start Indicator for whether the date is the first day of the month.

Examples

This method is available on Series with datetime values under the .dt accessor, and directly on Date-
timeIndex.

>>> dates = pd.Series(pd.date_range("2018-02-27", periods=3))
>>> dates
0 2018-02-27
1 2018-02-28
2 2018-03-01
dtype: datetime64[ns]
>>> dates.dt.is_month_end
0 False
1 True
2 False
dtype: bool

>>> idx = pd.date_range("2018-02-27", periods=3)
>>> idx.is_month_end
array([False, True, False], dtype=bool)

34.11.1.21 pandas.DatetimeIndex.is_quarter_start

DatetimeIndex.is_quarter_start
Indicator for whether the date is the first day of a quarter.

Returns is_quarter_start : Series or DatetimeIndex

The same type as the original data with boolean values. Series will have the same
name and index. DatetimeIndex will have the same name.

See also:

quarter Return the quarter of the date.

is_quarter_end Similar property for indicating the quarter start.

Examples

This method is available on Series with datetime values under the .dt accessor, and directly on Date-
timeIndex.

34.11. DatetimeIndex 2183

pandas: powerful Python data analysis toolkit, Release 0.23.4

>>> df = pd.DataFrame({'dates': pd.date_range("2017-03-30",
... periods=4)})
>>> df.assign(quarter=df.dates.dt.quarter,
... is_quarter_start=df.dates.dt.is_quarter_start)

dates quarter is_quarter_start
0 2017-03-30 1 False
1 2017-03-31 1 False
2 2017-04-01 2 True
3 2017-04-02 2 False

>>> idx = pd.date_range('2017-03-30', periods=4)
>>> idx
DatetimeIndex(['2017-03-30', '2017-03-31', '2017-04-01', '2017-04-02'],

dtype='datetime64[ns]', freq='D')

>>> idx.is_quarter_start
array([False, False, True, False])

34.11.1.22 pandas.DatetimeIndex.is_quarter_end

DatetimeIndex.is_quarter_end
Indicator for whether the date is the last day of a quarter.

Returns is_quarter_end : Series or DatetimeIndex

The same type as the original data with boolean values. Series will have the same
name and index. DatetimeIndex will have the same name.

See also:

quarter Return the quarter of the date.

is_quarter_start Similar property indicating the quarter start.

Examples

This method is available on Series with datetime values under the .dt accessor, and directly on Date-
timeIndex.

>>> df = pd.DataFrame({'dates': pd.date_range("2017-03-30",
... periods=4)})
>>> df.assign(quarter=df.dates.dt.quarter,
... is_quarter_end=df.dates.dt.is_quarter_end)

dates quarter is_quarter_end
0 2017-03-30 1 False
1 2017-03-31 1 True
2 2017-04-01 2 False
3 2017-04-02 2 False

>>> idx = pd.date_range('2017-03-30', periods=4)
>>> idx
DatetimeIndex(['2017-03-30', '2017-03-31', '2017-04-01', '2017-04-02'],

dtype='datetime64[ns]', freq='D')

2184 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

>>> idx.is_quarter_end
array([False, True, False, False])

34.11.1.23 pandas.DatetimeIndex.is_year_start

DatetimeIndex.is_year_start
Indicate whether the date is the first day of a year.

Returns Series or DatetimeIndex

The same type as the original data with boolean values. Series will have the same
name and index. DatetimeIndex will have the same name.

See also:

is_year_end Similar property indicating the last day of the year.

Examples

This method is available on Series with datetime values under the .dt accessor, and directly on Date-
timeIndex.

>>> dates = pd.Series(pd.date_range("2017-12-30", periods=3))
>>> dates
0 2017-12-30
1 2017-12-31
2 2018-01-01
dtype: datetime64[ns]

>>> dates.dt.is_year_start
0 False
1 False
2 True
dtype: bool

>>> idx = pd.date_range("2017-12-30", periods=3)
>>> idx
DatetimeIndex(['2017-12-30', '2017-12-31', '2018-01-01'],

dtype='datetime64[ns]', freq='D')

>>> idx.is_year_start
array([False, False, True])

34.11.1.24 pandas.DatetimeIndex.is_year_end

DatetimeIndex.is_year_end
Indicate whether the date is the last day of the year.

Returns Series or DatetimeIndex

The same type as the original data with boolean values. Series will have the same
name and index. DatetimeIndex will have the same name.

See also:

34.11. DatetimeIndex 2185

pandas: powerful Python data analysis toolkit, Release 0.23.4

is_year_start Similar property indicating the start of the year.

Examples

This method is available on Series with datetime values under the .dt accessor, and directly on Date-
timeIndex.

>>> dates = pd.Series(pd.date_range("2017-12-30", periods=3))
>>> dates
0 2017-12-30
1 2017-12-31
2 2018-01-01
dtype: datetime64[ns]

>>> dates.dt.is_year_end
0 False
1 True
2 False
dtype: bool

>>> idx = pd.date_range("2017-12-30", periods=3)
>>> idx
DatetimeIndex(['2017-12-30', '2017-12-31', '2018-01-01'],

dtype='datetime64[ns]', freq='D')

>>> idx.is_year_end
array([False, True, False])

34.11.1.25 pandas.DatetimeIndex.is_leap_year

DatetimeIndex.is_leap_year
Boolean indicator if the date belongs to a leap year.

A leap year is a year, which has 366 days (instead of 365) including 29th of February as an intercalary
day. Leap years are years which are multiples of four with the exception of years divisible by 100 but not
by 400.

Returns Series or ndarray

Booleans indicating if dates belong to a leap year.

Examples

This method is available on Series with datetime values under the .dt accessor, and directly on Date-
timeIndex.

>>> idx = pd.date_range("2012-01-01", "2015-01-01", freq="Y")
>>> idx
DatetimeIndex(['2012-12-31', '2013-12-31', '2014-12-31'],

dtype='datetime64[ns]', freq='A-DEC')
>>> idx.is_leap_year
array([True, False, False], dtype=bool)

2186 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

>>> dates = pd.Series(idx)
>>> dates_series
0 2012-12-31
1 2013-12-31
2 2014-12-31
dtype: datetime64[ns]
>>> dates_series.dt.is_leap_year
0 True
1 False
2 False
dtype: bool

34.11.1.26 pandas.DatetimeIndex.inferred_freq

DatetimeIndex.inferred_freq
Tries to return a string representing a frequency guess, generated by infer_freq. Returns None if it can’t
autodetect the frequency.

tz

Methods

normalize() Convert times to midnight.
strftime(date_format) Convert to Index using specified date_format.
snap([freq]) Snap time stamps to nearest occurring frequency
tz_convert(tz) Convert tz-aware DatetimeIndex from one time zone

to another.
tz_localize(tz[, ambiguous, errors]) Localize tz-naive DatetimeIndex to tz-aware Date-

timeIndex.
round(freq, *args, **kwargs) round the data to the specified freq.
floor(freq) floor the data to the specified freq.
ceil(freq) ceil the data to the specified freq.
to_period([freq]) Cast to PeriodIndex at a particular frequency.
to_perioddelta(freq) Calculate TimedeltaIndex of difference between in-

dex values and index converted to periodIndex at
specified freq.

to_pydatetime() Return DatetimeIndex as object ndarray of date-
time.datetime objects

to_series([keep_tz, index, name]) Create a Series with both index and values equal to
the index keys useful with map for returning an in-
dexer based on an index

to_frame([index]) Create a DataFrame with a column containing the In-
dex.

month_name([locale]) Return the month names of the DateTimeIndex with
specified locale.

day_name([locale]) Return the day names of the DateTimeIndex with
specified locale.

34.11. DatetimeIndex 2187

pandas: powerful Python data analysis toolkit, Release 0.23.4

34.11.1.27 pandas.DatetimeIndex.normalize

DatetimeIndex.normalize()
Convert times to midnight.

The time component of the date-timeise converted to midnight i.e. 00:00:00. This is useful in cases, when
the time does not matter. Length is unaltered. The timezones are unaffected.

This method is available on Series with datetime values under the .dt accessor, and directly on Date-
timeIndex.

Returns DatetimeIndex or Series

The same type as the original data. Series will have the same name and index.
DatetimeIndex will have the same name.

See also:

floor Floor the datetimes to the specified freq.

ceil Ceil the datetimes to the specified freq.

round Round the datetimes to the specified freq.

Examples

>>> idx = pd.DatetimeIndex(start='2014-08-01 10:00', freq='H',
... periods=3, tz='Asia/Calcutta')
>>> idx
DatetimeIndex(['2014-08-01 10:00:00+05:30',

'2014-08-01 11:00:00+05:30',
'2014-08-01 12:00:00+05:30'],
dtype='datetime64[ns, Asia/Calcutta]', freq='H')

>>> idx.normalize()
DatetimeIndex(['2014-08-01 00:00:00+05:30',

'2014-08-01 00:00:00+05:30',
'2014-08-01 00:00:00+05:30'],
dtype='datetime64[ns, Asia/Calcutta]', freq=None)

34.11.1.28 pandas.DatetimeIndex.strftime

DatetimeIndex.strftime(date_format)
Convert to Index using specified date_format.

Return an Index of formatted strings specified by date_format, which supports the same string format as
the python standard library. Details of the string format can be found in python string format doc

Parameters date_format : str

Date format string (e.g. “%Y-%m-%d”).

Returns Index

Index of formatted strings

See also:

pandas.to_datetime Convert the given argument to datetime

2188 Chapter 34. API Reference

https://docs.python.org/3/library/datetime.html#strftime-and-strptime-behavior

pandas: powerful Python data analysis toolkit, Release 0.23.4

DatetimeIndex.normalize Return DatetimeIndex with times to midnight.

DatetimeIndex.round Round the DatetimeIndex to the specified freq.

DatetimeIndex.floor Floor the DatetimeIndex to the specified freq.

Examples

>>> rng = pd.date_range(pd.Timestamp("2018-03-10 09:00"),
... periods=3, freq='s')
>>> rng.strftime('%B %d, %Y, %r')
Index(['March 10, 2018, 09:00:00 AM', 'March 10, 2018, 09:00:01 AM',

'March 10, 2018, 09:00:02 AM'],
dtype='object')

34.11.1.29 pandas.DatetimeIndex.snap

DatetimeIndex.snap(freq=’S’)
Snap time stamps to nearest occurring frequency

34.11.1.30 pandas.DatetimeIndex.tz_convert

DatetimeIndex.tz_convert(tz)
Convert tz-aware DatetimeIndex from one time zone to another.

Parameters tz : string, pytz.timezone, dateutil.tz.tzfile or None

Time zone for time. Corresponding timestamps would be converted to this time
zone of the DatetimeIndex. A tz of None will convert to UTC and remove the
timezone information.

Returns

normalized [DatetimeIndex]

Raises TypeError

If DatetimeIndex is tz-naive.

See also:

DatetimeIndex.tz A timezone that has a variable offset from UTC

DatetimeIndex.tz_localize Localize tz-naive DatetimeIndex to a given time zone, or remove
timezone from a tz-aware DatetimeIndex.

Examples

With the tz parameter, we can change the DatetimeIndex to other time zones:

>>> dti = pd.DatetimeIndex(start='2014-08-01 09:00',
... freq='H', periods=3, tz='Europe/Berlin')

34.11. DatetimeIndex 2189

pandas: powerful Python data analysis toolkit, Release 0.23.4

>>> dti
DatetimeIndex(['2014-08-01 09:00:00+02:00',

'2014-08-01 10:00:00+02:00',
'2014-08-01 11:00:00+02:00'],

dtype='datetime64[ns, Europe/Berlin]', freq='H')

>>> dti.tz_convert('US/Central')
DatetimeIndex(['2014-08-01 02:00:00-05:00',

'2014-08-01 03:00:00-05:00',
'2014-08-01 04:00:00-05:00'],

dtype='datetime64[ns, US/Central]', freq='H')

With the tz=None, we can remove the timezone (after converting to UTC if necessary):

>>> dti = pd.DatetimeIndex(start='2014-08-01 09:00',freq='H',
... periods=3, tz='Europe/Berlin')

>>> dti
DatetimeIndex(['2014-08-01 09:00:00+02:00',

'2014-08-01 10:00:00+02:00',
'2014-08-01 11:00:00+02:00'],
dtype='datetime64[ns, Europe/Berlin]', freq='H')

>>> dti.tz_convert(None)
DatetimeIndex(['2014-08-01 07:00:00',

'2014-08-01 08:00:00',
'2014-08-01 09:00:00'],
dtype='datetime64[ns]', freq='H')

34.11.1.31 pandas.DatetimeIndex.tz_localize

DatetimeIndex.tz_localize(tz, ambiguous=’raise’, errors=’raise’)
Localize tz-naive DatetimeIndex to tz-aware DatetimeIndex.

This method takes a time zone (tz) naive DatetimeIndex object and makes this time zone aware. It does
not move the time to another time zone. Time zone localization helps to switch from time zone aware to
time zone unaware objects.

Parameters tz : string, pytz.timezone, dateutil.tz.tzfile or None

Time zone to convert timestamps to. Passing None will remove the time zone
information preserving local time.

ambiguous : str {‘infer’, ‘NaT’, ‘raise’} or bool array, default ‘raise’

• ‘infer’ will attempt to infer fall dst-transition hours based on order

• bool-ndarray where True signifies a DST time, False signifies a non-DST time (note
that this flag is only applicable for ambiguous times)

• ‘NaT’ will return NaT where there are ambiguous times

• ‘raise’ will raise an AmbiguousTimeError if there are ambiguous times

errors : {‘raise’, ‘coerce’}, default ‘raise’

• ‘raise’ will raise a NonExistentTimeError if a timestamp is not valid in
the specified time zone (e.g. due to a transition from or to DST time)

2190 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

• ‘coerce’ will return NaT if the timestamp can not be converted to the specified
time zone

New in version 0.19.0.

Returns DatetimeIndex

Index converted to the specified time zone.

Raises TypeError

If the DatetimeIndex is tz-aware and tz is not None.

See also:

DatetimeIndex.tz_convert Convert tz-aware DatetimeIndex from one time zone to another.

Examples

>>> tz_naive = pd.date_range('2018-03-01 09:00', periods=3)
>>> tz_naive
DatetimeIndex(['2018-03-01 09:00:00', '2018-03-02 09:00:00',

'2018-03-03 09:00:00'],
dtype='datetime64[ns]', freq='D')

Localize DatetimeIndex in US/Eastern time zone:

>>> tz_aware = tz_naive.tz_localize(tz='US/Eastern')
>>> tz_aware
DatetimeIndex(['2018-03-01 09:00:00-05:00',

'2018-03-02 09:00:00-05:00',
'2018-03-03 09:00:00-05:00'],

dtype='datetime64[ns, US/Eastern]', freq='D')

With the tz=None, we can remove the time zone information while keeping the local time (not converted
to UTC):

>>> tz_aware.tz_localize(None)
DatetimeIndex(['2018-03-01 09:00:00', '2018-03-02 09:00:00',

'2018-03-03 09:00:00'],
dtype='datetime64[ns]', freq='D')

34.11.1.32 pandas.DatetimeIndex.round

DatetimeIndex.round(freq, *args, **kwargs)
round the data to the specified freq.

Parameters freq : str or Offset

The frequency level to round the index to. Must be a fixed frequency like ‘S’
(second) not ‘ME’ (month end). See frequency aliases for a list of possible freq
values.

Returns DatetimeIndex, TimedeltaIndex, or Series

Index of the same type for a DatetimeIndex or TimedeltaIndex, or a Series with
the same index for a Series.

Raises

34.11. DatetimeIndex 2191

pandas: powerful Python data analysis toolkit, Release 0.23.4

ValueError if the ‘freq‘ cannot be converted.

Examples

DatetimeIndex

>>> rng = pd.date_range('1/1/2018 11:59:00', periods=3, freq='min')
>>> rng
DatetimeIndex(['2018-01-01 11:59:00', '2018-01-01 12:00:00',

'2018-01-01 12:01:00'],
dtype='datetime64[ns]', freq='T')

>>> rng.round('H')
DatetimeIndex(['2018-01-01 12:00:00', '2018-01-01 12:00:00',

'2018-01-01 12:00:00'],
dtype='datetime64[ns]', freq=None)

Series

>>> pd.Series(rng).dt.round("H")
0 2018-01-01 12:00:00
1 2018-01-01 12:00:00
2 2018-01-01 12:00:00
dtype: datetime64[ns]

34.11.1.33 pandas.DatetimeIndex.floor

DatetimeIndex.floor(freq)
floor the data to the specified freq.

Parameters freq : str or Offset

The frequency level to floor the index to. Must be a fixed frequency like ‘S’
(second) not ‘ME’ (month end). See frequency aliases for a list of possible freq
values.

Returns DatetimeIndex, TimedeltaIndex, or Series

Index of the same type for a DatetimeIndex or TimedeltaIndex, or a Series with
the same index for a Series.

Raises

ValueError if the ‘freq‘ cannot be converted.

Examples

DatetimeIndex

>>> rng = pd.date_range('1/1/2018 11:59:00', periods=3, freq='min')
>>> rng
DatetimeIndex(['2018-01-01 11:59:00', '2018-01-01 12:00:00',

'2018-01-01 12:01:00'],
dtype='datetime64[ns]', freq='T')

>>> rng.floor('H')
DatetimeIndex(['2018-01-01 11:00:00', '2018-01-01 12:00:00',

(continues on next page)

2192 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

'2018-01-01 12:00:00'],
dtype='datetime64[ns]', freq=None)

Series

>>> pd.Series(rng).dt.floor("H")
0 2018-01-01 11:00:00
1 2018-01-01 12:00:00
2 2018-01-01 12:00:00
dtype: datetime64[ns]

34.11.1.34 pandas.DatetimeIndex.ceil

DatetimeIndex.ceil(freq)
ceil the data to the specified freq.

Parameters freq : str or Offset

The frequency level to ceil the index to. Must be a fixed frequency like ‘S’ (sec-
ond) not ‘ME’ (month end). See frequency aliases for a list of possible freq
values.

Returns DatetimeIndex, TimedeltaIndex, or Series

Index of the same type for a DatetimeIndex or TimedeltaIndex, or a Series with
the same index for a Series.

Raises

ValueError if the ‘freq‘ cannot be converted.

Examples

DatetimeIndex

>>> rng = pd.date_range('1/1/2018 11:59:00', periods=3, freq='min')
>>> rng
DatetimeIndex(['2018-01-01 11:59:00', '2018-01-01 12:00:00',

'2018-01-01 12:01:00'],
dtype='datetime64[ns]', freq='T')

>>> rng.ceil('H')
DatetimeIndex(['2018-01-01 12:00:00', '2018-01-01 12:00:00',

'2018-01-01 13:00:00'],
dtype='datetime64[ns]', freq=None)

Series

>>> pd.Series(rng).dt.ceil("H")
0 2018-01-01 12:00:00
1 2018-01-01 12:00:00
2 2018-01-01 13:00:00
dtype: datetime64[ns]

34.11. DatetimeIndex 2193

pandas: powerful Python data analysis toolkit, Release 0.23.4

34.11.1.35 pandas.DatetimeIndex.to_period

DatetimeIndex.to_period(freq=None)
Cast to PeriodIndex at a particular frequency.

Converts DatetimeIndex to PeriodIndex.

Parameters freq : string or Offset, optional

One of pandas’ offset strings or an Offset object. Will be inferred by default.

Returns

PeriodIndex

Raises ValueError

When converting a DatetimeIndex with non-regular values, so that a frequency
cannot be inferred.

See also:

pandas.PeriodIndex Immutable ndarray holding ordinal values

pandas.DatetimeIndex.to_pydatetime Return DatetimeIndex as object

Examples

>>> df = pd.DataFrame({"y": [1,2,3]},
... index=pd.to_datetime(["2000-03-31 00:00:00",
... "2000-05-31 00:00:00",
... "2000-08-31 00:00:00"]))
>>> df.index.to_period("M")
PeriodIndex(['2000-03', '2000-05', '2000-08'],

dtype='period[M]', freq='M')

Infer the daily frequency

>>> idx = pd.date_range("2017-01-01", periods=2)
>>> idx.to_period()
PeriodIndex(['2017-01-01', '2017-01-02'],

dtype='period[D]', freq='D')

34.11.1.36 pandas.DatetimeIndex.to_perioddelta

DatetimeIndex.to_perioddelta(freq)
Calculate TimedeltaIndex of difference between index values and index converted to periodIndex at spec-
ified freq. Used for vectorized offsets

Parameters

freq: Period frequency

Returns

y: TimedeltaIndex

2194 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

34.11.1.37 pandas.DatetimeIndex.to_pydatetime

DatetimeIndex.to_pydatetime()
Return DatetimeIndex as object ndarray of datetime.datetime objects

Returns

datetimes [ndarray]

34.11.1.38 pandas.DatetimeIndex.to_series

DatetimeIndex.to_series(keep_tz=False, index=None, name=None)
Create a Series with both index and values equal to the index keys useful with map for returning an indexer
based on an index

Parameters keep_tz : optional, defaults False.

return the data keeping the timezone.

If keep_tz is True:

If the timezone is not set, the resulting Series will have a datetime64[ns]
dtype.

Otherwise the Series will have an datetime64[ns, tz] dtype; the tz will be
preserved.

If keep_tz is False:

Series will have a datetime64[ns] dtype. TZ aware objects will have the tz
removed.

index : Index, optional

index of resulting Series. If None, defaults to original index

name : string, optional

name of resulting Series. If None, defaults to name of original index

Returns

Series

34.11.1.39 pandas.DatetimeIndex.to_frame

DatetimeIndex.to_frame(index=True)
Create a DataFrame with a column containing the Index.

New in version 0.21.0.

Parameters index : boolean, default True

Set the index of the returned DataFrame as the original Index.

Returns DataFrame

DataFrame containing the original Index data.

See also:

Index.to_series Convert an Index to a Series.

Series.to_frame Convert Series to DataFrame.

34.11. DatetimeIndex 2195

pandas: powerful Python data analysis toolkit, Release 0.23.4

Examples

>>> idx = pd.Index(['Ant', 'Bear', 'Cow'], name='animal')
>>> idx.to_frame()

animal
animal
Ant Ant
Bear Bear
Cow Cow

By default, the original Index is reused. To enforce a new Index:

>>> idx.to_frame(index=False)
animal

0 Ant
1 Bear
2 Cow

34.11.1.40 pandas.DatetimeIndex.month_name

DatetimeIndex.month_name(locale=None)
Return the month names of the DateTimeIndex with specified locale.

Parameters locale : string, default None (English locale)

locale determining the language in which to return the month name

Returns month_names : Index

Index of month names

.. versionadded:: 0.23.0

34.11.1.41 pandas.DatetimeIndex.day_name

DatetimeIndex.day_name(locale=None)
Return the day names of the DateTimeIndex with specified locale.

Parameters locale : string, default None (English locale)

locale determining the language in which to return the day name

Returns month_names : Index

Index of day names

.. versionadded:: 0.23.0

34.11.2 Time/Date Components

DatetimeIndex.year The year of the datetime
DatetimeIndex.month The month as January=1, December=12
DatetimeIndex.day The days of the datetime
DatetimeIndex.hour The hours of the datetime

Continued on next page

2196 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

Table 127 – continued from previous page
DatetimeIndex.minute The minutes of the datetime
DatetimeIndex.second The seconds of the datetime
DatetimeIndex.microsecond The microseconds of the datetime
DatetimeIndex.nanosecond The nanoseconds of the datetime
DatetimeIndex.date Returns numpy array of python datetime.date objects

(namely, the date part of Timestamps without timezone
information).

DatetimeIndex.time Returns numpy array of datetime.time.
DatetimeIndex.dayofyear The ordinal day of the year
DatetimeIndex.weekofyear The week ordinal of the year
DatetimeIndex.week The week ordinal of the year
DatetimeIndex.dayofweek The day of the week with Monday=0, Sunday=6
DatetimeIndex.weekday The day of the week with Monday=0, Sunday=6
DatetimeIndex.quarter The quarter of the date
DatetimeIndex.tz
DatetimeIndex.freq Return the frequency object if it is set, otherwise None
DatetimeIndex.freqstr Return the frequency object as a string if it is set, other-

wise None
DatetimeIndex.is_month_start Logical indicating if first day of month (defined by fre-

quency)
DatetimeIndex.is_month_end Indicator for whether the date is the last day of the

month.
DatetimeIndex.is_quarter_start Indicator for whether the date is the first day of a quarter.
DatetimeIndex.is_quarter_end Indicator for whether the date is the last day of a quarter.
DatetimeIndex.is_year_start Indicate whether the date is the first day of a year.
DatetimeIndex.is_year_end Indicate whether the date is the last day of the year.
DatetimeIndex.is_leap_year Boolean indicator if the date belongs to a leap year.
DatetimeIndex.inferred_freq Tries to return a string representing a frequency guess,

generated by infer_freq.

34.11.2.1 pandas.DatetimeIndex.tz

DatetimeIndex.tz

34.11.3 Selecting

DatetimeIndex.indexer_at_time(time[,
asof])

Returns index locations of index values at particular
time of day (e.g.

DatetimeIndex.indexer_between_time(. . . [,
. . .])

Return index locations of values between particular
times of day (e.g., 9:00-9:30AM).

34.11.3.1 pandas.DatetimeIndex.indexer_at_time

DatetimeIndex.indexer_at_time(time, asof=False)
Returns index locations of index values at particular time of day (e.g. 9:30AM).

Parameters time : datetime.time or string

datetime.time or string in appropriate format (“%H:%M”, “%H%M”, “%I:%M%p”,
“%I%M%p”, “%H:%M:%S”, “%H%M%S”, “%I:%M:%S%p”, “%I%M%S%p”).

Returns

34.11. DatetimeIndex 2197

pandas: powerful Python data analysis toolkit, Release 0.23.4

values_at_time [array of integers]

See also:

indexer_between_time, DataFrame.at_time

34.11.3.2 pandas.DatetimeIndex.indexer_between_time

DatetimeIndex.indexer_between_time(start_time, end_time, include_start=True, in-
clude_end=True)

Return index locations of values between particular times of day (e.g., 9:00-9:30AM).

Parameters start_time, end_time : datetime.time, str

datetime.time or string in appropriate format (“%H:%M”, “%H%M”, “%I:%M%p”,
“%I%M%p”, “%H:%M:%S”, “%H%M%S”, “%I:%M:%S%p”, “%I%M%S%p”).

include_start [boolean, default True]

include_end [boolean, default True]

Returns

values_between_time [array of integers]

See also:

indexer_at_time, DataFrame.between_time

34.11.4 Time-specific operations

DatetimeIndex.normalize() Convert times to midnight.
DatetimeIndex.strftime(date_format) Convert to Index using specified date_format.
DatetimeIndex.snap([freq]) Snap time stamps to nearest occurring frequency
DatetimeIndex.tz_convert(tz) Convert tz-aware DatetimeIndex from one time zone to

another.
DatetimeIndex.tz_localize(tz[, ambiguous,
. . .])

Localize tz-naive DatetimeIndex to tz-aware Date-
timeIndex.

DatetimeIndex.round(freq, *args, **kwargs) round the data to the specified freq.
DatetimeIndex.floor(freq) floor the data to the specified freq.
DatetimeIndex.ceil(freq) ceil the data to the specified freq.
DatetimeIndex.month_name([locale]) Return the month names of the DateTimeIndex with

specified locale.
DatetimeIndex.day_name([locale]) Return the day names of the DateTimeIndex with spec-

ified locale.

34.11.5 Conversion

DatetimeIndex.to_period([freq]) Cast to PeriodIndex at a particular frequency.
DatetimeIndex.to_perioddelta(freq) Calculate TimedeltaIndex of difference between index

values and index converted to periodIndex at specified
freq.

Continued on next page

2198 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

Table 130 – continued from previous page
DatetimeIndex.to_pydatetime() Return DatetimeIndex as object ndarray of date-

time.datetime objects
DatetimeIndex.to_series([keep_tz, index,
name])

Create a Series with both index and values equal to the
index keys useful with map for returning an indexer
based on an index

DatetimeIndex.to_frame([index]) Create a DataFrame with a column containing the Index.

34.12 TimedeltaIndex

TimedeltaIndex Immutable ndarray of timedelta64 data, represented in-
ternally as int64, and which can be boxed to timedelta
objects

34.12.1 pandas.TimedeltaIndex

class pandas.TimedeltaIndex
Immutable ndarray of timedelta64 data, represented internally as int64, and which can be boxed to timedelta
objects

Parameters data : array-like (1-dimensional), optional

Optional timedelta-like data to construct index with

unit: unit of the arg (D,h,m,s,ms,us,ns) denote the unit, optional

which is an integer/float number

freq: a frequency for the index, optional

copy : bool

Make a copy of input ndarray

start : starting value, timedelta-like, optional

If data is None, start is used as the start point in generating regular timedelta data.

periods : int, optional, > 0

Number of periods to generate, if generating index. Takes precedence over end
argument

end : end time, timedelta-like, optional

If periods is none, generated index will extend to first conforming time on or just
past end argument

closed : string or None, default None

Make the interval closed with respect to the given frequency to the ‘left’, ‘right’, or
both sides (None)

name : object

Name to be stored in the index

See also:

34.12. TimedeltaIndex 2199

pandas: powerful Python data analysis toolkit, Release 0.23.4

Index The base pandas Index type

Timedelta Represents a duration between two dates or times.

DatetimeIndex Index of datetime64 data

PeriodIndex Index of Period data

Notes

To learn more about the frequency strings, please see this link.

Attributes

days Number of days for each element.
seconds Number of seconds (>= 0 and less than 1 day) for

each element.
microseconds Number of microseconds (>= 0 and less than 1 sec-

ond) for each element.
nanoseconds Number of nanoseconds (>= 0 and less than 1 mi-

crosecond) for each element.
components Return a dataframe of the components (days,

hours, minutes, seconds, milliseconds, microsec-
onds, nanoseconds) of the Timedeltas.

inferred_freq Tries to return a string representing a frequency
guess, generated by infer_freq.

34.12.1.1 pandas.TimedeltaIndex.days

TimedeltaIndex.days
Number of days for each element.

34.12.1.2 pandas.TimedeltaIndex.seconds

TimedeltaIndex.seconds
Number of seconds (>= 0 and less than 1 day) for each element.

34.12.1.3 pandas.TimedeltaIndex.microseconds

TimedeltaIndex.microseconds
Number of microseconds (>= 0 and less than 1 second) for each element.

34.12.1.4 pandas.TimedeltaIndex.nanoseconds

TimedeltaIndex.nanoseconds
Number of nanoseconds (>= 0 and less than 1 microsecond) for each element.

2200 Chapter 34. API Reference

http://pandas.pydata.org/pandas-docs/stable/timeseries.html#offset-aliases

pandas: powerful Python data analysis toolkit, Release 0.23.4

34.12.1.5 pandas.TimedeltaIndex.components

TimedeltaIndex.components
Return a dataframe of the components (days, hours, minutes, seconds, milliseconds, microseconds,
nanoseconds) of the Timedeltas.

Returns

a DataFrame

34.12.1.6 pandas.TimedeltaIndex.inferred_freq

TimedeltaIndex.inferred_freq
Tries to return a string representing a frequency guess, generated by infer_freq. Returns None if it can’t
autodetect the frequency.

Methods

to_pytimedelta() Return TimedeltaIndex as object ndarray of date-
time.timedelta objects

to_series([index, name]) Create a Series with both index and values equal to
the index keys useful with map for returning an in-
dexer based on an index

round(freq, *args, **kwargs) round the data to the specified freq.
floor(freq) floor the data to the specified freq.
ceil(freq) ceil the data to the specified freq.
to_frame([index]) Create a DataFrame with a column containing the In-

dex.

34.12.1.7 pandas.TimedeltaIndex.to_pytimedelta

TimedeltaIndex.to_pytimedelta()
Return TimedeltaIndex as object ndarray of datetime.timedelta objects

Returns

datetimes [ndarray]

34.12.1.8 pandas.TimedeltaIndex.to_series

TimedeltaIndex.to_series(index=None, name=None)
Create a Series with both index and values equal to the index keys useful with map for returning an indexer
based on an index

Parameters index : Index, optional

index of resulting Series. If None, defaults to original index

name : string, optional

name of resulting Series. If None, defaults to name of original index

Returns

Series [dtype will be based on the type of the Index values.]

34.12. TimedeltaIndex 2201

pandas: powerful Python data analysis toolkit, Release 0.23.4

34.12.1.9 pandas.TimedeltaIndex.round

TimedeltaIndex.round(freq, *args, **kwargs)
round the data to the specified freq.

Parameters freq : str or Offset

The frequency level to round the index to. Must be a fixed frequency like ‘S’
(second) not ‘ME’ (month end). See frequency aliases for a list of possible freq
values.

Returns DatetimeIndex, TimedeltaIndex, or Series

Index of the same type for a DatetimeIndex or TimedeltaIndex, or a Series with
the same index for a Series.

Raises

ValueError if the ‘freq‘ cannot be converted.

Examples

DatetimeIndex

>>> rng = pd.date_range('1/1/2018 11:59:00', periods=3, freq='min')
>>> rng
DatetimeIndex(['2018-01-01 11:59:00', '2018-01-01 12:00:00',

'2018-01-01 12:01:00'],
dtype='datetime64[ns]', freq='T')

>>> rng.round('H')
DatetimeIndex(['2018-01-01 12:00:00', '2018-01-01 12:00:00',

'2018-01-01 12:00:00'],
dtype='datetime64[ns]', freq=None)

Series

>>> pd.Series(rng).dt.round("H")
0 2018-01-01 12:00:00
1 2018-01-01 12:00:00
2 2018-01-01 12:00:00
dtype: datetime64[ns]

34.12.1.10 pandas.TimedeltaIndex.floor

TimedeltaIndex.floor(freq)
floor the data to the specified freq.

Parameters freq : str or Offset

The frequency level to floor the index to. Must be a fixed frequency like ‘S’
(second) not ‘ME’ (month end). See frequency aliases for a list of possible freq
values.

Returns DatetimeIndex, TimedeltaIndex, or Series

Index of the same type for a DatetimeIndex or TimedeltaIndex, or a Series with
the same index for a Series.

Raises

2202 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

ValueError if the ‘freq‘ cannot be converted.

Examples

DatetimeIndex

>>> rng = pd.date_range('1/1/2018 11:59:00', periods=3, freq='min')
>>> rng
DatetimeIndex(['2018-01-01 11:59:00', '2018-01-01 12:00:00',

'2018-01-01 12:01:00'],
dtype='datetime64[ns]', freq='T')

>>> rng.floor('H')
DatetimeIndex(['2018-01-01 11:00:00', '2018-01-01 12:00:00',

'2018-01-01 12:00:00'],
dtype='datetime64[ns]', freq=None)

Series

>>> pd.Series(rng).dt.floor("H")
0 2018-01-01 11:00:00
1 2018-01-01 12:00:00
2 2018-01-01 12:00:00
dtype: datetime64[ns]

34.12.1.11 pandas.TimedeltaIndex.ceil

TimedeltaIndex.ceil(freq)
ceil the data to the specified freq.

Parameters freq : str or Offset

The frequency level to ceil the index to. Must be a fixed frequency like ‘S’ (sec-
ond) not ‘ME’ (month end). See frequency aliases for a list of possible freq
values.

Returns DatetimeIndex, TimedeltaIndex, or Series

Index of the same type for a DatetimeIndex or TimedeltaIndex, or a Series with
the same index for a Series.

Raises

ValueError if the ‘freq‘ cannot be converted.

Examples

DatetimeIndex

>>> rng = pd.date_range('1/1/2018 11:59:00', periods=3, freq='min')
>>> rng
DatetimeIndex(['2018-01-01 11:59:00', '2018-01-01 12:00:00',

'2018-01-01 12:01:00'],
dtype='datetime64[ns]', freq='T')

>>> rng.ceil('H')
DatetimeIndex(['2018-01-01 12:00:00', '2018-01-01 12:00:00',

(continues on next page)

34.12. TimedeltaIndex 2203

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

'2018-01-01 13:00:00'],
dtype='datetime64[ns]', freq=None)

Series

>>> pd.Series(rng).dt.ceil("H")
0 2018-01-01 12:00:00
1 2018-01-01 12:00:00
2 2018-01-01 13:00:00
dtype: datetime64[ns]

34.12.1.12 pandas.TimedeltaIndex.to_frame

TimedeltaIndex.to_frame(index=True)
Create a DataFrame with a column containing the Index.

New in version 0.21.0.

Parameters index : boolean, default True

Set the index of the returned DataFrame as the original Index.

Returns DataFrame

DataFrame containing the original Index data.

See also:

Index.to_series Convert an Index to a Series.

Series.to_frame Convert Series to DataFrame.

Examples

>>> idx = pd.Index(['Ant', 'Bear', 'Cow'], name='animal')
>>> idx.to_frame()

animal
animal
Ant Ant
Bear Bear
Cow Cow

By default, the original Index is reused. To enforce a new Index:

>>> idx.to_frame(index=False)
animal

0 Ant
1 Bear
2 Cow

34.12.2 Components

2204 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

TimedeltaIndex.days Number of days for each element.
TimedeltaIndex.seconds Number of seconds (>= 0 and less than 1 day) for each

element.
TimedeltaIndex.microseconds Number of microseconds (>= 0 and less than 1 second)

for each element.
TimedeltaIndex.nanoseconds Number of nanoseconds (>= 0 and less than 1 microsec-

ond) for each element.
TimedeltaIndex.components Return a dataframe of the components (days, hours,

minutes, seconds, milliseconds, microseconds,
nanoseconds) of the Timedeltas.

TimedeltaIndex.inferred_freq Tries to return a string representing a frequency guess,
generated by infer_freq.

34.12.3 Conversion

TimedeltaIndex.to_pytimedelta() Return TimedeltaIndex as object ndarray of date-
time.timedelta objects

TimedeltaIndex.to_series([index, name]) Create a Series with both index and values equal to the
index keys useful with map for returning an indexer
based on an index

TimedeltaIndex.round(freq, *args, **kwargs) round the data to the specified freq.
TimedeltaIndex.floor(freq) floor the data to the specified freq.
TimedeltaIndex.ceil(freq) ceil the data to the specified freq.
TimedeltaIndex.to_frame([index]) Create a DataFrame with a column containing the Index.

34.13 PeriodIndex

PeriodIndex Immutable ndarray holding ordinal values indicating
regular periods in time such as particular years, quar-
ters, months, etc.

34.13.1 pandas.PeriodIndex

class pandas.PeriodIndex
Immutable ndarray holding ordinal values indicating regular periods in time such as particular years, quarters,
months, etc.

Index keys are boxed to Period objects which carries the metadata (eg, frequency information).

Parameters data : array-like (1-dimensional), optional

Optional period-like data to construct index with

copy : bool

Make a copy of input ndarray

freq : string or period object, optional

One of pandas period strings or corresponding objects

start : starting value, period-like, optional

If data is None, used as the start point in generating regular period data.

34.13. PeriodIndex 2205

pandas: powerful Python data analysis toolkit, Release 0.23.4

periods : int, optional, > 0

Number of periods to generate, if generating index. Takes precedence over end
argument

end : end value, period-like, optional

If periods is none, generated index will extend to first conforming period on or just
past end argument

year [int, array, or Series, default None]

month [int, array, or Series, default None]

quarter [int, array, or Series, default None]

day [int, array, or Series, default None]

hour [int, array, or Series, default None]

minute [int, array, or Series, default None]

second [int, array, or Series, default None]

tz : object, default None

Timezone for converting datetime64 data to Periods

dtype [str or PeriodDtype, default None]

See also:

Index The base pandas Index type

Period Represents a period of time

DatetimeIndex Index with datetime64 data

TimedeltaIndex Index of timedelta64 data

Examples

>>> idx = PeriodIndex(year=year_arr, quarter=q_arr)

>>> idx2 = PeriodIndex(start='2000', end='2010', freq='A')

Attributes

day The days of the period
dayofweek The day of the week with Monday=0, Sunday=6
dayofyear The ordinal day of the year
days_in_month The number of days in the month
daysinmonth The number of days in the month
freq Return the frequency object if it is set, otherwise

None
Continued on next page

2206 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

Table 137 – continued from previous page
freqstr Return the frequency object as a string if it is set,

otherwise None
hour The hour of the period
is_leap_year Logical indicating if the date belongs to a leap year
minute The minute of the period
month The month as January=1, December=12
quarter The quarter of the date
second The second of the period
week The week ordinal of the year
weekday The day of the week with Monday=0, Sunday=6
weekofyear The week ordinal of the year
year The year of the period

34.13.1.1 pandas.PeriodIndex.day

PeriodIndex.day
The days of the period

34.13.1.2 pandas.PeriodIndex.dayofweek

PeriodIndex.dayofweek
The day of the week with Monday=0, Sunday=6

34.13.1.3 pandas.PeriodIndex.dayofyear

PeriodIndex.dayofyear
The ordinal day of the year

34.13.1.4 pandas.PeriodIndex.days_in_month

PeriodIndex.days_in_month
The number of days in the month

34.13.1.5 pandas.PeriodIndex.daysinmonth

PeriodIndex.daysinmonth
The number of days in the month

34.13.1.6 pandas.PeriodIndex.freq

PeriodIndex.freq
Return the frequency object if it is set, otherwise None

34.13.1.7 pandas.PeriodIndex.freqstr

PeriodIndex.freqstr
Return the frequency object as a string if it is set, otherwise None

34.13. PeriodIndex 2207

pandas: powerful Python data analysis toolkit, Release 0.23.4

34.13.1.8 pandas.PeriodIndex.hour

PeriodIndex.hour
The hour of the period

34.13.1.9 pandas.PeriodIndex.is_leap_year

PeriodIndex.is_leap_year
Logical indicating if the date belongs to a leap year

34.13.1.10 pandas.PeriodIndex.minute

PeriodIndex.minute
The minute of the period

34.13.1.11 pandas.PeriodIndex.month

PeriodIndex.month
The month as January=1, December=12

34.13.1.12 pandas.PeriodIndex.quarter

PeriodIndex.quarter
The quarter of the date

34.13.1.13 pandas.PeriodIndex.second

PeriodIndex.second
The second of the period

34.13.1.14 pandas.PeriodIndex.week

PeriodIndex.week
The week ordinal of the year

34.13.1.15 pandas.PeriodIndex.weekday

PeriodIndex.weekday
The day of the week with Monday=0, Sunday=6

34.13.1.16 pandas.PeriodIndex.weekofyear

PeriodIndex.weekofyear
The week ordinal of the year

2208 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

34.13.1.17 pandas.PeriodIndex.year

PeriodIndex.year
The year of the period

end_time
qyear
start_time

Methods

asfreq([freq, how]) Convert the PeriodIndex to the specified frequency
freq.

strftime(date_format) Convert to Index using specified date_format.
to_timestamp([freq, how]) Cast to DatetimeIndex
tz_convert(tz) Convert tz-aware DatetimeIndex from one time zone

to another (using pytz/dateutil)
tz_localize(tz[, ambiguous]) Localize tz-naive DatetimeIndex to given time zone

(using pytz/dateutil), or remove timezone from tz-
aware DatetimeIndex

34.13.1.18 pandas.PeriodIndex.asfreq

PeriodIndex.asfreq(freq=None, how=’E’)
Convert the PeriodIndex to the specified frequency freq.

Parameters freq : str

a frequency

how : str {‘E’, ‘S’}

‘E’, ‘END’, or ‘FINISH’ for end, ‘S’, ‘START’, or ‘BEGIN’ for start. Whether
the elements should be aligned to the end or start within pa period. January 31st
(‘END’) vs. Janury 1st (‘START’) for example.

Returns

new [PeriodIndex with the new frequency]

Examples

>>> pidx = pd.period_range('2010-01-01', '2015-01-01', freq='A')
>>> pidx
<class 'pandas.core.indexes.period.PeriodIndex'>
[2010, ..., 2015]
Length: 6, Freq: A-DEC

>>> pidx.asfreq('M')
<class 'pandas.core.indexes.period.PeriodIndex'>
[2010-12, ..., 2015-12]
Length: 6, Freq: M

34.13. PeriodIndex 2209

pandas: powerful Python data analysis toolkit, Release 0.23.4

>>> pidx.asfreq('M', how='S')
<class 'pandas.core.indexes.period.PeriodIndex'>
[2010-01, ..., 2015-01]
Length: 6, Freq: M

34.13.1.19 pandas.PeriodIndex.strftime

PeriodIndex.strftime(date_format)
Convert to Index using specified date_format.

Return an Index of formatted strings specified by date_format, which supports the same string format as
the python standard library. Details of the string format can be found in python string format doc

Parameters date_format : str

Date format string (e.g. “%Y-%m-%d”).

Returns Index

Index of formatted strings

See also:

pandas.to_datetime Convert the given argument to datetime

DatetimeIndex.normalize Return DatetimeIndex with times to midnight.

DatetimeIndex.round Round the DatetimeIndex to the specified freq.

DatetimeIndex.floor Floor the DatetimeIndex to the specified freq.

Examples

>>> rng = pd.date_range(pd.Timestamp("2018-03-10 09:00"),
... periods=3, freq='s')
>>> rng.strftime('%B %d, %Y, %r')
Index(['March 10, 2018, 09:00:00 AM', 'March 10, 2018, 09:00:01 AM',

'March 10, 2018, 09:00:02 AM'],
dtype='object')

34.13.1.20 pandas.PeriodIndex.to_timestamp

PeriodIndex.to_timestamp(freq=None, how=’start’)
Cast to DatetimeIndex

Parameters freq : string or DateOffset, optional

Target frequency. The default is ‘D’ for week or longer, ‘S’ otherwise

how [{‘s’, ‘e’, ‘start’, ‘end’}]

Returns

DatetimeIndex

2210 Chapter 34. API Reference

https://docs.python.org/3/library/datetime.html#strftime-and-strptime-behavior

pandas: powerful Python data analysis toolkit, Release 0.23.4

34.13.1.21 pandas.PeriodIndex.tz_convert

PeriodIndex.tz_convert(tz)
Convert tz-aware DatetimeIndex from one time zone to another (using pytz/dateutil)

Parameters tz : string, pytz.timezone, dateutil.tz.tzfile or None

Time zone for time. Corresponding timestamps would be converted to time zone
of the TimeSeries. None will remove timezone holding UTC time.

Returns

normalized [DatetimeIndex]

Notes

Not currently implemented for PeriodIndex

34.13.1.22 pandas.PeriodIndex.tz_localize

PeriodIndex.tz_localize(tz, ambiguous=’raise’)
Localize tz-naive DatetimeIndex to given time zone (using pytz/dateutil), or remove timezone from tz-
aware DatetimeIndex

Parameters tz : string, pytz.timezone, dateutil.tz.tzfile or None

Time zone for time. Corresponding timestamps would be converted to time zone
of the TimeSeries. None will remove timezone holding local time.

Returns

localized [DatetimeIndex]

Notes

Not currently implemented for PeriodIndex

34.13.2 Attributes

PeriodIndex.day The days of the period
PeriodIndex.dayofweek The day of the week with Monday=0, Sunday=6
PeriodIndex.dayofyear The ordinal day of the year
PeriodIndex.days_in_month The number of days in the month
PeriodIndex.daysinmonth The number of days in the month
PeriodIndex.end_time
PeriodIndex.freq Return the frequency object if it is set, otherwise None
PeriodIndex.freqstr Return the frequency object as a string if it is set, other-

wise None
PeriodIndex.hour The hour of the period
PeriodIndex.is_leap_year Logical indicating if the date belongs to a leap year
PeriodIndex.minute The minute of the period
PeriodIndex.month The month as January=1, December=12

Continued on next page

34.13. PeriodIndex 2211

pandas: powerful Python data analysis toolkit, Release 0.23.4

Table 139 – continued from previous page
PeriodIndex.quarter The quarter of the date
PeriodIndex.qyear
PeriodIndex.second The second of the period
PeriodIndex.start_time
PeriodIndex.week The week ordinal of the year
PeriodIndex.weekday The day of the week with Monday=0, Sunday=6
PeriodIndex.weekofyear The week ordinal of the year
PeriodIndex.year The year of the period

34.13.2.1 pandas.PeriodIndex.end_time

PeriodIndex.end_time

34.13.2.2 pandas.PeriodIndex.qyear

PeriodIndex.qyear

34.13.2.3 pandas.PeriodIndex.start_time

PeriodIndex.start_time

34.13.3 Methods

PeriodIndex.asfreq([freq, how]) Convert the PeriodIndex to the specified frequency freq.
PeriodIndex.strftime(date_format) Convert to Index using specified date_format.
PeriodIndex.to_timestamp([freq, how]) Cast to DatetimeIndex
PeriodIndex.tz_convert(tz) Convert tz-aware DatetimeIndex from one time zone to

another (using pytz/dateutil)
PeriodIndex.tz_localize(tz[, ambiguous]) Localize tz-naive DatetimeIndex to given time zone (us-

ing pytz/dateutil), or remove timezone from tz-aware
DatetimeIndex

34.14 Scalars

34.14.1 Period

Period Represents a period of time

34.14.1.1 pandas.Period

class pandas.Period
Represents a period of time

Parameters value : Period or compat.string_types, default None

The time period represented (e.g., ‘4Q2005’)

freq : str, default None

2212 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

One of pandas period strings or corresponding objects

year [int, default None]

month [int, default 1]

quarter [int, default None]

day [int, default 1]

hour [int, default 0]

minute [int, default 0]

second [int, default 0]

Attributes

day Get day of the month that a Period falls on.
dayofweek Return the day of the week.
dayofyear Return the day of the year.
days_in_month Get the total number of days in the month that this

period falls on.
daysinmonth Get the total number of days of the month that the

Period falls in.
hour Get the hour of the day component of the Period.
minute Get minute of the hour component of the Period.
second Get the second component of the Period.
start_time Get the Timestamp for the start of the period.
week Get the week of the year on the given Period.

pandas.Period.day

Period.day
Get day of the month that a Period falls on.

Returns

int

See also:

Period.dayofweek Get the day of the week

Period.dayofyear Get the day of the year

Examples

>>> p = pd.Period("2018-03-11", freq='H')
>>> p.day
11

34.14. Scalars 2213

pandas: powerful Python data analysis toolkit, Release 0.23.4

pandas.Period.dayofweek

Period.dayofweek
Return the day of the week.

This attribute returns the day of the week on which the particular date for the given period occurs depend-
ing on the frequency with Monday=0, Sunday=6.

Returns Int

Range from 0 to 6 (included).

See also:

Period.dayofyear Return the day of the year.

Period.daysinmonth Return the number of days in that month.

Examples

>>> period1 = pd.Period('2012-1-1 19:00', freq='H')
>>> period1
Period('2012-01-01 19:00', 'H')
>>> period1.dayofweek
6

>>> period2 = pd.Period('2013-1-9 11:00', freq='H')
>>> period2
Period('2013-01-09 11:00', 'H')
>>> period2.dayofweek
2

pandas.Period.dayofyear

Period.dayofyear
Return the day of the year.

This attribute returns the day of the year on which the particular date occurs. The return value ranges
between 1 to 365 for regular years and 1 to 366 for leap years.

Returns int

The day of year.

See also:

Period.day Return the day of the month.

Period.dayofweek Return the day of week.

PeriodIndex.dayofyear Return the day of year of all indexes.

Examples

2214 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

>>> period = pd.Period("2015-10-23", freq='H')
>>> period.dayofyear
296
>>> period = pd.Period("2012-12-31", freq='D')
>>> period.dayofyear
366
>>> period = pd.Period("2013-01-01", freq='D')
>>> period.dayofyear
1

pandas.Period.days_in_month

Period.days_in_month
Get the total number of days in the month that this period falls on.

Returns

int

See also:

Period.daysinmonth Gets the number of days in the month.

DatetimeIndex.daysinmonth Gets the number of days in the month.

calendar.monthrange Returns a tuple containing weekday (0-6 ~ Mon-Sun) and number of days
(28-31).

Examples

>>> p = pd.Period('2018-2-17')
>>> p.days_in_month
28

>>> pd.Period('2018-03-01').days_in_month
31

Handles the leap year case as well:

>>> p = pd.Period('2016-2-17')
>>> p.days_in_month
29

pandas.Period.daysinmonth

Period.daysinmonth
Get the total number of days of the month that the Period falls in.

Returns

int

See also:

34.14. Scalars 2215

https://docs.python.org/3/library/calendar.html#calendar.monthrange

pandas: powerful Python data analysis toolkit, Release 0.23.4

Period.days_in_month Return the days of the month

Period.dayofyear Return the day of the year

Examples

>>> p = pd.Period("2018-03-11", freq='H')
>>> p.daysinmonth
31

pandas.Period.hour

Period.hour
Get the hour of the day component of the Period.

Returns int

The hour as an integer, between 0 and 23.

See also:

Period.second Get the second component of the Period.

Period.minute Get the minute component of the Period.

Examples

>>> p = pd.Period("2018-03-11 13:03:12.050000")
>>> p.hour
13

Period longer than a day

>>> p = pd.Period("2018-03-11", freq="M")
>>> p.hour
0

pandas.Period.minute

Period.minute
Get minute of the hour component of the Period.

Returns int

The minute as an integer, between 0 and 59.

See also:

Period.hour Get the hour component of the Period.

Period.second Get the second component of the Period.

2216 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

Examples

>>> p = pd.Period("2018-03-11 13:03:12.050000")
>>> p.minute
3

pandas.Period.second

Period.second
Get the second component of the Period.

Returns int

The second of the Period (ranges from 0 to 59).

See also:

Period.hour Get the hour component of the Period.

Period.minute Get the minute component of the Period.

Examples

>>> p = pd.Period("2018-03-11 13:03:12.050000")
>>> p.second
12

pandas.Period.start_time

Period.start_time
Get the Timestamp for the start of the period.

Returns

Timestamp

See also:

Period.end_time Return the end Timestamp.

Period.dayofyear Return the day of year.

Period.daysinmonth Return the days in that month.

Period.dayofweek Return the day of the week.

Examples

>>> period = pd.Period('2012-1-1', freq='D')
>>> period
Period('2012-01-01', 'D')

34.14. Scalars 2217

pandas: powerful Python data analysis toolkit, Release 0.23.4

>>> period.start_time
Timestamp('2012-01-01 00:00:00')

>>> period.end_time
Timestamp('2012-01-01 23:59:59.999999999')

pandas.Period.week

Period.week
Get the week of the year on the given Period.

Returns

int

See also:

Period.dayofweek Get the day component of the Period.

Period.weekday Get the day component of the Period.

Examples

>>> p = pd.Period("2018-03-11", "H")
>>> p.week
10

>>> p = pd.Period("2018-02-01", "D")
>>> p.week
5

>>> p = pd.Period("2018-01-06", "D")
>>> p.week
1

end_time
freq
freqstr
is_leap_year
month
ordinal
quarter
qyear
weekday
weekofyear
year

Methods

2218 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

asfreq Convert Period to desired frequency, either at the
start or end of the interval

strftime Returns the string representation of the Period, de-
pending on the selected fmt.

to_timestamp Return the Timestamp representation of the Period at
the target frequency at the specified end (how) of the
Period

pandas.Period.asfreq

Period.asfreq()
Convert Period to desired frequency, either at the start or end of the interval

Parameters

freq [string]

how : {‘E’, ‘S’, ‘end’, ‘start’}, default ‘end’

Start or end of the timespan

Returns

resampled [Period]

pandas.Period.strftime

Period.strftime()
Returns the string representation of the Period, depending on the selected fmt. fmt must be a
string containing one or several directives. The method recognizes the same directives as the time.
strftime() function of the standard Python distribution, as well as the specific additional directives
%f, %F, %q. (formatting & docs originally from scikits.timeries)

34.14. Scalars 2219

https://docs.python.org/3/library/time.html#time.strftime
https://docs.python.org/3/library/time.html#time.strftime

pandas: powerful Python data analysis toolkit, Release 0.23.4

Di-
rec-
tive

Meaning Notes

%a Locale’s abbreviated weekday name.
%A Locale’s full weekday name.
%b Locale’s abbreviated month name.
%B Locale’s full month name.
%c Locale’s appropriate date and time representation.
%d Day of the month as a decimal number [01,31].
%f ‘Fiscal’ year without a century as a decimal number [00,99] (1)
%F ‘Fiscal’ year with a century as a decimal number (2)
%H Hour (24-hour clock) as a decimal number [00,23].
%I Hour (12-hour clock) as a decimal number [01,12].
%j Day of the year as a decimal number [001,366].
%m Month as a decimal number [01,12].
%M Minute as a decimal number [00,59].
%p Locale’s equivalent of either AM or PM. (3)
%q Quarter as a decimal number [01,04]
%S Second as a decimal number [00,61]. (4)
%U Week number of the year (Sunday as the first day of the week) as a decimal number

[00,53]. All days in a new year preceding the first Sunday are considered to be in week
0.

(5)

%w Weekday as a decimal number [0(Sunday),6].
%W Week number of the year (Monday as the first day of the week) as a decimal number

[00,53]. All days in a new year preceding the first Monday are considered to be in week
0.

(5)

%x Locale’s appropriate date representation.
%X Locale’s appropriate time representation.
%y Year without century as a decimal number [00,99].
%Y Year with century as a decimal number.
%Z Time zone name (no characters if no time zone exists).
%% A literal '%' character.

Notes

1. The %f directive is the same as %y if the frequency is not quarterly. Otherwise, it corresponds to the
‘fiscal’ year, as defined by the qyear attribute.

2. The %F directive is the same as %Y if the frequency is not quarterly. Otherwise, it corresponds to the
‘fiscal’ year, as defined by the qyear attribute.

3. The %p directive only affects the output hour field if the %I directive is used to parse the hour.

4. The range really is 0 to 61; this accounts for leap seconds and the (very rare) double leap seconds.

5. The %U and %W directives are only used in calculations when the day of the week and the year are
specified.

Examples

2220 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

>>> a = Period(freq='Q-JUL', year=2006, quarter=1)
>>> a.strftime('%F-Q%q')
'2006-Q1'
>>> # Output the last month in the quarter of this date
>>> a.strftime('%b-%Y')
'Oct-2005'
>>>
>>> a = Period(freq='D', year=2001, month=1, day=1)
>>> a.strftime('%d-%b-%Y')
'01-Jan-2006'
>>> a.strftime('%b. %d, %Y was a %A')
'Jan. 01, 2001 was a Monday'

pandas.Period.to_timestamp

Period.to_timestamp()
Return the Timestamp representation of the Period at the target frequency at the specified end (how) of
the Period

Parameters freq : string or DateOffset

Target frequency. Default is ‘D’ if self.freq is week or longer and ‘S’ otherwise

how: str, default ‘S’ (start)

‘S’, ‘E’. Can be aliased as case insensitive ‘Start’, ‘Finish’, ‘Begin’, ‘End’

Returns

Timestamp

now

34.14.2 Attributes

Period.day Get day of the month that a Period falls on.
Period.dayofweek Return the day of the week.
Period.dayofyear Return the day of the year.
Period.days_in_month Get the total number of days in the month that this pe-

riod falls on.
Period.daysinmonth Get the total number of days of the month that the Period

falls in.
Period.end_time
Period.freq
Period.freqstr
Period.hour Get the hour of the day component of the Period.
Period.is_leap_year
Period.minute Get minute of the hour component of the Period.
Period.month
Period.ordinal
Period.quarter
Period.qyear

Continued on next page

34.14. Scalars 2221

pandas: powerful Python data analysis toolkit, Release 0.23.4

Table 144 – continued from previous page
Period.second Get the second component of the Period.
Period.start_time Get the Timestamp for the start of the period.
Period.week Get the week of the year on the given Period.
Period.weekday
Period.weekofyear
Period.year

34.14.2.1 pandas.Period.end_time

Period.end_time

34.14.2.2 pandas.Period.freq

Period.freq

34.14.2.3 pandas.Period.freqstr

Period.freqstr

34.14.2.4 pandas.Period.is_leap_year

Period.is_leap_year

34.14.2.5 pandas.Period.month

Period.month

34.14.2.6 pandas.Period.ordinal

Period.ordinal

34.14.2.7 pandas.Period.quarter

Period.quarter

34.14.2.8 pandas.Period.qyear

Period.qyear

34.14.2.9 pandas.Period.weekday

Period.weekday

34.14.2.10 pandas.Period.weekofyear

Period.weekofyear

2222 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

34.14.2.11 pandas.Period.year

Period.year

34.14.3 Methods

Period.asfreq Convert Period to desired frequency, either at the start
or end of the interval

Period.now
Period.strftime Returns the string representation of the Period, de-

pending on the selected fmt.
Period.to_timestamp Return the Timestamp representation of the Period at the

target frequency at the specified end (how) of the Period

34.14.3.1 pandas.Period.now

Period.now()

34.14.4 Timestamp

Timestamp Pandas replacement for datetime.datetime

34.14.4.1 pandas.Timestamp

class pandas.Timestamp
Pandas replacement for datetime.datetime

Timestamp is the pandas equivalent of python’s Datetime and is interchangeable with it in most cases. It’s the
type used for the entries that make up a DatetimeIndex, and other timeseries oriented data structures in pandas.

Parameters ts_input : datetime-like, str, int, float

Value to be converted to Timestamp

freq : str, DateOffset

Offset which Timestamp will have

tz : str, pytz.timezone, dateutil.tz.tzfile or None

Time zone for time which Timestamp will have.

unit : str

Unit used for conversion if ts_input is of type int or float. The valid values are ‘D’,
‘h’, ‘m’, ‘s’, ‘ms’, ‘us’, and ‘ns’. For example, ‘s’ means seconds and ‘ms’ means
milliseconds.

year, month, day : int

New in version 0.19.0.

hour, minute, second, microsecond : int, optional, default 0

New in version 0.19.0.

nanosecond : int, optional, default 0

34.14. Scalars 2223

pandas: powerful Python data analysis toolkit, Release 0.23.4

New in version 0.23.0.

tzinfo : datetime.tzinfo, optional, default None

New in version 0.19.0.

Notes

There are essentially three calling conventions for the constructor. The primary form accepts four parameters.
They can be passed by position or keyword.

The other two forms mimic the parameters from datetime.datetime. They can be passed by either posi-
tion or keyword, but not both mixed together.

Examples

Using the primary calling convention:

This converts a datetime-like string >>> pd.Timestamp(‘2017-01-01T12’) Timestamp(‘2017-01-01 12:00:00’)

This converts a float representing a Unix epoch in units of seconds >>> pd.Timestamp(1513393355.5, unit=’s’)
Timestamp(‘2017-12-16 03:02:35.500000’)

This converts an int representing a Unix-epoch in units of seconds and for a particular time-
zone >>> pd.Timestamp(1513393355, unit=’s’, tz=’US/Pacific’) Timestamp(‘2017-12-15 19:02:35-0800’,
tz=’US/Pacific’)

Using the other two forms that mimic the API for datetime.datetime:

>>> pd.Timestamp(2017, 1, 1, 12)
Timestamp('2017-01-01 12:00:00')

>>> pd.Timestamp(year=2017, month=1, day=1, hour=12)
Timestamp('2017-01-01 12:00:00')

Attributes

tz Alias for tzinfo
weekday_name (DEPRECATED) .. deprecated:: 0.23.0

pandas.Timestamp.tz

Timestamp.tz
Alias for tzinfo

pandas.Timestamp.weekday_name

Timestamp.weekday_name
Deprecated since version 0.23.0: Use Timestamp.day_name() instead

2224 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

asm8
day
dayofweek
dayofyear
days_in_month
daysinmonth
fold
freq
freqstr
hour
is_leap_year
is_month_end
is_month_start
is_quarter_end
is_quarter_start
is_year_end
is_year_start
microsecond
minute
month
nanosecond
quarter
second
tzinfo
value
week
weekofyear
year

Methods

astimezone Convert tz-aware Timestamp to another time zone.
ceil return a new Timestamp ceiled to this resolution
combine(date, time) date, time -> datetime with same date and time fields
ctime Return ctime() style string.
date Return date object with same year, month and day.
day_name Return the day name of the Timestamp with specified

locale.
dst Return self.tzinfo.dst(self).
floor return a new Timestamp floored to this resolution
fromordinal(ordinal[, freq, tz]) passed an ordinal, translate and convert to a ts note:

by definition there cannot be any tz info on the ordi-
nal itself

fromtimestamp(ts) timestamp[, tz] -> tz’s local time from POSIX times-
tamp.

isocalendar Return a 3-tuple containing ISO year, week number,
and weekday.

isoweekday Return the day of the week represented by the date.
Continued on next page

34.14. Scalars 2225

pandas: powerful Python data analysis toolkit, Release 0.23.4

Table 148 – continued from previous page
month_name Return the month name of the Timestamp with spec-

ified locale.
normalize Normalize Timestamp to midnight, preserving tz in-

formation.
now([tz]) Returns new Timestamp object representing current

time local to tz.
replace implements datetime.replace, handles nanoseconds
round Round the Timestamp to the specified resolution
strftime format -> strftime() style string.
strptime string, format -> new datetime parsed from a string

(like time.strptime()).
time Return time object with same time but with tz-

info=None.
timestamp Return POSIX timestamp as float.
timetuple Return time tuple, compatible with time.localtime().
timetz Return time object with same time and tzinfo.
to_datetime64 Returns a numpy.datetime64 object with ‘ns’ preci-

sion
to_julian_date Convert TimeStamp to a Julian Date.
to_period Return an period of which this timestamp is an ob-

servation.
to_pydatetime Convert a Timestamp object to a native Python date-

time object.
today(cls[, tz]) Return the current time in the local timezone.
toordinal Return proleptic Gregorian ordinal.
tz_convert Convert tz-aware Timestamp to another time zone.
tz_localize Convert naive Timestamp to local time zone, or re-

move timezone from tz-aware Timestamp.
tzname Return self.tzinfo.tzname(self).
utcfromtimestamp(ts) Construct a naive UTC datetime from a POSIX

timestamp.
utcnow() Return a new Timestamp representing UTC day and

time.
utcoffset Return self.tzinfo.utcoffset(self).
utctimetuple Return UTC time tuple, compatible with

time.localtime().
weekday Return the day of the week represented by the date.

pandas.Timestamp.astimezone

Timestamp.astimezone
Convert tz-aware Timestamp to another time zone.

Parameters tz : str, pytz.timezone, dateutil.tz.tzfile or None

Time zone for time which Timestamp will be converted to. None will remove
timezone holding UTC time.

Returns

converted [Timestamp]

Raises TypeError

If Timestamp is tz-naive.

2226 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

pandas.Timestamp.ceil

Timestamp.ceil
return a new Timestamp ceiled to this resolution

Parameters

freq [a freq string indicating the ceiling resolution]

pandas.Timestamp.combine

classmethod Timestamp.combine(date, time)
date, time -> datetime with same date and time fields

pandas.Timestamp.ctime

Timestamp.ctime()
Return ctime() style string.

pandas.Timestamp.date

Timestamp.date()
Return date object with same year, month and day.

pandas.Timestamp.day_name

Timestamp.day_name
Return the day name of the Timestamp with specified locale.

Parameters locale : string, default None (English locale)

locale determining the language in which to return the day name

Returns

day_name [string]

.. versionadded:: 0.23.0

pandas.Timestamp.dst

Timestamp.dst()
Return self.tzinfo.dst(self).

pandas.Timestamp.floor

Timestamp.floor
return a new Timestamp floored to this resolution

Parameters

freq [a freq string indicating the flooring resolution]

34.14. Scalars 2227

pandas: powerful Python data analysis toolkit, Release 0.23.4

pandas.Timestamp.fromordinal

classmethod Timestamp.fromordinal(ordinal, freq=None, tz=None)
passed an ordinal, translate and convert to a ts note: by definition there cannot be any tz info on the ordinal
itself

Parameters ordinal : int

date corresponding to a proleptic Gregorian ordinal

freq : str, DateOffset

Offset which Timestamp will have

tz : str, pytz.timezone, dateutil.tz.tzfile or None

Time zone for time which Timestamp will have.

pandas.Timestamp.fromtimestamp

classmethod Timestamp.fromtimestamp(ts)
timestamp[, tz] -> tz’s local time from POSIX timestamp.

pandas.Timestamp.isocalendar

Timestamp.isocalendar()
Return a 3-tuple containing ISO year, week number, and weekday.

pandas.Timestamp.isoweekday

Timestamp.isoweekday()
Return the day of the week represented by the date. Monday == 1 . . . Sunday == 7

pandas.Timestamp.month_name

Timestamp.month_name
Return the month name of the Timestamp with specified locale.

Parameters locale : string, default None (English locale)

locale determining the language in which to return the month name

Returns

month_name [string]

.. versionadded:: 0.23.0

pandas.Timestamp.normalize

Timestamp.normalize
Normalize Timestamp to midnight, preserving tz information.

2228 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

pandas.Timestamp.now

classmethod Timestamp.now(tz=None)
Returns new Timestamp object representing current time local to tz.

Parameters tz : str or timezone object, default None

Timezone to localize to

pandas.Timestamp.replace

Timestamp.replace
implements datetime.replace, handles nanoseconds

Parameters

year [int, optional]

month [int, optional]

day [int, optional]

hour [int, optional]

minute [int, optional]

second [int, optional]

microsecond [int, optional]

nanosecond: int, optional

tzinfo [tz-convertible, optional]

fold : int, optional, default is 0

added in 3.6, NotImplemented

Returns

Timestamp with fields replaced

pandas.Timestamp.round

Timestamp.round
Round the Timestamp to the specified resolution

Parameters

freq [a freq string indicating the rounding resolution]

Returns

a new Timestamp rounded to the given resolution of ‘freq‘

Raises

ValueError if the freq cannot be converted

34.14. Scalars 2229

pandas: powerful Python data analysis toolkit, Release 0.23.4

pandas.Timestamp.strftime

Timestamp.strftime()
format -> strftime() style string.

pandas.Timestamp.strptime

Timestamp.strptime()
string, format -> new datetime parsed from a string (like time.strptime()).

pandas.Timestamp.time

Timestamp.time()
Return time object with same time but with tzinfo=None.

pandas.Timestamp.timestamp

Timestamp.timestamp()
Return POSIX timestamp as float.

pandas.Timestamp.timetuple

Timestamp.timetuple()
Return time tuple, compatible with time.localtime().

pandas.Timestamp.timetz

Timestamp.timetz()
Return time object with same time and tzinfo.

pandas.Timestamp.to_datetime64

Timestamp.to_datetime64()
Returns a numpy.datetime64 object with ‘ns’ precision

pandas.Timestamp.to_julian_date

Timestamp.to_julian_date
Convert TimeStamp to a Julian Date. 0 Julian date is noon January 1, 4713 BC.

pandas.Timestamp.to_period

Timestamp.to_period
Return an period of which this timestamp is an observation.

2230 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

pandas.Timestamp.to_pydatetime

Timestamp.to_pydatetime()
Convert a Timestamp object to a native Python datetime object.

If warn=True, issue a warning if nanoseconds is nonzero.

pandas.Timestamp.today

classmethod Timestamp.today(cls, tz=None)
Return the current time in the local timezone. This differs from datetime.today() in that it can be localized
to a passed timezone.

Parameters tz : str or timezone object, default None

Timezone to localize to

pandas.Timestamp.toordinal

Timestamp.toordinal()
Return proleptic Gregorian ordinal. January 1 of year 1 is day 1.

pandas.Timestamp.tz_convert

Timestamp.tz_convert
Convert tz-aware Timestamp to another time zone.

Parameters tz : str, pytz.timezone, dateutil.tz.tzfile or None

Time zone for time which Timestamp will be converted to. None will remove
timezone holding UTC time.

Returns

converted [Timestamp]

Raises TypeError

If Timestamp is tz-naive.

pandas.Timestamp.tz_localize

Timestamp.tz_localize
Convert naive Timestamp to local time zone, or remove timezone from tz-aware Timestamp.

Parameters tz : str, pytz.timezone, dateutil.tz.tzfile or None

Time zone for time which Timestamp will be converted to. None will remove
timezone holding local time.

ambiguous : bool, ‘NaT’, default ‘raise’

• bool contains flags to determine if time is dst or not (note that this flag is only appli-
cable for ambiguous fall dst dates)

• ‘NaT’ will return NaT for an ambiguous time

34.14. Scalars 2231

pandas: powerful Python data analysis toolkit, Release 0.23.4

• ‘raise’ will raise an AmbiguousTimeError for an ambiguous time

errors : ‘raise’, ‘coerce’, default ‘raise’

• ‘raise’ will raise a NonExistentTimeError if a timestamp is not valid in the spec-
ified timezone (e.g. due to a transition from or to DST time)

• ‘coerce’ will return NaT if the timestamp can not be converted into the specified
timezone

New in version 0.19.0.

Returns

localized [Timestamp]

Raises TypeError

If the Timestamp is tz-aware and tz is not None.

pandas.Timestamp.tzname

Timestamp.tzname()
Return self.tzinfo.tzname(self).

pandas.Timestamp.utcfromtimestamp

classmethod Timestamp.utcfromtimestamp(ts)
Construct a naive UTC datetime from a POSIX timestamp.

pandas.Timestamp.utcnow

classmethod Timestamp.utcnow()
Return a new Timestamp representing UTC day and time.

pandas.Timestamp.utcoffset

Timestamp.utcoffset()
Return self.tzinfo.utcoffset(self).

pandas.Timestamp.utctimetuple

Timestamp.utctimetuple()
Return UTC time tuple, compatible with time.localtime().

pandas.Timestamp.weekday

Timestamp.weekday()
Return the day of the week represented by the date. Monday == 0 . . . Sunday == 6

isoformat

2232 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

34.14.5 Properties

Timestamp.asm8
Timestamp.day
Timestamp.dayofweek
Timestamp.dayofyear
Timestamp.days_in_month
Timestamp.daysinmonth
Timestamp.fold
Timestamp.hour
Timestamp.is_leap_year
Timestamp.is_month_end
Timestamp.is_month_start
Timestamp.is_quarter_end
Timestamp.is_quarter_start
Timestamp.is_year_end
Timestamp.is_year_start
Timestamp.max
Timestamp.microsecond
Timestamp.min
Timestamp.minute
Timestamp.month
Timestamp.nanosecond
Timestamp.quarter
Timestamp.resolution
Timestamp.second
Timestamp.tz Alias for tzinfo
Timestamp.tzinfo
Timestamp.value
Timestamp.week
Timestamp.weekofyear
Timestamp.year

34.14.5.1 pandas.Timestamp.asm8

Timestamp.asm8

34.14.5.2 pandas.Timestamp.day

Timestamp.day

34.14.5.3 pandas.Timestamp.dayofweek

Timestamp.dayofweek

34.14.5.4 pandas.Timestamp.dayofyear

Timestamp.dayofyear

34.14. Scalars 2233

pandas: powerful Python data analysis toolkit, Release 0.23.4

34.14.5.5 pandas.Timestamp.days_in_month

Timestamp.days_in_month

34.14.5.6 pandas.Timestamp.daysinmonth

Timestamp.daysinmonth

34.14.5.7 pandas.Timestamp.fold

Timestamp.fold

34.14.5.8 pandas.Timestamp.hour

Timestamp.hour

34.14.5.9 pandas.Timestamp.is_leap_year

Timestamp.is_leap_year

34.14.5.10 pandas.Timestamp.is_month_end

Timestamp.is_month_end

34.14.5.11 pandas.Timestamp.is_month_start

Timestamp.is_month_start

34.14.5.12 pandas.Timestamp.is_quarter_end

Timestamp.is_quarter_end

34.14.5.13 pandas.Timestamp.is_quarter_start

Timestamp.is_quarter_start

34.14.5.14 pandas.Timestamp.is_year_end

Timestamp.is_year_end

34.14.5.15 pandas.Timestamp.is_year_start

Timestamp.is_year_start

2234 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

34.14.5.16 pandas.Timestamp.max

Timestamp.max = Timestamp('2262-04-11 23:47:16.854775807')

34.14.5.17 pandas.Timestamp.microsecond

Timestamp.microsecond

34.14.5.18 pandas.Timestamp.min

Timestamp.min = Timestamp('1677-09-21 00:12:43.145225')

34.14.5.19 pandas.Timestamp.minute

Timestamp.minute

34.14.5.20 pandas.Timestamp.month

Timestamp.month

34.14.5.21 pandas.Timestamp.nanosecond

Timestamp.nanosecond

34.14.5.22 pandas.Timestamp.quarter

Timestamp.quarter

34.14.5.23 pandas.Timestamp.resolution

Timestamp.resolution = datetime.timedelta(0, 0, 1)

34.14.5.24 pandas.Timestamp.second

Timestamp.second

34.14.5.25 pandas.Timestamp.tzinfo

Timestamp.tzinfo

34.14.5.26 pandas.Timestamp.value

Timestamp.value

34.14. Scalars 2235

pandas: powerful Python data analysis toolkit, Release 0.23.4

34.14.5.27 pandas.Timestamp.week

Timestamp.week

34.14.5.28 pandas.Timestamp.weekofyear

Timestamp.weekofyear

34.14.5.29 pandas.Timestamp.year

Timestamp.year

34.14.6 Methods

Timestamp.astimezone Convert tz-aware Timestamp to another time zone.
Timestamp.ceil return a new Timestamp ceiled to this resolution
Timestamp.combine(date, time) date, time -> datetime with same date and time fields
Timestamp.ctime Return ctime() style string.
Timestamp.date Return date object with same year, month and day.
Timestamp.day_name Return the day name of the Timestamp with specified

locale.
Timestamp.dst Return self.tzinfo.dst(self).
Timestamp.floor return a new Timestamp floored to this resolution
Timestamp.freq
Timestamp.freqstr
Timestamp.fromordinal(ordinal[, freq, tz]) passed an ordinal, translate and convert to a ts note: by

definition there cannot be any tz info on the ordinal itself
Timestamp.fromtimestamp(ts) timestamp[, tz] -> tz’s local time from POSIX times-

tamp.
Timestamp.isocalendar Return a 3-tuple containing ISO year, week number, and

weekday.
Timestamp.isoformat
Timestamp.isoweekday Return the day of the week represented by the date.
Timestamp.month_name Return the month name of the Timestamp with specified

locale.
Timestamp.normalize Normalize Timestamp to midnight, preserving tz infor-

mation.
Timestamp.now([tz]) Returns new Timestamp object representing current

time local to tz.
Timestamp.replace implements datetime.replace, handles nanoseconds
Timestamp.round Round the Timestamp to the specified resolution
Timestamp.strftime format -> strftime() style string.
Timestamp.strptime string, format -> new datetime parsed from a string (like

time.strptime()).
Timestamp.time Return time object with same time but with tz-

info=None.
Timestamp.timestamp Return POSIX timestamp as float.
Timestamp.timetuple Return time tuple, compatible with time.localtime().
Timestamp.timetz Return time object with same time and tzinfo.

Continued on next page

2236 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

Table 150 – continued from previous page
Timestamp.to_datetime64 Returns a numpy.datetime64 object with ‘ns’ precision
Timestamp.to_julian_date Convert TimeStamp to a Julian Date.
Timestamp.to_period Return an period of which this timestamp is an observa-

tion.
Timestamp.to_pydatetime Convert a Timestamp object to a native Python datetime

object.
Timestamp.today(cls[, tz]) Return the current time in the local timezone.
Timestamp.toordinal Return proleptic Gregorian ordinal.
Timestamp.tz_convert Convert tz-aware Timestamp to another time zone.
Timestamp.tz_localize Convert naive Timestamp to local time zone, or remove

timezone from tz-aware Timestamp.
Timestamp.tzname Return self.tzinfo.tzname(self).
Timestamp.utcfromtimestamp(ts) Construct a naive UTC datetime from a POSIX times-

tamp.
Timestamp.utcnow() Return a new Timestamp representing UTC day and

time.
Timestamp.utcoffset Return self.tzinfo.utcoffset(self).
Timestamp.utctimetuple Return UTC time tuple, compatible with

time.localtime().
Timestamp.weekday Return the day of the week represented by the date.

34.14.6.1 pandas.Timestamp.freq

Timestamp.freq

34.14.6.2 pandas.Timestamp.freqstr

Timestamp.freqstr

34.14.6.3 pandas.Timestamp.isoformat

Timestamp.isoformat

34.14.7 Interval

Interval Immutable object implementing an Interval, a bounded
slice-like interval.

34.14.7.1 pandas.Interval

class pandas.Interval
Immutable object implementing an Interval, a bounded slice-like interval.

New in version 0.20.0.

Parameters left : orderable scalar

Left bound for the interval.

right : orderable scalar

34.14. Scalars 2237

pandas: powerful Python data analysis toolkit, Release 0.23.4

Right bound for the interval.

closed : {‘left’, ‘right’, ‘both’, ‘neither’}, default ‘right’

Whether the interval is closed on the left-side, right-side, both or neither.

closed : {‘right’, ‘left’, ‘both’, ‘neither’}, default ‘right’

Whether the interval is closed on the left-side, right-side, both or neither. See the
Notes for more detailed explanation.

See also:

IntervalIndex An Index of Interval objects that are all closed on the same side.

cut Convert continuous data into discrete bins (Categorical of Interval objects).

qcut Convert continuous data into bins (Categorical of Interval objects) based on quantiles.

Period Represents a period of time.

Notes

The parameters left and right must be from the same type, you must be able to compare them and they must
satisfy left <= right.

A closed interval (in mathematics denoted by square brackets) contains its endpoints, i.e. the closed interval
[0, 5] is characterized by the conditions 0 <= x <= 5. This is what closed='both' stands for. An
open interval (in mathematics denoted by parentheses) does not contain its endpoints, i.e. the open interval (0,
5) is characterized by the conditions 0 < x < 5. This is what closed='neither' stands for. Intervals
can also be half-open or half-closed, i.e. [0, 5) is described by 0 <= x < 5 (closed='left') and (0,
5] is described by 0 < x <= 5 (closed='right').

Examples

It is possible to build Intervals of different types, like numeric ones:

>>> iv = pd.Interval(left=0, right=5)
>>> iv
Interval(0, 5, closed='right')

You can check if an element belongs to it

>>> 2.5 in iv
True

You can test the bounds (closed='right', so 0 < x <= 5):

>>> 0 in iv
False
>>> 5 in iv
True
>>> 0.0001 in iv
True

Calculate its length

2238 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

>>> iv.length
5

You can operate with + and * over an Interval and the operation is applied to each of its bounds, so the result
depends on the type of the bound elements

>>> shifted_iv = iv + 3
>>> shifted_iv
Interval(3, 8, closed='right')
>>> extended_iv = iv * 10.0
>>> extended_iv
Interval(0.0, 50.0, closed='right')

To create a time interval you can use Timestamps as the bounds

>>> year_2017 = pd.Interval(pd.Timestamp('2017-01-01 00:00:00'),
... pd.Timestamp('2018-01-01 00:00:00'),
... closed='left')
>>> pd.Timestamp('2017-01-01 00:00') in year_2017
True
>>> year_2017.length
Timedelta('365 days 00:00:00')

And also you can create string intervals

>>> volume_1 = pd.Interval('Ant', 'Dog', closed='both')
>>> 'Bee' in volume_1
True

Attributes

closed Whether the interval is closed on the left-side, right-
side, both or neither

closed_left Check if the interval is closed on the left side.
closed_right Check if the interval is closed on the right side.
left Left bound for the interval
length Return the length of the Interval
mid Return the midpoint of the Interval
open_left Check if the interval is open on the left side.
open_right Check if the interval is open on the right side.
right Right bound for the interval

pandas.Interval.closed

Interval.closed
Whether the interval is closed on the left-side, right-side, both or neither

pandas.Interval.closed_left

Interval.closed_left
Check if the interval is closed on the left side.

34.14. Scalars 2239

pandas: powerful Python data analysis toolkit, Release 0.23.4

For the meaning of closed and open see Interval.

Returns bool

True if the Interval is closed on the left-side, else False.

pandas.Interval.closed_right

Interval.closed_right
Check if the interval is closed on the right side.

For the meaning of closed and open see Interval.

Returns bool

True if the Interval is closed on the left-side, else False.

pandas.Interval.left

Interval.left
Left bound for the interval

pandas.Interval.length

Interval.length
Return the length of the Interval

pandas.Interval.mid

Interval.mid
Return the midpoint of the Interval

pandas.Interval.open_left

Interval.open_left
Check if the interval is open on the left side.

For the meaning of closed and open see Interval.

Returns bool

True if the Interval is closed on the left-side, else False.

pandas.Interval.open_right

Interval.open_right
Check if the interval is open on the right side.

For the meaning of closed and open see Interval.

Returns bool

True if the Interval is closed on the left-side, else False.

2240 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

pandas.Interval.right

Interval.right
Right bound for the interval

34.14.8 Properties

Interval.closed Whether the interval is closed on the left-side, right-
side, both or neither

Interval.closed_left Check if the interval is closed on the left side.
Interval.closed_right Check if the interval is closed on the right side.
Interval.left Left bound for the interval
Interval.length Return the length of the Interval
Interval.mid Return the midpoint of the Interval
Interval.open_left Check if the interval is open on the left side.
Interval.open_right Check if the interval is open on the right side.
Interval.right Right bound for the interval

34.14.9 Timedelta

Timedelta Represents a duration, the difference between two dates
or times.

34.14.9.1 pandas.Timedelta

class pandas.Timedelta
Represents a duration, the difference between two dates or times.

Timedelta is the pandas equivalent of python’s datetime.timedelta and is interchangeable with it in most
cases.

Parameters

value [Timedelta, timedelta, np.timedelta64, string, or integer]

unit : string, {‘ns’, ‘us’, ‘ms’, ‘s’, ‘m’, ‘h’, ‘D’}, optional

Denote the unit of the input, if input is an integer. Default ‘ns’.

days, seconds, microseconds,

milliseconds, minutes, hours, weeks : numeric, optional

Values for construction in compat with datetime.timedelta. np ints and floats will be
coereced to python ints and floats.

Notes

The .value attribute is always in ns.

34.14. Scalars 2241

pandas: powerful Python data analysis toolkit, Release 0.23.4

Attributes

asm8 return a numpy timedelta64 array view of myself
components Return a Components NamedTuple-like
days Number of days.
delta Return the timedelta in nanoseconds (ns), for internal

compatibility.
microseconds Number of microseconds (>= 0 and less than 1 sec-

ond).
nanoseconds Return the number of nanoseconds (n), where 0 <= n

< 1 microsecond.
resolution return a string representing the lowest resolution that

we have
seconds Number of seconds (>= 0 and less than 1 day).

pandas.Timedelta.asm8

Timedelta.asm8
return a numpy timedelta64 array view of myself

pandas.Timedelta.components

Timedelta.components
Return a Components NamedTuple-like

pandas.Timedelta.days

Timedelta.days
Number of days.

pandas.Timedelta.delta

Timedelta.delta
Return the timedelta in nanoseconds (ns), for internal compatibility.

Returns int

Timedelta in nanoseconds.

Examples

>>> td = pd.Timedelta('1 days 42 ns')
>>> td.delta
86400000000042

>>> td = pd.Timedelta('3 s')
>>> td.delta
3000000000

2242 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

>>> td = pd.Timedelta('3 ms 5 us')
>>> td.delta
3005000

>>> td = pd.Timedelta(42, unit='ns')
>>> td.delta
42

pandas.Timedelta.microseconds

Timedelta.microseconds
Number of microseconds (>= 0 and less than 1 second).

pandas.Timedelta.nanoseconds

Timedelta.nanoseconds
Return the number of nanoseconds (n), where 0 <= n < 1 microsecond.

Returns int

Number of nanoseconds.

See also:

Timedelta.components Return all attributes with assigned values (i.e. days, hours, minutes, sec-
onds, milliseconds, microseconds, nanoseconds).

Examples

Using string input

>>> td = pd.Timedelta('1 days 2 min 3 us 42 ns')
>>> td.nanoseconds
42

Using integer input

>>> td = pd.Timedelta(42, unit='ns')
>>> td.nanoseconds
42

pandas.Timedelta.resolution

Timedelta.resolution
return a string representing the lowest resolution that we have

pandas.Timedelta.seconds

Timedelta.seconds
Number of seconds (>= 0 and less than 1 day).

34.14. Scalars 2243

pandas: powerful Python data analysis toolkit, Release 0.23.4

freq
is_populated
value

Methods

ceil return a new Timedelta ceiled to this resolution
floor return a new Timedelta floored to this resolution
isoformat Format Timedelta as ISO 8601 Duration like

P[n]Y[n]M[n]DT[n]H[n]M[n]S, where the
[n] s are replaced by the values.

round Round the Timedelta to the specified resolution
to_pytimedelta return an actual datetime.timedelta object note: we

lose nanosecond resolution if any
to_timedelta64 Returns a numpy.timedelta64 object with ‘ns’ preci-

sion
total_seconds Total duration of timedelta in seconds (to ns preci-

sion)
view array view compat

pandas.Timedelta.ceil

Timedelta.ceil
return a new Timedelta ceiled to this resolution

Parameters

freq [a freq string indicating the ceiling resolution]

pandas.Timedelta.floor

Timedelta.floor
return a new Timedelta floored to this resolution

Parameters

freq [a freq string indicating the flooring resolution]

pandas.Timedelta.isoformat

Timedelta.isoformat()
Format Timedelta as ISO 8601 Duration like P[n]Y[n]M[n]DT[n]H[n]M[n]S, where the [n] s are
replaced by the values. See https://en.wikipedia.org/wiki/ISO_8601#Durations

New in version 0.20.0.

Returns

formatted [str]

See also:

Timestamp.isoformat

2244 Chapter 34. API Reference

https://en.wikipedia.org/wiki/ISO_8601#Durations

pandas: powerful Python data analysis toolkit, Release 0.23.4

Notes

The longest component is days, whose value may be larger than 365. Every component is always included,
even if its value is 0. Pandas uses nanosecond precision, so up to 9 decimal places may be included in the
seconds component. Trailing 0’s are removed from the seconds component after the decimal. We do not
0 pad components, so it’s . . . T5H. . . , not . . . T05H. . .

Examples

>>> td = pd.Timedelta(days=6, minutes=50, seconds=3,
... milliseconds=10, microseconds=10, nanoseconds=12)
>>> td.isoformat()
'P6DT0H50M3.010010012S'
>>> pd.Timedelta(hours=1, seconds=10).isoformat()
'P0DT0H0M10S'
>>> pd.Timedelta(hours=1, seconds=10).isoformat()
'P0DT0H0M10S'
>>> pd.Timedelta(days=500.5).isoformat()
'P500DT12H0MS'

pandas.Timedelta.round

Timedelta.round
Round the Timedelta to the specified resolution

Parameters

freq [a freq string indicating the rounding resolution]

Returns

a new Timedelta rounded to the given resolution of ‘freq‘

Raises

ValueError if the freq cannot be converted

pandas.Timedelta.to_pytimedelta

Timedelta.to_pytimedelta()
return an actual datetime.timedelta object note: we lose nanosecond resolution if any

pandas.Timedelta.to_timedelta64

Timedelta.to_timedelta64()
Returns a numpy.timedelta64 object with ‘ns’ precision

pandas.Timedelta.total_seconds

Timedelta.total_seconds()
Total duration of timedelta in seconds (to ns precision)

34.14. Scalars 2245

pandas: powerful Python data analysis toolkit, Release 0.23.4

pandas.Timedelta.view

Timedelta.view()
array view compat

34.14.10 Properties

Timedelta.asm8 return a numpy timedelta64 array view of myself
Timedelta.components Return a Components NamedTuple-like
Timedelta.days Number of days.
Timedelta.delta Return the timedelta in nanoseconds (ns), for internal

compatibility.
Timedelta.freq
Timedelta.is_populated
Timedelta.max
Timedelta.microseconds Number of microseconds (>= 0 and less than 1 second).
Timedelta.min
Timedelta.nanoseconds Return the number of nanoseconds (n), where 0 <= n <

1 microsecond.
Timedelta.resolution return a string representing the lowest resolution that we

have
Timedelta.seconds Number of seconds (>= 0 and less than 1 day).
Timedelta.value
Timedelta.view array view compat

34.14.10.1 pandas.Timedelta.freq

Timedelta.freq

34.14.10.2 pandas.Timedelta.is_populated

Timedelta.is_populated

34.14.10.3 pandas.Timedelta.max

Timedelta.max = Timedelta('106751 days 23:47:16.854775')

34.14.10.4 pandas.Timedelta.min

Timedelta.min = Timedelta('-106752 days +00:12:43.145224')

34.14.10.5 pandas.Timedelta.value

Timedelta.value

34.14.11 Methods

2246 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

Timedelta.ceil return a new Timedelta ceiled to this resolution
Timedelta.floor return a new Timedelta floored to this resolution
Timedelta.isoformat Format Timedelta as ISO 8601 Duration like

P[n]Y[n]M[n]DT[n]H[n]M[n]S, where the
[n] s are replaced by the values.

Timedelta.round Round the Timedelta to the specified resolution
Timedelta.to_pytimedelta return an actual datetime.timedelta object note: we lose

nanosecond resolution if any
Timedelta.to_timedelta64 Returns a numpy.timedelta64 object with ‘ns’ precision
Timedelta.total_seconds Total duration of timedelta in seconds (to ns precision)

34.15 Frequencies

to_offset(freq) Return DateOffset object from string or tuple represen-
tation or datetime.timedelta object

34.15.1 pandas.tseries.frequencies.to_offset

pandas.tseries.frequencies.to_offset(freq)
Return DateOffset object from string or tuple representation or datetime.timedelta object

Parameters

freq [str, tuple, datetime.timedelta, DateOffset or None]

Returns delta : DateOffset

None if freq is None

Raises ValueError

If freq is an invalid frequency

See also:

pandas.DateOffset

Examples

>>> to_offset('5min')
<5 * Minutes>

>>> to_offset('1D1H')
<25 * Hours>

>>> to_offset(('W', 2))
<2 * Weeks: weekday=6>

>>> to_offset((2, 'B'))
<2 * BusinessDays>

>>> to_offset(datetime.timedelta(days=1))
<Day>

34.15. Frequencies 2247

pandas: powerful Python data analysis toolkit, Release 0.23.4

>>> to_offset(Hour())
<Hour>

34.16 Window

Rolling objects are returned by .rolling calls: pandas.DataFrame.rolling(), pandas.Series.
rolling(), etc. Expanding objects are returned by .expanding calls: pandas.DataFrame.expanding(),
pandas.Series.expanding(), etc. EWM objects are returned by .ewm calls: pandas.DataFrame.
ewm(), pandas.Series.ewm(), etc.

34.16.1 Standard moving window functions

Rolling.count() The rolling count of any non-NaN observations inside
the window.

Rolling.sum(*args, **kwargs) Calculate rolling sum of given DataFrame or Series.
Rolling.mean(*args, **kwargs) Calculate the rolling mean of the values.
Rolling.median(**kwargs) Calculate the rolling median.
Rolling.var([ddof]) Calculate unbiased rolling variance.
Rolling.std([ddof]) Calculate rolling standard deviation.
Rolling.min(*args, **kwargs) Calculate the rolling minimum.
Rolling.max(*args, **kwargs) rolling maximum
Rolling.corr([other, pairwise]) rolling sample correlation
Rolling.cov([other, pairwise, ddof]) rolling sample covariance
Rolling.skew(**kwargs) Unbiased rolling skewness
Rolling.kurt(**kwargs) Calculate unbiased rolling kurtosis.
Rolling.apply(func[, raw, args, kwargs]) rolling function apply
Rolling.aggregate(arg, *args, **kwargs) Aggregate using one or more operations over the speci-

fied axis.
Rolling.quantile(quantile[, interpolation]) rolling quantile.
Window.mean(*args, **kwargs) Calculate the window mean of the values.
Window.sum(*args, **kwargs) Calculate window sum of given DataFrame or Series.

34.16.1.1 pandas.core.window.Rolling.count

Rolling.count()
The rolling count of any non-NaN observations inside the window.

Returns Series or DataFrame

Returned object type is determined by the caller of the rolling calculation.

See also:

pandas.Series.rolling Calling object with Series data

pandas.DataFrame.rolling Calling object with DataFrames

pandas.DataFrame.count Count of the full DataFrame

2248 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

Examples

>>> s = pd.Series([2, 3, np.nan, 10])
>>> s.rolling(2).count()
0 1.0
1 2.0
2 1.0
3 1.0
dtype: float64
>>> s.rolling(3).count()
0 1.0
1 2.0
2 2.0
3 2.0
dtype: float64
>>> s.rolling(4).count()
0 1.0
1 2.0
2 2.0
3 3.0
dtype: float64

34.16.1.2 pandas.core.window.Rolling.sum

Rolling.sum(*args, **kwargs)
Calculate rolling sum of given DataFrame or Series.

Parameters *args, **kwargs

For compatibility with other rolling methods. Has no effect on the computed value.

Returns Series or DataFrame

Same type as the input, with the same index, containing the rolling sum.

See also:

Series.sum Reducing sum for Series.

DataFrame.sum Reducing sum for DataFrame.

Examples

>>> s = pd.Series([1, 2, 3, 4, 5])
>>> s
0 1
1 2
2 3
3 4
4 5
dtype: int64

>>> s.rolling(3).sum()
0 NaN
1 NaN

(continues on next page)

34.16. Window 2249

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

2 6.0
3 9.0
4 12.0
dtype: float64

>>> s.expanding(3).sum()
0 NaN
1 NaN
2 6.0
3 10.0
4 15.0
dtype: float64

>>> s.rolling(3, center=True).sum()
0 NaN
1 6.0
2 9.0
3 12.0
4 NaN
dtype: float64

For DataFrame, each rolling sum is computed column-wise.

>>> df = pd.DataFrame({"A": s, "B": s ** 2})
>>> df

A B
0 1 1
1 2 4
2 3 9
3 4 16
4 5 25

>>> df.rolling(3).sum()
A B

0 NaN NaN
1 NaN NaN
2 6.0 14.0
3 9.0 29.0
4 12.0 50.0

34.16.1.3 pandas.core.window.Rolling.mean

Rolling.mean(*args, **kwargs)
Calculate the rolling mean of the values.

Parameters *args

Under Review.

**kwargs

Under Review.

Returns Series or DataFrame

Returned object type is determined by the caller of the rolling calculation.

2250 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

See also:

Series.rolling Calling object with Series data

DataFrame.rolling Calling object with DataFrames

Series.mean Equivalent method for Series

DataFrame.mean Equivalent method for DataFrame

Examples

The below examples will show rolling mean calculations with window sizes of two and three, respectively.

>>> s = pd.Series([1, 2, 3, 4])
>>> s.rolling(2).mean()
0 NaN
1 1.5
2 2.5
3 3.5
dtype: float64

>>> s.rolling(3).mean()
0 NaN
1 NaN
2 2.0
3 3.0
dtype: float64

34.16.1.4 pandas.core.window.Rolling.median

Rolling.median(**kwargs)
Calculate the rolling median.

Parameters **kwargs

For compatibility with other rolling methods. Has no effect on the computed median.

Returns Series or DataFrame

Returned type is the same as the original object.

See also:

Series.rolling Calling object with Series data

DataFrame.rolling Calling object with DataFrames

Series.median Equivalent method for Series

DataFrame.median Equivalent method for DataFrame

Examples

Compute the rolling median of a series with a window size of 3.

34.16. Window 2251

pandas: powerful Python data analysis toolkit, Release 0.23.4

>>> s = pd.Series([0, 1, 2, 3, 4])
>>> s.rolling(3).median()
0 NaN
1 NaN
2 1.0
3 2.0
4 3.0
dtype: float64

34.16.1.5 pandas.core.window.Rolling.var

Rolling.var(ddof=1, *args, **kwargs)
Calculate unbiased rolling variance.

Normalized by N-1 by default. This can be changed using the ddof argument.

Parameters ddof : int, default 1

Delta Degrees of Freedom. The divisor used in calculations is N - ddof, where N
represents the number of elements.

*args, **kwargs

For NumPy compatibility. No additional arguments are used.

Returns Series or DataFrame

Returns the same object type as the caller of the rolling calculation.

See also:

Series.rolling Calling object with Series data

DataFrame.rolling Calling object with DataFrames

Series.var Equivalent method for Series

DataFrame.var Equivalent method for DataFrame

numpy.var Equivalent method for Numpy array

Notes

The default ddof of 1 used in Series.var() is different than the default ddof of 0 in numpy.var().

A minimum of 1 period is required for the rolling calculation.

Examples

>>> s = pd.Series([5, 5, 6, 7, 5, 5, 5])
>>> s.rolling(3).var()
0 NaN
1 NaN
2 0.333333
3 1.000000
4 1.000000
5 1.333333

(continues on next page)

2252 Chapter 34. API Reference

https://docs.scipy.org/doc/numpy/reference/generated/numpy.var.html#numpy.var
https://docs.scipy.org/doc/numpy/reference/generated/numpy.var.html#numpy.var

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

6 0.000000
dtype: float64

>>> s.expanding(3).var()
0 NaN
1 NaN
2 0.333333
3 0.916667
4 0.800000
5 0.700000
6 0.619048
dtype: float64

34.16.1.6 pandas.core.window.Rolling.std

Rolling.std(ddof=1, *args, **kwargs)
Calculate rolling standard deviation.

Normalized by N-1 by default. This can be changed using the ddof argument.

Parameters ddof : int, default 1

Delta Degrees of Freedom. The divisor used in calculations is N - ddof, where N
represents the number of elements.

*args, **kwargs

For NumPy compatibility. No additional arguments are used.

Returns Series or DataFrame

Returns the same object type as the caller of the rolling calculation.

See also:

Series.rolling Calling object with Series data

DataFrame.rolling Calling object with DataFrames

Series.std Equivalent method for Series

DataFrame.std Equivalent method for DataFrame

numpy.std Equivalent method for Numpy array

Notes

The default ddof of 1 used in Series.std is different than the default ddof of 0 in numpy.std.

A minimum of one period is required for the rolling calculation.

Examples

34.16. Window 2253

https://docs.scipy.org/doc/numpy/reference/generated/numpy.std.html#numpy.std

pandas: powerful Python data analysis toolkit, Release 0.23.4

>>> s = pd.Series([5, 5, 6, 7, 5, 5, 5])
>>> s.rolling(3).std()
0 NaN
1 NaN
2 0.577350
3 1.000000
4 1.000000
5 1.154701
6 0.000000
dtype: float64

>>> s.expanding(3).std()
0 NaN
1 NaN
2 0.577350
3 0.957427
4 0.894427
5 0.836660
6 0.786796
dtype: float64

34.16.1.7 pandas.core.window.Rolling.min

Rolling.min(*args, **kwargs)
Calculate the rolling minimum.

Parameters **kwargs

Under Review.

Returns Series or DataFrame

Returned object type is determined by the caller of the rolling calculation.

See also:

Series.rolling Calling object with a Series

DataFrame.rolling Calling object with a DataFrame

Series.min Similar method for Series

DataFrame.min Similar method for DataFrame

Examples

Performing a rolling minimum with a window size of 3.

>>> s = pd.Series([4, 3, 5, 2, 6])
>>> s.rolling(3).min()
0 NaN
1 NaN
2 3.0
3 2.0
4 2.0
dtype: float64

2254 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

34.16.1.8 pandas.core.window.Rolling.max

Rolling.max(*args, **kwargs)
rolling maximum

Returns

same type as input

See also:

pandas.Series.rolling, pandas.DataFrame.rolling

34.16.1.9 pandas.core.window.Rolling.corr

Rolling.corr(other=None, pairwise=None, **kwargs)
rolling sample correlation

Parameters other : Series, DataFrame, or ndarray, optional

if not supplied then will default to self and produce pairwise output

pairwise : bool, default None

If False then only matching columns between self and other will be used and the
output will be a DataFrame. If True then all pairwise combinations will be calculated
and the output will be a MultiIndex DataFrame in the case of DataFrame inputs. In
the case of missing elements, only complete pairwise observations will be used.

Returns

same type as input

See also:

pandas.Series.rolling, pandas.DataFrame.rolling

34.16.1.10 pandas.core.window.Rolling.cov

Rolling.cov(other=None, pairwise=None, ddof=1, **kwargs)
rolling sample covariance

Parameters other : Series, DataFrame, or ndarray, optional

if not supplied then will default to self and produce pairwise output

pairwise : bool, default None

If False then only matching columns between self and other will be used and the
output will be a DataFrame. If True then all pairwise combinations will be calculated
and the output will be a MultiIndexed DataFrame in the case of DataFrame inputs.
In the case of missing elements, only complete pairwise observations will be used.

ddof : int, default 1

Delta Degrees of Freedom. The divisor used in calculations is N - ddof, where N
represents the number of elements.

Returns

same type as input

34.16. Window 2255

pandas: powerful Python data analysis toolkit, Release 0.23.4

See also:

pandas.Series.rolling, pandas.DataFrame.rolling

34.16.1.11 pandas.core.window.Rolling.skew

Rolling.skew(**kwargs)
Unbiased rolling skewness

Returns

same type as input

See also:

pandas.Series.rolling, pandas.DataFrame.rolling

34.16.1.12 pandas.core.window.Rolling.kurt

Rolling.kurt(**kwargs)
Calculate unbiased rolling kurtosis.

This function uses Fisher’s definition of kurtosis without bias.

Parameters **kwargs

Under Review.

Returns Series or DataFrame

Returned object type is determined by the caller of the rolling calculation

See also:

Series.rolling Calling object with Series data

DataFrame.rolling Calling object with DataFrames

Series.kurt Equivalent method for Series

DataFrame.kurt Equivalent method for DataFrame

scipy.stats.skew Third moment of a probability density

scipy.stats.kurtosis Reference SciPy method

Notes

A minimum of 4 periods is required for the rolling calculation.

Examples

The example below will show a rolling calculation with a window size of four matching the equivalent function
call using scipy.stats.

2256 Chapter 34. API Reference

https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.skew.html#scipy.stats.skew
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.kurtosis.html#scipy.stats.kurtosis

pandas: powerful Python data analysis toolkit, Release 0.23.4

>>> arr = [1, 2, 3, 4, 999]
>>> fmt = "{0:.6f}" # limit the printed precision to 6 digits
>>> import scipy.stats
>>> print(fmt.format(scipy.stats.kurtosis(arr[:-1], bias=False)))
-1.200000
>>> print(fmt.format(scipy.stats.kurtosis(arr[1:], bias=False)))
3.999946
>>> s = pd.Series(arr)
>>> s.rolling(4).kurt()
0 NaN
1 NaN
2 NaN
3 -1.200000
4 3.999946
dtype: float64

34.16.1.13 pandas.core.window.Rolling.apply

Rolling.apply(func, raw=None, args=(), kwargs={})
rolling function apply

Parameters func : function

Must produce a single value from an ndarray input if raw=True or a Series if
raw=False

raw : bool, default None

• False : passes each row or column as a Series to the function.

• True or None : the passed function will receive ndarray objects instead. If
you are just applying a NumPy reduction function this will achieve much better
performance.

The raw parameter is required and will show a FutureWarning if not passed. In the
future raw will default to False.

New in version 0.23.0.

*args and **kwargs are passed to the function

Returns

same type as input

See also:

pandas.Series.rolling, pandas.DataFrame.rolling

34.16.1.14 pandas.core.window.Rolling.aggregate

Rolling.aggregate(arg, *args, **kwargs)
Aggregate using one or more operations over the specified axis.

Parameters func : function, string, dictionary, or list of string/functions

Function to use for aggregating the data. If a function, must either work when passed
a Series/DataFrame or when passed to Series/DataFrame.apply. For a DataFrame,
can pass a dict, if the keys are DataFrame column names.

34.16. Window 2257

pandas: powerful Python data analysis toolkit, Release 0.23.4

Accepted combinations are:

• string function name.

• function.

• list of functions.

• dict of column names -> functions (or list of functions).

*args

Positional arguments to pass to func.

**kwargs

Keyword arguments to pass to func.

Returns

aggregated [Series/DataFrame]

See also:

pandas.Series.rolling, pandas.DataFrame.rolling

Notes

agg is an alias for aggregate. Use the alias.

A passed user-defined-function will be passed a Series for evaluation.

Examples

>>> df = pd.DataFrame(np.random.randn(10, 3), columns=['A', 'B', 'C'])
>>> df

A B C
0 -2.385977 -0.102758 0.438822
1 -1.004295 0.905829 -0.954544
2 0.735167 -0.165272 -1.619346
3 -0.702657 -1.340923 -0.706334
4 -0.246845 0.211596 -0.901819
5 2.463718 3.157577 -1.380906
6 -1.142255 2.340594 -0.039875
7 1.396598 -1.647453 1.677227
8 -0.543425 1.761277 -0.220481
9 -0.640505 0.289374 -1.550670

>>> df.rolling(3).sum()
A B C

0 NaN NaN NaN
1 NaN NaN NaN
2 -2.655105 0.637799 -2.135068
3 -0.971785 -0.600366 -3.280224
4 -0.214334 -1.294599 -3.227500
5 1.514216 2.028250 -2.989060
6 1.074618 5.709767 -2.322600
7 2.718061 3.850718 0.256446
8 -0.289082 2.454418 1.416871
9 0.212668 0.403198 -0.093924

2258 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

>>> df.rolling(3).agg({'A':'sum', 'B':'min'})
A B

0 NaN NaN
1 NaN NaN
2 -2.655105 -0.165272
3 -0.971785 -1.340923
4 -0.214334 -1.340923
5 1.514216 -1.340923
6 1.074618 0.211596
7 2.718061 -1.647453
8 -0.289082 -1.647453
9 0.212668 -1.647453

34.16.1.15 pandas.core.window.Rolling.quantile

Rolling.quantile(quantile, interpolation=’linear’, **kwargs)
rolling quantile.

Parameters quantile : float

Quantile to compute. 0 <= quantile <= 1.

interpolation : {‘linear’, ‘lower’, ‘higher’, ‘midpoint’, ‘nearest’}

New in version 0.23.0.

This optional parameter specifies the interpolation method to use, when the desired
quantile lies between two data points i and j:

• linear: i + (j - i) * fraction, where fraction is the fractional part of the index
surrounded by i and j.

• lower: i.

• higher: j.

• nearest: i or j whichever is nearest.

• midpoint: (i + j) / 2.

**kwargs:

For compatibility with other rolling methods. Has no effect on the result.

Returns Series or DataFrame

Returned object type is determined by the caller of the rolling calculation.

See also:

pandas.Series.quantile Computes value at the given quantile over all data in Series.

pandas.DataFrame.quantile Computes values at the given quantile over requested axis in DataFrame.

Examples

>>> s = pd.Series([1, 2, 3, 4])
>>> s.rolling(2).quantile(.4, interpolation='lower')
0 NaN

(continues on next page)

34.16. Window 2259

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

1 1.0
2 2.0
3 3.0
dtype: float64

>>> s.rolling(2).quantile(.4, interpolation='midpoint')
0 NaN
1 1.5
2 2.5
3 3.5
dtype: float64

34.16.1.16 pandas.core.window.Window.mean

Window.mean(*args, **kwargs)
Calculate the window mean of the values.

Parameters *args

Under Review.

**kwargs

Under Review.

Returns Series or DataFrame

Returned object type is determined by the caller of the window calculation.

See also:

Series.window Calling object with Series data

DataFrame.window Calling object with DataFrames

Series.mean Equivalent method for Series

DataFrame.mean Equivalent method for DataFrame

Examples

The below examples will show rolling mean calculations with window sizes of two and three, respectively.

>>> s = pd.Series([1, 2, 3, 4])
>>> s.rolling(2).mean()
0 NaN
1 1.5
2 2.5
3 3.5
dtype: float64

>>> s.rolling(3).mean()
0 NaN
1 NaN
2 2.0
3 3.0
dtype: float64

2260 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

34.16.1.17 pandas.core.window.Window.sum

Window.sum(*args, **kwargs)
Calculate window sum of given DataFrame or Series.

Parameters *args, **kwargs

For compatibility with other window methods. Has no effect on the computed value.

Returns Series or DataFrame

Same type as the input, with the same index, containing the window sum.

See also:

Series.sum Reducing sum for Series.

DataFrame.sum Reducing sum for DataFrame.

Examples

>>> s = pd.Series([1, 2, 3, 4, 5])
>>> s
0 1
1 2
2 3
3 4
4 5
dtype: int64

>>> s.rolling(3).sum()
0 NaN
1 NaN
2 6.0
3 9.0
4 12.0
dtype: float64

>>> s.expanding(3).sum()
0 NaN
1 NaN
2 6.0
3 10.0
4 15.0
dtype: float64

>>> s.rolling(3, center=True).sum()
0 NaN
1 6.0
2 9.0
3 12.0
4 NaN
dtype: float64

For DataFrame, each window sum is computed column-wise.

34.16. Window 2261

pandas: powerful Python data analysis toolkit, Release 0.23.4

>>> df = pd.DataFrame({"A": s, "B": s ** 2})
>>> df

A B
0 1 1
1 2 4
2 3 9
3 4 16
4 5 25

>>> df.rolling(3).sum()
A B

0 NaN NaN
1 NaN NaN
2 6.0 14.0
3 9.0 29.0
4 12.0 50.0

34.16.2 Standard expanding window functions

Expanding.count(**kwargs) The expanding count of any non-NaN observations in-
side the window.

Expanding.sum(*args, **kwargs) Calculate expanding sum of given DataFrame or Series.
Expanding.mean(*args, **kwargs) Calculate the expanding mean of the values.
Expanding.median(**kwargs) Calculate the expanding median.
Expanding.var([ddof]) Calculate unbiased expanding variance.
Expanding.std([ddof]) Calculate expanding standard deviation.
Expanding.min(*args, **kwargs) Calculate the expanding minimum.
Expanding.max(*args, **kwargs) expanding maximum
Expanding.corr([other, pairwise]) expanding sample correlation
Expanding.cov([other, pairwise, ddof]) expanding sample covariance
Expanding.skew(**kwargs) Unbiased expanding skewness
Expanding.kurt(**kwargs) Calculate unbiased expanding kurtosis.
Expanding.apply(func[, raw, args, kwargs]) expanding function apply
Expanding.aggregate(arg, *args, **kwargs) Aggregate using one or more operations over the speci-

fied axis.
Expanding.quantile(quantile[, interpolation]) expanding quantile.

34.16.2.1 pandas.core.window.Expanding.count

Expanding.count(**kwargs)
The expanding count of any non-NaN observations inside the window.

Returns Series or DataFrame

Returned object type is determined by the caller of the expanding calculation.

See also:

pandas.Series.expanding Calling object with Series data

pandas.DataFrame.expanding Calling object with DataFrames

pandas.DataFrame.count Count of the full DataFrame

2262 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

Examples

>>> s = pd.Series([2, 3, np.nan, 10])
>>> s.rolling(2).count()
0 1.0
1 2.0
2 1.0
3 1.0
dtype: float64
>>> s.rolling(3).count()
0 1.0
1 2.0
2 2.0
3 2.0
dtype: float64
>>> s.rolling(4).count()
0 1.0
1 2.0
2 2.0
3 3.0
dtype: float64

34.16.2.2 pandas.core.window.Expanding.sum

Expanding.sum(*args, **kwargs)
Calculate expanding sum of given DataFrame or Series.

Parameters *args, **kwargs

For compatibility with other expanding methods. Has no effect on the computed
value.

Returns Series or DataFrame

Same type as the input, with the same index, containing the expanding sum.

See also:

Series.sum Reducing sum for Series.

DataFrame.sum Reducing sum for DataFrame.

Examples

>>> s = pd.Series([1, 2, 3, 4, 5])
>>> s
0 1
1 2
2 3
3 4
4 5
dtype: int64

>>> s.rolling(3).sum()
0 NaN

(continues on next page)

34.16. Window 2263

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

1 NaN
2 6.0
3 9.0
4 12.0
dtype: float64

>>> s.expanding(3).sum()
0 NaN
1 NaN
2 6.0
3 10.0
4 15.0
dtype: float64

>>> s.rolling(3, center=True).sum()
0 NaN
1 6.0
2 9.0
3 12.0
4 NaN
dtype: float64

For DataFrame, each expanding sum is computed column-wise.

>>> df = pd.DataFrame({"A": s, "B": s ** 2})
>>> df

A B
0 1 1
1 2 4
2 3 9
3 4 16
4 5 25

>>> df.rolling(3).sum()
A B

0 NaN NaN
1 NaN NaN
2 6.0 14.0
3 9.0 29.0
4 12.0 50.0

34.16.2.3 pandas.core.window.Expanding.mean

Expanding.mean(*args, **kwargs)
Calculate the expanding mean of the values.

Parameters *args

Under Review.

**kwargs

Under Review.

Returns Series or DataFrame

Returned object type is determined by the caller of the expanding calculation.

2264 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

See also:

Series.expanding Calling object with Series data

DataFrame.expanding Calling object with DataFrames

Series.mean Equivalent method for Series

DataFrame.mean Equivalent method for DataFrame

Examples

The below examples will show rolling mean calculations with window sizes of two and three, respectively.

>>> s = pd.Series([1, 2, 3, 4])
>>> s.rolling(2).mean()
0 NaN
1 1.5
2 2.5
3 3.5
dtype: float64

>>> s.rolling(3).mean()
0 NaN
1 NaN
2 2.0
3 3.0
dtype: float64

34.16.2.4 pandas.core.window.Expanding.median

Expanding.median(**kwargs)
Calculate the expanding median.

Parameters **kwargs

For compatibility with other expanding methods. Has no effect on the computed
median.

Returns Series or DataFrame

Returned type is the same as the original object.

See also:

Series.expanding Calling object with Series data

DataFrame.expanding Calling object with DataFrames

Series.median Equivalent method for Series

DataFrame.median Equivalent method for DataFrame

Examples

Compute the rolling median of a series with a window size of 3.

34.16. Window 2265

pandas: powerful Python data analysis toolkit, Release 0.23.4

>>> s = pd.Series([0, 1, 2, 3, 4])
>>> s.rolling(3).median()
0 NaN
1 NaN
2 1.0
3 2.0
4 3.0
dtype: float64

34.16.2.5 pandas.core.window.Expanding.var

Expanding.var(ddof=1, *args, **kwargs)
Calculate unbiased expanding variance.

Normalized by N-1 by default. This can be changed using the ddof argument.

Parameters ddof : int, default 1

Delta Degrees of Freedom. The divisor used in calculations is N - ddof, where N
represents the number of elements.

*args, **kwargs

For NumPy compatibility. No additional arguments are used.

Returns Series or DataFrame

Returns the same object type as the caller of the expanding calculation.

See also:

Series.expanding Calling object with Series data

DataFrame.expanding Calling object with DataFrames

Series.var Equivalent method for Series

DataFrame.var Equivalent method for DataFrame

numpy.var Equivalent method for Numpy array

Notes

The default ddof of 1 used in Series.var() is different than the default ddof of 0 in numpy.var().

A minimum of 1 period is required for the rolling calculation.

Examples

>>> s = pd.Series([5, 5, 6, 7, 5, 5, 5])
>>> s.rolling(3).var()
0 NaN
1 NaN
2 0.333333
3 1.000000
4 1.000000
5 1.333333

(continues on next page)

2266 Chapter 34. API Reference

https://docs.scipy.org/doc/numpy/reference/generated/numpy.var.html#numpy.var
https://docs.scipy.org/doc/numpy/reference/generated/numpy.var.html#numpy.var

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

6 0.000000
dtype: float64

>>> s.expanding(3).var()
0 NaN
1 NaN
2 0.333333
3 0.916667
4 0.800000
5 0.700000
6 0.619048
dtype: float64

34.16.2.6 pandas.core.window.Expanding.std

Expanding.std(ddof=1, *args, **kwargs)
Calculate expanding standard deviation.

Normalized by N-1 by default. This can be changed using the ddof argument.

Parameters ddof : int, default 1

Delta Degrees of Freedom. The divisor used in calculations is N - ddof, where N
represents the number of elements.

*args, **kwargs

For NumPy compatibility. No additional arguments are used.

Returns Series or DataFrame

Returns the same object type as the caller of the expanding calculation.

See also:

Series.expanding Calling object with Series data

DataFrame.expanding Calling object with DataFrames

Series.std Equivalent method for Series

DataFrame.std Equivalent method for DataFrame

numpy.std Equivalent method for Numpy array

Notes

The default ddof of 1 used in Series.std is different than the default ddof of 0 in numpy.std.

A minimum of one period is required for the rolling calculation.

Examples

34.16. Window 2267

https://docs.scipy.org/doc/numpy/reference/generated/numpy.std.html#numpy.std

pandas: powerful Python data analysis toolkit, Release 0.23.4

>>> s = pd.Series([5, 5, 6, 7, 5, 5, 5])
>>> s.rolling(3).std()
0 NaN
1 NaN
2 0.577350
3 1.000000
4 1.000000
5 1.154701
6 0.000000
dtype: float64

>>> s.expanding(3).std()
0 NaN
1 NaN
2 0.577350
3 0.957427
4 0.894427
5 0.836660
6 0.786796
dtype: float64

34.16.2.7 pandas.core.window.Expanding.min

Expanding.min(*args, **kwargs)
Calculate the expanding minimum.

Parameters **kwargs

Under Review.

Returns Series or DataFrame

Returned object type is determined by the caller of the expanding calculation.

See also:

Series.expanding Calling object with a Series

DataFrame.expanding Calling object with a DataFrame

Series.min Similar method for Series

DataFrame.min Similar method for DataFrame

Examples

Performing a rolling minimum with a window size of 3.

>>> s = pd.Series([4, 3, 5, 2, 6])
>>> s.rolling(3).min()
0 NaN
1 NaN
2 3.0
3 2.0
4 2.0
dtype: float64

2268 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

34.16.2.8 pandas.core.window.Expanding.max

Expanding.max(*args, **kwargs)
expanding maximum

Returns

same type as input

See also:

pandas.Series.expanding, pandas.DataFrame.expanding

34.16.2.9 pandas.core.window.Expanding.corr

Expanding.corr(other=None, pairwise=None, **kwargs)
expanding sample correlation

Parameters other : Series, DataFrame, or ndarray, optional

if not supplied then will default to self and produce pairwise output

pairwise : bool, default None

If False then only matching columns between self and other will be used and the
output will be a DataFrame. If True then all pairwise combinations will be calculated
and the output will be a MultiIndex DataFrame in the case of DataFrame inputs. In
the case of missing elements, only complete pairwise observations will be used.

Returns

same type as input

See also:

pandas.Series.expanding, pandas.DataFrame.expanding

34.16.2.10 pandas.core.window.Expanding.cov

Expanding.cov(other=None, pairwise=None, ddof=1, **kwargs)
expanding sample covariance

Parameters other : Series, DataFrame, or ndarray, optional

if not supplied then will default to self and produce pairwise output

pairwise : bool, default None

If False then only matching columns between self and other will be used and the
output will be a DataFrame. If True then all pairwise combinations will be calculated
and the output will be a MultiIndexed DataFrame in the case of DataFrame inputs.
In the case of missing elements, only complete pairwise observations will be used.

ddof : int, default 1

Delta Degrees of Freedom. The divisor used in calculations is N - ddof, where N
represents the number of elements.

Returns

same type as input

34.16. Window 2269

pandas: powerful Python data analysis toolkit, Release 0.23.4

See also:

pandas.Series.expanding, pandas.DataFrame.expanding

34.16.2.11 pandas.core.window.Expanding.skew

Expanding.skew(**kwargs)
Unbiased expanding skewness

Returns

same type as input

See also:

pandas.Series.expanding, pandas.DataFrame.expanding

34.16.2.12 pandas.core.window.Expanding.kurt

Expanding.kurt(**kwargs)
Calculate unbiased expanding kurtosis.

This function uses Fisher’s definition of kurtosis without bias.

Parameters **kwargs

Under Review.

Returns Series or DataFrame

Returned object type is determined by the caller of the expanding calculation

See also:

Series.expanding Calling object with Series data

DataFrame.expanding Calling object with DataFrames

Series.kurt Equivalent method for Series

DataFrame.kurt Equivalent method for DataFrame

scipy.stats.skew Third moment of a probability density

scipy.stats.kurtosis Reference SciPy method

Notes

A minimum of 4 periods is required for the expanding calculation.

Examples

The example below will show an expanding calculation with a window size of four matching the equivalent
function call using scipy.stats.

2270 Chapter 34. API Reference

https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.skew.html#scipy.stats.skew
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.kurtosis.html#scipy.stats.kurtosis

pandas: powerful Python data analysis toolkit, Release 0.23.4

>>> arr = [1, 2, 3, 4, 999]
>>> import scipy.stats
>>> fmt = "{0:.6f}" # limit the printed precision to 6 digits
>>> print(fmt.format(scipy.stats.kurtosis(arr[:-1], bias=False)))
-1.200000
>>> print(fmt.format(scipy.stats.kurtosis(arr, bias=False)))
4.999874
>>> s = pd.Series(arr)
>>> s.expanding(4).kurt()
0 NaN
1 NaN
2 NaN
3 -1.200000
4 4.999874
dtype: float64

34.16.2.13 pandas.core.window.Expanding.apply

Expanding.apply(func, raw=None, args=(), kwargs={})
expanding function apply

Parameters func : function

Must produce a single value from an ndarray input if raw=True or a Series if
raw=False

raw : bool, default None

• False : passes each row or column as a Series to the function.

• True or None : the passed function will receive ndarray objects instead. If
you are just applying a NumPy reduction function this will achieve much better
performance.

The raw parameter is required and will show a FutureWarning if not passed. In the
future raw will default to False.

New in version 0.23.0.

*args and **kwargs are passed to the function

Returns

same type as input

See also:

pandas.Series.expanding, pandas.DataFrame.expanding

34.16.2.14 pandas.core.window.Expanding.aggregate

Expanding.aggregate(arg, *args, **kwargs)
Aggregate using one or more operations over the specified axis.

Parameters func : function, string, dictionary, or list of string/functions

Function to use for aggregating the data. If a function, must either work when passed
a Series/DataFrame or when passed to Series/DataFrame.apply. For a DataFrame,
can pass a dict, if the keys are DataFrame column names.

34.16. Window 2271

pandas: powerful Python data analysis toolkit, Release 0.23.4

Accepted combinations are:

• string function name.

• function.

• list of functions.

• dict of column names -> functions (or list of functions).

*args

Positional arguments to pass to func.

**kwargs

Keyword arguments to pass to func.

Returns

aggregated [Series/DataFrame]

See also:

pandas.DataFrame.expanding.aggregate, pandas.DataFrame.rolling.aggregate,
pandas.DataFrame.aggregate

Notes

agg is an alias for aggregate. Use the alias.

A passed user-defined-function will be passed a Series for evaluation.

Examples

>>> df = pd.DataFrame(np.random.randn(10, 3), columns=['A', 'B', 'C'])
>>> df

A B C
0 -2.385977 -0.102758 0.438822
1 -1.004295 0.905829 -0.954544
2 0.735167 -0.165272 -1.619346
3 -0.702657 -1.340923 -0.706334
4 -0.246845 0.211596 -0.901819
5 2.463718 3.157577 -1.380906
6 -1.142255 2.340594 -0.039875
7 1.396598 -1.647453 1.677227
8 -0.543425 1.761277 -0.220481
9 -0.640505 0.289374 -1.550670

>>> df.ewm(alpha=0.5).mean()
A B C

0 -2.385977 -0.102758 0.438822
1 -1.464856 0.569633 -0.490089
2 -0.207700 0.149687 -1.135379
3 -0.471677 -0.645305 -0.906555
4 -0.355635 -0.203033 -0.904111
5 1.076417 1.503943 -1.146293
6 -0.041654 1.925562 -0.588728
7 0.680292 0.132049 0.548693

(continues on next page)

2272 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

8 0.067236 0.948257 0.163353
9 -0.286980 0.618493 -0.694496

34.16.2.15 pandas.core.window.Expanding.quantile

Expanding.quantile(quantile, interpolation=’linear’, **kwargs)
expanding quantile.

Parameters quantile : float

Quantile to compute. 0 <= quantile <= 1.

interpolation : {‘linear’, ‘lower’, ‘higher’, ‘midpoint’, ‘nearest’}

New in version 0.23.0.

This optional parameter specifies the interpolation method to use, when the desired
quantile lies between two data points i and j:

• linear: i + (j - i) * fraction, where fraction is the fractional part of the index
surrounded by i and j.

• lower: i.

• higher: j.

• nearest: i or j whichever is nearest.

• midpoint: (i + j) / 2.

**kwargs:

For compatibility with other expanding methods. Has no effect on the result.

Returns Series or DataFrame

Returned object type is determined by the caller of the expanding calculation.

See also:

pandas.Series.quantile Computes value at the given quantile over all data in Series.

pandas.DataFrame.quantile Computes values at the given quantile over requested axis in DataFrame.

Examples

>>> s = pd.Series([1, 2, 3, 4])
>>> s.rolling(2).quantile(.4, interpolation='lower')
0 NaN
1 1.0
2 2.0
3 3.0
dtype: float64

>>> s.rolling(2).quantile(.4, interpolation='midpoint')
0 NaN
1 1.5
2 2.5

(continues on next page)

34.16. Window 2273

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

3 3.5
dtype: float64

34.16.3 Exponentially-weighted moving window functions

EWM.mean(*args, **kwargs) exponential weighted moving average
EWM.std([bias]) exponential weighted moving stddev
EWM.var([bias]) exponential weighted moving variance
EWM.corr([other, pairwise]) exponential weighted sample correlation
EWM.cov([other, pairwise, bias]) exponential weighted sample covariance

34.16.3.1 pandas.core.window.EWM.mean

EWM.mean(*args, **kwargs)
exponential weighted moving average

Returns

same type as input

See also:

pandas.Series.ewm, pandas.DataFrame.ewm

34.16.3.2 pandas.core.window.EWM.std

EWM.std(bias=False, *args, **kwargs)
exponential weighted moving stddev

Parameters bias : boolean, default False

Use a standard estimation bias correction

Returns

same type as input

See also:

pandas.Series.ewm, pandas.DataFrame.ewm

34.16.3.3 pandas.core.window.EWM.var

EWM.var(bias=False, *args, **kwargs)
exponential weighted moving variance

Parameters bias : boolean, default False

Use a standard estimation bias correction

Returns

same type as input

See also:

pandas.Series.ewm, pandas.DataFrame.ewm

2274 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

34.16.3.4 pandas.core.window.EWM.corr

EWM.corr(other=None, pairwise=None, **kwargs)
exponential weighted sample correlation

Parameters other : Series, DataFrame, or ndarray, optional

if not supplied then will default to self and produce pairwise output

pairwise : bool, default None

If False then only matching columns between self and other will be used and the
output will be a DataFrame. If True then all pairwise combinations will be calculated
and the output will be a MultiIndex DataFrame in the case of DataFrame inputs. In
the case of missing elements, only complete pairwise observations will be used.

bias : boolean, default False

Use a standard estimation bias correction

Returns

same type as input

See also:

pandas.Series.ewm, pandas.DataFrame.ewm

34.16.3.5 pandas.core.window.EWM.cov

EWM.cov(other=None, pairwise=None, bias=False, **kwargs)
exponential weighted sample covariance

Parameters other : Series, DataFrame, or ndarray, optional

if not supplied then will default to self and produce pairwise output

pairwise : bool, default None

If False then only matching columns between self and other will be used and the
output will be a DataFrame. If True then all pairwise combinations will be calculated
and the output will be a MultiIndex DataFrame in the case of DataFrame inputs. In
the case of missing elements, only complete pairwise observations will be used.

bias : boolean, default False

Use a standard estimation bias correction

Returns

same type as input

See also:

pandas.Series.ewm, pandas.DataFrame.ewm

34.17 GroupBy

GroupBy objects are returned by groupby calls: pandas.DataFrame.groupby(), pandas.Series.
groupby(), etc.

34.17. GroupBy 2275

pandas: powerful Python data analysis toolkit, Release 0.23.4

34.17.1 Indexing, iteration

GroupBy.__iter__() Groupby iterator
GroupBy.groups dict {group name -> group labels}
GroupBy.indices dict {group name -> group indices}
GroupBy.get_group(name[, obj]) Constructs NDFrame from group with provided name

34.17.1.1 pandas.core.groupby.GroupBy.__iter__

GroupBy.__iter__()
Groupby iterator

Returns

Generator yielding sequence of (name, subsetted object)

for each group

34.17.1.2 pandas.core.groupby.GroupBy.groups

GroupBy.groups
dict {group name -> group labels}

34.17.1.3 pandas.core.groupby.GroupBy.indices

GroupBy.indices
dict {group name -> group indices}

34.17.1.4 pandas.core.groupby.GroupBy.get_group

GroupBy.get_group(name, obj=None)
Constructs NDFrame from group with provided name

Parameters name : object

the name of the group to get as a DataFrame

obj : NDFrame, default None

the NDFrame to take the DataFrame out of. If it is None, the object groupby was
called on will be used

Returns

group [type of obj]

Grouper([key, level, freq, axis, sort]) A Grouper allows the user to specify a groupby instruc-
tion for a target object

34.17.1.5 pandas.Grouper

class pandas.Grouper(key=None, level=None, freq=None, axis=0, sort=False)
A Grouper allows the user to specify a groupby instruction for a target object

2276 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

This specification will select a column via the key parameter, or if the level and/or axis parameters are given, a
level of the index of the target object.

These are local specifications and will override ‘global’ settings, that is the parameters axis and level which are
passed to the groupby itself.

Parameters key : string, defaults to None

groupby key, which selects the grouping column of the target

level : name/number, defaults to None

the level for the target index

freq : string / frequency object, defaults to None

This will groupby the specified frequency if the target selection (via key or level) is a
datetime-like object. For full specification of available frequencies, please see here.

axis [number/name of the axis, defaults to 0]

sort : boolean, default to False

whether to sort the resulting labels

additional kwargs to control time-like groupers (when ‘‘freq‘‘ is passed)

closed [closed end of interval; ‘left’ or ‘right’]

label [interval boundary to use for labeling; ‘left’ or ‘right’]

convention : {‘start’, ‘end’, ‘e’, ‘s’}

If grouper is PeriodIndex

base, loffset

Returns

A specification for a groupby instruction

Examples

Syntactic sugar for df.groupby('A')

>>> df.groupby(Grouper(key='A'))

Specify a resample operation on the column ‘date’

>>> df.groupby(Grouper(key='date', freq='60s'))

Specify a resample operation on the level ‘date’ on the columns axis with a frequency of 60s

>>> df.groupby(Grouper(level='date', freq='60s', axis=1))

34.17. GroupBy 2277

http://pandas.pydata.org/pandas-docs/stable/timeseries.html#offset-aliases

pandas: powerful Python data analysis toolkit, Release 0.23.4

Attributes

ax
groups

34.17.2 Function application

GroupBy.apply(func, *args, **kwargs) Apply function func group-wise and combine the re-
sults together.

GroupBy.aggregate(func, *args, **kwargs)
GroupBy.transform(func, *args, **kwargs)
GroupBy.pipe(func, *args, **kwargs) Apply a function funcwith arguments to this GroupBy

object and return the function’s result.

34.17.2.1 pandas.core.groupby.GroupBy.apply

GroupBy.apply(func, *args, **kwargs)
Apply function func group-wise and combine the results together.

The function passed to apply must take a dataframe as its first argument and return a dataframe, a series or
a scalar. apply will then take care of combining the results back together into a single dataframe or series.
apply is therefore a highly flexible grouping method.

While apply is a very flexible method, its downside is that using it can be quite a bit slower than using more
specific methods. Pandas offers a wide range of method that will be much faster than using apply for their
specific purposes, so try to use them before reaching for apply.

Parameters func : function

A callable that takes a dataframe as its first argument, and returns a dataframe, a
series or a scalar. In addition the callable may take positional and keyword arguments

args, kwargs : tuple and dict

Optional positional and keyword arguments to pass to func

Returns

applied [Series or DataFrame]

See also:

pipe Apply function to the full GroupBy object instead of to each group.

aggregate, transform

Notes

In the current implementation apply calls func twice on the first group to decide whether it can take a fast or
slow code path. This can lead to unexpected behavior if func has side-effects, as they will take effect twice for
the first group.

2278 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

Examples

>>> df = pd.DataFrame({'A': 'a a b'.split(), 'B': [1,2,3], 'C': [4,6, 5]})
>>> g = df.groupby('A')

From df above we can see that g has two groups, a, b. Calling apply in various ways, we can get different
grouping results:

Example 1: below the function passed to apply takes a dataframe as its argument and returns a dataframe.
apply combines the result for each group together into a new dataframe:

>>> g.apply(lambda x: x / x.sum())
B C

0 0.333333 0.4
1 0.666667 0.6
2 1.000000 1.0

Example 2: The function passed to apply takes a dataframe as its argument and returns a series. apply
combines the result for each group together into a new dataframe:

>>> g.apply(lambda x: x.max() - x.min())
B C

A
a 1 2
b 0 0

Example 3: The function passed to apply takes a dataframe as its argument and returns a scalar. apply
combines the result for each group together into a series, including setting the index as appropriate:

>>> g.apply(lambda x: x.C.max() - x.B.min())
A
a 5
b 2
dtype: int64

34.17.2.2 pandas.core.groupby.GroupBy.aggregate

GroupBy.aggregate(func, *args, **kwargs)

34.17.2.3 pandas.core.groupby.GroupBy.transform

GroupBy.transform(func, *args, **kwargs)

34.17.2.4 pandas.core.groupby.GroupBy.pipe

GroupBy.pipe(func, *args, **kwargs)
Apply a function func with arguments to this GroupBy object and return the function’s result.

New in version 0.21.0.

Use .pipe when you want to improve readability by chaining together functions that expect Series,
DataFrames, GroupBy or Resampler objects. Instead of writing

34.17. GroupBy 2279

pandas: powerful Python data analysis toolkit, Release 0.23.4

>>> h(g(f(df.groupby('group')), arg1=a), arg2=b, arg3=c)

You can write

>>> (df.groupby('group')
... .pipe(f)
... .pipe(g, arg1=a)
... .pipe(h, arg2=b, arg3=c))

which is much more readable.

Parameters func : callable or tuple of (callable, string)

Function to apply to this GroupBy object or, alternatively, a (callable,
data_keyword) tuple where data_keyword is a string indicating the keyword
of callable that expects the GroupBy object.

args : iterable, optional

positional arguments passed into func.

kwargs : dict, optional

a dictionary of keyword arguments passed into func.

Returns

object [the return type of func.]

See also:

pandas.Series.pipe Apply a function with arguments to a series

pandas.DataFrame.pipe Apply a function with arguments to a dataframe

apply Apply function to each group instead of to the full GroupBy object.

Notes

See more here

Examples

>>> df = pd.DataFrame({'A': 'a b a b'.split(), 'B': [1, 2, 3, 4]})
>>> df

A B
0 a 1
1 b 2
2 a 3
3 b 4

To get the difference between each groups maximum and minimum value in one pass, you can do

>>> df.groupby('A').pipe(lambda x: x.max() - x.min())
B

A
a 2
b 2

2280 Chapter 34. API Reference

http://pandas.pydata.org/pandas-docs/stable/groupby.html#piping-function-calls

pandas: powerful Python data analysis toolkit, Release 0.23.4

34.17.3 Computations / Descriptive Stats

GroupBy.all([skipna]) Returns True if all values in the group are truthful, else
False

GroupBy.any([skipna]) Returns True if any value in the group is truthful, else
False

GroupBy.bfill([limit]) Backward fill the values
GroupBy.count() Compute count of group, excluding missing values
GroupBy.cumcount([ascending]) Number each item in each group from 0 to the length of

that group - 1.
GroupBy.ffill([limit]) Forward fill the values
GroupBy.first(**kwargs) Compute first of group values
GroupBy.head([n]) Returns first n rows of each group.
GroupBy.last(**kwargs) Compute last of group values
GroupBy.max(**kwargs) Compute max of group values
GroupBy.mean(*args, **kwargs) Compute mean of groups, excluding missing values
GroupBy.median(**kwargs) Compute median of groups, excluding missing values
GroupBy.min(**kwargs) Compute min of group values
GroupBy.ngroup([ascending]) Number each group from 0 to the number of groups - 1.
GroupBy.nth(n[, dropna]) Take the nth row from each group if n is an int, or a

subset of rows if n is a list of ints.
GroupBy.ohlc() Compute sum of values, excluding missing values For

multiple groupings, the result index will be a MultiIndex
GroupBy.prod(**kwargs) Compute prod of group values
GroupBy.rank([method, ascending, na_option, . . .]) Provides the rank of values within each group.
GroupBy.pct_change([periods, fill_method, . . .]) Calcuate pct_change of each value to previous entry in

group
GroupBy.size() Compute group sizes
GroupBy.sem([ddof]) Compute standard error of the mean of groups, exclud-

ing missing values
GroupBy.std([ddof]) Compute standard deviation of groups, excluding miss-

ing values
GroupBy.sum(**kwargs) Compute sum of group values
GroupBy.var([ddof]) Compute variance of groups, excluding missing values
GroupBy.tail([n]) Returns last n rows of each group

34.17.3.1 pandas.core.groupby.GroupBy.all

GroupBy.all(skipna=True)
Returns True if all values in the group are truthful, else False

Parameters skipna : bool, default True

Flag to ignore nan values during truth testing

See also:

pandas.Series.groupby , pandas.DataFrame.groupby , pandas.Panel.groupby

34.17.3.2 pandas.core.groupby.GroupBy.any

GroupBy.any(skipna=True)
Returns True if any value in the group is truthful, else False

34.17. GroupBy 2281

pandas: powerful Python data analysis toolkit, Release 0.23.4

Parameters skipna : bool, default True

Flag to ignore nan values during truth testing

See also:

pandas.Series.groupby , pandas.DataFrame.groupby , pandas.Panel.groupby

34.17.3.3 pandas.core.groupby.GroupBy.bfill

GroupBy.bfill(limit=None)
Backward fill the values

Parameters limit : integer, optional

limit of how many values to fill

See also:

Series.backfill, DataFrame.backfill, Series.fillna, DataFrame.fillna

34.17.3.4 pandas.core.groupby.GroupBy.count

GroupBy.count()
Compute count of group, excluding missing values

See also:

pandas.Series.groupby , pandas.DataFrame.groupby , pandas.Panel.groupby

34.17.3.5 pandas.core.groupby.GroupBy.cumcount

GroupBy.cumcount(ascending=True)
Number each item in each group from 0 to the length of that group - 1.

Essentially this is equivalent to

>>> self.apply(lambda x: Series(np.arange(len(x)), x.index))

Parameters ascending : bool, default True

If False, number in reverse, from length of group - 1 to 0.

See also:

ngroup Number the groups themselves.

Examples

>>> df = pd.DataFrame([['a'], ['a'], ['a'], ['b'], ['b'], ['a']],
... columns=['A'])
>>> df

A
0 a
1 a
2 a

(continues on next page)

2282 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

3 b
4 b
5 a
>>> df.groupby('A').cumcount()
0 0
1 1
2 2
3 0
4 1
5 3
dtype: int64
>>> df.groupby('A').cumcount(ascending=False)
0 3
1 2
2 1
3 1
4 0
5 0
dtype: int64

34.17.3.6 pandas.core.groupby.GroupBy.ffill

GroupBy.ffill(limit=None)
Forward fill the values

Parameters limit : integer, optional

limit of how many values to fill

See also:

Series.pad, DataFrame.pad, Series.fillna, DataFrame.fillna

34.17.3.7 pandas.core.groupby.GroupBy.first

GroupBy.first(**kwargs)
Compute first of group values

See also:

pandas.Series.groupby , pandas.DataFrame.groupby , pandas.Panel.groupby

34.17.3.8 pandas.core.groupby.GroupBy.head

GroupBy.head(n=5)
Returns first n rows of each group.

Essentially equivalent to .apply(lambda x: x.head(n)), except ignores as_index flag.

See also:

pandas.Series.groupby , pandas.DataFrame.groupby , pandas.Panel.groupby

34.17. GroupBy 2283

pandas: powerful Python data analysis toolkit, Release 0.23.4

Examples

>>> df = DataFrame([[1, 2], [1, 4], [5, 6]],
columns=['A', 'B'])

>>> df.groupby('A', as_index=False).head(1)
A B

0 1 2
2 5 6
>>> df.groupby('A').head(1)

A B
0 1 2
2 5 6

34.17.3.9 pandas.core.groupby.GroupBy.last

GroupBy.last(**kwargs)
Compute last of group values

See also:

pandas.Series.groupby , pandas.DataFrame.groupby , pandas.Panel.groupby

34.17.3.10 pandas.core.groupby.GroupBy.max

GroupBy.max(**kwargs)
Compute max of group values

See also:

pandas.Series.groupby , pandas.DataFrame.groupby , pandas.Panel.groupby

34.17.3.11 pandas.core.groupby.GroupBy.mean

GroupBy.mean(*args, **kwargs)
Compute mean of groups, excluding missing values

For multiple groupings, the result index will be a MultiIndex

See also:

pandas.Series.groupby , pandas.DataFrame.groupby , pandas.Panel.groupby

34.17.3.12 pandas.core.groupby.GroupBy.median

GroupBy.median(**kwargs)
Compute median of groups, excluding missing values

For multiple groupings, the result index will be a MultiIndex

See also:

pandas.Series.groupby , pandas.DataFrame.groupby , pandas.Panel.groupby

2284 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

34.17.3.13 pandas.core.groupby.GroupBy.min

GroupBy.min(**kwargs)
Compute min of group values

See also:

pandas.Series.groupby , pandas.DataFrame.groupby , pandas.Panel.groupby

34.17.3.14 pandas.core.groupby.GroupBy.ngroup

GroupBy.ngroup(ascending=True)
Number each group from 0 to the number of groups - 1.

This is the enumerative complement of cumcount. Note that the numbers given to the groups match the order in
which the groups would be seen when iterating over the groupby object, not the order they are first observed.

New in version 0.20.2.

Parameters ascending : bool, default True

If False, number in reverse, from number of group - 1 to 0.

See also:

cumcount Number the rows in each group.

Examples

>>> df = pd.DataFrame({"A": list("aaabba")})
>>> df

A
0 a
1 a
2 a
3 b
4 b
5 a
>>> df.groupby('A').ngroup()
0 0
1 0
2 0
3 1
4 1
5 0
dtype: int64
>>> df.groupby('A').ngroup(ascending=False)
0 1
1 1
2 1
3 0
4 0
5 1
dtype: int64
>>> df.groupby(["A", [1,1,2,3,2,1]]).ngroup()
0 0
1 0

(continues on next page)

34.17. GroupBy 2285

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

2 1
3 3
4 2
5 0
dtype: int64

34.17.3.15 pandas.core.groupby.GroupBy.nth

GroupBy.nth(n, dropna=None)
Take the nth row from each group if n is an int, or a subset of rows if n is a list of ints.

If dropna, will take the nth non-null row, dropna is either Truthy (if a Series) or ‘all’, ‘any’ (if a DataFrame);
this is equivalent to calling dropna(how=dropna) before the groupby.

Parameters n : int or list of ints

a single nth value for the row or a list of nth values

dropna : None or str, optional

apply the specified dropna operation before counting which row is the nth row. Needs
to be None, ‘any’ or ‘all’

See also:

pandas.Series.groupby , pandas.DataFrame.groupby , pandas.Panel.groupby

Examples

>>> df = pd.DataFrame({'A': [1, 1, 2, 1, 2],
... 'B': [np.nan, 2, 3, 4, 5]}, columns=['A', 'B'])
>>> g = df.groupby('A')
>>> g.nth(0)

B
A
1 NaN
2 3.0
>>> g.nth(1)

B
A
1 2.0
2 5.0
>>> g.nth(-1)

B
A
1 4.0
2 5.0
>>> g.nth([0, 1])

B
A
1 NaN
1 2.0
2 3.0
2 5.0

Specifying dropna allows count ignoring NaN

2286 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

>>> g.nth(0, dropna='any')
B

A
1 2.0
2 3.0

NaNs denote group exhausted when using dropna

>>> g.nth(3, dropna='any')
B

A
1 NaN
2 NaN

Specifying as_index=False in groupby keeps the original index.

>>> df.groupby('A', as_index=False).nth(1)
A B

1 1 2.0
4 2 5.0

34.17.3.16 pandas.core.groupby.GroupBy.ohlc

GroupBy.ohlc()
Compute sum of values, excluding missing values For multiple groupings, the result index will be a MultiIndex

See also:

pandas.Series.groupby , pandas.DataFrame.groupby , pandas.Panel.groupby

34.17.3.17 pandas.core.groupby.GroupBy.prod

GroupBy.prod(**kwargs)
Compute prod of group values

See also:

pandas.Series.groupby , pandas.DataFrame.groupby , pandas.Panel.groupby

34.17.3.18 pandas.core.groupby.GroupBy.rank

GroupBy.rank(method=’average’, ascending=True, na_option=’keep’, pct=False, axis=0)
Provides the rank of values within each group.

Parameters method : {‘average’, ‘min’, ‘max’, ‘first’, ‘dense’}, default ‘average’

• average: average rank of group

• min: lowest rank in group

• max: highest rank in group

• first: ranks assigned in order they appear in the array

• dense: like ‘min’, but rank always increases by 1 between groups

ascending : boolean, default True

34.17. GroupBy 2287

pandas: powerful Python data analysis toolkit, Release 0.23.4

False for ranks by high (1) to low (N)

na_option : {‘keep’, ‘top’, ‘bottom’}, default ‘keep’

• keep: leave NA values where they are

• top: smallest rank if ascending

• bottom: smallest rank if descending

pct : boolean, default False

Compute percentage rank of data within each group

axis : int, default 0

The axis of the object over which to compute the rank.

Returns

—–

DataFrame with ranking of values within each group

See also:

pandas.Series.groupby , pandas.DataFrame.groupby , pandas.Panel.groupby

34.17.3.19 pandas.core.groupby.GroupBy.pct_change

GroupBy.pct_change(periods=1, fill_method=’pad’, limit=None, freq=None, axis=0)
Calcuate pct_change of each value to previous entry in group

See also:

pandas.Series.groupby , pandas.DataFrame.groupby , pandas.Panel.groupby

34.17.3.20 pandas.core.groupby.GroupBy.size

GroupBy.size()
Compute group sizes

See also:

pandas.Series.groupby , pandas.DataFrame.groupby , pandas.Panel.groupby

34.17.3.21 pandas.core.groupby.GroupBy.sem

GroupBy.sem(ddof=1)
Compute standard error of the mean of groups, excluding missing values

For multiple groupings, the result index will be a MultiIndex

Parameters ddof : integer, default 1

degrees of freedom

See also:

pandas.Series.groupby , pandas.DataFrame.groupby , pandas.Panel.groupby

2288 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

34.17.3.22 pandas.core.groupby.GroupBy.std

GroupBy.std(ddof=1, *args, **kwargs)
Compute standard deviation of groups, excluding missing values

For multiple groupings, the result index will be a MultiIndex

Parameters ddof : integer, default 1

degrees of freedom

See also:

pandas.Series.groupby , pandas.DataFrame.groupby , pandas.Panel.groupby

34.17.3.23 pandas.core.groupby.GroupBy.sum

GroupBy.sum(**kwargs)
Compute sum of group values

See also:

pandas.Series.groupby , pandas.DataFrame.groupby , pandas.Panel.groupby

34.17.3.24 pandas.core.groupby.GroupBy.var

GroupBy.var(ddof=1, *args, **kwargs)
Compute variance of groups, excluding missing values

For multiple groupings, the result index will be a MultiIndex

Parameters ddof : integer, default 1

degrees of freedom

See also:

pandas.Series.groupby , pandas.DataFrame.groupby , pandas.Panel.groupby

34.17.3.25 pandas.core.groupby.GroupBy.tail

GroupBy.tail(n=5)
Returns last n rows of each group

Essentially equivalent to .apply(lambda x: x.tail(n)), except ignores as_index flag.

See also:

pandas.Series.groupby , pandas.DataFrame.groupby , pandas.Panel.groupby

Examples

>>> df = DataFrame([['a', 1], ['a', 2], ['b', 1], ['b', 2]],
columns=['A', 'B'])

>>> df.groupby('A').tail(1)
A B

1 a 2
3 b 2

(continues on next page)

34.17. GroupBy 2289

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

>>> df.groupby('A').head(1)
A B

0 a 1
2 b 1

The following methods are available in both SeriesGroupBy and DataFrameGroupBy objects, but may differ
slightly, usually in that the DataFrameGroupBy version usually permits the specification of an axis argument, and
often an argument indicating whether to restrict application to columns of a specific data type.

DataFrameGroupBy.agg(arg, *args, **kwargs) Aggregate using one or more operations over the speci-
fied axis.

DataFrameGroupBy.all([skipna]) Returns True if all values in the group are truthful, else
False

DataFrameGroupBy.any([skipna]) Returns True if any value in the group is truthful, else
False

DataFrameGroupBy.bfill([limit]) Backward fill the values
DataFrameGroupBy.corr Compute pairwise correlation of columns, excluding

NA/null values
DataFrameGroupBy.count() Compute count of group, excluding missing values
DataFrameGroupBy.cov Compute pairwise covariance of columns, excluding

NA/null values.
DataFrameGroupBy.cummax([axis]) Cumulative max for each group
DataFrameGroupBy.cummin([axis]) Cumulative min for each group
DataFrameGroupBy.cumprod([axis]) Cumulative product for each group
DataFrameGroupBy.cumsum([axis]) Cumulative sum for each group
DataFrameGroupBy.describe(**kwargs) Generates descriptive statistics that summarize the cen-

tral tendency, dispersion and shape of a dataset’s distri-
bution, excluding NaN values.

DataFrameGroupBy.diff First discrete difference of element.
DataFrameGroupBy.ffill([limit]) Forward fill the values
DataFrameGroupBy.fillna Fill NA/NaN values using the specified method
DataFrameGroupBy.filter(func[, dropna]) Return a copy of a DataFrame excluding elements from

groups that do not satisfy the boolean criterion specified
by func.

DataFrameGroupBy.hist Make a histogram of the DataFrame’s.
DataFrameGroupBy.idxmax Return index of first occurrence of maximum over re-

quested axis.
DataFrameGroupBy.idxmin Return index of first occurrence of minimum over re-

quested axis.
DataFrameGroupBy.mad Return the mean absolute deviation of the values for the

requested axis
DataFrameGroupBy.pct_change([periods, . . .]) Calcuate pct_change of each value to previous entry in

group
DataFrameGroupBy.plot Class implementing the .plot attribute for groupby ob-

jects
DataFrameGroupBy.quantile Return values at the given quantile over requested axis,

a la numpy.percentile.
DataFrameGroupBy.rank([method, ascending,
. . .])

Provides the rank of values within each group.

DataFrameGroupBy.resample(rule, *args,
**kwargs)

Provide resampling when using a TimeGrouper Return
a new grouper with our resampler appended

Continued on next page

2290 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

Table 167 – continued from previous page
DataFrameGroupBy.shift([periods, freq, axis]) Shift each group by periods observations
DataFrameGroupBy.size() Compute group sizes
DataFrameGroupBy.skew Return unbiased skew over requested axis Normalized

by N-1
DataFrameGroupBy.take Return the elements in the given positional indices

along an axis.
DataFrameGroupBy.tshift Shift the time index, using the index’s frequency if avail-

able.

34.17.3.26 pandas.core.groupby.DataFrameGroupBy.agg

DataFrameGroupBy.agg(arg, *args, **kwargs)
Aggregate using one or more operations over the specified axis.

Parameters func : function, string, dictionary, or list of string/functions

Function to use for aggregating the data. If a function, must either work when passed
a DataFrame or when passed to DataFrame.apply. For a DataFrame, can pass a dict,
if the keys are DataFrame column names.

Accepted combinations are:

• string function name.

• function.

• list of functions.

• dict of column names -> functions (or list of functions).

*args

Positional arguments to pass to func.

**kwargs

Keyword arguments to pass to func.

Returns

aggregated [DataFrame]

See also:

pandas.DataFrame.groupby.apply, pandas.DataFrame.groupby.transform, pandas.
DataFrame.aggregate

Notes

agg is an alias for aggregate. Use the alias.

A passed user-defined-function will be passed a Series for evaluation.

Examples

34.17. GroupBy 2291

pandas: powerful Python data analysis toolkit, Release 0.23.4

>>> df = pd.DataFrame({'A': [1, 1, 2, 2],
... 'B': [1, 2, 3, 4],
... 'C': np.random.randn(4)})

>>> df
A B C

0 1 1 0.362838
1 1 2 0.227877
2 2 3 1.267767
3 2 4 -0.562860

The aggregation is for each column.

>>> df.groupby('A').agg('min')
B C

A
1 1 0.227877
2 3 -0.562860

Multiple aggregations

>>> df.groupby('A').agg(['min', 'max'])
B C

min max min max
A
1 1 2 0.227877 0.362838
2 3 4 -0.562860 1.267767

Select a column for aggregation

>>> df.groupby('A').B.agg(['min', 'max'])
min max

A
1 1 2
2 3 4

Different aggregations per column

>>> df.groupby('A').agg({'B': ['min', 'max'], 'C': 'sum'})
B C

min max sum
A
1 1 2 0.590716
2 3 4 0.704907

34.17.3.27 pandas.core.groupby.DataFrameGroupBy.all

DataFrameGroupBy.all(skipna=True)
Returns True if all values in the group are truthful, else False

Parameters skipna : bool, default True

Flag to ignore nan values during truth testing

See also:

pandas.Series.groupby , pandas.DataFrame.groupby , pandas.Panel.groupby

2292 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

34.17.3.28 pandas.core.groupby.DataFrameGroupBy.any

DataFrameGroupBy.any(skipna=True)
Returns True if any value in the group is truthful, else False

Parameters skipna : bool, default True

Flag to ignore nan values during truth testing

See also:

pandas.Series.groupby , pandas.DataFrame.groupby , pandas.Panel.groupby

34.17.3.29 pandas.core.groupby.DataFrameGroupBy.bfill

DataFrameGroupBy.bfill(limit=None)
Backward fill the values

Parameters limit : integer, optional

limit of how many values to fill

See also:

Series.backfill, DataFrame.backfill, Series.fillna, DataFrame.fillna

34.17.3.30 pandas.core.groupby.DataFrameGroupBy.corr

DataFrameGroupBy.corr
Compute pairwise correlation of columns, excluding NA/null values

Parameters method : {‘pearson’, ‘kendall’, ‘spearman’}

• pearson : standard correlation coefficient

• kendall : Kendall Tau correlation coefficient

• spearman : Spearman rank correlation

min_periods : int, optional

Minimum number of observations required per pair of columns to have a valid result.
Currently only available for pearson and spearman correlation

Returns

y [DataFrame]

34.17.3.31 pandas.core.groupby.DataFrameGroupBy.count

DataFrameGroupBy.count()
Compute count of group, excluding missing values

34.17.3.32 pandas.core.groupby.DataFrameGroupBy.cov

DataFrameGroupBy.cov
Compute pairwise covariance of columns, excluding NA/null values.

Compute the pairwise covariance among the series of a DataFrame. The returned data frame is the covariance
matrix of the columns of the DataFrame.

34.17. GroupBy 2293

https://en.wikipedia.org/wiki/Covariance_matrix
https://en.wikipedia.org/wiki/Covariance_matrix

pandas: powerful Python data analysis toolkit, Release 0.23.4

Both NA and null values are automatically excluded from the calculation. (See the note below about bias
from missing values.) A threshold can be set for the minimum number of observations for each value created.
Comparisons with observations below this threshold will be returned as NaN.

This method is generally used for the analysis of time series data to understand the relationship between different
measures across time.

Parameters min_periods : int, optional

Minimum number of observations required per pair of columns to have a valid result.

Returns DataFrame

The covariance matrix of the series of the DataFrame.

See also:

pandas.Series.cov compute covariance with another Series

pandas.core.window.EWM.cov expoential weighted sample covariance

pandas.core.window.Expanding.cov expanding sample covariance

pandas.core.window.Rolling.cov rolling sample covariance

Notes

Returns the covariance matrix of the DataFrame’s time series. The covariance is normalized by N-1.

For DataFrames that have Series that are missing data (assuming that data is missing at random) the returned
covariance matrix will be an unbiased estimate of the variance and covariance between the member Series.

However, for many applications this estimate may not be acceptable because the estimate covariance matrix
is not guaranteed to be positive semi-definite. This could lead to estimate correlations having absolute values
which are greater than one, and/or a non-invertible covariance matrix. See Estimation of covariance matrices
for more details.

Examples

>>> df = pd.DataFrame([(1, 2), (0, 3), (2, 0), (1, 1)],
... columns=['dogs', 'cats'])
>>> df.cov()

dogs cats
dogs 0.666667 -1.000000
cats -1.000000 1.666667

>>> np.random.seed(42)
>>> df = pd.DataFrame(np.random.randn(1000, 5),
... columns=['a', 'b', 'c', 'd', 'e'])
>>> df.cov()

a b c d e
a 0.998438 -0.020161 0.059277 -0.008943 0.014144
b -0.020161 1.059352 -0.008543 -0.024738 0.009826
c 0.059277 -0.008543 1.010670 -0.001486 -0.000271
d -0.008943 -0.024738 -0.001486 0.921297 -0.013692
e 0.014144 0.009826 -0.000271 -0.013692 0.977795

2294 Chapter 34. API Reference

https://en.wikipedia.org/wiki/Missing_data#Missing_at_random
http://en.wikipedia.org/w/index.php?title=Estimation_of_covariance_matrices

pandas: powerful Python data analysis toolkit, Release 0.23.4

Minimum number of periods

This method also supports an optional min_periods keyword that specifies the required minimum number
of non-NA observations for each column pair in order to have a valid result:

>>> np.random.seed(42)
>>> df = pd.DataFrame(np.random.randn(20, 3),
... columns=['a', 'b', 'c'])
>>> df.loc[df.index[:5], 'a'] = np.nan
>>> df.loc[df.index[5:10], 'b'] = np.nan
>>> df.cov(min_periods=12)

a b c
a 0.316741 NaN -0.150812
b NaN 1.248003 0.191417
c -0.150812 0.191417 0.895202

34.17.3.33 pandas.core.groupby.DataFrameGroupBy.cummax

DataFrameGroupBy.cummax(axis=0, **kwargs)
Cumulative max for each group

See also:

pandas.Series.groupby , pandas.DataFrame.groupby , pandas.Panel.groupby

34.17.3.34 pandas.core.groupby.DataFrameGroupBy.cummin

DataFrameGroupBy.cummin(axis=0, **kwargs)
Cumulative min for each group

See also:

pandas.Series.groupby , pandas.DataFrame.groupby , pandas.Panel.groupby

34.17.3.35 pandas.core.groupby.DataFrameGroupBy.cumprod

DataFrameGroupBy.cumprod(axis=0, *args, **kwargs)
Cumulative product for each group

See also:

pandas.Series.groupby , pandas.DataFrame.groupby , pandas.Panel.groupby

34.17.3.36 pandas.core.groupby.DataFrameGroupBy.cumsum

DataFrameGroupBy.cumsum(axis=0, *args, **kwargs)
Cumulative sum for each group

See also:

pandas.Series.groupby , pandas.DataFrame.groupby , pandas.Panel.groupby

34.17. GroupBy 2295

pandas: powerful Python data analysis toolkit, Release 0.23.4

34.17.3.37 pandas.core.groupby.DataFrameGroupBy.describe

DataFrameGroupBy.describe(**kwargs)
Generates descriptive statistics that summarize the central tendency, dispersion and shape of a dataset’s distri-
bution, excluding NaN values.

Analyzes both numeric and object series, as well as DataFrame column sets of mixed data types. The output
will vary depending on what is provided. Refer to the notes below for more detail.

Parameters percentiles : list-like of numbers, optional

The percentiles to include in the output. All should fall between 0 and 1. The default
is [.25, .5, .75], which returns the 25th, 50th, and 75th percentiles.

include : ‘all’, list-like of dtypes or None (default), optional

A white list of data types to include in the result. Ignored for Series. Here are the
options:

• ‘all’ : All columns of the input will be included in the output.

• A list-like of dtypes : Limits the results to the provided data types. To limit the
result to numeric types submit numpy.number. To limit it instead to object
columns submit the numpy.object data type. Strings can also be used in
the style of select_dtypes (e.g. df.describe(include=['O'])).
To select pandas categorical columns, use 'category'

• None (default) : The result will include all numeric columns.

exclude : list-like of dtypes or None (default), optional,

A black list of data types to omit from the result. Ignored for Series. Here are the
options:

• A list-like of dtypes : Excludes the provided data types from the result. To
exclude numeric types submit numpy.number. To exclude object columns
submit the data type numpy.object. Strings can also be used in the style of
select_dtypes (e.g. df.describe(include=['O'])). To exclude
pandas categorical columns, use 'category'

• None (default) : The result will exclude nothing.

Returns

summary: Series/DataFrame of summary statistics

See also:

DataFrame.count, DataFrame.max, DataFrame.min, DataFrame.mean, DataFrame.std,
DataFrame.select_dtypes

Notes

For numeric data, the result’s index will include count, mean, std, min, max as well as lower, 50 and upper
percentiles. By default the lower percentile is 25 and the upper percentile is 75. The 50 percentile is the same
as the median.

For object data (e.g. strings or timestamps), the result’s index will include count, unique, top, and freq.
The top is the most common value. The freq is the most common value’s frequency. Timestamps also include
the first and last items.

2296 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

If multiple object values have the highest count, then the count and top results will be arbitrarily chosen from
among those with the highest count.

For mixed data types provided via a DataFrame, the default is to return only an analysis of numeric columns.
If the dataframe consists only of object and categorical data without any numeric columns, the default is to
return an analysis of both the object and categorical columns. If include='all' is provided as an option,
the result will include a union of attributes of each type.

The include and exclude parameters can be used to limit which columns in a DataFrame are analyzed for the
output. The parameters are ignored when analyzing a Series.

Examples

Describing a numeric Series.

>>> s = pd.Series([1, 2, 3])
>>> s.describe()
count 3.0
mean 2.0
std 1.0
min 1.0
25% 1.5
50% 2.0
75% 2.5
max 3.0

Describing a categorical Series.

>>> s = pd.Series(['a', 'a', 'b', 'c'])
>>> s.describe()
count 4
unique 3
top a
freq 2
dtype: object

Describing a timestamp Series.

>>> s = pd.Series([
... np.datetime64("2000-01-01"),
... np.datetime64("2010-01-01"),
... np.datetime64("2010-01-01")
...])
>>> s.describe()
count 3
unique 2
top 2010-01-01 00:00:00
freq 2
first 2000-01-01 00:00:00
last 2010-01-01 00:00:00
dtype: object

Describing a DataFrame. By default only numeric fields are returned.

>>> df = pd.DataFrame({ 'object': ['a', 'b', 'c'],
... 'numeric': [1, 2, 3],
... 'categorical': pd.Categorical(['d','e','f'])

(continues on next page)

34.17. GroupBy 2297

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

... })
>>> df.describe()

numeric
count 3.0
mean 2.0
std 1.0
min 1.0
25% 1.5
50% 2.0
75% 2.5
max 3.0

Describing all columns of a DataFrame regardless of data type.

>>> df.describe(include='all')
categorical numeric object

count 3 3.0 3
unique 3 NaN 3
top f NaN c
freq 1 NaN 1
mean NaN 2.0 NaN
std NaN 1.0 NaN
min NaN 1.0 NaN
25% NaN 1.5 NaN
50% NaN 2.0 NaN
75% NaN 2.5 NaN
max NaN 3.0 NaN

Describing a column from a DataFrame by accessing it as an attribute.

>>> df.numeric.describe()
count 3.0
mean 2.0
std 1.0
min 1.0
25% 1.5
50% 2.0
75% 2.5
max 3.0
Name: numeric, dtype: float64

Including only numeric columns in a DataFrame description.

>>> df.describe(include=[np.number])
numeric

count 3.0
mean 2.0
std 1.0
min 1.0
25% 1.5
50% 2.0
75% 2.5
max 3.0

Including only string columns in a DataFrame description.

2298 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

>>> df.describe(include=[np.object])
object

count 3
unique 3
top c
freq 1

Including only categorical columns from a DataFrame description.

>>> df.describe(include=['category'])
categorical

count 3
unique 3
top f
freq 1

Excluding numeric columns from a DataFrame description.

>>> df.describe(exclude=[np.number])
categorical object

count 3 3
unique 3 3
top f c
freq 1 1

Excluding object columns from a DataFrame description.

>>> df.describe(exclude=[np.object])
categorical numeric

count 3 3.0
unique 3 NaN
top f NaN
freq 1 NaN
mean NaN 2.0
std NaN 1.0
min NaN 1.0
25% NaN 1.5
50% NaN 2.0
75% NaN 2.5
max NaN 3.0

34.17.3.38 pandas.core.groupby.DataFrameGroupBy.diff

DataFrameGroupBy.diff
First discrete difference of element.

Calculates the difference of a DataFrame element compared with another element in the DataFrame (default is
the element in the same column of the previous row).

Parameters periods : int, default 1

Periods to shift for calculating difference, accepts negative values.

axis : {0 or ‘index’, 1 or ‘columns’}, default 0

Take difference over rows (0) or columns (1).

New in version 0.16.1..

34.17. GroupBy 2299

pandas: powerful Python data analysis toolkit, Release 0.23.4

Returns

diffed [DataFrame]

See also:

Series.diff First discrete difference for a Series.

DataFrame.pct_change Percent change over given number of periods.

DataFrame.shift Shift index by desired number of periods with an optional time freq.

Examples

Difference with previous row

>>> df = pd.DataFrame({'a': [1, 2, 3, 4, 5, 6],
... 'b': [1, 1, 2, 3, 5, 8],
... 'c': [1, 4, 9, 16, 25, 36]})
>>> df

a b c
0 1 1 1
1 2 1 4
2 3 2 9
3 4 3 16
4 5 5 25
5 6 8 36

>>> df.diff()
a b c

0 NaN NaN NaN
1 1.0 0.0 3.0
2 1.0 1.0 5.0
3 1.0 1.0 7.0
4 1.0 2.0 9.0
5 1.0 3.0 11.0

Difference with previous column

>>> df.diff(axis=1)
a b c

0 NaN 0.0 0.0
1 NaN -1.0 3.0
2 NaN -1.0 7.0
3 NaN -1.0 13.0
4 NaN 0.0 20.0
5 NaN 2.0 28.0

Difference with 3rd previous row

>>> df.diff(periods=3)
a b c

0 NaN NaN NaN
1 NaN NaN NaN
2 NaN NaN NaN
3 3.0 2.0 15.0
4 3.0 4.0 21.0
5 3.0 6.0 27.0

2300 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

Difference with following row

>>> df.diff(periods=-1)
a b c

0 -1.0 0.0 -3.0
1 -1.0 -1.0 -5.0
2 -1.0 -1.0 -7.0
3 -1.0 -2.0 -9.0
4 -1.0 -3.0 -11.0
5 NaN NaN NaN

34.17.3.39 pandas.core.groupby.DataFrameGroupBy.ffill

DataFrameGroupBy.ffill(limit=None)
Forward fill the values

Parameters limit : integer, optional

limit of how many values to fill

See also:

Series.pad, DataFrame.pad, Series.fillna, DataFrame.fillna

34.17.3.40 pandas.core.groupby.DataFrameGroupBy.fillna

DataFrameGroupBy.fillna
Fill NA/NaN values using the specified method

Parameters value : scalar, dict, Series, or DataFrame

Value to use to fill holes (e.g. 0), alternately a dict/Series/DataFrame of values spec-
ifying which value to use for each index (for a Series) or column (for a DataFrame).
(values not in the dict/Series/DataFrame will not be filled). This value cannot be a
list.

method : {‘backfill’, ‘bfill’, ‘pad’, ‘ffill’, None}, default None

Method to use for filling holes in reindexed Series pad / ffill: propagate last valid
observation forward to next valid backfill / bfill: use NEXT valid observation to fill
gap

axis [{0 or ‘index’, 1 or ‘columns’}]

inplace : boolean, default False

If True, fill in place. Note: this will modify any other views on this object, (e.g. a
no-copy slice for a column in a DataFrame).

limit : int, default None

If method is specified, this is the maximum number of consecutive NaN values to
forward/backward fill. In other words, if there is a gap with more than this number
of consecutive NaNs, it will only be partially filled. If method is not specified, this
is the maximum number of entries along the entire axis where NaNs will be filled.
Must be greater than 0 if not None.

downcast : dict, default is None

34.17. GroupBy 2301

pandas: powerful Python data analysis toolkit, Release 0.23.4

a dict of item->dtype of what to downcast if possible, or the string ‘infer’ which will
try to downcast to an appropriate equal type (e.g. float64 to int64 if possible)

Returns

filled [DataFrame]

See also:

interpolate Fill NaN values using interpolation.

reindex, asfreq

Examples

>>> df = pd.DataFrame([[np.nan, 2, np.nan, 0],
... [3, 4, np.nan, 1],
... [np.nan, np.nan, np.nan, 5],
... [np.nan, 3, np.nan, 4]],
... columns=list('ABCD'))
>>> df

A B C D
0 NaN 2.0 NaN 0
1 3.0 4.0 NaN 1
2 NaN NaN NaN 5
3 NaN 3.0 NaN 4

Replace all NaN elements with 0s.

>>> df.fillna(0)
A B C D

0 0.0 2.0 0.0 0
1 3.0 4.0 0.0 1
2 0.0 0.0 0.0 5
3 0.0 3.0 0.0 4

We can also propagate non-null values forward or backward.

>>> df.fillna(method='ffill')
A B C D

0 NaN 2.0 NaN 0
1 3.0 4.0 NaN 1
2 3.0 4.0 NaN 5
3 3.0 3.0 NaN 4

Replace all NaN elements in column ‘A’, ‘B’, ‘C’, and ‘D’, with 0, 1, 2, and 3 respectively.

>>> values = {'A': 0, 'B': 1, 'C': 2, 'D': 3}
>>> df.fillna(value=values)

A B C D
0 0.0 2.0 2.0 0
1 3.0 4.0 2.0 1
2 0.0 1.0 2.0 5
3 0.0 3.0 2.0 4

Only replace the first NaN element.

2302 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

>>> df.fillna(value=values, limit=1)
A B C D

0 0.0 2.0 2.0 0
1 3.0 4.0 NaN 1
2 NaN 1.0 NaN 5
3 NaN 3.0 NaN 4

34.17.3.41 pandas.core.groupby.DataFrameGroupBy.filter

DataFrameGroupBy.filter(func, dropna=True, *args, **kwargs)
Return a copy of a DataFrame excluding elements from groups that do not satisfy the boolean criterion specified
by func.

Parameters f : function

Function to apply to each subframe. Should return True or False.

dropna : Drop groups that do not pass the filter. True by default;

if False, groups that evaluate False are filled with NaNs.

Returns

filtered [DataFrame]

Notes

Each subframe is endowed the attribute ‘name’ in case you need to know which group you are working on.

Examples

>>> import pandas as pd
>>> df = pd.DataFrame({'A' : ['foo', 'bar', 'foo', 'bar',
... 'foo', 'bar'],
... 'B' : [1, 2, 3, 4, 5, 6],
... 'C' : [2.0, 5., 8., 1., 2., 9.]})
>>> grouped = df.groupby('A')
>>> grouped.filter(lambda x: x['B'].mean() > 3.)

A B C
1 bar 2 5.0
3 bar 4 1.0
5 bar 6 9.0

34.17.3.42 pandas.core.groupby.DataFrameGroupBy.hist

DataFrameGroupBy.hist
Make a histogram of the DataFrame’s.

A histogram is a representation of the distribution of data. This function calls matplotlib.pyplot.
hist(), on each series in the DataFrame, resulting in one histogram per column.

Parameters data : DataFrame

The pandas object holding the data.

34.17. GroupBy 2303

https://en.wikipedia.org/wiki/Histogram

pandas: powerful Python data analysis toolkit, Release 0.23.4

column : string or sequence

If passed, will be used to limit data to a subset of columns.

by : object, optional

If passed, then used to form histograms for separate groups.

grid : boolean, default True

Whether to show axis grid lines.

xlabelsize : int, default None

If specified changes the x-axis label size.

xrot : float, default None

Rotation of x axis labels. For example, a value of 90 displays the x labels rotated 90
degrees clockwise.

ylabelsize : int, default None

If specified changes the y-axis label size.

yrot : float, default None

Rotation of y axis labels. For example, a value of 90 displays the y labels rotated 90
degrees clockwise.

ax : Matplotlib axes object, default None

The axes to plot the histogram on.

sharex : boolean, default True if ax is None else False

In case subplots=True, share x axis and set some x axis labels to invisible; defaults
to True if ax is None otherwise False if an ax is passed in. Note that passing in both
an ax and sharex=True will alter all x axis labels for all subplots in a figure.

sharey : boolean, default False

In case subplots=True, share y axis and set some y axis labels to invisible.

figsize : tuple

The size in inches of the figure to create. Uses the value in matplotlib.rcParams by
default.

layout : tuple, optional

Tuple of (rows, columns) for the layout of the histograms.

bins : integer or sequence, default 10

Number of histogram bins to be used. If an integer is given, bins + 1 bin edges are
calculated and returned. If bins is a sequence, gives bin edges, including left edge of
first bin and right edge of last bin. In this case, bins is returned unmodified.

**kwds

All other plotting keyword arguments to be passed to matplotlib.pyplot.
hist().

Returns

axes [matplotlib.AxesSubplot or numpy.ndarray of them]

See also:

2304 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

matplotlib.pyplot.hist Plot a histogram using matplotlib.

Examples

This example draws a histogram based on the length and width of some animals, displayed in three bins

>>> df = pd.DataFrame({
... 'length': [1.5, 0.5, 1.2, 0.9, 3],
... 'width': [0.7, 0.2, 0.15, 0.2, 1.1]
... }, index= ['pig', 'rabbit', 'duck', 'chicken', 'horse'])
>>> hist = df.hist(bins=3)

34.17.3.43 pandas.core.groupby.DataFrameGroupBy.idxmax

DataFrameGroupBy.idxmax
Return index of first occurrence of maximum over requested axis. NA/null values are excluded.

Parameters axis : {0 or ‘index’, 1 or ‘columns’}, default 0

0 or ‘index’ for row-wise, 1 or ‘columns’ for column-wise

skipna : boolean, default True

Exclude NA/null values. If an entire row/column is NA, the result will be NA.

Returns

idxmax [Series]

Raises ValueError

• If the row/column is empty

See also:

Series.idxmax

Notes

This method is the DataFrame version of ndarray.argmax.

34.17.3.44 pandas.core.groupby.DataFrameGroupBy.idxmin

DataFrameGroupBy.idxmin
Return index of first occurrence of minimum over requested axis. NA/null values are excluded.

Parameters axis : {0 or ‘index’, 1 or ‘columns’}, default 0

0 or ‘index’ for row-wise, 1 or ‘columns’ for column-wise

skipna : boolean, default True

Exclude NA/null values. If an entire row/column is NA, the result will be NA.

Returns

idxmin [Series]

Raises ValueError

34.17. GroupBy 2305

https://matplotlib.org/api/_as_gen/matplotlib.pyplot.hist.html#matplotlib.pyplot.hist

pandas: powerful Python data analysis toolkit, Release 0.23.4

• If the row/column is empty

See also:

Series.idxmin

Notes

This method is the DataFrame version of ndarray.argmin.

34.17.3.45 pandas.core.groupby.DataFrameGroupBy.mad

DataFrameGroupBy.mad
Return the mean absolute deviation of the values for the requested axis

Parameters

axis [{index (0), columns (1)}]

skipna : boolean, default True

Exclude NA/null values when computing the result.

level : int or level name, default None

If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing
into a Series

numeric_only : boolean, default None

Include only float, int, boolean columns. If None, will attempt to use everything,
then use only numeric data. Not implemented for Series.

Returns

mad [Series or DataFrame (if level specified)]

34.17.3.46 pandas.core.groupby.DataFrameGroupBy.pct_change

DataFrameGroupBy.pct_change(periods=1, fill_method=’pad’, limit=None, freq=None, axis=0)
Calcuate pct_change of each value to previous entry in group

See also:

pandas.Series.groupby , pandas.DataFrame.groupby , pandas.Panel.groupby

34.17.3.47 pandas.core.groupby.DataFrameGroupBy.plot

DataFrameGroupBy.plot
Class implementing the .plot attribute for groupby objects

34.17.3.48 pandas.core.groupby.DataFrameGroupBy.quantile

DataFrameGroupBy.quantile
Return values at the given quantile over requested axis, a la numpy.percentile.

Parameters q : float or array-like, default 0.5 (50% quantile)

2306 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

0 <= q <= 1, the quantile(s) to compute

axis : {0, 1, ‘index’, ‘columns’} (default 0)

0 or ‘index’ for row-wise, 1 or ‘columns’ for column-wise

numeric_only : boolean, default True

If False, the quantile of datetime and timedelta data will be computed as well

interpolation : {‘linear’, ‘lower’, ‘higher’, ‘midpoint’, ‘nearest’}

New in version 0.18.0.

This optional parameter specifies the interpolation method to use, when the desired
quantile lies between two data points i and j:

• linear: i + (j - i) * fraction, where fraction is the fractional part of the index
surrounded by i and j.

• lower: i.

• higher: j.

• nearest: i or j whichever is nearest.

• midpoint: (i + j) / 2.

Returns quantiles : Series or DataFrame

• If q is an array, a DataFrame will be returned where the index is q, the columns are the
columns of self, and the values are the quantiles.

• If q is a float, a Series will be returned where the index is the columns of self and the
values are the quantiles.

See also:

pandas.core.window.Rolling.quantile

Examples

>>> df = pd.DataFrame(np.array([[1, 1], [2, 10], [3, 100], [4, 100]]),
columns=['a', 'b'])

>>> df.quantile(.1)
a 1.3
b 3.7
dtype: float64
>>> df.quantile([.1, .5])

a b
0.1 1.3 3.7
0.5 2.5 55.0

Specifying numeric_only=False will also compute the quantile of datetime and timedelta data.

>>> df = pd.DataFrame({'A': [1, 2],
'B': [pd.Timestamp('2010'),

pd.Timestamp('2011')],
'C': [pd.Timedelta('1 days'),

pd.Timedelta('2 days')]})
>>> df.quantile(0.5, numeric_only=False)
A 1.5

(continues on next page)

34.17. GroupBy 2307

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

B 2010-07-02 12:00:00
C 1 days 12:00:00
Name: 0.5, dtype: object

34.17.3.49 pandas.core.groupby.DataFrameGroupBy.rank

DataFrameGroupBy.rank(method=’average’, ascending=True, na_option=’keep’, pct=False, axis=0)
Provides the rank of values within each group.

Parameters method : {‘average’, ‘min’, ‘max’, ‘first’, ‘dense’}, default ‘average’

• average: average rank of group

• min: lowest rank in group

• max: highest rank in group

• first: ranks assigned in order they appear in the array

• dense: like ‘min’, but rank always increases by 1 between groups

ascending : boolean, default True

False for ranks by high (1) to low (N)

na_option : {‘keep’, ‘top’, ‘bottom’}, default ‘keep’

• keep: leave NA values where they are

• top: smallest rank if ascending

• bottom: smallest rank if descending

pct : boolean, default False

Compute percentage rank of data within each group

axis : int, default 0

The axis of the object over which to compute the rank.

Returns

—–

DataFrame with ranking of values within each group

See also:

pandas.Series.groupby , pandas.DataFrame.groupby , pandas.Panel.groupby

34.17.3.50 pandas.core.groupby.DataFrameGroupBy.resample

DataFrameGroupBy.resample(rule, *args, **kwargs)
Provide resampling when using a TimeGrouper Return a new grouper with our resampler appended

See also:

pandas.Series.groupby , pandas.DataFrame.groupby , pandas.Panel.groupby

2308 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

34.17.3.51 pandas.core.groupby.DataFrameGroupBy.shift

DataFrameGroupBy.shift(periods=1, freq=None, axis=0)
Shift each group by periods observations

Parameters periods : integer, default 1

number of periods to shift

freq [frequency string]

axis [axis to shift, default 0]

See also:

pandas.Series.groupby , pandas.DataFrame.groupby , pandas.Panel.groupby

34.17.3.52 pandas.core.groupby.DataFrameGroupBy.size

DataFrameGroupBy.size()
Compute group sizes

See also:

pandas.Series.groupby , pandas.DataFrame.groupby , pandas.Panel.groupby

34.17.3.53 pandas.core.groupby.DataFrameGroupBy.skew

DataFrameGroupBy.skew
Return unbiased skew over requested axis Normalized by N-1

Parameters

axis [{index (0), columns (1)}]

skipna : boolean, default True

Exclude NA/null values when computing the result.

level : int or level name, default None

If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing
into a Series

numeric_only : boolean, default None

Include only float, int, boolean columns. If None, will attempt to use everything,
then use only numeric data. Not implemented for Series.

Returns

skew [Series or DataFrame (if level specified)]

34.17.3.54 pandas.core.groupby.DataFrameGroupBy.take

DataFrameGroupBy.take
Return the elements in the given positional indices along an axis.

This means that we are not indexing according to actual values in the index attribute of the object. We are
indexing according to the actual position of the element in the object.

34.17. GroupBy 2309

pandas: powerful Python data analysis toolkit, Release 0.23.4

Parameters indices : array-like

An array of ints indicating which positions to take.

axis : {0 or ‘index’, 1 or ‘columns’, None}, default 0

The axis on which to select elements. 0 means that we are selecting rows, 1 means
that we are selecting columns.

convert : bool, default True

Whether to convert negative indices into positive ones. For example, -1 would map
to the len(axis) - 1. The conversions are similar to the behavior of indexing a
regular Python list.

Deprecated since version 0.21.0: In the future, negative indices will always be con-
verted.

is_copy : bool, default True

Whether to return a copy of the original object or not.

**kwargs

For compatibility with numpy.take(). Has no effect on the output.

Returns taken : type of caller

An array-like containing the elements taken from the object.

See also:

DataFrame.loc Select a subset of a DataFrame by labels.

DataFrame.iloc Select a subset of a DataFrame by positions.

numpy.take Take elements from an array along an axis.

Examples

>>> df = pd.DataFrame([('falcon', 'bird', 389.0),
... ('parrot', 'bird', 24.0),
... ('lion', 'mammal', 80.5),
... ('monkey', 'mammal', np.nan)],
... columns=['name', 'class', 'max_speed'],
... index=[0, 2, 3, 1])
>>> df

name class max_speed
0 falcon bird 389.0
2 parrot bird 24.0
3 lion mammal 80.5
1 monkey mammal NaN

Take elements at positions 0 and 3 along the axis 0 (default).

Note how the actual indices selected (0 and 1) do not correspond to our selected indices 0 and 3. That’s because
we are selecting the 0th and 3rd rows, not rows whose indices equal 0 and 3.

>>> df.take([0, 3])
name class max_speed

0 falcon bird 389.0
1 monkey mammal NaN

2310 Chapter 34. API Reference

https://docs.scipy.org/doc/numpy/reference/generated/numpy.take.html#numpy.take

pandas: powerful Python data analysis toolkit, Release 0.23.4

Take elements at indices 1 and 2 along the axis 1 (column selection).

>>> df.take([1, 2], axis=1)
class max_speed

0 bird 389.0
2 bird 24.0
3 mammal 80.5
1 mammal NaN

We may take elements using negative integers for positive indices, starting from the end of the object, just like
with Python lists.

>>> df.take([-1, -2])
name class max_speed

1 monkey mammal NaN
3 lion mammal 80.5

34.17.3.55 pandas.core.groupby.DataFrameGroupBy.tshift

DataFrameGroupBy.tshift
Shift the time index, using the index’s frequency if available.

Parameters periods : int

Number of periods to move, can be positive or negative

freq : DateOffset, timedelta, or time rule string, default None

Increment to use from the tseries module or time rule (e.g. ‘EOM’)

axis : int or basestring

Corresponds to the axis that contains the Index

Returns

shifted [NDFrame]

Notes

If freq is not specified then tries to use the freq or inferred_freq attributes of the index. If neither of those
attributes exist, a ValueError is thrown

The following methods are available only for SeriesGroupBy objects.

SeriesGroupBy.nlargest Return the largest n elements.
SeriesGroupBy.nsmallest Return the smallest n elements.
SeriesGroupBy.nunique([dropna]) Returns number of unique elements in the group
SeriesGroupBy.unique Return unique values of Series object.
SeriesGroupBy.value_counts([normalize,
. . .])
SeriesGroupBy.is_monotonic_increasing Return boolean if values in the object are mono-

tonic_increasing
SeriesGroupBy.is_monotonic_decreasing Return boolean if values in the object are mono-

tonic_decreasing

34.17. GroupBy 2311

pandas: powerful Python data analysis toolkit, Release 0.23.4

34.17.3.56 pandas.core.groupby.SeriesGroupBy.nlargest

SeriesGroupBy.nlargest
Return the largest n elements.

Parameters n : int

Return this many descending sorted values

keep : {‘first’, ‘last’}, default ‘first’

Where there are duplicate values: - first : take the first occurrence. - last : take
the last occurrence.

Returns top_n : Series

The n largest values in the Series, in sorted order

See also:

Series.nsmallest

Notes

Faster than .sort_values(ascending=False).head(n) for small n relative to the size of the
Series object.

Examples

>>> import pandas as pd
>>> import numpy as np
>>> s = pd.Series(np.random.randn(10**6))
>>> s.nlargest(10) # only sorts up to the N requested
219921 4.644710
82124 4.608745
421689 4.564644
425277 4.447014
718691 4.414137
43154 4.403520
283187 4.313922
595519 4.273635
503969 4.250236
121637 4.240952
dtype: float64

34.17.3.57 pandas.core.groupby.SeriesGroupBy.nsmallest

SeriesGroupBy.nsmallest
Return the smallest n elements.

Parameters n : int

Return this many ascending sorted values

keep : {‘first’, ‘last’}, default ‘first’

Where there are duplicate values: - first : take the first occurrence. - last : take
the last occurrence.

2312 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

Returns bottom_n : Series

The n smallest values in the Series, in sorted order

See also:

Series.nlargest

Notes

Faster than .sort_values().head(n) for small n relative to the size of the Series object.

Examples

>>> import pandas as pd
>>> import numpy as np
>>> s = pd.Series(np.random.randn(10**6))
>>> s.nsmallest(10) # only sorts up to the N requested
288532 -4.954580
732345 -4.835960
64803 -4.812550
446457 -4.609998
501225 -4.483945
669476 -4.472935
973615 -4.401699
621279 -4.355126
773916 -4.347355
359919 -4.331927
dtype: float64

34.17.3.58 pandas.core.groupby.SeriesGroupBy.nunique

SeriesGroupBy.nunique(dropna=True)
Returns number of unique elements in the group

34.17.3.59 pandas.core.groupby.SeriesGroupBy.unique

SeriesGroupBy.unique
Return unique values of Series object.

Uniques are returned in order of appearance. Hash table-based unique, therefore does NOT sort.

Returns ndarray or Categorical

The unique values returned as a NumPy array. In case of categorical data type,
returned as a Categorical.

See also:

pandas.unique top-level unique method for any 1-d array-like object.

Index.unique return Index with unique values from an Index object.

34.17. GroupBy 2313

pandas: powerful Python data analysis toolkit, Release 0.23.4

Examples

>>> pd.Series([2, 1, 3, 3], name='A').unique()
array([2, 1, 3])

>>> pd.Series([pd.Timestamp('2016-01-01') for _ in range(3)]).unique()
array(['2016-01-01T00:00:00.000000000'], dtype='datetime64[ns]')

>>> pd.Series([pd.Timestamp('2016-01-01', tz='US/Eastern')
... for _ in range(3)]).unique()
array([Timestamp('2016-01-01 00:00:00-0500', tz='US/Eastern')],

dtype=object)

An unordered Categorical will return categories in the order of appearance.

>>> pd.Series(pd.Categorical(list('baabc'))).unique()
[b, a, c]
Categories (3, object): [b, a, c]

An ordered Categorical preserves the category ordering.

>>> pd.Series(pd.Categorical(list('baabc'), categories=list('abc'),
... ordered=True)).unique()
[b, a, c]
Categories (3, object): [a < b < c]

34.17.3.60 pandas.core.groupby.SeriesGroupBy.value_counts

SeriesGroupBy.value_counts(normalize=False, sort=True, ascending=False, bins=None,
dropna=True)

34.17.3.61 pandas.core.groupby.SeriesGroupBy.is_monotonic_increasing

SeriesGroupBy.is_monotonic_increasing
Return boolean if values in the object are monotonic_increasing

New in version 0.19.0.

Returns

is_monotonic [boolean]

34.17.3.62 pandas.core.groupby.SeriesGroupBy.is_monotonic_decreasing

SeriesGroupBy.is_monotonic_decreasing
Return boolean if values in the object are monotonic_decreasing

New in version 0.19.0.

Returns

is_monotonic_decreasing [boolean]

The following methods are available only for DataFrameGroupBy objects.

2314 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

DataFrameGroupBy.corrwith Compute pairwise correlation between rows or columns
of two DataFrame objects.

DataFrameGroupBy.boxplot([subplots, column,
. . .])

Make box plots from DataFrameGroupBy data.

34.17.3.63 pandas.core.groupby.DataFrameGroupBy.corrwith

DataFrameGroupBy.corrwith
Compute pairwise correlation between rows or columns of two DataFrame objects.

Parameters

other [DataFrame, Series]

axis : {0 or ‘index’, 1 or ‘columns’}, default 0

0 or ‘index’ to compute column-wise, 1 or ‘columns’ for row-wise

drop : boolean, default False

Drop missing indices from result, default returns union of all

Returns

correls [Series]

34.17.3.64 pandas.core.groupby.DataFrameGroupBy.boxplot

DataFrameGroupBy.boxplot(subplots=True, column=None, fontsize=None, rot=0, grid=True,
ax=None, figsize=None, layout=None, **kwds)

Make box plots from DataFrameGroupBy data.

Parameters

grouped [Grouped DataFrame]

subplots :

• False - no subplots will be used

• True - create a subplot for each group

column : column name or list of names, or vector

Can be any valid input to groupby

fontsize [int or string]

rot [label rotation angle]

grid [Setting this to True will show the grid]

ax [Matplotlib axis object, default None]

figsize [A tuple (width, height) in inches]

layout : tuple (optional)

(rows, columns) for the layout of the plot

‘**kwds‘ : Keyword Arguments

34.17. GroupBy 2315

pandas: powerful Python data analysis toolkit, Release 0.23.4

All other plotting keyword arguments to be passed to matplotlib’s boxplot function

Returns

dict of key/value = group key/DataFrame.boxplot return value

or DataFrame.boxplot return value in case subplots=figures=False

Examples

>>> import pandas
>>> import numpy as np
>>> import itertools
>>>
>>> tuples = [t for t in itertools.product(range(1000), range(4))]
>>> index = pandas.MultiIndex.from_tuples(tuples, names=['lvl0', 'lvl1'])
>>> data = np.random.randn(len(index),4)
>>> df = pandas.DataFrame(data, columns=list('ABCD'), index=index)
>>>
>>> grouped = df.groupby(level='lvl1')
>>> boxplot_frame_groupby(grouped)
>>>
>>> grouped = df.unstack(level='lvl1').groupby(level=0, axis=1)
>>> boxplot_frame_groupby(grouped, subplots=False)

34.18 Resampling

Resampler objects are returned by resample calls: pandas.DataFrame.resample(), pandas.Series.
resample().

34.18.1 Indexing, iteration

Resampler.__iter__() Groupby iterator
Resampler.groups dict {group name -> group labels}
Resampler.indices dict {group name -> group indices}
Resampler.get_group(name[, obj]) Constructs NDFrame from group with provided name

34.18.1.1 pandas.core.resample.Resampler.__iter__

Resampler.__iter__()
Groupby iterator

Returns

Generator yielding sequence of (name, subsetted object)

for each group

34.18.1.2 pandas.core.resample.Resampler.groups

Resampler.groups
dict {group name -> group labels}

2316 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

34.18.1.3 pandas.core.resample.Resampler.indices

Resampler.indices
dict {group name -> group indices}

34.18.1.4 pandas.core.resample.Resampler.get_group

Resampler.get_group(name, obj=None)
Constructs NDFrame from group with provided name

Parameters name : object

the name of the group to get as a DataFrame

obj : NDFrame, default None

the NDFrame to take the DataFrame out of. If it is None, the object groupby was
called on will be used

Returns

group [type of obj]

34.18.2 Function application

Resampler.apply(arg, *args, **kwargs) Aggregate using one or more operations over the speci-
fied axis.

Resampler.aggregate(arg, *args, **kwargs) Aggregate using one or more operations over the speci-
fied axis.

Resampler.transform(arg, *args, **kwargs) Call function producing a like-indexed Series on each
group and return a Series with the transformed values

Resampler.pipe(func, *args, **kwargs) Apply a function func with arguments to this Resam-
pler object and return the function’s result.

34.18.2.1 pandas.core.resample.Resampler.apply

Resampler.apply(arg, *args, **kwargs)
Aggregate using one or more operations over the specified axis.

Parameters func : function, string, dictionary, or list of string/functions

Function to use for aggregating the data. If a function, must either work when passed
a DataFrame or when passed to DataFrame.apply. For a DataFrame, can pass a dict,
if the keys are DataFrame column names.

Accepted combinations are:

• string function name.

• function.

• list of functions.

• dict of column names -> functions (or list of functions).

*args

Positional arguments to pass to func.

34.18. Resampling 2317

pandas: powerful Python data analysis toolkit, Release 0.23.4

**kwargs

Keyword arguments to pass to func.

Returns

aggregated [DataFrame]

See also:

pandas.DataFrame.groupby.aggregate, pandas.DataFrame.resample.transform,
pandas.DataFrame.aggregate

Notes

agg is an alias for aggregate. Use the alias.

A passed user-defined-function will be passed a Series for evaluation.

Examples

>>> s = Series([1,2,3,4,5],
index=pd.date_range('20130101',

periods=5,freq='s'))
2013-01-01 00:00:00 1
2013-01-01 00:00:01 2
2013-01-01 00:00:02 3
2013-01-01 00:00:03 4
2013-01-01 00:00:04 5
Freq: S, dtype: int64

>>> r = s.resample('2s')
DatetimeIndexResampler [freq=<2 * Seconds>, axis=0, closed=left,

label=left, convention=start, base=0]

>>> r.agg(np.sum)
2013-01-01 00:00:00 3
2013-01-01 00:00:02 7
2013-01-01 00:00:04 5
Freq: 2S, dtype: int64

>>> r.agg(['sum','mean','max'])
sum mean max

2013-01-01 00:00:00 3 1.5 2
2013-01-01 00:00:02 7 3.5 4
2013-01-01 00:00:04 5 5.0 5

>>> r.agg({'result' : lambda x: x.mean() / x.std(),
'total' : np.sum})

total result
2013-01-01 00:00:00 3 2.121320
2013-01-01 00:00:02 7 4.949747
2013-01-01 00:00:04 5 NaN

2318 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

34.18.2.2 pandas.core.resample.Resampler.aggregate

Resampler.aggregate(arg, *args, **kwargs)
Aggregate using one or more operations over the specified axis.

Parameters func : function, string, dictionary, or list of string/functions

Function to use for aggregating the data. If a function, must either work when passed
a DataFrame or when passed to DataFrame.apply. For a DataFrame, can pass a dict,
if the keys are DataFrame column names.

Accepted combinations are:

• string function name.

• function.

• list of functions.

• dict of column names -> functions (or list of functions).

*args

Positional arguments to pass to func.

**kwargs

Keyword arguments to pass to func.

Returns

aggregated [DataFrame]

See also:

pandas.DataFrame.groupby.aggregate, pandas.DataFrame.resample.transform,
pandas.DataFrame.aggregate

Notes

agg is an alias for aggregate. Use the alias.

A passed user-defined-function will be passed a Series for evaluation.

Examples

>>> s = Series([1,2,3,4,5],
index=pd.date_range('20130101',

periods=5,freq='s'))
2013-01-01 00:00:00 1
2013-01-01 00:00:01 2
2013-01-01 00:00:02 3
2013-01-01 00:00:03 4
2013-01-01 00:00:04 5
Freq: S, dtype: int64

>>> r = s.resample('2s')
DatetimeIndexResampler [freq=<2 * Seconds>, axis=0, closed=left,

label=left, convention=start, base=0]

34.18. Resampling 2319

pandas: powerful Python data analysis toolkit, Release 0.23.4

>>> r.agg(np.sum)
2013-01-01 00:00:00 3
2013-01-01 00:00:02 7
2013-01-01 00:00:04 5
Freq: 2S, dtype: int64

>>> r.agg(['sum','mean','max'])
sum mean max

2013-01-01 00:00:00 3 1.5 2
2013-01-01 00:00:02 7 3.5 4
2013-01-01 00:00:04 5 5.0 5

>>> r.agg({'result' : lambda x: x.mean() / x.std(),
'total' : np.sum})

total result
2013-01-01 00:00:00 3 2.121320
2013-01-01 00:00:02 7 4.949747
2013-01-01 00:00:04 5 NaN

34.18.2.3 pandas.core.resample.Resampler.transform

Resampler.transform(arg, *args, **kwargs)
Call function producing a like-indexed Series on each group and return a Series with the transformed values

Parameters func : function

To apply to each group. Should return a Series with the same index

Returns

transformed [Series]

Examples

>>> resampled.transform(lambda x: (x - x.mean()) / x.std())

34.18.2.4 pandas.core.resample.Resampler.pipe

Resampler.pipe(func, *args, **kwargs)
Apply a function func with arguments to this Resampler object and return the function’s result.

New in version 0.23.0.

Use .pipe when you want to improve readability by chaining together functions that expect Series,
DataFrames, GroupBy or Resampler objects. Instead of writing

>>> h(g(f(df.groupby('group')), arg1=a), arg2=b, arg3=c)

You can write

>>> (df.groupby('group')
... .pipe(f)
... .pipe(g, arg1=a)
... .pipe(h, arg2=b, arg3=c))

2320 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

which is much more readable.

Parameters func : callable or tuple of (callable, string)

Function to apply to this Resampler object or, alternatively, a (callable,
data_keyword) tuple where data_keyword is a string indicating the keyword
of callable that expects the Resampler object.

args : iterable, optional

positional arguments passed into func.

kwargs : dict, optional

a dictionary of keyword arguments passed into func.

Returns

object [the return type of func.]

See also:

pandas.Series.pipe Apply a function with arguments to a series

pandas.DataFrame.pipe Apply a function with arguments to a dataframe

apply Apply function to each group instead of to the full Resampler object.

Notes

See more here

Examples

>>> df = pd.DataFrame({'A': [1, 2, 3, 4]},
... index=pd.date_range('2012-08-02', periods=4))
>>> df

A
2012-08-02 1
2012-08-03 2
2012-08-04 3
2012-08-05 4

To get the difference between each 2-day period’s maximum and minimum value in one pass, you can do

>>> df.resample('2D').pipe(lambda x: x.max() - x.min())
A

2012-08-02 1
2012-08-04 1

34.18.3 Upsampling

Resampler.ffill([limit]) Forward fill the values
Resampler.backfill([limit]) Backward fill the new missing values in the resampled

data.
Continued on next page

34.18. Resampling 2321

http://pandas.pydata.org/pandas-docs/stable/groupby.html#piping-function-calls

pandas: powerful Python data analysis toolkit, Release 0.23.4

Table 172 – continued from previous page
Resampler.bfill([limit]) Backward fill the new missing values in the resampled

data.
Resampler.pad([limit]) Forward fill the values
Resampler.nearest([limit]) Fill values with nearest neighbor starting from center
Resampler.fillna(method[, limit]) Fill missing values introduced by upsampling.
Resampler.asfreq([fill_value]) return the values at the new freq, essentially a reindex
Resampler.interpolate([method, axis, limit,
. . .])

Interpolate values according to different methods.

34.18.3.1 pandas.core.resample.Resampler.ffill

Resampler.ffill(limit=None)
Forward fill the values

Parameters limit : integer, optional

limit of how many values to fill

Returns

an upsampled Series

See also:

Series.fillna, DataFrame.fillna

34.18.3.2 pandas.core.resample.Resampler.backfill

Resampler.backfill(limit=None)
Backward fill the new missing values in the resampled data.

In statistics, imputation is the process of replacing missing data with substituted values [R30]. When resampling
data, missing values may appear (e.g., when the resampling frequency is higher than the original frequency).
The backward fill will replace NaN values that appeared in the resampled data with the next value in the original
sequence. Missing values that existed in the orginal data will not be modified.

Parameters limit : integer, optional

Limit of how many values to fill.

Returns Series, DataFrame

An upsampled Series or DataFrame with backward filled NaN values.

See also:

bfill Alias of backfill.

fillna Fill NaN values using the specified method, which can be ‘backfill’.

nearest Fill NaN values with nearest neighbor starting from center.

pad Forward fill NaN values.

pandas.Series.fillna Fill NaN values in the Series using the specified method, which can be ‘backfill’.

pandas.DataFrame.fillna Fill NaN values in the DataFrame using the specified method, which can be
‘backfill’.

2322 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

References

[R30]

Examples

Resampling a Series:

>>> s = pd.Series([1, 2, 3],
... index=pd.date_range('20180101', periods=3, freq='h'))
>>> s
2018-01-01 00:00:00 1
2018-01-01 01:00:00 2
2018-01-01 02:00:00 3
Freq: H, dtype: int64

>>> s.resample('30min').backfill()
2018-01-01 00:00:00 1
2018-01-01 00:30:00 2
2018-01-01 01:00:00 2
2018-01-01 01:30:00 3
2018-01-01 02:00:00 3
Freq: 30T, dtype: int64

>>> s.resample('15min').backfill(limit=2)
2018-01-01 00:00:00 1.0
2018-01-01 00:15:00 NaN
2018-01-01 00:30:00 2.0
2018-01-01 00:45:00 2.0
2018-01-01 01:00:00 2.0
2018-01-01 01:15:00 NaN
2018-01-01 01:30:00 3.0
2018-01-01 01:45:00 3.0
2018-01-01 02:00:00 3.0
Freq: 15T, dtype: float64

Resampling a DataFrame that has missing values:

>>> df = pd.DataFrame({'a': [2, np.nan, 6], 'b': [1, 3, 5]},
... index=pd.date_range('20180101', periods=3,
... freq='h'))
>>> df

a b
2018-01-01 00:00:00 2.0 1
2018-01-01 01:00:00 NaN 3
2018-01-01 02:00:00 6.0 5

>>> df.resample('30min').backfill()
a b

2018-01-01 00:00:00 2.0 1
2018-01-01 00:30:00 NaN 3
2018-01-01 01:00:00 NaN 3
2018-01-01 01:30:00 6.0 5
2018-01-01 02:00:00 6.0 5

34.18. Resampling 2323

pandas: powerful Python data analysis toolkit, Release 0.23.4

>>> df.resample('15min').backfill(limit=2)
a b

2018-01-01 00:00:00 2.0 1.0
2018-01-01 00:15:00 NaN NaN
2018-01-01 00:30:00 NaN 3.0
2018-01-01 00:45:00 NaN 3.0
2018-01-01 01:00:00 NaN 3.0
2018-01-01 01:15:00 NaN NaN
2018-01-01 01:30:00 6.0 5.0
2018-01-01 01:45:00 6.0 5.0
2018-01-01 02:00:00 6.0 5.0

34.18.3.3 pandas.core.resample.Resampler.bfill

Resampler.bfill(limit=None)
Backward fill the new missing values in the resampled data.

In statistics, imputation is the process of replacing missing data with substituted values [R31]. When resampling
data, missing values may appear (e.g., when the resampling frequency is higher than the original frequency).
The backward fill will replace NaN values that appeared in the resampled data with the next value in the original
sequence. Missing values that existed in the orginal data will not be modified.

Parameters limit : integer, optional

Limit of how many values to fill.

Returns Series, DataFrame

An upsampled Series or DataFrame with backward filled NaN values.

See also:

bfill Alias of backfill.

fillna Fill NaN values using the specified method, which can be ‘backfill’.

nearest Fill NaN values with nearest neighbor starting from center.

pad Forward fill NaN values.

pandas.Series.fillna Fill NaN values in the Series using the specified method, which can be ‘backfill’.

pandas.DataFrame.fillna Fill NaN values in the DataFrame using the specified method, which can be
‘backfill’.

References

[R31]

Examples

Resampling a Series:

>>> s = pd.Series([1, 2, 3],
... index=pd.date_range('20180101', periods=3, freq='h'))
>>> s

(continues on next page)

2324 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

2018-01-01 00:00:00 1
2018-01-01 01:00:00 2
2018-01-01 02:00:00 3
Freq: H, dtype: int64

>>> s.resample('30min').backfill()
2018-01-01 00:00:00 1
2018-01-01 00:30:00 2
2018-01-01 01:00:00 2
2018-01-01 01:30:00 3
2018-01-01 02:00:00 3
Freq: 30T, dtype: int64

>>> s.resample('15min').backfill(limit=2)
2018-01-01 00:00:00 1.0
2018-01-01 00:15:00 NaN
2018-01-01 00:30:00 2.0
2018-01-01 00:45:00 2.0
2018-01-01 01:00:00 2.0
2018-01-01 01:15:00 NaN
2018-01-01 01:30:00 3.0
2018-01-01 01:45:00 3.0
2018-01-01 02:00:00 3.0
Freq: 15T, dtype: float64

Resampling a DataFrame that has missing values:

>>> df = pd.DataFrame({'a': [2, np.nan, 6], 'b': [1, 3, 5]},
... index=pd.date_range('20180101', periods=3,
... freq='h'))
>>> df

a b
2018-01-01 00:00:00 2.0 1
2018-01-01 01:00:00 NaN 3
2018-01-01 02:00:00 6.0 5

>>> df.resample('30min').backfill()
a b

2018-01-01 00:00:00 2.0 1
2018-01-01 00:30:00 NaN 3
2018-01-01 01:00:00 NaN 3
2018-01-01 01:30:00 6.0 5
2018-01-01 02:00:00 6.0 5

>>> df.resample('15min').backfill(limit=2)
a b

2018-01-01 00:00:00 2.0 1.0
2018-01-01 00:15:00 NaN NaN
2018-01-01 00:30:00 NaN 3.0
2018-01-01 00:45:00 NaN 3.0
2018-01-01 01:00:00 NaN 3.0
2018-01-01 01:15:00 NaN NaN
2018-01-01 01:30:00 6.0 5.0
2018-01-01 01:45:00 6.0 5.0
2018-01-01 02:00:00 6.0 5.0

34.18. Resampling 2325

pandas: powerful Python data analysis toolkit, Release 0.23.4

34.18.3.4 pandas.core.resample.Resampler.pad

Resampler.pad(limit=None)
Forward fill the values

Parameters limit : integer, optional

limit of how many values to fill

Returns

an upsampled Series

See also:

Series.fillna, DataFrame.fillna

34.18.3.5 pandas.core.resample.Resampler.nearest

Resampler.nearest(limit=None)
Fill values with nearest neighbor starting from center

Parameters limit : integer, optional

limit of how many values to fill

New in version 0.21.0.

Returns

an upsampled Series

See also:

Series.fillna, DataFrame.fillna

34.18.3.6 pandas.core.resample.Resampler.fillna

Resampler.fillna(method, limit=None)
Fill missing values introduced by upsampling.

In statistics, imputation is the process of replacing missing data with substituted values [R32]. When resampling
data, missing values may appear (e.g., when the resampling frequency is higher than the original frequency).

Missing values that existed in the orginal data will not be modified.

Parameters method : {‘pad’, ‘backfill’, ‘ffill’, ‘bfill’, ‘nearest’}

Method to use for filling holes in resampled data

• ‘pad’ or ‘ffill’: use previous valid observation to fill gap (forward fill).

• ‘backfill’ or ‘bfill’: use next valid observation to fill gap.

• ‘nearest’: use nearest valid observation to fill gap.

limit : integer, optional

Limit of how many consecutive missing values to fill.

Returns Series or DataFrame

An upsampled Series or DataFrame with missing values filled.

See also:

2326 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

backfill Backward fill NaN values in the resampled data.

pad Forward fill NaN values in the resampled data.

nearest Fill NaN values in the resampled data with nearest neighbor starting from center.

interpolate Fill NaN values using interpolation.

pandas.Series.fillna Fill NaN values in the Series using the specified method, which can be ‘bfill’ and
‘ffill’.

pandas.DataFrame.fillna Fill NaN values in the DataFrame using the specified method, which can be
‘bfill’ and ‘ffill’.

References

[R32]

Examples

Resampling a Series:

>>> s = pd.Series([1, 2, 3],
... index=pd.date_range('20180101', periods=3, freq='h'))
>>> s
2018-01-01 00:00:00 1
2018-01-01 01:00:00 2
2018-01-01 02:00:00 3
Freq: H, dtype: int64

Without filling the missing values you get:

>>> s.resample("30min").asfreq()
2018-01-01 00:00:00 1.0
2018-01-01 00:30:00 NaN
2018-01-01 01:00:00 2.0
2018-01-01 01:30:00 NaN
2018-01-01 02:00:00 3.0
Freq: 30T, dtype: float64

>>> s.resample('30min').fillna("backfill")
2018-01-01 00:00:00 1
2018-01-01 00:30:00 2
2018-01-01 01:00:00 2
2018-01-01 01:30:00 3
2018-01-01 02:00:00 3
Freq: 30T, dtype: int64

>>> s.resample('15min').fillna("backfill", limit=2)
2018-01-01 00:00:00 1.0
2018-01-01 00:15:00 NaN
2018-01-01 00:30:00 2.0
2018-01-01 00:45:00 2.0
2018-01-01 01:00:00 2.0
2018-01-01 01:15:00 NaN
2018-01-01 01:30:00 3.0

(continues on next page)

34.18. Resampling 2327

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

2018-01-01 01:45:00 3.0
2018-01-01 02:00:00 3.0
Freq: 15T, dtype: float64

>>> s.resample('30min').fillna("pad")
2018-01-01 00:00:00 1
2018-01-01 00:30:00 1
2018-01-01 01:00:00 2
2018-01-01 01:30:00 2
2018-01-01 02:00:00 3
Freq: 30T, dtype: int64

>>> s.resample('30min').fillna("nearest")
2018-01-01 00:00:00 1
2018-01-01 00:30:00 2
2018-01-01 01:00:00 2
2018-01-01 01:30:00 3
2018-01-01 02:00:00 3
Freq: 30T, dtype: int64

Missing values present before the upsampling are not affected.

>>> sm = pd.Series([1, None, 3],
... index=pd.date_range('20180101', periods=3, freq='h'))
>>> sm
2018-01-01 00:00:00 1.0
2018-01-01 01:00:00 NaN
2018-01-01 02:00:00 3.0
Freq: H, dtype: float64

>>> sm.resample('30min').fillna('backfill')
2018-01-01 00:00:00 1.0
2018-01-01 00:30:00 NaN
2018-01-01 01:00:00 NaN
2018-01-01 01:30:00 3.0
2018-01-01 02:00:00 3.0
Freq: 30T, dtype: float64

>>> sm.resample('30min').fillna('pad')
2018-01-01 00:00:00 1.0
2018-01-01 00:30:00 1.0
2018-01-01 01:00:00 NaN
2018-01-01 01:30:00 NaN
2018-01-01 02:00:00 3.0
Freq: 30T, dtype: float64

>>> sm.resample('30min').fillna('nearest')
2018-01-01 00:00:00 1.0
2018-01-01 00:30:00 NaN
2018-01-01 01:00:00 NaN
2018-01-01 01:30:00 3.0
2018-01-01 02:00:00 3.0
Freq: 30T, dtype: float64

DataFrame resampling is done column-wise. All the same options are available.

2328 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

>>> df = pd.DataFrame({'a': [2, np.nan, 6], 'b': [1, 3, 5]},
... index=pd.date_range('20180101', periods=3,
... freq='h'))
>>> df

a b
2018-01-01 00:00:00 2.0 1
2018-01-01 01:00:00 NaN 3
2018-01-01 02:00:00 6.0 5

>>> df.resample('30min').fillna("bfill")
a b

2018-01-01 00:00:00 2.0 1
2018-01-01 00:30:00 NaN 3
2018-01-01 01:00:00 NaN 3
2018-01-01 01:30:00 6.0 5
2018-01-01 02:00:00 6.0 5

34.18.3.7 pandas.core.resample.Resampler.asfreq

Resampler.asfreq(fill_value=None)
return the values at the new freq, essentially a reindex

Parameters fill_value: scalar, optional

Value to use for missing values, applied during upsampling (note this does not fill
NaNs that already were present).

New in version 0.20.0.

See also:

Series.asfreq, DataFrame.asfreq

34.18.3.8 pandas.core.resample.Resampler.interpolate

Resampler.interpolate(method=’linear’, axis=0, limit=None, inplace=False,
limit_direction=’forward’, limit_area=None, downcast=None, **kwargs)

Interpolate values according to different methods.

New in version 0.18.1.

Please note that only method='linear' is supported for DataFrames/Series with a MultiIndex.

Parameters method : {‘linear’, ‘time’, ‘index’, ‘values’, ‘nearest’, ‘zero’,

‘slinear’, ‘quadratic’, ‘cubic’, ‘barycentric’, ‘krogh’, ‘polynomial’, ‘spline’,
‘piecewise_polynomial’, ‘from_derivatives’, ‘pchip’, ‘akima’}

• ‘linear’: ignore the index and treat the values as equally spaced. This is the only
method supported on MultiIndexes. default

• ‘time’: interpolation works on daily and higher resolution data to interpolate
given length of interval

• ‘index’, ‘values’: use the actual numerical values of the index

• ‘nearest’, ‘zero’, ‘slinear’, ‘quadratic’, ‘cubic’, ‘barycentric’, ‘polyno-
mial’ is passed to scipy.interpolate.interp1d. Both ‘poly-
nomial’ and ‘spline’ require that you also specify an order (int), e.g.

34.18. Resampling 2329

pandas: powerful Python data analysis toolkit, Release 0.23.4

df.interpolate(method=’polynomial’, order=4). These use the actual numerical
values of the index.

• ‘krogh’, ‘piecewise_polynomial’, ‘spline’, ‘pchip’ and ‘akima’ are all wrappers
around the scipy interpolation methods of similar names. These use the actual
numerical values of the index. For more information on their behavior, see the
scipy documentation and tutorial documentation

• ‘from_derivatives’ refers to BPoly.from_derivatives which replaces ‘piece-
wise_polynomial’ interpolation method in scipy 0.18

New in version 0.18.1: Added support for the ‘akima’ method Added interpolate
method ‘from_derivatives’ which replaces ‘piecewise_polynomial’ in scipy 0.18;
backwards-compatible with scipy < 0.18

axis : {0, 1}, default 0

• 0: fill column-by-column

• 1: fill row-by-row

limit : int, default None.

Maximum number of consecutive NaNs to fill. Must be greater than 0.

limit_direction [{‘forward’, ‘backward’, ‘both’}, default ‘forward’]

limit_area : {‘inside’, ‘outside’}, default None

• None: (default) no fill restriction

• ‘inside’ Only fill NaNs surrounded by valid values (interpolate).

• ‘outside’ Only fill NaNs outside valid values (extrapolate).

If limit is specified, consecutive NaNs will be filled in this direction.

New in version 0.21.0.

inplace : bool, default False

Update the NDFrame in place if possible.

downcast : optional, ‘infer’ or None, defaults to None

Downcast dtypes if possible.

kwargs [keyword arguments to pass on to the interpolating function.]

Returns

Series or DataFrame of same shape interpolated at the NaNs

See also:

reindex, replace, fillna

Examples

Filling in NaNs

2330 Chapter 34. API Reference

http://docs.scipy.org/doc/scipy/reference/interpolate.html#univariate-interpolation
http://docs.scipy.org/doc/scipy/reference/tutorial/interpolate.html

pandas: powerful Python data analysis toolkit, Release 0.23.4

>>> s = pd.Series([0, 1, np.nan, 3])
>>> s.interpolate()
0 0
1 1
2 2
3 3
dtype: float64

34.18.4 Computations / Descriptive Stats

Resampler.count([_method]) Compute count of group, excluding missing values
Resampler.nunique([_method]) Returns number of unique elements in the group
Resampler.first([_method]) Compute first of group values
Resampler.last([_method]) Compute last of group values
Resampler.max([_method]) Compute max of group values
Resampler.mean([_method]) Compute mean of groups, excluding missing values
Resampler.median([_method]) Compute median of groups, excluding missing values
Resampler.min([_method]) Compute min of group values
Resampler.ohlc([_method]) Compute sum of values, excluding missing values For

multiple groupings, the result index will be a MultiIndex
Resampler.prod([_method, min_count]) Compute prod of group values
Resampler.size() Compute group sizes
Resampler.sem([_method]) Compute standard error of the mean of groups, exclud-

ing missing values
Resampler.std([ddof]) Compute standard deviation of groups, excluding miss-

ing values
Resampler.sum([_method, min_count]) Compute sum of group values
Resampler.var([ddof]) Compute variance of groups, excluding missing values

34.18.4.1 pandas.core.resample.Resampler.count

Resampler.count(_method=’count’)
Compute count of group, excluding missing values

See also:

pandas.Series.groupby , pandas.DataFrame.groupby , pandas.Panel.groupby

34.18.4.2 pandas.core.resample.Resampler.nunique

Resampler.nunique(_method=’nunique’)
Returns number of unique elements in the group

34.18.4.3 pandas.core.resample.Resampler.first

Resampler.first(_method=’first’, *args, **kwargs)
Compute first of group values

See also:

pandas.Series.groupby , pandas.DataFrame.groupby , pandas.Panel.groupby

34.18. Resampling 2331

pandas: powerful Python data analysis toolkit, Release 0.23.4

34.18.4.4 pandas.core.resample.Resampler.last

Resampler.last(_method=’last’, *args, **kwargs)
Compute last of group values

See also:

pandas.Series.groupby , pandas.DataFrame.groupby , pandas.Panel.groupby

34.18.4.5 pandas.core.resample.Resampler.max

Resampler.max(_method=’max’, *args, **kwargs)
Compute max of group values

See also:

pandas.Series.groupby , pandas.DataFrame.groupby , pandas.Panel.groupby

34.18.4.6 pandas.core.resample.Resampler.mean

Resampler.mean(_method=’mean’, *args, **kwargs)
Compute mean of groups, excluding missing values

For multiple groupings, the result index will be a MultiIndex

See also:

pandas.Series.groupby , pandas.DataFrame.groupby , pandas.Panel.groupby

34.18.4.7 pandas.core.resample.Resampler.median

Resampler.median(_method=’median’, *args, **kwargs)
Compute median of groups, excluding missing values

For multiple groupings, the result index will be a MultiIndex

See also:

pandas.Series.groupby , pandas.DataFrame.groupby , pandas.Panel.groupby

34.18.4.8 pandas.core.resample.Resampler.min

Resampler.min(_method=’min’, *args, **kwargs)
Compute min of group values

See also:

pandas.Series.groupby , pandas.DataFrame.groupby , pandas.Panel.groupby

34.18.4.9 pandas.core.resample.Resampler.ohlc

Resampler.ohlc(_method=’ohlc’, *args, **kwargs)
Compute sum of values, excluding missing values For multiple groupings, the result index will be a MultiIndex

See also:

pandas.Series.groupby , pandas.DataFrame.groupby , pandas.Panel.groupby

2332 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

34.18.4.10 pandas.core.resample.Resampler.prod

Resampler.prod(_method=’prod’, min_count=0, *args, **kwargs)
Compute prod of group values

See also:

pandas.Series.groupby , pandas.DataFrame.groupby , pandas.Panel.groupby

34.18.4.11 pandas.core.resample.Resampler.size

Resampler.size()
Compute group sizes

See also:

pandas.Series.groupby , pandas.DataFrame.groupby , pandas.Panel.groupby

34.18.4.12 pandas.core.resample.Resampler.sem

Resampler.sem(_method=’sem’, *args, **kwargs)
Compute standard error of the mean of groups, excluding missing values

For multiple groupings, the result index will be a MultiIndex

Parameters ddof : integer, default 1

degrees of freedom

See also:

pandas.Series.groupby , pandas.DataFrame.groupby , pandas.Panel.groupby

34.18.4.13 pandas.core.resample.Resampler.std

Resampler.std(ddof=1, *args, **kwargs)
Compute standard deviation of groups, excluding missing values

Parameters

ddof [integer, default 1]

degrees of freedom

34.18.4.14 pandas.core.resample.Resampler.sum

Resampler.sum(_method=’sum’, min_count=0, *args, **kwargs)
Compute sum of group values

See also:

pandas.Series.groupby , pandas.DataFrame.groupby , pandas.Panel.groupby

34.18. Resampling 2333

pandas: powerful Python data analysis toolkit, Release 0.23.4

34.18.4.15 pandas.core.resample.Resampler.var

Resampler.var(ddof=1, *args, **kwargs)
Compute variance of groups, excluding missing values

Parameters

ddof [integer, default 1]

degrees of freedom

34.19 Style

Styler objects are returned by pandas.DataFrame.style.

34.19.1 Styler Constructor

Styler(data[, precision, table_styles, . . .]) Helps style a DataFrame or Series according to the data
with HTML and CSS.

Styler.from_custom_template(searchpath,
name)

Factory function for creating a subclass of Styler
with a custom template and Jinja environment.

34.19.1.1 pandas.io.formats.style.Styler

class pandas.io.formats.style.Styler(data, precision=None, table_styles=None, uuid=None,
caption=None, table_attributes=None)

Helps style a DataFrame or Series according to the data with HTML and CSS.

Parameters

data: Series or DataFrame

precision: int

precision to round floats to, defaults to pd.options.display.precision

table_styles: list-like, default None

list of {selector: (attr, value)} dicts; see Notes

uuid: str, default None

a unique identifier to avoid CSS collisons; generated automatically

caption: str, default None

caption to attach to the table

See also:

pandas.DataFrame.style

Notes

Most styling will be done by passing style functions into Styler.apply or Styler.applymap. Style
functions should return values with strings containing CSS 'attr: value' that will be applied to the
indicated cells.

2334 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

If using in the Jupyter notebook, Styler has defined a _repr_html_ to automatically render itself. Otherwise
call Styler.render to get the genterated HTML.

CSS classes are attached to the generated HTML

• Index and Column names include index_name and level<k> where k is its level in a MultiIndex

• Index label cells include

– row_heading

– row<n> where n is the numeric position of the row

– level<k> where k is the level in a MultiIndex

• Column label cells include * col_heading * col<n> where n is the numeric position of the column
* evel<k> where k is the level in a MultiIndex

• Blank cells include blank

• Data cells include data

Attributes

env (Jinja2 Environment)
template (Jinja2 Template)
loader (Jinja2 Loader)

Methods

apply(func[, axis, subset]) Apply a function column-wise, row-wise, or table-
wase, updating the HTML representation with the
result.

applymap(func[, subset]) Apply a function elementwise, updating the HTML
representation with the result.

background_gradient([cmap, low, high, axis,
. . .])

Color the background in a gradient according to the
data in each column (optionally row).

bar([subset, axis, color, width, align]) Color the background color proptional to the val-
ues in each column.

clear() “Reset” the styler, removing any previously applied
styles.

export() Export the styles to applied to the current Styler.
format(formatter[, subset]) Format the text display value of cells.
from_custom_template(searchpath, name) Factory function for creating a subclass of Styler

with a custom template and Jinja environment.
hide_columns(subset) Hide columns from rendering.
hide_index() Hide any indices from rendering.
highlight_max([subset, color, axis]) Highlight the maximum by shading the background
highlight_min([subset, color, axis]) Highlight the minimum by shading the background
highlight_null([null_color]) Shade the background null_color for missing

values.
render(**kwargs) Render the built up styles to HTML
set_caption(caption) Set the caption on a Styler

Continued on next page

34.19. Style 2335

pandas: powerful Python data analysis toolkit, Release 0.23.4

Table 175 – continued from previous page
set_precision(precision) Set the precision used to render.
set_properties([subset]) Convenience method for setting one or more non-

data dependent properties or each cell.
set_table_attributes(attributes) Set the table attributes.
set_table_styles(table_styles) Set the table styles on a Styler.
set_uuid(uuid) Set the uuid for a Styler.
to_excel(excel_writer[, sheet_name, na_rep,
. . .])

Write Styler to an excel sheet

use(styles) Set the styles on the current Styler, possibly using
styles from Styler.export.

where(cond, value[, other, subset]) Apply a function elementwise, updating the HTML
representation with a style which is selected in ac-
cordance with the return value of a function.

pandas.io.formats.style.Styler.apply

Styler.apply(func, axis=0, subset=None, **kwargs)
Apply a function column-wise, row-wise, or table-wase, updating the HTML representation with the
result.

Parameters func : function

func should take a Series or DataFrame (depending on axis), and return an
object with the same shape. Must return a DataFrame with identical index and
column labels when axis=None

axis : int, str or None

apply to each column (axis=0 or 'index') or to each row (axis=1 or
'columns') or to the entire DataFrame at once with axis=None

subset : IndexSlice

a valid indexer to limit data to before applying the function. Consider using a
pandas.IndexSlice

kwargs : dict

pass along to func

Returns

self [Styler]

Notes

The output shape of func should match the input, i.e. if x is the input row, column, or table (depending
on axis), then func(x.shape) == x.shape should be true.

This is similar to DataFrame.apply, except that axis=None applies the function to the entire
DataFrame at once, rather than column-wise or row-wise.

2336 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

Examples

>>> def highlight_max(x):
... return ['background-color: yellow' if v == x.max() else ''

for v in x]
...
>>> df = pd.DataFrame(np.random.randn(5, 2))
>>> df.style.apply(highlight_max)

pandas.io.formats.style.Styler.applymap

Styler.applymap(func, subset=None, **kwargs)
Apply a function elementwise, updating the HTML representation with the result.

Parameters func : function

func should take a scalar and return a scalar

subset : IndexSlice

a valid indexer to limit data to before applying the function. Consider using a
pandas.IndexSlice

kwargs : dict

pass along to func

Returns

self [Styler]

See also:

Styler.where

pandas.io.formats.style.Styler.background_gradient

Styler.background_gradient(cmap=’PuBu’, low=0, high=0, axis=0, subset=None)
Color the background in a gradient according to the data in each column (optionally row). Requires
matplotlib.

Parameters cmap: str or colormap

matplotlib colormap

low, high: float

compress the range by these values.

axis: int or str

1 or ‘columns’ for columnwise, 0 or ‘index’ for rowwise

subset: IndexSlice

a valid slice for data to limit the style application to

Returns

self [Styler]

34.19. Style 2337

pandas: powerful Python data analysis toolkit, Release 0.23.4

Notes

Tune low and high to keep the text legible by not using the entire range of the color map. These extend
the range of the data by low * (x.max() - x.min()) and high * (x.max() - x.min())
before normalizing.

pandas.io.formats.style.Styler.bar

Styler.bar(subset=None, axis=0, color=’#d65f5f’, width=100, align=’left’)
Color the background color proptional to the values in each column. Excludes non-numeric data by
default.

Parameters subset: IndexSlice, default None

a valid slice for data to limit the style application to

axis: int

color: str or 2-tuple/list

If a str is passed, the color is the same for both negative and positive numbers. If
2-tuple/list is used, the first element is the color_negative and the second is the
color_positive (eg: [‘#d65f5f’, ‘#5fba7d’])

width: float

A number between 0 or 100. The largest value will cover width percent of the
cell’s width

align : {‘left’, ‘zero’,’ mid’}, default ‘left’

• ‘left’ : the min value starts at the left of the cell

• ‘zero’ : a value of zero is located at the center of the cell

• ‘mid’ : the center of the cell is at (max-min)/2, or if values are all negative (positive)
the zero is aligned at the right (left) of the cell

New in version 0.20.0.

Returns

self [Styler]

pandas.io.formats.style.Styler.clear

Styler.clear()
“Reset” the styler, removing any previously applied styles. Returns None.

pandas.io.formats.style.Styler.export

Styler.export()
Export the styles to applied to the current Styler. Can be applied to a second style with Styler.use.

Returns

styles: list

2338 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

See also:

Styler.use

pandas.io.formats.style.Styler.format

Styler.format(formatter, subset=None)
Format the text display value of cells.

New in version 0.18.0.

Parameters

formatter: str, callable, or dict

subset: IndexSlice

An argument to DataFrame.loc that restricts which elements formatter is
applied to.

Returns

self [Styler]

Notes

formatter is either an a or a dict {column name: a} where a is one of

• str: this will be wrapped in: a.format(x)

• callable: called with the value of an individual cell

The default display value for numeric values is the “general” (g) format with pd.options.display.
precision precision.

Examples

>>> df = pd.DataFrame(np.random.randn(4, 2), columns=['a', 'b'])
>>> df.style.format("{:.2%}")
>>> df['c'] = ['a', 'b', 'c', 'd']
>>> df.style.format({'c': str.upper})

pandas.io.formats.style.Styler.from_custom_template

classmethod Styler.from_custom_template(searchpath, name)
Factory function for creating a subclass of Styler with a custom template and Jinja environment.

Parameters searchpath : str or list

Path or paths of directories containing the templates

name : str

Name of your custom template to use for rendering

Returns MyStyler : subclass of Styler

has the correct env and template class attributes set.

34.19. Style 2339

pandas: powerful Python data analysis toolkit, Release 0.23.4

pandas.io.formats.style.Styler.hide_columns

Styler.hide_columns(subset)
Hide columns from rendering.

New in version 0.23.0.

Parameters subset: IndexSlice

An argument to DataFrame.loc that identifies which columns are hidden.

Returns

self [Styler]

pandas.io.formats.style.Styler.hide_index

Styler.hide_index()
Hide any indices from rendering.

New in version 0.23.0.

Returns

self [Styler]

pandas.io.formats.style.Styler.highlight_max

Styler.highlight_max(subset=None, color=’yellow’, axis=0)
Highlight the maximum by shading the background

Parameters subset: IndexSlice, default None

a valid slice for data to limit the style application to

color: str, default ‘yellow’

axis: int, str, or None; default 0

0 or ‘index’ for columnwise (default), 1 or ‘columns’ for rowwise, or None for
tablewise

Returns

self [Styler]

pandas.io.formats.style.Styler.highlight_min

Styler.highlight_min(subset=None, color=’yellow’, axis=0)
Highlight the minimum by shading the background

Parameters subset: IndexSlice, default None

a valid slice for data to limit the style application to

color: str, default ‘yellow’

axis: int, str, or None; default 0

2340 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

0 or ‘index’ for columnwise (default), 1 or ‘columns’ for rowwise, or None for
tablewise

Returns

self [Styler]

pandas.io.formats.style.Styler.highlight_null

Styler.highlight_null(null_color=’red’)
Shade the background null_color for missing values.

Parameters

null_color: str

Returns

self [Styler]

pandas.io.formats.style.Styler.render

Styler.render(**kwargs)
Render the built up styles to HTML

Parameters ‘**kwargs‘:

Any additional keyword arguments are passed through to self.template.
render. This is useful when you need to provide additional variables for a
custom template.

New in version 0.20.

Returns rendered: str

the rendered HTML

Notes

Styler objects have defined the _repr_html_ method which automatically calls self.render()
when it’s the last item in a Notebook cell. When calling Styler.render() directly, wrap the result
in IPython.display.HTML to view the rendered HTML in the notebook.

Pandas uses the following keys in render. Arguments passed in **kwargs take precedence, so think
carefully if you want to override them:

• head

• cellstyle

• body

• uuid

• precision

• table_styles

• caption

• table_attributes

34.19. Style 2341

pandas: powerful Python data analysis toolkit, Release 0.23.4

pandas.io.formats.style.Styler.set_caption

Styler.set_caption(caption)
Set the caption on a Styler

Parameters

caption: str

Returns

self [Styler]

pandas.io.formats.style.Styler.set_precision

Styler.set_precision(precision)
Set the precision used to render.

Parameters

precision: int

Returns

self [Styler]

pandas.io.formats.style.Styler.set_properties

Styler.set_properties(subset=None, **kwargs)
Convenience method for setting one or more non-data dependent properties or each cell.

Parameters subset: IndexSlice

a valid slice for data to limit the style application to

kwargs: dict

property: value pairs to be set for each cell

Returns

self [Styler]

Examples

>>> df = pd.DataFrame(np.random.randn(10, 4))
>>> df.style.set_properties(color="white", align="right")
>>> df.style.set_properties(**{'background-color': 'yellow'})

pandas.io.formats.style.Styler.set_table_attributes

Styler.set_table_attributes(attributes)
Set the table attributes. These are the items that show up in the opening <table> tag in addition to to
automatic (by default) id.

Parameters

2342 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

attributes [string]

Returns

self [Styler]

Examples

>>> df = pd.DataFrame(np.random.randn(10, 4))
>>> df.style.set_table_attributes('class="pure-table"')
... <table class="pure-table"> ...

pandas.io.formats.style.Styler.set_table_styles

Styler.set_table_styles(table_styles)
Set the table styles on a Styler. These are placed in a <style> tag before the generated HTML table.

Parameters table_styles: list

Each individual table_style should be a dictionary with selector and props
keys. selector should be a CSS selector that the style will be applied to (au-
tomatically prefixed by the table’s UUID) and props should be a list of tuples
with (attribute, value).

Returns

self [Styler]

Examples

>>> df = pd.DataFrame(np.random.randn(10, 4))
>>> df.style.set_table_styles(
... [{'selector': 'tr:hover',
... 'props': [('background-color', 'yellow')]}]
...)

pandas.io.formats.style.Styler.set_uuid

Styler.set_uuid(uuid)
Set the uuid for a Styler.

Parameters

uuid: str

Returns

self [Styler]

34.19. Style 2343

pandas: powerful Python data analysis toolkit, Release 0.23.4

pandas.io.formats.style.Styler.to_excel

Styler.to_excel(excel_writer, sheet_name=’Sheet1’, na_rep=”, float_format=None,
columns=None, header=True, index=True, index_label=None, startrow=0,
startcol=0, engine=None, merge_cells=True, encoding=None, inf_rep=’inf’,
verbose=True, freeze_panes=None)

Write Styler to an excel sheet

New in version 0.20.

Parameters excel_writer : string or ExcelWriter object

File path or existing ExcelWriter

sheet_name : string, default ‘Sheet1’

Name of sheet which will contain DataFrame

na_rep : string, default ‘’

Missing data representation

float_format : string, default None

Format string for floating point numbers

columns : sequence, optional

Columns to write

header : boolean or list of string, default True

Write out the column names. If a list of strings is given it is assumed to be aliases
for the column names

index : boolean, default True

Write row names (index)

index_label : string or sequence, default None

Column label for index column(s) if desired. If None is given, and header and
index are True, then the index names are used. A sequence should be given if the
DataFrame uses MultiIndex.

startrow :

upper left cell row to dump data frame

startcol :

upper left cell column to dump data frame

engine : string, default None

write engine to use - you can also set this via the options io.excel.xlsx.
writer, io.excel.xls.writer, and io.excel.xlsm.writer.

merge_cells : boolean, default True

Write MultiIndex and Hierarchical Rows as merged cells.

encoding: string, default None

encoding of the resulting excel file. Only necessary for xlwt, other writers support
unicode natively.

inf_rep : string, default ‘inf’

2344 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

Representation for infinity (there is no native representation for infinity in Excel)

freeze_panes : tuple of integer (length 2), default None

Specifies the one-based bottommost row and rightmost column that is to be frozen

New in version 0.20.0.

Notes

If passing an existing ExcelWriter object, then the sheet will be added to the existing workbook. This can
be used to save different DataFrames to one workbook:

>>> writer = pd.ExcelWriter('output.xlsx')
>>> df1.to_excel(writer,'Sheet1')
>>> df2.to_excel(writer,'Sheet2')
>>> writer.save()

For compatibility with to_csv, to_excel serializes lists and dicts to strings before writing.

pandas.io.formats.style.Styler.use

Styler.use(styles)
Set the styles on the current Styler, possibly using styles from Styler.export.

Parameters styles: list

list of style functions

Returns

self [Styler]

See also:

Styler.export

pandas.io.formats.style.Styler.where

Styler.where(cond, value, other=None, subset=None, **kwargs)
Apply a function elementwise, updating the HTML representation with a style which is selected in accor-
dance with the return value of a function.

New in version 0.21.0.

Parameters cond : callable

cond should take a scalar and return a boolean

value : str

applied when cond returns true

other : str

applied when cond returns false

subset : IndexSlice

a valid indexer to limit data to before applying the function. Consider using a
pandas.IndexSlice

34.19. Style 2345

pandas: powerful Python data analysis toolkit, Release 0.23.4

kwargs : dict

pass along to cond

Returns

self [Styler]

See also:

Styler.applymap

34.19.2 Styler Attributes

Styler.env
Styler.template
Styler.loader

34.19.2.1 pandas.io.formats.style.Styler.env

Styler.env = <jinja2.environment.Environment object>

34.19.2.2 pandas.io.formats.style.Styler.template

Styler.template = <Template 'html.tpl'>

34.19.2.3 pandas.io.formats.style.Styler.loader

Styler.loader = <jinja2.loaders.PackageLoader object>

34.19.3 Style Application

Styler.apply(func[, axis, subset]) Apply a function column-wise, row-wise, or table-wase,
updating the HTML representation with the result.

Styler.applymap(func[, subset]) Apply a function elementwise, updating the HTML rep-
resentation with the result.

Styler.where(cond, value[, other, subset]) Apply a function elementwise, updating the HTML rep-
resentation with a style which is selected in accordance
with the return value of a function.

Styler.format(formatter[, subset]) Format the text display value of cells.
Styler.set_precision(precision) Set the precision used to render.
Styler.set_table_styles(table_styles) Set the table styles on a Styler.
Styler.set_table_attributes(attributes) Set the table attributes.
Styler.set_caption(caption) Set the caption on a Styler
Styler.set_properties([subset]) Convenience method for setting one or more non-data

dependent properties or each cell.
Styler.set_uuid(uuid) Set the uuid for a Styler.
Styler.clear() “Reset” the styler, removing any previously applied

styles.

2346 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

34.19.4 Builtin Styles

Styler.highlight_max([subset, color, axis]) Highlight the maximum by shading the background
Styler.highlight_min([subset, color, axis]) Highlight the minimum by shading the background
Styler.highlight_null([null_color]) Shade the background null_color for missing val-

ues.
Styler.background_gradient([cmap, low,
. . .])

Color the background in a gradient according to the data
in each column (optionally row).

Styler.bar([subset, axis, color, width, align]) Color the background color proptional to the values
in each column.

34.19.5 Style Export and Import

Styler.render(**kwargs) Render the built up styles to HTML
Styler.export() Export the styles to applied to the current Styler.
Styler.use(styles) Set the styles on the current Styler, possibly using styles

from Styler.export.
Styler.to_excel(excel_writer[, sheet_name, . . .]) Write Styler to an excel sheet

34.20 Plotting

The following functions are contained in the pandas.plotting module.

andrews_curves(frame, class_column[, ax, . . .]) Generates a matplotlib plot of Andrews curves, for vi-
sualising clusters of multivariate data.

bootstrap_plot(series[, fig, size, samples]) Bootstrap plot on mean, median and mid-range statis-
tics.

deregister_matplotlib_converters() Remove pandas’ formatters and converters
lag_plot(series[, lag, ax]) Lag plot for time series.
parallel_coordinates(frame, class_column[,
. . .])

Parallel coordinates plotting.

radviz(frame, class_column[, ax, color, . . .]) Plot a multidimensional dataset in 2D.
register_matplotlib_converters([explicit]) Register Pandas Formatters and Converters with mat-

plotlib
scatter_matrix(frame[, alpha, figsize, ax, . . .]) Draw a matrix of scatter plots.

34.20.1 pandas.plotting.andrews_curves

pandas.plotting.andrews_curves(frame, class_column, ax=None, samples=200, color=None, col-
ormap=None, **kwds)

Generates a matplotlib plot of Andrews curves, for visualising clusters of multivariate data.

Andrews curves have the functional form:

f(t) = x_1/sqrt(2) + x_2 sin(t) + x_3 cos(t) + x_4 sin(2t) + x_5 cos(2t) + . . .

Where x coefficients correspond to the values of each dimension and t is linearly spaced between -pi and +pi.
Each row of frame then corresponds to a single curve.

Parameters frame : DataFrame

34.20. Plotting 2347

pandas: powerful Python data analysis toolkit, Release 0.23.4

Data to be plotted, preferably normalized to (0.0, 1.0)

class_column [Name of the column containing class names]

ax [matplotlib axes object, default None]

samples [Number of points to plot in each curve]

color: list or tuple, optional

Colors to use for the different classes

colormap : str or matplotlib colormap object, default None

Colormap to select colors from. If string, load colormap with that name from mat-
plotlib.

kwds: keywords

Options to pass to matplotlib plotting method

Returns

ax: Matplotlib axis object

34.20.2 pandas.plotting.bootstrap_plot

pandas.plotting.bootstrap_plot(series, fig=None, size=50, samples=500, **kwds)
Bootstrap plot on mean, median and mid-range statistics.

The bootstrap plot is used to estimate the uncertainty of a statistic by relaying on random sampling with replace-
ment [R33]. This function will generate bootstrapping plots for mean, median and mid-range statistics for the
given number of samples of the given size.

Parameters series : pandas.Series

Pandas Series from where to get the samplings for the bootstrapping.

fig : matplotlib.figure.Figure, default None

If given, it will use the fig reference for plotting instead of creating a new one with
default parameters.

size : int, default 50

Number of data points to consider during each sampling. It must be greater or equal
than the length of the series.

samples : int, default 500

Number of times the bootstrap procedure is performed.

**kwds :

Options to pass to matplotlib plotting method.

Returns fig : matplotlib.figure.Figure

Matplotlib figure

See also:

pandas.DataFrame.plot Basic plotting for DataFrame objects.

pandas.Series.plot Basic plotting for Series objects.

2348 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

Examples

>>> import numpy as np
>>> s = pd.Series(np.random.uniform(size=100))
>>> fig = pd.plotting.bootstrap_plot(s)

34.20.3 pandas.plotting.deregister_matplotlib_converters

pandas.plotting.deregister_matplotlib_converters()
Remove pandas’ formatters and converters

Removes the custom converters added by register(). This attempts to set the state of the registry back to
the state before pandas registered its own units. Converters for pandas’ own types like Timestamp and Period
are removed completely. Converters for types pandas overwrites, like datetime.datetime, are restored to
their original value.

See also:

deregister_matplotlib_converters

34.20.4 pandas.plotting.lag_plot

pandas.plotting.lag_plot(series, lag=1, ax=None, **kwds)
Lag plot for time series.

Parameters

series: Time series

lag: lag of the scatter plot, default 1

ax: Matplotlib axis object, optional

kwds: Matplotlib scatter method keyword arguments, optional

Returns

ax: Matplotlib axis object

34.20.5 pandas.plotting.parallel_coordinates

pandas.plotting.parallel_coordinates(frame, class_column, cols=None, ax=None,
color=None, use_columns=False, xticks=None,
colormap=None, axvlines=True, axvlines_kwds=None,
sort_labels=False, **kwds)

Parallel coordinates plotting.

Parameters

frame: DataFrame

class_column: str

Column name containing class names

cols: list, optional

A list of column names to use

34.20. Plotting 2349

pandas: powerful Python data analysis toolkit, Release 0.23.4

ax: matplotlib.axis, optional

matplotlib axis object

color: list or tuple, optional

Colors to use for the different classes

use_columns: bool, optional

If true, columns will be used as xticks

xticks: list or tuple, optional

A list of values to use for xticks

colormap: str or matplotlib colormap, default None

Colormap to use for line colors.

axvlines: bool, optional

If true, vertical lines will be added at each xtick

axvlines_kwds: keywords, optional

Options to be passed to axvline method for vertical lines

sort_labels: bool, False

Sort class_column labels, useful when assigning colors

New in version 0.20.0.

kwds: keywords

Options to pass to matplotlib plotting method

Returns

ax: matplotlib axis object

Examples

>>> from pandas import read_csv
>>> from pandas.tools.plotting import parallel_coordinates
>>> from matplotlib import pyplot as plt
>>> df = read_csv('https://raw.github.com/pandas-dev/pandas/master'

'/pandas/tests/data/iris.csv')
>>> parallel_coordinates(df, 'Name', color=('#556270',

'#4ECDC4', '#C7F464'))
>>> plt.show()

34.20.6 pandas.plotting.radviz

pandas.plotting.radviz(frame, class_column, ax=None, color=None, colormap=None, **kwds)
Plot a multidimensional dataset in 2D.

Each Series in the DataFrame is represented as a evenly distributed slice on a circle. Each data point is rendered
in the circle according to the value on each Series. Highly correlated Series in the DataFrame are placed closer
on the unit circle.

2350 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

RadViz allow to project a N-dimensional data set into a 2D space where the influence of each dimension can be
interpreted as a balance between the influence of all dimensions.

More info available at the original article describing RadViz.

Parameters frame : DataFrame

Pandas object holding the data.

class_column : str

Column name containing the name of the data point category.

ax : matplotlib.axes.Axes, optional

A plot instance to which to add the information.

color : list[str] or tuple[str], optional

Assign a color to each category. Example: [‘blue’, ‘green’].

colormap : str or matplotlib.colors.Colormap, default None

Colormap to select colors from. If string, load colormap with that name from mat-
plotlib.

kwds : optional

Options to pass to matplotlib scatter plotting method.

Returns

axes [matplotlib.axes.Axes]

See also:

pandas.plotting.andrews_curves Plot clustering visualization

Examples

>>> df = pd.DataFrame({
... 'SepalLength': [6.5, 7.7, 5.1, 5.8, 7.6, 5.0, 5.4, 4.6,
... 6.7, 4.6],
... 'SepalWidth': [3.0, 3.8, 3.8, 2.7, 3.0, 2.3, 3.0, 3.2,
... 3.3, 3.6],
... 'PetalLength': [5.5, 6.7, 1.9, 5.1, 6.6, 3.3, 4.5, 1.4,
... 5.7, 1.0],
... 'PetalWidth': [1.8, 2.2, 0.4, 1.9, 2.1, 1.0, 1.5, 0.2,
... 2.1, 0.2],
... 'Category': ['virginica', 'virginica', 'setosa',
... 'virginica', 'virginica', 'versicolor',
... 'versicolor', 'setosa', 'virginica',
... 'setosa']
... })
>>> rad_viz = pd.plotting.radviz(df, 'Category')

34.20.7 pandas.plotting.register_matplotlib_converters

pandas.plotting.register_matplotlib_converters(explicit=True)
Register Pandas Formatters and Converters with matplotlib

34.20. Plotting 2351

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.135.889
https://matplotlib.org/api/axes_api.html#matplotlib.axes.Axes
https://matplotlib.org/api/_as_gen/matplotlib.colors.Colormap.html#matplotlib.colors.Colormap
https://matplotlib.org/api/axes_api.html#matplotlib.axes.Axes

pandas: powerful Python data analysis toolkit, Release 0.23.4

This function modifies the global matplotlib.units.registry dictionary. Pandas adds custom con-
verters for

• pd.Timestamp

• pd.Period

• np.datetime64

• datetime.datetime

• datetime.date

• datetime.time

See also:

deregister_matplotlib_converter

34.20.8 pandas.plotting.scatter_matrix

pandas.plotting.scatter_matrix(frame, alpha=0.5, figsize=None, ax=None, grid=False, diag-
onal=’hist’, marker=’.’, density_kwds=None, hist_kwds=None,
range_padding=0.05, **kwds)

Draw a matrix of scatter plots.

Parameters

frame [DataFrame]

alpha : float, optional

amount of transparency applied

figsize : (float,float), optional

a tuple (width, height) in inches

ax [Matplotlib axis object, optional]

grid : bool, optional

setting this to True will show the grid

diagonal : {‘hist’, ‘kde’}

pick between ‘kde’ and ‘hist’ for either Kernel Density Estimation or Histogram plot
in the diagonal

marker : str, optional

Matplotlib marker type, default ‘.’

hist_kwds : other plotting keyword arguments

To be passed to hist function

density_kwds : other plotting keyword arguments

To be passed to kernel density estimate plot

range_padding : float, optional

relative extension of axis range in x and y with respect to (x_max - x_min) or (y_max
- y_min), default 0.05

2352 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

kwds : other plotting keyword arguments

To be passed to scatter function

Examples

>>> df = DataFrame(np.random.randn(1000, 4), columns=['A','B','C','D'])
>>> scatter_matrix(df, alpha=0.2)

34.21 General utility functions

34.21.1 Working with options

describe_option(pat[, _print_desc]) Prints the description for one or more registered options.
reset_option(pat) Reset one or more options to their default value.
get_option(pat) Retrieves the value of the specified option.
set_option(pat, value) Sets the value of the specified option.
option_context(*args) Context manager to temporarily set options in the with

statement context.

34.21.1.1 pandas.describe_option

pandas.describe_option(pat, _print_desc=False) = <pandas.core.config.
CallableDynamicDoc object>

Prints the description for one or more registered options.

Call with not arguments to get a listing for all registered options.

Available options:

• compute.[use_bottleneck, use_numexpr]

• display.[chop_threshold, colheader_justify, column_space, date_dayfirst, date_yearfirst, encoding, ex-
pand_frame_repr, float_format]

• display.html.[border, table_schema, use_mathjax]

• display.[large_repr]

• display.latex.[escape, longtable, multicolumn, multicolumn_format, multirow, repr]

• display.[max_categories, max_columns, max_colwidth, max_info_columns, max_info_rows, max_rows,
max_seq_items, memory_usage, multi_sparse, notebook_repr_html, pprint_nest_depth, precision,
show_dimensions]

• display.unicode.[ambiguous_as_wide, east_asian_width]

• display.[width]

• html.[border]

• io.excel.xls.[writer]

• io.excel.xlsm.[writer]

• io.excel.xlsx.[writer]

34.21. General utility functions 2353

pandas: powerful Python data analysis toolkit, Release 0.23.4

• io.hdf.[default_format, dropna_table]

• io.parquet.[engine]

• mode.[chained_assignment, sim_interactive, use_inf_as_na, use_inf_as_null]

• plotting.matplotlib.[register_converters]

Parameters pat : str

Regexp pattern. All matching keys will have their description displayed.

_print_desc : bool, default True

If True (default) the description(s) will be printed to stdout. Otherwise, the descrip-
tion(s) will be returned as a unicode string (for testing).

Returns

None by default, the description(s) as a unicode string if _print_desc

is False

Notes

The available options with its descriptions:

compute.use_bottleneck [bool] Use the bottleneck library to accelerate if it is installed, the default is True
Valid values: False,True [default: True] [currently: True]

compute.use_numexpr [bool] Use the numexpr library to accelerate computation if it is installed, the default
is True Valid values: False,True [default: True] [currently: True]

display.chop_threshold [float or None] if set to a float value, all float values smaller then the given threshold
will be displayed as exactly 0 by repr and friends. [default: None] [currently: None]

display.colheader_justify [‘left’/’right’] Controls the justification of column headers. used by DataFrameFor-
matter. [default: right] [currently: right]

display.column_space No description available. [default: 12] [currently: 12]

display.date_dayfirst [boolean] When True, prints and parses dates with the day first, eg 20/01/2005 [default:
False] [currently: False]

display.date_yearfirst [boolean] When True, prints and parses dates with the year first, eg 2005/01/20 [default:
False] [currently: False]

display.encoding [str/unicode] Defaults to the detected encoding of the console. Specifies the encoding to be
used for strings returned by to_string, these are generally strings meant to be displayed on the console.
[default: UTF-8] [currently: UTF-8]

display.expand_frame_repr [boolean] Whether to print out the full DataFrame repr for wide DataFrames
across multiple lines, max_columns is still respected, but the output will wrap-around across multiple
“pages” if its width exceeds display.width. [default: True] [currently: True]

display.float_format [callable] The callable should accept a floating point number and return a string with
the desired format of the number. This is used in some places like SeriesFormatter. See for-
mats.format.EngFormatter for an example. [default: None] [currently: None]

display.html.border [int] A border=value attribute is inserted in the <table> tag for the DataFrame
HTML repr. [default: 1] [currently: 1]

2354 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

display.html.table_schema [boolean] Whether to publish a Table Schema representation for frontends that
support it. (default: False) [default: False] [currently: False]

display.html.use_mathjax [boolean] When True, Jupyter notebook will process table contents using Math-
Jax, rendering mathematical expressions enclosed by the dollar symbol. (default: True) [default: True]
[currently: True]

display.large_repr [‘truncate’/’info’] For DataFrames exceeding max_rows/max_cols, the repr (and HTML
repr) can show a truncated table (the default from 0.13), or switch to the view from df.info() (the behaviour
in earlier versions of pandas). [default: truncate] [currently: truncate]

display.latex.escape [bool] This specifies if the to_latex method of a Dataframe uses escapes special characters.
Valid values: False,True [default: True] [currently: True]

display.latex.longtable :bool This specifies if the to_latex method of a Dataframe uses the longtable format.
Valid values: False,True [default: False] [currently: False]

display.latex.multicolumn [bool] This specifies if the to_latex method of a Dataframe uses multicolumns to
pretty-print MultiIndex columns. Valid values: False,True [default: True] [currently: True]

display.latex.multicolumn_format [bool] This specifies if the to_latex method of a Dataframe uses multi-
columns to pretty-print MultiIndex columns. Valid values: False,True [default: l] [currently: l]

display.latex.multirow [bool] This specifies if the to_latex method of a Dataframe uses multirows to pretty-
print MultiIndex rows. Valid values: False,True [default: False] [currently: False]

display.latex.repr [boolean] Whether to produce a latex DataFrame representation for jupyter environments
that support it. (default: False) [default: False] [currently: False]

display.max_categories [int] This sets the maximum number of categories pandas should output when printing
out a Categorical or a Series of dtype “category”. [default: 8] [currently: 8]

display.max_columns [int] If max_cols is exceeded, switch to truncate view. Depending on large_repr, objects
are either centrally truncated or printed as a summary view. ‘None’ value means unlimited.

In case python/IPython is running in a terminal and large_repr equals ‘truncate’ this can be set to 0 and
pandas will auto-detect the width of the terminal and print a truncated object which fits the screen width.
The IPython notebook, IPython qtconsole, or IDLE do not run in a terminal and hence it is not possible
to do correct auto-detection. [default: 0] [currently: 0]

display.max_colwidth [int] The maximum width in characters of a column in the repr of a pandas data struc-
ture. When the column overflows, a “. . . ” placeholder is embedded in the output. [default: 50] [currently:
50]

display.max_info_columns [int] max_info_columns is used in DataFrame.info method to decide if per column
information will be printed. [default: 100] [currently: 100]

display.max_info_rows [int or None] df.info() will usually show null-counts for each column. For large frames
this can be quite slow. max_info_rows and max_info_cols limit this null check only to frames with smaller
dimensions than specified. [default: 1690785] [currently: 1690785]

display.max_rows [int] If max_rows is exceeded, switch to truncate view. Depending on large_repr, objects
are either centrally truncated or printed as a summary view. ‘None’ value means unlimited.

In case python/IPython is running in a terminal and large_repr equals ‘truncate’ this can be set to 0 and
pandas will auto-detect the height of the terminal and print a truncated object which fits the screen height.
The IPython notebook, IPython qtconsole, or IDLE do not run in a terminal and hence it is not possible
to do correct auto-detection. [default: 60] [currently: 15]

display.max_seq_items [int or None] when pretty-printing a long sequence, no more then max_seq_items will
be printed. If items are omitted, they will be denoted by the addition of “. . . ” to the resulting string.

If set to None, the number of items to be printed is unlimited. [default: 100] [currently: 100]

34.21. General utility functions 2355

pandas: powerful Python data analysis toolkit, Release 0.23.4

display.memory_usage [bool, string or None] This specifies if the memory usage of a DataFrame should be
displayed when df.info() is called. Valid values True,False,’deep’ [default: True] [currently: True]

display.multi_sparse [boolean] “sparsify” MultiIndex display (don’t display repeated elements in outer levels
within groups) [default: True] [currently: True]

display.notebook_repr_html [boolean] When True, IPython notebook will use html representation for pandas
objects (if it is available). [default: True] [currently: True]

display.pprint_nest_depth [int] Controls the number of nested levels to process when pretty-printing [default:
3] [currently: 3]

display.precision [int] Floating point output precision (number of significant digits). This is only a suggestion
[default: 6] [currently: 6]

display.show_dimensions [boolean or ‘truncate’] Whether to print out dimensions at the end of DataFrame
repr. If ‘truncate’ is specified, only print out the dimensions if the frame is truncated (e.g. not display all
rows and/or columns) [default: truncate] [currently: truncate]

display.unicode.ambiguous_as_wide [boolean] Whether to use the Unicode East Asian Width to calculate the
display text width. Enabling this may affect to the performance (default: False) [default: False] [currently:
False]

display.unicode.east_asian_width [boolean] Whether to use the Unicode East Asian Width to calculate the
display text width. Enabling this may affect to the performance (default: False) [default: False] [currently:
False]

display.width [int] Width of the display in characters. In case python/IPython is running in a terminal this can
be set to None and pandas will correctly auto-detect the width. Note that the IPython notebook, IPython
qtconsole, or IDLE do not run in a terminal and hence it is not possible to correctly detect the width.
[default: 80] [currently: 80]

html.border [int] A border=value attribute is inserted in the <table> tag for the DataFrame HTML repr.
[default: 1] [currently: 1] (Deprecated, use display.html.border instead.)

io.excel.xls.writer [string] The default Excel writer engine for ‘xls’ files. Available options: auto, xlwt. [de-
fault: auto] [currently: auto]

io.excel.xlsm.writer [string] The default Excel writer engine for ‘xlsm’ files. Available options: auto, open-
pyxl. [default: auto] [currently: auto]

io.excel.xlsx.writer [string] The default Excel writer engine for ‘xlsx’ files. Available options: auto, openpyxl,
xlsxwriter. [default: auto] [currently: auto]

io.hdf.default_format [format] default format writing format, if None, then put will default to ‘fixed’ and
append will default to ‘table’ [default: None] [currently: None]

io.hdf.dropna_table [boolean] drop ALL nan rows when appending to a table [default: False] [currently:
False]

io.parquet.engine [string] The default parquet reader/writer engine. Available options: ‘auto’, ‘pyarrow’, ‘fast-
parquet’, the default is ‘auto’ [default: auto] [currently: auto]

mode.chained_assignment [string] Raise an exception, warn, or no action if trying to use chained assignment,
The default is warn [default: warn] [currently: warn]

mode.sim_interactive [boolean] Whether to simulate interactive mode for purposes of testing [default: False]
[currently: False]

mode.use_inf_as_na [boolean] True means treat None, NaN, INF, -INF as NA (old way), False means None
and NaN are null, but INF, -INF are not NA (new way). [default: False] [currently: False]

2356 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

mode.use_inf_as_null [boolean] use_inf_as_null had been deprecated and will be removed in a future ver-
sion. Use use_inf_as_na instead. [default: False] [currently: False] (Deprecated, use mode.use_inf_as_na
instead.)

plotting.matplotlib.register_converters [bool] Whether to register converters with matplotlib’s units registry
for dates, times, datetimes, and Periods. Toggling to False will remove the converters, restoring any
converters that pandas overwrote. [default: True] [currently: True]

34.21.1.2 pandas.reset_option

pandas.reset_option(pat) = <pandas.core.config.CallableDynamicDoc object>
Reset one or more options to their default value.

Pass “all” as argument to reset all options.

Available options:

• compute.[use_bottleneck, use_numexpr]

• display.[chop_threshold, colheader_justify, column_space, date_dayfirst, date_yearfirst, encoding, ex-
pand_frame_repr, float_format]

• display.html.[border, table_schema, use_mathjax]

• display.[large_repr]

• display.latex.[escape, longtable, multicolumn, multicolumn_format, multirow, repr]

• display.[max_categories, max_columns, max_colwidth, max_info_columns, max_info_rows, max_rows,
max_seq_items, memory_usage, multi_sparse, notebook_repr_html, pprint_nest_depth, precision,
show_dimensions]

• display.unicode.[ambiguous_as_wide, east_asian_width]

• display.[width]

• html.[border]

• io.excel.xls.[writer]

• io.excel.xlsm.[writer]

• io.excel.xlsx.[writer]

• io.hdf.[default_format, dropna_table]

• io.parquet.[engine]

• mode.[chained_assignment, sim_interactive, use_inf_as_na, use_inf_as_null]

• plotting.matplotlib.[register_converters]

Parameters pat : str/regex

If specified only options matching prefix* will be reset. Note: partial matches
are supported for convenience, but unless you use the full option name (e.g.
x.y.z.option_name), your code may break in future versions if new options with sim-
ilar names are introduced.

Returns

None

34.21. General utility functions 2357

pandas: powerful Python data analysis toolkit, Release 0.23.4

Notes

The available options with its descriptions:

compute.use_bottleneck [bool] Use the bottleneck library to accelerate if it is installed, the default is True
Valid values: False,True [default: True] [currently: True]

compute.use_numexpr [bool] Use the numexpr library to accelerate computation if it is installed, the default
is True Valid values: False,True [default: True] [currently: True]

display.chop_threshold [float or None] if set to a float value, all float values smaller then the given threshold
will be displayed as exactly 0 by repr and friends. [default: None] [currently: None]

display.colheader_justify [‘left’/’right’] Controls the justification of column headers. used by DataFrameFor-
matter. [default: right] [currently: right]

display.column_space No description available. [default: 12] [currently: 12]

display.date_dayfirst [boolean] When True, prints and parses dates with the day first, eg 20/01/2005 [default:
False] [currently: False]

display.date_yearfirst [boolean] When True, prints and parses dates with the year first, eg 2005/01/20 [default:
False] [currently: False]

display.encoding [str/unicode] Defaults to the detected encoding of the console. Specifies the encoding to be
used for strings returned by to_string, these are generally strings meant to be displayed on the console.
[default: UTF-8] [currently: UTF-8]

display.expand_frame_repr [boolean] Whether to print out the full DataFrame repr for wide DataFrames
across multiple lines, max_columns is still respected, but the output will wrap-around across multiple
“pages” if its width exceeds display.width. [default: True] [currently: True]

display.float_format [callable] The callable should accept a floating point number and return a string with
the desired format of the number. This is used in some places like SeriesFormatter. See for-
mats.format.EngFormatter for an example. [default: None] [currently: None]

display.html.border [int] A border=value attribute is inserted in the <table> tag for the DataFrame
HTML repr. [default: 1] [currently: 1]

display.html.table_schema [boolean] Whether to publish a Table Schema representation for frontends that
support it. (default: False) [default: False] [currently: False]

display.html.use_mathjax [boolean] When True, Jupyter notebook will process table contents using Math-
Jax, rendering mathematical expressions enclosed by the dollar symbol. (default: True) [default: True]
[currently: True]

display.large_repr [‘truncate’/’info’] For DataFrames exceeding max_rows/max_cols, the repr (and HTML
repr) can show a truncated table (the default from 0.13), or switch to the view from df.info() (the behaviour
in earlier versions of pandas). [default: truncate] [currently: truncate]

display.latex.escape [bool] This specifies if the to_latex method of a Dataframe uses escapes special characters.
Valid values: False,True [default: True] [currently: True]

display.latex.longtable :bool This specifies if the to_latex method of a Dataframe uses the longtable format.
Valid values: False,True [default: False] [currently: False]

display.latex.multicolumn [bool] This specifies if the to_latex method of a Dataframe uses multicolumns to
pretty-print MultiIndex columns. Valid values: False,True [default: True] [currently: True]

display.latex.multicolumn_format [bool] This specifies if the to_latex method of a Dataframe uses multi-
columns to pretty-print MultiIndex columns. Valid values: False,True [default: l] [currently: l]

2358 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

display.latex.multirow [bool] This specifies if the to_latex method of a Dataframe uses multirows to pretty-
print MultiIndex rows. Valid values: False,True [default: False] [currently: False]

display.latex.repr [boolean] Whether to produce a latex DataFrame representation for jupyter environments
that support it. (default: False) [default: False] [currently: False]

display.max_categories [int] This sets the maximum number of categories pandas should output when printing
out a Categorical or a Series of dtype “category”. [default: 8] [currently: 8]

display.max_columns [int] If max_cols is exceeded, switch to truncate view. Depending on large_repr, objects
are either centrally truncated or printed as a summary view. ‘None’ value means unlimited.

In case python/IPython is running in a terminal and large_repr equals ‘truncate’ this can be set to 0 and
pandas will auto-detect the width of the terminal and print a truncated object which fits the screen width.
The IPython notebook, IPython qtconsole, or IDLE do not run in a terminal and hence it is not possible
to do correct auto-detection. [default: 0] [currently: 0]

display.max_colwidth [int] The maximum width in characters of a column in the repr of a pandas data struc-
ture. When the column overflows, a “. . . ” placeholder is embedded in the output. [default: 50] [currently:
50]

display.max_info_columns [int] max_info_columns is used in DataFrame.info method to decide if per column
information will be printed. [default: 100] [currently: 100]

display.max_info_rows [int or None] df.info() will usually show null-counts for each column. For large frames
this can be quite slow. max_info_rows and max_info_cols limit this null check only to frames with smaller
dimensions than specified. [default: 1690785] [currently: 1690785]

display.max_rows [int] If max_rows is exceeded, switch to truncate view. Depending on large_repr, objects
are either centrally truncated or printed as a summary view. ‘None’ value means unlimited.

In case python/IPython is running in a terminal and large_repr equals ‘truncate’ this can be set to 0 and
pandas will auto-detect the height of the terminal and print a truncated object which fits the screen height.
The IPython notebook, IPython qtconsole, or IDLE do not run in a terminal and hence it is not possible
to do correct auto-detection. [default: 60] [currently: 15]

display.max_seq_items [int or None] when pretty-printing a long sequence, no more then max_seq_items will
be printed. If items are omitted, they will be denoted by the addition of “. . . ” to the resulting string.

If set to None, the number of items to be printed is unlimited. [default: 100] [currently: 100]

display.memory_usage [bool, string or None] This specifies if the memory usage of a DataFrame should be
displayed when df.info() is called. Valid values True,False,’deep’ [default: True] [currently: True]

display.multi_sparse [boolean] “sparsify” MultiIndex display (don’t display repeated elements in outer levels
within groups) [default: True] [currently: True]

display.notebook_repr_html [boolean] When True, IPython notebook will use html representation for pandas
objects (if it is available). [default: True] [currently: True]

display.pprint_nest_depth [int] Controls the number of nested levels to process when pretty-printing [default:
3] [currently: 3]

display.precision [int] Floating point output precision (number of significant digits). This is only a suggestion
[default: 6] [currently: 6]

display.show_dimensions [boolean or ‘truncate’] Whether to print out dimensions at the end of DataFrame
repr. If ‘truncate’ is specified, only print out the dimensions if the frame is truncated (e.g. not display all
rows and/or columns) [default: truncate] [currently: truncate]

display.unicode.ambiguous_as_wide [boolean] Whether to use the Unicode East Asian Width to calculate the
display text width. Enabling this may affect to the performance (default: False) [default: False] [currently:
False]

34.21. General utility functions 2359

pandas: powerful Python data analysis toolkit, Release 0.23.4

display.unicode.east_asian_width [boolean] Whether to use the Unicode East Asian Width to calculate the
display text width. Enabling this may affect to the performance (default: False) [default: False] [currently:
False]

display.width [int] Width of the display in characters. In case python/IPython is running in a terminal this can
be set to None and pandas will correctly auto-detect the width. Note that the IPython notebook, IPython
qtconsole, or IDLE do not run in a terminal and hence it is not possible to correctly detect the width.
[default: 80] [currently: 80]

html.border [int] A border=value attribute is inserted in the <table> tag for the DataFrame HTML repr.
[default: 1] [currently: 1] (Deprecated, use display.html.border instead.)

io.excel.xls.writer [string] The default Excel writer engine for ‘xls’ files. Available options: auto, xlwt. [de-
fault: auto] [currently: auto]

io.excel.xlsm.writer [string] The default Excel writer engine for ‘xlsm’ files. Available options: auto, open-
pyxl. [default: auto] [currently: auto]

io.excel.xlsx.writer [string] The default Excel writer engine for ‘xlsx’ files. Available options: auto, openpyxl,
xlsxwriter. [default: auto] [currently: auto]

io.hdf.default_format [format] default format writing format, if None, then put will default to ‘fixed’ and
append will default to ‘table’ [default: None] [currently: None]

io.hdf.dropna_table [boolean] drop ALL nan rows when appending to a table [default: False] [currently:
False]

io.parquet.engine [string] The default parquet reader/writer engine. Available options: ‘auto’, ‘pyarrow’, ‘fast-
parquet’, the default is ‘auto’ [default: auto] [currently: auto]

mode.chained_assignment [string] Raise an exception, warn, or no action if trying to use chained assignment,
The default is warn [default: warn] [currently: warn]

mode.sim_interactive [boolean] Whether to simulate interactive mode for purposes of testing [default: False]
[currently: False]

mode.use_inf_as_na [boolean] True means treat None, NaN, INF, -INF as NA (old way), False means None
and NaN are null, but INF, -INF are not NA (new way). [default: False] [currently: False]

mode.use_inf_as_null [boolean] use_inf_as_null had been deprecated and will be removed in a future ver-
sion. Use use_inf_as_na instead. [default: False] [currently: False] (Deprecated, use mode.use_inf_as_na
instead.)

plotting.matplotlib.register_converters [bool] Whether to register converters with matplotlib’s units registry
for dates, times, datetimes, and Periods. Toggling to False will remove the converters, restoring any
converters that pandas overwrote. [default: True] [currently: True]

34.21.1.3 pandas.get_option

pandas.get_option(pat) = <pandas.core.config.CallableDynamicDoc object>
Retrieves the value of the specified option.

Available options:

• compute.[use_bottleneck, use_numexpr]

• display.[chop_threshold, colheader_justify, column_space, date_dayfirst, date_yearfirst, encoding, ex-
pand_frame_repr, float_format]

• display.html.[border, table_schema, use_mathjax]

• display.[large_repr]

2360 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

• display.latex.[escape, longtable, multicolumn, multicolumn_format, multirow, repr]

• display.[max_categories, max_columns, max_colwidth, max_info_columns, max_info_rows, max_rows,
max_seq_items, memory_usage, multi_sparse, notebook_repr_html, pprint_nest_depth, precision,
show_dimensions]

• display.unicode.[ambiguous_as_wide, east_asian_width]

• display.[width]

• html.[border]

• io.excel.xls.[writer]

• io.excel.xlsm.[writer]

• io.excel.xlsx.[writer]

• io.hdf.[default_format, dropna_table]

• io.parquet.[engine]

• mode.[chained_assignment, sim_interactive, use_inf_as_na, use_inf_as_null]

• plotting.matplotlib.[register_converters]

Parameters pat : str

Regexp which should match a single option. Note: partial matches are supported for
convenience, but unless you use the full option name (e.g. x.y.z.option_name), your
code may break in future versions if new options with similar names are introduced.

Returns

result [the value of the option]

Raises

OptionError [if no such option exists]

Notes

The available options with its descriptions:

compute.use_bottleneck [bool] Use the bottleneck library to accelerate if it is installed, the default is True
Valid values: False,True [default: True] [currently: True]

compute.use_numexpr [bool] Use the numexpr library to accelerate computation if it is installed, the default
is True Valid values: False,True [default: True] [currently: True]

display.chop_threshold [float or None] if set to a float value, all float values smaller then the given threshold
will be displayed as exactly 0 by repr and friends. [default: None] [currently: None]

display.colheader_justify [‘left’/’right’] Controls the justification of column headers. used by DataFrameFor-
matter. [default: right] [currently: right]

display.column_space No description available. [default: 12] [currently: 12]

display.date_dayfirst [boolean] When True, prints and parses dates with the day first, eg 20/01/2005 [default:
False] [currently: False]

display.date_yearfirst [boolean] When True, prints and parses dates with the year first, eg 2005/01/20 [default:
False] [currently: False]

34.21. General utility functions 2361

pandas: powerful Python data analysis toolkit, Release 0.23.4

display.encoding [str/unicode] Defaults to the detected encoding of the console. Specifies the encoding to be
used for strings returned by to_string, these are generally strings meant to be displayed on the console.
[default: UTF-8] [currently: UTF-8]

display.expand_frame_repr [boolean] Whether to print out the full DataFrame repr for wide DataFrames
across multiple lines, max_columns is still respected, but the output will wrap-around across multiple
“pages” if its width exceeds display.width. [default: True] [currently: True]

display.float_format [callable] The callable should accept a floating point number and return a string with
the desired format of the number. This is used in some places like SeriesFormatter. See for-
mats.format.EngFormatter for an example. [default: None] [currently: None]

display.html.border [int] A border=value attribute is inserted in the <table> tag for the DataFrame
HTML repr. [default: 1] [currently: 1]

display.html.table_schema [boolean] Whether to publish a Table Schema representation for frontends that
support it. (default: False) [default: False] [currently: False]

display.html.use_mathjax [boolean] When True, Jupyter notebook will process table contents using Math-
Jax, rendering mathematical expressions enclosed by the dollar symbol. (default: True) [default: True]
[currently: True]

display.large_repr [‘truncate’/’info’] For DataFrames exceeding max_rows/max_cols, the repr (and HTML
repr) can show a truncated table (the default from 0.13), or switch to the view from df.info() (the behaviour
in earlier versions of pandas). [default: truncate] [currently: truncate]

display.latex.escape [bool] This specifies if the to_latex method of a Dataframe uses escapes special characters.
Valid values: False,True [default: True] [currently: True]

display.latex.longtable :bool This specifies if the to_latex method of a Dataframe uses the longtable format.
Valid values: False,True [default: False] [currently: False]

display.latex.multicolumn [bool] This specifies if the to_latex method of a Dataframe uses multicolumns to
pretty-print MultiIndex columns. Valid values: False,True [default: True] [currently: True]

display.latex.multicolumn_format [bool] This specifies if the to_latex method of a Dataframe uses multi-
columns to pretty-print MultiIndex columns. Valid values: False,True [default: l] [currently: l]

display.latex.multirow [bool] This specifies if the to_latex method of a Dataframe uses multirows to pretty-
print MultiIndex rows. Valid values: False,True [default: False] [currently: False]

display.latex.repr [boolean] Whether to produce a latex DataFrame representation for jupyter environments
that support it. (default: False) [default: False] [currently: False]

display.max_categories [int] This sets the maximum number of categories pandas should output when printing
out a Categorical or a Series of dtype “category”. [default: 8] [currently: 8]

display.max_columns [int] If max_cols is exceeded, switch to truncate view. Depending on large_repr, objects
are either centrally truncated or printed as a summary view. ‘None’ value means unlimited.

In case python/IPython is running in a terminal and large_repr equals ‘truncate’ this can be set to 0 and
pandas will auto-detect the width of the terminal and print a truncated object which fits the screen width.
The IPython notebook, IPython qtconsole, or IDLE do not run in a terminal and hence it is not possible
to do correct auto-detection. [default: 0] [currently: 0]

display.max_colwidth [int] The maximum width in characters of a column in the repr of a pandas data struc-
ture. When the column overflows, a “. . . ” placeholder is embedded in the output. [default: 50] [currently:
50]

display.max_info_columns [int] max_info_columns is used in DataFrame.info method to decide if per column
information will be printed. [default: 100] [currently: 100]

2362 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

display.max_info_rows [int or None] df.info() will usually show null-counts for each column. For large frames
this can be quite slow. max_info_rows and max_info_cols limit this null check only to frames with smaller
dimensions than specified. [default: 1690785] [currently: 1690785]

display.max_rows [int] If max_rows is exceeded, switch to truncate view. Depending on large_repr, objects
are either centrally truncated or printed as a summary view. ‘None’ value means unlimited.

In case python/IPython is running in a terminal and large_repr equals ‘truncate’ this can be set to 0 and
pandas will auto-detect the height of the terminal and print a truncated object which fits the screen height.
The IPython notebook, IPython qtconsole, or IDLE do not run in a terminal and hence it is not possible
to do correct auto-detection. [default: 60] [currently: 15]

display.max_seq_items [int or None] when pretty-printing a long sequence, no more then max_seq_items will
be printed. If items are omitted, they will be denoted by the addition of “. . . ” to the resulting string.

If set to None, the number of items to be printed is unlimited. [default: 100] [currently: 100]

display.memory_usage [bool, string or None] This specifies if the memory usage of a DataFrame should be
displayed when df.info() is called. Valid values True,False,’deep’ [default: True] [currently: True]

display.multi_sparse [boolean] “sparsify” MultiIndex display (don’t display repeated elements in outer levels
within groups) [default: True] [currently: True]

display.notebook_repr_html [boolean] When True, IPython notebook will use html representation for pandas
objects (if it is available). [default: True] [currently: True]

display.pprint_nest_depth [int] Controls the number of nested levels to process when pretty-printing [default:
3] [currently: 3]

display.precision [int] Floating point output precision (number of significant digits). This is only a suggestion
[default: 6] [currently: 6]

display.show_dimensions [boolean or ‘truncate’] Whether to print out dimensions at the end of DataFrame
repr. If ‘truncate’ is specified, only print out the dimensions if the frame is truncated (e.g. not display all
rows and/or columns) [default: truncate] [currently: truncate]

display.unicode.ambiguous_as_wide [boolean] Whether to use the Unicode East Asian Width to calculate the
display text width. Enabling this may affect to the performance (default: False) [default: False] [currently:
False]

display.unicode.east_asian_width [boolean] Whether to use the Unicode East Asian Width to calculate the
display text width. Enabling this may affect to the performance (default: False) [default: False] [currently:
False]

display.width [int] Width of the display in characters. In case python/IPython is running in a terminal this can
be set to None and pandas will correctly auto-detect the width. Note that the IPython notebook, IPython
qtconsole, or IDLE do not run in a terminal and hence it is not possible to correctly detect the width.
[default: 80] [currently: 80]

html.border [int] A border=value attribute is inserted in the <table> tag for the DataFrame HTML repr.
[default: 1] [currently: 1] (Deprecated, use display.html.border instead.)

io.excel.xls.writer [string] The default Excel writer engine for ‘xls’ files. Available options: auto, xlwt. [de-
fault: auto] [currently: auto]

io.excel.xlsm.writer [string] The default Excel writer engine for ‘xlsm’ files. Available options: auto, open-
pyxl. [default: auto] [currently: auto]

io.excel.xlsx.writer [string] The default Excel writer engine for ‘xlsx’ files. Available options: auto, openpyxl,
xlsxwriter. [default: auto] [currently: auto]

io.hdf.default_format [format] default format writing format, if None, then put will default to ‘fixed’ and
append will default to ‘table’ [default: None] [currently: None]

34.21. General utility functions 2363

pandas: powerful Python data analysis toolkit, Release 0.23.4

io.hdf.dropna_table [boolean] drop ALL nan rows when appending to a table [default: False] [currently:
False]

io.parquet.engine [string] The default parquet reader/writer engine. Available options: ‘auto’, ‘pyarrow’, ‘fast-
parquet’, the default is ‘auto’ [default: auto] [currently: auto]

mode.chained_assignment [string] Raise an exception, warn, or no action if trying to use chained assignment,
The default is warn [default: warn] [currently: warn]

mode.sim_interactive [boolean] Whether to simulate interactive mode for purposes of testing [default: False]
[currently: False]

mode.use_inf_as_na [boolean] True means treat None, NaN, INF, -INF as NA (old way), False means None
and NaN are null, but INF, -INF are not NA (new way). [default: False] [currently: False]

mode.use_inf_as_null [boolean] use_inf_as_null had been deprecated and will be removed in a future ver-
sion. Use use_inf_as_na instead. [default: False] [currently: False] (Deprecated, use mode.use_inf_as_na
instead.)

plotting.matplotlib.register_converters [bool] Whether to register converters with matplotlib’s units registry
for dates, times, datetimes, and Periods. Toggling to False will remove the converters, restoring any
converters that pandas overwrote. [default: True] [currently: True]

34.21.1.4 pandas.set_option

pandas.set_option(pat, value) = <pandas.core.config.CallableDynamicDoc
object>

Sets the value of the specified option.

Available options:

• compute.[use_bottleneck, use_numexpr]

• display.[chop_threshold, colheader_justify, column_space, date_dayfirst, date_yearfirst, encoding, ex-
pand_frame_repr, float_format]

• display.html.[border, table_schema, use_mathjax]

• display.[large_repr]

• display.latex.[escape, longtable, multicolumn, multicolumn_format, multirow, repr]

• display.[max_categories, max_columns, max_colwidth, max_info_columns, max_info_rows, max_rows,
max_seq_items, memory_usage, multi_sparse, notebook_repr_html, pprint_nest_depth, precision,
show_dimensions]

• display.unicode.[ambiguous_as_wide, east_asian_width]

• display.[width]

• html.[border]

• io.excel.xls.[writer]

• io.excel.xlsm.[writer]

• io.excel.xlsx.[writer]

• io.hdf.[default_format, dropna_table]

• io.parquet.[engine]

• mode.[chained_assignment, sim_interactive, use_inf_as_na, use_inf_as_null]

• plotting.matplotlib.[register_converters]

2364 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

Parameters pat : str

Regexp which should match a single option. Note: partial matches are supported for
convenience, but unless you use the full option name (e.g. x.y.z.option_name), your
code may break in future versions if new options with similar names are introduced.

value :

new value of option.

Returns

None

Raises

OptionError if no such option exists

Notes

The available options with its descriptions:

compute.use_bottleneck [bool] Use the bottleneck library to accelerate if it is installed, the default is True
Valid values: False,True [default: True] [currently: True]

compute.use_numexpr [bool] Use the numexpr library to accelerate computation if it is installed, the default
is True Valid values: False,True [default: True] [currently: True]

display.chop_threshold [float or None] if set to a float value, all float values smaller then the given threshold
will be displayed as exactly 0 by repr and friends. [default: None] [currently: None]

display.colheader_justify [‘left’/’right’] Controls the justification of column headers. used by DataFrameFor-
matter. [default: right] [currently: right]

display.column_space No description available. [default: 12] [currently: 12]

display.date_dayfirst [boolean] When True, prints and parses dates with the day first, eg 20/01/2005 [default:
False] [currently: False]

display.date_yearfirst [boolean] When True, prints and parses dates with the year first, eg 2005/01/20 [default:
False] [currently: False]

display.encoding [str/unicode] Defaults to the detected encoding of the console. Specifies the encoding to be
used for strings returned by to_string, these are generally strings meant to be displayed on the console.
[default: UTF-8] [currently: UTF-8]

display.expand_frame_repr [boolean] Whether to print out the full DataFrame repr for wide DataFrames
across multiple lines, max_columns is still respected, but the output will wrap-around across multiple
“pages” if its width exceeds display.width. [default: True] [currently: True]

display.float_format [callable] The callable should accept a floating point number and return a string with
the desired format of the number. This is used in some places like SeriesFormatter. See for-
mats.format.EngFormatter for an example. [default: None] [currently: None]

display.html.border [int] A border=value attribute is inserted in the <table> tag for the DataFrame
HTML repr. [default: 1] [currently: 1]

display.html.table_schema [boolean] Whether to publish a Table Schema representation for frontends that
support it. (default: False) [default: False] [currently: False]

display.html.use_mathjax [boolean] When True, Jupyter notebook will process table contents using Math-
Jax, rendering mathematical expressions enclosed by the dollar symbol. (default: True) [default: True]
[currently: True]

34.21. General utility functions 2365

pandas: powerful Python data analysis toolkit, Release 0.23.4

display.large_repr [‘truncate’/’info’] For DataFrames exceeding max_rows/max_cols, the repr (and HTML
repr) can show a truncated table (the default from 0.13), or switch to the view from df.info() (the behaviour
in earlier versions of pandas). [default: truncate] [currently: truncate]

display.latex.escape [bool] This specifies if the to_latex method of a Dataframe uses escapes special characters.
Valid values: False,True [default: True] [currently: True]

display.latex.longtable :bool This specifies if the to_latex method of a Dataframe uses the longtable format.
Valid values: False,True [default: False] [currently: False]

display.latex.multicolumn [bool] This specifies if the to_latex method of a Dataframe uses multicolumns to
pretty-print MultiIndex columns. Valid values: False,True [default: True] [currently: True]

display.latex.multicolumn_format [bool] This specifies if the to_latex method of a Dataframe uses multi-
columns to pretty-print MultiIndex columns. Valid values: False,True [default: l] [currently: l]

display.latex.multirow [bool] This specifies if the to_latex method of a Dataframe uses multirows to pretty-
print MultiIndex rows. Valid values: False,True [default: False] [currently: False]

display.latex.repr [boolean] Whether to produce a latex DataFrame representation for jupyter environments
that support it. (default: False) [default: False] [currently: False]

display.max_categories [int] This sets the maximum number of categories pandas should output when printing
out a Categorical or a Series of dtype “category”. [default: 8] [currently: 8]

display.max_columns [int] If max_cols is exceeded, switch to truncate view. Depending on large_repr, objects
are either centrally truncated or printed as a summary view. ‘None’ value means unlimited.

In case python/IPython is running in a terminal and large_repr equals ‘truncate’ this can be set to 0 and
pandas will auto-detect the width of the terminal and print a truncated object which fits the screen width.
The IPython notebook, IPython qtconsole, or IDLE do not run in a terminal and hence it is not possible
to do correct auto-detection. [default: 0] [currently: 0]

display.max_colwidth [int] The maximum width in characters of a column in the repr of a pandas data struc-
ture. When the column overflows, a “. . . ” placeholder is embedded in the output. [default: 50] [currently:
50]

display.max_info_columns [int] max_info_columns is used in DataFrame.info method to decide if per column
information will be printed. [default: 100] [currently: 100]

display.max_info_rows [int or None] df.info() will usually show null-counts for each column. For large frames
this can be quite slow. max_info_rows and max_info_cols limit this null check only to frames with smaller
dimensions than specified. [default: 1690785] [currently: 1690785]

display.max_rows [int] If max_rows is exceeded, switch to truncate view. Depending on large_repr, objects
are either centrally truncated or printed as a summary view. ‘None’ value means unlimited.

In case python/IPython is running in a terminal and large_repr equals ‘truncate’ this can be set to 0 and
pandas will auto-detect the height of the terminal and print a truncated object which fits the screen height.
The IPython notebook, IPython qtconsole, or IDLE do not run in a terminal and hence it is not possible
to do correct auto-detection. [default: 60] [currently: 15]

display.max_seq_items [int or None] when pretty-printing a long sequence, no more then max_seq_items will
be printed. If items are omitted, they will be denoted by the addition of “. . . ” to the resulting string.

If set to None, the number of items to be printed is unlimited. [default: 100] [currently: 100]

display.memory_usage [bool, string or None] This specifies if the memory usage of a DataFrame should be
displayed when df.info() is called. Valid values True,False,’deep’ [default: True] [currently: True]

display.multi_sparse [boolean] “sparsify” MultiIndex display (don’t display repeated elements in outer levels
within groups) [default: True] [currently: True]

2366 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

display.notebook_repr_html [boolean] When True, IPython notebook will use html representation for pandas
objects (if it is available). [default: True] [currently: True]

display.pprint_nest_depth [int] Controls the number of nested levels to process when pretty-printing [default:
3] [currently: 3]

display.precision [int] Floating point output precision (number of significant digits). This is only a suggestion
[default: 6] [currently: 6]

display.show_dimensions [boolean or ‘truncate’] Whether to print out dimensions at the end of DataFrame
repr. If ‘truncate’ is specified, only print out the dimensions if the frame is truncated (e.g. not display all
rows and/or columns) [default: truncate] [currently: truncate]

display.unicode.ambiguous_as_wide [boolean] Whether to use the Unicode East Asian Width to calculate the
display text width. Enabling this may affect to the performance (default: False) [default: False] [currently:
False]

display.unicode.east_asian_width [boolean] Whether to use the Unicode East Asian Width to calculate the
display text width. Enabling this may affect to the performance (default: False) [default: False] [currently:
False]

display.width [int] Width of the display in characters. In case python/IPython is running in a terminal this can
be set to None and pandas will correctly auto-detect the width. Note that the IPython notebook, IPython
qtconsole, or IDLE do not run in a terminal and hence it is not possible to correctly detect the width.
[default: 80] [currently: 80]

html.border [int] A border=value attribute is inserted in the <table> tag for the DataFrame HTML repr.
[default: 1] [currently: 1] (Deprecated, use display.html.border instead.)

io.excel.xls.writer [string] The default Excel writer engine for ‘xls’ files. Available options: auto, xlwt. [de-
fault: auto] [currently: auto]

io.excel.xlsm.writer [string] The default Excel writer engine for ‘xlsm’ files. Available options: auto, open-
pyxl. [default: auto] [currently: auto]

io.excel.xlsx.writer [string] The default Excel writer engine for ‘xlsx’ files. Available options: auto, openpyxl,
xlsxwriter. [default: auto] [currently: auto]

io.hdf.default_format [format] default format writing format, if None, then put will default to ‘fixed’ and
append will default to ‘table’ [default: None] [currently: None]

io.hdf.dropna_table [boolean] drop ALL nan rows when appending to a table [default: False] [currently:
False]

io.parquet.engine [string] The default parquet reader/writer engine. Available options: ‘auto’, ‘pyarrow’, ‘fast-
parquet’, the default is ‘auto’ [default: auto] [currently: auto]

mode.chained_assignment [string] Raise an exception, warn, or no action if trying to use chained assignment,
The default is warn [default: warn] [currently: warn]

mode.sim_interactive [boolean] Whether to simulate interactive mode for purposes of testing [default: False]
[currently: False]

mode.use_inf_as_na [boolean] True means treat None, NaN, INF, -INF as NA (old way), False means None
and NaN are null, but INF, -INF are not NA (new way). [default: False] [currently: False]

mode.use_inf_as_null [boolean] use_inf_as_null had been deprecated and will be removed in a future ver-
sion. Use use_inf_as_na instead. [default: False] [currently: False] (Deprecated, use mode.use_inf_as_na
instead.)

plotting.matplotlib.register_converters [bool] Whether to register converters with matplotlib’s units registry
for dates, times, datetimes, and Periods. Toggling to False will remove the converters, restoring any
converters that pandas overwrote. [default: True] [currently: True]

34.21. General utility functions 2367

pandas: powerful Python data analysis toolkit, Release 0.23.4

34.21.1.5 pandas.option_context

class pandas.option_context(*args)
Context manager to temporarily set options in the with statement context.

You need to invoke as option_context(pat, val, [(pat, val), ...]).

Examples

>>> with option_context('display.max_rows', 10, 'display.max_columns', 5):
...

34.21.2 Testing functions

testing.assert_frame_equal(left, right[,
. . .])

Check that left and right DataFrame are equal.

testing.assert_series_equal(left, right[,
. . .])

Check that left and right Series are equal.

testing.assert_index_equal(left, right[,
. . .])

Check that left and right Index are equal.

34.21.2.1 pandas.testing.assert_frame_equal

pandas.testing.assert_frame_equal(left, right, check_dtype=True, check_index_type=’equiv’,
check_column_type=’equiv’, check_frame_type=True,
check_less_precise=False, check_names=True,
by_blocks=False, check_exact=False,
check_datetimelike_compat=False,
check_categorical=True, check_like=False,
obj=’DataFrame’)

Check that left and right DataFrame are equal.

Parameters

left [DataFrame]

right [DataFrame]

check_dtype : bool, default True

Whether to check the DataFrame dtype is identical.

check_index_type : bool / string {‘equiv’}, default False

Whether to check the Index class, dtype and inferred_type are identical.

check_column_type : bool / string {‘equiv’}, default False

Whether to check the columns class, dtype and inferred_type are identical.

check_frame_type : bool, default False

Whether to check the DataFrame class is identical.

check_less_precise : bool or int, default False

2368 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

Specify comparison precision. Only used when check_exact is False. 5 digits (False)
or 3 digits (True) after decimal points are compared. If int, then specify the digits to
compare

check_names : bool, default True

Whether to check the Index names attribute.

by_blocks : bool, default False

Specify how to compare internal data. If False, compare by columns. If True, com-
pare by blocks.

check_exact : bool, default False

Whether to compare number exactly.

check_datetimelike_compat : bool, default False

Compare datetime-like which is comparable ignoring dtype.

check_categorical : bool, default True

Whether to compare internal Categorical exactly.

check_like : bool, default False

If true, ignore the order of rows & columns

obj : str, default ‘DataFrame’

Specify object name being compared, internally used to show appropriate assertion
message

34.21.2.2 pandas.testing.assert_series_equal

pandas.testing.assert_series_equal(left, right, check_dtype=True, check_index_type=’equiv’,
check_series_type=True, check_less_precise=False,
check_names=True, check_exact=False,
check_datetimelike_compat=False,
check_categorical=True, obj=’Series’)

Check that left and right Series are equal.

Parameters

left [Series]

right [Series]

check_dtype : bool, default True

Whether to check the Series dtype is identical.

check_index_type : bool / string {‘equiv’}, default ‘equiv’

Whether to check the Index class, dtype and inferred_type are identical.

check_series_type : bool, default True

Whether to check the Series class is identical.

check_less_precise : bool or int, default False

Specify comparison precision. Only used when check_exact is False. 5 digits (False)
or 3 digits (True) after decimal points are compared. If int, then specify the digits to
compare

34.21. General utility functions 2369

pandas: powerful Python data analysis toolkit, Release 0.23.4

check_exact : bool, default False

Whether to compare number exactly.

check_names : bool, default True

Whether to check the Series and Index names attribute.

check_datetimelike_compat : bool, default False

Compare datetime-like which is comparable ignoring dtype.

check_categorical : bool, default True

Whether to compare internal Categorical exactly.

obj : str, default ‘Series’

Specify object name being compared, internally used to show appropriate assertion
message

34.21.2.3 pandas.testing.assert_index_equal

pandas.testing.assert_index_equal(left, right, exact=’equiv’, check_names=True,
check_less_precise=False, check_exact=True,
check_categorical=True, obj=’Index’)

Check that left and right Index are equal.

Parameters

left [Index]

right [Index]

exact : bool / string {‘equiv’}, default False

Whether to check the Index class, dtype and inferred_type are identical. If ‘equiv’,
then RangeIndex can be substituted for Int64Index as well.

check_names : bool, default True

Whether to check the names attribute.

check_less_precise : bool or int, default False

Specify comparison precision. Only used when check_exact is False. 5 digits (False)
or 3 digits (True) after decimal points are compared. If int, then specify the digits to
compare

check_exact : bool, default True

Whether to compare number exactly.

check_categorical : bool, default True

Whether to compare internal Categorical exactly.

obj : str, default ‘Index’

Specify object name being compared, internally used to show appropriate assertion
message

34.21.3 Exceptions and warnings

2370 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

errors.DtypeWarning Warning raised when reading different dtypes in a col-
umn from a file.

errors.EmptyDataError Exception that is thrown in pd.read_csv (by both the C
and Python engines) when empty data or header is en-
countered.

errors.OutOfBoundsDatetime
errors.ParserError Exception that is raised by an error encountered in

pd.read_csv.
errors.ParserWarning Warning raised when reading a file that doesn’t use the

default ‘c’ parser.
errors.PerformanceWarning Warning raised when there is a possible performance

impact.
errors.UnsortedIndexError Error raised when attempting to get a slice of a MultiIn-

dex, and the index has not been lexsorted.
errors.UnsupportedFunctionCall Exception raised when attempting to call a numpy func-

tion on a pandas object, but that function is not sup-
ported by the object e.g.

34.21.3.1 pandas.errors.DtypeWarning

exception pandas.errors.DtypeWarning
Warning raised when reading different dtypes in a column from a file.

Raised for a dtype incompatibility. This can happen whenever read_csv or read_table encounter non-uniform
dtypes in a column(s) of a given CSV file.

See also:

pandas.read_csv Read CSV (comma-separated) file into a DataFrame.

pandas.read_table Read general delimited file into a DataFrame.

Notes

This warning is issued when dealing with larger files because the dtype checking happens per chunk read.

Despite the warning, the CSV file is read with mixed types in a single column which will be an object type. See
the examples below to better understand this issue.

Examples

This example creates and reads a large CSV file with a column that contains int and str.

>>> df = pd.DataFrame({'a': (['1'] * 100000 + ['X'] * 100000 +
... ['1'] * 100000),
... 'b': ['b'] * 300000})
>>> df.to_csv('test.csv', index=False)
>>> df2 = pd.read_csv('test.csv')
... # DtypeWarning: Columns (0) have mixed types

Important to notice that df2 will contain both str and int for the same input, ‘1’.

34.21. General utility functions 2371

pandas: powerful Python data analysis toolkit, Release 0.23.4

>>> df2.iloc[262140, 0]
'1'
>>> type(df2.iloc[262140, 0])
<class 'str'>
>>> df2.iloc[262150, 0]
1
>>> type(df2.iloc[262150, 0])
<class 'int'>

One way to solve this issue is using the dtype parameter in the read_csv and read_table functions to explicit the
conversion:

>>> df2 = pd.read_csv('test.csv', sep=',', dtype={'a': str})

No warning was issued.

>>> import os
>>> os.remove('test.csv')

34.21.3.2 pandas.errors.EmptyDataError

exception pandas.errors.EmptyDataError
Exception that is thrown in pd.read_csv (by both the C and Python engines) when empty data or header is
encountered.

34.21.3.3 pandas.errors.OutOfBoundsDatetime

exception pandas.errors.OutOfBoundsDatetime

34.21.3.4 pandas.errors.ParserError

exception pandas.errors.ParserError
Exception that is raised by an error encountered in pd.read_csv.

34.21.3.5 pandas.errors.ParserWarning

exception pandas.errors.ParserWarning
Warning raised when reading a file that doesn’t use the default ‘c’ parser.

Raised by pd.read_csv and pd.read_table when it is necessary to change parsers, generally from the default ‘c’
parser to ‘python’.

It happens due to a lack of support or functionality for parsing a particular attribute of a CSV file with the
requested engine.

Currently, ‘c’ unsupported options include the following parameters:

1. sep other than a single character (e.g. regex separators)

2. skipfooter higher than 0

3. sep=None with delim_whitespace=False

2372 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

The warning can be avoided by adding engine=’python’ as a parameter in pd.read_csv and pd.read_table meth-
ods.

See also:

pd.read_csv Read CSV (comma-separated) file into DataFrame.

pd.read_table Read general delimited file into DataFrame.

Examples

Using a sep in pd.read_csv other than a single character:

>>> import io
>>> csv = u'''a;b;c
... 1;1,8
... 1;2,1'''
>>> df = pd.read_csv(io.StringIO(csv), sep='[;,]')
... # ParserWarning: Falling back to the 'python' engine...

Adding engine=’python’ to pd.read_csv removes the Warning:

>>> df = pd.read_csv(io.StringIO(csv), sep='[;,]', engine='python')

34.21.3.6 pandas.errors.PerformanceWarning

exception pandas.errors.PerformanceWarning
Warning raised when there is a possible performance impact.

34.21.3.7 pandas.errors.UnsortedIndexError

exception pandas.errors.UnsortedIndexError
Error raised when attempting to get a slice of a MultiIndex, and the index has not been lexsorted. Subclass of
KeyError.

New in version 0.20.0.

34.21.3.8 pandas.errors.UnsupportedFunctionCall

exception pandas.errors.UnsupportedFunctionCall
Exception raised when attempting to call a numpy function on a pandas object, but that function is not supported
by the object e.g. np.cumsum(groupby_object).

34.21.4 Data types related functionality

api.types.union_categoricals(to_union[,
. . .])

Combine list-like of Categorical-like, unioning cate-
gories.

api.types.infer_dtype Efficiently infer the type of a passed val, or list-like ar-
ray of values.

Continued on next page

34.21. General utility functions 2373

pandas: powerful Python data analysis toolkit, Release 0.23.4

Table 184 – continued from previous page
api.types.pandas_dtype(dtype) Converts input into a pandas only dtype object or a

numpy dtype object.

34.21.4.1 pandas.api.types.union_categoricals

pandas.api.types.union_categoricals(to_union, sort_categories=False, ignore_order=False)
Combine list-like of Categorical-like, unioning categories. All categories must have the same dtype.

New in version 0.19.0.

Parameters to_union : list-like of Categorical, CategoricalIndex,

or Series with dtype=’category’

sort_categories : boolean, default False

If true, resulting categories will be lexsorted, otherwise they will be ordered as they
appear in the data.

ignore_order: boolean, default False

If true, the ordered attribute of the Categoricals will be ignored. Results in an un-
ordered categorical.

New in version 0.20.0.

Returns

result [Categorical]

Raises TypeError

• all inputs do not have the same dtype

• all inputs do not have the same ordered property

• all inputs are ordered and their categories are not identical

• sort_categories=True and Categoricals are ordered

ValueError

Empty list of categoricals passed

Notes

To learn more about categories, see link

Examples

>>> from pandas.api.types import union_categoricals

If you want to combine categoricals that do not necessarily have the same categories, union_categoricals will
combine a list-like of categoricals. The new categories will be the union of the categories being combined.

>>> a = pd.Categorical(["b", "c"])
>>> b = pd.Categorical(["a", "b"])
>>> union_categoricals([a, b])

(continues on next page)

2374 Chapter 34. API Reference

http://pandas.pydata.org/pandas-docs/stable/categorical.html#unioning

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

[b, c, a, b]
Categories (3, object): [b, c, a]

By default, the resulting categories will be ordered as they appear in the categories of the data. If you want the
categories to be lexsorted, use sort_categories=True argument.

>>> union_categoricals([a, b], sort_categories=True)
[b, c, a, b]
Categories (3, object): [a, b, c]

union_categoricals also works with the case of combining two categoricals of the same categories and order
information (e.g. what you could also append for).

>>> a = pd.Categorical(["a", "b"], ordered=True)
>>> b = pd.Categorical(["a", "b", "a"], ordered=True)
>>> union_categoricals([a, b])
[a, b, a, b, a]
Categories (2, object): [a < b]

Raises TypeError because the categories are ordered and not identical.

>>> a = pd.Categorical(["a", "b"], ordered=True)
>>> b = pd.Categorical(["a", "b", "c"], ordered=True)
>>> union_categoricals([a, b])
TypeError: to union ordered Categoricals, all categories must be the same

New in version 0.20.0

Ordered categoricals with different categories or orderings can be combined by using the ignore_ordered=True
argument.

>>> a = pd.Categorical(["a", "b", "c"], ordered=True)
>>> b = pd.Categorical(["c", "b", "a"], ordered=True)
>>> union_categoricals([a, b], ignore_order=True)
[a, b, c, c, b, a]
Categories (3, object): [a, b, c]

union_categoricals also works with a CategoricalIndex, or Series containing categorical data, but note that the
resulting array will always be a plain Categorical

>>> a = pd.Series(["b", "c"], dtype='category')
>>> b = pd.Series(["a", "b"], dtype='category')
>>> union_categoricals([a, b])
[b, c, a, b]
Categories (3, object): [b, c, a]

34.21.4.2 pandas.api.types.infer_dtype

pandas.api.types.infer_dtype()
Efficiently infer the type of a passed val, or list-like array of values. Return a string describing the type.

Parameters

value [scalar, list, ndarray, or pandas type]

skipna : bool, default False

34.21. General utility functions 2375

pandas: powerful Python data analysis toolkit, Release 0.23.4

Ignore NaN values when inferring the type. The default of Falsewill be deprecated
in a later version of pandas.

New in version 0.21.0.

Returns

string describing the common type of the input data.

Results can include:

- string

- unicode

- bytes

- floating

- integer

- mixed-integer

- mixed-integer-float

- decimal

- complex

- categorical

- boolean

- datetime64

- datetime

- date

- timedelta64

- timedelta

- time

- period

- mixed

Raises

TypeError if ndarray-like but cannot infer the dtype

Notes

• ‘mixed’ is the catchall for anything that is not otherwise specialized

• ‘mixed-integer-float’ are floats and integers

• ‘mixed-integer’ are integers mixed with non-integers

2376 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

Examples

>>> infer_dtype(['foo', 'bar'])
'string'

>>> infer_dtype(['a', np.nan, 'b'], skipna=True)
'string'

>>> infer_dtype(['a', np.nan, 'b'], skipna=False)
'mixed'

>>> infer_dtype([b'foo', b'bar'])
'bytes'

>>> infer_dtype([1, 2, 3])
'integer'

>>> infer_dtype([1, 2, 3.5])
'mixed-integer-float'

>>> infer_dtype([1.0, 2.0, 3.5])
'floating'

>>> infer_dtype(['a', 1])
'mixed-integer'

>>> infer_dtype([Decimal(1), Decimal(2.0)])
'decimal'

>>> infer_dtype([True, False])
'boolean'

>>> infer_dtype([True, False, np.nan])
'mixed'

>>> infer_dtype([pd.Timestamp('20130101')])
'datetime'

>>> infer_dtype([datetime.date(2013, 1, 1)])
'date'

>>> infer_dtype([np.datetime64('2013-01-01')])
'datetime64'

>>> infer_dtype([datetime.timedelta(0, 1, 1)])
'timedelta'

>>> infer_dtype(pd.Series(list('aabc')).astype('category'))
'categorical'

34.21. General utility functions 2377

pandas: powerful Python data analysis toolkit, Release 0.23.4

34.21.4.3 pandas.api.types.pandas_dtype

pandas.api.types.pandas_dtype(dtype)
Converts input into a pandas only dtype object or a numpy dtype object.

Parameters

dtype [object to be converted]

Returns

np.dtype or a pandas dtype

Dtype introspection

api.types.is_bool_dtype(arr_or_dtype) Check whether the provided array or dtype is of a
boolean dtype.

api.types.is_categorical_dtype(arr_or_dtype)Check whether an array-like or dtype is of the Categor-
ical dtype.

api.types.is_complex_dtype(arr_or_dtype) Check whether the provided array or dtype is of a com-
plex dtype.

api.types.is_datetime64_any_dtype(arr_or_dtype)Check whether the provided array or dtype is of the
datetime64 dtype.

api.types.is_datetime64_dtype(arr_or_dtype) Check whether an array-like or dtype is of the date-
time64 dtype.

api.types.is_datetime64_ns_dtype(arr_or_dtype)Check whether the provided array or dtype is of the
datetime64[ns] dtype.

api.types.is_datetime64tz_dtype(arr_or_dtype)Check whether an array-like or dtype is of a DatetimeT-
ZDtype dtype.

api.types.is_extension_type(arr) Check whether an array-like is of a pandas extension
class instance.

api.types.is_float_dtype(arr_or_dtype) Check whether the provided array or dtype is of a float
dtype.

api.types.is_int64_dtype(arr_or_dtype) Check whether the provided array or dtype is of the
int64 dtype.

api.types.is_integer_dtype(arr_or_dtype) Check whether the provided array or dtype is of an inte-
ger dtype.

api.types.is_interval_dtype(arr_or_dtype) Check whether an array-like or dtype is of the Interval
dtype.

api.types.is_numeric_dtype(arr_or_dtype) Check whether the provided array or dtype is of a nu-
meric dtype.

api.types.is_object_dtype(arr_or_dtype) Check whether an array-like or dtype is of the object
dtype.

api.types.is_period_dtype(arr_or_dtype) Check whether an array-like or dtype is of the Period
dtype.

api.types.is_signed_integer_dtype(arr_or_dtype)Check whether the provided array or dtype is of a signed
integer dtype.

api.types.is_string_dtype(arr_or_dtype) Check whether the provided array or dtype is of the
string dtype.

api.types.is_timedelta64_dtype(arr_or_dtype)Check whether an array-like or dtype is of the
timedelta64 dtype.

api.types.is_timedelta64_ns_dtype(arr_or_dtype)Check whether the provided array or dtype is of the
timedelta64[ns] dtype.

Continued on next page

2378 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

Table 185 – continued from previous page
api.types.is_unsigned_integer_dtype(arr_or_dtype)Check whether the provided array or dtype is of an un-

signed integer dtype.
api.types.is_sparse(arr) Check whether an array-like is a pandas sparse array.

34.21.4.4 pandas.api.types.is_bool_dtype

pandas.api.types.is_bool_dtype(arr_or_dtype)
Check whether the provided array or dtype is of a boolean dtype.

Parameters arr_or_dtype : array-like

The array or dtype to check.

Returns

boolean [Whether or not the array or dtype is of a boolean dtype.]

Examples

>>> is_bool_dtype(str)
False
>>> is_bool_dtype(int)
False
>>> is_bool_dtype(bool)
True
>>> is_bool_dtype(np.bool)
True
>>> is_bool_dtype(np.array(['a', 'b']))
False
>>> is_bool_dtype(pd.Series([1, 2]))
False
>>> is_bool_dtype(np.array([True, False]))
True

34.21.4.5 pandas.api.types.is_categorical_dtype

pandas.api.types.is_categorical_dtype(arr_or_dtype)
Check whether an array-like or dtype is of the Categorical dtype.

Parameters arr_or_dtype : array-like

The array-like or dtype to check.

Returns boolean : Whether or not the array-like or dtype is

of the Categorical dtype.

Examples

>>> is_categorical_dtype(object)
False
>>> is_categorical_dtype(CategoricalDtype())
True

(continues on next page)

34.21. General utility functions 2379

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

>>> is_categorical_dtype([1, 2, 3])
False
>>> is_categorical_dtype(pd.Categorical([1, 2, 3]))
True
>>> is_categorical_dtype(pd.CategoricalIndex([1, 2, 3]))
True

34.21.4.6 pandas.api.types.is_complex_dtype

pandas.api.types.is_complex_dtype(arr_or_dtype)
Check whether the provided array or dtype is of a complex dtype.

Parameters arr_or_dtype : array-like

The array or dtype to check.

Returns

boolean [Whether or not the array or dtype is of a compex dtype.]

Examples

>>> is_complex_dtype(str)
False
>>> is_complex_dtype(int)
False
>>> is_complex_dtype(np.complex)
True
>>> is_complex_dtype(np.array(['a', 'b']))
False
>>> is_complex_dtype(pd.Series([1, 2]))
False
>>> is_complex_dtype(np.array([1 + 1j, 5]))
True

34.21.4.7 pandas.api.types.is_datetime64_any_dtype

pandas.api.types.is_datetime64_any_dtype(arr_or_dtype)
Check whether the provided array or dtype is of the datetime64 dtype.

Parameters arr_or_dtype : array-like

The array or dtype to check.

Returns

boolean [Whether or not the array or dtype is of the datetime64 dtype.]

Examples

2380 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

>>> is_datetime64_any_dtype(str)
False
>>> is_datetime64_any_dtype(int)
False
>>> is_datetime64_any_dtype(np.datetime64) # can be tz-naive
True
>>> is_datetime64_any_dtype(DatetimeTZDtype("ns", "US/Eastern"))
True
>>> is_datetime64_any_dtype(np.array(['a', 'b']))
False
>>> is_datetime64_any_dtype(np.array([1, 2]))
False
>>> is_datetime64_any_dtype(np.array([], dtype=np.datetime64))
True
>>> is_datetime64_any_dtype(pd.DatetimeIndex([1, 2, 3],

dtype=np.datetime64))
True

34.21.4.8 pandas.api.types.is_datetime64_dtype

pandas.api.types.is_datetime64_dtype(arr_or_dtype)
Check whether an array-like or dtype is of the datetime64 dtype.

Parameters arr_or_dtype : array-like

The array-like or dtype to check.

Returns boolean : Whether or not the array-like or dtype is of

the datetime64 dtype.

Examples

>>> is_datetime64_dtype(object)
False
>>> is_datetime64_dtype(np.datetime64)
True
>>> is_datetime64_dtype(np.array([], dtype=int))
False
>>> is_datetime64_dtype(np.array([], dtype=np.datetime64))
True
>>> is_datetime64_dtype([1, 2, 3])
False

34.21.4.9 pandas.api.types.is_datetime64_ns_dtype

pandas.api.types.is_datetime64_ns_dtype(arr_or_dtype)
Check whether the provided array or dtype is of the datetime64[ns] dtype.

Parameters arr_or_dtype : array-like

The array or dtype to check.

Returns

boolean [Whether or not the array or dtype is of the datetime64[ns] dtype.]

34.21. General utility functions 2381

pandas: powerful Python data analysis toolkit, Release 0.23.4

Examples

>>> is_datetime64_ns_dtype(str)
False
>>> is_datetime64_ns_dtype(int)
False
>>> is_datetime64_ns_dtype(np.datetime64) # no unit
False
>>> is_datetime64_ns_dtype(DatetimeTZDtype("ns", "US/Eastern"))
True
>>> is_datetime64_ns_dtype(np.array(['a', 'b']))
False
>>> is_datetime64_ns_dtype(np.array([1, 2]))
False
>>> is_datetime64_ns_dtype(np.array([], dtype=np.datetime64)) # no unit
False
>>> is_datetime64_ns_dtype(np.array([],

dtype="datetime64[ps]")) # wrong unit
False
>>> is_datetime64_ns_dtype(pd.DatetimeIndex([1, 2, 3],

dtype=np.datetime64)) # has 'ns' unit
True

34.21.4.10 pandas.api.types.is_datetime64tz_dtype

pandas.api.types.is_datetime64tz_dtype(arr_or_dtype)
Check whether an array-like or dtype is of a DatetimeTZDtype dtype.

Parameters arr_or_dtype : array-like

The array-like or dtype to check.

Returns boolean : Whether or not the array-like or dtype is of

a DatetimeTZDtype dtype.

Examples

>>> is_datetime64tz_dtype(object)
False
>>> is_datetime64tz_dtype([1, 2, 3])
False
>>> is_datetime64tz_dtype(pd.DatetimeIndex([1, 2, 3])) # tz-naive
False
>>> is_datetime64tz_dtype(pd.DatetimeIndex([1, 2, 3], tz="US/Eastern"))
True

>>> dtype = DatetimeTZDtype("ns", tz="US/Eastern")
>>> s = pd.Series([], dtype=dtype)
>>> is_datetime64tz_dtype(dtype)
True
>>> is_datetime64tz_dtype(s)
True

2382 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

34.21.4.11 pandas.api.types.is_extension_type

pandas.api.types.is_extension_type(arr)
Check whether an array-like is of a pandas extension class instance.

Extension classes include categoricals, pandas sparse objects (i.e. classes represented within the pandas library
and not ones external to it like scipy sparse matrices), and datetime-like arrays.

Parameters arr : array-like

The array-like to check.

Returns boolean : Whether or not the array-like is of a pandas

extension class instance.

Examples

>>> is_extension_type([1, 2, 3])
False
>>> is_extension_type(np.array([1, 2, 3]))
False
>>>
>>> cat = pd.Categorical([1, 2, 3])
>>>
>>> is_extension_type(cat)
True
>>> is_extension_type(pd.Series(cat))
True
>>> is_extension_type(pd.SparseArray([1, 2, 3]))
True
>>> is_extension_type(pd.SparseSeries([1, 2, 3]))
True
>>>
>>> from scipy.sparse import bsr_matrix
>>> is_extension_type(bsr_matrix([1, 2, 3]))
False
>>> is_extension_type(pd.DatetimeIndex([1, 2, 3]))
False
>>> is_extension_type(pd.DatetimeIndex([1, 2, 3], tz="US/Eastern"))
True
>>>
>>> dtype = DatetimeTZDtype("ns", tz="US/Eastern")
>>> s = pd.Series([], dtype=dtype)
>>> is_extension_type(s)
True

34.21.4.12 pandas.api.types.is_float_dtype

pandas.api.types.is_float_dtype(arr_or_dtype)
Check whether the provided array or dtype is of a float dtype.

Parameters arr_or_dtype : array-like

The array or dtype to check.

Returns

34.21. General utility functions 2383

pandas: powerful Python data analysis toolkit, Release 0.23.4

boolean [Whether or not the array or dtype is of a float dtype.]

Examples

>>> is_float_dtype(str)
False
>>> is_float_dtype(int)
False
>>> is_float_dtype(float)
True
>>> is_float_dtype(np.array(['a', 'b']))
False
>>> is_float_dtype(pd.Series([1, 2]))
False
>>> is_float_dtype(pd.Index([1, 2.]))
True

34.21.4.13 pandas.api.types.is_int64_dtype

pandas.api.types.is_int64_dtype(arr_or_dtype)
Check whether the provided array or dtype is of the int64 dtype.

Parameters arr_or_dtype : array-like

The array or dtype to check.

Returns

boolean [Whether or not the array or dtype is of the int64 dtype.]

Notes

Depending on system architecture, the return value of is_int64_dtype(int) will be True if the OS uses 64-bit
integers and False if the OS uses 32-bit integers.

Examples

>>> is_int64_dtype(str)
False
>>> is_int64_dtype(np.int32)
False
>>> is_int64_dtype(np.int64)
True
>>> is_int64_dtype(float)
False
>>> is_int64_dtype(np.uint64) # unsigned
False
>>> is_int64_dtype(np.array(['a', 'b']))
False
>>> is_int64_dtype(np.array([1, 2], dtype=np.int64))
True
>>> is_int64_dtype(pd.Index([1, 2.])) # float
False

(continues on next page)

2384 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

>>> is_int64_dtype(np.array([1, 2], dtype=np.uint32)) # unsigned
False

34.21.4.14 pandas.api.types.is_integer_dtype

pandas.api.types.is_integer_dtype(arr_or_dtype)
Check whether the provided array or dtype is of an integer dtype.

Unlike in in_any_int_dtype, timedelta64 instances will return False.

Parameters arr_or_dtype : array-like

The array or dtype to check.

Returns boolean : Whether or not the array or dtype is of an integer dtype

and not an instance of timedelta64.

Examples

>>> is_integer_dtype(str)
False
>>> is_integer_dtype(int)
True
>>> is_integer_dtype(float)
False
>>> is_integer_dtype(np.uint64)
True
>>> is_integer_dtype(np.datetime64)
False
>>> is_integer_dtype(np.timedelta64)
False
>>> is_integer_dtype(np.array(['a', 'b']))
False
>>> is_integer_dtype(pd.Series([1, 2]))
True
>>> is_integer_dtype(np.array([], dtype=np.timedelta64))
False
>>> is_integer_dtype(pd.Index([1, 2.])) # float
False

34.21.4.15 pandas.api.types.is_interval_dtype

pandas.api.types.is_interval_dtype(arr_or_dtype)
Check whether an array-like or dtype is of the Interval dtype.

Parameters arr_or_dtype : array-like

The array-like or dtype to check.

Returns boolean : Whether or not the array-like or dtype is

of the Interval dtype.

34.21. General utility functions 2385

pandas: powerful Python data analysis toolkit, Release 0.23.4

Examples

>>> is_interval_dtype(object)
False
>>> is_interval_dtype(IntervalDtype())
True
>>> is_interval_dtype([1, 2, 3])
False
>>>
>>> interval = pd.Interval(1, 2, closed="right")
>>> is_interval_dtype(interval)
False
>>> is_interval_dtype(pd.IntervalIndex([interval]))
True

34.21.4.16 pandas.api.types.is_numeric_dtype

pandas.api.types.is_numeric_dtype(arr_or_dtype)
Check whether the provided array or dtype is of a numeric dtype.

Parameters arr_or_dtype : array-like

The array or dtype to check.

Returns

boolean [Whether or not the array or dtype is of a numeric dtype.]

Examples

>>> is_numeric_dtype(str)
False
>>> is_numeric_dtype(int)
True
>>> is_numeric_dtype(float)
True
>>> is_numeric_dtype(np.uint64)
True
>>> is_numeric_dtype(np.datetime64)
False
>>> is_numeric_dtype(np.timedelta64)
False
>>> is_numeric_dtype(np.array(['a', 'b']))
False
>>> is_numeric_dtype(pd.Series([1, 2]))
True
>>> is_numeric_dtype(pd.Index([1, 2.]))
True
>>> is_numeric_dtype(np.array([], dtype=np.timedelta64))
False

34.21.4.17 pandas.api.types.is_object_dtype

pandas.api.types.is_object_dtype(arr_or_dtype)
Check whether an array-like or dtype is of the object dtype.

2386 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

Parameters arr_or_dtype : array-like

The array-like or dtype to check.

Returns

boolean [Whether or not the array-like or dtype is of the object dtype.]

Examples

>>> is_object_dtype(object)
True
>>> is_object_dtype(int)
False
>>> is_object_dtype(np.array([], dtype=object))
True
>>> is_object_dtype(np.array([], dtype=int))
False
>>> is_object_dtype([1, 2, 3])
False

34.21.4.18 pandas.api.types.is_period_dtype

pandas.api.types.is_period_dtype(arr_or_dtype)
Check whether an array-like or dtype is of the Period dtype.

Parameters arr_or_dtype : array-like

The array-like or dtype to check.

Returns

boolean [Whether or not the array-like or dtype is of the Period dtype.]

Examples

>>> is_period_dtype(object)
False
>>> is_period_dtype(PeriodDtype(freq="D"))
True
>>> is_period_dtype([1, 2, 3])
False
>>> is_period_dtype(pd.Period("2017-01-01"))
False
>>> is_period_dtype(pd.PeriodIndex([], freq="A"))
True

34.21.4.19 pandas.api.types.is_signed_integer_dtype

pandas.api.types.is_signed_integer_dtype(arr_or_dtype)
Check whether the provided array or dtype is of a signed integer dtype.

Unlike in in_any_int_dtype, timedelta64 instances will return False.

Parameters arr_or_dtype : array-like

34.21. General utility functions 2387

pandas: powerful Python data analysis toolkit, Release 0.23.4

The array or dtype to check.

Returns boolean : Whether or not the array or dtype is of a signed integer dtype

and not an instance of timedelta64.

Examples

>>> is_signed_integer_dtype(str)
False
>>> is_signed_integer_dtype(int)
True
>>> is_signed_integer_dtype(float)
False
>>> is_signed_integer_dtype(np.uint64) # unsigned
False
>>> is_signed_integer_dtype(np.datetime64)
False
>>> is_signed_integer_dtype(np.timedelta64)
False
>>> is_signed_integer_dtype(np.array(['a', 'b']))
False
>>> is_signed_integer_dtype(pd.Series([1, 2]))
True
>>> is_signed_integer_dtype(np.array([], dtype=np.timedelta64))
False
>>> is_signed_integer_dtype(pd.Index([1, 2.])) # float
False
>>> is_signed_integer_dtype(np.array([1, 2], dtype=np.uint32)) # unsigned
False

34.21.4.20 pandas.api.types.is_string_dtype

pandas.api.types.is_string_dtype(arr_or_dtype)
Check whether the provided array or dtype is of the string dtype.

Parameters arr_or_dtype : array-like

The array or dtype to check.

Returns

boolean [Whether or not the array or dtype is of the string dtype.]

Examples

>>> is_string_dtype(str)
True
>>> is_string_dtype(object)
True
>>> is_string_dtype(int)
False
>>>
>>> is_string_dtype(np.array(['a', 'b']))
True

(continues on next page)

2388 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

>>> is_string_dtype(pd.Series([1, 2]))
False

34.21.4.21 pandas.api.types.is_timedelta64_dtype

pandas.api.types.is_timedelta64_dtype(arr_or_dtype)
Check whether an array-like or dtype is of the timedelta64 dtype.

Parameters arr_or_dtype : array-like

The array-like or dtype to check.

Returns boolean : Whether or not the array-like or dtype is

of the timedelta64 dtype.

Examples

>>> is_timedelta64_dtype(object)
False
>>> is_timedelta64_dtype(np.timedelta64)
True
>>> is_timedelta64_dtype([1, 2, 3])
False
>>> is_timedelta64_dtype(pd.Series([], dtype="timedelta64[ns]"))
True
>>> is_timedelta64_dtype('0 days')
False

34.21.4.22 pandas.api.types.is_timedelta64_ns_dtype

pandas.api.types.is_timedelta64_ns_dtype(arr_or_dtype)
Check whether the provided array or dtype is of the timedelta64[ns] dtype.

This is a very specific dtype, so generic ones like np.timedelta64 will return False if passed into this function.

Parameters arr_or_dtype : array-like

The array or dtype to check.

Returns boolean : Whether or not the array or dtype is of the

timedelta64[ns] dtype.

Examples

>>> is_timedelta64_ns_dtype(np.dtype('m8[ns]'))
True
>>> is_timedelta64_ns_dtype(np.dtype('m8[ps]')) # Wrong frequency
False
>>> is_timedelta64_ns_dtype(np.array([1, 2], dtype='m8[ns]'))
True
>>> is_timedelta64_ns_dtype(np.array([1, 2], dtype=np.timedelta64))
False

34.21. General utility functions 2389

pandas: powerful Python data analysis toolkit, Release 0.23.4

34.21.4.23 pandas.api.types.is_unsigned_integer_dtype

pandas.api.types.is_unsigned_integer_dtype(arr_or_dtype)
Check whether the provided array or dtype is of an unsigned integer dtype.

Parameters arr_or_dtype : array-like

The array or dtype to check.

Returns boolean : Whether or not the array or dtype is of an

unsigned integer dtype.

Examples

>>> is_unsigned_integer_dtype(str)
False
>>> is_unsigned_integer_dtype(int) # signed
False
>>> is_unsigned_integer_dtype(float)
False
>>> is_unsigned_integer_dtype(np.uint64)
True
>>> is_unsigned_integer_dtype(np.array(['a', 'b']))
False
>>> is_unsigned_integer_dtype(pd.Series([1, 2])) # signed
False
>>> is_unsigned_integer_dtype(pd.Index([1, 2.])) # float
False
>>> is_unsigned_integer_dtype(np.array([1, 2], dtype=np.uint32))
True

34.21.4.24 pandas.api.types.is_sparse

pandas.api.types.is_sparse(arr)
Check whether an array-like is a pandas sparse array.

Parameters arr : array-like

The array-like to check.

Returns

boolean [Whether or not the array-like is a pandas sparse array.]

Examples

>>> is_sparse(np.array([1, 2, 3]))
False
>>> is_sparse(pd.SparseArray([1, 2, 3]))
True
>>> is_sparse(pd.SparseSeries([1, 2, 3]))
True

This function checks only for pandas sparse array instances, so sparse arrays from other libraries will return
False.

2390 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

>>> from scipy.sparse import bsr_matrix
>>> is_sparse(bsr_matrix([1, 2, 3]))
False

Iterable introspection

api.types.is_dict_like(obj) Check if the object is dict-like.
api.types.is_file_like(obj) Check if the object is a file-like object.
api.types.is_list_like(obj) Check if the object is list-like.
api.types.is_named_tuple(obj) Check if the object is a named tuple.
api.types.is_iterator(obj) Check if the object is an iterator.

34.21.4.25 pandas.api.types.is_dict_like

pandas.api.types.is_dict_like(obj)
Check if the object is dict-like.

Parameters

obj [The object to check.]

Returns is_dict_like : bool

Whether obj has dict-like properties.

Examples

>>> is_dict_like({1: 2})
True
>>> is_dict_like([1, 2, 3])
False

34.21.4.26 pandas.api.types.is_file_like

pandas.api.types.is_file_like(obj)
Check if the object is a file-like object.

For objects to be considered file-like, they must be an iterator AND have either a read and/or write method as
an attribute.

Note: file-like objects must be iterable, but iterable objects need not be file-like.

New in version 0.20.0.

Parameters

obj [The object to check.]

Returns is_file_like : bool

Whether obj has file-like properties.

34.21. General utility functions 2391

pandas: powerful Python data analysis toolkit, Release 0.23.4

Examples

>>> buffer(StringIO("data"))
>>> is_file_like(buffer)
True
>>> is_file_like([1, 2, 3])
False

34.21.4.27 pandas.api.types.is_list_like

pandas.api.types.is_list_like(obj)
Check if the object is list-like.

Objects that are considered list-like are for example Python lists, tuples, sets, NumPy arrays, and Pandas Series.

Strings and datetime objects, however, are not considered list-like.

Parameters

obj [The object to check.]

Returns is_list_like : bool

Whether obj has list-like properties.

Examples

>>> is_list_like([1, 2, 3])
True
>>> is_list_like({1, 2, 3})
True
>>> is_list_like(datetime(2017, 1, 1))
False
>>> is_list_like("foo")
False
>>> is_list_like(1)
False

34.21.4.28 pandas.api.types.is_named_tuple

pandas.api.types.is_named_tuple(obj)
Check if the object is a named tuple.

Parameters

obj [The object to check.]

Returns is_named_tuple : bool

Whether obj is a named tuple.

Examples

2392 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

>>> Point = namedtuple("Point", ["x", "y"])
>>> p = Point(1, 2)
>>>
>>> is_named_tuple(p)
True
>>> is_named_tuple((1, 2))
False

34.21.4.29 pandas.api.types.is_iterator

pandas.api.types.is_iterator(obj)
Check if the object is an iterator.

For example, lists are considered iterators but not strings or datetime objects.

Parameters

obj [The object to check.]

Returns is_iter : bool

Whether obj is an iterator.

Examples

>>> is_iterator([1, 2, 3])
True
>>> is_iterator(datetime(2017, 1, 1))
False
>>> is_iterator("foo")
False
>>> is_iterator(1)
False

Scalar introspection

api.types.is_bool
api.types.is_categorical(arr) Check whether an array-like is a Categorical instance.
api.types.is_complex
api.types.is_datetimetz(arr) Check whether an array-like is a datetime array-like

with a timezone component in its dtype.
api.types.is_float
api.types.is_hashable(obj) Return True if hash(obj) will succeed, False otherwise.
api.types.is_integer
api.types.is_interval
api.types.is_number(obj) Check if the object is a number.
api.types.is_period(arr) Check whether an array-like is a periodical index.
api.types.is_re(obj) Check if the object is a regex pattern instance.
api.types.is_re_compilable(obj) Check if the object can be compiled into a regex pattern

instance.
api.types.is_scalar Return True if given value is scalar.

34.21. General utility functions 2393

pandas: powerful Python data analysis toolkit, Release 0.23.4

34.21.4.30 pandas.api.types.is_bool

pandas.api.types.is_bool()

34.21.4.31 pandas.api.types.is_categorical

pandas.api.types.is_categorical(arr)
Check whether an array-like is a Categorical instance.

Parameters arr : array-like

The array-like to check.

Returns

boolean [Whether or not the array-like is of a Categorical instance.]

Examples

>>> is_categorical([1, 2, 3])
False

Categoricals, Series Categoricals, and CategoricalIndex will return True.

>>> cat = pd.Categorical([1, 2, 3])
>>> is_categorical(cat)
True
>>> is_categorical(pd.Series(cat))
True
>>> is_categorical(pd.CategoricalIndex([1, 2, 3]))
True

34.21.4.32 pandas.api.types.is_complex

pandas.api.types.is_complex()

34.21.4.33 pandas.api.types.is_datetimetz

pandas.api.types.is_datetimetz(arr)
Check whether an array-like is a datetime array-like with a timezone component in its dtype.

Parameters arr : array-like

The array-like to check.

Returns boolean : Whether or not the array-like is a datetime array-like with

a timezone component in its dtype.

Examples

>>> is_datetimetz([1, 2, 3])
False

2394 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

Although the following examples are both DatetimeIndex objects, the first one returns False because it has no
timezone component unlike the second one, which returns True.

>>> is_datetimetz(pd.DatetimeIndex([1, 2, 3]))
False
>>> is_datetimetz(pd.DatetimeIndex([1, 2, 3], tz="US/Eastern"))
True

The object need not be a DatetimeIndex object. It just needs to have a dtype which has a timezone component.

>>> dtype = DatetimeTZDtype("ns", tz="US/Eastern")
>>> s = pd.Series([], dtype=dtype)
>>> is_datetimetz(s)
True

34.21.4.34 pandas.api.types.is_float

pandas.api.types.is_float()

34.21.4.35 pandas.api.types.is_hashable

pandas.api.types.is_hashable(obj)
Return True if hash(obj) will succeed, False otherwise.

Some types will pass a test against collections.Hashable but fail when they are actually hashed with hash().

Distinguish between these and other types by trying the call to hash() and seeing if they raise TypeError.

Examples

>>> a = ([],)
>>> isinstance(a, collections.Hashable)
True
>>> is_hashable(a)
False

34.21.4.36 pandas.api.types.is_integer

pandas.api.types.is_integer()

34.21.4.37 pandas.api.types.is_interval

pandas.api.types.is_interval()

34.21.4.38 pandas.api.types.is_number

pandas.api.types.is_number(obj)
Check if the object is a number.

Returns True when the object is a number, and False if is not.

Parameters obj : any type

34.21. General utility functions 2395

pandas: powerful Python data analysis toolkit, Release 0.23.4

The object to check if is a number.

Returns is_number : bool

Whether obj is a number or not.

See also:

pandas.api.types.is_integer checks a subgroup of numbers

Examples

>>> pd.api.types.is_number(1)
True
>>> pd.api.types.is_number(7.15)
True

Booleans are valid because they are int subclass.

>>> pd.api.types.is_number(False)
True

>>> pd.api.types.is_number("foo")
False
>>> pd.api.types.is_number("5")
False

34.21.4.39 pandas.api.types.is_period

pandas.api.types.is_period(arr)
Check whether an array-like is a periodical index.

Parameters arr : array-like

The array-like to check.

Returns

boolean [Whether or not the array-like is a periodical index.]

Examples

>>> is_period([1, 2, 3])
False
>>> is_period(pd.Index([1, 2, 3]))
False
>>> is_period(pd.PeriodIndex(["2017-01-01"], freq="D"))
True

34.21.4.40 pandas.api.types.is_re

pandas.api.types.is_re(obj)
Check if the object is a regex pattern instance.

2396 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

Parameters

obj [The object to check.]

Returns is_regex : bool

Whether obj is a regex pattern.

Examples

>>> is_re(re.compile(".*"))
True
>>> is_re("foo")
False

34.21.4.41 pandas.api.types.is_re_compilable

pandas.api.types.is_re_compilable(obj)
Check if the object can be compiled into a regex pattern instance.

Parameters

obj [The object to check.]

Returns is_regex_compilable : bool

Whether obj can be compiled as a regex pattern.

Examples

>>> is_re_compilable(".*")
True
>>> is_re_compilable(1)
False

34.21.4.42 pandas.api.types.is_scalar

pandas.api.types.is_scalar()
Return True if given value is scalar.

This includes: - numpy array scalar (e.g. np.int64) - Python builtin numerics - Python builtin byte arrays
and strings - None - instances of datetime.datetime - instances of datetime.timedelta - Period - instances of
decimal.Decimal - Interval - DateOffset

34.22 Extensions

These are primarily intended for library authors looking to extend pandas objects.

api.extensions.register_dataframe_accessor(name)Register a custom accessor on DataFrame objects.
api.extensions.register_series_accessor(name)Register a custom accessor on Series objects.
api.extensions.register_index_accessor(name)Register a custom accessor on Index objects.

Continued on next page

34.22. Extensions 2397

pandas: powerful Python data analysis toolkit, Release 0.23.4

Table 188 – continued from previous page
api.extensions.ExtensionDtype A custom data type, to be paired with an ExtensionAr-

ray.
api.extensions.ExtensionArray Abstract base class for custom 1-D array types.

34.22.1 pandas.api.extensions.register_dataframe_accessor

pandas.api.extensions.register_dataframe_accessor(name)
Register a custom accessor on DataFrame objects.

Parameters name : str

Name under which the accessor should be registered. A warning is issued if this
name conflicts with a preexisting attribute.

See also:

register_series_accessor, register_index_accessor

Notes

When accessed, your accessor will be initialized with the pandas object the user is interacting with. So the
signature must be

def __init__(self, pandas_object):

For consistency with pandas methods, you should raise an AttributeError if the data passed to your ac-
cessor has an incorrect dtype.

>>> pd.Series(['a', 'b']).dt
Traceback (most recent call last):
...
AttributeError: Can only use .dt accessor with datetimelike values

Examples

In your library code:

import pandas as pd

@pd.api.extensions.register_dataframe_accessor("geo")
class GeoAccessor(object):

def __init__(self, pandas_obj):
self._obj = pandas_obj

@property
def center(self):

return the geographic center point of this DataFrame
lat = self._obj.latitude
lon = self._obj.longitude
return (float(lon.mean()), float(lat.mean()))

def plot(self):

(continues on next page)

2398 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

plot this array's data on a map, e.g., using Cartopy
pass

Back in an interactive IPython session:

>>> ds = pd.DataFrame({'longitude': np.linspace(0, 10),
... 'latitude': np.linspace(0, 20)})
>>> ds.geo.center
(5.0, 10.0)
>>> ds.geo.plot()
plots data on a map

34.22.2 pandas.api.extensions.register_series_accessor

pandas.api.extensions.register_series_accessor(name)
Register a custom accessor on Series objects.

Parameters name : str

Name under which the accessor should be registered. A warning is issued if this
name conflicts with a preexisting attribute.

See also:

register_dataframe_accessor, register_index_accessor

Notes

When accessed, your accessor will be initialized with the pandas object the user is interacting with. So the
signature must be

def __init__(self, pandas_object):

For consistency with pandas methods, you should raise an AttributeError if the data passed to your ac-
cessor has an incorrect dtype.

>>> pd.Series(['a', 'b']).dt
Traceback (most recent call last):
...
AttributeError: Can only use .dt accessor with datetimelike values

Examples

In your library code:

import pandas as pd

@pd.api.extensions.register_dataframe_accessor("geo")
class GeoAccessor(object):

def __init__(self, pandas_obj):
self._obj = pandas_obj

@property
(continues on next page)

34.22. Extensions 2399

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

def center(self):
return the geographic center point of this DataFrame
lat = self._obj.latitude
lon = self._obj.longitude
return (float(lon.mean()), float(lat.mean()))

def plot(self):
plot this array's data on a map, e.g., using Cartopy
pass

Back in an interactive IPython session:

>>> ds = pd.DataFrame({'longitude': np.linspace(0, 10),
... 'latitude': np.linspace(0, 20)})
>>> ds.geo.center
(5.0, 10.0)
>>> ds.geo.plot()
plots data on a map

34.22.3 pandas.api.extensions.register_index_accessor

pandas.api.extensions.register_index_accessor(name)
Register a custom accessor on Index objects.

Parameters name : str

Name under which the accessor should be registered. A warning is issued if this
name conflicts with a preexisting attribute.

See also:

register_dataframe_accessor, register_series_accessor

Notes

When accessed, your accessor will be initialized with the pandas object the user is interacting with. So the
signature must be

def __init__(self, pandas_object):

For consistency with pandas methods, you should raise an AttributeError if the data passed to your ac-
cessor has an incorrect dtype.

>>> pd.Series(['a', 'b']).dt
Traceback (most recent call last):
...
AttributeError: Can only use .dt accessor with datetimelike values

Examples

In your library code:

2400 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

import pandas as pd

@pd.api.extensions.register_dataframe_accessor("geo")
class GeoAccessor(object):

def __init__(self, pandas_obj):
self._obj = pandas_obj

@property
def center(self):

return the geographic center point of this DataFrame
lat = self._obj.latitude
lon = self._obj.longitude
return (float(lon.mean()), float(lat.mean()))

def plot(self):
plot this array's data on a map, e.g., using Cartopy
pass

Back in an interactive IPython session:

>>> ds = pd.DataFrame({'longitude': np.linspace(0, 10),
... 'latitude': np.linspace(0, 20)})
>>> ds.geo.center
(5.0, 10.0)
>>> ds.geo.plot()
plots data on a map

34.22.4 pandas.api.extensions.ExtensionDtype

class pandas.api.extensions.ExtensionDtype
A custom data type, to be paired with an ExtensionArray.

New in version 0.23.0.

Notes

The interface includes the following abstract methods that must be implemented by subclasses:

• type

• name

• construct_from_string

The na_value class attribute can be used to set the default NA value for this type. numpy.nan is used by
default.

This class does not inherit from ‘abc.ABCMeta’ for performance reasons. Methods and properties required by
the interface raise pandas.errors.AbstractMethodError and no register method is provided for
registering virtual subclasses.

Attributes

34.22. Extensions 2401

pandas: powerful Python data analysis toolkit, Release 0.23.4

kind A character code (one of ‘biufcmMOSUV’), default
‘O’

name A string identifying the data type.
names Ordered list of field names, or None if there are no

fields.
type The scalar type for the array, e.g.

34.22.4.1 pandas.api.extensions.ExtensionDtype.kind

ExtensionDtype.kind
A character code (one of ‘biufcmMOSUV’), default ‘O’

This should match the NumPy dtype used when the array is converted to an ndarray, which is probably
‘O’ for object if the extension type cannot be represented as a built-in NumPy type.

See also:

numpy.dtype.kind

34.22.4.2 pandas.api.extensions.ExtensionDtype.name

ExtensionDtype.name
A string identifying the data type.

Will be used for display in, e.g. Series.dtype

34.22.4.3 pandas.api.extensions.ExtensionDtype.names

ExtensionDtype.names
Ordered list of field names, or None if there are no fields.

This is for compatibility with NumPy arrays, and may be removed in the future.

34.22.4.4 pandas.api.extensions.ExtensionDtype.type

ExtensionDtype.type
The scalar type for the array, e.g. int

It’s expected ExtensionArray[item] returns an instance of ExtensionDtype.type for scalar
item.

Methods

construct_from_string(string) Attempt to construct this type from a string.
is_dtype(dtype) Check if we match ‘dtype’.

34.22.4.5 pandas.api.extensions.ExtensionDtype.construct_from_string

classmethod ExtensionDtype.construct_from_string(string)
Attempt to construct this type from a string.

Parameters

2402 Chapter 34. API Reference

https://docs.scipy.org/doc/numpy/reference/generated/numpy.dtype.kind.html#numpy.dtype.kind

pandas: powerful Python data analysis toolkit, Release 0.23.4

string [str]

Returns

self [instance of ‘cls’]

Raises TypeError

If a class cannot be constructed from this ‘string’.

Examples

If the extension dtype can be constructed without any arguments, the following may be an adequate
implementation.

>>> @classmethod
... def construct_from_string(cls, string)
... if string == cls.name:
... return cls()
... else:
... raise TypeError("Cannot construct a '{}' from "
... "'{}'".format(cls, string))

34.22.4.6 pandas.api.extensions.ExtensionDtype.is_dtype

classmethod ExtensionDtype.is_dtype(dtype)
Check if we match ‘dtype’.

Parameters dtype : object

The object to check.

Returns

is_dtype [bool]

Notes

The default implementation is True if

1. cls.construct_from_string(dtype) is an instance of cls.

2. dtype is an object and is an instance of cls

3. dtype has a dtype attribute, and any of the above conditions is true for dtype.dtype.

34.22.5 pandas.api.extensions.ExtensionArray

class pandas.api.extensions.ExtensionArray
Abstract base class for custom 1-D array types.

pandas will recognize instances of this class as proper arrays with a custom type and will not attempt to coerce
them to objects. They may be stored directly inside a DataFrame or Series.

New in version 0.23.0.

34.22. Extensions 2403

pandas: powerful Python data analysis toolkit, Release 0.23.4

Notes

The interface includes the following abstract methods that must be implemented by subclasses:

• _from_sequence

• _from_factorized

• __getitem__

• __len__

• dtype

• nbytes

• isna

• take

• copy

• _concat_same_type

An additional method is available to satisfy pandas’ internal, private block API.

• _formatting_values

Some methods require casting the ExtensionArray to an ndarray of Python objects with self.
astype(object), which may be expensive. When performance is a concern, we highly recommend over-
riding the following methods:

• fillna

• unique

• factorize / _values_for_factorize

• argsort / _values_for_argsort

This class does not inherit from ‘abc.ABCMeta’ for performance reasons. Methods and properties required by
the interface raise pandas.errors.AbstractMethodError and no register method is provided for
registering virtual subclasses.

ExtensionArrays are limited to 1 dimension.

They may be backed by none, one, or many NumPy arrays. For example, pandas.Categorical is an
extension array backed by two arrays, one for codes and one for categories. An array of IPv6 address may
be backed by a NumPy structured array with two fields, one for the lower 64 bits and one for the upper 64
bits. Or they may be backed by some other storage type, like Python lists. Pandas makes no assumptions on
how the data are stored, just that it can be converted to a NumPy array. The ExtensionArray interface does not
impose any rules on how this data is stored. However, currently, the backing data cannot be stored in attributes
called .values or ._values to ensure full compatibility with pandas internals. But other names as .data,
._data, ._items, . . . can be freely used.

Attributes

dtype An instance of ‘ExtensionDtype’.
nbytes The number of bytes needed to store this object in

memory.
Continued on next page

2404 Chapter 34. API Reference

pandas: powerful Python data analysis toolkit, Release 0.23.4

Table 191 – continued from previous page
ndim Extension Arrays are only allowed to be 1-

dimensional.
shape Return a tuple of the array dimensions.

34.22.5.1 pandas.api.extensions.ExtensionArray.dtype

ExtensionArray.dtype
An instance of ‘ExtensionDtype’.

34.22.5.2 pandas.api.extensions.ExtensionArray.nbytes

ExtensionArray.nbytes
The number of bytes needed to store this object in memory.

34.22.5.3 pandas.api.extensions.ExtensionArray.ndim

ExtensionArray.ndim
Extension Arrays are only allowed to be 1-dimensional.

34.22.5.4 pandas.api.extensions.ExtensionArray.shape

ExtensionArray.shape
Return a tuple of the array dimensions.

Methods

argsort([ascending, kind]) Return the indices that would sort this array.
astype(dtype[, copy]) Cast to a NumPy array with ‘dtype’.
copy([deep]) Return a copy of the array.
factorize([na_sentinel]) Encode the extension array as an enumerated type.
fillna([value, method, limit]) Fill NA/NaN values using the specified method.
isna() Boolean NumPy array indicating if each value is

missing.
take(indices[, allow_fill, fill_value]) Take elements from an array.
unique() Compute the ExtensionArray of unique values.

34.22.5.5 pandas.api.extensions.ExtensionArray.argsort

ExtensionArray.argsort(ascending=True, kind=’quicksort’, *args, **kwargs)
Return the indices that would sort this array.

Parameters ascending : bool, default True

Whether the indices should result in an ascending or descending sort.

kind : {‘quicksort’, ‘mergesort’, ‘heapsort’}, optional

Sorting algorithm.

*args, **kwargs:

34.22. Extensions 2405

pandas: powerful Python data analysis toolkit, Release 0.23.4

passed through to numpy.argsort().

Returns index_array : ndarray

Array of indices that sort self.

See also:

numpy.argsort Sorting implementation used internally.

34.22.5.6 pandas.api.extensions.ExtensionArray.astype

ExtensionArray.astype(dtype, copy=True)
Cast to a NumPy array with ‘dtype’.

Parameters dtype : str or dtype

Typecode or data-type to which the array is cast.

copy : bool, default True

Whether to copy the data, even if not necessary. If False, a copy is made only if
the old dtype does not match the new dtype.

Returns array : ndarray

NumPy ndarray with ‘dtype’ for its dtype.

34.22.5.7 pandas.api.extensions.ExtensionArray.copy

ExtensionArray.copy(deep=False)
Return a copy of the array.

Parameters deep : bool, default False

Also copy the underlying data backing this array.

Returns

ExtensionArray

34.22.5.8 pandas.api.extensions.ExtensionArray.factorize

ExtensionArray.factorize(na_sentinel=-1)
Encode the extension array as an enumerated type.

Parameters na_sentinel : int, default -1

Value to use in the labels array to indicate missing values.

Returns labels : ndarray

An integer NumPy array that’s an indexer into the original ExtensionArray.

uniques : ExtensionArray

An ExtensionArray containing the unique values of self.

Note: uniques will not contain an entry for the NA value of the ExtensionArray
if there are any missing values present in self.

2406 Chapter 34. API Reference

https://docs.scipy.org/doc/numpy/reference/generated/numpy.argsort.html#numpy.argsort
https://docs.scipy.org/doc/numpy/reference/generated/numpy.argsort.html#numpy.argsort

pandas: powerful Python data analysis toolkit, Release 0.23.4

See also:

pandas.factorize Top-level factorize method that dispatches here.

Notes

pandas.factorize() offers a sort keyword as well.

34.22.5.9 pandas.api.extensions.ExtensionArray.fillna

ExtensionArray.fillna(value=None, method=None, limit=None)
Fill NA/NaN values using the specified method.

Parameters value : scalar, array-like

If a scalar value is passed it is used to fill all missing values. Alternatively, an
array-like ‘value’ can be given. It’s expected that the array-like have the same
length as ‘self’.

method : {‘backfill’, ‘bfill’, ‘pad’, ‘ffill’, None}, default None

Method to use for filling holes in reindexed Series pad / ffill: propagate last valid
observation forward to next valid backfill / bfill: use NEXT valid observation to
fill gap

limit : int, default None

If method is specified, this is the maximum number of consecutive NaN values to
forward/backward fill. In other words, if there is a gap with more than this number
of consecutive NaNs, it will only be partially filled. If method is not specified,
this is the maximum number of entries along the entire axis where NaNs will be
filled.

Returns

filled [ExtensionArray with NA/NaN filled]

34.22.5.10 pandas.api.extensions.ExtensionArray.isna

ExtensionArray.isna()
Boolean NumPy array indicating if each value is missing.

This should return a 1-D array the same length as ‘self’.

34.22.5.11 pandas.api.extensions.ExtensionArray.take

ExtensionArray.take(indices, allow_fill=False, fill_value=None)
Take elements from an array.

Parameters indices : sequence of integers

Indices to be taken.

allow_fill : bool, default False

How to handle negative values in indices.

34.22. Extensions 2407

pandas: powerful Python data analysis toolkit, Release 0.23.4

• False: negative values in indices indicate positional indices from the right (the
default). This is similar to numpy.take().

• True: negative values in indices indicate missing values. These values are set
to fill_value. Any other other negative values raise a ValueError.

fill_value : any, optional

Fill value to use for NA-indices when allow_fill is True. This may be None,
in which case the default NA value for the type, self.dtype.na_value, is
used.

For many ExtensionArrays, there will be two representations of fill_value: a user-
facing “boxed” scalar, and a low-level physical NA value. fill_value should be the
user-facing version, and the implementation should handle translating that to the
physical version for processing the take if nescessary.

Returns

ExtensionArray

Raises IndexError

When the indices are out of bounds for the array.

ValueError

When indices contains negative values other than -1 and allow_fill is True.

See also:

numpy.take, pandas.api.extensions.take

Notes

ExtensionArray.take is called by Series.__getitem__, .loc, iloc, when indices is a sequence of
values. Additionally, it’s called by Series.reindex(), or any other method that causes realignemnt,
with a fill_value.

Examples

Here’s an example implementation, which relies on casting the extension array to object dtype. This uses
the helper method pandas.api.extensions.take().

def take(self, indices, allow_fill=False, fill_value=None):
from pandas.core.algorithms import take

If the ExtensionArray is backed by an ndarray, then
just pass that here instead of coercing to object.
data = self.astype(object)

if allow_fill and fill_value is None:
fill_value = self.dtype.na_value

fill value should always be translated from the scalar
type for the array, to the physical storage type for
the data, before passing to take.

result = take(data, indices, fill_value=fill_value,
(continues on next page)

2408 Chapter 34. API Reference

https://docs.scipy.org/doc/numpy/reference/generated/numpy.take.html#numpy.take
https://docs.scipy.org/doc/numpy/reference/generated/numpy.take.html#numpy.take

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

allow_fill=allow_fill)
return self._from_sequence(result)

34.22.5.12 pandas.api.extensions.ExtensionArray.unique

ExtensionArray.unique()
Compute the ExtensionArray of unique values.

Returns

uniques [ExtensionArray]

34.22.6 pandas.Index.asi8

Index.asi8 = None

34.22.7 pandas.Index.holds_integer

Index.holds_integer()

34.22.8 pandas.Index.is_type_compatible

Index.is_type_compatible(kind)

34.22.9 pandas.Index.nlevels

Index.nlevels

34.22.10 pandas.Index.sort

Index.sort(*args, **kwargs)

34.22.11 pandas.Panel.agg

Panel.agg(func, *args, **kwargs)

34.22.12 pandas.Panel.aggregate

Panel.aggregate(func, *args, **kwargs)

34.22.13 pandas.Panel.is_copy

Panel.is_copy

34.22. Extensions 2409

pandas: powerful Python data analysis toolkit, Release 0.23.4

34.22.14 pandas.Series.imag

Series.imag

34.22.15 pandas.Series.real

Series.real

2410 Chapter 34. API Reference

CHAPTER

THIRTYFIVE

DEVELOPER

This section will focus on downstream applications of pandas.

35.1 Storing pandas DataFrame objects in Apache Parquet format

The Apache Parquet format provides key-value metadata at the file and column level, stored in the footer of the Parquet
file:

5: optional list<KeyValue> key_value_metadata

where KeyValue is

struct KeyValue {
1: required string key
2: optional string value

}

So that a pandas.DataFrame can be faithfully reconstructed, we store a pandas metadata key in the
FileMetaData with the value stored as :

{'index_columns': ['__index_level_0__', '__index_level_1__', ...],
'column_indexes': [<ci0>, <ci1>, ..., <ciN>],
'columns': [<c0>, <c1>, ...],
'pandas_version': $VERSION}

Here, <c0>/<ci0> and so forth are dictionaries containing the metadata for each column. This has JSON form:

{'name': column_name,
'pandas_type': pandas_type,
'numpy_type': numpy_type,
'metadata': metadata}

pandas_type is the logical type of the column, and is one of:

• Boolean: 'bool'

• Integers: 'int8', 'int16', 'int32', 'int64', 'uint8', 'uint16', 'uint32',
'uint64'

• Floats: 'float16', 'float32', 'float64'

• Date and Time Types: 'datetime', 'datetimetz', 'timedelta'

• String: 'unicode', 'bytes'

2411

https://github.com/apache/parquet-format

pandas: powerful Python data analysis toolkit, Release 0.23.4

• Categorical: 'categorical'

• Other Python objects: 'object'

The numpy_type is the physical storage type of the column, which is the result of str(dtype) for the underlying
NumPy array that holds the data. So for datetimetz this is datetime64[ns] and for categorical, it may be any
of the supported integer categorical types.

The metadata field is None except for:

• datetimetz: {'timezone': zone, 'unit': 'ns'}, e.g. {'timezone', 'America/
New_York', 'unit': 'ns'}. The 'unit' is optional, and if omitted it is assumed to be nanoseconds.

• categorical: {'num_categories': K, 'ordered': is_ordered, 'type': $TYPE}

– Here 'type' is optional, and can be a nested pandas type specification here (but not categorical)

• unicode: {'encoding': encoding}

– The encoding is optional, and if not present is UTF-8

• object: {'encoding': encoding}. Objects can be serialized and stored in BYTE_ARRAY Parquet
columns. The encoding can be one of:

– 'pickle'

– 'msgpack'

– 'bson'

– 'json'

• timedelta: {'unit': 'ns'}. The 'unit' is optional, and if omitted it is assumed to be nanoseconds.
This metadata is optional altogether

For types other than these, the 'metadata' key can be omitted. Implementations can assume None if the key is not
present.

As an example of fully-formed metadata:

{'index_columns': ['__index_level_0__'],
'column_indexes': [

{'name': None,
'pandas_type': 'string',
'numpy_type': 'object',
'metadata': None}

],
'columns': [

{'name': 'c0',
'pandas_type': 'int8',
'numpy_type': 'int8',
'metadata': None},

{'name': 'c1',
'pandas_type': 'bytes',
'numpy_type': 'object',
'metadata': None},

{'name': 'c2',
'pandas_type': 'categorical',
'numpy_type': 'int16',
'metadata': {'num_categories': 1000, 'ordered': False}},

{'name': 'c3',
'pandas_type': 'datetimetz',
'numpy_type': 'datetime64[ns]',

(continues on next page)

2412 Chapter 35. Developer

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

'metadata': {'timezone': 'America/Los_Angeles'}},
{'name': 'c4',
'pandas_type': 'object',
'numpy_type': 'object',
'metadata': {'encoding': 'pickle'}},

{'name': '__index_level_0__',
'pandas_type': 'int64',
'numpy_type': 'int64',
'metadata': None}

],
'pandas_version': '0.20.0'}

35.1. Storing pandas DataFrame objects in Apache Parquet format 2413

pandas: powerful Python data analysis toolkit, Release 0.23.4

2414 Chapter 35. Developer

CHAPTER

THIRTYSIX

INTERNALS

This section will provide a look into some of pandas internals. It’s primarily intended for developers of pandas itself.

36.1 Indexing

In pandas there are a few objects implemented which can serve as valid containers for the axis labels:

• Index: the generic “ordered set” object, an ndarray of object dtype assuming nothing about its contents. The
labels must be hashable (and likely immutable) and unique. Populates a dict of label to location in Cython to do
O(1) lookups.

• Int64Index: a version of Index highly optimized for 64-bit integer data, such as time stamps

• Float64Index: a version of Index highly optimized for 64-bit float data

• MultiIndex: the standard hierarchical index object

• DatetimeIndex: An Index object with Timestamp boxed elements (impl are the int64 values)

• TimedeltaIndex: An Index object with Timedelta boxed elements (impl are the in64 values)

• PeriodIndex: An Index object with Period elements

There are functions that make the creation of a regular index easy:

• date_range: fixed frequency date range generated from a time rule or DateOffset. An ndarray of Python
datetime objects

• period_range: fixed frequency date range generated from a time rule or DateOffset. An ndarray of Period
objects, representing Timespans

The motivation for having an Index class in the first place was to enable different implementations of indexing.
This means that it’s possible for you, the user, to implement a custom Index subclass that may be better suited to a
particular application than the ones provided in pandas.

From an internal implementation point of view, the relevant methods that an Index must define are one or more of
the following (depending on how incompatible the new object internals are with the Index functions):

• get_loc: returns an “indexer” (an integer, or in some cases a slice object) for a label

• slice_locs: returns the “range” to slice between two labels

• get_indexer: Computes the indexing vector for reindexing / data alignment purposes. See the source /
docstrings for more on this

• get_indexer_non_unique: Computes the indexing vector for reindexing / data alignment purposes when
the index is non-unique. See the source / docstrings for more on this

• reindex: Does any pre-conversion of the input index then calls get_indexer

2415

pandas: powerful Python data analysis toolkit, Release 0.23.4

• union, intersection: computes the union or intersection of two Index objects

• insert: Inserts a new label into an Index, yielding a new object

• delete: Delete a label, yielding a new object

• drop: Deletes a set of labels

• take: Analogous to ndarray.take

36.1.1 MultiIndex

Internally, the MultiIndex consists of a few things: the levels, the integer labels, and the level names:

In [1]: index = pd.MultiIndex.from_product([range(3), ['one', 'two']], names=['first',
→˓ 'second'])

In [2]: index
Out[2]:
MultiIndex(levels=[[0, 1, 2], ['one', 'two']],

labels=[[0, 0, 1, 1, 2, 2], [0, 1, 0, 1, 0, 1]],
names=['first', 'second'])

In [3]: index.levels
\\Out[3]:
→˓FrozenList([[0, 1, 2], ['one', 'two']])

In [4]: index.labels
\\Out[4]:
→˓FrozenList([[0, 0, 1, 1, 2, 2], [0, 1, 0, 1, 0, 1]])

In [5]: index.names
\\\Out[5]:
→˓FrozenList(['first', 'second'])

You can probably guess that the labels determine which unique element is identified with that location at each layer
of the index. It’s important to note that sortedness is determined solely from the integer labels and does not check
(or care) whether the levels themselves are sorted. Fortunately, the constructors from_tuples and from_arrays
ensure that this is true, but if you compute the levels and labels yourself, please be careful.

36.1.2 Values

Pandas extends NumPy’s type system with custom types, like Categorical or datetimes with a timezone, so we
have multiple notions of “values”. For 1-D containers (Index classes and Series) we have the following conven-
tion:

• cls._ndarray_values is always a NumPy ndarray. Ideally, _ndarray_values is cheap to compute.
For example, for a Categorical, this returns the codes, not the array of objects.

• cls._values refers is the “best possible” array. This could be an ndarray, ExtensionArray, or
in Index subclass (note: we’re in the process of removing the index subclasses here so that it’s always an
ndarray or ExtensionArray).

So, for example, Series[category]._values is a Categorical, while Series[category].
_ndarray_values is the underlying codes.

2416 Chapter 36. Internals

pandas: powerful Python data analysis toolkit, Release 0.23.4

36.2 Subclassing pandas Data Structures

This section has been moved to Subclassing pandas Data Structures.

36.2. Subclassing pandas Data Structures 2417

pandas: powerful Python data analysis toolkit, Release 0.23.4

2418 Chapter 36. Internals

CHAPTER

THIRTYSEVEN

EXTENDING PANDAS

While pandas provides a rich set of methods, containers, and data types, your needs may not be fully satisfied. Pandas
offers a few options for extending pandas.

37.1 Registering Custom Accessors

Libraries can use the decorators pandas.api.extensions.register_dataframe_accessor(),
pandas.api.extensions.register_series_accessor(), and pandas.api.extensions.
register_index_accessor(), to add additional “namespaces” to pandas objects. All of these follow a similar
convention: you decorate a class, providing the name of attribute to add. The class’s __init__ method gets the
object being decorated. For example:

@pd.api.extensions.register_dataframe_accessor("geo")
class GeoAccessor(object):

def __init__(self, pandas_obj):
self._obj = pandas_obj

@property
def center(self):

return the geographic center point of this DataFrame
lat = self._obj.latitude
lon = self._obj.longitude
return (float(lon.mean()), float(lat.mean()))

def plot(self):
plot this array's data on a map, e.g., using Cartopy
pass

Now users can access your methods using the geo namespace:

>>> ds = pd.DataFrame({'longitude': np.linspace(0, 10),
... 'latitude': np.linspace(0, 20)})
>>> ds.geo.center
(5.0, 10.0)
>>> ds.geo.plot()
plots data on a map

This can be a convenient way to extend pandas objects without subclassing them. If you write a custom accessor, make
a pull request adding it to our pandas Ecosystem page.

2419

pandas: powerful Python data analysis toolkit, Release 0.23.4

37.2 Extension Types

New in version 0.23.0.

Warning: The pandas.api.extension.ExtensionDtype and pandas.api.extension.
ExtensionArray APIs are new and experimental. They may change between versions without warning.

Pandas defines an interface for implementing data types and arrays that extend NumPy’s type system. Pandas itself
uses the extension system for some types that aren’t built into NumPy (categorical, period, interval, datetime with
timezone).

Libraries can define a custom array and data type. When pandas encounters these objects, they will be handled properly
(i.e. not converted to an ndarray of objects). Many methods like pandas.isna() will dispatch to the extension
type’s implementation.

If you’re building a library that implements the interface, please publicize it on Extension Data Types.

The interface consists of two classes.

37.2.1 ExtensionDtype

A pandas.api.extension.ExtensionDtype is similar to a numpy.dtype object. It describes the data
type. Implementors are responsible for a few unique items like the name.

One particularly important item is the type property. This should be the class that is the scalar type for your data. For
example, if you were writing an extension array for IP Address data, this might be ipaddress.IPv4Address.

See the extension dtype source for interface definition.

37.2.2 ExtensionArray

This class provides all the array-like functionality. ExtensionArrays are limited to 1 dimension. An ExtensionArray is
linked to an ExtensionDtype via the dtype attribute.

Pandas makes no restrictions on how an extension array is created via its __new__ or __init__, and puts no
restrictions on how you store your data. We do require that your array be convertible to a NumPy array, even if this is
relatively expensive (as it is for Categorical).

They may be backed by none, one, or many NumPy arrays. For example, pandas.Categorical is an extension
array backed by two arrays, one for codes and one for categories. An array of IPv6 addresses may be backed by a
NumPy structured array with two fields, one for the lower 64 bits and one for the upper 64 bits. Or they may be backed
by some other storage type, like Python lists.

See the extension array source for the interface definition. The docstrings and comments contain guidance for properly
implementing the interface.

We provide a test suite for ensuring that your extension arrays satisfy the expected behavior. To use the test suite,
you must provide several pytest fixtures and inherit from the base test class. The required fixtures are found in
https://github.com/pandas-dev/pandas/blob/master/pandas/tests/extension/conftest.py.

To use a test, subclass it:

from pandas.tests.extension import base

(continues on next page)

2420 Chapter 37. Extending Pandas

https://github.com/pandas-dev/pandas/blob/master/pandas/core/dtypes/base.py
https://github.com/pandas-dev/pandas/blob/master/pandas/core/arrays/base.py
https://github.com/pandas-dev/pandas/blob/master/pandas/tests/extension/conftest.py

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

class TestConstructors(base.BaseConstructorsTests):
pass

See https://github.com/pandas-dev/pandas/blob/master/pandas/tests/extension/base/__init__.py for a list of all the tests
available.

37.3 Subclassing pandas Data Structures

Warning: There are some easier alternatives before considering subclassing pandas data structures.

1. Extensible method chains with pipe

2. Use composition. See here.

3. Extending by registering an accessor

4. Extending by extension type

This section describes how to subclass pandas data structures to meet more specific needs. There are two points that
need attention:

1. Override constructor properties.

2. Define original properties

Note: You can find a nice example in geopandas project.

37.3.1 Override Constructor Properties

Each data structure has several constructor properties for returning a new data structure as the result of an operation.
By overriding these properties, you can retain subclasses through pandas data manipulations.

There are 3 constructor properties to be defined:

• _constructor: Used when a manipulation result has the same dimesions as the original.

• _constructor_sliced: Used when a manipulation result has one lower dimension(s) as the original, such
as DataFrame single columns slicing.

• _constructor_expanddim: Used when a manipulation result has one higher dimension as the original,
such as Series.to_frame() and DataFrame.to_panel().

Following table shows how pandas data structures define constructor properties by default.

Property Attributes Series DataFrame
_constructor Series DataFrame
_constructor_sliced NotImplementedError Series
_constructor_expanddim DataFrame Panel

Below example shows how to define SubclassedSeries and SubclassedDataFrame overriding constructor
properties.

37.3. Subclassing pandas Data Structures 2421

https://github.com/pandas-dev/pandas/blob/master/pandas/tests/extension/base/__init__.py
http://en.wikipedia.org/wiki/Composition_over_inheritance
https://github.com/geopandas/geopandas

pandas: powerful Python data analysis toolkit, Release 0.23.4

class SubclassedSeries(Series):

@property
def _constructor(self):

return SubclassedSeries

@property
def _constructor_expanddim(self):

return SubclassedDataFrame

class SubclassedDataFrame(DataFrame):

@property
def _constructor(self):

return SubclassedDataFrame

@property
def _constructor_sliced(self):

return SubclassedSeries

>>> s = SubclassedSeries([1, 2, 3])
>>> type(s)
<class '__main__.SubclassedSeries'>

>>> to_framed = s.to_frame()
>>> type(to_framed)
<class '__main__.SubclassedDataFrame'>

>>> df = SubclassedDataFrame({'A', [1, 2, 3], 'B': [4, 5, 6], 'C': [7, 8, 9]})
>>> df

A B C
0 1 4 7
1 2 5 8
2 3 6 9

>>> type(df)
<class '__main__.SubclassedDataFrame'>

>>> sliced1 = df[['A', 'B']]
>>> sliced1

A B
0 1 4
1 2 5
2 3 6
>>> type(sliced1)
<class '__main__.SubclassedDataFrame'>

>>> sliced2 = df['A']
>>> sliced2
0 1
1 2
2 3
Name: A, dtype: int64
>>> type(sliced2)
<class '__main__.SubclassedSeries'>

2422 Chapter 37. Extending Pandas

pandas: powerful Python data analysis toolkit, Release 0.23.4

37.3.2 Define Original Properties

To let original data structures have additional properties, you should let pandas know what properties are added.
pandas maps unknown properties to data names overriding __getattribute__. Defining original properties
can be done in one of 2 ways:

1. Define _internal_names and _internal_names_set for temporary properties which WILL NOT be
passed to manipulation results.

2. Define _metadata for normal properties which will be passed to manipulation results.

Below is an example to define two original properties, “internal_cache” as a temporary property and “added_property”
as a normal property

class SubclassedDataFrame2(DataFrame):

temporary properties
_internal_names = pd.DataFrame._internal_names + ['internal_cache']
_internal_names_set = set(_internal_names)

normal properties
_metadata = ['added_property']

@property
def _constructor(self):

return SubclassedDataFrame2

>>> df = SubclassedDataFrame2({'A': [1, 2, 3], 'B': [4, 5, 6], 'C': [7, 8, 9]})
>>> df

A B C
0 1 4 7
1 2 5 8
2 3 6 9

>>> df.internal_cache = 'cached'
>>> df.added_property = 'property'

>>> df.internal_cache
cached
>>> df.added_property
property

properties defined in _internal_names is reset after manipulation
>>> df[['A', 'B']].internal_cache
AttributeError: 'SubclassedDataFrame2' object has no attribute 'internal_cache'

properties defined in _metadata are retained
>>> df[['A', 'B']].added_property
property

37.3. Subclassing pandas Data Structures 2423

pandas: powerful Python data analysis toolkit, Release 0.23.4

2424 Chapter 37. Extending Pandas

CHAPTER

THIRTYEIGHT

RELEASE NOTES

This is the list of changes to pandas between each release. For full details, see the commit logs at http://github.com/
pandas-dev/pandas

What is it

pandas is a Python package providing fast, flexible, and expressive data structures designed to make working with
“relational” or “labeled” data both easy and intuitive. It aims to be the fundamental high-level building block for doing
practical, real world data analysis in Python. Additionally, it has the broader goal of becoming the most powerful and
flexible open source data analysis / manipulation tool available in any language.

Where to get it

• Source code: http://github.com/pandas-dev/pandas

• Binary installers on PyPI: https://pypi.org/project/pandas

• Documentation: http://pandas.pydata.org

38.1 pandas 0.23.2

Release date: July 5, 2018

This is a minor bug-fix release in the 0.23.x series and includes some small regression fixes and bug fixes.

See the full whatsnew for a list of all the changes.

38.1.1 Thanks

A total of 17 people contributed to this release. People with a “+” by their names contributed a patch for the first time.

• David Krych

• Jacopo Rota +

• Jeff Reback

• Jeremy Schendel

• Joris Van den Bossche

• Kalyan Gokhale

• Matthew Roeschke

• Michael Odintsov +

• Ming Li

2425

http://github.com/pandas-dev/pandas
http://github.com/pandas-dev/pandas
http://github.com/pandas-dev/pandas
https://pypi.org/project/pandas
http://pandas.pydata.org

pandas: powerful Python data analysis toolkit, Release 0.23.4

• Pietro Battiston

• Tom Augspurger

• Uddeshya Singh

• Vu Le +

• alimcmaster1 +

• david-liu-brattle-1 +

• gfyoung

• jbrockmendel

38.2 pandas 0.23.1

Release date: June 12, 2018

This is a minor release from 0.23.0 and includes a number of bug fixes and performance improvements.

See the full whatsnew for a list of all the changes.

38.2.1 Thanks

A total of 30 people contributed to this release. People with a “+” by their names contributed a patch for the first time.

• Adam J. Stewart

• Adam Kim +

• Aly Sivji

• Chalmer Lowe +

• Damini Satya +

• Dr. Irv

• Gabe Fernando +

• Giftlin Rajaiah

• Jeff Reback

• Jeremy Schendel +

• Joris Van den Bossche

• Kalyan Gokhale +

• Kevin Sheppard

• Matthew Roeschke

• Max Kanter +

• Ming Li

• Pyry Kovanen +

• Stefano Cianciulli

• Tom Augspurger

2426 Chapter 38. Release Notes

pandas: powerful Python data analysis toolkit, Release 0.23.4

• Uddeshya Singh +

• Wenhuan

• William Ayd

• chris-b1

• gfyoung

• h-vetinari

• nprad +

• ssikdar1 +

• tmnhat2001

• topper-123

• zertrin +

38.3 pandas 0.23.0

Release date: May 15, 2018

This is a major release from 0.22.0 and includes a number of API changes, new features, enhancements, and perfor-
mance improvements along with a large number of bug fixes. We recommend that all users upgrade to this version.

Highlights include:

• Round-trippable JSON format with ‘table’ orient.

• Instantiation from dicts respects order for Python 3.6+.

• Dependent column arguments for assign.

• Merging / sorting on a combination of columns and index levels.

• Extending Pandas with custom types.

• Excluding unobserved categories from groupby.

• Changes to make output shape of DataFrame.apply consistent.

See the full whatsnew for a list of all the changes.

38.3.1 Thanks

A total of 328 people contributed to this release. People with a “+” by their names contributed a patch for the first
time.

• Aaron Critchley

• AbdealiJK +

• Adam Hooper +

• Albert Villanova del Moral

• Alejandro Giacometti +

• Alejandro Hohmann +

• Alex Rychyk

38.3. pandas 0.23.0 2427

pandas: powerful Python data analysis toolkit, Release 0.23.4

• Alexander Buchkovsky

• Alexander Lenail +

• Alexander Michael Schade

• Aly Sivji +

• Andreas Költringer +

• Andrew

• Andrew Bui +

• András Novoszáth +

• Andy Craze +

• Andy R. Terrel

• Anh Le +

• Anil Kumar Pallekonda +

• Antoine Pitrou +

• Antonio Linde +

• Antonio Molina +

• Antonio Quinonez +

• Armin Varshokar +

• Artem Bogachev +

• Avi Sen +

• Azeez Oluwafemi +

• Ben Auffarth +

• Bernhard Thiel +

• Bhavesh Poddar +

• BielStela +

• Blair +

• Bob Haffner

• Brett Naul +

• Brock Mendel

• Bryce Guinta +

• Carlos Eduardo Moreira dos Santos +

• Carlos García Márquez +

• Carol Willing

• Cheuk Ting Ho +

• Chitrank Dixit +

• Chris

• Chris Burr +

2428 Chapter 38. Release Notes

pandas: powerful Python data analysis toolkit, Release 0.23.4

• Chris Catalfo +

• Chris Mazzullo

• Christian Chwala +

• Cihan Ceyhan +

• Clemens Brunner

• Colin +

• Cornelius Riemenschneider

• Crystal Gong +

• DaanVanHauwermeiren

• Dan Dixey +

• Daniel Frank +

• Daniel Garrido +

• Daniel Sakuma +

• DataOmbudsman +

• Dave Hirschfeld

• Dave Lewis +

• David Adrián Cañones Castellano +

• David Arcos +

• David C Hall +

• David Fischer

• David Hoese +

• David Lutz +

• David Polo +

• David Stansby

• Dennis Kamau +

• Dillon Niederhut

• Dimitri +

• Dr. Irv

• Dror Atariah

• Eric Chea +

• Eric Kisslinger

• Eric O. LEBIGOT (EOL) +

• FAN-GOD +

• Fabian Retkowski +

• Fer Sar +

• Gabriel de Maeztu +

38.3. pandas 0.23.0 2429

pandas: powerful Python data analysis toolkit, Release 0.23.4

• Gianpaolo Macario +

• Giftlin Rajaiah

• Gilberto Olimpio +

• Gina +

• Gjelt +

• Graham Inggs +

• Grant Roch

• Grant Smith +

• Grzegorz Konefał +

• Guilherme Beltramini

• HagaiHargil +

• Hamish Pitkeathly +

• Hammad Mashkoor +

• Hannah Ferchland +

• Hans

• Haochen Wu +

• Hissashi Rocha +

• Iain Barr +

• Ibrahim Sharaf ElDen +

• Ignasi Fosch +

• Igor Conrado Alves de Lima +

• Igor Shelvinskyi +

• Imanflow +

• Ingolf Becker

• Israel Saeta Pérez

• Iva Koevska +

• Jakub Nowacki +

• Jan F-F +

• Jan Koch +

• Jan Werkmann

• Janelle Zoutkamp +

• Jason Bandlow +

• Jaume Bonet +

• Jay Alammar +

• Jeff Reback

• JennaVergeynst

2430 Chapter 38. Release Notes

pandas: powerful Python data analysis toolkit, Release 0.23.4

• Jimmy Woo +

• Jing Qiang Goh +

• Joachim Wagner +

• Joan Martin Miralles +

• Joel Nothman

• Joeun Park +

• John Cant +

• Johnny Metz +

• Jon Mease

• Jonas Schulze +

• Jongwony +

• Jordi Contestí +

• Joris Van den Bossche

• José F. R. Fonseca +

• Jovixe +

• Julio Martinez +

• Jörg Döpfert

• KOBAYASHI Ittoku +

• Kate Surta +

• Kenneth +

• Kevin Kuhl

• Kevin Sheppard

• Krzysztof Chomski

• Ksenia +

• Ksenia Bobrova +

• Kunal Gosar +

• Kurtis Kerstein +

• Kyle Barron +

• Laksh Arora +

• Laurens Geffert +

• Leif Walsh

• Liam Marshall +

• Liam3851 +

• Licht Takeuchi

• Liudmila +

• Ludovico Russo +

38.3. pandas 0.23.0 2431

pandas: powerful Python data analysis toolkit, Release 0.23.4

• Mabel Villalba +

• Manan Pal Singh +

• Manraj Singh

• Marc +

• Marc Garcia

• Marco Hemken +

• Maria del Mar Bibiloni +

• Mario Corchero +

• Mark Woodbridge +

• Martin Journois +

• Mason Gallo +

• Matias Heikkilä +

• Matt Braymer-Hayes

• Matt Kirk +

• Matt Maybeno +

• Matthew Kirk +

• Matthew Rocklin +

• Matthew Roeschke

• Matthias Bussonnier +

• Max Mikhaylov +

• Maxim Veksler +

• Maximilian Roos

• Maximiliano Greco +

• Michael Penkov

• Michael Röttger +

• Michael Selik +

• Michael Waskom

• Mie~~~

• Mike Kutzma +

• Ming Li +

• Mitar +

• Mitch Negus +

• Montana Low +

• Moritz Münst +

• Mortada Mehyar

• Myles Braithwaite +

2432 Chapter 38. Release Notes

pandas: powerful Python data analysis toolkit, Release 0.23.4

• Nate Yoder

• Nicholas Ursa +

• Nick Chmura

• Nikos Karagiannakis +

• Nipun Sadvilkar +

• Nis Martensen +

• Noah +

• Noémi Éltető +

• Olivier Bilodeau +

• Ondrej Kokes +

• Onno Eberhard +

• Paul Ganssle +

• Paul Mannino +

• Paul Reidy

• Paulo Roberto de Oliveira Castro +

• Pepe Flores +

• Peter Hoffmann

• Phil Ngo +

• Pietro Battiston

• Pranav Suri +

• Priyanka Ojha +

• Pulkit Maloo +

• README Bot +

• Ray Bell +

• Riccardo Magliocchetti +

• Ridhwan Luthra +

• Robert Meyer

• Robin

• Robin Kiplang’at +

• Rohan Pandit +

• Rok Mihevc +

• Rouz Azari

• Ryszard T. Kaleta +

• Sam Cohan

• Sam Foo

• Samir Musali +

38.3. pandas 0.23.0 2433

pandas: powerful Python data analysis toolkit, Release 0.23.4

• Samuel Sinayoko +

• Sangwoong Yoon

• SarahJessica +

• Sharad Vijalapuram +

• Shubham Chaudhary +

• SiYoungOh +

• Sietse Brouwer

• Simone Basso +

• Stefania Delprete +

• Stefano Cianciulli +

• Stephen Childs +

• StephenVoland +

• Stijn Van Hoey +

• Sven

• Talitha Pumar +

• Tarbo Fukazawa +

• Ted Petrou +

• Thomas A Caswell

• Tim Hoffmann +

• Tim Swast

• Tom Augspurger

• Tommy +

• Tulio Casagrande +

• Tushar Gupta +

• Tushar Mittal +

• Upkar Lidder +

• Victor Villas +

• Vince W +

• Vinícius Figueiredo +

• Vipin Kumar +

• WBare

• Wenhuan +

• Wes Turner

• William Ayd

• Wilson Lin +

• Xbar

2434 Chapter 38. Release Notes

pandas: powerful Python data analysis toolkit, Release 0.23.4

• Yaroslav Halchenko

• Yee Mey

• Yeongseon Choe +

• Yian +

• Yimeng Zhang

• ZhuBaohe +

• Zihao Zhao +

• adatasetaday +

• akielbowicz +

• akosel +

• alinde1 +

• amuta +

• bolkedebruin

• cbertinato

• cgohlke

• charlie0389 +

• chris-b1

• csfarkas +

• dajcs +

• deflatSOCO +

• derestle-htwg

• discort

• dmanikowski-reef +

• donK23 +

• elrubio +

• fivemok +

• fjdiod

• fjetter +

• froessler +

• gabrielclow

• gfyoung

• ghasemnaddaf

• h-vetinari +

• himanshu awasthi +

• ignamv +

• jayfoad +

38.3. pandas 0.23.0 2435

pandas: powerful Python data analysis toolkit, Release 0.23.4

• jazzmuesli +

• jbrockmendel

• jen w +

• jjames34 +

• joaoavf +

• joders +

• jschendel

• juan huguet +

• l736x +

• luzpaz +

• mdeboc +

• miguelmorin +

• miker985

• miquelcamprodon +

• orereta +

• ottiP +

• peterpanmj +

• rafarui +

• raph-m +

• readyready15728 +

• rmihael +

• samghelms +

• scriptomation +

• sfoo +

• stefansimik +

• stonebig

• tmnhat2001 +

• tomneep +

• topper-123

• tv3141 +

• verakai +

• xpvpc +

• zhanghui +

2436 Chapter 38. Release Notes

pandas: powerful Python data analysis toolkit, Release 0.23.4

38.4 pandas 0.22.0

Release date: December 29, 2017

This is a major release from 0.21.1 and includes a single, API-breaking change. We recommend that all users upgrade
to this version after carefully reading the release note.

The only changes are:

• The sum of an empty or all-NA Series is now 0

• The product of an empty or all-NA Series is now 1

• We’ve added a min_count parameter to .sum() and .prod() controlling the minimum number of valid
values for the result to be valid. If fewer than min_count non-NA values are present, the result is NA. The
default is 0. To return NaN, the 0.21 behavior, use min_count=1.

See the v0.22.0 Whatsnew overview for further explanation of all the places in the library this affects.

38.5 pandas 0.21.1

Release date: December 12, 2017

This is a minor bug-fix release in the 0.21.x series and includes some small regression fixes, bug fixes and performance
improvements. We recommend that all users upgrade to this version.

Highlights include:

• Temporarily restore matplotlib datetime plotting functionality. This should resolve issues for users who relied
implicitly on pandas to plot datetimes with matplotlib. See here.

• Improvements to the Parquet IO functions introduced in 0.21.0. See here.

See the v0.21.1 Whatsnew overview for an extensive list of all the changes for 0.21.1.

38.5.1 Thanks

A total of 46 people contributed to this release. People with a “+” by their names contributed a patch for the first time.

38.5.1.1 Contributors

• Aaron Critchley +

• Alex Rychyk

• Alexander Buchkovsky +

• Alexander Michael Schade +

• Chris Mazzullo

• Cornelius Riemenschneider +

• Dave Hirschfeld +

• David Fischer +

• David Stansby +

• Dror Atariah +

38.4. pandas 0.22.0 2437

pandas: powerful Python data analysis toolkit, Release 0.23.4

• Eric Kisslinger +

• Hans +

• Ingolf Becker +

• Jan Werkmann +

• Jeff Reback

• Joris Van den Bossche

• Jörg Döpfert +

• Kevin Kuhl +

• Krzysztof Chomski +

• Leif Walsh

• Licht Takeuchi

• Manraj Singh +

• Matt Braymer-Hayes +

• Michael Waskom +

• Mie~~~ +

• Peter Hoffmann +

• Robert Meyer +

• Sam Cohan +

• Sietse Brouwer +

• Sven +

• Tim Swast

• Tom Augspurger

• Wes Turner

• William Ayd +

• Yee Mey +

• bolkedebruin +

• cgohlke

• derestle-htwg +

• fjdiod +

• gabrielclow +

• gfyoung

• ghasemnaddaf +

• jbrockmendel

• jschendel

• miker985 +

• topper-123

2438 Chapter 38. Release Notes

pandas: powerful Python data analysis toolkit, Release 0.23.4

38.6 pandas 0.21.0

Release date: October 27, 2017

This is a major release from 0.20.3 and includes a number of API changes, deprecations, new features, enhancements,
and performance improvements along with a large number of bug fixes. We recommend that all users upgrade to this
version.

Highlights include:

• Integration with Apache Parquet, including a new top-level read_parquet() function and DataFrame.
to_parquet() method, see here.

• New user-facing pandas.api.types.CategoricalDtype for specifying categoricals independent of
the data, see here.

• The behavior of sum and prod on all-NaN Series/DataFrames is now consistent and no longer depends on
whether bottleneck is installed, and sum and prod on empty Series now return NaN instead of 0, see here.

• Compatibility fixes for pypy, see here.

• Additions to the drop, reindex and rename API to make them more consistent, see here.

• Addition of the new methods DataFrame.infer_objects (see here) and GroupBy.pipe (see here).

• Indexing with a list of labels, where one or more of the labels is missing, is deprecated and will raise a KeyError
in a future version, see here.

See the v0.21.0 Whatsnew overview for an extensive list of all enhancements and bugs that have been fixed in 0.21.0

38.6.1 Thanks

A total of 206 people contributed to this release. People with a “+” by their names contributed a patch for the first
time.

38.6.1.1 Contributors

• 3553x +

• Aaron Barber

• Adam Gleave +

• Adam Smith +

• AdamShamlian +

• Adrian Liaw +

• Alan Velasco +

• Alan Yee +

• Alex B +

• Alex Lubbock +

• Alex Marchenko +

• Alex Rychyk +

• Amol K +

38.6. pandas 0.21.0 2439

https://parquet.apache.org/
http://berkeleyanalytics.com/bottleneck

pandas: powerful Python data analysis toolkit, Release 0.23.4

• Andreas Winkler

• Andrew +

• Andrew

• André Jonasson +

• Becky Sweger

• Berkay +

• Bob Haffner +

• Bran Yang

• Brian Tu +

• Brock Mendel +

• Carol Willing +

• Carter Green +

• Chankey Pathak +

• Chris

• Chris Billington

• Chris Filo Gorgolewski +

• Chris Kerr

• Chris M +

• Chris Mazzullo +

• Christian Prinoth

• Christian Stade-Schuldt

• Christoph Moehl +

• DSM

• Daniel Chen +

• Daniel Grady

• Daniel Himmelstein

• Dave Willmer

• David Cook

• David Gwynne

• David Read +

• Dillon Niederhut +

• Douglas Rudd

• Eric Stein +

• Eric Wieser +

• Erik Fredriksen

• Florian Wilhelm +

2440 Chapter 38. Release Notes

pandas: powerful Python data analysis toolkit, Release 0.23.4

• Floris Kint +

• Forbidden Donut

• Gabe F +

• Giftlin +

• Giftlin Rajaiah +

• Giulio Pepe +

• Guilherme Beltramini

• Guillem Borrell +

• Hanmin Qin +

• Hendrik Makait +

• Hugues Valois

• Hussain Tamboli +

• Iva Miholic +

• Jan Novotný +

• Jan Rudolph

• Jean Helie +

• Jean-Baptiste Schiratti +

• Jean-Mathieu Deschenes

• Jeff Knupp +

• Jeff Reback

• Jeff Tratner

• JennaVergeynst

• JimStearns206

• Joel Nothman

• John W. O’Brien

• Jon Crall +

• Jon Mease

• Jonathan J. Helmus +

• Joris Van den Bossche

• JosephWagner

• Juarez Bochi

• Julian Kuhlmann +

• Karel De Brabandere

• Kassandra Keeton +

• Keiron Pizzey +

• Keith Webber

38.6. pandas 0.21.0 2441

pandas: powerful Python data analysis toolkit, Release 0.23.4

• Kernc

• Kevin Sheppard

• Kirk Hansen +

• Licht Takeuchi +

• Lucas Kushner +

• Mahdi Ben Jelloul +

• Makarov Andrey +

• Malgorzata Turzanska +

• Marc Garcia +

• Margaret Sy +

• MarsGuy +

• Matt Bark +

• Matthew Roeschke

• Matti Picus

• Mehmet Ali “Mali” Akmanalp

• Michael Gasvoda +

• Michael Penkov +

• Milo +

• Morgan Stuart +

• Morgan243 +

• Nathan Ford +

• Nick Eubank

• Nick Garvey +

• Oleg Shteynbuk +

• P-Tillmann +

• Pankaj Pandey

• Patrick Luo

• Patrick O’Melveny

• Paul Reidy +

• Paula +

• Peter Quackenbush

• Peter Yanovich +

• Phillip Cloud

• Pierre Haessig

• Pietro Battiston

• Pradyumna Reddy Chinthala

2442 Chapter 38. Release Notes

pandas: powerful Python data analysis toolkit, Release 0.23.4

• Prasanjit Prakash

• RobinFiveWords

• Ryan Hendrickson

• Sam Foo

• Sangwoong Yoon +

• Simon Gibbons +

• SimonBaron

• Steven Cutting +

• Sudeep +

• Sylvia +

• T N +

• Telt

• Thomas A Caswell

• Tim Swast +

• Tom Augspurger

• Tong SHEN

• Tuan +

• Utkarsh Upadhyay +

• Vincent La +

• Vivek +

• WANG Aiyong

• WBare

• Wes McKinney

• XF +

• Yi Liu +

• Yosuke Nakabayashi +

• aaron315 +

• abarber4gh +

• aernlund +

• agustín méndez +

• andymaheshw +

• ante328 +

• aviolov +

• bpraggastis

• cbertinato +

• cclauss +

38.6. pandas 0.21.0 2443

pandas: powerful Python data analysis toolkit, Release 0.23.4

• chernrick

• chris-b1

• dkamm +

• dwkenefick

• economy

• faic +

• fding253 +

• gfyoung

• guygoldberg +

• hhuuggoo +

• huashuai +

• ian

• iulia +

• jaredsnyder

• jbrockmendel +

• jdeschenes

• jebob +

• jschendel +

• keitakurita

• kernc +

• kiwirob +

• kjford

• linebp

• lloydkirk

• louispotok +

• majiang +

• manikbhandari +

• matthiashuschle +

• mattip

• maxwasserman +

• mjlove12 +

• nmartensen +

• pandas-docs-bot +

• parchd-1 +

• philipphanemann +

• rdk1024 +

2444 Chapter 38. Release Notes

pandas: powerful Python data analysis toolkit, Release 0.23.4

• reidy-p +

• ri938

• ruiann +

• rvernica +

• s-weigand +

• scotthavard92 +

• skwbc +

• step4me +

• tobycheese +

• topper-123 +

• tsdlovell

• ysau +

• zzgao +

38.7 pandas 0.20.0 / 0.20.1

Release date: May 5, 2017

This is a major release from 0.19.2 and includes a number of API changes, deprecations, new features, enhancements,
and performance improvements along with a large number of bug fixes. We recommend that all users upgrade to this
version.

Highlights include:

• New .agg() API for Series/DataFrame similar to the groupby-rolling-resample API’s, see here

• Integration with the feather-format, including a new top-level pd.read_feather() and
DataFrame.to_feather() method, see here.

• The .ix indexer has been deprecated, see here

• Panel has been deprecated, see here

• Addition of an IntervalIndex and Interval scalar type, see here

• Improved user API when grouping by index levels in .groupby(), see here

• Improved support for UInt64 dtypes, see here

• A new orient for JSON serialization, orient='table', that uses the Table Schema spec and that gives the
possibility for a more interactive repr in the Jupyter Notebook, see here

• Experimental support for exporting styled DataFrames (DataFrame.style) to Excel, see here

• Window binary corr/cov operations now return a MultiIndexed DataFrame rather than a Panel, as Panel is
now deprecated, see here

• Support for S3 handling now uses s3fs, see here

• Google BigQuery support now uses the pandas-gbq library, see here

38.7. pandas 0.20.0 / 0.20.1 2445

pandas: powerful Python data analysis toolkit, Release 0.23.4

See the v0.20.1 Whatsnew overview for an extensive list of all enhancements and bugs that have been fixed in 0.20.1.

Note: This is a combined release for 0.20.0 and 0.20.1. Version 0.20.1 contains one additional change for backwards-
compatibility with downstream projects using pandas’ utils routines. (GH16250)

38.7.1 Thanks

• abaldenko

• Adam J. Stewart

• Adrian

• adrian-stepien

• Ajay Saxena

• Akash Tandon

• Albert Villanova del Moral

• Aleksey Bilogur

• alexandercbooth

• Alexis Mignon

• Amol Kahat

• Andreas Winkler

• Andrew Kittredge

• Anthonios Partheniou

• Arco Bast

• Ashish Singal

• atbd

• bastewart

• Baurzhan Muftakhidinov

• Ben Kandel

• Ben Thayer

• Ben Welsh

• Bill Chambers

• bmagnusson

• Brandon M. Burroughs

• Brian

• Brian McFee

• carlosdanielcsantos

• Carlos Souza

• chaimdemulder

2446 Chapter 38. Release Notes

https://github.com/pandas-dev/pandas/issues/16250

pandas: powerful Python data analysis toolkit, Release 0.23.4

• Chris

• chris-b1

• Chris Ham

• Christopher C. Aycock

• Christoph Gohlke

• Christoph Paulik

• Chris Warth

• Clemens Brunner

• DaanVanHauwermeiren

• Daniel Himmelstein

• Dave Willmer

• David Cook

• David Gwynne

• David Hoffman

• David Krych

• dickreuter

• Diego Fernandez

• Dimitris Spathis

• discort

• Dmitry L

• Dody Suria Wijaya

• Dominik Stanczak

• Dr-Irv

• Dr. Irv

• dr-leo

• D.S. McNeil

• dubourg

• dwkenefick

• Elliott Sales de Andrade

• Ennemoser Christoph

• Francesc Alted

• Fumito Hamamura

• funnycrab

• gfyoung

• Giacomo Ferroni

• goldenbull

38.7. pandas 0.20.0 / 0.20.1 2447

pandas: powerful Python data analysis toolkit, Release 0.23.4

• Graham R. Jeffries

• Greg Williams

• Guilherme Beltramini

• Guilherme Samora

• Hao Wu

• Harshit Patni

• hesham.shabana@hotmail.com

• Ilya V. Schurov

• Iván Vallés Pérez

• Jackie Leng

• Jaehoon Hwang

• James Draper

• James Goppert

• James McBride

• James Santucci

• Jan Schulz

• Jeff Carey

• Jeff Reback

• JennaVergeynst

• Jim

• Jim Crist

• Joe Jevnik

• Joel Nothman

• John

• John Tucker

• John W. O’Brien

• John Zwinck

• jojomdt

• Jonathan de Bruin

• Jonathan Whitmore

• Jon Mease

• Jon M. Mease

• Joost Kranendonk

• Joris Van den Bossche

• Joshua Bradt

• Julian Santander

2448 Chapter 38. Release Notes

mailto:hesham.shabana@hotmail.com

pandas: powerful Python data analysis toolkit, Release 0.23.4

• Julien Marrec

• Jun Kim

• Justin Solinsky

• Kacawi

• Kamal Kamalaldin

• Kerby Shedden

• Kernc

• Keshav Ramaswamy

• Kevin Sheppard

• Kyle Kelley

• Larry Ren

• Leon Yin

• linebp

• Line Pedersen

• Lorenzo Cestaro

• Luca Scarabello

• Lukasz

• Mahmoud Lababidi

• manu

• manuels

• Mark Mandel

• Matthew Brett

• Matthew Roeschke

• mattip

• Matti Picus

• Matt Roeschke

• maxalbert

• Maximilian Roos

• mcocdawc

• Michael Charlton

• Michael Felt

• Michael Lamparski

• Michiel Stock

• Mikolaj Chwalisz

• Min RK

• Miroslav Šedivý

38.7. pandas 0.20.0 / 0.20.1 2449

pandas: powerful Python data analysis toolkit, Release 0.23.4

• Mykola Golubyev

• Nate Yoder

• Nathalie Rud

• Nicholas Ver Halen

• Nick Chmura

• Nolan Nichols

• nuffe

• Pankaj Pandey

• paul-mannino

• Pawel Kordek

• pbreach

• Pete Huang

• Peter

• Peter Csizsek

• Petio Petrov

• Phil Ruffwind

• Pietro Battiston

• Piotr Chromiec

• Prasanjit Prakash

• Robert Bradshaw

• Rob Forgione

• Robin

• Rodolfo Fernandez

• Roger Thomas

• Rouz Azari

• Sahil Dua

• sakkemo

• Sam Foo

• Sami Salonen

• Sarah Bird

• Sarma Tangirala

• scls19fr

• Scott Sanderson

• Sebastian Bank

• Sebastian Gsänger

• Sébastien de Menten

2450 Chapter 38. Release Notes

pandas: powerful Python data analysis toolkit, Release 0.23.4

• Shawn Heide

• Shyam Saladi

• sinhrks

• Sinhrks

• Stephen Rauch

• stijnvanhoey

• Tara Adiseshan

• themrmax

• the-nose-knows

• Thiago Serafim

• Thoralf Gutierrez

• Thrasibule

• Tobias Gustafsson

• Tom Augspurger

• tomrod

• Tong Shen

• Tong SHEN

• TrigonaMinima

• tzinckgraf

• Uwe

• wandersoncferreira

• watercrossing

• wcwagner

• Wes Turner

• Wiktor Tomczak

• WillAyd

• xgdgsc

• Yaroslav Halchenko

• Yimeng Zhang

• yui-knk

38.8 pandas 0.19.2

Release date: December 24, 2016

This is a minor bug-fix release in the 0.19.x series and includes some small regression fixes, bug fixes and performance
improvements.

Highlights include:

38.8. pandas 0.19.2 2451

pandas: powerful Python data analysis toolkit, Release 0.23.4

• Compatibility with Python 3.6

• Added a Pandas Cheat Sheet. (GH13202).

See the v0.19.2 Whatsnew page for an overview of all bugs that have been fixed in 0.19.2.

38.8.1 Thanks

• Ajay Saxena

• Ben Kandel

• Chris

• Chris Ham

• Christopher C. Aycock

• Daniel Himmelstein

• Dave Willmer

• Dr-Irv

• gfyoung

• hesham shabana

• Jeff Carey

• Jeff Reback

• Joe Jevnik

• Joris Van den Bossche

• Julian Santander

• Kerby Shedden

• Keshav Ramaswamy

• Kevin Sheppard

• Luca Scarabello

• Matti Picus

• Matt Roeschke

• Maximilian Roos

• Mykola Golubyev

• Nate Yoder

• Nicholas Ver Halen

• Pawel Kordek

• Pietro Battiston

• Rodolfo Fernandez

• sinhrks

• Tara Adiseshan

• Tom Augspurger

2452 Chapter 38. Release Notes

https://github.com/pandas-dev/pandas/tree/master/doc/cheatsheet/Pandas_Cheat_Sheet.pdf
https://github.com/pandas-dev/pandas/issues/13202

pandas: powerful Python data analysis toolkit, Release 0.23.4

• wandersoncferreira

• Yaroslav Halchenko

38.9 pandas 0.19.1

Release date: November 3, 2016

This is a minor bug-fix release from 0.19.0 and includes some small regression fixes, bug fixes and performance
improvements.

See the v0.19.1 Whatsnew page for an overview of all bugs that have been fixed in 0.19.1.

38.9.1 Thanks

• Adam Chainz

• Anthonios Partheniou

• Arash Rouhani

• Ben Kandel

• Brandon M. Burroughs

• Chris

• chris-b1

• Chris Warth

• David Krych

• dubourg

• gfyoung

• Iván Vallés Pérez

• Jeff Reback

• Joe Jevnik

• Jon M. Mease

• Joris Van den Bossche

• Josh Owen

• Keshav Ramaswamy

• Larry Ren

• mattrijk

• Michael Felt

• paul-mannino

• Piotr Chromiec

• Robert Bradshaw

• Sinhrks

38.9. pandas 0.19.1 2453

pandas: powerful Python data analysis toolkit, Release 0.23.4

• Thiago Serafim

• Tom Bird

38.10 pandas 0.19.0

Release date: October 2, 2016

This is a major release from 0.18.1 and includes number of API changes, several new features, enhancements, and
performance improvements along with a large number of bug fixes. We recommend that all users upgrade to this
version.

Highlights include:

• merge_asof() for asof-style time-series joining, see here

• .rolling() is now time-series aware, see here

• read_csv() now supports parsing Categorical data, see here

• A function union_categorical() has been added for combining categoricals, see here

• PeriodIndex now has its own period dtype, and changed to be more consistent with other Index classes.
See here

• Sparse data structures gained enhanced support of int and bool dtypes, see here

• Comparison operations with Series no longer ignores the index, see here for an overview of the API changes.

• Introduction of a pandas development API for utility functions, see here.

• Deprecation of Panel4D and PanelND. We recommend to represent these types of n-dimensional data with
the xarray package.

• Removal of the previously deprecated modules pandas.io.data, pandas.io.wb, pandas.tools.
rplot.

See the v0.19.0 Whatsnew overview for an extensive list of all enhancements and bugs that have been fixed in 0.19.0.

38.10.1 Thanks

• adneu

• Adrien Emery

• agraboso

• Alex Alekseyev

• Alex Vig

• Allen Riddell

• Amol

• Amol Agrawal

• Andy R. Terrel

• Anthonios Partheniou

• babakkeyvani

• Ben Kandel

2454 Chapter 38. Release Notes

http://xarray.pydata.org/en/stable/

pandas: powerful Python data analysis toolkit, Release 0.23.4

• Bob Baxley

• Brett Rosen

• c123w

• Camilo Cota

• Chris

• chris-b1

• Chris Grinolds

• Christian Hudon

• Christopher C. Aycock

• Chris Warth

• cmazzullo

• conquistador1492

• cr3

• Daniel Siladji

• Douglas McNeil

• Drewrey Lupton

• dsm054

• Eduardo Blancas Reyes

• Elliot Marsden

• Evan Wright

• Felix Marczinowski

• Francis T. O’Donovan

• Gábor Lipták

• Geraint Duck

• gfyoung

• Giacomo Ferroni

• Grant Roch

• Haleemur Ali

• harshul1610

• Hassan Shamim

• iamsimha

• Iulius Curt

• Ivan Nazarov

• jackieleng

• Jeff Reback

• Jeffrey Gerard

38.10. pandas 0.19.0 2455

pandas: powerful Python data analysis toolkit, Release 0.23.4

• Jenn Olsen

• Jim Crist

• Joe Jevnik

• John Evans

• John Freeman

• John Liekezer

• Johnny Gill

• John W. O’Brien

• John Zwinck

• Jordan Erenrich

• Joris Van den Bossche

• Josh Howes

• Jozef Brandys

• Kamil Sindi

• Ka Wo Chen

• Kerby Shedden

• Kernc

• Kevin Sheppard

• Matthieu Brucher

• Maximilian Roos

• Michael Scherer

• Mike Graham

• Mortada Mehyar

• mpuels

• Muhammad Haseeb Tariq

• Nate George

• Neil Parley

• Nicolas Bonnotte

• OXPHOS

• Pan Deng / Zora

• Paul

• Pauli Virtanen

• Paul Mestemaker

• Pawel Kordek

• Pietro Battiston

• pijucha

2456 Chapter 38. Release Notes

pandas: powerful Python data analysis toolkit, Release 0.23.4

• Piotr Jucha

• priyankjain

• Ravi Kumar Nimmi

• Robert Gieseke

• Robert Kern

• Roger Thomas

• Roy Keyes

• Russell Smith

• Sahil Dua

• Sanjiv Lobo

• Sašo Stanovnik

• Shawn Heide

• sinhrks

• Sinhrks

• Stephen Kappel

• Steve Choi

• Stewart Henderson

• Sudarshan Konge

• Thomas A Caswell

• Tom Augspurger

• Tom Bird

• Uwe Hoffmann

• wcwagner

• WillAyd

• Xiang Zhang

• Yadunandan

• Yaroslav Halchenko

• YG-Riku

• Yuichiro Kaneko

• yui-knk

• zhangjinjie

• znmean

• Yan Facai

38.10. pandas 0.19.0 2457

pandas: powerful Python data analysis toolkit, Release 0.23.4

38.11 pandas 0.18.1

Release date: (May 3, 2016)

This is a minor release from 0.18.0 and includes a large number of bug fixes along with several new features, enhance-
ments, and performance improvements.

Highlights include:

• .groupby(...) has been enhanced to provide convenient syntax when working with .rolling(..),
.expanding(..) and .resample(..) per group, see here

• pd.to_datetime() has gained the ability to assemble dates from a DataFrame, see here

• Method chaining improvements, see here.

• Custom business hour offset, see here.

• Many bug fixes in the handling of sparse, see here

• Expanded the Tutorials section with a feature on modern pandas, courtesy of @TomAugsburger. (GH13045).

See the v0.18.1 Whatsnew overview for an extensive list of all enhancements and bugs that have been fixed in 0.18.1.

38.11.1 Thanks

• Andrew Fiore-Gartland

• Bastiaan

• Benoît Vinot

• Brandon Rhodes

• DaCoEx

• Drew Fustin

• Ernesto Freitas

• Filip Ter

• Gregory Livschitz

• Gábor Lipták

• Hassan Kibirige

• Iblis Lin

• Israel Saeta Pérez

• Jason Wolosonovich

• Jeff Reback

• Joe Jevnik

• Joris Van den Bossche

• Joshua Storck

• Ka Wo Chen

• Kerby Shedden

• Kieran O’Mahony

2458 Chapter 38. Release Notes

https://twitter.com/TomAugspurger
https://github.com/pandas-dev/pandas/issues/13045

pandas: powerful Python data analysis toolkit, Release 0.23.4

• Leif Walsh

• Mahmoud Lababidi

• Maoyuan Liu

• Mark Roth

• Matt Wittmann

• MaxU

• Maximilian Roos

• Michael Droettboom

• Nick Eubank

• Nicolas Bonnotte

• OXPHOS

• Pauli Virtanen

• Peter Waller

• Pietro Battiston

• Prabhjot Singh

• Robin Wilson

• Roger Thomas

• Sebastian Bank

• Stephen Hoover

• Tim Hopper

• Tom Augspurger

• WANG Aiyong

• Wes Turner

• Winand

• Xbar

• Yan Facai

• adneu

• ajenkins-cargometrics

• behzad nouri

• chinskiy

• gfyoung

• jeps-journal

• jonaslb

• kotrfa

• nileracecrew

• onesandzeroes

38.11. pandas 0.18.1 2459

pandas: powerful Python data analysis toolkit, Release 0.23.4

• rs2

• sinhrks

• tsdlovell

38.12 pandas 0.18.0

Release date: (March 13, 2016)

This is a major release from 0.17.1 and includes a small number of API changes, several new features, enhancements,
and performance improvements along with a large number of bug fixes. We recommend that all users upgrade to this
version.

Highlights include:

• Moving and expanding window functions are now methods on Series and DataFrame, similar to .groupby,
see here.

• Adding support for a RangeIndex as a specialized form of the Int64Index for memory savings, see here.

• API breaking change to the .resample method to make it more .groupby like, see here.

• Removal of support for positional indexing with floats, which was deprecated since 0.14.0. This will now raise
a TypeError, see here.

• The .to_xarray() function has been added for compatibility with the xarray package, see here.

• The read_sas function has been enhanced to read sas7bdat files, see here.

• Addition of the .str.extractall() method, and API changes to the .str.extract() method and .str.cat() method.

• pd.test() top-level nose test runner is available (GH4327).

See the v0.18.0 Whatsnew overview for an extensive list of all enhancements and bugs that have been fixed in 0.18.0.

38.12.1 Thanks

• ARF

• Alex Alekseyev

• Andrew McPherson

• Andrew Rosenfeld

• Anthonios Partheniou

• Anton I. Sipos

• Ben

• Ben North

• Bran Yang

• Chris

• Chris Carroux

• Christopher C. Aycock

• Christopher Scanlin

2460 Chapter 38. Release Notes

http://xarray.pydata.org/en/stable/
https://github.com/pandas-dev/pandas/issues/4327

pandas: powerful Python data analysis toolkit, Release 0.23.4

• Cody

• Da Wang

• Daniel Grady

• Dorozhko Anton

• Dr-Irv

• Erik M. Bray

• Evan Wright

• Francis T. O’Donovan

• Frank Cleary

• Gianluca Rossi

• Graham Jeffries

• Guillaume Horel

• Henry Hammond

• Isaac Schwabacher

• Jean-Mathieu Deschenes

• Jeff Reback

• Joe Jevnik

• John Freeman

• John Fremlin

• Jonas Hoersch

• Joris Van den Bossche

• Joris Vankerschaver

• Justin Lecher

• Justin Lin

• Ka Wo Chen

• Keming Zhang

• Kerby Shedden

• Kyle

• Marco Farrugia

• MasonGallo

• MattRijk

• Matthew Lurie

• Maximilian Roos

• Mayank Asthana

• Mortada Mehyar

• Moussa Taifi

38.12. pandas 0.18.0 2461

pandas: powerful Python data analysis toolkit, Release 0.23.4

• Navreet Gill

• Nicolas Bonnotte

• Paul Reiners

• Philip Gura

• Pietro Battiston

• RahulHP

• Randy Carnevale

• Rinoc Johnson

• Rishipuri

• Sangmin Park

• Scott E Lasley

• Sereger13

• Shannon Wang

• Skipper Seabold

• Thierry Moisan

• Thomas A Caswell

• Toby Dylan Hocking

• Tom Augspurger

• Travis

• Trent Hauck

• Tux1

• Varun

• Wes McKinney

• Will Thompson

• Yoav Ram

• Yoong Kang Lim

• Yoshiki Vázquez Baeza

• Young Joong Kim

• Younggun Kim

• Yuval Langer

• alex argunov

• behzad nouri

• boombard

• brian-pantano

• chromy

• daniel

2462 Chapter 38. Release Notes

pandas: powerful Python data analysis toolkit, Release 0.23.4

• dgram0

• gfyoung

• hack-c

• hcontrast

• jfoo

• kaustuv deolal

• llllllllll

• ranarag

• rockg

• scls19fr

• seales

• sinhrks

• srib

• surveymedia.ca

• tworec

38.13 pandas 0.17.1

Release date: (November 21, 2015)

This is a minor release from 0.17.0 and includes a large number of bug fixes along with several new features, enhance-
ments, and performance improvements.

Highlights include:

• Support for Conditional HTML Formatting, see here

• Releasing the GIL on the csv reader & other ops, see here

• Regression in DataFrame.drop_duplicates from 0.16.2, causing incorrect results on integer values
(GH11376)

See the v0.17.1 Whatsnew overview for an extensive list of all enhancements and bugs that have been fixed in 0.17.1.

38.13.1 Thanks

• Aleksandr Drozd

• Alex Chase

• Anthonios Partheniou

• BrenBarn

• Brian J. McGuirk

• Chris

• Christian Berendt

• Christian Perez

38.13. pandas 0.17.1 2463

https://github.com/pandas-dev/pandas/issues/11376

pandas: powerful Python data analysis toolkit, Release 0.23.4

• Cody Piersall

• Data & Code Expert Experimenting with Code on Data

• DrIrv

• Evan Wright

• Guillaume Gay

• Hamed Saljooghinejad

• Iblis Lin

• Jake VanderPlas

• Jan Schulz

• Jean-Mathieu Deschenes

• Jeff Reback

• Jimmy Callin

• Joris Van den Bossche

• K.-Michael Aye

• Ka Wo Chen

• Loïc Séguin-C

• Luo Yicheng

• Magnus Jöud

• Manuel Leonhardt

• Matthew Gilbert

• Maximilian Roos

• Michael

• Nicholas Stahl

• Nicolas Bonnotte

• Pastafarianist

• Petra Chong

• Phil Schaf

• Philipp A

• Rob deCarvalho

• Roman Khomenko

• Rémy Léone

• Sebastian Bank

• Thierry Moisan

• Tom Augspurger

• Tux1

• Varun

2464 Chapter 38. Release Notes

pandas: powerful Python data analysis toolkit, Release 0.23.4

• Wieland Hoffmann

• Winterflower

• Yoav Ram

• Younggun Kim

• Zeke

• ajcr

• azuranski

• behzad nouri

• cel4

• emilydolson

• hironow

• lexual

• llllllllll

• rockg

• silentquasar

• sinhrks

• taeold

38.14 pandas 0.17.0

Release date: (October 9, 2015)

This is a major release from 0.16.2 and includes a small number of API changes, several new features, enhancements,
and performance improvements along with a large number of bug fixes. We recommend that all users upgrade to this
version.

Highlights include:

• Release the Global Interpreter Lock (GIL) on some cython operations, see here

• Plotting methods are now available as attributes of the .plot accessor, see here

• The sorting API has been revamped to remove some long-time inconsistencies, see here

• Support for a datetime64[ns] with timezones as a first-class dtype, see here

• The default for to_datetime will now be to raise when presented with unparseable formats, previously
this would return the original input. Also, date parse functions now return consistent results. See here

• The default for dropna in HDFStore has changed to False, to store by default all rows even if they are all
NaN, see here

• Datetime accessor (dt) now supports Series.dt.strftime to generate formatted strings for datetime-
likes, and Series.dt.total_seconds to generate each duration of the timedelta in seconds. See here

• Period and PeriodIndex can handle multiplied freq like 3D, which corresponding to 3 days span. See here

• Development installed versions of pandas will now have PEP440 compliant version strings (GH9518)

• Development support for benchmarking with the Air Speed Velocity library (GH8316)

38.14. pandas 0.17.0 2465

https://github.com/pandas-dev/pandas/issues/9518
https://github.com/spacetelescope/asv/
https://github.com/pandas-dev/pandas/issues/8316

pandas: powerful Python data analysis toolkit, Release 0.23.4

• Support for reading SAS xport files, see here

• Documentation comparing SAS to pandas, see here

• Removal of the automatic TimeSeries broadcasting, deprecated since 0.8.0, see here

• Display format with plain text can optionally align with Unicode East Asian Width, see here

• Compatibility with Python 3.5 (GH11097)

• Compatibility with matplotlib 1.5.0 (GH11111)

See the v0.17.0 Whatsnew overview for an extensive list of all enhancements and bugs that have been fixed in 0.17.0.

38.14.1 Thanks

• Alex Rothberg

• Andrea Bedini

• Andrew Rosenfeld

• Andy Li

• Anthonios Partheniou

• Artemy Kolchinsky

• Bernard Willers

• Charlie Clark

• Chris

• Chris Whelan

• Christoph Gohlke

• Christopher Whelan

• Clark Fitzgerald

• Clearfield Christopher

• Dan Ringwalt

• Daniel Ni

• Data & Code Expert Experimenting with Code on Data

• David Cottrell

• David John Gagne

• David Kelly

• ETF

• Eduardo Schettino

• Egor

• Egor Panfilov

• Evan Wright

• Frank Pinter

• Gabriel Araujo

2466 Chapter 38. Release Notes

https://github.com/pandas-dev/pandas/issues/11097
https://github.com/pandas-dev/pandas/issues/11111

pandas: powerful Python data analysis toolkit, Release 0.23.4

• Garrett-R

• Gianluca Rossi

• Guillaume Gay

• Guillaume Poulin

• Harsh Nisar

• Ian Henriksen

• Ian Hoegen

• Jaidev Deshpande

• Jan Rudolph

• Jan Schulz

• Jason Swails

• Jeff Reback

• Jonas Buyl

• Joris Van den Bossche

• Joris Vankerschaver

• Josh Levy-Kramer

• Julien Danjou

• Ka Wo Chen

• Karrie Kehoe

• Kelsey Jordahl

• Kerby Shedden

• Kevin Sheppard

• Lars Buitinck

• Leif Johnson

• Luis Ortiz

• Mac

• Matt Gambogi

• Matt Savoie

• Matthew Gilbert

• Maximilian Roos

• Michelangelo D’Agostino

• Mortada Mehyar

• Nick Eubank

• Nipun Batra

• Ondřej Čertík

• Phillip Cloud

38.14. pandas 0.17.0 2467

pandas: powerful Python data analysis toolkit, Release 0.23.4

• Pratap Vardhan

• Rafal Skolasinski

• Richard Lewis

• Rinoc Johnson

• Rob Levy

• Robert Gieseke

• Safia Abdalla

• Samuel Denny

• Saumitra Shahapure

• Sebastian Pölsterl

• Sebastian Rubbert

• Sheppard, Kevin

• Sinhrks

• Siu Kwan Lam

• Skipper Seabold

• Spencer Carrucciu

• Stephan Hoyer

• Stephen Hoover

• Stephen Pascoe

• Terry Santegoeds

• Thomas Grainger

• Tjerk Santegoeds

• Tom Augspurger

• Vincent Davis

• Winterflower

• Yaroslav Halchenko

• Yuan Tang (Terry)

• agijsberts

• ajcr

• behzad nouri

• cel4

• cyrusmaher

• davidovitch

• ganego

• jreback

• juricast

2468 Chapter 38. Release Notes

pandas: powerful Python data analysis toolkit, Release 0.23.4

• larvian

• maximilianr

• msund

• rekcahpassyla

• robertzk

• scls19fr

• seth-p

• sinhrks

• springcoil

• terrytangyuan

• tzinckgraf

38.15 pandas 0.16.2

Release date: (June 12, 2015)

This is a minor release from 0.16.1 and includes a large number of bug fixes along with several new features, enhance-
ments, and performance improvements.

Highlights include:

• A new pipe method, see here

• Documentation on how to use numba with pandas, see here

See the v0.16.2 Whatsnew overview for an extensive list of all enhancements and bugs that have been fixed in 0.16.2.

38.15.1 Thanks

• Andrew Rosenfeld

• Artemy Kolchinsky

• Bernard Willers

• Christer van der Meeren

• Christian Hudon

• Constantine Glen Evans

• Daniel Julius Lasiman

• Evan Wright

• Francesco Brundu

• Gaëtan de Menten

• Jake VanderPlas

• James Hiebert

• Jeff Reback

38.15. pandas 0.16.2 2469

http://numba.pydata.org

pandas: powerful Python data analysis toolkit, Release 0.23.4

• Joris Van den Bossche

• Justin Lecher

• Ka Wo Chen

• Kevin Sheppard

• Mortada Mehyar

• Morton Fox

• Robin Wilson

• Thomas Grainger

• Tom Ajamian

• Tom Augspurger

• Yoshiki Vázquez Baeza

• Younggun Kim

• austinc

• behzad nouri

• jreback

• lexual

• rekcahpassyla

• scls19fr

• sinhrks

38.16 pandas 0.16.1

Release date: (May 11, 2015)

This is a minor release from 0.16.0 and includes a large number of bug fixes along with several new features, enhance-
ments, and performance improvements. A small number of API changes were necessary to fix existing bugs.

See the v0.16.1 Whatsnew overview for an extensive list of all API changes, enhancements and bugs that have been
fixed in 0.16.1.

38.16.1 Thanks

• Alfonso MHC

• Andy Hayden

• Artemy Kolchinsky

• Chris Gilmer

• Chris Grinolds

• Dan Birken

• David BROCHART

• David Hirschfeld

2470 Chapter 38. Release Notes

pandas: powerful Python data analysis toolkit, Release 0.23.4

• David Stephens

• Dr. Leo

• Evan Wright

• Frans van Dunné

• Hatem Nassrat

• Henning Sperr

• Hugo Herter

• Jan Schulz

• Jeff Blackburne

• Jeff Reback

• Jim Crist

• Jonas Abernot

• Joris Van den Bossche

• Kerby Shedden

• Leo Razoumov

• Manuel Riel

• Mortada Mehyar

• Nick Burns

• Nick Eubank

• Olivier Grisel

• Phillip Cloud

• Pietro Battiston

• Roy Hyunjin Han

• Sam Zhang

• Scott Sanderson

• Stephan Hoyer

• Tiago Antao

• Tom Ajamian

• Tom Augspurger

• Tomaz Berisa

• Vikram Shirgur

• Vladimir Filimonov

• William Hogman

• Yasin A

• Younggun Kim

• behzad nouri

38.16. pandas 0.16.1 2471

pandas: powerful Python data analysis toolkit, Release 0.23.4

• dsm054

• floydsoft

• flying-sheep

• gfr

• jnmclarty

• jreback

• ksanghai

• lucas

• mschmohl

• ptype

• rockg

• scls19fr

• sinhrks

38.17 pandas 0.16.0

Release date: (March 22, 2015)

This is a major release from 0.15.2 and includes a number of API changes, several new features, enhancements, and
performance improvements along with a large number of bug fixes.

Highlights include:

• DataFrame.assign method, see here

• Series.to_coo/from_coo methods to interact with scipy.sparse, see here

• Backwards incompatible change to Timedelta to conform the .seconds attribute with datetime.
timedelta, see here

• Changes to the .loc slicing API to conform with the behavior of .ix see here

• Changes to the default for ordering in the Categorical constructor, see here

• The pandas.tools.rplot, pandas.sandbox.qtpandas and pandas.rpymodules are deprecated.
We refer users to external packages like seaborn, pandas-qt and rpy2 for similar or equivalent functionality, see
here

See the v0.16.0 Whatsnew overview or the issue tracker on GitHub for an extensive list of all API changes, enhance-
ments and bugs that have been fixed in 0.16.0.

38.17.1 Thanks

• Aaron Toth

• Alan Du

• Alessandro Amici

• Artemy Kolchinsky

• Ashwini Chaudhary

2472 Chapter 38. Release Notes

http://stanford.edu/~mwaskom/software/seaborn/
https://github.com/datalyze-solutions/pandas-qt
http://rpy2.bitbucket.org/

pandas: powerful Python data analysis toolkit, Release 0.23.4

• Ben Schiller

• Bill Letson

• Brandon Bradley

• Chau Hoang

• Chris Reynolds

• Chris Whelan

• Christer van der Meeren

• David Cottrell

• David Stephens

• Ehsan Azarnasab

• Garrett-R

• Guillaume Gay

• Jake Torcasso

• Jason Sexauer

• Jeff Reback

• John McNamara

• Joris Van den Bossche

• Joschka zur Jacobsmühlen

• Juarez Bochi

• Junya Hayashi

• K.-Michael Aye

• Kerby Shedden

• Kevin Sheppard

• Kieran O’Mahony

• Kodi Arfer

• Matti Airas

• Min RK

• Mortada Mehyar

• Robert

• Scott E Lasley

• Scott Lasley

• Sergio Pascual

• Skipper Seabold

• Stephan Hoyer

• Thomas Grainger

• Tom Augspurger

38.17. pandas 0.16.0 2473

pandas: powerful Python data analysis toolkit, Release 0.23.4

• TomAugspurger

• Vladimir Filimonov

• Vyomkesh Tripathi

• Will Holmgren

• Yulong Yang

• behzad nouri

• bertrandhaut

• bjonen

• cel4

• clham

• hsperr

• ischwabacher

• jnmclarty

• josham

• jreback

• omtinez

• roch

• sinhrks

• unutbu

38.18 pandas 0.15.2

Release date: (December 12, 2014)

This is a minor release from 0.15.1 and includes a large number of bug fixes along with several new features, enhance-
ments, and performance improvements. A small number of API changes were necessary to fix existing bugs.

See the v0.15.2 Whatsnew overview for an extensive list of all API changes, enhancements and bugs that have been
fixed in 0.15.2.

38.18.1 Thanks

• Aaron Staple

• Angelos Evripiotis

• Artemy Kolchinsky

• Benoit Pointet

• Brian Jacobowski

• Charalampos Papaloizou

• Chris Warth

• David Stephens

2474 Chapter 38. Release Notes

pandas: powerful Python data analysis toolkit, Release 0.23.4

• Fabio Zanini

• Francesc Via

• Henry Kleynhans

• Jake VanderPlas

• Jan Schulz

• Jeff Reback

• Jeff Tratner

• Joris Van den Bossche

• Kevin Sheppard

• Matt Suggit

• Matthew Brett

• Phillip Cloud

• Rupert Thompson

• Scott E Lasley

• Stephan Hoyer

• Stephen Simmons

• Sylvain Corlay

• Thomas Grainger

• Tiago Antao

• Trent Hauck

• Victor Chaves

• Victor Salgado

• Vikram Bhandoh

• WANG Aiyong

• Will Holmgren

• behzad nouri

• broessli

• charalampos papaloizou

• immerrr

• jnmclarty

• jreback

• mgilbert

• onesandzeroes

• peadarcoyle

• rockg

• seth-p

38.18. pandas 0.15.2 2475

pandas: powerful Python data analysis toolkit, Release 0.23.4

• sinhrks

• unutbu

• wavedatalab

• Åsmund Hjulstad

38.19 pandas 0.15.1

Release date: (November 9, 2014)

This is a minor release from 0.15.0 and includes a small number of API changes, several new features, enhancements,
and performance improvements along with a large number of bug fixes.

See the v0.15.1 Whatsnew overview for an extensive list of all API changes, enhancements and bugs that have been
fixed in 0.15.1.

38.19.1 Thanks

• Aaron Staple

• Andrew Rosenfeld

• Anton I. Sipos

• Artemy Kolchinsky

• Bill Letson

• Dave Hughes

• David Stephens

• Guillaume Horel

• Jeff Reback

• Joris Van den Bossche

• Kevin Sheppard

• Nick Stahl

• Sanghee Kim

• Stephan Hoyer

• TomAugspurger

• WANG Aiyong

• behzad nouri

• immerrr

• jnmclarty

• jreback

• pallav-fdsi

• unutbu

2476 Chapter 38. Release Notes

pandas: powerful Python data analysis toolkit, Release 0.23.4

38.20 pandas 0.15.0

Release date: (October 18, 2014)

This is a major release from 0.14.1 and includes a number of API changes, several new features, enhancements, and
performance improvements along with a large number of bug fixes.

Highlights include:

• Drop support for NumPy < 1.7.0 (GH7711)

• The Categorical type was integrated as a first-class pandas type, see here

• New scalar type Timedelta, and a new index type TimedeltaIndex, see here

• New DataFrame default display for df.info() to include memory usage, see Memory Usage

• New datetimelike properties accessor .dt for Series, see Datetimelike Properties

• Split indexing documentation into Indexing and Selecting Data and MultiIndex / Advanced Indexing

• Split out string methods documentation into Working with Text Data

• read_csv will now by default ignore blank lines when parsing, see here

• API change in using Indexes in set operations, see here

• Internal refactoring of the Index class to no longer sub-class ndarray, see Internal Refactoring

• dropping support for PyTables less than version 3.0.0, and numexpr less than version 2.1 (GH7990)

See the v0.15.0 Whatsnew overview or the issue tracker on GitHub for an extensive list of all API changes, enhance-
ments and bugs that have been fixed in 0.15.0.

38.20.1 Thanks

• Aaron Schumacher

• Adam Greenhall

• Andy Hayden

• Anthony O’Brien

• Artemy Kolchinsky

• behzad nouri

• Benedikt Sauer

• benjamin

• Benjamin Thyreau

• Ben Schiller

• bjonen

• BorisVerk

• Chris Reynolds

• Chris Stoafer

• Dav Clark

• dlovell

38.20. pandas 0.15.0 2477

https://github.com/pandas-dev/pandas/issues/7711
https://github.com/pandas-dev/pandas/issues/7990

pandas: powerful Python data analysis toolkit, Release 0.23.4

• DSM

• dsm054

• FragLegs

• German Gomez-Herrero

• Hsiaoming Yang

• Huan Li

• hunterowens

• Hyungtae Kim

• immerrr

• Isaac Slavitt

• ischwabacher

• Jacob Schaer

• Jacob Wasserman

• Jan Schulz

• Jeff Tratner

• Jesse Farnham

• jmorris0x0

• jnmclarty

• Joe Bradish

• Joerg Rittinger

• John W. O’Brien

• Joris Van den Bossche

• jreback

• Kevin Sheppard

• klonuo

• Kyle Meyer

• lexual

• Max Chang

• mcjcode

• Michael Mueller

• Michael W Schatzow

• Mike Kelly

• Mortada Mehyar

• mtrbean

• Nathan Sanders

• Nathan Typanski

2478 Chapter 38. Release Notes

pandas: powerful Python data analysis toolkit, Release 0.23.4

• onesandzeroes

• Paul Masurel

• Phillip Cloud

• Pietro Battiston

• RenzoBertocchi

• rockg

• Ross Petchler

• seth-p

• Shahul Hameed

• Shashank Agarwal

• sinhrks

• someben

• stahlous

• stas-sl

• Stephan Hoyer

• thatneat

• tom-alcorn

• TomAugspurger

• Tom Augspurger

• Tony Lorenzo

• unknown

• unutbu

• Wes Turner

• Wilfred Hughes

• Yevgeniy Grechka

• Yoshiki VÃ¡zquez Baeza

• zachcp

38.21 pandas 0.14.1

Release date: (July 11, 2014)

This is a minor release from 0.14.0 and includes a small number of API changes, several new features, enhancements,
and performance improvements along with a large number of bug fixes.

Highlights include:

• New methods select_dtypes() to select columns based on the dtype and sem() to calculate the standard
error of the mean.

• Support for dateutil timezones (see docs).

38.21. pandas 0.14.1 2479

pandas: powerful Python data analysis toolkit, Release 0.23.4

• Support for ignoring full line comments in the read_csv() text parser.

• New documentation section on Options and Settings.

• Lots of bug fixes.

See the v0.14.1 Whatsnew overview or the issue tracker on GitHub for an extensive list of all API changes, enhance-
ments and bugs that have been fixed in 0.14.1.

38.21.1 Thanks

• Andrew Rosenfeld

• Andy Hayden

• Benjamin Adams

• Benjamin M. Gross

• Brian Quistorff

• Brian Wignall

• bwignall

• clham

• Daniel Waeber

• David Bew

• David Stephens

• DSM

• dsm054

• helger

• immerrr

• Jacob Schaer

• jaimefrio

• Jan Schulz

• John David Reaver

• John W. O’Brien

• Joris Van den Bossche

• jreback

• Julien Danjou

• Kevin Sheppard

• K.-Michael Aye

• Kyle Meyer

• lexual

• Matthew Brett

• Matt Wittmann

2480 Chapter 38. Release Notes

pandas: powerful Python data analysis toolkit, Release 0.23.4

• Michael Mueller

• Mortada Mehyar

• onesandzeroes

• Phillip Cloud

• Rob Levy

• rockg

• sanguineturtle

• Schaer, Jacob C

• seth-p

• sinhrks

• Stephan Hoyer

• Thomas Kluyver

• Todd Jennings

• TomAugspurger

• unknown

• yelite

38.22 pandas 0.14.0

Release date: (May 31, 2014)

This is a major release from 0.13.1 and includes a number of API changes, several new features, enhancements, and
performance improvements along with a large number of bug fixes.

Highlights include:

• Officially support Python 3.4

• SQL interfaces updated to use sqlalchemy, see here.

• Display interface changes, see here

• MultiIndexing using Slicers, see here.

• Ability to join a singly-indexed DataFrame with a multi-indexed DataFrame, see here

• More consistency in groupby results and more flexible groupby specifications, see here

• Holiday calendars are now supported in CustomBusinessDay, see here

• Several improvements in plotting functions, including: hexbin, area and pie plots, see here.

• Performance doc section on I/O operations, see here

See the v0.14.0 Whatsnew overview or the issue tracker on GitHub for an extensive list of all API changes, enhance-
ments and bugs that have been fixed in 0.14.0.

38.22. pandas 0.14.0 2481

pandas: powerful Python data analysis toolkit, Release 0.23.4

38.22.1 Thanks

• Acanthostega

• Adam Marcus

• agijsberts

• akittredge

• Alex Gaudio

• Alex Rothberg

• AllenDowney

• Andrew Rosenfeld

• Andy Hayden

• ankostis

• anomrake

• Antoine Mazières

• anton-d

• bashtage

• Benedikt Sauer

• benjamin

• Brad Buran

• bwignall

• cgohlke

• chebee7i

• Christopher Whelan

• Clark Fitzgerald

• clham

• Dale Jung

• Dan Allan

• Dan Birken

• danielballan

• Daniel Waeber

• David Jung

• David Stephens

• Douglas McNeil

• DSM

• Garrett Drapala

• Gouthaman Balaraman

• Guillaume Poulin

2482 Chapter 38. Release Notes

pandas: powerful Python data analysis toolkit, Release 0.23.4

• hshimizu77

• hugo

• immerrr

• ischwabacher

• Jacob Howard

• Jacob Schaer

• jaimefrio

• Jason Sexauer

• Jeff Reback

• Jeffrey Starr

• Jeff Tratner

• John David Reaver

• John McNamara

• John W. O’Brien

• Jonathan Chambers

• Joris Van den Bossche

• jreback

• jsexauer

• Julia Evans

• Júlio

• Katie Atkinson

• kdiether

• Kelsey Jordahl

• Kevin Sheppard

• K.-Michael Aye

• Matthias Kuhn

• Matt Wittmann

• Max Grender-Jones

• Michael E. Gruen

• michaelws

• mikebailey

• Mike Kelly

• Nipun Batra

• Noah Spies

• ojdo

• onesandzeroes

38.22. pandas 0.14.0 2483

pandas: powerful Python data analysis toolkit, Release 0.23.4

• Patrick O’Keeffe

• phaebz

• Phillip Cloud

• Pietro Battiston

• PKEuS

• Randy Carnevale

• ribonoous

• Robert Gibboni

• rockg

• sinhrks

• Skipper Seabold

• SplashDance

• Stephan Hoyer

• Tim Cera

• Tobias Brandt

• Todd Jennings

• TomAugspurger

• Tom Augspurger

• unutbu

• westurner

• Yaroslav Halchenko

• y-p

• zach powers

38.23 pandas 0.13.1

Release date: (February 3, 2014)

38.23.1 New Features

• Added date_format and datetime_format attribute to ExcelWriter. (GH4133)

38.23.2 API Changes

• Series.sort will raise a ValueError (rather than a TypeError) on sorting an object that is a view of
another (GH5856, GH5853)

• Raise/Warn SettingWithCopyError (according to the option chained_assignment in more cases,
when detecting chained assignment, related (GH5938, GH6025)

2484 Chapter 38. Release Notes

https://github.com/pandas-dev/pandas/issues/4133
https://github.com/pandas-dev/pandas/issues/5856
https://github.com/pandas-dev/pandas/issues/5853
https://github.com/pandas-dev/pandas/issues/5938
https://github.com/pandas-dev/pandas/issues/6025

pandas: powerful Python data analysis toolkit, Release 0.23.4

• DataFrame.head(0) returns self instead of empty frame (GH5846)

• autocorrelation_plot now accepts **kwargs. (GH5623)

• convert_objects now accepts a convert_timedeltas='coerce' argument to allow forced dtype
conversion of timedeltas (GH5458,:issue:5689)

• Add -NaN and -nan to the default set of NA values (GH5952). See NA Values.

• NDFrame now has an equals method. (GH5283)

• DataFrame.apply will use the reduce argument to determine whether a Series or a DataFrame
should be returned when the DataFrame is empty (GH6007).

38.23.3 Experimental Features

38.23.4 Improvements to existing features

• perf improvements in Series datetime/timedelta binary operations (GH5801)

• option_context context manager now available as top-level API (GH5752)

• df.info() view now display dtype info per column (GH5682)

• df.info() now honors option max_info_rows, disable null counts for large frames (GH5974)

• perf improvements in DataFrame count/dropna for axis=1

• Series.str.contains now has a regex=False keyword which can be faster for plain (non-regex) string patterns.
(GH5879)

• support dtypes property on Series/Panel/Panel4D

• extend Panel.apply to allow arbitrary functions (rather than only ufuncs) (GH1148) allow multiple axes to
be used to operate on slabs of a Panel

• The ArrayFormatter for datetime and timedelta64 now intelligently limit precision based on the
values in the array (GH3401)

• pd.show_versions() is now available for convenience when reporting issues.

• perf improvements to Series.str.extract (GH5944)

• perf improvements in dtypes/ftypes methods (GH5968)

• perf improvements in indexing with object dtypes (GH5968)

• improved dtype inference for timedelta like passed to constructors (GH5458, GH5689)

• escape special characters when writing to latex (:issue: 5374)

• perf improvements in DataFrame.apply (GH6013)

• pd.read_csv and pd.to_datetime learned a new infer_datetime_format keyword which greatly
improves parsing perf in many cases. Thanks to @lexual for suggesting and @danbirken for rapidly implement-
ing. (GH5490,:issue:6021)

• add ability to recognize ‘%p’ format code (am/pm) to date parsers when the specific format is supplied (GH5361)

• Fix performance regression in JSON IO (GH5765)

• performance regression in Index construction from Series (GH6150)

38.23. pandas 0.13.1 2485

https://github.com/pandas-dev/pandas/issues/5846
https://github.com/pandas-dev/pandas/issues/5623
https://github.com/pandas-dev/pandas/issues/5458
https://github.com/pandas-dev/pandas/issues/5952
https://github.com/pandas-dev/pandas/issues/5283
https://github.com/pandas-dev/pandas/issues/6007
https://github.com/pandas-dev/pandas/issues/5801
https://github.com/pandas-dev/pandas/issues/5752
https://github.com/pandas-dev/pandas/issues/5682
https://github.com/pandas-dev/pandas/issues/5974
https://github.com/pandas-dev/pandas/issues/5879
https://github.com/pandas-dev/pandas/issues/1148
https://github.com/pandas-dev/pandas/issues/3401
https://github.com/pandas-dev/pandas/issues/5944
https://github.com/pandas-dev/pandas/issues/5968
https://github.com/pandas-dev/pandas/issues/5968
https://github.com/pandas-dev/pandas/issues/5458
https://github.com/pandas-dev/pandas/issues/5689
https://github.com/pandas-dev/pandas/issues/6013
https://github.com/pandas-dev/pandas/issues/5490
https://github.com/pandas-dev/pandas/issues/5361
https://github.com/pandas-dev/pandas/issues/5765
https://github.com/pandas-dev/pandas/issues/6150

pandas: powerful Python data analysis toolkit, Release 0.23.4

38.23.5 Bug Fixes

• Bug in io.wb.get_countries not including all countries (GH6008)

• Bug in Series replace with timestamp dict (GH5797)

• read_csv/read_table now respects the prefix kwarg (GH5732).

• Bug in selection with missing values via .ix from a duplicate indexed DataFrame failing (GH5835)

• Fix issue of boolean comparison on empty DataFrames (GH5808)

• Bug in isnull handling NaT in an object array (GH5443)

• Bug in to_datetime when passed a np.nan or integer datelike and a format string (GH5863)

• Bug in groupby dtype conversion with datetimelike (GH5869)

• Regression in handling of empty Series as indexers to Series (GH5877)

• Bug in internal caching, related to (GH5727)

• Testing bug in reading JSON/msgpack from a non-filepath on windows under py3 (GH5874)

• Bug when assigning to .ix[tuple(. . .)] (GH5896)

• Bug in fully reindexing a Panel (GH5905)

• Bug in idxmin/max with object dtypes (GH5914)

• Bug in BusinessDay when adding n days to a date not on offset when n>5 and n%5==0 (GH5890)

• Bug in assigning to chained series with a series via ix (GH5928)

• Bug in creating an empty DataFrame, copying, then assigning (GH5932)

• Bug in DataFrame.tail with empty frame (GH5846)

• Bug in propagating metadata on resample (GH5862)

• Fixed string-representation of NaT to be “NaT” (GH5708)

• Fixed string-representation for Timestamp to show nanoseconds if present (GH5912)

• pd.match not returning passed sentinel

• Panel.to_frame() no longer fails when major_axis is a MultiIndex (GH5402).

• Bug in pd.read_msgpack with inferring a DateTimeIndex frequency incorrectly (GH5947)

• Fixed to_datetime for array with both Tz-aware datetimes and NaT’s (GH5961)

• Bug in rolling skew/kurtosis when passed a Series with bad data (GH5749)

• Bug in scipy interpolate methods with a datetime index (GH5975)

• Bug in NaT comparison if a mixed datetime/np.datetime64 with NaT were passed (GH5968)

• Fixed bug with pd.concat losing dtype information if all inputs are empty (GH5742)

• Recent changes in IPython cause warnings to be emitted when using previous versions of pandas in QTConsole,
now fixed. If you’re using an older version and need to suppress the warnings, see (GH5922).

• Bug in merging timedelta dtypes (GH5695)

• Bug in plotting.scatter_matrix function. Wrong alignment among diagonal and off-diagonal plots, see
(GH5497).

• Regression in Series with a multi-index via ix (GH6018)

2486 Chapter 38. Release Notes

https://github.com/pandas-dev/pandas/issues/6008
https://github.com/pandas-dev/pandas/issues/5797
https://github.com/pandas-dev/pandas/issues/5732
https://github.com/pandas-dev/pandas/issues/5835
https://github.com/pandas-dev/pandas/issues/5808
https://github.com/pandas-dev/pandas/issues/5443
https://github.com/pandas-dev/pandas/issues/5863
https://github.com/pandas-dev/pandas/issues/5869
https://github.com/pandas-dev/pandas/issues/5877
https://github.com/pandas-dev/pandas/issues/5727
https://github.com/pandas-dev/pandas/issues/5874
https://github.com/pandas-dev/pandas/issues/5896
https://github.com/pandas-dev/pandas/issues/5905
https://github.com/pandas-dev/pandas/issues/5914
https://github.com/pandas-dev/pandas/issues/5890
https://github.com/pandas-dev/pandas/issues/5928
https://github.com/pandas-dev/pandas/issues/5932
https://github.com/pandas-dev/pandas/issues/5846
https://github.com/pandas-dev/pandas/issues/5862
https://github.com/pandas-dev/pandas/issues/5708
https://github.com/pandas-dev/pandas/issues/5912
https://github.com/pandas-dev/pandas/issues/5402
https://github.com/pandas-dev/pandas/issues/5947
https://github.com/pandas-dev/pandas/issues/5961
https://github.com/pandas-dev/pandas/issues/5749
https://github.com/pandas-dev/pandas/issues/5975
https://github.com/pandas-dev/pandas/issues/5968
https://github.com/pandas-dev/pandas/issues/5742
https://github.com/pandas-dev/pandas/issues/5922
https://github.com/pandas-dev/pandas/issues/5695
https://github.com/pandas-dev/pandas/issues/5497
https://github.com/pandas-dev/pandas/issues/6018

pandas: powerful Python data analysis toolkit, Release 0.23.4

• Bug in Series.xs with a multi-index (GH6018)

• Bug in Series construction of mixed type with datelike and an integer (which should result in object type and
not automatic conversion) (GH6028)

• Possible segfault when chained indexing with an object array under NumPy 1.7.1 (GH6026, GH6056)

• Bug in setting using fancy indexing a single element with a non-scalar (e.g. a list), (GH6043)

• to_sql did not respect if_exists (GH4110 GH4304)

• Regression in .get(None) indexing from 0.12 (GH5652)

• Subtle iloc indexing bug, surfaced in (GH6059)

• Bug with insert of strings into DatetimeIndex (GH5818)

• Fixed unicode bug in to_html/HTML repr (GH6098)

• Fixed missing arg validation in get_options_data (GH6105)

• Bug in assignment with duplicate columns in a frame where the locations are a slice (e.g. next to each other)
(GH6120)

• Bug in propagating _ref_locs during construction of a DataFrame with dups index/columns (GH6121)

• Bug in DataFrame.apply when using mixed datelike reductions (GH6125)

• Bug in DataFrame.append when appending a row with different columns (GH6129)

• Bug in DataFrame construction with recarray and non-ns datetime dtype (GH6140)

• Bug in .loc setitem indexing with a dataframe on rhs, multiple item setting, and a datetimelike (GH6152)

• Fixed a bug in query/eval during lexicographic string comparisons (GH6155).

• Fixed a bug in query where the index of a single-element Series was being thrown away (GH6148).

• Bug in HDFStore on appending a dataframe with multi-indexed columns to an existing table (GH6167)

• Consistency with dtypes in setting an empty DataFrame (GH6171)

• Bug in selecting on a multi-index HDFStore even in the presence of under specified column spec (GH6169)

• Bug in nanops.var with ddof=1 and 1 elements would sometimes return inf rather than nan on some
platforms (GH6136)

• Bug in Series and DataFrame bar plots ignoring the use_index keyword (GH6209)

• Bug in groupby with mixed str/int under python3 fixed; argsort was failing (GH6212)

38.24 pandas 0.13.0

Release date: January 3, 2014

38.24.1 New Features

• plot(kind='kde') now accepts the optional parameters bw_method and ind, passed to
scipy.stats.gaussian_kde() (for scipy >= 0.11.0) to set the bandwidth, and to gkde.evaluate() to specify the indi-
cies at which it is evaluated, respectively. See scipy docs. (GH4298)

• Added isin method to DataFrame (GH4211)

38.24. pandas 0.13.0 2487

https://github.com/pandas-dev/pandas/issues/6018
https://github.com/pandas-dev/pandas/issues/6028
https://github.com/pandas-dev/pandas/issues/6026
https://github.com/pandas-dev/pandas/issues/6056
https://github.com/pandas-dev/pandas/issues/6043
https://github.com/pandas-dev/pandas/issues/4110
https://github.com/pandas-dev/pandas/issues/4304
https://github.com/pandas-dev/pandas/issues/5652
https://github.com/pandas-dev/pandas/issues/6059
https://github.com/pandas-dev/pandas/issues/5818
https://github.com/pandas-dev/pandas/issues/6098
https://github.com/pandas-dev/pandas/issues/6105
https://github.com/pandas-dev/pandas/issues/6120
https://github.com/pandas-dev/pandas/issues/6121
https://github.com/pandas-dev/pandas/issues/6125
https://github.com/pandas-dev/pandas/issues/6129
https://github.com/pandas-dev/pandas/issues/6140
https://github.com/pandas-dev/pandas/issues/6152
https://github.com/pandas-dev/pandas/issues/6155
https://github.com/pandas-dev/pandas/issues/6148
https://github.com/pandas-dev/pandas/issues/6167
https://github.com/pandas-dev/pandas/issues/6171
https://github.com/pandas-dev/pandas/issues/6169
https://github.com/pandas-dev/pandas/issues/6136
https://github.com/pandas-dev/pandas/issues/6209
https://github.com/pandas-dev/pandas/issues/6212
https://github.com/pandas-dev/pandas/issues/4298
https://github.com/pandas-dev/pandas/issues/4211

pandas: powerful Python data analysis toolkit, Release 0.23.4

• df.to_clipboard() learned a new excel keyword that let’s you paste df data directly into excel (enabled
by default). (GH5070).

• Clipboard functionality now works with PySide (GH4282)

• New extract string method returns regex matches more conveniently (GH4685)

• Auto-detect field widths in read_fwf when unspecified (GH4488)

• to_csv() now outputs datetime objects according to a specified format string via the date_format key-
word (GH4313)

• Added LastWeekOfMonth DateOffset (GH4637)

• Added cumcount groupby method (GH4646)

• Added FY5253, and FY5253Quarter DateOffsets (GH4511)

• Added mode() method to Series and DataFrame to get the statistical mode(s) of a column/series.
(GH5367)

38.24.2 Experimental Features

• The new eval() function implements expression evaluation using numexpr behind the scenes. This results
in large speedups for complicated expressions involving large DataFrames/Series.

• DataFrame has a new eval() that evaluates an expression in the context of the DataFrame; allows inline
expression assignment

• A query() method has been added that allows you to select elements of a DataFrame using a natural query
syntax nearly identical to Python syntax.

• pd.eval and friends now evaluate operations involving datetime64 objects in Python space because
numexpr cannot handle NaT values (GH4897).

• Add msgpack support via pd.read_msgpack() and pd.to_msgpack() / df.to_msgpack() for se-
rialization of arbitrary pandas (and python objects) in a lightweight portable binary format (GH686, GH5506)

• Added PySide support for the qtpandas DataFrameModel and DataFrameWidget.

• Added pandas.io.gbq for reading from (and writing to) Google BigQuery into a DataFrame. (GH4140)

38.24.3 Improvements to existing features

• read_html now raises a URLError instead of catching and raising a ValueError (GH4303, GH4305)

• read_excel now supports an integer in its sheetname argument giving the index of the sheet to read in
(GH4301).

• get_dummies works with NaN (GH4446)

• Added a test for read_clipboard() and to_clipboard() (GH4282)

• Added bins argument to value_counts (GH3945), also sort and ascending, now available in Series method
as well as top-level function.

• Text parser now treats anything that reads like inf (“inf”, “Inf”, “-Inf”, “iNf”, etc.) to infinity. (GH4220,
GH4219), affecting read_table, read_csv, etc.

• Added a more informative error message when plot arguments contain overlapping color and style arguments
(GH4402)

• Significant table writing performance improvements in HDFStore

2488 Chapter 38. Release Notes

https://github.com/pandas-dev/pandas/issues/5070
https://github.com/pandas-dev/pandas/issues/4282
https://github.com/pandas-dev/pandas/issues/4685
https://github.com/pandas-dev/pandas/issues/4488
https://github.com/pandas-dev/pandas/issues/4313
https://github.com/pandas-dev/pandas/issues/4637
https://github.com/pandas-dev/pandas/issues/4646
https://github.com/pandas-dev/pandas/issues/4511
https://github.com/pandas-dev/pandas/issues/5367
https://github.com/pandas-dev/pandas/issues/4897
https://github.com/pandas-dev/pandas/issues/686
https://github.com/pandas-dev/pandas/issues/5506
https://github.com/pandas-dev/pandas/issues/4140
https://github.com/pandas-dev/pandas/issues/4303
https://github.com/pandas-dev/pandas/issues/4305
https://github.com/pandas-dev/pandas/issues/4301
https://github.com/pandas-dev/pandas/issues/4446
https://github.com/pandas-dev/pandas/issues/4282
https://github.com/pandas-dev/pandas/issues/3945
https://github.com/pandas-dev/pandas/issues/4220
https://github.com/pandas-dev/pandas/issues/4219
https://github.com/pandas-dev/pandas/issues/4402

pandas: powerful Python data analysis toolkit, Release 0.23.4

• JSON date serialization now performed in low-level C code.

• JSON support for encoding datetime.time

• Expanded JSON docs, more info about orient options and the use of the numpy param when decoding.

• Add drop_level argument to xs (GH4180)

• Can now resample a DataFrame with ohlc (GH2320)

• Index.copy() and MultiIndex.copy() now accept keyword arguments to change attributes (i.e.,
names, levels, labels) (GH4039)

• Add rename and set_names methods to Index as well as set_names, set_levels, set_labels to
MultiIndex. (GH4039) with improved validation for all (GH4039, GH4794)

• A Series of dtype timedelta64[ns] can now be divided/multiplied by an integer series (GH4521)

• A Series of dtype timedelta64[ns] can now be divided by another timedelta64[ns] object to yield a
float64 dtyped Series. This is frequency conversion; astyping is also supported.

• Timedelta64 support fillna/ffill/bfill with an integer interpreted as seconds, or a timedelta
(GH3371)

• Box numeric ops on timedelta Series (GH4984)

• Datetime64 support ffill/bfill

• Performance improvements with __getitem__ on DataFrames with when the key is a column

• Support for using a DatetimeIndex/PeriodsIndex directly in a datelike calculation e.g. s-s.index
(GH4629)

• Better/cleaned up exceptions in core/common, io/excel and core/format (GH4721, GH3954), as well as cleaned
up test cases in tests/test_frame, tests/test_multilevel (GH4732).

• Performance improvement of timeseries plotting with PeriodIndex and added test to vbench (GH4705 and
GH4722)

• Add axis and level keywords to where, so that the other argument can now be an alignable pandas
object.

• to_datetime with a format of ‘%Y%m%d’ now parses much faster

• It’s now easier to hook new Excel writers into pandas (just subclass ExcelWriter and register your engine).
You can specify an engine in to_excel or in ExcelWriter. You can also specify which writers you want
to use by default with config options io.excel.xlsx.writer and io.excel.xls.writer. (GH4745,
GH4750)

• Panel.to_excel() now accepts keyword arguments that will be passed to its DataFrame’s
to_excel() methods. (GH4750)

• Added XlsxWriter as an optional ExcelWriter engine. This is about 5x faster than the default openpyxl xlsx
writer and is equivalent in speed to the xlwt xls writer module. (GH4542)

• allow DataFrame constructor to accept more list-like objects, e.g. list of collections.Sequence and
array.Array objects (GH3783, GH4297, GH4851), thanks @lgautier

• DataFrame constructor now accepts a NumPy masked record array (GH3478), thanks @jnothman

• __getitem__ with tuple key (e.g., [:, 2]) on Series without MultiIndex raises ValueError
(GH4759, GH4837)

• read_json now raises a (more informative) ValueError when the dict contains a bad key and
orient='split' (GH4730, GH4838)

38.24. pandas 0.13.0 2489

https://github.com/pandas-dev/pandas/issues/4180
https://github.com/pandas-dev/pandas/issues/2320
https://github.com/pandas-dev/pandas/issues/4039
https://github.com/pandas-dev/pandas/issues/4039
https://github.com/pandas-dev/pandas/issues/4039
https://github.com/pandas-dev/pandas/issues/4794
https://github.com/pandas-dev/pandas/issues/4521
https://github.com/pandas-dev/pandas/issues/3371
https://github.com/pandas-dev/pandas/issues/4984
https://github.com/pandas-dev/pandas/issues/4629
https://github.com/pandas-dev/pandas/issues/4721
https://github.com/pandas-dev/pandas/issues/3954
https://github.com/pandas-dev/pandas/issues/4732
https://github.com/pandas-dev/pandas/issues/4705
https://github.com/pandas-dev/pandas/issues/4722
https://github.com/pandas-dev/pandas/issues/4745
https://github.com/pandas-dev/pandas/issues/4750
https://github.com/pandas-dev/pandas/issues/4750
https://github.com/pandas-dev/pandas/issues/4542
https://github.com/pandas-dev/pandas/issues/3783
https://github.com/pandas-dev/pandas/issues/4297
https://github.com/pandas-dev/pandas/issues/4851
https://github.com/pandas-dev/pandas/issues/3478
https://github.com/pandas-dev/pandas/issues/4759
https://github.com/pandas-dev/pandas/issues/4837
https://github.com/pandas-dev/pandas/issues/4730
https://github.com/pandas-dev/pandas/issues/4838

pandas: powerful Python data analysis toolkit, Release 0.23.4

• read_stata now accepts Stata 13 format (GH4291)

• ExcelWriter and ExcelFile can be used as contextmanagers. (GH3441, GH4933)

• pandas is now tested with two different versions of statsmodels (0.4.3 and 0.5.0) (GH4981).

• Better string representations of MultiIndex (including ability to roundtrip via repr). (GH3347, GH4935)

• Both ExcelFile and read_excel to accept an xlrd.Book for the io (formerly path_or_buf) argument; this requires
engine to be set. (GH4961).

• concat now gives a more informative error message when passed objects that cannot be concatenated
(GH4608).

• Add halflife option to exponentially weighted moving functions (PR GH4998)

• to_dict now takes records as a possible outtype. Returns an array of column-keyed dictionaries. (GH4936)

• tz_localize can infer a fall daylight savings transition based on the structure of unlocalized data (GH4230)

• DatetimeIndex is now in the API documentation

• Improve support for converting R datasets to pandas objects (more informative index for timeseries and numeric,
support for factors, dist, and high-dimensional arrays).

• read_html() now supports the parse_dates, tupleize_cols and thousands parameters
(GH4770).

• json_normalize() is a new method to allow you to create a flat table from semi-structured JSON data. See
the docs (GH1067)

• DataFrame.from_records() will now accept generators (GH4910)

• DataFrame.interpolate() and Series.interpolate() have been expanded to include interpola-
tion methods from scipy. (GH4434, GH1892)

• Series now supports a to_frame method to convert it to a single-column DataFrame (GH5164)

• DatetimeIndex (and date_range) can now be constructed in a left- or right-open fashion using the closed
parameter (GH4579)

• Python csv parser now supports usecols (GH4335)

• Added support for Google Analytics v3 API segment IDs that also supports v2 IDs. (GH5271)

• NDFrame.drop() now accepts names as well as integers for the axis argument. (GH5354)

• Added short docstrings to a few methods that were missing them + fixed the docstrings for Panel flex methods.
(GH5336)

• NDFrame.drop(), NDFrame.dropna(), and .drop_duplicates() all accept inplace as a key-
word argument; however, this only means that the wrapper is updated inplace, a copy is still made internally.
(GH1960, GH5247, GH5628, and related GH2325 [still not closed])

• Fixed bug in tools.plotting.andrews_curvres so that lines are drawn grouped by color as expected.

• read_excel() now tries to convert integral floats (like 1.0) to int by default. (GH5394)

• Excel writers now have a default option merge_cells in to_excel() to merge cells in MultiIndex and Hi-
erarchical Rows. Note: using this option it is no longer possible to round trip Excel files with merged MultiIndex
and Hierarchical Rows. Set the merge_cells to False to restore the previous behaviour. (GH5254)

• The FRED DataReader now accepts multiple series (:issue‘3413‘)

• StataWriter adjusts variable names to Stata’s limitations (GH5709)

2490 Chapter 38. Release Notes

https://github.com/pandas-dev/pandas/issues/4291
https://github.com/pandas-dev/pandas/issues/3441
https://github.com/pandas-dev/pandas/issues/4933
https://github.com/pandas-dev/pandas/issues/4981
https://github.com/pandas-dev/pandas/issues/3347
https://github.com/pandas-dev/pandas/issues/4935
https://github.com/pandas-dev/pandas/issues/4961
https://github.com/pandas-dev/pandas/issues/4608
https://github.com/pandas-dev/pandas/issues/4998
https://github.com/pandas-dev/pandas/issues/4936
https://github.com/pandas-dev/pandas/issues/4230
https://github.com/pandas-dev/pandas/issues/4770
https://github.com/pandas-dev/pandas/issues/1067
https://github.com/pandas-dev/pandas/issues/4910
https://github.com/pandas-dev/pandas/issues/4434
https://github.com/pandas-dev/pandas/issues/1892
https://github.com/pandas-dev/pandas/issues/5164
https://github.com/pandas-dev/pandas/issues/4579
https://github.com/pandas-dev/pandas/issues/4335
https://github.com/pandas-dev/pandas/issues/5271
https://github.com/pandas-dev/pandas/issues/5354
https://github.com/pandas-dev/pandas/issues/5336
https://github.com/pandas-dev/pandas/issues/1960
https://github.com/pandas-dev/pandas/issues/5247
https://github.com/pandas-dev/pandas/issues/5628
https://github.com/pandas-dev/pandas/issues/2325
https://github.com/pandas-dev/pandas/issues/5394
https://github.com/pandas-dev/pandas/issues/5254
https://github.com/pandas-dev/pandas/issues/5709

pandas: powerful Python data analysis toolkit, Release 0.23.4

38.24.4 API Changes

• DataFrame.reindex() and forward/backward filling now raises ValueError if either index is not mono-
tonic (GH4483, GH4484).

• pandas now is Python 2/3 compatible without the need for 2to3 thanks to @jtratner. As a result, pandas now
uses iterators more extensively. This also led to the introduction of substantive parts of the Benjamin Peterson’s
six library into compat. (GH4384, GH4375, GH4372)

• pandas.util.compat and pandas.util.py3compat have been merged into pandas.compat.
pandas.compat now includes many functions allowing 2/3 compatibility. It contains both list and itera-
tor versions of range, filter, map and zip, plus other necessary elements for Python 3 compatibility. lmap,
lzip, lrange and lfilter all produce lists instead of iterators, for compatibility with numpy, subscripting
and pandas constructors.(GH4384, GH4375, GH4372)

• deprecated iterkv, which will be removed in a future release (was just an alias of iteritems used to get around
2to3’s changes). (GH4384, GH4375, GH4372)

• Series.get with negative indexers now returns the same as [] (GH4390)

• allow ix/loc for Series/DataFrame/Panel to set on any axis even when the single-key is not currently contained
in the index for that axis (GH2578, GH5226, GH5632, GH5720, GH5744, GH5756)

• Default export for to_clipboard is now csv with a sep of t for compat (GH3368)

• at now will enlarge the object inplace (and return the same) (GH2578)

• DataFrame.plot will scatter plot x versus y by passing kind='scatter' (GH2215)

• HDFStore

– append_to_multiple automatically synchronizes writing rows to multiple tables and adds a
dropna kwarg (GH4698)

– handle a passed Series in table format (GH4330)

– added an is_open property to indicate if the underlying file handle is_open; a closed store will now
report ‘CLOSED’ when viewing the store (rather than raising an error) (GH4409)

– a close of a HDFStore now will close that instance of the HDFStore but will only close the actual file
if the ref count (by PyTables) w.r.t. all of the open handles are 0. Essentially you have a local instance
of HDFStore referenced by a variable. Once you close it, it will report closed. Other references (to the
same file) will continue to operate until they themselves are closed. Performing an action on a closed file
will raise ClosedFileError

– removed the _quiet attribute, replace by a DuplicateWarning if retrieving duplicate rows from a
table (GH4367)

– removed the warn argument from open. Instead a PossibleDataLossError exception will be
raised if you try to use mode='w' with an OPEN file handle (GH4367)

– allow a passed locations array or mask as a where condition (GH4467)

– add the keyword dropna=True to append to change whether ALL nan rows are not written to
the store (default is True, ALL nan rows are NOT written), also settable via the option io.hdf.
dropna_table (GH4625)

– the format keyword now replaces the table keyword; allowed values are fixed(f)|table(t)
the Storer format has been renamed to Fixed

– a column multi-index will be recreated properly (GH4710); raise on trying to use a multi-index with
data_columns on the same axis

– select_as_coordinates will now return an Int64Index of the resultant selection set

38.24. pandas 0.13.0 2491

https://github.com/pandas-dev/pandas/issues/4483
https://github.com/pandas-dev/pandas/issues/4484
https://github.com/pandas-dev/pandas/issues/4384
https://github.com/pandas-dev/pandas/issues/4375
https://github.com/pandas-dev/pandas/issues/4372
https://github.com/pandas-dev/pandas/issues/4384
https://github.com/pandas-dev/pandas/issues/4375
https://github.com/pandas-dev/pandas/issues/4372
https://github.com/pandas-dev/pandas/issues/4384
https://github.com/pandas-dev/pandas/issues/4375
https://github.com/pandas-dev/pandas/issues/4372
https://github.com/pandas-dev/pandas/issues/4390
https://github.com/pandas-dev/pandas/issues/2578
https://github.com/pandas-dev/pandas/issues/5226
https://github.com/pandas-dev/pandas/issues/5632
https://github.com/pandas-dev/pandas/issues/5720
https://github.com/pandas-dev/pandas/issues/5744
https://github.com/pandas-dev/pandas/issues/5756
https://github.com/pandas-dev/pandas/issues/3368
https://github.com/pandas-dev/pandas/issues/2578
https://github.com/pandas-dev/pandas/issues/2215
https://github.com/pandas-dev/pandas/issues/4698
https://github.com/pandas-dev/pandas/issues/4330
https://github.com/pandas-dev/pandas/issues/4409
https://github.com/pandas-dev/pandas/issues/4367
https://github.com/pandas-dev/pandas/issues/4367
https://github.com/pandas-dev/pandas/issues/4467
https://github.com/pandas-dev/pandas/issues/4625
https://github.com/pandas-dev/pandas/issues/4710

pandas: powerful Python data analysis toolkit, Release 0.23.4

– support timedelta64[ns] as a serialization type (GH3577)

– store datetime.date objects as ordinals rather then timetuples to avoid timezone issues (GH2852), thanks
@tavistmorph and @numpand

– numexpr 2.2.2 fixes incompatibility in PyTables 2.4 (GH4908)

– flush now accepts an fsync parameter, which defaults to False (GH5364)

– unicode indices not supported on table formats (GH5386)

– pass thru store creation arguments; can be used to support in-memory stores

• JSON

– added date_unit parameter to specify resolution of timestamps. Options are seconds, milliseconds,
microseconds and nanoseconds. (GH4362, GH4498).

– added default_handler parameter to allow a callable to be passed which will be responsible for
handling otherwise unserialiable objects. (GH5138)

• Index and MultiIndex changes (GH4039):

– Setting levels and labels directly on MultiIndex is now deprecated. Instead, you can use the
set_levels() and set_labels() methods.

– levels, labels and names properties no longer return lists, but instead return containers that do not
allow setting of items (‘mostly immutable’)

– levels, labels and names are validated upon setting and are either copied or shallow-copied.

– inplace setting of levels or labels now correctly invalidates the cached properties. (GH5238).

– __deepcopy__ now returns a shallow copy (currently: a view) of the data - allowing metadata changes.

– MultiIndex.astype() now only allows np.object_-like dtypes and now returns a
MultiIndex rather than an Index. (GH4039)

– Added is_ method to Index that allows fast equality comparison of views (similar to np.
may_share_memory but no false positives, and changes on levels and labels setting on
MultiIndex). (GH4859 , GH4909)

– Aliased __iadd__ to __add__. (GH4996)

– Added is_ method to Index that allows fast equality comparison of views (similar to np.
may_share_memory but no false positives, and changes on levels and labels setting on
MultiIndex). (GH4859, GH4909)

• Infer and downcast dtype if downcast='infer' is passed to fillna/ffill/bfill (GH4604)

• __nonzero__ for all NDFrame objects, will now raise a ValueError, this reverts back to (GH1073,
GH4633) behavior. Add .bool() method to NDFrame objects to facilitate evaluating of single-element
boolean Series

• DataFrame.update() no longer raises a DataConflictError, it now will raise a ValueError in-
stead (if necessary) (GH4732)

• Series.isin() and DataFrame.isin() now raise a TypeErrorwhen passed a string (GH4763). Pass
a list of one element (containing the string) instead.

• Remove undocumented/unused kind keyword argument from read_excel, and ExcelFile. (GH4713,
GH4712)

• The method argument of NDFrame.replace() is valid again, so that a a list can be passed to
to_replace (GH4743).

2492 Chapter 38. Release Notes

https://github.com/pandas-dev/pandas/issues/3577
https://github.com/pandas-dev/pandas/issues/2852
https://github.com/pandas-dev/pandas/issues/4908
https://github.com/pandas-dev/pandas/issues/5364
https://github.com/pandas-dev/pandas/issues/5386
https://github.com/pandas-dev/pandas/issues/4362
https://github.com/pandas-dev/pandas/issues/4498
https://github.com/pandas-dev/pandas/issues/5138
https://github.com/pandas-dev/pandas/issues/4039
https://github.com/pandas-dev/pandas/issues/5238
https://github.com/pandas-dev/pandas/issues/4039
https://github.com/pandas-dev/pandas/issues/4859
https://github.com/pandas-dev/pandas/issues/4909
https://github.com/pandas-dev/pandas/issues/4996
https://github.com/pandas-dev/pandas/issues/4859
https://github.com/pandas-dev/pandas/issues/4909
https://github.com/pandas-dev/pandas/issues/4604
https://github.com/pandas-dev/pandas/issues/1073
https://github.com/pandas-dev/pandas/issues/4633
https://github.com/pandas-dev/pandas/issues/4732
https://github.com/pandas-dev/pandas/issues/4763
https://github.com/pandas-dev/pandas/issues/4713
https://github.com/pandas-dev/pandas/issues/4712
https://github.com/pandas-dev/pandas/issues/4743

pandas: powerful Python data analysis toolkit, Release 0.23.4

• provide automatic dtype conversions on _reduce operations (GH3371)

• exclude non-numerics if mixed types with datelike in _reduce operations (GH3371)

• default for tupleize_cols is now False for both to_csv and read_csv. Fair warning in 0.12
(GH3604)

• moved timedeltas support to pandas.tseries.timedeltas.py; add timedeltas string parsing, add top-level
to_timedelta function

• NDFrame now is compatible with Python’s toplevel abs() function (GH4821).

• raise a TypeError on invalid comparison ops on Series/DataFrame (e.g. integer/datetime) (GH4968)

• Added a new index type, Float64Index. This will be automatically created when passing floating values
in index creation. This enables a pure label-based slicing paradigm that makes [],ix,loc for scalar index-
ing and slicing work exactly the same. Indexing on other index types are preserved (and positional fallback
for [],ix), with the exception, that floating point slicing on indexes on non Float64Index will raise a
TypeError, e.g. Series(range(5))[3.5:4.5] (GH263,:issue:5375)

• Make Categorical repr nicer (GH4368)

• Remove deprecated Factor (GH3650)

• Remove deprecated set_printoptions/reset_printoptions (:issue:3046)

• Remove deprecated _verbose_info (GH3215)

• Begin removing methods that don’t make sense on GroupBy objects (GH4887).

• Remove deprecated read_clipboard/to_clipboard/ExcelFile/ExcelWriter from pandas.
io.parsers (GH3717)

• All non-Index NDFrames (Series, DataFrame, Panel, Panel4D, SparsePanel, etc.), now support the
entire set of arithmetic operators and arithmetic flex methods (add, sub, mul, etc.). SparsePanel does not
support pow or mod with non-scalars. (GH3765)

• Arithmetic func factories are now passed real names (suitable for using with super) (GH5240)

• Provide NumPy compatibility with 1.7 for a calling convention like np.prod(pandas_object) as NumPy
call with additional keyword args (GH4435)

• Provide __dir__ method (and local context) for tab completion / remove ipython completers code (GH4501)

• Support non-unique axes in a Panel via indexing operations (GH4960)

• .truncate will raise a ValueError if invalid before and afters dates are given (GH5242)

• Timestamp now supports now/today/utcnow class methods (GH5339)

• default for display.max_seq_len is now 100 rather then None. This activates truncated display (“. . . ”) of long
sequences in various places. (GH3391)

• All division with NDFrame - likes is now truedivision, regardless of the future import. You can use // and
floordiv to do integer division.

In [3]: arr = np.array([1, 2, 3, 4])

In [4]: arr2 = np.array([5, 3, 2, 1])

In [5]: arr / arr2
Out[5]: array([0, 0, 1, 4])

In [6]: pd.Series(arr) / pd.Series(arr2) # no future import required
Out[6]:

(continues on next page)

38.24. pandas 0.13.0 2493

https://github.com/pandas-dev/pandas/issues/3371
https://github.com/pandas-dev/pandas/issues/3371
https://github.com/pandas-dev/pandas/issues/3604
https://github.com/pandas-dev/pandas/issues/4821
https://github.com/pandas-dev/pandas/issues/4968
https://github.com/pandas-dev/pandas/issues/263
https://github.com/pandas-dev/pandas/issues/4368
https://github.com/pandas-dev/pandas/issues/3650
https://github.com/pandas-dev/pandas/issues/3215
https://github.com/pandas-dev/pandas/issues/4887
https://github.com/pandas-dev/pandas/issues/3717
https://github.com/pandas-dev/pandas/issues/3765
https://github.com/pandas-dev/pandas/issues/5240
https://github.com/pandas-dev/pandas/issues/4435
https://github.com/pandas-dev/pandas/issues/4501
https://github.com/pandas-dev/pandas/issues/4960
https://github.com/pandas-dev/pandas/issues/5242
https://github.com/pandas-dev/pandas/issues/5339
https://github.com/pandas-dev/pandas/issues/3391

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

0 0.200000
1 0.666667
2 1.500000
3 4.000000
dtype: float64

• raise/warn SettingWithCopyError/Warning exception/warning when setting of a copy thru chained
assignment is detected, settable via option mode.chained_assignment

• test the list of NA values in the csv parser. add N/A, #NA as independent default na values (GH5521)

• The refactoring involving‘‘Series‘‘ deriving from NDFrame breaks rpy2<=2.3.8. an Issue has been opened
against rpy2 and a workaround is detailed in GH5698. Thanks @JanSchulz.

• Series.argmin and Series.argmax are now aliased to Series.idxmin and Series.idxmax.
These return the index of the min or max element respectively. Prior to 0.13.0 these would return the posi-
tion of the min / max element (GH6214)

38.24.5 Internal Refactoring

In 0.13.0 there is a major refactor primarily to subclass Series from NDFrame, which is the base class currently
for DataFrame and Panel, to unify methods and behaviors. Series formerly subclassed directly from ndarray.
(GH4080, GH3862, GH816) See Internal Refactoring

• Refactor of series.py/frame.py/panel.py to move common code to generic.py

• added _setup_axes to created generic NDFrame structures

• moved methods

– from_axes, _wrap_array, axes, ix, loc, iloc, shape, empty, swapaxes, transpose,
pop

– __iter__, keys, __contains__, __len__, __neg__, __invert__

– convert_objects, as_blocks, as_matrix, values

– __getstate__, __setstate__ (compat remains in frame/panel)

– __getattr__, __setattr__

– _indexed_same, reindex_like, align, where, mask

– fillna, replace (Series replace is now consistent with DataFrame)

– filter (also added axis argument to selectively filter on a different axis)

– reindex, reindex_axis, take

– truncate (moved to become part of NDFrame)

– isnull/notnull now available on NDFrame objects

• These are API changes which make Panel more consistent with DataFrame

• swapaxes on a Panel with the same axes specified now return a copy

• support attribute access for setting

• filter supports same API as original DataFrame filter

• fillna refactored to core/generic.py, while > 3ndim is NotImplemented

2494 Chapter 38. Release Notes

https://github.com/pandas-dev/pandas/issues/5521
https://github.com/pandas-dev/pandas/issues/5698
https://github.com/pandas-dev/pandas/issues/6214
https://github.com/pandas-dev/pandas/issues/4080
https://github.com/pandas-dev/pandas/issues/3862
https://github.com/pandas-dev/pandas/issues/816

pandas: powerful Python data analysis toolkit, Release 0.23.4

• Series now inherits from NDFrame rather than directly from ndarray. There are several minor changes that
affect the API.

• NumPy functions that do not support the array interface will now return ndarrays rather than series, e.g.
np.diff, np.ones_like, np.where

• Series(0.5) would previously return the scalar 0.5, this is no longer supported

• TimeSeries is now an alias for Series. the property is_time_series can be used to distinguish (if
desired)

• Refactor of Sparse objects to use BlockManager

• Created a new block type in internals, SparseBlock, which can hold multi-dtypes and is non-
consolidatable. SparseSeries and SparseDataFrame now inherit more methods from there hier-
archy (Series/DataFrame), and no longer inherit from SparseArray (which instead is the object of the
SparseBlock)

• Sparse suite now supports integration with non-sparse data. Non-float sparse data is supportable (partially
implemented)

• Operations on sparse structures within DataFrames should preserve sparseness, merging type operations will
convert to dense (and back to sparse), so might be somewhat inefficient

• enable setitem on SparseSeries for boolean/integer/slices

• SparsePanels implementation is unchanged (e.g. not using BlockManager, needs work)

• added ftypes method to Series/DataFame, similar to dtypes, but indicates if the underlying is sparse/dense
(as well as the dtype)

• All NDFrame objects now have a _prop_attributes, which can be used to indicate various values to
propagate to a new object from an existing (e.g. name in Series will follow more automatically now)

• Internal type checking is now done via a suite of generated classes, allowing isinstance(value, klass)
without having to directly import the klass, courtesy of @jtratner

• Bug in Series update where the parent frame is not updating its cache based on changes (GH4080, GH5216) or
types (GH3217), fillna (GH3386)

• Indexing with dtype conversions fixed (GH4463, GH4204)

• Refactor Series.reindex to core/generic.py (GH4604, GH4618), allow method= in reindexing on a Se-
ries to work

• Series.copy no longer accepts the order parameter and is now consistent with NDFrame copy

• Refactor rename methods to core/generic.py; fixes Series.rename for (GH4605), and adds rename with
the same signature for Panel

• Series (for index) / Panel (for items) now as attribute access to its elements (GH1903)

• Refactor clip methods to core/generic.py (GH4798)

• Refactor of _get_numeric_data/_get_bool_data to core/generic.py, allowing Series/Panel function-
ality

• Refactor of Series arithmetic with time-like objects (datetime/timedelta/time etc.) into a separate, cleaned up
wrapper class. (GH4613)

• Complex compat for Series with ndarray. (GH4819)

• Removed unnecessary rwproperty from codebase in favor of builtin property. (GH4843)

• Refactor object level numeric methods (mean/sum/min/max. . .) from object level modules to core/
generic.py (GH4435).

38.24. pandas 0.13.0 2495

https://github.com/pandas-dev/pandas/issues/4080
https://github.com/pandas-dev/pandas/issues/5216
https://github.com/pandas-dev/pandas/issues/3217
https://github.com/pandas-dev/pandas/issues/3386
https://github.com/pandas-dev/pandas/issues/4463
https://github.com/pandas-dev/pandas/issues/4204
https://github.com/pandas-dev/pandas/issues/4604
https://github.com/pandas-dev/pandas/issues/4618
https://github.com/pandas-dev/pandas/issues/4605
https://github.com/pandas-dev/pandas/issues/1903
https://github.com/pandas-dev/pandas/issues/4798
https://github.com/pandas-dev/pandas/issues/4613
https://github.com/pandas-dev/pandas/issues/4819
https://github.com/pandas-dev/pandas/issues/4843
https://github.com/pandas-dev/pandas/issues/4435

pandas: powerful Python data analysis toolkit, Release 0.23.4

• Refactor cum objects to core/generic.py (GH4435), note that these have a more numpy-like function signature.

• read_html() now uses TextParser to parse HTML data from bs4/lxml (GH4770).

• Removed the keep_internal keyword parameter in pandas/core/groupby.py because it wasn’t be-
ing used (GH5102).

• Base DateOffsets are no longer all instantiated on importing pandas, instead they are generated and cached
on the fly. The internal representation and handling of DateOffsets has also been clarified. (GH5189, related
GH5004)

• MultiIndex constructor now validates that passed levels and labels are compatible. (GH5213, GH5214)

• Unity dropna for Series/DataFrame signature (GH5250), tests from GH5234, courtesy of @rockg

• Rewrite assert_almost_equal() in cython for performance (GH4398)

• Added an internal _update_inplace method to facilitate updating NDFrame wrappers on inplace ops (only
is for convenience of caller, doesn’t actually prevent copies). (GH5247)

38.24.6 Bug Fixes

• HDFStore

– raising an invalid TypeError rather than ValueErrorwhen appending with a different block ordering
(GH4096)

– read_hdf was not respecting as passed mode (GH4504)

– appending a 0-len table will work correctly (GH4273)

– to_hdf was raising when passing both arguments append and table (GH4584)

– reading from a store with duplicate columns across dtypes would raise (GH4767)

– Fixed a bug where ValueError wasn’t correctly raised when column names weren’t strings (GH4956)

– A zero length series written in Fixed format not deserializing properly. (GH4708)

– Fixed decoding perf issue on pyt3 (GH5441)

– Validate levels in a multi-index before storing (GH5527)

– Correctly handle data_columns with a Panel (GH5717)

• Fixed bug in tslib.tz_convert(vals, tz1, tz2): it could raise IndexError exception while trying to access trans[pos
+ 1] (GH4496)

• The by argument now works correctly with the layout argument (GH4102, GH4014) in *.hist plotting
methods

• Fixed bug in PeriodIndex.map where using str would return the str representation of the index (GH4136)

• Fixed test failure test_time_series_plot_color_with_empty_kwargs when using custom mat-
plotlib default colors (GH4345)

• Fix running of stata IO tests. Now uses temporary files to write (GH4353)

• Fixed an issue where DataFrame.sum was slower than DataFrame.mean for integer valued frames
(GH4365)

• read_html tests now work with Python 2.6 (GH4351)

• Fixed bug where network testing was throwing NameError because a local variable was undefined
(GH4381)

2496 Chapter 38. Release Notes

https://github.com/pandas-dev/pandas/issues/4435
https://github.com/pandas-dev/pandas/issues/4770
https://github.com/pandas-dev/pandas/issues/5102
https://github.com/pandas-dev/pandas/issues/5189
https://github.com/pandas-dev/pandas/issues/5004
https://github.com/pandas-dev/pandas/issues/5213
https://github.com/pandas-dev/pandas/issues/5214
https://github.com/pandas-dev/pandas/issues/5250
https://github.com/pandas-dev/pandas/issues/5234
https://github.com/pandas-dev/pandas/issues/4398
https://github.com/pandas-dev/pandas/issues/5247
https://github.com/pandas-dev/pandas/issues/4096
https://github.com/pandas-dev/pandas/issues/4504
https://github.com/pandas-dev/pandas/issues/4273
https://github.com/pandas-dev/pandas/issues/4584
https://github.com/pandas-dev/pandas/issues/4767
https://github.com/pandas-dev/pandas/issues/4956
https://github.com/pandas-dev/pandas/issues/4708
https://github.com/pandas-dev/pandas/issues/5441
https://github.com/pandas-dev/pandas/issues/5527
https://github.com/pandas-dev/pandas/issues/5717
https://github.com/pandas-dev/pandas/issues/4496
https://github.com/pandas-dev/pandas/issues/4102
https://github.com/pandas-dev/pandas/issues/4014
https://github.com/pandas-dev/pandas/issues/4136
https://github.com/pandas-dev/pandas/issues/4345
https://github.com/pandas-dev/pandas/issues/4353
https://github.com/pandas-dev/pandas/issues/4365
https://github.com/pandas-dev/pandas/issues/4351
https://github.com/pandas-dev/pandas/issues/4381

pandas: powerful Python data analysis toolkit, Release 0.23.4

• In to_json, raise if a passed orient would cause loss of data because of a duplicate index (GH4359)

• In to_json, fix date handling so milliseconds are the default timestamp as the docstring says (GH4362).

• as_index is no longer ignored when doing groupby apply (GH4648, GH3417)

• JSON NaT handling fixed, NaTs are now serialized to null (GH4498)

• Fixed JSON handling of escapable characters in JSON object keys (GH4593)

• Fixed passing keep_default_na=False when na_values=None (GH4318)

• Fixed bug with values raising an error on a DataFrame with duplicate columns and mixed dtypes, surfaced in
(GH4377)

• Fixed bug with duplicate columns and type conversion in read_json when orient='split' (GH4377)

• Fixed JSON bug where locales with decimal separators other than ‘.’ threw exceptions when encoding / decoding
certain values. (GH4918)

• Fix .iat indexing with a PeriodIndex (GH4390)

• Fixed an issue where PeriodIndex joining with self was returning a new instance rather than the same
instance (GH4379); also adds a test for this for the other index types

• Fixed a bug with all the dtypes being converted to object when using the CSV cparser with the usecols parameter
(GH3192)

• Fix an issue in merging blocks where the resulting DataFrame had partially set _ref_locs (GH4403)

• Fixed an issue where hist subplots were being overwritten when they were called using the top level matplotlib
API (GH4408)

• Fixed a bug where calling Series.astype(str) would truncate the string (GH4405, GH4437)

• Fixed a py3 compat issue where bytes were being repr’d as tuples (GH4455)

• Fixed Panel attribute naming conflict if item is named ‘a’ (GH3440)

• Fixed an issue where duplicate indexes were raising when plotting (GH4486)

• Fixed an issue where cumsum and cumprod didn’t work with bool dtypes (GH4170, GH4440)

• Fixed Panel slicing issued in xs that was returning an incorrect dimmed object (GH4016)

• Fix resampling bug where custom reduce function not used if only one group (GH3849, GH4494)

• Fixed Panel assignment with a transposed frame (GH3830)

• Raise on set indexing with a Panel and a Panel as a value which needs alignment (GH3777)

• frozenset objects now raise in the Series constructor (GH4482, GH4480)

• Fixed issue with sorting a duplicate multi-index that has multiple dtypes (GH4516)

• Fixed bug in DataFrame.set_values which was causing name attributes to be lost when expanding the
index. (GH3742, GH4039)

• Fixed issue where individual names, levels and labels could be set on MultiIndex without validation
(GH3714, GH4039)

• Fixed (GH3334) in pivot_table. Margins did not compute if values is the index.

• Fix bug in having a rhs of np.timedelta64 or np.offsets.DateOffset when operating with date-
times (GH4532)

• Fix arithmetic with series/datetimeindex and np.timedelta64 not working the same (GH4134) and buggy
timedelta in NumPy 1.6 (GH4135)

38.24. pandas 0.13.0 2497

https://github.com/pandas-dev/pandas/issues/4359
https://github.com/pandas-dev/pandas/issues/4362
https://github.com/pandas-dev/pandas/issues/4648
https://github.com/pandas-dev/pandas/issues/3417
https://github.com/pandas-dev/pandas/issues/4498
https://github.com/pandas-dev/pandas/issues/4593
https://github.com/pandas-dev/pandas/issues/4318
https://github.com/pandas-dev/pandas/issues/4377
https://github.com/pandas-dev/pandas/issues/4377
https://github.com/pandas-dev/pandas/issues/4918
https://github.com/pandas-dev/pandas/issues/4390
https://github.com/pandas-dev/pandas/issues/4379
https://github.com/pandas-dev/pandas/issues/3192
https://github.com/pandas-dev/pandas/issues/4403
https://github.com/pandas-dev/pandas/issues/4408
https://github.com/pandas-dev/pandas/issues/4405
https://github.com/pandas-dev/pandas/issues/4437
https://github.com/pandas-dev/pandas/issues/4455
https://github.com/pandas-dev/pandas/issues/3440
https://github.com/pandas-dev/pandas/issues/4486
https://github.com/pandas-dev/pandas/issues/4170
https://github.com/pandas-dev/pandas/issues/4440
https://github.com/pandas-dev/pandas/issues/4016
https://github.com/pandas-dev/pandas/issues/3849
https://github.com/pandas-dev/pandas/issues/4494
https://github.com/pandas-dev/pandas/issues/3830
https://github.com/pandas-dev/pandas/issues/3777
https://github.com/pandas-dev/pandas/issues/4482
https://github.com/pandas-dev/pandas/issues/4480
https://github.com/pandas-dev/pandas/issues/4516
https://github.com/pandas-dev/pandas/issues/3742
https://github.com/pandas-dev/pandas/issues/4039
https://github.com/pandas-dev/pandas/issues/3714
https://github.com/pandas-dev/pandas/issues/4039
https://github.com/pandas-dev/pandas/issues/3334
https://github.com/pandas-dev/pandas/issues/4532
https://github.com/pandas-dev/pandas/issues/4134
https://github.com/pandas-dev/pandas/issues/4135

pandas: powerful Python data analysis toolkit, Release 0.23.4

• Fix bug in pd.read_clipboard on windows with PY3 (GH4561); not decoding properly

• tslib.get_period_field() and tslib.get_period_field_arr() now raise if code argument
out of range (GH4519, GH4520)

• Fix boolean indexing on an empty series loses index names (GH4235), infer_dtype works with empty arrays.

• Fix reindexing with multiple axes; if an axes match was not replacing the current axes, leading to a possible
lazay frequency inference issue (GH3317)

• Fixed issue where DataFrame.apply was reraising exceptions incorrectly (causing the original stack trace
to be truncated).

• Fix selection with ix/loc and non_unique selectors (GH4619)

• Fix assignment with iloc/loc involving a dtype change in an existing column (GH4312, GH5702) have internal
setitem_with_indexer in core/indexing to use Block.setitem

• Fixed bug where thousands operator was not handled correctly for floating point numbers in csv_import
(GH4322)

• Fix an issue with CacheableOffset not properly being used by many DateOffset; this prevented the DateOffset
from being cached (GH4609)

• Fix boolean comparison with a DataFrame on the lhs, and a list/tuple on the rhs (GH4576)

• Fix error/dtype conversion with setitem of None on Series/DataFrame (GH4667)

• Fix decoding based on a passed in non-default encoding in pd.read_stata (GH4626)

• Fix DataFrame.from_records with a plain-vanilla ndarray. (GH4727)

• Fix some inconsistencies with Index.rename and MultiIndex.rename, etc. (GH4718, GH4628)

• Bug in using iloc/loc with a cross-sectional and duplicate indicies (GH4726)

• Bug with using QUOTE_NONE with to_csv causing Exception. (GH4328)

• Bug with Series indexing not raising an error when the right-hand-side has an incorrect length (GH2702)

• Bug in multi-indexing with a partial string selection as one part of a MultIndex (GH4758)

• Bug with reindexing on the index with a non-unique index will now raise ValueError (GH4746)

• Bug in setting with loc/ix a single indexer with a multi-index axis and a NumPy array, related to (GH3777)

• Bug in concatenation with duplicate columns across dtypes not merging with axis=0 (GH4771, GH4975)

• Bug in iloc with a slice index failing (GH4771)

• Incorrect error message with no colspecs or width in read_fwf. (GH4774)

• Fix bugs in indexing in a Series with a duplicate index (GH4548, GH4550)

• Fixed bug with reading compressed files with read_fwf in Python 3. (GH3963)

• Fixed an issue with a duplicate index and assignment with a dtype change (GH4686)

• Fixed bug with reading compressed files in as bytes rather than str in Python 3. Simplifies bytes-producing
file-handling in Python 3 (GH3963, GH4785).

• Fixed an issue related to ticklocs/ticklabels with log scale bar plots across different versions of matplotlib
(GH4789)

• Suppressed DeprecationWarning associated with internal calls issued by repr() (GH4391)

• Fixed an issue with a duplicate index and duplicate selector with .loc (GH4825)

2498 Chapter 38. Release Notes

https://github.com/pandas-dev/pandas/issues/4561
https://github.com/pandas-dev/pandas/issues/4519
https://github.com/pandas-dev/pandas/issues/4520
https://github.com/pandas-dev/pandas/issues/4235
https://github.com/pandas-dev/pandas/issues/3317
https://github.com/pandas-dev/pandas/issues/4619
https://github.com/pandas-dev/pandas/issues/4312
https://github.com/pandas-dev/pandas/issues/5702
https://github.com/pandas-dev/pandas/issues/4322
https://github.com/pandas-dev/pandas/issues/4609
https://github.com/pandas-dev/pandas/issues/4576
https://github.com/pandas-dev/pandas/issues/4667
https://github.com/pandas-dev/pandas/issues/4626
https://github.com/pandas-dev/pandas/issues/4727
https://github.com/pandas-dev/pandas/issues/4718
https://github.com/pandas-dev/pandas/issues/4628
https://github.com/pandas-dev/pandas/issues/4726
https://github.com/pandas-dev/pandas/issues/4328
https://github.com/pandas-dev/pandas/issues/2702
https://github.com/pandas-dev/pandas/issues/4758
https://github.com/pandas-dev/pandas/issues/4746
https://github.com/pandas-dev/pandas/issues/3777
https://github.com/pandas-dev/pandas/issues/4771
https://github.com/pandas-dev/pandas/issues/4975
https://github.com/pandas-dev/pandas/issues/4771
https://github.com/pandas-dev/pandas/issues/4774
https://github.com/pandas-dev/pandas/issues/4548
https://github.com/pandas-dev/pandas/issues/4550
https://github.com/pandas-dev/pandas/issues/3963
https://github.com/pandas-dev/pandas/issues/4686
https://github.com/pandas-dev/pandas/issues/3963
https://github.com/pandas-dev/pandas/issues/4785
https://github.com/pandas-dev/pandas/issues/4789
https://github.com/pandas-dev/pandas/issues/4391
https://github.com/pandas-dev/pandas/issues/4825

pandas: powerful Python data analysis toolkit, Release 0.23.4

• Fixed an issue with DataFrame.sort_index where, when sorting by a single column and passing a list for
ascending, the argument for ascending was being interpreted as True (GH4839, GH4846)

• Fixed Panel.tshift not working. Added freq support to Panel.shift (GH4853)

• Fix an issue in TextFileReader w/ Python engine (i.e. PythonParser) with thousands != “,” (GH4596)

• Bug in getitem with a duplicate index when using where (GH4879)

• Fix Type inference code coerces float column into datetime (GH4601)

• Fixed _ensure_numeric does not check for complex numbers (GH4902)

• Fixed a bug in Series.hist where two figures were being created when the by argument was passed
(GH4112, GH4113).

• Fixed a bug in convert_objects for > 2 ndims (GH4937)

• Fixed a bug in DataFrame/Panel cache insertion and subsequent indexing (GH4939, GH5424)

• Fixed string methods for FrozenNDArray and FrozenList (GH4929)

• Fixed a bug with setting invalid or out-of-range values in indexing enlargement scenarios (GH4940)

• Tests for fillna on empty Series (GH4346), thanks @immerrr

• Fixed copy() to shallow copy axes/indices as well and thereby keep separate metadata. (GH4202, GH4830)

• Fixed skiprows option in Python parser for read_csv (GH4382)

• Fixed bug preventing cut from working with np.inf levels without explicitly passing labels (GH3415)

• Fixed wrong check for overlapping in DatetimeIndex.union (GH4564)

• Fixed conflict between thousands separator and date parser in csv_parser (GH4678)

• Fix appending when dtypes are not the same (error showing mixing float/np.datetime64) (GH4993)

• Fix repr for DateOffset. No longer show duplicate entries in kwds. Removed unused offset fields. (GH4638)

• Fixed wrong index name during read_csv if using usecols. Applies to c parser only. (GH4201)

• Timestamp objects can now appear in the left hand side of a comparison operation with a Series or
DataFrame object (GH4982).

• Fix a bug when indexing with np.nan via iloc/loc (GH5016)

• Fixed a bug where low memory c parser could create different types in different chunks of the same file. Now
coerces to numerical type or raises warning. (GH3866)

• Fix a bug where reshaping a Series to its own shape raised TypeError (GH4554) and other reshaping
issues.

• Bug in setting with ix/loc and a mixed int/string index (GH4544)

• Make sure series-series boolean comparisons are label based (GH4947)

• Bug in multi-level indexing with a Timestamp partial indexer (GH4294)

• Tests/fix for multi-index construction of an all-nan frame (GH4078)

• Fixed a bug where read_html() wasn’t correctly inferring values of tables with commas (GH5029)

• Fixed a bug where read_html() wasn’t providing a stable ordering of returned tables (GH4770, GH5029).

• Fixed a bug where read_html() was incorrectly parsing when passed index_col=0 (GH5066).

• Fixed a bug where read_html() was incorrectly inferring the type of headers (GH5048).

• Fixed a bug where DatetimeIndex joins with PeriodIndex caused a stack overflow (GH3899).

38.24. pandas 0.13.0 2499

https://github.com/pandas-dev/pandas/issues/4839
https://github.com/pandas-dev/pandas/issues/4846
https://github.com/pandas-dev/pandas/issues/4853
https://github.com/pandas-dev/pandas/issues/4596
https://github.com/pandas-dev/pandas/issues/4879
https://github.com/pandas-dev/pandas/issues/4601
https://github.com/pandas-dev/pandas/issues/4902
https://github.com/pandas-dev/pandas/issues/4112
https://github.com/pandas-dev/pandas/issues/4113
https://github.com/pandas-dev/pandas/issues/4937
https://github.com/pandas-dev/pandas/issues/4939
https://github.com/pandas-dev/pandas/issues/5424
https://github.com/pandas-dev/pandas/issues/4929
https://github.com/pandas-dev/pandas/issues/4940
https://github.com/pandas-dev/pandas/issues/4346
https://github.com/pandas-dev/pandas/issues/4202
https://github.com/pandas-dev/pandas/issues/4830
https://github.com/pandas-dev/pandas/issues/4382
https://github.com/pandas-dev/pandas/issues/3415
https://github.com/pandas-dev/pandas/issues/4564
https://github.com/pandas-dev/pandas/issues/4678
https://github.com/pandas-dev/pandas/issues/4993
https://github.com/pandas-dev/pandas/issues/4638
https://github.com/pandas-dev/pandas/issues/4201
https://github.com/pandas-dev/pandas/issues/4982
https://github.com/pandas-dev/pandas/issues/5016
https://github.com/pandas-dev/pandas/issues/3866
https://github.com/pandas-dev/pandas/issues/4554
https://github.com/pandas-dev/pandas/issues/4544
https://github.com/pandas-dev/pandas/issues/4947
https://github.com/pandas-dev/pandas/issues/4294
https://github.com/pandas-dev/pandas/issues/4078
https://github.com/pandas-dev/pandas/issues/5029
https://github.com/pandas-dev/pandas/issues/4770
https://github.com/pandas-dev/pandas/issues/5029
https://github.com/pandas-dev/pandas/issues/5066
https://github.com/pandas-dev/pandas/issues/5048
https://github.com/pandas-dev/pandas/issues/3899

pandas: powerful Python data analysis toolkit, Release 0.23.4

• Fixed a bug where groupby objects didn’t allow plots (GH5102).

• Fixed a bug where groupby objects weren’t tab-completing column names (GH5102).

• Fixed a bug where groupby.plot() and friends were duplicating figures multiple times (GH5102).

• Provide automatic conversion of object dtypes on fillna, related (GH5103)

• Fixed a bug where default options were being overwritten in the option parser cleaning (GH5121).

• Treat a list/ndarray identically for iloc indexing with list-like (GH5006)

• Fix MultiIndex.get_level_values() with missing values (GH5074)

• Fix bound checking for Timestamp() with datetime64 input (GH4065)

• Fix a bug where TestReadHtml wasn’t calling the correct read_html() function (GH5150).

• Fix a bug with NDFrame.replace() which made replacement appear as though it was (incorrectly) using
regular expressions (GH5143).

• Fix better error message for to_datetime (GH4928)

• Made sure different locales are tested on travis-ci (GH4918). Also adds a couple of utilities for getting locales
and setting locales with a context manager.

• Fixed segfault on isnull(MultiIndex) (now raises an error instead) (GH5123, GH5125)

• Allow duplicate indices when performing operations that align (GH5185, GH5639)

• Compound dtypes in a constructor raise NotImplementedError (GH5191)

• Bug in comparing duplicate frames (GH4421) related

• Bug in describe on duplicate frames

• Bug in to_datetime with a format and coerce=True not raising (GH5195)

• Bug in loc setting with multiple indexers and a rhs of a Series that needs broadcasting (GH5206)

• Fixed bug where inplace setting of levels or labels on MultiIndex would not clear cached values property
and therefore return wrong values. (GH5215)

• Fixed bug where filtering a grouped DataFrame or Series did not maintain the original ordering (GH4621).

• Fixed Period with a business date freq to always roll-forward if on a non-business date. (GH5203)

• Fixed bug in Excel writers where frames with duplicate column names weren’t written correctly. (GH5235)

• Fixed issue with drop and a non-unique index on Series (GH5248)

• Fixed seg fault in C parser caused by passing more names than columns in the file. (GH5156)

• Fix Series.isin with date/time-like dtypes (GH5021)

• C and Python Parser can now handle the more common multi-index column format which doesn’t have a row
for index names (GH4702)

• Bug when trying to use an out-of-bounds date as an object dtype (GH5312)

• Bug when trying to display an embedded PandasObject (GH5324)

• Allows operating of Timestamps to return a datetime if the result is out-of-bounds related (GH5312)

• Fix return value/type signature of initObjToJSON() to be compatible with numpy’s import_array()
(GH5334, GH5326)

• Bug when renaming then set_index on a DataFrame (GH5344)

2500 Chapter 38. Release Notes

https://github.com/pandas-dev/pandas/issues/5102
https://github.com/pandas-dev/pandas/issues/5102
https://github.com/pandas-dev/pandas/issues/5102
https://github.com/pandas-dev/pandas/issues/5103
https://github.com/pandas-dev/pandas/issues/5121
https://github.com/pandas-dev/pandas/issues/5006
https://github.com/pandas-dev/pandas/issues/5074
https://github.com/pandas-dev/pandas/issues/4065
https://github.com/pandas-dev/pandas/issues/5150
https://github.com/pandas-dev/pandas/issues/5143
https://github.com/pandas-dev/pandas/issues/4928
https://github.com/pandas-dev/pandas/issues/4918
https://github.com/pandas-dev/pandas/issues/5123
https://github.com/pandas-dev/pandas/issues/5125
https://github.com/pandas-dev/pandas/issues/5185
https://github.com/pandas-dev/pandas/issues/5639
https://github.com/pandas-dev/pandas/issues/5191
https://github.com/pandas-dev/pandas/issues/4421
https://github.com/pandas-dev/pandas/issues/5195
https://github.com/pandas-dev/pandas/issues/5206
https://github.com/pandas-dev/pandas/issues/5215
https://github.com/pandas-dev/pandas/issues/4621
https://github.com/pandas-dev/pandas/issues/5203
https://github.com/pandas-dev/pandas/issues/5235
https://github.com/pandas-dev/pandas/issues/5248
https://github.com/pandas-dev/pandas/issues/5156
https://github.com/pandas-dev/pandas/issues/5021
https://github.com/pandas-dev/pandas/issues/4702
https://github.com/pandas-dev/pandas/issues/5312
https://github.com/pandas-dev/pandas/issues/5324
https://github.com/pandas-dev/pandas/issues/5312
https://github.com/pandas-dev/pandas/issues/5334
https://github.com/pandas-dev/pandas/issues/5326
https://github.com/pandas-dev/pandas/issues/5344

pandas: powerful Python data analysis toolkit, Release 0.23.4

• Test suite no longer leaves around temporary files when testing graphics. (GH5347) (thanks for catching this
@yarikoptic!)

• Fixed html tests on win32. (GH4580)

• Make sure that head/tail are iloc based, (GH5370)

• Fixed bug for PeriodIndex string representation if there are 1 or 2 elements. (GH5372)

• The GroupBy methods transform and filter can be used on Series and DataFrames that have repeated
(non-unique) indices. (GH4620)

• Fix empty series not printing name in repr (GH4651)

• Make tests create temp files in temp directory by default. (GH5419)

• pd.to_timedelta of a scalar returns a scalar (GH5410)

• pd.to_timedelta accepts NaN and NaT, returning NaT instead of raising (GH5437)

• performance improvements in isnull on larger size pandas objects

• Fixed various setitem with 1d ndarray that does not have a matching length to the indexer (GH5508)

• Bug in getitem with a multi-index and iloc (GH5528)

• Bug in delitem on a Series (GH5542)

• Bug fix in apply when using custom function and objects are not mutated (GH5545)

• Bug in selecting from a non-unique index with loc (GH5553)

• Bug in groupby returning non-consistent types when user function returns a None, (GH5592)

• Work around regression in numpy 1.7.0 which erroneously raises IndexError from ndarray.item (GH5666)

• Bug in repeated indexing of object with resultant non-unique index (GH5678)

• Bug in fillna with Series and a passed series/dict (GH5703)

• Bug in groupby transform with a datetime-like grouper (GH5712)

• Bug in multi-index selection in PY3 when using certain keys (GH5725)

• Row-wise concat of differing dtypes failing in certain cases (GH5754)

38.25 pandas 0.12.0

Release date: 2013-07-24

38.25.1 New Features

• pd.read_html() can now parse HTML strings, files or urls and returns a list of DataFrame s courtesy of
@cpcloud. (GH3477, GH3605, GH3606)

• Support for reading Amazon S3 files. (GH3504)

• Added module for reading and writing JSON strings/files: pandas.io.json includes to_json DataFrame/Series
method, and a read_json top-level reader various issues (GH1226, GH3804, GH3876, GH3867, GH1305)

• Added module for reading and writing Stata files: pandas.io.stata (GH1512) includes to_stata DataFrame
method, and a read_stata top-level reader

38.25. pandas 0.12.0 2501

https://github.com/pandas-dev/pandas/issues/5347
https://github.com/pandas-dev/pandas/issues/4580
https://github.com/pandas-dev/pandas/issues/5370
https://github.com/pandas-dev/pandas/issues/5372
https://github.com/pandas-dev/pandas/issues/4620
https://github.com/pandas-dev/pandas/issues/4651
https://github.com/pandas-dev/pandas/issues/5419
https://github.com/pandas-dev/pandas/issues/5410
https://github.com/pandas-dev/pandas/issues/5437
https://github.com/pandas-dev/pandas/issues/5508
https://github.com/pandas-dev/pandas/issues/5528
https://github.com/pandas-dev/pandas/issues/5542
https://github.com/pandas-dev/pandas/issues/5545
https://github.com/pandas-dev/pandas/issues/5553
https://github.com/pandas-dev/pandas/issues/5592
https://github.com/pandas-dev/pandas/issues/5666
https://github.com/pandas-dev/pandas/issues/5678
https://github.com/pandas-dev/pandas/issues/5703
https://github.com/pandas-dev/pandas/issues/5712
https://github.com/pandas-dev/pandas/issues/5725
https://github.com/pandas-dev/pandas/issues/5754
https://github.com/pandas-dev/pandas/issues/3477
https://github.com/pandas-dev/pandas/issues/3605
https://github.com/pandas-dev/pandas/issues/3606
https://github.com/pandas-dev/pandas/issues/3504
https://github.com/pandas-dev/pandas/issues/1226
https://github.com/pandas-dev/pandas/issues/3804
https://github.com/pandas-dev/pandas/issues/3876
https://github.com/pandas-dev/pandas/issues/3867
https://github.com/pandas-dev/pandas/issues/1305
https://github.com/pandas-dev/pandas/issues/1512

pandas: powerful Python data analysis toolkit, Release 0.23.4

• Added support for writing in to_csv and reading in read_csv, multi-index columns. The header option in
read_csv now accepts a list of the rows from which to read the index. Added the option, tupleize_cols
to provide compatibility for the pre 0.12 behavior of writing and reading multi-index columns via a list of tuples.
The default in 0.12 is to write lists of tuples and not interpret list of tuples as a multi-index column. Note: The
default value will change in 0.12 to make the default to write and read multi-index columns in the new format.
(GH3571, GH1651, GH3141)

• Add iterator to Series.str (GH3638)

• pd.set_option() now allows N option, value pairs (GH3667).

• Added keyword parameters for different types of scatter_matrix subplots

• A filter method on grouped Series or DataFrames returns a subset of the original (GH3680, GH919)

• Access to historical Google Finance data in pandas.io.data (GH3814)

• DataFrame plotting methods can sample column colors from a Matplotlib colormap via the colormap key-
word. (GH3860)

38.25.2 Improvements to existing features

• Fixed various issues with internal pprinting code, the repr() for various objects including TimeStamp and Index
now produces valid Python code strings and can be used to recreate the object, (GH3038, GH3379, GH3251,
GH3460)

• convert_objects now accepts a copy parameter (defaults to True)

• HDFStore

– will retain index attributes (freq,tz,name) on recreation (GH3499,:issue:4098)

– will warn with a AttributeConflictWarning if you are attempting to append an index with a
different frequency than the existing, or attempting to append an index with a different name than the
existing

– support datelike columns with a timezone as data_columns (GH2852)

– table writing performance improvements.

– support python3 (via PyTables 3.0.0) (GH3750)

• Add modulo operator to Series, DataFrame

• Add date method to DatetimeIndex

• Add dropna argument to pivot_table (:issue: 3820)

• Simplified the API and added a describe method to Categorical

• melt now accepts the optional parameters var_name and value_name to specify custom column names of
the returned DataFrame (GH3649), thanks @hoechenberger. If var_name is not specified and dataframe.
columns.name is not None, then this will be used as the var_name (GH4144). Also support for MultiIndex
columns.

• clipboard functions use pyperclip (no dependencies on Windows, alternative dependencies offered for Linux)
(GH3837).

• Plotting functions now raise a TypeError before trying to plot anything if the associated objects have a dtype
of object (GH1818, GH3572, GH3911, GH3912), but they will try to convert object arrays to numeric arrays
if possible so that you can still plot, for example, an object array with floats. This happens before any drawing
takes place which eliminates any spurious plots from showing up.

• Added Faq section on repr display options, to help users customize their setup.

2502 Chapter 38. Release Notes

https://github.com/pandas-dev/pandas/issues/3571
https://github.com/pandas-dev/pandas/issues/1651
https://github.com/pandas-dev/pandas/issues/3141
https://github.com/pandas-dev/pandas/issues/3638
https://github.com/pandas-dev/pandas/issues/3667
https://github.com/pandas-dev/pandas/issues/3680
https://github.com/pandas-dev/pandas/issues/919
https://github.com/pandas-dev/pandas/issues/3814
https://github.com/pandas-dev/pandas/issues/3860
https://github.com/pandas-dev/pandas/issues/3038
https://github.com/pandas-dev/pandas/issues/3379
https://github.com/pandas-dev/pandas/issues/3251
https://github.com/pandas-dev/pandas/issues/3460
https://github.com/pandas-dev/pandas/issues/3499
https://github.com/pandas-dev/pandas/issues/2852
https://github.com/pandas-dev/pandas/issues/3750
https://github.com/pandas-dev/pandas/issues/3649
https://github.com/pandas-dev/pandas/issues/4144
https://github.com/pandas-dev/pandas/issues/3837
https://github.com/pandas-dev/pandas/issues/1818
https://github.com/pandas-dev/pandas/issues/3572
https://github.com/pandas-dev/pandas/issues/3911
https://github.com/pandas-dev/pandas/issues/3912

pandas: powerful Python data analysis toolkit, Release 0.23.4

• where operations that result in block splitting are much faster (GH3733)

• Series and DataFrame hist methods now take a figsize argument (GH3834)

• DatetimeIndexes no longer try to convert mixed-integer indexes during join operations (GH3877)

• Add unit keyword to Timestamp and to_datetime to enable passing of integers or floats that are in
an epoch unit of D, s, ms, us, ns, thanks @mtkini (GH3969) (e.g. unix timestamps or epoch s, with
fractional seconds allowed) (GH3540)

• DataFrame corr method (spearman) is now cythonized.

• Improved network test decorator to catch IOError (and therefore URLError as well). Added
with_connectivity_check decorator to allow explicitly checking a website as a proxy for seeing if there
is network connectivity. Plus, new optional_args decorator factory for decorators. (GH3910, GH3914)

• read_csv will now throw a more informative error message when a file contains no columns, e.g., all newline
characters

• Added layout keyword to DataFrame.hist() for more customizable layout (GH4050)

• Timestamp.min and Timestamp.max now represent valid Timestamp instances instead of the default date-
time.min and datetime.max (respectively), thanks @SleepingPills

• read_html now raises when no tables are found and BeautifulSoup==4.2.0 is detected (GH4214)

38.25.3 API Changes

• HDFStore

– When removing an object, remove(key) raises KeyError if the key is not a valid store object.

– raise a TypeError on passing where or columns to select with a Storer; these are invalid parameters
at this time (GH4189)

– can now specify an encoding option to append/put to enable alternate encodings (GH3750)

– enable support for iterator/chunksize with read_hdf

• The repr() for (Multi)Index now obeys display.max_seq_items rather then NumPy threshold print options.
(GH3426, GH3466)

• Added mangle_dupe_cols option to read_table/csv, allowing users to control legacy behaviour re dupe cols (A,
A.1, A.2 vs A, A) (GH3468) Note: The default value will change in 0.12 to the “no mangle” behaviour, If your
code relies on this behaviour, explicitly specify mangle_dupe_cols=True in your calls.

• Do not allow astypes on datetime64[ns] except to object, and timedelta64[ns] to object/int
(GH3425)

• The behavior of datetime64 dtypes has changed with respect to certain so-called reduction operations
(GH3726). The following operations now raise a TypeError when performed on a Series and return
an empty Series when performed on a DataFrame similar to performing these operations on, for example,
a DataFrame of slice objects: - sum, prod, mean, std, var, skew, kurt, corr, and cov

• Do not allow datetimelike/timedeltalike creation except with valid types (e.g. cannot pass datetime64[ms])
(GH3423)

• Add squeeze keyword to groupby to allow reduction from DataFrame -> Series if groups are unique. Re-
gression from 0.10.1, partial revert on (GH2893) with (GH3596)

• Raise on iloc when boolean indexing with a label based indexer mask e.g. a boolean Series, even with integer
labels, will raise. Since iloc is purely positional based, the labels on the Series are not alignable (GH3631)

38.25. pandas 0.12.0 2503

https://github.com/pandas-dev/pandas/issues/3733
https://github.com/pandas-dev/pandas/issues/3834
https://github.com/pandas-dev/pandas/issues/3877
https://github.com/pandas-dev/pandas/issues/3969
https://github.com/pandas-dev/pandas/issues/3540
https://github.com/pandas-dev/pandas/issues/3910
https://github.com/pandas-dev/pandas/issues/3914
https://github.com/pandas-dev/pandas/issues/4050
https://github.com/pandas-dev/pandas/issues/4214
https://github.com/pandas-dev/pandas/issues/4189
https://github.com/pandas-dev/pandas/issues/3750
https://github.com/pandas-dev/pandas/issues/3426
https://github.com/pandas-dev/pandas/issues/3466
https://github.com/pandas-dev/pandas/issues/3468
https://github.com/pandas-dev/pandas/issues/3425
https://github.com/pandas-dev/pandas/issues/3726
https://github.com/pandas-dev/pandas/issues/3423
https://github.com/pandas-dev/pandas/issues/2893
https://github.com/pandas-dev/pandas/issues/3596
https://github.com/pandas-dev/pandas/issues/3631

pandas: powerful Python data analysis toolkit, Release 0.23.4

• The raise_on_error option to plotting methods is obviated by GH3572, so it is removed. Plots now always
raise when data cannot be plotted or the object being plotted has a dtype of object.

• DataFrame.interpolate() is now deprecated. Please use DataFrame.fillna() and
DataFrame.replace() instead (GH3582, GH3675, GH3676).

• the method and axis arguments of DataFrame.replace() are deprecated

• DataFrame.replace ‘s infer_types parameter is removed and now performs conversion by default.
(GH3907)

• Deprecated display.height, display.width is now only a formatting option does not control triggering of summary,
similar to < 0.11.0.

• Add the keyword allow_duplicates to DataFrame.insert to allow a duplicate column to be inserted
if True, default is False (same as prior to 0.12) (GH3679)

• io API changes

– added pandas.io.api for i/o imports

– removed Excel support to pandas.io.excel

– added top-level pd.read_sql and to_sql DataFrame methods

– removed clipboard support to pandas.io.clipboard

– replace top-level and instance methods save and loadwith top-level read_pickle and to_pickle
instance method, save and load will give deprecation warning.

• the method and axis arguments of DataFrame.replace() are deprecated

• set FutureWarning to require data_source, and to replace year/month with expiry date in pandas.io options. This
is in preparation to add options data from Google (GH3822)

• the method and axis arguments of DataFrame.replace() are deprecated

• Implement __nonzero__ for NDFrame objects (GH3691, GH3696)

• as_matrix with mixed signed and unsigned dtypes will result in 2 x the lcd of the unsigned as an int, maxing
with int64, to avoid precision issues (GH3733)

• na_values in a list provided to read_csv/read_excel will match string and numeric versions e.g.
na_values=['99'] will match 99 whether the column ends up being int, float, or string (GH3611)

• read_html now defaults to None when reading, and falls back on bs4 + html5lib when lxml fails to
parse. a list of parsers to try until success is also valid

• more consistency in the to_datetime return types (give string/array of string inputs) (GH3888)

• The internal pandas class hierarchy has changed (slightly). The previous PandasObject now is called
PandasContainer and a new PandasObject has become the baseclass for PandasContainer as well
as Index, Categorical, GroupBy, SparseList, and SparseArray (+ their base classes). Currently,
PandasObject provides string methods (from StringMixin). (GH4090, GH4092)

• New StringMixin that, given a __unicode__ method, gets Python 2 and Python 3 compatible string
methods (__str__, __bytes__, and __repr__). Plus string safety throughout. Now employed in many
places throughout the pandas library. (GH4090, GH4092)

38.25.4 Experimental Features

• Added experimental CustomBusinessDay class to support DateOffsets with custom holiday calendars
and custom weekmasks. (GH2301)

2504 Chapter 38. Release Notes

https://github.com/pandas-dev/pandas/issues/3572
https://github.com/pandas-dev/pandas/issues/3582
https://github.com/pandas-dev/pandas/issues/3675
https://github.com/pandas-dev/pandas/issues/3676
https://github.com/pandas-dev/pandas/issues/3907
https://github.com/pandas-dev/pandas/issues/3679
https://github.com/pandas-dev/pandas/issues/3822
https://github.com/pandas-dev/pandas/issues/3691
https://github.com/pandas-dev/pandas/issues/3696
https://github.com/pandas-dev/pandas/issues/3733
https://github.com/pandas-dev/pandas/issues/3611
https://github.com/pandas-dev/pandas/issues/3888
https://github.com/pandas-dev/pandas/issues/4090
https://github.com/pandas-dev/pandas/issues/4092
https://github.com/pandas-dev/pandas/issues/4090
https://github.com/pandas-dev/pandas/issues/4092
https://github.com/pandas-dev/pandas/issues/2301

pandas: powerful Python data analysis toolkit, Release 0.23.4

38.25.5 Bug Fixes

• Fixed an esoteric excel reading bug, xlrd>= 0.9.0 now required for excel support. Should provide python3
support (for reading) which has been lacking. (GH3164)

• Disallow Series constructor called with MultiIndex which caused segfault (GH4187)

• Allow unioning of date ranges sharing a timezone (GH3491)

• Fix to_csv issue when having a large number of rows and NaT in some columns (GH3437)

• .loc was not raising when passed an integer list (GH3449)

• Unordered time series selection was misbehaving when using label slicing (GH3448)

• Fix sorting in a frame with a list of columns which contains datetime64[ns] dtypes (GH3461)

• DataFrames fetched via FRED now handle ‘.’ as a NaN. (GH3469)

• Fix regression in a DataFrame apply with axis=1, objects were not being converted back to base dtypes correctly
(GH3480)

• Fix issue when storing uint dtypes in an HDFStore. (GH3493)

• Non-unique index support clarified (GH3468)

– Addressed handling of dupe columns in df.to_csv new and old (GH3454, GH3457)

– Fix assigning a new index to a duplicate index in a DataFrame would fail (GH3468)

– Fix construction of a DataFrame with a duplicate index

– ref_locs support to allow duplicative indices across dtypes, allows iget support to always find the index
(even across dtypes) (GH2194)

– applymap on a DataFrame with a non-unique index now works (removed warning) (GH2786), and fix
(GH3230)

– Fix to_csv to handle non-unique columns (GH3495)

– Duplicate indexes with getitem will return items in the correct order (GH3455, GH3457) and handle
missing elements like unique indices (GH3561)

– Duplicate indexes with and empty DataFrame.from_records will return a correct frame (GH3562)

– Concat to produce a non-unique columns when duplicates are across dtypes is fixed (GH3602)

– Non-unique indexing with a slice via loc and friends fixed (GH3659)

– Allow insert/delete to non-unique columns (GH3679)

– Extend reindex to correctly deal with non-unique indices (GH3679)

– DataFrame.itertuples() now works with frames with duplicate column names (GH3873)

– Bug in non-unique indexing via iloc (GH4017); added takeable argument to reindex for location-
based taking

– Allow non-unique indexing in series via .ix/.loc and __getitem__ (GH4246)

– Fixed non-unique indexing memory allocation issue with .ix/.loc (GH4280)

• Fixed bug in groupby with empty series referencing a variable before assignment. (GH3510)

• Allow index name to be used in groupby for non MultiIndex (GH4014)

• Fixed bug in mixed-frame assignment with aligned series (GH3492)

38.25. pandas 0.12.0 2505

https://github.com/pandas-dev/pandas/issues/3164
https://github.com/pandas-dev/pandas/issues/4187
https://github.com/pandas-dev/pandas/issues/3491
https://github.com/pandas-dev/pandas/issues/3437
https://github.com/pandas-dev/pandas/issues/3449
https://github.com/pandas-dev/pandas/issues/3448
https://github.com/pandas-dev/pandas/issues/3461
https://github.com/pandas-dev/pandas/issues/3469
https://github.com/pandas-dev/pandas/issues/3480
https://github.com/pandas-dev/pandas/issues/3493
https://github.com/pandas-dev/pandas/issues/3468
https://github.com/pandas-dev/pandas/issues/3454
https://github.com/pandas-dev/pandas/issues/3457
https://github.com/pandas-dev/pandas/issues/3468
https://github.com/pandas-dev/pandas/issues/2194
https://github.com/pandas-dev/pandas/issues/2786
https://github.com/pandas-dev/pandas/issues/3230
https://github.com/pandas-dev/pandas/issues/3495
https://github.com/pandas-dev/pandas/issues/3455
https://github.com/pandas-dev/pandas/issues/3457
https://github.com/pandas-dev/pandas/issues/3561
https://github.com/pandas-dev/pandas/issues/3562
https://github.com/pandas-dev/pandas/issues/3602
https://github.com/pandas-dev/pandas/issues/3659
https://github.com/pandas-dev/pandas/issues/3679
https://github.com/pandas-dev/pandas/issues/3679
https://github.com/pandas-dev/pandas/issues/3873
https://github.com/pandas-dev/pandas/issues/4017
https://github.com/pandas-dev/pandas/issues/4246
https://github.com/pandas-dev/pandas/issues/4280
https://github.com/pandas-dev/pandas/issues/3510
https://github.com/pandas-dev/pandas/issues/4014
https://github.com/pandas-dev/pandas/issues/3492

pandas: powerful Python data analysis toolkit, Release 0.23.4

• Fixed bug in selecting month/quarter/year from a series would not select the time element on the last day
(GH3546)

• Fixed a couple of MultiIndex rendering bugs in df.to_html() (GH3547, GH3553)

• Properly convert np.datetime64 objects in a Series (GH3416)

• Raise a TypeError on invalid datetime/timedelta operations e.g. add datetimes, multiple timedelta x datetime

• Fix .diff on datelike and timedelta operations (GH3100)

• combine_first not returning the same dtype in cases where it can (GH3552)

• Fixed bug with Panel.transpose argument aliases (GH3556)

• Fixed platform bug in PeriodIndex.take (GH3579)

• Fixed bud in incorrect conversion of datetime64[ns] in combine_first (GH3593)

• Fixed bug in reset_index with NaN in a multi-index (GH3586)

• fillna methods now raise a TypeError when the value parameter is a list or tuple.

• Fixed bug where a time-series was being selected in preference to an actual column name in a frame (GH3594)

• Make secondary_y work properly for bar plots (GH3598)

• Fix modulo and integer division on Series,DataFrames to act similarly to float dtypes to return np.nan or
np.inf as appropriate (GH3590)

• Fix incorrect dtype on groupby with as_index=False (GH3610)

• Fix read_csv/read_excel to correctly encode identical na_values, e.g. na_values=[-999.0,-999]
was failing (GH3611)

• Disable HTML output in qtconsole again. (GH3657)

• Reworked the new repr display logic, which users found confusing. (GH3663)

• Fix indexing issue in ndim >= 3 with iloc (GH3617)

• Correctly parse date columns with embedded (nan/NaT) into datetime64[ns] dtype in read_csv when
parse_dates is specified (GH3062)

• Fix not consolidating before to_csv (GH3624)

• Fix alignment issue when setitem in a DataFrame with a piece of a DataFrame (GH3626) or a mixed DataFrame
and a Series (GH3668)

• Fix plotting of unordered DatetimeIndex (GH3601)

• sql.write_frame failing when writing a single column to sqlite (GH3628), thanks to @stonebig

• Fix pivoting with nan in the index (GH3558)

• Fix running of bs4 tests when it is not installed (GH3605)

• Fix parsing of html table (GH3606)

• read_html() now only allows a single backend: html5lib (GH3616)

• convert_objects with convert_dates='coerce' was parsing some single-letter strings into today’s
date

• DataFrame.from_records did not accept empty recarrays (GH3682)

• DataFrame.to_csv will succeed with the deprecated option nanRep, @tdsmith

• DataFrame.to_html and DataFrame.to_latex now accept a path for their first argument (GH3702)

2506 Chapter 38. Release Notes

https://github.com/pandas-dev/pandas/issues/3546
https://github.com/pandas-dev/pandas/issues/3547
https://github.com/pandas-dev/pandas/issues/3553
https://github.com/pandas-dev/pandas/issues/3416
https://github.com/pandas-dev/pandas/issues/3100
https://github.com/pandas-dev/pandas/issues/3552
https://github.com/pandas-dev/pandas/issues/3556
https://github.com/pandas-dev/pandas/issues/3579
https://github.com/pandas-dev/pandas/issues/3593
https://github.com/pandas-dev/pandas/issues/3586
https://github.com/pandas-dev/pandas/issues/3594
https://github.com/pandas-dev/pandas/issues/3598
https://github.com/pandas-dev/pandas/issues/3590
https://github.com/pandas-dev/pandas/issues/3610
https://github.com/pandas-dev/pandas/issues/3611
https://github.com/pandas-dev/pandas/issues/3657
https://github.com/pandas-dev/pandas/issues/3663
https://github.com/pandas-dev/pandas/issues/3617
https://github.com/pandas-dev/pandas/issues/3062
https://github.com/pandas-dev/pandas/issues/3624
https://github.com/pandas-dev/pandas/issues/3626
https://github.com/pandas-dev/pandas/issues/3668
https://github.com/pandas-dev/pandas/issues/3601
https://github.com/pandas-dev/pandas/issues/3628
https://github.com/pandas-dev/pandas/issues/3558
https://github.com/pandas-dev/pandas/issues/3605
https://github.com/pandas-dev/pandas/issues/3606
https://github.com/pandas-dev/pandas/issues/3616
https://github.com/pandas-dev/pandas/issues/3682
https://github.com/pandas-dev/pandas/issues/3702

pandas: powerful Python data analysis toolkit, Release 0.23.4

• Fix file tokenization error with r delimiter and quoted fields (GH3453)

• Groupby transform with item-by-item not upcasting correctly (GH3740)

• Incorrectly read a HDFStore multi-index Frame with a column specification (GH3748)

• read_html now correctly skips tests (GH3741)

• PandasObjects raise TypeError when trying to hash (GH3882)

• Fix incorrect arguments passed to concat that are not list-like (e.g. concat(df1,df2)) (GH3481)

• Correctly parse when passed the dtype=str (or other variable-len string dtypes) in read_csv (GH3795)

• Fix index name not propagating when using loc/ix (GH3880)

• Fix groupby when applying a custom function resulting in a returned DataFrame was not converting dtypes
(GH3911)

• Fixed a bug where DataFrame.replace with a compiled regular expression in the to_replace argument
wasn’t working (GH3907)

• Fixed __truediv__ in Python 2.7 with numexpr installed to actually do true division when dividing two
integer arrays with at least 10000 cells total (GH3764)

• Indexing with a string with seconds resolution not selecting from a time index (GH3925)

• csv parsers would loop infinitely if iterator=True but no chunksize was specified (GH3967), Python
parser failing with chunksize=1

• Fix index name not propagating when using shift

• Fixed dropna=False being ignored with multi-index stack (GH3997)

• Fixed flattening of columns when renaming MultiIndex columns DataFrame (GH4004)

• Fix Series.clip for datetime series. NA/NaN threshold values will now throw ValueError (GH3996)

• Fixed insertion issue into DataFrame, after rename (GH4032)

• Fixed testing issue where too many sockets where open thus leading to a connection reset issue (GH3982,
GH3985, GH4028, GH4054)

• Fixed failing tests in test_yahoo, test_google where symbols were not retrieved but were being accessed
(GH3982, GH3985, GH4028, GH4054)

• Series.hist will now take the figure from the current environment if one is not passed

• Fixed bug where a 1xN DataFrame would barf on a 1xN mask (GH4071)

• Fixed running of tox under python3 where the pickle import was getting rewritten in an incompatible way
(GH4062, GH4063)

• Fixed bug where sharex and sharey were not being passed to grouped_hist (GH4089)

• Fix bug where HDFStore will fail to append because of a different block ordering on-disk (GH4096)

• Better error messages on inserting incompatible columns to a frame (GH4107)

• Fixed bug in DataFrame.replace where a nested dict wasn’t being iterated over when regex=False
(GH4115)

• Fixed bug in convert_objects(convert_numeric=True) where a mixed numeric and object Se-
ries/Frame was not converting properly (GH4119)

• Fixed bugs in multi-index selection with column multi-index and duplicates (GH4145, GH4146)

• Fixed bug in the parsing of microseconds when using the format argument in to_datetime (GH4152)

38.25. pandas 0.12.0 2507

https://github.com/pandas-dev/pandas/issues/3453
https://github.com/pandas-dev/pandas/issues/3740
https://github.com/pandas-dev/pandas/issues/3748
https://github.com/pandas-dev/pandas/issues/3741
https://github.com/pandas-dev/pandas/issues/3882
https://github.com/pandas-dev/pandas/issues/3481
https://github.com/pandas-dev/pandas/issues/3795
https://github.com/pandas-dev/pandas/issues/3880
https://github.com/pandas-dev/pandas/issues/3911
https://github.com/pandas-dev/pandas/issues/3907
https://github.com/pandas-dev/pandas/issues/3764
https://github.com/pandas-dev/pandas/issues/3925
https://github.com/pandas-dev/pandas/issues/3967
https://github.com/pandas-dev/pandas/issues/3997
https://github.com/pandas-dev/pandas/issues/4004
https://github.com/pandas-dev/pandas/issues/3996
https://github.com/pandas-dev/pandas/issues/4032
https://github.com/pandas-dev/pandas/issues/3982
https://github.com/pandas-dev/pandas/issues/3985
https://github.com/pandas-dev/pandas/issues/4028
https://github.com/pandas-dev/pandas/issues/4054
https://github.com/pandas-dev/pandas/issues/3982
https://github.com/pandas-dev/pandas/issues/3985
https://github.com/pandas-dev/pandas/issues/4028
https://github.com/pandas-dev/pandas/issues/4054
https://github.com/pandas-dev/pandas/issues/4071
https://github.com/pandas-dev/pandas/issues/4062
https://github.com/pandas-dev/pandas/issues/4063
https://github.com/pandas-dev/pandas/issues/4089
https://github.com/pandas-dev/pandas/issues/4096
https://github.com/pandas-dev/pandas/issues/4107
https://github.com/pandas-dev/pandas/issues/4115
https://github.com/pandas-dev/pandas/issues/4119
https://github.com/pandas-dev/pandas/issues/4145
https://github.com/pandas-dev/pandas/issues/4146
https://github.com/pandas-dev/pandas/issues/4152

pandas: powerful Python data analysis toolkit, Release 0.23.4

• Fixed bug in PandasAutoDateLocator where invert_xaxis triggered incorrectly
MilliSecondLocator (GH3990)

• Fixed bug in Series.where where broadcasting a single element input vector to the length of the series
resulted in multiplying the value inside the input (GH4192)

• Fixed bug in plotting that wasn’t raising on invalid colormap for matplotlib 1.1.1 (GH4215)

• Fixed the legend displaying in DataFrame.plot(kind='kde') (GH4216)

• Fixed bug where Index slices weren’t carrying the name attribute (GH4226)

• Fixed bug in initializing DatetimeIndex with an array of strings in a certain time zone (GH4229)

• Fixed bug where html5lib wasn’t being properly skipped (GH4265)

• Fixed bug where get_data_famafrench wasn’t using the correct file edges (GH4281)

38.26 pandas 0.11.0

Release date: 2013-04-22

38.26.1 New Features

• New documentation section, 10 Minutes to Pandas

• New documentation section, Cookbook

• Allow mixed dtypes (e.g float32/float64/int32/int16/int8) to coexist in DataFrames and propa-
gate in operations

• Add function to pandas.io.data for retrieving stock index components from Yahoo! finance (GH2795)

• Support slicing with time objects (GH2681)

• Added .iloc attribute, to support strict integer based indexing, analogous to .ix (GH2922)

• Added .loc attribute, to support strict label based indexing, analogous to .ix (GH3053)

• Added .iat attribute, to support fast scalar access via integers (replaces iget_value/iset_value)

• Added .at attribute, to support fast scalar access via labels (replaces get_value/set_value)

• Moved functionality from irow,icol,iget_value/iset_value to .iloc indexer (via _ixs methods
in each object)

• Added support for expression evaluation using the numexpr library

• Added convert=boolean to take routines to translate negative indices to positive, defaults to True

• Added to_series() method to indices, to facilitate the creation of indexers (GH3275)

38.26.2 Improvements to existing features

• Improved performance of df.to_csv() by up to 10x in some cases. (GH3059)

• added blocks attribute to DataFrames, to return a dict of dtypes to homogeneously dtyped DataFrames

• added keyword convert_numeric to convert_objects() to try to convert object dtypes to numeric
types (default is False)

2508 Chapter 38. Release Notes

https://github.com/pandas-dev/pandas/issues/3990
https://github.com/pandas-dev/pandas/issues/4192
https://github.com/pandas-dev/pandas/issues/4215
https://github.com/pandas-dev/pandas/issues/4216
https://github.com/pandas-dev/pandas/issues/4226
https://github.com/pandas-dev/pandas/issues/4229
https://github.com/pandas-dev/pandas/issues/4265
https://github.com/pandas-dev/pandas/issues/4281
https://github.com/pandas-dev/pandas/issues/2795
https://github.com/pandas-dev/pandas/issues/2681
https://github.com/pandas-dev/pandas/issues/2922
https://github.com/pandas-dev/pandas/issues/3053
https://github.com/pandas-dev/pandas/issues/3275
https://github.com/pandas-dev/pandas/issues/3059

pandas: powerful Python data analysis toolkit, Release 0.23.4

• convert_dates in convert_objects can now be coerce which will return a datetime64[ns] dtype
with non-convertibles set as NaT; will preserve an all-nan object (e.g. strings), default is True (to perform
soft-conversion

• Series print output now includes the dtype by default

• Optimize internal reindexing routines (GH2819, GH2867)

• describe_option() now reports the default and current value of options.

• Add format option to pandas.to_datetime with faster conversion of strings that can be parsed with
datetime.strptime

• Add axes property to Series for compatibility

• Add xs function to Series for compatibility

• Allow setitem in a frame where only mixed numerics are present (e.g. int and float), (GH3037)

• HDFStore

– Provide dotted attribute access to get from stores (e.g. store.df == store[‘df’])

– New keywords iterator=boolean, and chunksize=number_in_a_chunk are provided to
support iteration on select and select_as_multiple (GH3076)

– support read_hdf/to_hdf API similar to read_csv/to_csv (GH3222)

• Add squeeze method to possibly remove length 1 dimensions from an object.

In [1]: p = pd.Panel(np.random.randn(3,4,4),items=['ItemA','ItemB','ItemC'],
...: major_axis=pd.date_range('20010102',periods=4),
...: minor_axis=['A','B','C','D'])
...:

In [2]: p
Out[2]:
<class 'pandas.core.panel.Panel'>
Dimensions: 3 (items) x 4 (major_axis) x 4 (minor_axis)
Items axis: ItemA to ItemC
Major_axis axis: 2001-01-02 00:00:00 to 2001-01-05 00:00:00
Minor_axis axis: A to D

In [3]: p.reindex(items=['ItemA']).squeeze()
\\Out[3]:
→˓

A B C D
2001-01-02 0.469112 -0.282863 -1.509059 -1.135632
2001-01-03 1.212112 -0.173215 0.119209 -1.044236
2001-01-04 -0.861849 -2.104569 -0.494929 1.071804
2001-01-05 0.721555 -0.706771 -1.039575 0.271860

In [4]: p.reindex(items=['ItemA'],minor=['B']).squeeze()
\\Out[4]:
→˓

2001-01-02 -0.282863
2001-01-03 -0.173215
2001-01-04 -2.104569
2001-01-05 -0.706771
Freq: D, Name: B, dtype: float64

• Improvement to Yahoo API access in pd.io.data.Options (GH2758)

38.26. pandas 0.11.0 2509

https://github.com/pandas-dev/pandas/issues/2819
https://github.com/pandas-dev/pandas/issues/2867
https://github.com/pandas-dev/pandas/issues/3037
https://github.com/pandas-dev/pandas/issues/3076
https://github.com/pandas-dev/pandas/issues/3222
https://github.com/pandas-dev/pandas/issues/2758

pandas: powerful Python data analysis toolkit, Release 0.23.4

• added option display.max_seq_items to control the number of elements printed per sequence pprinting it.
(GH2979)

• added option display.chop_threshold to control display of small numerical values. (GH2739)

• added option display.max_info_rows to prevent verbose_info from being calculated for frames above 1M rows
(configurable). (GH2807, GH2918)

• value_counts() now accepts a “normalize” argument, for normalized histograms. (GH2710).

• DataFrame.from_records now accepts not only dicts but any instance of the collections.Mapping ABC.

• Allow selection semantics via a string with a datelike index to work in both Series and DataFrames (GH3070)

In [5]: idx = pd.date_range("2001-10-1", periods=5, freq='M')

In [6]: ts = pd.Series(np.random.rand(len(idx)),index=idx)

In [7]: ts['2001']
Out[7]:
2001-10-31 0.838796
2001-11-30 0.897333
2001-12-31 0.732592
Freq: M, dtype: float64

In [8]: df = pd.DataFrame(dict(A = ts))

In [9]: df['2001']
Out[9]:

A
2001-10-31 0.838796
2001-11-30 0.897333
2001-12-31 0.732592

• added option display.mpl_style providing a sleeker visual style for plots. Based on https://gist.github.com/
huyng/816622 (GH3075).

• Improved performance across several core functions by taking memory ordering of arrays into account. Courtesy
of @stephenwlin (GH3130)

• Improved performance of groupby transform method (GH2121)

• Handle “ragged” CSV files missing trailing delimiters in rows with missing fields when also providing explicit
list of column names (so the parser knows how many columns to expect in the result) (GH2981)

• On a mixed DataFrame, allow setting with indexers with ndarray/DataFrame on rhs (GH3216)

• Treat boolean values as integers (values 1 and 0) for numeric operations. (GH2641)

• Add time method to DatetimeIndex (GH3180)

• Return NA when using Series.str[. . .] for values that are not long enough (GH3223)

• Display cursor coordinate information in time-series plots (GH1670)

• to_html() now accepts an optional “escape” argument to control reserved HTML character escaping (enabled
by default) and escapes &, in addition to < and >. (GH2919)

38.26.3 API Changes

• Do not automatically upcast numeric specified dtypes to int64 or float64 (GH622 and GH797)

2510 Chapter 38. Release Notes

https://github.com/pandas-dev/pandas/issues/2979
https://github.com/pandas-dev/pandas/issues/2739
https://github.com/pandas-dev/pandas/issues/2807
https://github.com/pandas-dev/pandas/issues/2918
https://github.com/pandas-dev/pandas/issues/2710
https://github.com/pandas-dev/pandas/issues/3070
https://gist.github.com/huyng/816622
https://gist.github.com/huyng/816622
https://github.com/pandas-dev/pandas/issues/3075
https://github.com/pandas-dev/pandas/issues/3130
https://github.com/pandas-dev/pandas/issues/2121
https://github.com/pandas-dev/pandas/issues/2981
https://github.com/pandas-dev/pandas/issues/3216
https://github.com/pandas-dev/pandas/issues/2641
https://github.com/pandas-dev/pandas/issues/3180
https://github.com/pandas-dev/pandas/issues/3223
https://github.com/pandas-dev/pandas/issues/1670
https://github.com/pandas-dev/pandas/issues/2919
https://github.com/pandas-dev/pandas/issues/622
https://github.com/pandas-dev/pandas/issues/797

pandas: powerful Python data analysis toolkit, Release 0.23.4

• DataFrame construction of lists and scalars, with no dtype present, will result in casting to int64 or float64,
regardless of platform. This is not an apparent change in the API, but noting it.

• Guarantee that convert_objects() for Series/DataFrame always returns a copy

• groupby operations will respect dtypes for numeric float operations (float32/float64); other types will be operated
on, and will try to cast back to the input dtype (e.g. if an int is passed, as long as the output doesn’t have nans,
then an int will be returned)

• backfill/pad/take/diff/ohlc will now support float32/int16/int8 operations

• Block types will upcast as needed in where/masking operations (GH2793)

• Series now automatically will try to set the correct dtype based on passed datetimelike objects (date-
time/Timestamp)

– timedelta64 are returned in appropriate cases (e.g. Series - Series, when both are datetime64)

– mixed datetimes and objects (GH2751) in a constructor will be cast correctly

– astype on datetimes to object are now handled (as well as NaT conversions to np.nan)

– all timedelta like objects will be correctly assigned to timedelta64 with mixed NaN and/or NaT al-
lowed

• arguments to DataFrame.clip were inconsistent to NumPy and Series clipping (GH2747)

• util.testing.assert_frame_equal now checks the column and index names (GH2964)

• Constructors will now return a more informative ValueError on failures when invalid shapes are passed

• Don’t suppress TypeError in GroupBy.agg (GH3238)

• Methods return None when inplace=True (GH1893)

• HDFStore

– added the method select_column to select a single column from a table as a Series.

– deprecated the unique method, can be replicated by select_column(key,column).unique()

– min_itemsize parameter will now automatically create data_columns for passed keys

• Downcast on pivot if possible (GH3283), adds argument downcast to fillna

• Introduced options display.height/width for explicitly specifying terminal height/width in characters. Depre-
cated display.line_width, now replaced by display.width. These defaults are in effect for scripts as well, so
unless disabled, previously very wide output will now be output as “expand_repr” style wrapped output.

• Various defaults for options (including display.max_rows) have been revised, after a brief survey concluded they
were wrong for everyone. Now at w=80,h=60.

• HTML repr output in IPython qtconsole is once again controlled by the option display.notebook_repr_html, and
on by default.

38.26.4 Bug Fixes

• Fix seg fault on empty data frame when fillna with pad or backfill (GH2778)

• Single element ndarrays of datetimelike objects are handled (e.g. np.array(datetime(2001,1,1,0,0))), w/o dtype
being passed

• 0-dim ndarrays with a passed dtype are handled correctly (e.g. np.array(0.,dtype=’float32’))

• Fix some boolean indexing inconsistencies in Series.__getitem__/__setitem__ (GH2776)

38.26. pandas 0.11.0 2511

https://github.com/pandas-dev/pandas/issues/2793
https://github.com/pandas-dev/pandas/issues/2751
https://github.com/pandas-dev/pandas/issues/2747
https://github.com/pandas-dev/pandas/issues/2964
https://github.com/pandas-dev/pandas/issues/3238
https://github.com/pandas-dev/pandas/issues/1893
https://github.com/pandas-dev/pandas/issues/3283
https://github.com/pandas-dev/pandas/issues/2778
https://github.com/pandas-dev/pandas/issues/2776

pandas: powerful Python data analysis toolkit, Release 0.23.4

• Fix issues with DataFrame and Series constructor with integers that overflow int64 and some mixed typed
type lists (GH2845)

• HDFStore

– Fix weird PyTables error when using too many selectors in a where also correctly filter on any number of
values in a Term expression (so not using numexpr filtering, but isin filtering)

– Internally, change all variables to be private-like (now have leading underscore)

– Fixes for query parsing to correctly interpret boolean and != (GH2849, GH2973)

– Fixes for pathological case on SparseSeries with 0-len array and compression (GH2931)

– Fixes bug with writing rows if part of a block was all-nan (GH3012)

– Exceptions are now ValueError or TypeError as needed

– A table will now raise if min_itemsize contains fields which are not queryables

• Bug showing up in applymap where some object type columns are converted (GH2909) had an incorrect default
in convert_objects

• TimeDeltas

– Series ops with a Timestamp on the rhs was throwing an exception (GH2898) added tests for Series ops
with datetimes,timedeltas,Timestamps, and datelike Series on both lhs and rhs

– Fixed subtle timedelta64 inference issue on py3 & NumPy 1.7.0 (GH3094)

– Fixed some formatting issues on timedelta when negative

– Support null checking on timedelta64, representing (and formatting) with NaT

– Support setitem with np.nan value, converts to NaT

– Support min/max ops in a Dataframe (abs not working, nor do we error on non-supported ops)

– Support idxmin/idxmax/abs/max/min in a Series (GH2989, GH2982)

• Bug on in-place putmasking on an integer series that needs to be converted to float (GH2746)

• Bug in argsort of datetime64[ns] Series with NaT (GH2967)

• Bug in value_counts of datetime64[ns] Series (GH3002)

• Fixed printing of NaT in an index

• Bug in idxmin/idxmax of datetime64[ns] Series with NaT (GH2982)

• Bug in icol, take with negative indicies was producing incorrect return values (see GH2922, GH2892),
also check for out-of-bounds indices (GH3029)

• Bug in DataFrame column insertion when the column creation fails, existing frame is left in an irrecoverable
state (GH3010)

• Bug in DataFrame update, combine_first where non-specified values could cause dtype changes (GH3016,
GH3041)

• Bug in groupby with first/last where dtypes could change (GH3041, GH2763)

• Formatting of an index that has nan was inconsistent or wrong (would fill from other values), (GH2850)

• Unstack of a frame with no nans would always cause dtype upcasting (GH2929)

• Fix scalar datetime.datetime parsing bug in read_csv (GH3071)

• Fixed slow printing of large Dataframes, due to inefficient dtype reporting (GH2807)

2512 Chapter 38. Release Notes

https://github.com/pandas-dev/pandas/issues/2845
https://github.com/pandas-dev/pandas/issues/2849
https://github.com/pandas-dev/pandas/issues/2973
https://github.com/pandas-dev/pandas/issues/2931
https://github.com/pandas-dev/pandas/issues/3012
https://github.com/pandas-dev/pandas/issues/2909
https://github.com/pandas-dev/pandas/issues/2898
https://github.com/pandas-dev/pandas/issues/3094
https://github.com/pandas-dev/pandas/issues/2989
https://github.com/pandas-dev/pandas/issues/2982
https://github.com/pandas-dev/pandas/issues/2746
https://github.com/pandas-dev/pandas/issues/2967
https://github.com/pandas-dev/pandas/issues/3002
https://github.com/pandas-dev/pandas/issues/2982
https://github.com/pandas-dev/pandas/issues/2922
https://github.com/pandas-dev/pandas/issues/2892
https://github.com/pandas-dev/pandas/issues/3029
https://github.com/pandas-dev/pandas/issues/3010
https://github.com/pandas-dev/pandas/issues/3016
https://github.com/pandas-dev/pandas/issues/3041
https://github.com/pandas-dev/pandas/issues/3041
https://github.com/pandas-dev/pandas/issues/2763
https://github.com/pandas-dev/pandas/issues/2850
https://github.com/pandas-dev/pandas/issues/2929
https://github.com/pandas-dev/pandas/issues/3071
https://github.com/pandas-dev/pandas/issues/2807

pandas: powerful Python data analysis toolkit, Release 0.23.4

• Fixed a segfault when using a function as grouper in groupby (GH3035)

• Fix pretty-printing of infinite data structures (closes GH2978)

• Fixed exception when plotting timeseries bearing a timezone (closes GH2877)

• str.contains ignored na argument (GH2806)

• Substitute warning for segfault when grouping with categorical grouper of mismatched length (GH3011)

• Fix exception in SparseSeries.density (GH2083)

• Fix upsampling bug with closed=’left’ and daily to daily data (GH3020)

• Fixed missing tick bars on scatter_matrix plot (GH3063)

• Fixed bug in Timestamp(d,tz=foo) when d is date() rather then datetime() (GH2993)

• series.plot(kind=’bar’) now respects pylab color schem (GH3115)

• Fixed bug in reshape if not passed correct input, now raises TypeError (GH2719)

• Fixed a bug where Series ctor did not respect ordering if OrderedDict passed in (GH3282)

• Fix NameError issue on RESO_US (GH2787)

• Allow selection in an unordered timeseries to work similarly to an ordered timeseries (GH2437).

• Fix implemented .xs when called with axes=1 and a level parameter (GH2903)

• Timestamp now supports the class method fromordinal similar to datetimes (GH3042)

• Fix issue with indexing a series with a boolean key and specifying a 1-len list on the rhs (GH2745) or a list on
the rhs (GH3235)

• Fixed bug in groupby apply when kernel generate list of arrays having unequal len (GH1738)

• fixed handling of rolling_corr with center=True which could produce corr>1 (GH3155)

• Fixed issues where indices can be passed as ‘index/column’ in addition to 0/1 for the axis parameter

• PeriodIndex.tolist now boxes to Period (GH3178)

• PeriodIndex.get_loc KeyError now reports Period instead of ordinal (GH3179)

• df.to_records bug when handling MultiIndex (GH3189)

• Fix Series.__getitem__ segfault when index less than -length (GH3168)

• Fix bug when using Timestamp as a date parser (GH2932)

• Fix bug creating date range from Timestamp with time zone and passing same time zone (GH2926)

• Add comparison operators to Period object (GH2781)

• Fix bug when concatenating two Series into a DataFrame when they have the same name (GH2797)

• Fix automatic color cycling when plotting consecutive timeseries without color arguments (GH2816)

• fixed bug in the pickling of PeriodIndex (GH2891)

• Upcast/split blocks when needed in a mixed DataFrame when setitem with an indexer (GH3216)

• Invoking df.applymap on a dataframe with dupe cols now raises a ValueError (GH2786)

• Apply with invalid returned indices raise correct Exception (GH2808)

• Fixed a bug in plotting log-scale bar plots (GH3247)

• df.plot() grid on/off now obeys the mpl default style, just like series.plot(). (GH3233)

38.26. pandas 0.11.0 2513

https://github.com/pandas-dev/pandas/issues/3035
https://github.com/pandas-dev/pandas/issues/2978
https://github.com/pandas-dev/pandas/issues/2877
https://github.com/pandas-dev/pandas/issues/2806
https://github.com/pandas-dev/pandas/issues/3011
https://github.com/pandas-dev/pandas/issues/2083
https://github.com/pandas-dev/pandas/issues/3020
https://github.com/pandas-dev/pandas/issues/3063
https://github.com/pandas-dev/pandas/issues/2993
https://github.com/pandas-dev/pandas/issues/3115
https://github.com/pandas-dev/pandas/issues/2719
https://github.com/pandas-dev/pandas/issues/3282
https://github.com/pandas-dev/pandas/issues/2787
https://github.com/pandas-dev/pandas/issues/2437
https://github.com/pandas-dev/pandas/issues/2903
https://github.com/pandas-dev/pandas/issues/3042
https://github.com/pandas-dev/pandas/issues/2745
https://github.com/pandas-dev/pandas/issues/3235
https://github.com/pandas-dev/pandas/issues/1738
https://github.com/pandas-dev/pandas/issues/3155
https://github.com/pandas-dev/pandas/issues/3178
https://github.com/pandas-dev/pandas/issues/3179
https://github.com/pandas-dev/pandas/issues/3168
https://github.com/pandas-dev/pandas/issues/2932
https://github.com/pandas-dev/pandas/issues/2926
https://github.com/pandas-dev/pandas/issues/2781
https://github.com/pandas-dev/pandas/issues/2797
https://github.com/pandas-dev/pandas/issues/2816
https://github.com/pandas-dev/pandas/issues/2891
https://github.com/pandas-dev/pandas/issues/3216
https://github.com/pandas-dev/pandas/issues/2786
https://github.com/pandas-dev/pandas/issues/2808
https://github.com/pandas-dev/pandas/issues/3247
https://github.com/pandas-dev/pandas/issues/3233

pandas: powerful Python data analysis toolkit, Release 0.23.4

• Fixed a bug in the legend of plotting.andrews_curves() (GH3278)

• Produce a series on apply if we only generate a singular series and have a simple index (GH2893)

• Fix Python ASCII file parsing when integer falls outside of floating point spacing (GH3258)

• fixed pretty priniting of sets (GH3294)

• Panel() and Panel.from_dict() now respects ordering when give OrderedDict (GH3303)

• DataFrame where with a datetimelike incorrectly selecting (GH3311)

• Ensure index casts work even in Int64Index

• Fix set_index segfault when passing MultiIndex (GH3308)

• Ensure pickles created in py2 can be read in py3

• Insert ellipsis in MultiIndex summary repr (GH3348)

• Groupby will handle mutation among an input groups columns (and fallback to non-fast apply) (GH3380)

• Eliminated unicode errors on FreeBSD when using MPL GTK backend (GH3360)

• Period.strftime should return unicode strings always (GH3363)

• Respect passed read_* chunksize in get_chunk function (GH3406)

38.27 pandas 0.10.1

Release date: 2013-01-22

38.27.1 New Features

• Add data interface to World Bank WDI pandas.io.wb (GH2592)

38.27.2 API Changes

• Restored inplace=True behavior returning self (same object) with deprecation warning until 0.11 (GH1893)

• HDFStore

– refactored HFDStore to deal with non-table stores as objects, will allow future enhancements

– removed keyword compression from put (replaced by keyword complib to be consistent across
library)

– warn PerformanceWarning if you are attempting to store types that will be pickled by PyTables

38.27.3 Improvements to existing features

• HDFStore

– enables storing of multi-index dataframes (closes GH1277)

– support data column indexing and selection, via data_columns keyword in append

– support write chunking to reduce memory footprint, via chunksize keyword to append

– support automagic indexing via index keyword to append

2514 Chapter 38. Release Notes

https://github.com/pandas-dev/pandas/issues/3278
https://github.com/pandas-dev/pandas/issues/2893
https://github.com/pandas-dev/pandas/issues/3258
https://github.com/pandas-dev/pandas/issues/3294
https://github.com/pandas-dev/pandas/issues/3303
https://github.com/pandas-dev/pandas/issues/3311
https://github.com/pandas-dev/pandas/issues/3308
https://github.com/pandas-dev/pandas/issues/3348
https://github.com/pandas-dev/pandas/issues/3380
https://github.com/pandas-dev/pandas/issues/3360
https://github.com/pandas-dev/pandas/issues/3363
https://github.com/pandas-dev/pandas/issues/3406
https://github.com/pandas-dev/pandas/issues/2592
https://github.com/pandas-dev/pandas/issues/1893
https://github.com/pandas-dev/pandas/issues/1277

pandas: powerful Python data analysis toolkit, Release 0.23.4

– support expectedrows keyword in append to inform PyTables about the expected tablesize

– support start and stop keywords in select to limit the row selection space

– added get_store context manager to automatically import with pandas

– added column filtering via columns keyword in select

– added methods append_to_multiple/select_as_multiple/select_as_coordinates to do multiple-table ap-
pend/selection

– added support for datetime64 in columns

– added method unique to select the unique values in an indexable or data column

– added method copy to copy an existing store (and possibly upgrade)

– show the shape of the data on disk for non-table stores when printing the store

– added ability to read PyTables flavor tables (allows compatibility to other HDF5 systems)

• Add logx option to DataFrame/Series.plot (GH2327, GH2565)

• Support reading gzipped data from file-like object

• pivot_table aggfunc can be anything used in GroupBy.aggregate (GH2643)

• Implement DataFrame merges in case where set cardinalities might overflow 64-bit integer (GH2690)

• Raise exception in C file parser if integer dtype specified and have NA values. (GH2631)

• Attempt to parse ISO8601 format dates when parse_dates=True in read_csv for major performance boost in
such cases (GH2698)

• Add methods neg and inv to Series

• Implement kind option in ExcelFile to indicate whether it’s an XLS or XLSX file (GH2613)

• Documented a fast-path in pd.read_csv when parsing iso8601 datetime strings yielding as much as a 20x
speedup. (GH5993)

38.27.4 Bug Fixes

• Fix read_csv/read_table multithreading issues (GH2608)

• HDFStore

– correctly handle nan elements in string columns; serialize via the nan_rep keyword to append

– raise correctly on non-implemented column types (unicode/date)

– handle correctly Term passed types (e.g. index<1000, when index is Int64), (closes GH512)

– handle Timestamp correctly in data_columns (closes GH2637)

– contains correctly matches on non-natural names

– correctly store float32 dtypes in tables (if not other float types in the same table)

• Fix DataFrame.info bug with UTF8-encoded columns. (GH2576)

• Fix DatetimeIndex handling of FixedOffset tz (GH2604)

• More robust detection of being in IPython session for wide DataFrame console formatting (GH2585)

• Fix platform issues with file:/// in unit test (GH2564)

• Fix bug and possible segfault when grouping by hierarchical level that contains NA values (GH2616)

38.27. pandas 0.10.1 2515

https://github.com/pandas-dev/pandas/issues/2327
https://github.com/pandas-dev/pandas/issues/2565
https://github.com/pandas-dev/pandas/issues/2643
https://github.com/pandas-dev/pandas/issues/2690
https://github.com/pandas-dev/pandas/issues/2631
https://github.com/pandas-dev/pandas/issues/2698
https://github.com/pandas-dev/pandas/issues/2613
https://github.com/pandas-dev/pandas/issues/5993
https://github.com/pandas-dev/pandas/issues/2608
https://github.com/pandas-dev/pandas/issues/512
https://github.com/pandas-dev/pandas/issues/2637
https://github.com/pandas-dev/pandas/issues/2576
https://github.com/pandas-dev/pandas/issues/2604
https://github.com/pandas-dev/pandas/issues/2585
https://github.com/pandas-dev/pandas/issues/2564
https://github.com/pandas-dev/pandas/issues/2616

pandas: powerful Python data analysis toolkit, Release 0.23.4

• Ensure that MultiIndex tuples can be constructed with NAs (GH2616)

• Fix int64 overflow issue when unstacking MultiIndex with many levels (GH2616)

• Exclude non-numeric data from DataFrame.quantile by default (GH2625)

• Fix a Cython C int64 boxing issue causing read_csv to return incorrect results (GH2599)

• Fix groupby summing performance issue on boolean data (GH2692)

• Don’t bork Series containing datetime64 values with to_datetime (GH2699)

• Fix DataFrame.from_records corner case when passed columns, index column, but empty record list (GH2633)

• Fix C parser-tokenizer bug with trailing fields. (GH2668)

• Don’t exclude non-numeric data from GroupBy.max/min (GH2700)

• Don’t lose time zone when calling DatetimeIndex.drop (GH2621)

• Fix setitem on a Series with a boolean key and a non-scalar as value (GH2686)

• Box datetime64 values in Series.apply/map (GH2627, GH2689)

• Upconvert datetime + datetime64 values when concatenating frames (GH2624)

• Raise a more helpful error message in merge operations when one DataFrame has duplicate columns (GH2649)

• Fix partial date parsing issue occurring only when code is run at EOM (GH2618)

• Prevent MemoryError when using counting sort in sortlevel with high-cardinality MultiIndex objects (GH2684)

• Fix Period resampling bug when all values fall into a single bin (GH2070)

• Fix buggy interaction with usecols argument in read_csv when there is an implicit first index column (GH2654)

• Fix bug in Index.summary() where string format methods were being called incorrectly. (GH3869)

38.28 pandas 0.10.0

Release date: 2012-12-17

38.28.1 New Features

• Brand new high-performance delimited file parsing engine written in C and Cython. 50% or better performance
in many standard use cases with a fraction as much memory usage. (GH407, GH821)

• Many new file parser (read_csv, read_table) features:

– Support for on-the-fly gzip or bz2 decompression (compression option)

– Ability to get back numpy.recarray instead of DataFrame (as_recarray=True)

– dtype option: explicit column dtypes

– usecols option: specify list of columns to be read from a file. Good for reading very wide files with many
irrelevant columns (GH1216 GH926, GH2465)

– Enhanced unicode decoding support via encoding option

– skipinitialspace dialect option

– Can specify strings to be recognized as True (true_values) or False (false_values)

2516 Chapter 38. Release Notes

https://github.com/pandas-dev/pandas/issues/2616
https://github.com/pandas-dev/pandas/issues/2616
https://github.com/pandas-dev/pandas/issues/2625
https://github.com/pandas-dev/pandas/issues/2599
https://github.com/pandas-dev/pandas/issues/2692
https://github.com/pandas-dev/pandas/issues/2699
https://github.com/pandas-dev/pandas/issues/2633
https://github.com/pandas-dev/pandas/issues/2668
https://github.com/pandas-dev/pandas/issues/2700
https://github.com/pandas-dev/pandas/issues/2621
https://github.com/pandas-dev/pandas/issues/2686
https://github.com/pandas-dev/pandas/issues/2627
https://github.com/pandas-dev/pandas/issues/2689
https://github.com/pandas-dev/pandas/issues/2624
https://github.com/pandas-dev/pandas/issues/2649
https://github.com/pandas-dev/pandas/issues/2618
https://github.com/pandas-dev/pandas/issues/2684
https://github.com/pandas-dev/pandas/issues/2070
https://github.com/pandas-dev/pandas/issues/2654
https://github.com/pandas-dev/pandas/issues/3869
https://github.com/pandas-dev/pandas/issues/407
https://github.com/pandas-dev/pandas/issues/821
https://github.com/pandas-dev/pandas/issues/1216
https://github.com/pandas-dev/pandas/issues/926
https://github.com/pandas-dev/pandas/issues/2465

pandas: powerful Python data analysis toolkit, Release 0.23.4

– High-performance delim_whitespace option for whitespace-delimited files; a preferred alternative to the
‘s+’ regular expression delimiter

– Option to skip “bad” lines (wrong number of fields) that would otherwise have caused an error in the past
(error_bad_lines and warn_bad_lines options)

– Substantially improved performance in the parsing of integers with thousands markers and lines with
comments

– Easy of European (and other) decimal formats (decimal option) (GH584, GH2466)

– Custom line terminators (e.g. lineterminator=’~’) (GH2457)

– Handling of no trailing commas in CSV files (GH2333)

– Ability to handle fractional seconds in date_converters (GH2209)

– read_csv allow scalar arg to na_values (GH1944)

– Explicit column dtype specification in read_* functions (GH1858)

– Easier CSV dialect specification (GH1743)

– Improve parser performance when handling special characters (GH1204)

• Google Analytics API integration with easy oauth2 workflow (GH2283)

• Add error handling to Series.str.encode/decode (GH2276)

• Add where and mask to Series (GH2337)

• Grouped histogram via by keyword in Series/DataFrame.hist (GH2186)

• Support optional min_periods keyword in corr and cov for both Series and DataFrame (GH2002)

• Add duplicated and drop_duplicates functions to Series (GH1923)

• Add docs for HDFStore table format

• ‘density’ property in SparseSeries (GH2384)

• Add ffill and bfill convenience functions for forward- and backfilling time series data (GH2284)

• New option configuration system and functions set_option, get_option, describe_option, and reset_option.
Deprecate set_printoptions and reset_printoptions (GH2393). You can also access options as attributes via
pandas.options.X

• Wide DataFrames can be viewed more easily in the console with new expand_frame_repr and line_width con-
figuration options. This is on by default now (GH2436)

• Scikits.timeseries-like moving window functions via rolling_window (GH1270)

38.28.2 Experimental Features

• Add support for Panel4D, a named 4 Dimensional structure

• Add support for ndpanel factory functions, to create custom, domain-specific N-Dimensional containers

38.28.3 API Changes

• The default binning/labeling behavior for resample has been changed to closed=’left’, label=’left’ for daily
and lower frequencies. This had been a large source of confusion for users. See “what’s new” page for more on
this. (GH2410)

38.28. pandas 0.10.0 2517

https://github.com/pandas-dev/pandas/issues/584
https://github.com/pandas-dev/pandas/issues/2466
https://github.com/pandas-dev/pandas/issues/2457
https://github.com/pandas-dev/pandas/issues/2333
https://github.com/pandas-dev/pandas/issues/2209
https://github.com/pandas-dev/pandas/issues/1944
https://github.com/pandas-dev/pandas/issues/1858
https://github.com/pandas-dev/pandas/issues/1743
https://github.com/pandas-dev/pandas/issues/1204
https://github.com/pandas-dev/pandas/issues/2283
https://github.com/pandas-dev/pandas/issues/2276
https://github.com/pandas-dev/pandas/issues/2337
https://github.com/pandas-dev/pandas/issues/2186
https://github.com/pandas-dev/pandas/issues/2002
https://github.com/pandas-dev/pandas/issues/1923
https://github.com/pandas-dev/pandas/issues/2384
https://github.com/pandas-dev/pandas/issues/2284
https://github.com/pandas-dev/pandas/issues/2393
https://github.com/pandas-dev/pandas/issues/2436
https://github.com/pandas-dev/pandas/issues/1270
https://github.com/pandas-dev/pandas/issues/2410

pandas: powerful Python data analysis toolkit, Release 0.23.4

• Methods with inplace option now return None instead of the calling (modified) object (GH1893)

• The special case DataFrame - TimeSeries doing column-by-column broadcasting has been deprecated. Users
should explicitly do e.g. df.sub(ts, axis=0) instead. This is a legacy hack and can lead to subtle bugs.

• inf/-inf are no longer considered as NA by isnull/notnull. To be clear, this is legacy cruft from early pandas. This
behavior can be globally re-enabled using the new option mode.use_inf_as_null (GH2050, GH1919)

• pandas.merge will now default to sort=False. For many use cases sorting the join keys is not necessary,
and doing it by default is wasteful

• Specify header=0 explicitly to replace existing column names in file in read_* functions.

• Default column names for header-less parsed files (yielded by read_csv, etc.) are now the integers 0, 1, A
new argument prefix has been added; to get the v0.9.x behavior specify prefix='X' (GH2034). This API
change was made to make the default column names more consistent with the DataFrame constructor’s default
column names when none are specified.

• DataFrame selection using a boolean frame now preserves input shape

• If function passed to Series.apply yields a Series, result will be a DataFrame (GH2316)

• Values like YES/NO/yes/no will not be considered as boolean by default any longer in the file parsers. This can
be customized using the new true_values and false_values options (GH2360)

• obj.fillna() is no longer valid; make method=’pad’ no longer the default option, to be more explicit about what
kind of filling to perform. Add ffill/bfill convenience functions per above (GH2284)

• HDFStore.keys() now returns an absolute path-name for each key

• to_string() now always returns a unicode string. (GH2224)

• File parsers will not handle NA sentinel values arising from passed converter functions

38.28.4 Improvements to existing features

• Add nrows option to DataFrame.from_records for iterators (GH1794)

• Unstack/reshape algorithm rewrite to avoid high memory use in cases where the number of observed key-tuples
is much smaller than the total possible number that could occur (GH2278). Also improves performance in most
cases.

• Support duplicate columns in DataFrame.from_records (GH2179)

• Add normalize option to Series/DataFrame.asfreq (GH2137)

• SparseSeries and SparseDataFrame construction from empty and scalar values now no longer create dense
ndarrays unnecessarily (GH2322)

• HDFStore now supports hierarchical keys (GH2397)

• Support multiple query selection formats for HDFStore tables (GH1996)

• Support del store['df'] syntax to delete HDFStores

• Add multi-dtype support for HDFStore tables

• min_itemsize parameter can be specified in HDFStore table creation

• Indexing support in HDFStore tables (GH698)

• Add line_terminator option to DataFrame.to_csv (GH2383)

• added implementation of str(x)/unicode(x)/bytes(x) to major pandas data structures, which should do the right
thing on both py2.x and py3.x. (GH2224)

2518 Chapter 38. Release Notes

https://github.com/pandas-dev/pandas/issues/1893
https://github.com/pandas-dev/pandas/issues/2050
https://github.com/pandas-dev/pandas/issues/1919
https://github.com/pandas-dev/pandas/issues/2034
https://github.com/pandas-dev/pandas/issues/2316
https://github.com/pandas-dev/pandas/issues/2360
https://github.com/pandas-dev/pandas/issues/2284
https://github.com/pandas-dev/pandas/issues/2224
https://github.com/pandas-dev/pandas/issues/1794
https://github.com/pandas-dev/pandas/issues/2278
https://github.com/pandas-dev/pandas/issues/2179
https://github.com/pandas-dev/pandas/issues/2137
https://github.com/pandas-dev/pandas/issues/2322
https://github.com/pandas-dev/pandas/issues/2397
https://github.com/pandas-dev/pandas/issues/1996
https://github.com/pandas-dev/pandas/issues/698
https://github.com/pandas-dev/pandas/issues/2383
https://github.com/pandas-dev/pandas/issues/2224

pandas: powerful Python data analysis toolkit, Release 0.23.4

• Reduce groupby.apply overhead substantially by low-level manipulation of internal NumPy arrays in
DataFrames (GH535)

• Implement value_vars in melt and add melt to pandas namespace (GH2412)

• Added boolean comparison operators to Panel

• Enable Series.str.strip/lstrip/rstrip methods to take an argument (GH2411)

• The DataFrame ctor now respects column ordering when given an OrderedDict (GH2455)

• Assigning DatetimeIndex to Series changes the class to TimeSeries (GH2139)

• Improve performance of .value_counts method on non-integer data (GH2480)

• get_level_values method for MultiIndex return Index instead of ndarray (GH2449)

• convert_to_r_dataframe conversion for datetime values (GH2351)

• Allow DataFrame.to_csv to represent inf and nan differently (GH2026)

• Add min_i argument to nancorr to specify minimum required observations (GH2002)

• Add inplace option to sortlevel / sort functions on DataFrame (GH1873)

• Enable DataFrame to accept scalar constructor values like Series (GH1856)

• DataFrame.from_records now takes optional size parameter (GH1794)

• include iris dataset (GH1709)

• No datetime64 DataFrame column conversion of datetime.datetime with tzinfo (GH1581)

• Micro-optimizations in DataFrame for tracking state of internal consolidation (GH217)

• Format parameter in DataFrame.to_csv (GH1525)

• Partial string slicing for DatetimeIndex for daily and higher frequencies (GH2306)

• Implement col_space parameter in to_html and to_string in DataFrame (GH1000)

• Override Series.tolist and box datetime64 types (GH2447)

• Optimize unstack memory usage by compressing indices (GH2278)

• Fix HTML repr in IPython qtconsole if opening window is small (GH2275)

• Escape more special characters in console output (GH2492)

• df.select now invokes bool on the result of crit(x) (GH2487)

38.28.5 Bug Fixes

• Fix major performance regression in DataFrame.iteritems (GH2273)

• Fixes bug when negative period passed to Series/DataFrame.diff (GH2266)

• Escape tabs in console output to avoid alignment issues (GH2038)

• Properly box datetime64 values when retrieving cross-section from mixed-dtype DataFrame (GH2272)

• Fix concatenation bug leading to GH2057, GH2257

• Fix regression in Index console formatting (GH2319)

• Box Period data when assigning PeriodIndex to frame column (GH2243, GH2281)

• Raise exception on calling reset_index on Series with inplace=True (GH2277)

38.28. pandas 0.10.0 2519

https://github.com/pandas-dev/pandas/issues/535
https://github.com/pandas-dev/pandas/issues/2412
https://github.com/pandas-dev/pandas/issues/2411
https://github.com/pandas-dev/pandas/issues/2455
https://github.com/pandas-dev/pandas/issues/2139
https://github.com/pandas-dev/pandas/issues/2480
https://github.com/pandas-dev/pandas/issues/2449
https://github.com/pandas-dev/pandas/issues/2351
https://github.com/pandas-dev/pandas/issues/2026
https://github.com/pandas-dev/pandas/issues/2002
https://github.com/pandas-dev/pandas/issues/1873
https://github.com/pandas-dev/pandas/issues/1856
https://github.com/pandas-dev/pandas/issues/1794
https://github.com/pandas-dev/pandas/issues/1709
https://github.com/pandas-dev/pandas/issues/1581
https://github.com/pandas-dev/pandas/issues/217
https://github.com/pandas-dev/pandas/issues/1525
https://github.com/pandas-dev/pandas/issues/2306
https://github.com/pandas-dev/pandas/issues/1000
https://github.com/pandas-dev/pandas/issues/2447
https://github.com/pandas-dev/pandas/issues/2278
https://github.com/pandas-dev/pandas/issues/2275
https://github.com/pandas-dev/pandas/issues/2492
https://github.com/pandas-dev/pandas/issues/2487
https://github.com/pandas-dev/pandas/issues/2273
https://github.com/pandas-dev/pandas/issues/2266
https://github.com/pandas-dev/pandas/issues/2038
https://github.com/pandas-dev/pandas/issues/2272
https://github.com/pandas-dev/pandas/issues/2057
https://github.com/pandas-dev/pandas/issues/2257
https://github.com/pandas-dev/pandas/issues/2319
https://github.com/pandas-dev/pandas/issues/2243
https://github.com/pandas-dev/pandas/issues/2281
https://github.com/pandas-dev/pandas/issues/2277

pandas: powerful Python data analysis toolkit, Release 0.23.4

• Enable setting multiple columns in DataFrame with hierarchical columns (GH2295)

• Respect dtype=object in DataFrame constructor (GH2291)

• Fix DatetimeIndex.join bug with tz-aware indexes and how=’outer’ (GH2317)

• pop(. . .) and del works with DataFrame with duplicate columns (GH2349)

• Treat empty strings as NA in date parsing (rather than let dateutil do something weird) (GH2263)

• Prevent uint64 -> int64 overflows (GH2355)

• Enable joins between MultiIndex and regular Index (GH2024)

• Fix time zone metadata issue when unioning non-overlapping DatetimeIndex objects (GH2367)

• Raise/handle int64 overflows in parsers (GH2247)

• Deleting of consecutive rows in HDFStore tables` is much faster than before

• Appending on a HDFStore would fail if the table was not first created via put

• Use col_space argument as minimum column width in DataFrame.to_html (GH2328)

• Fix tz-aware DatetimeIndex.to_period (GH2232)

• Fix DataFrame row indexing case with MultiIndex (GH2314)

• Fix to_excel exporting issues with Timestamp objects in index (GH2294)

• Fixes assigning scalars and array to hierarchical column chunk (GH1803)

• Fixed a UnicodeDecodeError with series tidy_repr (GH2225)

• Fixed issued with duplicate keys in an index (GH2347, GH2380)

• Fixed issues re: Hash randomization, default on starting w/ py3.3 (GH2331)

• Fixed issue with missing attributes after loading a pickled dataframe (GH2431)

• Fix Timestamp formatting with tzoffset time zone in dateutil 2.1 (GH2443)

• Fix GroupBy.apply issue when using BinGrouper to do ts binning (GH2300)

• Fix issues resulting from datetime.datetime columns being converted to datetime64 when calling
DataFrame.apply. (GH2374)

• Raise exception when calling to_panel on non uniquely-indexed frame (GH2441)

• Improved detection of console encoding on IPython zmq frontends (GH2458)

• Preserve time zone when .append-ing two time series (GH2260)

• Box timestamps when calling reset_index on time-zone-aware index rather than creating a tz-less datetime64
column (GH2262)

• Enable searching non-string columns in DataFrame.filter(like=. . .) (GH2467)

• Fixed issue with losing nanosecond precision upon conversion to DatetimeIndex(GH2252)

• Handle timezones in Datetime.normalize (GH2338)

• Fix test case where dtype specification with endianness causes failures on big endian machines (GH2318)

• Fix plotting bug where upsampling causes data to appear shifted in time (GH2448)

• Fix read_csv failure for UTF-16 with BOM and skiprows(GH2298)

• read_csv with names arg not implicitly setting header=None(GH2459)

• Unrecognized compression mode causes segfault in read_csv(GH2474)

2520 Chapter 38. Release Notes

https://github.com/pandas-dev/pandas/issues/2295
https://github.com/pandas-dev/pandas/issues/2291
https://github.com/pandas-dev/pandas/issues/2317
https://github.com/pandas-dev/pandas/issues/2349
https://github.com/pandas-dev/pandas/issues/2263
https://github.com/pandas-dev/pandas/issues/2355
https://github.com/pandas-dev/pandas/issues/2024
https://github.com/pandas-dev/pandas/issues/2367
https://github.com/pandas-dev/pandas/issues/2247
https://github.com/pandas-dev/pandas/issues/2328
https://github.com/pandas-dev/pandas/issues/2232
https://github.com/pandas-dev/pandas/issues/2314
https://github.com/pandas-dev/pandas/issues/2294
https://github.com/pandas-dev/pandas/issues/1803
https://github.com/pandas-dev/pandas/issues/2225
https://github.com/pandas-dev/pandas/issues/2347
https://github.com/pandas-dev/pandas/issues/2380
https://github.com/pandas-dev/pandas/issues/2331
https://github.com/pandas-dev/pandas/issues/2431
https://github.com/pandas-dev/pandas/issues/2443
https://github.com/pandas-dev/pandas/issues/2300
https://github.com/pandas-dev/pandas/issues/2374
https://github.com/pandas-dev/pandas/issues/2441
https://github.com/pandas-dev/pandas/issues/2458
https://github.com/pandas-dev/pandas/issues/2260
https://github.com/pandas-dev/pandas/issues/2262
https://github.com/pandas-dev/pandas/issues/2467
https://github.com/pandas-dev/pandas/issues/2252
https://github.com/pandas-dev/pandas/issues/2338
https://github.com/pandas-dev/pandas/issues/2318
https://github.com/pandas-dev/pandas/issues/2448
https://github.com/pandas-dev/pandas/issues/2298
https://github.com/pandas-dev/pandas/issues/2459
https://github.com/pandas-dev/pandas/issues/2474

pandas: powerful Python data analysis toolkit, Release 0.23.4

• In read_csv, header=0 and passed names should discard first row(GH2269)

• Correctly route to stdout/stderr in read_table (GH2071)

• Fix exception when Timestamp.to_datetime is called on a Timestamp with tzoffset (GH2471)

• Fixed unintentional conversion of datetime64 to long in groupby.first() (GH2133)

• Union of empty DataFrames now return empty with concatenated index (GH2307)

• DataFrame.sort_index raises more helpful exception if sorting by column with duplicates (GH2488)

• DataFrame.to_string formatters can be list, too (GH2520)

• DataFrame.combine_first will always result in the union of the index and columns, even if one DataFrame is
length-zero (GH2525)

• Fix several DataFrame.icol/irow with duplicate indices issues (GH2228, GH2259)

• Use Series names for column names when using concat with axis=1 (GH2489)

• Raise Exception if start, end, periods all passed to date_range (GH2538)

• Fix Panel resampling issue (GH2537)

38.29 pandas 0.9.1

Release date: 2012-11-14

38.29.1 New Features

• Can specify multiple sort orders in DataFrame/Series.sort/sort_index (GH928)

• New top and bottom options for handling NAs in rank (GH1508, GH2159)

• Add where and mask functions to DataFrame (GH2109, GH2151)

• Add at_time and between_time functions to DataFrame (GH2149)

• Add flexible pow and rpow methods to DataFrame (GH2190)

38.29.2 API Changes

• Upsampling period index “spans” intervals. Example: annual periods upsampled to monthly will span all
months in each year

• Period.end_time will yield timestamp at last nanosecond in the interval (GH2124, GH2125, GH1764)

• File parsers no longer coerce to float or bool for columns that have custom converters specified (GH2184)

38.29.3 Improvements to existing features

• Time rule inference for week-of-month (e.g. WOM-2FRI) rules (GH2140)

• Improve performance of datetime + business day offset with large number of offset periods

• Improve HTML display of DataFrame objects with hierarchical columns

• Enable referencing of Excel columns by their column names (GH1936)

38.29. pandas 0.9.1 2521

https://github.com/pandas-dev/pandas/issues/2269
https://github.com/pandas-dev/pandas/issues/2071
https://github.com/pandas-dev/pandas/issues/2471
https://github.com/pandas-dev/pandas/issues/2133
https://github.com/pandas-dev/pandas/issues/2307
https://github.com/pandas-dev/pandas/issues/2488
https://github.com/pandas-dev/pandas/issues/2520
https://github.com/pandas-dev/pandas/issues/2525
https://github.com/pandas-dev/pandas/issues/2228
https://github.com/pandas-dev/pandas/issues/2259
https://github.com/pandas-dev/pandas/issues/2489
https://github.com/pandas-dev/pandas/issues/2538
https://github.com/pandas-dev/pandas/issues/2537
https://github.com/pandas-dev/pandas/issues/928
https://github.com/pandas-dev/pandas/issues/1508
https://github.com/pandas-dev/pandas/issues/2159
https://github.com/pandas-dev/pandas/issues/2109
https://github.com/pandas-dev/pandas/issues/2151
https://github.com/pandas-dev/pandas/issues/2149
https://github.com/pandas-dev/pandas/issues/2190
https://github.com/pandas-dev/pandas/issues/2124
https://github.com/pandas-dev/pandas/issues/2125
https://github.com/pandas-dev/pandas/issues/1764
https://github.com/pandas-dev/pandas/issues/2184
https://github.com/pandas-dev/pandas/issues/2140
https://github.com/pandas-dev/pandas/issues/1936

pandas: powerful Python data analysis toolkit, Release 0.23.4

• DataFrame.dot can accept ndarrays (GH2042)

• Support negative periods in Panel.shift (GH2164)

• Make .drop(. . .) work with non-unique indexes (GH2101)

• Improve performance of Series/DataFrame.diff (re: GH2087)

• Support unary ~ (__invert__) in DataFrame (GH2110)

• Turn off pandas-style tick locators and formatters (GH2205)

• DataFrame[DataFrame] uses DataFrame.where to compute masked frame (GH2230)

38.29.4 Bug Fixes

• Fix some duplicate-column DataFrame constructor issues (GH2079)

• Fix bar plot color cycle issues (GH2082)

• Fix off-center grid for stacked bar plots (GH2157)

• Fix plotting bug if inferred frequency is offset with N > 1 (GH2126)

• Implement comparisons on date offsets with fixed delta (GH2078)

• Handle inf/-inf correctly in read_* parser functions (GH2041)

• Fix matplotlib unicode interaction bug

• Make WLS r-squared match statsmodels 0.5.0 fixed value

• Fix zero-trimming DataFrame formatting bug

• Correctly compute/box datetime64 min/max values from Series.min/max (GH2083)

• Fix unstacking edge case with unrepresented groups (GH2100)

• Fix Series.str failures when using pipe pattern ‘|’ (GH2119)

• Fix pretty-printing of dict entries in Series, DataFrame (GH2144)

• Cast other datetime64 values to nanoseconds in DataFrame ctor (GH2095)

• Alias Timestamp.astimezone to tz_convert, so will yield Timestamp (GH2060)

• Fix timedelta64 formatting from Series (GH2165, GH2146)

• Handle None values gracefully in dict passed to Panel constructor (GH2075)

• Box datetime64 values as Timestamp objects in Series/DataFrame.iget (GH2148)

• Fix Timestamp indexing bug in DatetimeIndex.insert (GH2155)

• Use index name(s) (if any) in DataFrame.to_records (GH2161)

• Don’t lose index names in Panel.to_frame/DataFrame.to_panel (GH2163)

• Work around length-0 boolean indexing NumPy bug (GH2096)

• Fix partial integer indexing bug in DataFrame.xs (GH2107)

• Fix variety of cut/qcut string-bin formatting bugs (GH1978, GH1979)

• Raise Exception when xs view not possible of MultiIndex’d DataFrame (GH2117)

• Fix groupby(. . .).first() issue with datetime64 (GH2133)

• Better floating point error robustness in some rolling_* functions (GH2114, GH2527)

2522 Chapter 38. Release Notes

https://github.com/pandas-dev/pandas/issues/2042
https://github.com/pandas-dev/pandas/issues/2164
https://github.com/pandas-dev/pandas/issues/2101
https://github.com/pandas-dev/pandas/issues/2087
https://github.com/pandas-dev/pandas/issues/2110
https://github.com/pandas-dev/pandas/issues/2205
https://github.com/pandas-dev/pandas/issues/2230
https://github.com/pandas-dev/pandas/issues/2079
https://github.com/pandas-dev/pandas/issues/2082
https://github.com/pandas-dev/pandas/issues/2157
https://github.com/pandas-dev/pandas/issues/2126
https://github.com/pandas-dev/pandas/issues/2078
https://github.com/pandas-dev/pandas/issues/2041
https://github.com/pandas-dev/pandas/issues/2083
https://github.com/pandas-dev/pandas/issues/2100
https://github.com/pandas-dev/pandas/issues/2119
https://github.com/pandas-dev/pandas/issues/2144
https://github.com/pandas-dev/pandas/issues/2095
https://github.com/pandas-dev/pandas/issues/2060
https://github.com/pandas-dev/pandas/issues/2165
https://github.com/pandas-dev/pandas/issues/2146
https://github.com/pandas-dev/pandas/issues/2075
https://github.com/pandas-dev/pandas/issues/2148
https://github.com/pandas-dev/pandas/issues/2155
https://github.com/pandas-dev/pandas/issues/2161
https://github.com/pandas-dev/pandas/issues/2163
https://github.com/pandas-dev/pandas/issues/2096
https://github.com/pandas-dev/pandas/issues/2107
https://github.com/pandas-dev/pandas/issues/1978
https://github.com/pandas-dev/pandas/issues/1979
https://github.com/pandas-dev/pandas/issues/2117
https://github.com/pandas-dev/pandas/issues/2133
https://github.com/pandas-dev/pandas/issues/2114
https://github.com/pandas-dev/pandas/issues/2527

pandas: powerful Python data analysis toolkit, Release 0.23.4

• Fix ewma NA handling in the middle of Series (GH2128)

• Fix numerical precision issues in diff with integer data (GH2087)

• Fix bug in MultiIndex.__getitem__ with NA values (GH2008)

• Fix DataFrame.from_records dict-arg bug when passing columns (GH2179)

• Fix Series and DataFrame.diff for integer dtypes (GH2087, GH2174)

• Fix bug when taking intersection of DatetimeIndex with empty index (GH2129)

• Pass through timezone information when calling DataFrame.align (GH2127)

• Properly sort when joining on datetime64 values (GH2196)

• Fix indexing bug in which False/True were being coerced to 0/1 (GH2199)

• Many unicode formatting fixes (GH2201)

• Fix improper MultiIndex conversion issue when assigning e.g. DataFrame.index (GH2200)

• Fix conversion of mixed-type DataFrame to ndarray with dup columns (GH2236)

• Fix duplicate columns issue (GH2218, GH2219)

• Fix SparseSeries.__pow__ issue with NA input (GH2220)

• Fix icol with integer sequence failure (GH2228)

• Fixed resampling tz-aware time series issue (GH2245)

• SparseDataFrame.icol was not returning SparseSeries (GH2227, GH2229)

• Enable ExcelWriter to handle PeriodIndex (GH2240)

• Fix issue constructing DataFrame from empty Series with name (GH2234)

• Use console-width detection in interactive sessions only (GH1610)

• Fix parallel_coordinates legend bug with mpl 1.2.0 (GH2237)

• Make tz_localize work in corner case of empty Series (GH2248)

38.30 pandas 0.9.0

Release date: 10/7/2012

38.30.1 New Features

• Add str.encode and str.decode to Series (GH1706)

• Add to_latex method to DataFrame (GH1735)

• Add convenient expanding window equivalents of all rolling_* ops (GH1785)

• Add Options class to pandas.io.data for fetching options data from Yahoo! Finance (GH1748, GH1739)

• Recognize and convert more boolean values in file parsing (Yes, No, TRUE, FALSE, variants thereof) (GH1691,
GH1295)

• Add Panel.update method, analogous to DataFrame.update (GH1999, GH1988)

38.30. pandas 0.9.0 2523

https://github.com/pandas-dev/pandas/issues/2128
https://github.com/pandas-dev/pandas/issues/2087
https://github.com/pandas-dev/pandas/issues/2008
https://github.com/pandas-dev/pandas/issues/2179
https://github.com/pandas-dev/pandas/issues/2087
https://github.com/pandas-dev/pandas/issues/2174
https://github.com/pandas-dev/pandas/issues/2129
https://github.com/pandas-dev/pandas/issues/2127
https://github.com/pandas-dev/pandas/issues/2196
https://github.com/pandas-dev/pandas/issues/2199
https://github.com/pandas-dev/pandas/issues/2201
https://github.com/pandas-dev/pandas/issues/2200
https://github.com/pandas-dev/pandas/issues/2236
https://github.com/pandas-dev/pandas/issues/2218
https://github.com/pandas-dev/pandas/issues/2219
https://github.com/pandas-dev/pandas/issues/2220
https://github.com/pandas-dev/pandas/issues/2228
https://github.com/pandas-dev/pandas/issues/2245
https://github.com/pandas-dev/pandas/issues/2227
https://github.com/pandas-dev/pandas/issues/2229
https://github.com/pandas-dev/pandas/issues/2240
https://github.com/pandas-dev/pandas/issues/2234
https://github.com/pandas-dev/pandas/issues/1610
https://github.com/pandas-dev/pandas/issues/2237
https://github.com/pandas-dev/pandas/issues/2248
https://github.com/pandas-dev/pandas/issues/1706
https://github.com/pandas-dev/pandas/issues/1735
https://github.com/pandas-dev/pandas/issues/1785
https://github.com/pandas-dev/pandas/issues/1748
https://github.com/pandas-dev/pandas/issues/1739
https://github.com/pandas-dev/pandas/issues/1691
https://github.com/pandas-dev/pandas/issues/1295
https://github.com/pandas-dev/pandas/issues/1999
https://github.com/pandas-dev/pandas/issues/1988

pandas: powerful Python data analysis toolkit, Release 0.23.4

38.30.2 Improvements to existing features

• Proper handling of NA values in merge operations (GH1990)

• Add flags option for re.compile in some Series.str methods (GH1659)

• Parsing of UTC date strings in read_* functions (GH1693)

• Handle generator input to Series (GH1679)

• Add na_action=’ignore’ to Series.map to quietly propagate NAs (GH1661)

• Add args/kwds options to Series.apply (GH1829)

• Add inplace option to Series/DataFrame.reset_index (GH1797)

• Add level parameter to Series.reset_index

• Add quoting option for DataFrame.to_csv (GH1902)

• Indicate long column value truncation in DataFrame output with . . . (GH1854)

• DataFrame.dot will not do data alignment, and also work with Series (GH1915)

• Add na option for missing data handling in some vectorized string methods (GH1689)

• If index_label=False in DataFrame.to_csv, do not print fields/commas in the text output. Results in easier
importing into R (GH1583)

• Can pass tuple/list of axes to DataFrame.dropna to simplify repeated calls (dropping both columns and rows)
(GH924)

• Improve DataFrame.to_html output for hierarchically-indexed rows (do not repeat levels) (GH1929)

• TimeSeries.between_time can now select times across midnight (GH1871)

• Enable skip_footer parameter in ExcelFile.parse (GH1843)

38.30.3 API Changes

• Change default header names in read_* functions to more Pythonic X0, X1, etc. instead of X.1, X.2. (GH2000)

• Deprecated day_of_year API removed from PeriodIndex, use dayofyear (GH1723)

• Don’t modify NumPy suppress printoption at import time

• The internal HDF5 data arrangement for DataFrames has been transposed. Legacy files will still be readable by
HDFStore (GH1834, GH1824)

• Legacy cruft removed: pandas.stats.misc.quantileTS

• Use ISO8601 format for Period repr: monthly, daily, and on down (GH1776)

• Empty DataFrame columns are now created as object dtype. This will prevent a class of TypeErrors that was
occurring in code where the dtype of a column would depend on the presence of data or not (e.g. a SQL query
having results) (GH1783)

• Setting parts of DataFrame/Panel using ix now aligns input Series/DataFrame (GH1630)

• first and last methods in GroupBy no longer drop non-numeric columns (GH1809)

• Resolved inconsistencies in specifying custom NA values in text parser. na_values of type dict no longer over-
ride default NAs unless keep_default_na is set to false explicitly (GH1657)

• Enable skipfooter parameter in text parsers as an alias for skip_footer

2524 Chapter 38. Release Notes

https://github.com/pandas-dev/pandas/issues/1990
https://github.com/pandas-dev/pandas/issues/1659
https://github.com/pandas-dev/pandas/issues/1693
https://github.com/pandas-dev/pandas/issues/1679
https://github.com/pandas-dev/pandas/issues/1661
https://github.com/pandas-dev/pandas/issues/1829
https://github.com/pandas-dev/pandas/issues/1797
https://github.com/pandas-dev/pandas/issues/1902
https://github.com/pandas-dev/pandas/issues/1854
https://github.com/pandas-dev/pandas/issues/1915
https://github.com/pandas-dev/pandas/issues/1689
https://github.com/pandas-dev/pandas/issues/1583
https://github.com/pandas-dev/pandas/issues/924
https://github.com/pandas-dev/pandas/issues/1929
https://github.com/pandas-dev/pandas/issues/1871
https://github.com/pandas-dev/pandas/issues/1843
https://github.com/pandas-dev/pandas/issues/2000
https://github.com/pandas-dev/pandas/issues/1723
https://github.com/pandas-dev/pandas/issues/1834
https://github.com/pandas-dev/pandas/issues/1824
https://github.com/pandas-dev/pandas/issues/1776
https://github.com/pandas-dev/pandas/issues/1783
https://github.com/pandas-dev/pandas/issues/1630
https://github.com/pandas-dev/pandas/issues/1809
https://github.com/pandas-dev/pandas/issues/1657

pandas: powerful Python data analysis toolkit, Release 0.23.4

38.30.4 Bug Fixes

• Perform arithmetic column-by-column in mixed-type DataFrame to avoid type upcasting issues. Caused down-
stream DataFrame.diff bug (GH1896)

• Fix matplotlib auto-color assignment when no custom spectrum passed. Also respect passed color keyword
argument (GH1711)

• Fix resampling logical error with closed=’left’ (GH1726)

• Fix critical DatetimeIndex.union bugs (GH1730, GH1719, GH1745, GH1702, GH1753)

• Fix critical DatetimeIndex.intersection bug with unanchored offsets (GH1708)

• Fix MM-YYYY time series indexing case (GH1672)

• Fix case where Categorical group key was not being passed into index in GroupBy result (GH1701)

• Handle Ellipsis in Series.__getitem__/__setitem__ (GH1721)

• Fix some bugs with handling datetime64 scalars of other units in NumPy 1.6 and 1.7 (GH1717)

• Fix performance issue in MultiIndex.format (GH1746)

• Fixed GroupBy bugs interacting with DatetimeIndex asof / map methods (GH1677)

• Handle factors with NAs in pandas.rpy (GH1615)

• Fix statsmodels import in pandas.stats.var (GH1734)

• Fix DataFrame repr/info summary with non-unique columns (GH1700)

• Fix Series.iget_value for non-unique indexes (GH1694)

• Don’t lose tzinfo when passing DatetimeIndex as DataFrame column (GH1682)

• Fix tz conversion with time zones that haven’t had any DST transitions since first date in the array (GH1673)

• Fix field access with UTC->local conversion on unsorted arrays (GH1756)

• Fix isnull handling of array-like (list) inputs (GH1755)

• Fix regression in handling of Series in Series constructor (GH1671)

• Fix comparison of Int64Index with DatetimeIndex (GH1681)

• Fix min_periods handling in new rolling_max/min at array start (GH1695)

• Fix errors with how=’median’ and generic NumPy resampling in some cases caused by SeriesBinGrouper
(GH1648, GH1688)

• When grouping by level, exclude unobserved levels (GH1697)

• Don’t lose tzinfo in DatetimeIndex when shifting by different offset (GH1683)

• Hack to support storing data with a zero-length axis in HDFStore (GH1707)

• Fix DatetimeIndex tz-aware range generation issue (GH1674)

• Fix method=’time’ interpolation with intraday data (GH1698)

• Don’t plot all-NA DataFrame columns as zeros (GH1696)

• Fix bug in scatter_plot with by option (GH1716)

• Fix performance problem in infer_freq with lots of non-unique stamps (GH1686)

• Fix handling of PeriodIndex as argument to create MultiIndex (GH1705)

• Fix re: unicode MultiIndex level names in Series/DataFrame repr (GH1736)

38.30. pandas 0.9.0 2525

https://github.com/pandas-dev/pandas/issues/1896
https://github.com/pandas-dev/pandas/issues/1711
https://github.com/pandas-dev/pandas/issues/1726
https://github.com/pandas-dev/pandas/issues/1730
https://github.com/pandas-dev/pandas/issues/1719
https://github.com/pandas-dev/pandas/issues/1745
https://github.com/pandas-dev/pandas/issues/1702
https://github.com/pandas-dev/pandas/issues/1753
https://github.com/pandas-dev/pandas/issues/1708
https://github.com/pandas-dev/pandas/issues/1672
https://github.com/pandas-dev/pandas/issues/1701
https://github.com/pandas-dev/pandas/issues/1721
https://github.com/pandas-dev/pandas/issues/1717
https://github.com/pandas-dev/pandas/issues/1746
https://github.com/pandas-dev/pandas/issues/1677
https://github.com/pandas-dev/pandas/issues/1615
https://github.com/pandas-dev/pandas/issues/1734
https://github.com/pandas-dev/pandas/issues/1700
https://github.com/pandas-dev/pandas/issues/1694
https://github.com/pandas-dev/pandas/issues/1682
https://github.com/pandas-dev/pandas/issues/1673
https://github.com/pandas-dev/pandas/issues/1756
https://github.com/pandas-dev/pandas/issues/1755
https://github.com/pandas-dev/pandas/issues/1671
https://github.com/pandas-dev/pandas/issues/1681
https://github.com/pandas-dev/pandas/issues/1695
https://github.com/pandas-dev/pandas/issues/1648
https://github.com/pandas-dev/pandas/issues/1688
https://github.com/pandas-dev/pandas/issues/1697
https://github.com/pandas-dev/pandas/issues/1683
https://github.com/pandas-dev/pandas/issues/1707
https://github.com/pandas-dev/pandas/issues/1674
https://github.com/pandas-dev/pandas/issues/1698
https://github.com/pandas-dev/pandas/issues/1696
https://github.com/pandas-dev/pandas/issues/1716
https://github.com/pandas-dev/pandas/issues/1686
https://github.com/pandas-dev/pandas/issues/1705
https://github.com/pandas-dev/pandas/issues/1736

pandas: powerful Python data analysis toolkit, Release 0.23.4

• Handle PeriodIndex in to_datetime instance method (GH1703)

• Support StaticTzInfo in DatetimeIndex infrastructure (GH1692)

• Allow MultiIndex setops with length-0 other type indexes (GH1727)

• Fix handling of DatetimeIndex in DataFrame.to_records (GH1720)

• Fix handling of general objects in isnull on which bool(. . .) fails (GH1749)

• Fix .ix indexing with MultiIndex ambiguity (GH1678)

• Fix .ix setting logic error with non-unique MultiIndex (GH1750)

• Basic indexing now works on MultiIndex with > 1000000 elements, regression from earlier version of pandas
(GH1757)

• Handle non-float64 dtypes in fast DataFrame.corr/cov code paths (GH1761)

• Fix DatetimeIndex.isin to function properly (GH1763)

• Fix conversion of array of tz-aware datetime.datetime to DatetimeIndex with right time zone (GH1777)

• Fix DST issues with generating ancxhored date ranges (GH1778)

• Fix issue calling sort on result of Series.unique (GH1807)

• Fix numerical issue leading to square root of negative number in rolling_std (GH1840)

• Let Series.str.split accept no arguments (like str.split) (GH1859)

• Allow user to have dateutil 2.1 installed on a Python 2 system (GH1851)

• Catch ImportError less aggressively in pandas/__init__.py (GH1845)

• Fix pip source installation bug when installing from GitHub (GH1805)

• Fix error when window size > array size in rolling_apply (GH1850)

• Fix pip source installation issues via SSH from GitHub

• Fix OLS.summary when column is a tuple (GH1837)

• Fix bug in __doc__ patching when -OO passed to interpreter (GH1792 GH1741 GH1774)

• Fix unicode console encoding issue in IPython notebook (GH1782, GH1768)

• Fix unicode formatting issue with Series.name (GH1782)

• Fix bug in DataFrame.duplicated with datetime64 columns (GH1833)

• Fix bug in Panel internals resulting in error when doing fillna after truncate not changing size of panel (GH1823)

• Prevent segfault due to MultiIndex not being supported in HDFStore table format (GH1848)

• Fix UnboundLocalError in Panel.__setitem__ and add better error (GH1826)

• Fix to_csv issues with list of string entries. Isnull works on list of strings now too (GH1791)

• Fix Timestamp comparisons with datetime values outside the nanosecond range (1677-2262)

• Revert to prior behavior of normalize_date with datetime.date objects (return datetime)

• Fix broken interaction between np.nansum and Series.any/all

• Fix bug with multiple column date parsers (GH1866)

• DatetimeIndex.union(Int64Index) was broken

• Make plot x vs y interface consistent with integer indexing (GH1842)

2526 Chapter 38. Release Notes

https://github.com/pandas-dev/pandas/issues/1703
https://github.com/pandas-dev/pandas/issues/1692
https://github.com/pandas-dev/pandas/issues/1727
https://github.com/pandas-dev/pandas/issues/1720
https://github.com/pandas-dev/pandas/issues/1749
https://github.com/pandas-dev/pandas/issues/1678
https://github.com/pandas-dev/pandas/issues/1750
https://github.com/pandas-dev/pandas/issues/1757
https://github.com/pandas-dev/pandas/issues/1761
https://github.com/pandas-dev/pandas/issues/1763
https://github.com/pandas-dev/pandas/issues/1777
https://github.com/pandas-dev/pandas/issues/1778
https://github.com/pandas-dev/pandas/issues/1807
https://github.com/pandas-dev/pandas/issues/1840
https://github.com/pandas-dev/pandas/issues/1859
https://github.com/pandas-dev/pandas/issues/1851
https://github.com/pandas-dev/pandas/issues/1845
https://github.com/pandas-dev/pandas/issues/1805
https://github.com/pandas-dev/pandas/issues/1850
https://github.com/pandas-dev/pandas/issues/1837
https://github.com/pandas-dev/pandas/issues/1792
https://github.com/pandas-dev/pandas/issues/1741
https://github.com/pandas-dev/pandas/issues/1774
https://github.com/pandas-dev/pandas/issues/1782
https://github.com/pandas-dev/pandas/issues/1768
https://github.com/pandas-dev/pandas/issues/1782
https://github.com/pandas-dev/pandas/issues/1833
https://github.com/pandas-dev/pandas/issues/1823
https://github.com/pandas-dev/pandas/issues/1848
https://github.com/pandas-dev/pandas/issues/1826
https://github.com/pandas-dev/pandas/issues/1791
https://github.com/pandas-dev/pandas/issues/1866
https://github.com/pandas-dev/pandas/issues/1842

pandas: powerful Python data analysis toolkit, Release 0.23.4

• set_index inplace modified data even if unique check fails (GH1831)

• Only use Q-OCT/NOV/DEC in quarterly frequency inference (GH1789)

• Upcast to dtype=object when unstacking boolean DataFrame (GH1820)

• Fix float64/float32 merging bug (GH1849)

• Fixes to Period.start_time for non-daily frequencies (GH1857)

• Fix failure when converter used on index_col in read_csv (GH1835)

• Implement PeriodIndex.append so that pandas.concat works correctly (GH1815)

• Avoid Cython out-of-bounds access causing segfault sometimes in pad_2d, backfill_2d

• Fix resampling error with intraday times and anchored target time (like AS-DEC) (GH1772)

• Fix .ix indexing bugs with mixed-integer indexes (GH1799)

• Respect passed color keyword argument in Series.plot (GH1890)

• Fix rolling_min/max when the window is larger than the size of the input array. Check other malformed inputs
(GH1899, GH1897)

• Rolling variance / standard deviation with only a single observation in window (GH1884)

• Fix unicode sheet name failure in to_excel (GH1828)

• Override DatetimeIndex.min/max to return Timestamp objects (GH1895)

• Fix column name formatting issue in length-truncated column (GH1906)

• Fix broken handling of copying Index metadata to new instances created by view(. . .) calls inside the NumPy
infrastructure

• Support datetime.date again in DateOffset.rollback/rollforward

• Raise Exception if set passed to Series constructor (GH1913)

• Add TypeError when appending HDFStore table w/ wrong index type (GH1881)

• Don’t raise exception on empty inputs in EW functions (e.g. ewma) (GH1900)

• Make asof work correctly with PeriodIndex (GH1883)

• Fix extlinks in doc build

• Fill boolean DataFrame with NaN when calling shift (GH1814)

• Fix setuptools bug causing pip not to Cythonize .pyx files sometimes

• Fix negative integer indexing regression in .ix from 0.7.x (GH1888)

• Fix error while retrieving timezone and utc offset from subclasses of datetime.tzinfo without .zone and ._utcoff-
set attributes (GH1922)

• Fix DataFrame formatting of small, non-zero FP numbers (GH1911)

• Various fixes by upcasting of date -> datetime (GH1395)

• Raise better exception when passing multiple functions with the same name, such as lambdas, to
GroupBy.aggregate

• Fix DataFrame.apply with axis=1 on a non-unique index (GH1878)

• Proper handling of Index subclasses in pandas.unique (GH1759)

• Set index names in DataFrame.from_records (GH1744)

38.30. pandas 0.9.0 2527

https://github.com/pandas-dev/pandas/issues/1831
https://github.com/pandas-dev/pandas/issues/1789
https://github.com/pandas-dev/pandas/issues/1820
https://github.com/pandas-dev/pandas/issues/1849
https://github.com/pandas-dev/pandas/issues/1857
https://github.com/pandas-dev/pandas/issues/1835
https://github.com/pandas-dev/pandas/issues/1815
https://github.com/pandas-dev/pandas/issues/1772
https://github.com/pandas-dev/pandas/issues/1799
https://github.com/pandas-dev/pandas/issues/1890
https://github.com/pandas-dev/pandas/issues/1899
https://github.com/pandas-dev/pandas/issues/1897
https://github.com/pandas-dev/pandas/issues/1884
https://github.com/pandas-dev/pandas/issues/1828
https://github.com/pandas-dev/pandas/issues/1895
https://github.com/pandas-dev/pandas/issues/1906
https://github.com/pandas-dev/pandas/issues/1913
https://github.com/pandas-dev/pandas/issues/1881
https://github.com/pandas-dev/pandas/issues/1900
https://github.com/pandas-dev/pandas/issues/1883
https://github.com/pandas-dev/pandas/issues/1814
https://github.com/pandas-dev/pandas/issues/1888
https://github.com/pandas-dev/pandas/issues/1922
https://github.com/pandas-dev/pandas/issues/1911
https://github.com/pandas-dev/pandas/issues/1395
https://github.com/pandas-dev/pandas/issues/1878
https://github.com/pandas-dev/pandas/issues/1759
https://github.com/pandas-dev/pandas/issues/1744

pandas: powerful Python data analysis toolkit, Release 0.23.4

• Fix time series indexing error with duplicates, under and over hash table size cutoff (GH1821)

• Handle list keys in addition to tuples in DataFrame.xs when partial-indexing a hierarchically-indexed DataFrame
(GH1796)

• Support multiple column selection in DataFrame.__getitem__ with duplicate columns (GH1943)

• Fix time zone localization bug causing improper fields (e.g. hours) in time zones that have not had a UTC
transition in a long time (GH1946)

• Fix errors when parsing and working with fixed offset timezones (GH1922, GH1928)

• Fix text parser bug when handling UTC datetime objects generated by dateutil (GH1693)

• Fix plotting bug when ‘B’ is the inferred frequency but index actually contains weekends (GH1668, GH1669)

• Fix plot styling bugs (GH1666, GH1665, GH1658)

• Fix plotting bug with index/columns with unicode (GH1685)

• Fix DataFrame constructor bug when passed Series with datetime64 dtype in a dict (GH1680)

• Fixed regression in generating DatetimeIndex using timezone aware datetime.datetime (GH1676)

• Fix DataFrame bug when printing concatenated DataFrames with duplicated columns (GH1675)

• Fixed bug when plotting time series with multiple intraday frequencies (GH1732)

• Fix bug in DataFrame.duplicated to enable iterables other than list-types as input argument (GH1773)

• Fix resample bug when passed list of lambdas as how argument (GH1808)

• Repr fix for MultiIndex level with all NAs (GH1971)

• Fix PeriodIndex slicing bug when slice start/end are out-of-bounds (GH1977)

• Fix read_table bug when parsing unicode (GH1975)

• Fix BlockManager.iget bug when dealing with non-unique MultiIndex as columns (GH1970)

• Fix reset_index bug if both drop and level are specified (GH1957)

• Work around unsafe NumPy object->int casting with Cython function (GH1987)

• Fix datetime64 formatting bug in DataFrame.to_csv (GH1993)

• Default start date in pandas.io.data to 1/1/2000 as the docs say (GH2011)

38.31 pandas 0.8.1

Release date: July 22, 2012

38.31.1 New Features

• Add vectorized, NA-friendly string methods to Series (GH1621, GH620)

• Can pass dict of per-column line styles to DataFrame.plot (GH1559)

• Selective plotting to secondary y-axis on same subplot (GH1640)

• Add new bootstrap_plot plot function

• Add new parallel_coordinates plot function (GH1488)

• Add radviz plot function (GH1566)

2528 Chapter 38. Release Notes

https://github.com/pandas-dev/pandas/issues/1821
https://github.com/pandas-dev/pandas/issues/1796
https://github.com/pandas-dev/pandas/issues/1943
https://github.com/pandas-dev/pandas/issues/1946
https://github.com/pandas-dev/pandas/issues/1922
https://github.com/pandas-dev/pandas/issues/1928
https://github.com/pandas-dev/pandas/issues/1693
https://github.com/pandas-dev/pandas/issues/1668
https://github.com/pandas-dev/pandas/issues/1669
https://github.com/pandas-dev/pandas/issues/1666
https://github.com/pandas-dev/pandas/issues/1665
https://github.com/pandas-dev/pandas/issues/1658
https://github.com/pandas-dev/pandas/issues/1685
https://github.com/pandas-dev/pandas/issues/1680
https://github.com/pandas-dev/pandas/issues/1676
https://github.com/pandas-dev/pandas/issues/1675
https://github.com/pandas-dev/pandas/issues/1732
https://github.com/pandas-dev/pandas/issues/1773
https://github.com/pandas-dev/pandas/issues/1808
https://github.com/pandas-dev/pandas/issues/1971
https://github.com/pandas-dev/pandas/issues/1977
https://github.com/pandas-dev/pandas/issues/1975
https://github.com/pandas-dev/pandas/issues/1970
https://github.com/pandas-dev/pandas/issues/1957
https://github.com/pandas-dev/pandas/issues/1987
https://github.com/pandas-dev/pandas/issues/1993
https://github.com/pandas-dev/pandas/issues/2011
https://github.com/pandas-dev/pandas/issues/1621
https://github.com/pandas-dev/pandas/issues/620
https://github.com/pandas-dev/pandas/issues/1559
https://github.com/pandas-dev/pandas/issues/1640
https://github.com/pandas-dev/pandas/issues/1488
https://github.com/pandas-dev/pandas/issues/1566

pandas: powerful Python data analysis toolkit, Release 0.23.4

• Add multi_sparse option to set_printoptions to modify display of hierarchical indexes (GH1538)

• Add dropna method to Panel (GH171)

38.31.2 Improvements to existing features

• Use moving min/max algorithms from Bottleneck in rolling_min/rolling_max for > 100x speedup. (GH1504,
GH50)

• Add Cython group median method for >15x speedup (GH1358)

• Drastically improve to_datetime performance on ISO8601 datetime strings (with no time zones) (GH1571)

• Improve single-key groupby performance on large data sets, accelerate use of groupby with a Categorical vari-
able

• Add ability to append hierarchical index levels with set_index and to drop single levels with reset_index
(GH1569, GH1577)

• Always apply passed functions in resample, even if upsampling (GH1596)

• Avoid unnecessary copies in DataFrame constructor with explicit dtype (GH1572)

• Cleaner DatetimeIndex string representation with 1 or 2 elements (GH1611)

• Improve performance of array-of-Period to PeriodIndex, convert such arrays to PeriodIndex inside Index
(GH1215)

• More informative string representation for weekly Period objects (GH1503)

• Accelerate 3-axis multi data selection from homogeneous Panel (GH979)

• Add adjust option to ewma to disable adjustment factor (GH1584)

• Add new matplotlib converters for high frequency time series plotting (GH1599)

• Handling of tz-aware datetime.datetime objects in to_datetime; raise Exception unless utc=True given (GH1581)

38.31.3 Bug Fixes

• Fix NA handling in DataFrame.to_panel (GH1582)

• Handle TypeError issues inside PyObject_RichCompareBool calls in khash (GH1318)

• Fix resampling bug to lower case daily frequency (GH1588)

• Fix kendall/spearman DataFrame.corr bug with no overlap (GH1595)

• Fix bug in DataFrame.set_index (GH1592)

• Don’t ignore axes in boxplot if by specified (GH1565)

• Fix Panel .ix indexing with integers bug (GH1603)

• Fix Partial indexing bugs (years, months, . . .) with PeriodIndex (GH1601)

• Fix MultiIndex console formatting issue (GH1606)

• Unordered index with duplicates doesn’t yield scalar location for single entry (GH1586)

• Fix resampling of tz-aware time series with “anchored” freq (GH1591)

• Fix DataFrame.rank error on integer data (GH1589)

• Selection of multiple SparseDataFrame columns by list in __getitem__ (GH1585)

38.31. pandas 0.8.1 2529

https://github.com/pandas-dev/pandas/issues/1538
https://github.com/pandas-dev/pandas/issues/171
https://github.com/pandas-dev/pandas/issues/1504
https://github.com/pandas-dev/pandas/issues/50
https://github.com/pandas-dev/pandas/issues/1358
https://github.com/pandas-dev/pandas/issues/1571
https://github.com/pandas-dev/pandas/issues/1569
https://github.com/pandas-dev/pandas/issues/1577
https://github.com/pandas-dev/pandas/issues/1596
https://github.com/pandas-dev/pandas/issues/1572
https://github.com/pandas-dev/pandas/issues/1611
https://github.com/pandas-dev/pandas/issues/1215
https://github.com/pandas-dev/pandas/issues/1503
https://github.com/pandas-dev/pandas/issues/979
https://github.com/pandas-dev/pandas/issues/1584
https://github.com/pandas-dev/pandas/issues/1599
https://github.com/pandas-dev/pandas/issues/1581
https://github.com/pandas-dev/pandas/issues/1582
https://github.com/pandas-dev/pandas/issues/1318
https://github.com/pandas-dev/pandas/issues/1588
https://github.com/pandas-dev/pandas/issues/1595
https://github.com/pandas-dev/pandas/issues/1592
https://github.com/pandas-dev/pandas/issues/1565
https://github.com/pandas-dev/pandas/issues/1603
https://github.com/pandas-dev/pandas/issues/1601
https://github.com/pandas-dev/pandas/issues/1606
https://github.com/pandas-dev/pandas/issues/1586
https://github.com/pandas-dev/pandas/issues/1591
https://github.com/pandas-dev/pandas/issues/1589
https://github.com/pandas-dev/pandas/issues/1585

pandas: powerful Python data analysis toolkit, Release 0.23.4

• Override Index.tolist for compatibility with MultiIndex (GH1576)

• Fix hierarchical summing bug with MultiIndex of length 1 (GH1568)

• Work around numpy.concatenate use/bug in Series.set_value (GH1561)

• Ensure Series/DataFrame are sorted before resampling (GH1580)

• Fix unhandled IndexError when indexing very large time series (GH1562)

• Fix DatetimeIndex intersection logic error with irregular indexes (GH1551)

• Fix unit test errors on Python 3 (GH1550)

• Fix .ix indexing bugs in duplicate DataFrame index (GH1201)

• Better handle errors with non-existing objects in HDFStore (GH1254)

• Don’t copy int64 array data in DatetimeIndex when copy=False (GH1624)

• Fix resampling of conforming periods quarterly to annual (GH1622)

• Don’t lose index name on resampling (GH1631)

• Support python-dateutil version 2.1 (GH1637)

• Fix broken scatter_matrix axis labeling, esp. with time series (GH1625)

• Fix cases where extra keywords weren’t being passed on to matplotlib from Series.plot (GH1636)

• Fix BusinessMonthBegin logic for dates before 1st bday of month (GH1645)

• Ensure string alias converted (valid in DatetimeIndex.get_loc) in DataFrame.xs / __getitem__ (GH1644)

• Fix use of string alias timestamps with tz-aware time series (GH1647)

• Fix Series.max/min and Series.describe on len-0 series (GH1650)

• Handle None values in dict passed to concat (GH1649)

• Fix Series.interpolate with method=’values’ and DatetimeIndex (GH1646)

• Fix IndexError in left merges on a DataFrame with 0-length (GH1628)

• Fix DataFrame column width display with UTF-8 encoded characters (GH1620)

• Handle case in pandas.io.data.get_data_yahoo where Yahoo! returns duplicate dates for most recent business
day

• Avoid downsampling when plotting mixed frequencies on the same subplot (GH1619)

• Fix read_csv bug when reading a single line (GH1553)

• Fix bug in C code causing monthly periods prior to December 1969 to be off (GH1570)

38.32 pandas 0.8.0

Release date: 6/29/2012

38.32.1 New Features

• New unified DatetimeIndex class for nanosecond-level timestamp data

• New Timestamp datetime.datetime subclass with easy time zone conversions, and support for nanoseconds

2530 Chapter 38. Release Notes

https://github.com/pandas-dev/pandas/issues/1576
https://github.com/pandas-dev/pandas/issues/1568
https://github.com/pandas-dev/pandas/issues/1561
https://github.com/pandas-dev/pandas/issues/1580
https://github.com/pandas-dev/pandas/issues/1562
https://github.com/pandas-dev/pandas/issues/1551
https://github.com/pandas-dev/pandas/issues/1550
https://github.com/pandas-dev/pandas/issues/1201
https://github.com/pandas-dev/pandas/issues/1254
https://github.com/pandas-dev/pandas/issues/1624
https://github.com/pandas-dev/pandas/issues/1622
https://github.com/pandas-dev/pandas/issues/1631
https://github.com/pandas-dev/pandas/issues/1637
https://github.com/pandas-dev/pandas/issues/1625
https://github.com/pandas-dev/pandas/issues/1636
https://github.com/pandas-dev/pandas/issues/1645
https://github.com/pandas-dev/pandas/issues/1644
https://github.com/pandas-dev/pandas/issues/1647
https://github.com/pandas-dev/pandas/issues/1650
https://github.com/pandas-dev/pandas/issues/1649
https://github.com/pandas-dev/pandas/issues/1646
https://github.com/pandas-dev/pandas/issues/1628
https://github.com/pandas-dev/pandas/issues/1620
https://github.com/pandas-dev/pandas/issues/1619
https://github.com/pandas-dev/pandas/issues/1553
https://github.com/pandas-dev/pandas/issues/1570

pandas: powerful Python data analysis toolkit, Release 0.23.4

• New PeriodIndex class for timespans, calendar logic, and Period scalar object

• High performance resampling of timestamp and period data. New resample method of all pandas data structures

• New frequency names plus shortcut string aliases like ‘15h’, ‘1h30min’

• Time series string indexing shorthand (GH222)

• Add week, dayofyear array and other timestamp array-valued field accessor functions to DatetimeIndex

• Add GroupBy.prod optimized aggregation function and ‘prod’ fast time series conversion method (GH1018)

• Implement robust frequency inference function and inferred_freq attribute on DatetimeIndex (GH391)

• New tz_convert and tz_localize methods in Series / DataFrame

• Convert DatetimeIndexes to UTC if time zones are different in join/setops (GH864)

• Add limit argument for forward/backward filling to reindex, fillna, etc. (GH825 and others)

• Add support for indexes (dates or otherwise) with duplicates and common sense indexing/selection functionality

• Series/DataFrame.update methods, in-place variant of combine_first (GH961)

• Add match function to API (GH502)

• Add Cython-optimized first, last, min, max, prod functions to GroupBy (GH994, GH1043)

• Dates can be split across multiple columns (GH1227, GH1186)

• Add experimental support for converting pandas DataFrame to R data.frame via rpy2 (GH350, GH1212)

• Can pass list of (name, function) to GroupBy.aggregate to get aggregates in a particular order (GH610)

• Can pass dicts with lists of functions or dicts to GroupBy aggregate to do much more flexible multiple function
aggregation (GH642, GH610)

• New ordered_merge functions for merging DataFrames with ordered data. Also supports group-wise merging
for panel data (GH813)

• Add keys() method to DataFrame

• Add flexible replace method for replacing potentially values to Series and DataFrame (GH929, GH1241)

• Add ‘kde’ plot kind for Series/DataFrame.plot (GH1059)

• More flexible multiple function aggregation with GroupBy

• Add pct_change function to Series/DataFrame

• Add option to interpolate by Index values in Series.interpolate (GH1206)

• Add max_colwidth option for DataFrame, defaulting to 50

• Conversion of DataFrame through rpy2 to R data.frame (GH1282,)

• Add keys() method on DataFrame (GH1240)

• Add new match function to API (similar to R) (GH502)

• Add dayfirst option to parsers (GH854)

• Add method argument to align method for forward/backward fillin (GH216)

• Add Panel.transpose method for rearranging axes (GH695)

• Add new cut function (patterned after R) for discretizing data into equal range-length bins or arbitrary breaks
of your choosing (GH415)

• Add new qcut for cutting with quantiles (GH1378)

38.32. pandas 0.8.0 2531

https://github.com/pandas-dev/pandas/issues/222
https://github.com/pandas-dev/pandas/issues/1018
https://github.com/pandas-dev/pandas/issues/391
https://github.com/pandas-dev/pandas/issues/864
https://github.com/pandas-dev/pandas/issues/825
https://github.com/pandas-dev/pandas/issues/961
https://github.com/pandas-dev/pandas/issues/502
https://github.com/pandas-dev/pandas/issues/994
https://github.com/pandas-dev/pandas/issues/1043
https://github.com/pandas-dev/pandas/issues/1227
https://github.com/pandas-dev/pandas/issues/1186
https://github.com/pandas-dev/pandas/issues/350
https://github.com/pandas-dev/pandas/issues/1212
https://github.com/pandas-dev/pandas/issues/610
https://github.com/pandas-dev/pandas/issues/642
https://github.com/pandas-dev/pandas/issues/610
https://github.com/pandas-dev/pandas/issues/813
https://github.com/pandas-dev/pandas/issues/929
https://github.com/pandas-dev/pandas/issues/1241
https://github.com/pandas-dev/pandas/issues/1059
https://github.com/pandas-dev/pandas/issues/1206
https://github.com/pandas-dev/pandas/issues/1282
https://github.com/pandas-dev/pandas/issues/1240
https://github.com/pandas-dev/pandas/issues/502
https://github.com/pandas-dev/pandas/issues/854
https://github.com/pandas-dev/pandas/issues/216
https://github.com/pandas-dev/pandas/issues/695
https://github.com/pandas-dev/pandas/issues/415
https://github.com/pandas-dev/pandas/issues/1378

pandas: powerful Python data analysis toolkit, Release 0.23.4

• Add value_counts top level array method (GH1392)

• Added Andrews curves plot tupe (GH1325)

• Add lag plot (GH1440)

• Add autocorrelation_plot (GH1425)

• Add support for tox and Travis CI (GH1382)

• Add support for Categorical use in GroupBy (GH292)

• Add any and all methods to DataFrame (GH1416)

• Add secondary_y option to Series.plot

• Add experimental lreshape function for reshaping wide to long

38.32.2 Improvements to existing features

• Switch to klib/khash-based hash tables in Index classes for better performance in many cases and lower memory
footprint

• Shipping some functions from scipy.stats to reduce dependency, e.g. Series.describe and DataFrame.describe
(GH1092)

• Can create MultiIndex by passing list of lists or list of arrays to Series, DataFrame constructor, etc. (GH831)

• Can pass arrays in addition to column names to DataFrame.set_index (GH402)

• Improve the speed of “square” reindexing of homogeneous DataFrame objects by significant margin (GH836)

• Handle more dtypes when passed MaskedArrays in DataFrame constructor (GH406)

• Improved performance of join operations on integer keys (GH682)

• Can pass multiple columns to GroupBy object, e.g. grouped[[col1, col2]] to only aggregate a subset of the value
columns (GH383)

• Add histogram / kde plot options for scatter_matrix diagonals (GH1237)

• Add inplace option to Series/DataFrame.rename and sort_index, DataFrame.drop_duplicates (GH805, GH207)

• More helpful error message when nothing passed to Series.reindex (GH1267)

• Can mix array and scalars as dict-value inputs to DataFrame ctor (GH1329)

• Use DataFrame columns’ name for legend title in plots

• Preserve frequency in DatetimeIndex when possible in boolean indexing operations

• Promote datetime.date values in data alignment operations (GH867)

• Add order method to Index classes (GH1028)

• Avoid hash table creation in large monotonic hash table indexes (GH1160)

• Store time zones in HDFStore (GH1232)

• Enable storage of sparse data structures in HDFStore (GH85)

• Enable Series.asof to work with arrays of timestamp inputs

• Cython implementation of DataFrame.corr speeds up by > 100x (GH1349, GH1354)

• Exclude “nuisance” columns automatically in GroupBy.transform (GH1364)

• Support functions-as-strings in GroupBy.transform (GH1362)

2532 Chapter 38. Release Notes

https://github.com/pandas-dev/pandas/issues/1392
https://github.com/pandas-dev/pandas/issues/1325
https://github.com/pandas-dev/pandas/issues/1440
https://github.com/pandas-dev/pandas/issues/1425
https://github.com/pandas-dev/pandas/issues/1382
https://github.com/pandas-dev/pandas/issues/292
https://github.com/pandas-dev/pandas/issues/1416
https://github.com/pandas-dev/pandas/issues/1092
https://github.com/pandas-dev/pandas/issues/831
https://github.com/pandas-dev/pandas/issues/402
https://github.com/pandas-dev/pandas/issues/836
https://github.com/pandas-dev/pandas/issues/406
https://github.com/pandas-dev/pandas/issues/682
https://github.com/pandas-dev/pandas/issues/383
https://github.com/pandas-dev/pandas/issues/1237
https://github.com/pandas-dev/pandas/issues/805
https://github.com/pandas-dev/pandas/issues/207
https://github.com/pandas-dev/pandas/issues/1267
https://github.com/pandas-dev/pandas/issues/1329
https://github.com/pandas-dev/pandas/issues/867
https://github.com/pandas-dev/pandas/issues/1028
https://github.com/pandas-dev/pandas/issues/1160
https://github.com/pandas-dev/pandas/issues/1232
https://github.com/pandas-dev/pandas/issues/85
https://github.com/pandas-dev/pandas/issues/1349
https://github.com/pandas-dev/pandas/issues/1354
https://github.com/pandas-dev/pandas/issues/1364
https://github.com/pandas-dev/pandas/issues/1362

pandas: powerful Python data analysis toolkit, Release 0.23.4

• Use index name as xlabel/ylabel in plots (GH1415)

• Add convert_dtype option to Series.apply to be able to leave data as dtype=object (GH1414)

• Can specify all index level names in concat (GH1419)

• Add dialect keyword to parsers for quoting conventions (GH1363)

• Enable DataFrame[bool_DataFrame] += value (GH1366)

• Add retries argument to get_data_yahoo to try to prevent Yahoo! API 404s (GH826)

• Improve performance of reshaping by using O(N) categorical sorting

• Series names will be used for index of DataFrame if no index passed (GH1494)

• Header argument in DataFrame.to_csv can accept a list of column names to use instead of the object’s columns
(GH921)

• Add raise_conflict argument to DataFrame.update (GH1526)

• Support file-like objects in ExcelFile (GH1529)

38.32.3 API Changes

• Rename pandas._tseries to pandas.lib

• Rename Factor to Categorical and add improvements. Numerous Categorical bug fixes

• Frequency name overhaul, WEEKDAY/EOM and rules with @ deprecated. get_legacy_offset_name backwards
compatibility function added

• Raise ValueError in DataFrame.__nonzero__, so “if df” no longer works (GH1073)

• Change BDay (business day) to not normalize dates by default (GH506)

• Remove deprecated DataMatrix name

• Default merge suffixes for overlap now have underscores instead of periods to facilitate tab completion, etc.
(GH1239)

• Deprecation of offset, time_rule timeRule parameters throughout codebase

• Series.append and DataFrame.append no longer check for duplicate indexes by default, add verify_integrity
parameter (GH1394)

• Refactor Factor class, old constructor moved to Factor.from_array

• Modified internals of MultiIndex to use less memory (no longer represented as array of tuples) internally, speed
up construction time and many methods which construct intermediate hierarchical indexes (GH1467)

38.32.4 Bug Fixes

• Fix OverflowError from storing pre-1970 dates in HDFStore by switching to datetime64 (GH179)

• Fix logical error with February leap year end in YearEnd offset

• Series([False, nan]) was getting casted to float64 (GH1074)

• Fix binary operations between boolean Series and object Series with booleans and NAs (GH1074, GH1079)

• Couldn’t assign whole array to column in mixed-type DataFrame via .ix (GH1142)

• Fix label slicing issues with float index values (GH1167)

38.32. pandas 0.8.0 2533

https://github.com/pandas-dev/pandas/issues/1415
https://github.com/pandas-dev/pandas/issues/1414
https://github.com/pandas-dev/pandas/issues/1419
https://github.com/pandas-dev/pandas/issues/1363
https://github.com/pandas-dev/pandas/issues/1366
https://github.com/pandas-dev/pandas/issues/826
https://github.com/pandas-dev/pandas/issues/1494
https://github.com/pandas-dev/pandas/issues/921
https://github.com/pandas-dev/pandas/issues/1526
https://github.com/pandas-dev/pandas/issues/1529
https://github.com/pandas-dev/pandas/issues/1073
https://github.com/pandas-dev/pandas/issues/506
https://github.com/pandas-dev/pandas/issues/1239
https://github.com/pandas-dev/pandas/issues/1394
https://github.com/pandas-dev/pandas/issues/1467
https://github.com/pandas-dev/pandas/issues/179
https://github.com/pandas-dev/pandas/issues/1074
https://github.com/pandas-dev/pandas/issues/1074
https://github.com/pandas-dev/pandas/issues/1079
https://github.com/pandas-dev/pandas/issues/1142
https://github.com/pandas-dev/pandas/issues/1167

pandas: powerful Python data analysis toolkit, Release 0.23.4

• Fix segfault caused by empty groups passed to groupby (GH1048)

• Fix occasionally misbehaved reindexing in the presence of NaN labels (GH522)

• Fix imprecise logic causing weird Series results from .apply (GH1183)

• Unstack multiple levels in one shot, avoiding empty columns in some cases. Fix pivot table bug (GH1181)

• Fix formatting of MultiIndex on Series/DataFrame when index name coincides with label (GH1217)

• Handle Excel 2003 #N/A as NaN from xlrd (GH1213, GH1225)

• Fix timestamp locale-related deserialization issues with HDFStore by moving to datetime64 representation
(GH1081, GH809)

• Fix DataFrame.duplicated/drop_duplicates NA value handling (GH557)

• Actually raise exceptions in fast reducer (GH1243)

• Fix various timezone-handling bugs from 0.7.3 (GH969)

• GroupBy on level=0 discarded index name (GH1313)

• Better error message with unmergeable DataFrames (GH1307)

• Series.__repr__ alignment fix with unicode index values (GH1279)

• Better error message if nothing passed to reindex (GH1267)

• More robust NA handling in DataFrame.drop_duplicates (GH557)

• Resolve locale-based and pre-epoch HDF5 timestamp deserialization issues (GH973, GH1081, GH179)

• Implement Series.repeat (GH1229)

• Fix indexing with namedtuple and other tuple subclasses (GH1026)

• Fix float64 slicing bug (GH1167)

• Parsing integers with commas (GH796)

• Fix groupby improper data type when group consists of one value (GH1065)

• Fix negative variance possibility in nanvar resulting from floating point error (GH1090)

• Consistently set name on groupby pieces (GH184)

• Treat dict return values as Series in GroupBy.apply (GH823)

• Respect column selection for DataFrame in GroupBy.transform (GH1365)

• Fix MultiIndex partial indexing bug (GH1352)

• Enable assignment of rows in mixed-type DataFrame via .ix (GH1432)

• Reset index mapping when grouping Series in Cython (GH1423)

• Fix outer/inner DataFrame.join with non-unique indexes (GH1421)

• Fix MultiIndex groupby bugs with empty lower levels (GH1401)

• Calling fillna with a Series will have same behavior as with dict (GH1486)

• SparseSeries reduction bug (GH1375)

• Fix unicode serialization issue in HDFStore (GH1361)

• Pass keywords to pyplot.boxplot in DataFrame.boxplot (GH1493)

• Bug fixes in MonthBegin (GH1483)

2534 Chapter 38. Release Notes

https://github.com/pandas-dev/pandas/issues/1048
https://github.com/pandas-dev/pandas/issues/522
https://github.com/pandas-dev/pandas/issues/1183
https://github.com/pandas-dev/pandas/issues/1181
https://github.com/pandas-dev/pandas/issues/1217
https://github.com/pandas-dev/pandas/issues/1213
https://github.com/pandas-dev/pandas/issues/1225
https://github.com/pandas-dev/pandas/issues/1081
https://github.com/pandas-dev/pandas/issues/809
https://github.com/pandas-dev/pandas/issues/557
https://github.com/pandas-dev/pandas/issues/1243
https://github.com/pandas-dev/pandas/issues/969
https://github.com/pandas-dev/pandas/issues/1313
https://github.com/pandas-dev/pandas/issues/1307
https://github.com/pandas-dev/pandas/issues/1279
https://github.com/pandas-dev/pandas/issues/1267
https://github.com/pandas-dev/pandas/issues/557
https://github.com/pandas-dev/pandas/issues/973
https://github.com/pandas-dev/pandas/issues/1081
https://github.com/pandas-dev/pandas/issues/179
https://github.com/pandas-dev/pandas/issues/1229
https://github.com/pandas-dev/pandas/issues/1026
https://github.com/pandas-dev/pandas/issues/1167
https://github.com/pandas-dev/pandas/issues/796
https://github.com/pandas-dev/pandas/issues/1065
https://github.com/pandas-dev/pandas/issues/1090
https://github.com/pandas-dev/pandas/issues/184
https://github.com/pandas-dev/pandas/issues/823
https://github.com/pandas-dev/pandas/issues/1365
https://github.com/pandas-dev/pandas/issues/1352
https://github.com/pandas-dev/pandas/issues/1432
https://github.com/pandas-dev/pandas/issues/1423
https://github.com/pandas-dev/pandas/issues/1421
https://github.com/pandas-dev/pandas/issues/1401
https://github.com/pandas-dev/pandas/issues/1486
https://github.com/pandas-dev/pandas/issues/1375
https://github.com/pandas-dev/pandas/issues/1361
https://github.com/pandas-dev/pandas/issues/1493
https://github.com/pandas-dev/pandas/issues/1483

pandas: powerful Python data analysis toolkit, Release 0.23.4

• Preserve MultiIndex names in drop (GH1513)

• Fix Panel DataFrame slice-assignment bug (GH1533)

• Don’t use locals() in read_* functions (GH1547)

38.33 pandas 0.7.3

Release date: April 12, 2012

38.33.1 New Features

• Support for non-unique indexes: indexing and selection, many-to-one and many-to-many joins (GH1306)

• Added fixed-width file reader, read_fwf (GH952)

• Add group_keys argument to groupby to not add group names to MultiIndex in result of apply (GH938)

• DataFrame can now accept non-integer label slicing (GH946). Previously only DataFrame.ix was able to do so.

• DataFrame.apply now retains name attributes on Series objects (GH983)

• Numeric DataFrame comparisons with non-numeric values now raises proper TypeError (GH943). Previously
raise “PandasError: DataFrame constructor not properly called!”

• Add kurt methods to Series and DataFrame (GH964)

• Can pass dict of column -> list/set NA values for text parsers (GH754)

• Allows users specified NA values in text parsers (GH754)

• Parsers checks for openpyxl dependency and raises ImportError if not found (GH1007)

• New factory function to create HDFStore objects that can be used in a with statement so users do not have to
explicitly call HDFStore.close (GH1005)

• pivot_table is now more flexible with same parameters as groupby (GH941)

• Added stacked bar plots (GH987)

• scatter_matrix method in pandas/tools/plotting.py (GH935)

• DataFrame.boxplot returns plot results for ex-post styling (GH985)

• Short version number accessible as pandas.version.short_version (GH930)

• Additional documentation in panel.to_frame (GH942)

• More informative Series.apply docstring regarding element-wise apply (GH977)

• Notes on rpy2 installation (GH1006)

• Add rotation and font size options to hist method (GH1012)

• Use exogenous / X variable index in result of OLS.y_predict. Add OLS.predict method (GH1027, GH1008)

38.33.2 API Changes

• Calling apply on grouped Series, e.g. describe(), will no longer yield DataFrame by default. Will have to call
unstack() to get prior behavior

• NA handling in non-numeric comparisons has been tightened up (GH933, GH953)

38.33. pandas 0.7.3 2535

https://github.com/pandas-dev/pandas/issues/1513
https://github.com/pandas-dev/pandas/issues/1533
https://github.com/pandas-dev/pandas/issues/1547
https://github.com/pandas-dev/pandas/issues/1306
https://github.com/pandas-dev/pandas/issues/952
https://github.com/pandas-dev/pandas/issues/938
https://github.com/pandas-dev/pandas/issues/946
https://github.com/pandas-dev/pandas/issues/983
https://github.com/pandas-dev/pandas/issues/943
https://github.com/pandas-dev/pandas/issues/964
https://github.com/pandas-dev/pandas/issues/754
https://github.com/pandas-dev/pandas/issues/754
https://github.com/pandas-dev/pandas/issues/1007
https://github.com/pandas-dev/pandas/issues/1005
https://github.com/pandas-dev/pandas/issues/941
https://github.com/pandas-dev/pandas/issues/987
https://github.com/pandas-dev/pandas/issues/935
https://github.com/pandas-dev/pandas/issues/985
https://github.com/pandas-dev/pandas/issues/930
https://github.com/pandas-dev/pandas/issues/942
https://github.com/pandas-dev/pandas/issues/977
https://github.com/pandas-dev/pandas/issues/1006
https://github.com/pandas-dev/pandas/issues/1012
https://github.com/pandas-dev/pandas/issues/1027
https://github.com/pandas-dev/pandas/issues/1008
https://github.com/pandas-dev/pandas/issues/933
https://github.com/pandas-dev/pandas/issues/953

pandas: powerful Python data analysis toolkit, Release 0.23.4

• No longer assign dummy names key_0, key_1, etc. to groupby index (GH1291)

38.33.3 Bug Fixes

• Fix logic error when selecting part of a row in a DataFrame with a MultiIndex index (GH1013)

• Series comparison with Series of differing length causes crash (GH1016).

• Fix bug in indexing when selecting section of hierarchically-indexed row (GH1013)

• DataFrame.plot(logy=True) has no effect (GH1011).

• Broken arithmetic operations between SparsePanel-Panel (GH1015)

• Unicode repr issues in MultiIndex with non-ASCII characters (GH1010)

• DataFrame.lookup() returns inconsistent results if exact match not present (GH1001)

• DataFrame arithmetic operations not treating None as NA (GH992)

• DataFrameGroupBy.apply returns incorrect result (GH991)

• Series.reshape returns incorrect result for multiple dimensions (GH989)

• Series.std and Series.var ignores ddof parameter (GH934)

• DataFrame.append loses index names (GH980)

• DataFrame.plot(kind=’bar’) ignores color argument (GH958)

• Inconsistent Index comparison results (GH948)

• Improper int dtype DataFrame construction from data with NaN (GH846)

• Removes default ‘result’ name in groupby results (GH995)

• DataFrame.from_records no longer mutate input columns (GH975)

• Use Index name when grouping by it (GH1313)

38.34 pandas 0.7.2

Release date: March 16, 2012

38.34.1 New Features

• Add additional tie-breaking methods in DataFrame.rank (GH874)

• Add ascending parameter to rank in Series, DataFrame (GH875)

• Add sort_columns parameter to allow unsorted plots (GH918)

• IPython tab completion on GroupBy objects

38.34.2 API Changes

• Series.sum returns 0 instead of NA when called on an empty series. Analogously for a DataFrame whose rows
or columns are length 0 (GH844)

2536 Chapter 38. Release Notes

https://github.com/pandas-dev/pandas/issues/1291
https://github.com/pandas-dev/pandas/issues/1013
https://github.com/pandas-dev/pandas/issues/1016
https://github.com/pandas-dev/pandas/issues/1013
https://github.com/pandas-dev/pandas/issues/1011
https://github.com/pandas-dev/pandas/issues/1015
https://github.com/pandas-dev/pandas/issues/1010
https://github.com/pandas-dev/pandas/issues/1001
https://github.com/pandas-dev/pandas/issues/992
https://github.com/pandas-dev/pandas/issues/991
https://github.com/pandas-dev/pandas/issues/989
https://github.com/pandas-dev/pandas/issues/934
https://github.com/pandas-dev/pandas/issues/980
https://github.com/pandas-dev/pandas/issues/958
https://github.com/pandas-dev/pandas/issues/948
https://github.com/pandas-dev/pandas/issues/846
https://github.com/pandas-dev/pandas/issues/995
https://github.com/pandas-dev/pandas/issues/975
https://github.com/pandas-dev/pandas/issues/1313
https://github.com/pandas-dev/pandas/issues/874
https://github.com/pandas-dev/pandas/issues/875
https://github.com/pandas-dev/pandas/issues/918
https://github.com/pandas-dev/pandas/issues/844

pandas: powerful Python data analysis toolkit, Release 0.23.4

38.34.3 Improvements to existing features

• Don’t use groups dict in Grouper.size (GH860)

• Use khash for Series.value_counts, add raw function to algorithms.py (GH861)

• Enable column access via attributes on GroupBy (GH882)

• Enable setting existing columns (only) via attributes on DataFrame, Panel (GH883)

• Intercept __builtin__.sum in groupby (GH885)

• Can pass dict to DataFrame.fillna to use different values per column (GH661)

• Can select multiple hierarchical groups by passing list of values in .ix (GH134)

• Add level keyword to drop for dropping values from a level (GH159)

• Add coerce_float option on DataFrame.from_records (GH893)

• Raise exception if passed date_parser fails in read_csv

• Add axis option to DataFrame.fillna (GH174)

• Fixes to Panel to make it easier to subclass (GH888)

38.34.4 Bug Fixes

• Fix overflow-related bugs in groupby (GH850, GH851)

• Fix unhelpful error message in parsers (GH856)

• Better err msg for failed boolean slicing of dataframe (GH859)

• Series.count cannot accept a string (level name) in the level argument (GH869)

• Group index platform int check (GH870)

• concat on axis=1 and ignore_index=True raises TypeError (GH871)

• Further unicode handling issues resolved (GH795)

• Fix failure in multiindex-based access in Panel (GH880)

• Fix DataFrame boolean slice assignment failure (GH881)

• Fix combineAdd NotImplementedError for SparseDataFrame (GH887)

• Fix DataFrame.to_html encoding and columns (GH890, GH891, GH909)

• Fix na-filling handling in mixed-type DataFrame (GH910)

• Fix to DataFrame.set_value with non-existant row/col (GH911)

• Fix malformed block in groupby when excluding nuisance columns (GH916)

• Fix inconsistent NA handling in dtype=object arrays (GH925)

• Fix missing center-of-mass computation in ewmcov (GH862)

• Don’t raise exception when opening read-only HDF5 file (GH847)

• Fix possible out-of-bounds memory access in 0-length Series (GH917)

38.34. pandas 0.7.2 2537

https://github.com/pandas-dev/pandas/issues/860
https://github.com/pandas-dev/pandas/issues/861
https://github.com/pandas-dev/pandas/issues/882
https://github.com/pandas-dev/pandas/issues/883
https://github.com/pandas-dev/pandas/issues/885
https://github.com/pandas-dev/pandas/issues/661
https://github.com/pandas-dev/pandas/issues/134
https://github.com/pandas-dev/pandas/issues/159
https://github.com/pandas-dev/pandas/issues/893
https://github.com/pandas-dev/pandas/issues/174
https://github.com/pandas-dev/pandas/issues/888
https://github.com/pandas-dev/pandas/issues/850
https://github.com/pandas-dev/pandas/issues/851
https://github.com/pandas-dev/pandas/issues/856
https://github.com/pandas-dev/pandas/issues/859
https://github.com/pandas-dev/pandas/issues/869
https://github.com/pandas-dev/pandas/issues/870
https://github.com/pandas-dev/pandas/issues/871
https://github.com/pandas-dev/pandas/issues/795
https://github.com/pandas-dev/pandas/issues/880
https://github.com/pandas-dev/pandas/issues/881
https://github.com/pandas-dev/pandas/issues/887
https://github.com/pandas-dev/pandas/issues/890
https://github.com/pandas-dev/pandas/issues/891
https://github.com/pandas-dev/pandas/issues/909
https://github.com/pandas-dev/pandas/issues/910
https://github.com/pandas-dev/pandas/issues/911
https://github.com/pandas-dev/pandas/issues/916
https://github.com/pandas-dev/pandas/issues/925
https://github.com/pandas-dev/pandas/issues/862
https://github.com/pandas-dev/pandas/issues/847
https://github.com/pandas-dev/pandas/issues/917

pandas: powerful Python data analysis toolkit, Release 0.23.4

38.35 pandas 0.7.1

Release date: February 29, 2012

38.35.1 New Features

• Add to_clipboard function to pandas namespace for writing objects to the system clipboard (GH774)

• Add itertuples method to DataFrame for iterating through the rows of a dataframe as tuples (GH818)

• Add ability to pass fill_value and method to DataFrame and Series align method (GH806, GH807)

• Add fill_value option to reindex, align methods (GH784)

• Enable concat to produce DataFrame from Series (GH787)

• Add between method to Series (GH802)

• Add HTML representation hook to DataFrame for the IPython HTML notebook (GH773)

• Support for reading Excel 2007 XML documents using openpyxl

38.35.2 Improvements to existing features

• Improve performance and memory usage of fillna on DataFrame

• Can concatenate a list of Series along axis=1 to obtain a DataFrame (GH787)

38.35.3 Bug Fixes

• Fix memory leak when inserting large number of columns into a single DataFrame (GH790)

• Appending length-0 DataFrame with new columns would not result in those new columns being part of the
resulting concatenated DataFrame (GH782)

• Fixed groupby corner case when passing dictionary grouper and as_index is False (GH819)

• Fixed bug whereby bool array sometimes had object dtype (GH820)

• Fix exception thrown on np.diff (GH816)

• Fix to_records where columns are non-strings (GH822)

• Fix Index.intersection where indices have incomparable types (GH811)

• Fix ExcelFile throwing an exception for two-line file (GH837)

• Add clearer error message in csv parser (GH835)

• Fix loss of fractional seconds in HDFStore (GH513)

• Fix DataFrame join where columns have datetimes (GH787)

• Work around NumPy performance issue in take (GH817)

• Improve comparison operations for NA-friendliness (GH801)

• Fix indexing operation for floating point values (GH780, GH798)

• Fix groupby case resulting in malformed dataframe (GH814)

• Fix behavior of reindex of Series dropping name (GH812)

2538 Chapter 38. Release Notes

https://github.com/pandas-dev/pandas/issues/774
https://github.com/pandas-dev/pandas/issues/818
https://github.com/pandas-dev/pandas/issues/806
https://github.com/pandas-dev/pandas/issues/807
https://github.com/pandas-dev/pandas/issues/784
https://github.com/pandas-dev/pandas/issues/787
https://github.com/pandas-dev/pandas/issues/802
https://github.com/pandas-dev/pandas/issues/773
https://github.com/pandas-dev/pandas/issues/787
https://github.com/pandas-dev/pandas/issues/790
https://github.com/pandas-dev/pandas/issues/782
https://github.com/pandas-dev/pandas/issues/819
https://github.com/pandas-dev/pandas/issues/820
https://github.com/pandas-dev/pandas/issues/816
https://github.com/pandas-dev/pandas/issues/822
https://github.com/pandas-dev/pandas/issues/811
https://github.com/pandas-dev/pandas/issues/837
https://github.com/pandas-dev/pandas/issues/835
https://github.com/pandas-dev/pandas/issues/513
https://github.com/pandas-dev/pandas/issues/787
https://github.com/pandas-dev/pandas/issues/817
https://github.com/pandas-dev/pandas/issues/801
https://github.com/pandas-dev/pandas/issues/780
https://github.com/pandas-dev/pandas/issues/798
https://github.com/pandas-dev/pandas/issues/814
https://github.com/pandas-dev/pandas/issues/812

pandas: powerful Python data analysis toolkit, Release 0.23.4

• Improve on redudant groupby computation (GH775)

• Catch possible NA assignment to int/bool series with exception (GH839)

38.36 pandas 0.7.0

Release date: 2/9/2012

38.36.1 New Features

• New merge function for efficiently performing full gamut of database / relational-algebra operations. Refac-
tored existing join methods to use the new infrastructure, resulting in substantial performance gains (GH220,
GH249, GH267)

• New concat function for concatenating DataFrame or Panel objects along an axis. Can form union or inter-
section of the other axes. Improves performance of DataFrame.append (GH468, GH479, GH273)

• Handle differently-indexed output values in DataFrame.apply (GH498)

• Can pass list of dicts (e.g., a list of shallow JSON objects) to DataFrame constructor (GH526)

• Add reorder_levels method to Series and DataFrame (GH534)

• Add dict-like get function to DataFrame and Panel (GH521)

• DataFrame.iterrows method for efficiently iterating through the rows of a DataFrame

• Added DataFrame.to_panel with code adapted from LongPanel.to_long

• reindex_axis method added to DataFrame

• Add level option to binary arithmetic functions on DataFrame and Series

• Add level option to the reindex and align methods on Series and DataFrame for broadcasting values
across a level (GH542, GH552, others)

• Add attribute-based item access to Panel and add IPython completion (PR GH554)

• Add logy option to Series.plot for log-scaling on the Y axis

• Add index, header, and justify options to DataFrame.to_string. Add option to (GH570, GH571)

• Can pass multiple DataFrames to DataFrame.join to join on index (GH115)

• Can pass multiple Panels to Panel.join (GH115)

• Can pass multiple DataFrames to DataFrame.append to concatenate (stack) and multiple Series to Series.
append too

• Added justify argument to DataFrame.to_string to allow different alignment of column headers

• Add sort option to GroupBy to allow disabling sorting of the group keys for potential speedups (GH595)

• Can pass MaskedArray to Series constructor (GH563)

• Add Panel item access via attributes and IPython completion (GH554)

• Implement DataFrame.lookup, fancy-indexing analogue for retrieving values given a sequence of row and
column labels (GH338)

• Add verbose option to read_csv and read_table to show number of NA values inserted in non-numeric
columns (GH614)

38.36. pandas 0.7.0 2539

https://github.com/pandas-dev/pandas/issues/775
https://github.com/pandas-dev/pandas/issues/839
https://github.com/pandas-dev/pandas/issues/220
https://github.com/pandas-dev/pandas/issues/249
https://github.com/pandas-dev/pandas/issues/267
https://github.com/pandas-dev/pandas/issues/468
https://github.com/pandas-dev/pandas/issues/479
https://github.com/pandas-dev/pandas/issues/273
https://github.com/pandas-dev/pandas/issues/498
https://github.com/pandas-dev/pandas/issues/526
https://github.com/pandas-dev/pandas/issues/534
https://github.com/pandas-dev/pandas/issues/521
https://github.com/pandas-dev/pandas/issues/542
https://github.com/pandas-dev/pandas/issues/552
https://github.com/pandas-dev/pandas/issues/554
https://github.com/pandas-dev/pandas/issues/570
https://github.com/pandas-dev/pandas/issues/571
https://github.com/pandas-dev/pandas/issues/115
https://github.com/pandas-dev/pandas/issues/115
https://github.com/pandas-dev/pandas/issues/595
https://github.com/pandas-dev/pandas/issues/563
https://github.com/pandas-dev/pandas/issues/554
https://github.com/pandas-dev/pandas/issues/338
https://github.com/pandas-dev/pandas/issues/614

pandas: powerful Python data analysis toolkit, Release 0.23.4

• Can pass a list of dicts or Series to DataFrame.append to concatenate multiple rows (GH464)

• Add level argument to DataFrame.xs for selecting data from other MultiIndex levels. Can take one or
more levels with potentially a tuple of keys for flexible retrieval of data (GH371, GH629)

• New crosstab function for easily computing frequency tables (GH170)

• Can pass a list of functions to aggregate with groupby on a DataFrame, yielding an aggregated result with
hierarchical columns (GH166)

• Add integer-indexing functions iget in Series and irow / iget in DataFrame (GH628)

• Add new Series.unique function, significantly faster than numpy.unique (GH658)

• Add new cummin and cummax instance methods to Series and DataFrame (GH647)

• Add new value_range function to return min/max of a dataframe (GH288)

• Add drop parameter to reset_index method of DataFrame and added method to Series as well
(GH699)

• Add isin method to Index objects, works just like Series.isin (GH GH657)

• Implement array interface on Panel so that ufuncs work (re: GH740)

• Add sort option to DataFrame.join (GH731)

• Improved handling of NAs (propagation) in binary operations with dtype=object arrays (GH737)

• Add abs method to Pandas objects

• Added algorithms module to start collecting central algos

38.36.2 API Changes

• Label-indexing with integer indexes now raises KeyError if a label is not found instead of falling back on
location-based indexing (GH700)

• Label-based slicing via ix or [] on Series will now only work if exact matches for the labels are found or if
the index is monotonic (for range selections)

• Label-based slicing and sequences of labels can be passed to [] on a Series for both getting and setting (GH86)

• [] operator (__getitem__ and __setitem__) will raise KeyError with integer indexes when an index is
not contained in the index. The prior behavior would fall back on position-based indexing if a key was not found
in the index which would lead to subtle bugs. This is now consistent with the behavior of .ix on DataFrame
and friends (GH328)

• Rename DataFrame.delevel to DataFrame.reset_index and add deprecation warning

• Series.sort (an in-place operation) called on a Series which is a view on a larger array (e.g. a column in a
DataFrame) will generate an Exception to prevent accidentally modifying the data source (GH316)

• Refactor to remove deprecated LongPanel class (GH552)

• Deprecated Panel.to_long, renamed to to_frame

• Deprecated colSpace argument in DataFrame.to_string, renamed to col_space

• Rename precision to accuracy in engineering float formatter (GH GH395)

• The default delimiter for read_csv is comma rather than letting csv.Sniffer infer it

• Rename col_or_columns argument in DataFrame.drop_duplicates (GH GH734)

2540 Chapter 38. Release Notes

https://github.com/pandas-dev/pandas/issues/464
https://github.com/pandas-dev/pandas/issues/371
https://github.com/pandas-dev/pandas/issues/629
https://github.com/pandas-dev/pandas/issues/170
https://github.com/pandas-dev/pandas/issues/166
https://github.com/pandas-dev/pandas/issues/628
https://github.com/pandas-dev/pandas/issues/658
https://github.com/pandas-dev/pandas/issues/647
https://github.com/pandas-dev/pandas/issues/288
https://github.com/pandas-dev/pandas/issues/699
https://github.com/pandas-dev/pandas/issues/657
https://github.com/pandas-dev/pandas/issues/740
https://github.com/pandas-dev/pandas/issues/731
https://github.com/pandas-dev/pandas/issues/737
https://github.com/pandas-dev/pandas/issues/700
https://github.com/pandas-dev/pandas/issues/86
https://github.com/pandas-dev/pandas/issues/328
https://github.com/pandas-dev/pandas/issues/316
https://github.com/pandas-dev/pandas/issues/552
https://github.com/pandas-dev/pandas/issues/395
https://github.com/pandas-dev/pandas/issues/734

pandas: powerful Python data analysis toolkit, Release 0.23.4

38.36.3 Improvements to existing features

• Better error message in DataFrame constructor when passed column labels don’t match data (GH497)

• Substantially improve performance of multi-GroupBy aggregation when a Python function is passed, reuse
ndarray object in Cython (GH496)

• Can store objects indexed by tuples and floats in HDFStore (GH492)

• Don’t print length by default in Series.to_string, add length option (GH GH489)

• Improve Cython code for multi-groupby to aggregate without having to sort the data (GH93)

• Improve MultiIndex reindexing speed by storing tuples in the MultiIndex, test for backwards unpickling com-
patibility

• Improve column reindexing performance by using specialized Cython take function

• Further performance tweaking of Series.__getitem__ for standard use cases

• Avoid Index dict creation in some cases (i.e. when getting slices, etc.), regression from prior versions

• Friendlier error message in setup.py if NumPy not installed

• Use common set of NA-handling operations (sum, mean, etc.) in Panel class also (GH536)

• Default name assignment when calling reset_index on DataFrame with a regular (non-hierarchical) index
(GH476)

• Use Cythonized groupers when possible in Series/DataFrame stat ops with level parameter passed (GH545)

• Ported skiplist data structure to C to speed up rolling_median by about 5-10x in most typical use cases
(GH374)

• Some performance enhancements in constructing a Panel from a dict of DataFrame objects

• Made Index._get_duplicates a public method by removing the underscore

• Prettier printing of floats, and column spacing fix (GH395, GH571)

• Add bold_rows option to DataFrame.to_html (GH586)

• Improve the performance of DataFrame.sort_index by up to 5x or more when sorting by multiple
columns

• Substantially improve performance of DataFrame and Series constructors when passed a nested dict or dict,
respectively (GH540, GH621)

• Modified setup.py so that pip / setuptools will install dependencies (GH GH507, various pull requests)

• Unstack called on DataFrame with non-MultiIndex will return Series (GH GH477)

• Improve DataFrame.to_string and console formatting to be more consistent in the number of displayed digits
(GH395)

• Use bottleneck if available for performing NaN-friendly statistical operations that it implemented (GH91)

• Monkey-patch context to traceback in DataFrame.apply to indicate which row/column the function appli-
cation failed on (GH614)

• Improved ability of read_table and read_clipboard to parse console-formatted DataFrames (can read the row of
index names, etc.)

• Can pass list of group labels (without having to convert to an ndarray yourself) to groupby in some cases
(GH659)

• Use kind argument to Series.order for selecting different sort kinds (GH668)

38.36. pandas 0.7.0 2541

https://github.com/pandas-dev/pandas/issues/497
https://github.com/pandas-dev/pandas/issues/496
https://github.com/pandas-dev/pandas/issues/492
https://github.com/pandas-dev/pandas/issues/489
https://github.com/pandas-dev/pandas/issues/93
https://github.com/pandas-dev/pandas/issues/536
https://github.com/pandas-dev/pandas/issues/476
https://github.com/pandas-dev/pandas/issues/545
https://github.com/pandas-dev/pandas/issues/374
https://github.com/pandas-dev/pandas/issues/395
https://github.com/pandas-dev/pandas/issues/571
https://github.com/pandas-dev/pandas/issues/586
https://github.com/pandas-dev/pandas/issues/540
https://github.com/pandas-dev/pandas/issues/621
https://github.com/pandas-dev/pandas/issues/507
https://github.com/pandas-dev/pandas/issues/477
https://github.com/pandas-dev/pandas/issues/395
https://github.com/pandas-dev/pandas/issues/91
https://github.com/pandas-dev/pandas/issues/614
https://github.com/pandas-dev/pandas/issues/659
https://github.com/pandas-dev/pandas/issues/668

pandas: powerful Python data analysis toolkit, Release 0.23.4

• Add option to Series.to_csv to omit the index (GH684)

• Add delimiter as an alternative to sep in read_csv and other parsing functions

• Substantially improved performance of groupby on DataFrames with many columns by aggregating blocks of
columns all at once (GH745)

• Can pass a file handle or StringIO to Series/DataFrame.to_csv (GH765)

• Can pass sequence of integers to DataFrame.irow(icol) and Series.iget, (GH GH654)

• Prototypes for some vectorized string functions

• Add float64 hash table to solve the Series.unique problem with NAs (GH714)

• Memoize objects when reading from file to reduce memory footprint

• Can get and set a column of a DataFrame with hierarchical columns containing “empty” (‘’) lower levels without
passing the empty levels (PR GH768)

38.36.4 Bug Fixes

• Raise exception in out-of-bounds indexing of Series instead of seg-faulting, regression from earlier releases
(GH495)

• Fix error when joining DataFrames of different dtypes within the same typeclass (e.g. float32 and float64)
(GH486)

• Fix bug in Series.min/Series.max on objects like datetime.datetime (GH GH487)

• Preserve index names in Index.union (GH501)

• Fix bug in Index joining causing subclass information (like DateRange type) to be lost in some cases (GH500)

• Accept empty list as input to DataFrame constructor, regression from 0.6.0 (GH491)

• Can output DataFrame and Series with ndarray objects in a dtype=object array (GH490)

• Return empty string from Series.to_string when called on empty Series (GH GH488)

• Fix exception passing empty list to DataFrame.from_records

• Fix Index.format bug (excluding name field) with datetimes with time info

• Fix scalar value access in Series to always return NumPy scalars, regression from prior versions (GH510)

• Handle rows skipped at beginning of file in read_* functions (GH505)

• Handle improper dtype casting in set_value methods

• Unary ‘-‘ / __neg__ operator on DataFrame was returning integer values

• Unbox 0-dim ndarrays from certain operators like all, any in Series

• Fix handling of missing columns (was combine_first-specific) in DataFrame.combine for general case (GH529)

• Fix type inference logic with boolean lists and arrays in DataFrame indexing

• Use centered sum of squares in R-square computation if entity_effects=True in panel regression

• Handle all NA case in Series.{corr, cov}, was raising exception (GH548)

• Aggregating by multiple levels with level argument to DataFrame, Series stat method, was broken (GH545)

• Fix Cython buf when converter passed to read_csv produced a numeric array (buffer dtype mismatch when
passed to Cython type inference function) (GH GH546)

• Fix exception when setting scalar value using .ix on a DataFrame with a MultiIndex (GH551)

2542 Chapter 38. Release Notes

https://github.com/pandas-dev/pandas/issues/684
https://github.com/pandas-dev/pandas/issues/745
https://github.com/pandas-dev/pandas/issues/765
https://github.com/pandas-dev/pandas/issues/654
https://github.com/pandas-dev/pandas/issues/714
https://github.com/pandas-dev/pandas/issues/768
https://github.com/pandas-dev/pandas/issues/495
https://github.com/pandas-dev/pandas/issues/486
https://github.com/pandas-dev/pandas/issues/487
https://github.com/pandas-dev/pandas/issues/501
https://github.com/pandas-dev/pandas/issues/500
https://github.com/pandas-dev/pandas/issues/491
https://github.com/pandas-dev/pandas/issues/490
https://github.com/pandas-dev/pandas/issues/488
https://github.com/pandas-dev/pandas/issues/510
https://github.com/pandas-dev/pandas/issues/505
https://github.com/pandas-dev/pandas/issues/529
https://github.com/pandas-dev/pandas/issues/548
https://github.com/pandas-dev/pandas/issues/545
https://github.com/pandas-dev/pandas/issues/546
https://github.com/pandas-dev/pandas/issues/551

pandas: powerful Python data analysis toolkit, Release 0.23.4

• Fix outer join between two DateRanges with different offsets that returned an invalid DateRange

• Cleanup DataFrame.from_records failure where index argument is an integer

• Fix Data.from_records failure when passed a dictionary

• Fix NA handling in {Series, DataFrame}.rank with non-floating point dtypes

• Fix bug related to integer type-checking in .ix-based indexing

• Handle non-string index name passed to DataFrame.from_records

• DataFrame.insert caused the columns name(s) field to be discarded (GH527)

• Fix erroneous in monotonic many-to-one left joins

• Fix DataFrame.to_string to remove extra column white space (GH571)

• Format floats to default to same number of digits (GH395)

• Added decorator to copy docstring from one function to another (GH449)

• Fix error in monotonic many-to-one left joins

• Fix __eq__ comparison between DateOffsets with different relativedelta keywords passed

• Fix exception caused by parser converter returning strings (GH583)

• Fix MultiIndex formatting bug with integer names (GH601)

• Fix bug in handling of non-numeric aggregates in Series.groupby (GH612)

• Fix TypeError with tuple subclasses (e.g. namedtuple) in DataFrame.from_records (GH611)

• Catch misreported console size when running IPython within Emacs

• Fix minor bug in pivot table margins, loss of index names and length-1 ‘All’ tuple in row labels

• Add support for legacy WidePanel objects to be read from HDFStore

• Fix out-of-bounds segfault in pad_object and backfill_object methods when either source or target array are
empty

• Could not create a new column in a DataFrame from a list of tuples

• Fix bugs preventing SparseDataFrame and SparseSeries working with groupby (GH666)

• Use sort kind in Series.sort / argsort (GH668)

• Fix DataFrame operations on non-scalar, non-pandas objects (GH672)

• Don’t convert DataFrame column to integer type when passing integer to __setitem__ (GH669)

• Fix downstream bug in pivot_table caused by integer level names in MultiIndex (GH678)

• Fix SparseSeries.combine_first when passed a dense Series (GH687)

• Fix performance regression in HDFStore loading when DataFrame or Panel stored in table format with datetimes

• Raise Exception in DateRange when offset with n=0 is passed (GH683)

• Fix get/set inconsistency with .ix property and integer location but non-integer index (GH707)

• Use right dropna function for SparseSeries. Return dense Series for NA fill value (GH730)

• Fix Index.format bug causing incorrectly string-formatted Series with datetime indexes (GH726, GH758)

• Fix errors caused by object dtype arrays passed to ols (GH759)

• Fix error where column names lost when passing list of labels to DataFrame.__getitem__, (GH662)

38.36. pandas 0.7.0 2543

https://github.com/pandas-dev/pandas/issues/527
https://github.com/pandas-dev/pandas/issues/571
https://github.com/pandas-dev/pandas/issues/395
https://github.com/pandas-dev/pandas/issues/449
https://github.com/pandas-dev/pandas/issues/583
https://github.com/pandas-dev/pandas/issues/601
https://github.com/pandas-dev/pandas/issues/612
https://github.com/pandas-dev/pandas/issues/611
https://github.com/pandas-dev/pandas/issues/666
https://github.com/pandas-dev/pandas/issues/668
https://github.com/pandas-dev/pandas/issues/672
https://github.com/pandas-dev/pandas/issues/669
https://github.com/pandas-dev/pandas/issues/678
https://github.com/pandas-dev/pandas/issues/687
https://github.com/pandas-dev/pandas/issues/683
https://github.com/pandas-dev/pandas/issues/707
https://github.com/pandas-dev/pandas/issues/730
https://github.com/pandas-dev/pandas/issues/726
https://github.com/pandas-dev/pandas/issues/758
https://github.com/pandas-dev/pandas/issues/759
https://github.com/pandas-dev/pandas/issues/662

pandas: powerful Python data analysis toolkit, Release 0.23.4

• Fix error whereby top-level week iterator overwrote week instance

• Fix circular reference causing memory leak in sparse array / series / frame, (GH663)

• Fix integer-slicing from integers-as-floats (GH670)

• Fix zero division errors in nanops from object dtype arrays in all NA case (GH676)

• Fix csv encoding when using unicode (GH705, GH717, GH738)

• Fix assumption that each object contains every unique block type in concat, (GH708)

• Fix sortedness check of multiindex in to_panel (GH719, 720)

• Fix that None was not treated as NA in PyObjectHashtable

• Fix hashing dtype because of endianness confusion (GH747, GH748)

• Fix SparseSeries.dropna to return dense Series in case of NA fill value (GH GH730)

• Use map_infer instead of np.vectorize. handle NA sentinels if converter yields numeric array, (GH753)

• Fixes and improvements to DataFrame.rank (GH742)

• Fix catching AttributeError instead of NameError for bottleneck

• Try to cast non-MultiIndex to better dtype when calling reset_index (GH726 GH440)

• Fix #1.QNAN0’ float bug on 2.6/win64

• Allow subclasses of dicts in DataFrame constructor, with tests

• Fix problem whereby set_index destroys column multiindex (GH764)

• Hack around bug in generating DateRange from naive DateOffset (GH770)

• Fix bug in DateRange.intersection causing incorrect results with some overlapping ranges (GH771)

38.36.5 Thanks

• Craig Austin

• Chris Billington

• Marius Cobzarenco

• Mario Gamboa-Cavazos

• Hans-Martin Gaudecker

• Arthur Gerigk

• Yaroslav Halchenko

• Jeff Hammerbacher

• Matt Harrison

• Andreas Hilboll

• Luc Kesters

• Adam Klein

• Gregg Lind

• Solomon Negusse

• Wouter Overmeire

2544 Chapter 38. Release Notes

https://github.com/pandas-dev/pandas/issues/663
https://github.com/pandas-dev/pandas/issues/670
https://github.com/pandas-dev/pandas/issues/676
https://github.com/pandas-dev/pandas/issues/705
https://github.com/pandas-dev/pandas/issues/717
https://github.com/pandas-dev/pandas/issues/738
https://github.com/pandas-dev/pandas/issues/708
https://github.com/pandas-dev/pandas/issues/719
https://github.com/pandas-dev/pandas/issues/747
https://github.com/pandas-dev/pandas/issues/748
https://github.com/pandas-dev/pandas/issues/730
https://github.com/pandas-dev/pandas/issues/753
https://github.com/pandas-dev/pandas/issues/742
https://github.com/pandas-dev/pandas/issues/726
https://github.com/pandas-dev/pandas/issues/440
https://github.com/pandas-dev/pandas/issues/764
https://github.com/pandas-dev/pandas/issues/770
https://github.com/pandas-dev/pandas/issues/771

pandas: powerful Python data analysis toolkit, Release 0.23.4

• Christian Prinoth

• Jeff Reback

• Sam Reckoner

• Craig Reeson

• Jan Schulz

• Skipper Seabold

• Ted Square

• Graham Taylor

• Aman Thakral

• Chris Uga

• Dieter Vandenbussche

• Texas P.

• Pinxing Ye

• . . . and everyone I forgot

38.37 pandas 0.6.1

Release date: 12/13/2011

38.37.1 API Changes

• Rename names argument in DataFrame.from_records to columns. Add deprecation warning

• Boolean get/set operations on Series with boolean Series will reindex instead of requiring that the indexes be
exactly equal (GH429)

38.37.2 New Features

• Can pass Series to DataFrame.append with ignore_index=True for appending a single row (GH430)

• Add Spearman and Kendall correlation options to Series.corr and DataFrame.corr (GH428)

• Add new get_value and set_value methods to Series, DataFrame, and Panel to very low-overhead access to
scalar elements. df.get_value(row, column) is about 3x faster than df[column][row] by handling fewer cases
(GH437, GH438). Add similar methods to sparse data structures for compatibility

• Add Qt table widget to sandbox (GH435)

• DataFrame.align can accept Series arguments, add axis keyword (GH461)

• Implement new SparseList and SparseArray data structures. SparseSeries now derives from SparseArray
(GH463)

• max_columns / max_rows options in set_printoptions (GH453)

• Implement Series.rank and DataFrame.rank, fast versions of scipy.stats.rankdata (GH428)

• Implement DataFrame.from_items alternate constructor (GH444)

38.37. pandas 0.6.1 2545

https://github.com/pandas-dev/pandas/issues/429
https://github.com/pandas-dev/pandas/issues/430
https://github.com/pandas-dev/pandas/issues/428
https://github.com/pandas-dev/pandas/issues/437
https://github.com/pandas-dev/pandas/issues/438
https://github.com/pandas-dev/pandas/issues/435
https://github.com/pandas-dev/pandas/issues/461
https://github.com/pandas-dev/pandas/issues/463
https://github.com/pandas-dev/pandas/issues/453
https://github.com/pandas-dev/pandas/issues/428
https://github.com/pandas-dev/pandas/issues/444

pandas: powerful Python data analysis toolkit, Release 0.23.4

• DataFrame.convert_objects method for inferring better dtypes for object columns (GH302)

• Add rolling_corr_pairwise function for computing Panel of correlation matrices (GH189)

• Add margins option to pivot_table for computing subgroup aggregates (GH GH114)

• Add Series.from_csv function (GH482)

38.37.3 Improvements to existing features

• Improve memory usage of DataFrame.describe (do not copy data unnecessarily) (GH425)

• Use same formatting function for outputting floating point Series to console as in DataFrame (GH420)

• DataFrame.delevel will try to infer better dtype for new columns (GH440)

• Exclude non-numeric types in DataFrame.{corr, cov}

• Override Index.astype to enable dtype casting (GH412)

• Use same float formatting function for Series.__repr__ (GH420)

• Use available console width to output DataFrame columns (GH453)

• Accept ndarrays when setting items in Panel (GH452)

• Infer console width when printing __repr__ of DataFrame to console (PR GH453)

• Optimize scalar value lookups in the general case by 25% or more in Series and DataFrame

• Can pass DataFrame/DataFrame and DataFrame/Series to rolling_corr/rolling_cov (GH462)

• Fix performance regression in cross-sectional count in DataFrame, affecting DataFrame.dropna speed

• Column deletion in DataFrame copies no data (computes views on blocks) (GH GH158)

• MultiIndex.get_level_values can take the level name

• More helpful error message when DataFrame.plot fails on one of the columns (GH478)

• Improve performance of DataFrame.{index, columns} attribute lookup

38.37.4 Bug Fixes

• Fix O(K^2) memory leak caused by inserting many columns without consolidating, had been present since 0.4.0
(GH467)

• DataFrame.count should return Series with zero instead of NA with length-0 axis (GH423)

• Fix Yahoo! Finance API usage in pandas.io.data (GH419, GH427)

• Fix upstream bug causing failure in Series.align with empty Series (GH434)

• Function passed to DataFrame.apply can return a list, as long as it’s the right length. Regression from 0.4
(GH432)

• Don’t “accidentally” upcast scalar values when indexing using .ix (GH431)

• Fix groupby exception raised with as_index=False and single column selected (GH421)

• Implement DateOffset.__ne__ causing downstream bug (GH456)

• Fix __doc__-related issue when converting py -> pyo with py2exe

• Bug fix in left join Cython code with duplicate monotonic labels

2546 Chapter 38. Release Notes

https://github.com/pandas-dev/pandas/issues/302
https://github.com/pandas-dev/pandas/issues/189
https://github.com/pandas-dev/pandas/issues/114
https://github.com/pandas-dev/pandas/issues/482
https://github.com/pandas-dev/pandas/issues/425
https://github.com/pandas-dev/pandas/issues/420
https://github.com/pandas-dev/pandas/issues/440
https://github.com/pandas-dev/pandas/issues/412
https://github.com/pandas-dev/pandas/issues/420
https://github.com/pandas-dev/pandas/issues/453
https://github.com/pandas-dev/pandas/issues/452
https://github.com/pandas-dev/pandas/issues/453
https://github.com/pandas-dev/pandas/issues/462
https://github.com/pandas-dev/pandas/issues/158
https://github.com/pandas-dev/pandas/issues/478
https://github.com/pandas-dev/pandas/issues/467
https://github.com/pandas-dev/pandas/issues/423
https://github.com/pandas-dev/pandas/issues/419
https://github.com/pandas-dev/pandas/issues/427
https://github.com/pandas-dev/pandas/issues/434
https://github.com/pandas-dev/pandas/issues/432
https://github.com/pandas-dev/pandas/issues/431
https://github.com/pandas-dev/pandas/issues/421
https://github.com/pandas-dev/pandas/issues/456

pandas: powerful Python data analysis toolkit, Release 0.23.4

• Fix bug when unstacking multiple levels described in GH451

• Exclude NA values in dtype=object arrays, regression from 0.5.0 (GH469)

• Use Cython map_infer function in DataFrame.applymap to properly infer output type, handle tuple return values
and other things that were breaking (GH465)

• Handle floating point index values in HDFStore (GH454)

• Fixed stale column reference bug (cached Series object) caused by type change / item deletion in DataFrame
(GH473)

• Index.get_loc should always raise Exception when there are duplicates

• Handle differently-indexed Series input to DataFrame constructor (GH475)

• Omit nuisance columns in multi-groupby with Python function

• Buglet in handling of single grouping in general apply

• Handle type inference properly when passing list of lists or tuples to DataFrame constructor (GH484)

• Preserve Index / MultiIndex names in GroupBy.apply concatenation step (GH GH481)

38.37.5 Thanks

• Ralph Bean

• Luca Beltrame

• Marius Cobzarenco

• Andreas Hilboll

• Jev Kuznetsov

• Adam Lichtenstein

• Wouter Overmeire

• Fernando Perez

• Nathan Pinger

• Christian Prinoth

• Alex Reyfman

• Joon Ro

• Chang She

• Ted Square

• Chris Uga

• Dieter Vandenbussche

38.38 pandas 0.6.0

Release date: 11/25/2011

38.38. pandas 0.6.0 2547

https://github.com/pandas-dev/pandas/issues/451
https://github.com/pandas-dev/pandas/issues/469
https://github.com/pandas-dev/pandas/issues/465
https://github.com/pandas-dev/pandas/issues/454
https://github.com/pandas-dev/pandas/issues/473
https://github.com/pandas-dev/pandas/issues/475
https://github.com/pandas-dev/pandas/issues/484
https://github.com/pandas-dev/pandas/issues/481

pandas: powerful Python data analysis toolkit, Release 0.23.4

38.38.1 API Changes

• Arithmetic methods like sum will attempt to sum dtype=object values by default instead of excluding them
(GH382)

38.38.2 New Features

• Add melt function to pandas.core.reshape

• Add level parameter to group by level in Series and DataFrame descriptive statistics (GH313)

• Add head and tail methods to Series, analogous to DataFrame (PR GH296)

• Add Series.isin function which checks if each value is contained in a passed sequence (GH289)

• Add float_format option to Series.to_string

• Add skip_footer (GH291) and converters (GH343) options to read_csv and read_table

• Add proper, tested weighted least squares to standard and panel OLS (GH GH303)

• Add drop_duplicates and duplicated functions for removing duplicate DataFrame rows and checking for dupli-
cate rows, respectively (GH319)

• Implement logical (boolean) operators &, |, ^ on DataFrame (GH347)

• Add Series.mad, mean absolute deviation, matching DataFrame

• Add QuarterEnd DateOffset (GH321)

• Add matrix multiplication function dot to DataFrame (GH65)

• Add orient option to Panel.from_dict to ease creation of mixed-type Panels (GH359, GH301)

• Add DataFrame.from_dict with similar orient option

• Can now pass list of tuples or list of lists to DataFrame.from_records for fast conversion to DataFrame (GH357)

• Can pass multiple levels to groupby, e.g. df.groupby(level=[0, 1]) (GH GH103)

• Can sort by multiple columns in DataFrame.sort_index (GH92, GH362)

• Add fast get_value and put_value methods to DataFrame and micro-performance tweaks (GH360)

• Add cov instance methods to Series and DataFrame (GH194, GH362)

• Add bar plot option to DataFrame.plot (GH348)

• Add idxmin and idxmax functions to Series and DataFrame for computing index labels achieving maximum and
minimum values (GH286)

• Add read_clipboard function for parsing DataFrame from OS clipboard, should work across platforms (GH300)

• Add nunique function to Series for counting unique elements (GH297)

• DataFrame constructor will use Series name if no columns passed (GH373)

• Support regular expressions and longer delimiters in read_table/read_csv, but does not handle quoted strings yet
(GH364)

• Add DataFrame.to_html for formatting DataFrame to HTML (GH387)

• MaskedArray can be passed to DataFrame constructor and masked values will be converted to NaN (GH396)

• Add DataFrame.boxplot function (GH368, others)

• Can pass extra args, kwds to DataFrame.apply (GH376)

2548 Chapter 38. Release Notes

https://github.com/pandas-dev/pandas/issues/382
https://github.com/pandas-dev/pandas/issues/313
https://github.com/pandas-dev/pandas/issues/296
https://github.com/pandas-dev/pandas/issues/289
https://github.com/pandas-dev/pandas/issues/291
https://github.com/pandas-dev/pandas/issues/343
https://github.com/pandas-dev/pandas/issues/303
https://github.com/pandas-dev/pandas/issues/319
https://github.com/pandas-dev/pandas/issues/347
https://github.com/pandas-dev/pandas/issues/321
https://github.com/pandas-dev/pandas/issues/65
https://github.com/pandas-dev/pandas/issues/359
https://github.com/pandas-dev/pandas/issues/301
https://github.com/pandas-dev/pandas/issues/357
https://github.com/pandas-dev/pandas/issues/103
https://github.com/pandas-dev/pandas/issues/92
https://github.com/pandas-dev/pandas/issues/362
https://github.com/pandas-dev/pandas/issues/360
https://github.com/pandas-dev/pandas/issues/194
https://github.com/pandas-dev/pandas/issues/362
https://github.com/pandas-dev/pandas/issues/348
https://github.com/pandas-dev/pandas/issues/286
https://github.com/pandas-dev/pandas/issues/300
https://github.com/pandas-dev/pandas/issues/297
https://github.com/pandas-dev/pandas/issues/373
https://github.com/pandas-dev/pandas/issues/364
https://github.com/pandas-dev/pandas/issues/387
https://github.com/pandas-dev/pandas/issues/396
https://github.com/pandas-dev/pandas/issues/368
https://github.com/pandas-dev/pandas/issues/376

pandas: powerful Python data analysis toolkit, Release 0.23.4

38.38.3 Improvements to existing features

• Raise more helpful exception if date parsing fails in DateRange (GH298)

• Vastly improved performance of GroupBy on axes with a MultiIndex (GH299)

• Print level names in hierarchical index in Series repr (GH305)

• Return DataFrame when performing GroupBy on selected column and as_index=False (GH308)

• Can pass vector to on argument in DataFrame.join (GH312)

• Don’t show Series name if it’s None in the repr, also omit length for short Series (GH317)

• Show legend by default in DataFrame.plot, add legend boolean flag (GH GH324)

• Significantly improved performance of Series.order, which also makes np.unique called on a Series faster
(GH327)

• Faster cythonized count by level in Series and DataFrame (GH341)

• Raise exception if dateutil 2.0 installed on Python 2.x runtime (GH346)

• Significant GroupBy performance enhancement with multiple keys with many “empty” combinations

• New Cython vectorized function map_infer speeds up Series.apply and Series.map significantly when passed
elementwise Python function, motivated by GH355

• Cythonized cache_readonly, resulting in substantial micro-performance enhancements throughout the codebase
(GH361)

• Special Cython matrix iterator for applying arbitrary reduction operations with 3-5x better performance than
np.apply_along_axis (GH309)

• Add raw option to DataFrame.apply for getting better performance when the passed function only requires an
ndarray (GH309)

• Improve performance of MultiIndex.from_tuples

• Can pass multiple levels to stack and unstack (GH370)

• Can pass multiple values columns to pivot_table (GH381)

• Can call DataFrame.delevel with standard Index with name set (GH393)

• Use Series name in GroupBy for result index (GH363)

• Refactor Series/DataFrame stat methods to use common set of NaN-friendly function

• Handle NumPy scalar integers at C level in Cython conversion routines

38.38.4 Bug Fixes

• Fix bug in DataFrame.to_csv when writing a DataFrame with an index name (GH290)

• DataFrame should clear its Series caches on consolidation, was causing “stale” Series to be returned in some
corner cases (GH304)

• DataFrame constructor failed if a column had a list of tuples (GH293)

• Ensure that Series.apply always returns a Series and implement Series.round (GH314)

• Support boolean columns in Cythonized groupby functions (GH315)

• DataFrame.describe should not fail if there are no numeric columns, instead return categorical describe (GH323)

38.38. pandas 0.6.0 2549

https://github.com/pandas-dev/pandas/issues/298
https://github.com/pandas-dev/pandas/issues/299
https://github.com/pandas-dev/pandas/issues/305
https://github.com/pandas-dev/pandas/issues/308
https://github.com/pandas-dev/pandas/issues/312
https://github.com/pandas-dev/pandas/issues/317
https://github.com/pandas-dev/pandas/issues/324
https://github.com/pandas-dev/pandas/issues/327
https://github.com/pandas-dev/pandas/issues/341
https://github.com/pandas-dev/pandas/issues/346
https://github.com/pandas-dev/pandas/issues/355
https://github.com/pandas-dev/pandas/issues/361
https://github.com/pandas-dev/pandas/issues/309
https://github.com/pandas-dev/pandas/issues/309
https://github.com/pandas-dev/pandas/issues/370
https://github.com/pandas-dev/pandas/issues/381
https://github.com/pandas-dev/pandas/issues/393
https://github.com/pandas-dev/pandas/issues/363
https://github.com/pandas-dev/pandas/issues/290
https://github.com/pandas-dev/pandas/issues/304
https://github.com/pandas-dev/pandas/issues/293
https://github.com/pandas-dev/pandas/issues/314
https://github.com/pandas-dev/pandas/issues/315
https://github.com/pandas-dev/pandas/issues/323

pandas: powerful Python data analysis toolkit, Release 0.23.4

• Fixed bug which could cause columns to be printed in wrong order in DataFrame.to_string if specific list of
columns passed (GH325)

• Fix legend plotting failure if DataFrame columns are integers (GH326)

• Shift start date back by one month for Yahoo! Finance API in pandas.io.data (GH329)

• Fix DataFrame.join failure on unconsolidated inputs (GH331)

• DataFrame.min/max will no longer fail on mixed-type DataFrame (GH337)

• Fix read_csv / read_table failure when passing list to index_col that is not in ascending order (GH349)

• Fix failure passing Int64Index to Index.union when both are monotonic

• Fix error when passing SparseSeries to (dense) DataFrame constructor

• Added missing bang at top of setup.py (GH352)

• Change is_monotonic on MultiIndex so it properly compares the tuples

• Fix MultiIndex outer join logic (GH351)

• Set index name attribute with single-key groupby (GH358)

• Bug fix in reflexive binary addition in Series and DataFrame for non-commutative operations (like string con-
catenation) (GH353)

• setupegg.py will invoke Cython (GH192)

• Fix block consolidation bug after inserting column into MultiIndex (GH366)

• Fix bug in join operations between Index and Int64Index (GH367)

• Handle min_periods=0 case in moving window functions (GH365)

• Fixed corner cases in DataFrame.apply/pivot with empty DataFrame (GH378)

• Fixed repr exception when Series name is a tuple

• Always return DateRange from asfreq (GH390)

• Pass level names to swaplavel (GH379)

• Don’t lose index names in MultiIndex.droplevel (GH394)

• Infer more proper return type in DataFrame.apply when no columns or rows depending on whether the passed
function is a reduction (GH389)

• Always return NA/NaN from Series.min/max and DataFrame.min/max when all of a row/column/values are NA
(GH384)

• Enable partial setting with .ix / advanced indexing (GH397)

• Handle mixed-type DataFrames correctly in unstack, do not lose type information (GH403)

• Fix integer name formatting bug in Index.format and in Series.__repr__

• Handle label types other than string passed to groupby (GH405)

• Fix bug in .ix-based indexing with partial retrieval when a label is not contained in a level

• Index name was not being pickled (GH408)

• Level name should be passed to result index in GroupBy.apply (GH416)

2550 Chapter 38. Release Notes

https://github.com/pandas-dev/pandas/issues/325
https://github.com/pandas-dev/pandas/issues/326
https://github.com/pandas-dev/pandas/issues/329
https://github.com/pandas-dev/pandas/issues/331
https://github.com/pandas-dev/pandas/issues/337
https://github.com/pandas-dev/pandas/issues/349
https://github.com/pandas-dev/pandas/issues/352
https://github.com/pandas-dev/pandas/issues/351
https://github.com/pandas-dev/pandas/issues/358
https://github.com/pandas-dev/pandas/issues/353
https://github.com/pandas-dev/pandas/issues/192
https://github.com/pandas-dev/pandas/issues/366
https://github.com/pandas-dev/pandas/issues/367
https://github.com/pandas-dev/pandas/issues/365
https://github.com/pandas-dev/pandas/issues/378
https://github.com/pandas-dev/pandas/issues/390
https://github.com/pandas-dev/pandas/issues/379
https://github.com/pandas-dev/pandas/issues/394
https://github.com/pandas-dev/pandas/issues/389
https://github.com/pandas-dev/pandas/issues/384
https://github.com/pandas-dev/pandas/issues/397
https://github.com/pandas-dev/pandas/issues/403
https://github.com/pandas-dev/pandas/issues/405
https://github.com/pandas-dev/pandas/issues/408
https://github.com/pandas-dev/pandas/issues/416

pandas: powerful Python data analysis toolkit, Release 0.23.4

38.38.5 Thanks

• Craig Austin

• Marius Cobzarenco

• Joel Cross

• Jeff Hammerbacher

• Adam Klein

• Thomas Kluyver

• Jev Kuznetsov

• Kieran O’Mahony

• Wouter Overmeire

• Nathan Pinger

• Christian Prinoth

• Skipper Seabold

• Chang She

• Ted Square

• Aman Thakral

• Chris Uga

• Dieter Vandenbussche

• carljv

• rsamson

38.39 pandas 0.5.0

Release date: 10/24/2011

This release of pandas includes a number of API changes (see below) and cleanup of deprecated APIs from pre-0.4.0
releases. There are also bug fixes, new features, numerous significant performance enhancements, and includes a new
ipython completer hook to enable tab completion of DataFrame columns accesses and attributes (a new feature).

In addition to the changes listed here from 0.4.3 to 0.5.0, the minor releases 4.1, 0.4.2, and 0.4.3 brought some
significant new functionality and performance improvements that are worth taking a look at.

Thanks to all for bug reports, contributed patches and generally providing feedback on the library.

38.39.1 API Changes

• read_table, read_csv, and ExcelFile.parse default arguments for index_col is now None. To use one or more of
the columns as the resulting DataFrame’s index, these must be explicitly specified now

• Parsing functions like read_csv no longer parse dates by default (GH GH225)

• Removed weights option in panel regression which was not doing anything principled (GH155)

• Changed buffer argument name in Series.to_string to buf

38.39. pandas 0.5.0 2551

https://github.com/pandas-dev/pandas/issues/225
https://github.com/pandas-dev/pandas/issues/155

pandas: powerful Python data analysis toolkit, Release 0.23.4

• Series.to_string and DataFrame.to_string now return strings by default instead of printing to sys.stdout

• Deprecated nanRep argument in various to_string and to_csv functions in favor of na_rep. Will be removed in
0.6 (GH275)

• Renamed delimiter to sep in DataFrame.from_csv for consistency

• Changed order of Series.clip arguments to match those of numpy.clip and added (unimplemented) out argument
so numpy.clip can be called on a Series (GH272)

• Series functions renamed (and thus deprecated) in 0.4 series have been removed:

– asOf, use asof

– toDict, use to_dict

– toString, use to_string

– toCSV, use to_csv

– merge, use map

– applymap, use apply

– combineFirst, use combine_first

– _firstTimeWithValue use first_valid_index

– _lastTimeWithValue use last_valid_index

• DataFrame functions renamed / deprecated in 0.4 series have been removed:

– asMatrix method, use as_matrix or values attribute

– combineFirst, use combine_first

– getXS, use xs

– merge, use join

– fromRecords, use from_records

– fromcsv, use from_csv

– toRecords, use to_records

– toDict, use to_dict

– toString, use to_string

– toCSV, use to_csv

– _firstTimeWithValue use first_valid_index

– _lastTimeWithValue use last_valid_index

– toDataMatrix is no longer needed

– rows() method, use index attribute

– cols() method, use columns attribute

– dropEmptyRows(), use dropna(how=’all’)

– dropIncompleteRows(), use dropna()

– tapply(f), use apply(f, axis=1)

– tgroupby(keyfunc, aggfunc), use groupby with axis=1

2552 Chapter 38. Release Notes

https://github.com/pandas-dev/pandas/issues/275
https://github.com/pandas-dev/pandas/issues/272

pandas: powerful Python data analysis toolkit, Release 0.23.4

38.39.2 Deprecations Removed

• indexField argument in DataFrame.from_records

• missingAtEnd argument in Series.order. Use na_last instead

• Series.fromValue classmethod, use regular Series constructor instead

• Functions parseCSV, parseText, and parseExcel methods in pandas.io.parsers have been removed

• Index.asOfDate function

• Panel.getMinorXS (use minor_xs) and Panel.getMajorXS (use major_xs)

• Panel.toWide, use Panel.to_wide instead

38.39.3 New Features

• Added DataFrame.align method with standard join options

• Added parse_dates option to read_csv and read_table methods to optionally try to parse dates in the index
columns

• Add nrows, chunksize, and iterator arguments to read_csv and read_table. The last two return a new TextParser
class capable of lazily iterating through chunks of a flat file (GH242)

• Added ability to join on multiple columns in DataFrame.join (GH214)

• Added private _get_duplicates function to Index for identifying duplicate values more easily

• Added column attribute access to DataFrame, e.g. df.A equivalent to df[‘A’] if ‘A’ is a column in the DataFrame
(GH213)

• Added IPython tab completion hook for DataFrame columns. (GH233, GH230)

• Implement Series.describe for Series containing objects (GH241)

• Add inner join option to DataFrame.join when joining on key(s) (GH248)

• Can select set of DataFrame columns by passing a list to __getitem__ (GH GH253)

• Can use & and | to intersection / union Index objects, respectively (GH GH261)

• Added pivot_table convenience function to pandas namespace (GH234)

• Implemented Panel.rename_axis function (GH243)

• DataFrame will show index level names in console output

• Implemented Panel.take

• Add set_eng_float_format function for setting alternate DataFrame floating point string formatting

• Add convenience set_index function for creating a DataFrame index from its existing columns

38.39.4 Improvements to existing features

• Major performance improvements in file parsing functions read_csv and read_table

• Added Cython function for converting tuples to ndarray very fast. Speeds up many MultiIndex-related opera-
tions

• File parsing functions like read_csv and read_table will explicitly check if a parsed index has duplicates and
raise a more helpful exception rather than deferring the check until later

38.39. pandas 0.5.0 2553

https://github.com/pandas-dev/pandas/issues/242
https://github.com/pandas-dev/pandas/issues/214
https://github.com/pandas-dev/pandas/issues/213
https://github.com/pandas-dev/pandas/issues/233
https://github.com/pandas-dev/pandas/issues/230
https://github.com/pandas-dev/pandas/issues/241
https://github.com/pandas-dev/pandas/issues/248
https://github.com/pandas-dev/pandas/issues/253
https://github.com/pandas-dev/pandas/issues/261
https://github.com/pandas-dev/pandas/issues/234
https://github.com/pandas-dev/pandas/issues/243

pandas: powerful Python data analysis toolkit, Release 0.23.4

• Refactored merging / joining code into a tidy class and disabled unnecessary computations in the float/object
case, thus getting about 10% better performance (GH211)

• Improved speed of DataFrame.xs on mixed-type DataFrame objects by about 5x, regression from 0.3.0 (GH215)

• With new DataFrame.align method, speeding up binary operations between differently-indexed DataFrame
objects by 10-25%.

• Significantly sped up conversion of nested dict into DataFrame (GH212)

• Can pass hierarchical index level name to groupby instead of the level number if desired (GH223)

• Add support for different delimiters in DataFrame.to_csv (GH244)

• Add more helpful error message when importing pandas post-installation from the source directory (GH250)

• Significantly speed up DataFrame __repr__ and count on large mixed-type DataFrame objects

• Better handling of pyx file dependencies in Cython module build (GH271)

38.39.5 Bug Fixes

• read_csv / read_table fixes

– Be less aggressive about converting float->int in cases of floating point representations of integers like
1.0, 2.0, etc.

– “True”/”False” will not get correctly converted to boolean

– Index name attribute will get set when specifying an index column

– Passing column names should force header=None (GH257)

– Don’t modify passed column names when index_col is not None (GH258)

– Can sniff CSV separator in zip file (since seek is not supported, was failing before)

• Worked around matplotlib “bug” in which series[:, np.newaxis] fails. Should be reported upstream to matplotlib
(GH224)

• DataFrame.iteritems was not returning Series with the name attribute set. Also neither was DataFrame._series

• Can store datetime.date objects in HDFStore (GH231)

• Index and Series names are now stored in HDFStore

• Fixed problem in which data would get upcasted to object dtype in GroupBy.apply operations (GH237)

• Fixed outer join bug with empty DataFrame (GH238)

• Can create empty Panel (GH239)

• Fix join on single key when passing list with 1 entry (GH246)

• Don’t raise Exception on plotting DataFrame with an all-NA column (GH251, GH254)

• Bug min/max errors when called on integer DataFrames (GH241)

• DataFrame.iteritems and DataFrame._series not assigning name attribute

• Panel.__repr__ raised exception on length-0 major/minor axes

• DataFrame.join on key with empty DataFrame produced incorrect columns

• Implemented MultiIndex.diff (GH260)

• Int64Index.take and MultiIndex.take lost name field, fix downstream issue GH262

2554 Chapter 38. Release Notes

https://github.com/pandas-dev/pandas/issues/211
https://github.com/pandas-dev/pandas/issues/215
https://github.com/pandas-dev/pandas/issues/212
https://github.com/pandas-dev/pandas/issues/223
https://github.com/pandas-dev/pandas/issues/244
https://github.com/pandas-dev/pandas/issues/250
https://github.com/pandas-dev/pandas/issues/271
https://github.com/pandas-dev/pandas/issues/257
https://github.com/pandas-dev/pandas/issues/258
https://github.com/pandas-dev/pandas/issues/224
https://github.com/pandas-dev/pandas/issues/231
https://github.com/pandas-dev/pandas/issues/237
https://github.com/pandas-dev/pandas/issues/238
https://github.com/pandas-dev/pandas/issues/239
https://github.com/pandas-dev/pandas/issues/246
https://github.com/pandas-dev/pandas/issues/251
https://github.com/pandas-dev/pandas/issues/254
https://github.com/pandas-dev/pandas/issues/241
https://github.com/pandas-dev/pandas/issues/260
https://github.com/pandas-dev/pandas/issues/262

pandas: powerful Python data analysis toolkit, Release 0.23.4

• Can pass list of tuples to Series (GH270)

• Can pass level name to DataFrame.stack

• Support set operations between MultiIndex and Index

• Fix many corner cases in MultiIndex set operations - Fix MultiIndex-handling bug with GroupBy.apply when
returned groups are not indexed the same

• Fix corner case bugs in DataFrame.apply

• Setting DataFrame index did not cause Series cache to get cleared

• Various int32 -> int64 platform-specific issues

• Don’t be too aggressive converting to integer when parsing file with MultiIndex (GH285)

• Fix bug when slicing Series with negative indices before beginning

38.39.6 Thanks

• Thomas Kluyver

• Daniel Fortunov

• Aman Thakral

• Luca Beltrame

• Wouter Overmeire

38.40 pandas 0.4.3

Release date: 10/9/2011

This is largely a bugfix release from 0.4.2 but also includes a handful of new and enhanced features. Also, pandas can
now be installed and used on Python 3 (thanks Thomas Kluyver!).

38.40.1 New Features

• Python 3 support using 2to3 (GH200, Thomas Kluyver)

• Add name attribute to Series and added relevant logic and tests. Name now prints as part of Series.__repr__

• Add name attribute to standard Index so that stacking / unstacking does not discard names and so that indexed
DataFrame objects can be reliably round-tripped to flat files, pickle, HDF5, etc.

• Add isnull and notnull as instance methods on Series (GH209, GH203)

38.40.2 Improvements to existing features

• Skip xlrd-related unit tests if not installed

• Index.append and MultiIndex.append can accept a list of Index objects to concatenate together

• Altered binary operations on differently-indexed SparseSeries objects to use the integer-based (dense) alignment
logic which is faster with a larger number of blocks (GH205)

• Refactored Series.__repr__ to be a bit more clean and consistent

38.40. pandas 0.4.3 2555

https://github.com/pandas-dev/pandas/issues/270
https://github.com/pandas-dev/pandas/issues/285
https://github.com/pandas-dev/pandas/issues/200
https://github.com/pandas-dev/pandas/issues/209
https://github.com/pandas-dev/pandas/issues/203
https://github.com/pandas-dev/pandas/issues/205

pandas: powerful Python data analysis toolkit, Release 0.23.4

38.40.3 API Changes

• Series.describe and DataFrame.describe now bring the 25% and 75% quartiles instead of the 10% and 90%
deciles. The other outputs have not changed

• Series.toString will print deprecation warning, has been de-camelCased to to_string

38.40.4 Bug Fixes

• Fix broken interaction between Index and Int64Index when calling intersection. Implement
Int64Index.intersection

• MultiIndex.sortlevel discarded the level names (GH202)

• Fix bugs in groupby, join, and append due to improper concatenation of MultiIndex objects (GH201)

• Fix regression from 0.4.1, isnull and notnull ceased to work on other kinds of Python scalar objects like date-
time.datetime

• Raise more helpful exception when attempting to write empty DataFrame or LongPanel to HDFStore (GH204)

• Use stdlib csv module to properly escape strings with commas in DataFrame.to_csv (GH206, Thomas Kluyver)

• Fix Python ndarray access in Cython code for sparse blocked index integrity check

• Fix bug writing Series to CSV in Python 3 (GH209)

• Miscellaneous Python 3 bugfixes

38.40.5 Thanks

• Thomas Kluyver

• rsamson

38.41 pandas 0.4.2

Release date: 10/3/2011

This is a performance optimization release with several bug fixes. The new Int64Index and new merging / joining
Cython code and related Python infrastructure are the main new additions

38.41.1 New Features

• Added fast Int64Index type with specialized join, union, intersection. Will result in significant performance
enhancements for int64-based time series (e.g. using NumPy’s datetime64 one day) and also faster operations
on DataFrame objects storing record array-like data.

• Refactored Index classes to have a join method and associated data alignment routines throughout the codebase
to be able to leverage optimized joining / merging routines.

• Added Series.align method for aligning two series with choice of join method

• Wrote faster Cython data alignment / merging routines resulting in substantial speed increases

• Added is_monotonic property to Index classes with associated Cython code to evaluate the monotonicity of the
Index values

2556 Chapter 38. Release Notes

https://github.com/pandas-dev/pandas/issues/202
https://github.com/pandas-dev/pandas/issues/201
https://github.com/pandas-dev/pandas/issues/204
https://github.com/pandas-dev/pandas/issues/206
https://github.com/pandas-dev/pandas/issues/209

pandas: powerful Python data analysis toolkit, Release 0.23.4

• Add method get_level_values to MultiIndex

• Implemented shallow copy of BlockManager object in DataFrame internals

38.41.2 Improvements to existing features

• Improved performance of isnull and notnull, a regression from v0.3.0 (GH187)

• Wrote templating / code generation script to auto-generate Cython code for various functions which need to be
available for the 4 major data types used in pandas (float64, bool, object, int64)

• Refactored code related to DataFrame.join so that intermediate aligned copies of the data in each DataFrame
argument do not need to be created. Substantial performance increases result (GH176)

• Substantially improved performance of generic Index.intersection and Index.union

• Improved performance of DateRange.union with overlapping ranges and non-cacheable offsets (like Minute).
Implemented analogous fast DateRange.intersection for overlapping ranges.

• Implemented BlockManager.take resulting in significantly faster take performance on mixed-type DataFrame
objects (GH104)

• Improved performance of Series.sort_index

• Significant groupby performance enhancement: removed unnecessary integrity checks in DataFrame internals
that were slowing down slicing operations to retrieve groups

• Added informative Exception when passing dict to DataFrame groupby aggregation with axis != 0

38.41.3 API Changes

38.41.4 Bug Fixes

• Fixed minor unhandled exception in Cython code implementing fast groupby aggregation operations

• Fixed bug in unstacking code manifesting with more than 3 hierarchical levels

• Throw exception when step specified in label-based slice (GH185)

• Fix isnull to correctly work with np.float32. Fix upstream bug described in GH182

• Finish implementation of as_index=False in groupby for DataFrame aggregation (GH181)

• Raise SkipTest for pre-epoch HDFStore failure. Real fix will be sorted out via datetime64 dtype

38.41.5 Thanks

• Uri Laserson

• Scott Sinclair

38.42 pandas 0.4.1

Release date: 9/25/2011

This is primarily a bug fix release but includes some new features and improvements

38.42. pandas 0.4.1 2557

https://github.com/pandas-dev/pandas/issues/187
https://github.com/pandas-dev/pandas/issues/176
https://github.com/pandas-dev/pandas/issues/104
https://github.com/pandas-dev/pandas/issues/185
https://github.com/pandas-dev/pandas/issues/182
https://github.com/pandas-dev/pandas/issues/181

pandas: powerful Python data analysis toolkit, Release 0.23.4

38.42.1 New Features

• Added new DataFrame methods get_dtype_counts and property dtypes

• Setting of values using .ix indexing attribute in mixed-type DataFrame objects has been implemented (fixes
GH135)

• read_csv can read multiple columns into a MultiIndex. DataFrame’s to_csv method will properly write out a
MultiIndex which can be read back (GH151, thanks to Skipper Seabold)

• Wrote fast time series merging / joining methods in Cython. Will be integrated later into DataFrame.join and
related functions

• Added ignore_index option to DataFrame.append for combining unindexed records stored in a DataFrame

38.42.2 Improvements to existing features

• Some speed enhancements with internal Index type-checking function

• DataFrame.rename has a new copy parameter which can rename a DataFrame in place

• Enable unstacking by level name (GH142)

• Enable sortlevel to work by level name (GH141)

• read_csv can automatically “sniff” other kinds of delimiters using csv.Sniffer (GH146)

• Improved speed of unit test suite by about 40%

• Exception will not be raised calling HDFStore.remove on non-existent node with where clause

• Optimized _ensure_index function resulting in performance savings in type-checking Index objects

38.42.3 API Changes

38.42.4 Bug Fixes

• Fixed DataFrame constructor bug causing downstream problems (e.g. .copy() failing) when passing a Series as
the values along with a column name and index

• Fixed single-key groupby on DataFrame with as_index=False (GH160)

• Series.shift was failing on integer Series (GH154)

• unstack methods were producing incorrect output in the case of duplicate hierarchical labels. An exception will
now be raised (GH147)

• Calling count with level argument caused reduceat failure or segfault in earlier NumPy (GH169)

• Fixed DataFrame.corrwith to automatically exclude non-numeric data (GH GH144)

• Unicode handling bug fixes in DataFrame.to_string (GH138)

• Excluding OLS degenerate unit test case that was causing platform specific failure (GH149)

• Skip blosc-dependent unit tests for PyTables < 2.2 (GH137)

• Calling copy on DateRange did not copy over attributes to the new object (GH168)

• Fix bug in HDFStore in which Panel data could be appended to a Table with different item order, thus resulting
in an incorrect result read back

2558 Chapter 38. Release Notes

https://github.com/pandas-dev/pandas/issues/135
https://github.com/pandas-dev/pandas/issues/151
https://github.com/pandas-dev/pandas/issues/142
https://github.com/pandas-dev/pandas/issues/141
https://github.com/pandas-dev/pandas/issues/146
https://github.com/pandas-dev/pandas/issues/160
https://github.com/pandas-dev/pandas/issues/154
https://github.com/pandas-dev/pandas/issues/147
https://github.com/pandas-dev/pandas/issues/169
https://github.com/pandas-dev/pandas/issues/144
https://github.com/pandas-dev/pandas/issues/138
https://github.com/pandas-dev/pandas/issues/149
https://github.com/pandas-dev/pandas/issues/137
https://github.com/pandas-dev/pandas/issues/168

pandas: powerful Python data analysis toolkit, Release 0.23.4

38.42.5 Thanks

• Yaroslav Halchenko

• Jeff Reback

• Skipper Seabold

• Dan Lovell

• Nick Pentreath

38.43 pandas 0.4.0

Release date: 9/12/2011

38.43.1 New Features

• pandas.core.sparse module: “Sparse” (mostly-NA, or some other fill value) versions of Series, DataFrame, and
Panel. For low-density data, this will result in significant performance boosts, and smaller memory footprint.
Added to_sparse methods to Series, DataFrame, and Panel. See online documentation for more on these

• Fancy indexing operator on Series / DataFrame, e.g. via .ix operator. Both getting and setting of values is sup-
ported; however, setting values will only currently work on homogeneously-typed DataFrame objects. Things
like:

– series.ix[[d1, d2, d3]]

– frame.ix[5:10, [‘C’, ‘B’, ‘A’]], frame.ix[5:10, ‘A’:’C’]

– frame.ix[date1:date2]

• Significantly enhanced groupby functionality

– Can groupby multiple keys, e.g. df.groupby([‘key1’, ‘key2’]). Iteration with multiple groupings products
a flattened tuple

– “Nuisance” columns (non-aggregatable) will automatically be excluded from DataFrame aggregation op-
erations

– Added automatic “dispatching to Series / DataFrame methods to more easily invoke methods on groups.
e.g. s.groupby(crit).std() will work even though std is not implemented on the GroupBy class

• Hierarchical / multi-level indexing

– New the MultiIndex class. Integrated MultiIndex into Series and DataFrame fancy indexing, slicing,
__getitem__ and __setitem, reindexing, etc. Added level keyword argument to groupby to enable grouping
by a level of a MultiIndex

• New data reshaping functions: stack and unstack on DataFrame and Series

– Integrate with MultiIndex to enable sophisticated reshaping of data

• Index objects (labels for axes) are now capable of holding tuples

• Series.describe, DataFrame.describe: produces an R-like table of summary statistics about each data column

• DataFrame.quantile, Series.quantile for computing sample quantiles of data across requested axis

• Added general DataFrame.dropna method to replace dropIncompleteRows and dropEmptyRows, deprecated
those.

38.43. pandas 0.4.0 2559

pandas: powerful Python data analysis toolkit, Release 0.23.4

• Series arithmetic methods with optional fill_value for missing data, e.g. a.add(b, fill_value=0). If a location is
missing for both it will still be missing in the result though.

• fill_value option has been added to DataFrame.{add, mul, sub, div} methods similar to Series

• Boolean indexing with DataFrame objects: data[data > 0.1] = 0.1 or data[data> other] = 1.

• pytz / tzinfo support in DateRange

– tz_localize, tz_normalize, and tz_validate methods added

• Added ExcelFile class to pandas.io.parsers for parsing multiple sheets out of a single Excel 2003 document

• GroupBy aggregations can now optionally broadcast, e.g. produce an object of the same size with the aggregated
value propagated

• Added select function in all data structures: reindex axis based on arbitrary criterion (function returning boolean
value), e.g. frame.select(lambda x: ‘foo’ in x, axis=1)

• DataFrame.consolidate method, API function relating to redesigned internals

• DataFrame.insert method for inserting column at a specified location rather than the default __setitem__ behav-
ior (which puts it at the end)

• HDFStore class in pandas.io.pytables has been largely rewritten using patches from Jeff Reback from others. It
now supports mixed-type DataFrame and Series data and can store Panel objects. It also has the option to query
DataFrame and Panel data. Loading data from legacy HDFStore files is supported explicitly in the code

• Added set_printoptions method to modify appearance of DataFrame tabular output

• rolling_quantile functions; a moving version of Series.quantile / DataFrame.quantile

• Generic rolling_apply moving window function

• New drop method added to Series, DataFrame, etc. which can drop a set of labels from an axis, producing a
new object

• reindex methods now sport a copy option so that data is not forced to be copied then the resulting object is
indexed the same

• Added sort_index methods to Series and Panel. Renamed DataFrame.sort to sort_index. Leaving
DataFrame.sort for now.

• Added skipna option to statistical instance methods on all the data structures

• pandas.io.data module providing a consistent interface for reading time series data from several different sources

38.43.2 Improvements to existing features

• The 2-dimensional DataFrame and DataMatrix classes have been extensively redesigned internally into a single
class DataFrame, preserving where possible their optimal performance characteristics. This should reduce
confusion from users about which class to use.

– Note that under the hood there is a new essentially “lazy evaluation” scheme within respect to adding
columns to DataFrame. During some operations, like-typed blocks will be “consolidated” but not before.

• DataFrame accessing columns repeatedly is now significantly faster than DataMatrix used to be in 0.3.0 due to
an internal Series caching mechanism (which are all views on the underlying data)

• Column ordering for mixed type data is now completely consistent in DataFrame. In prior releases, there was
inconsistent column ordering in DataMatrix

• Improved console / string formatting of DataMatrix with negative numbers

• Improved tabular data parsing functions, read_table and read_csv:

2560 Chapter 38. Release Notes

pandas: powerful Python data analysis toolkit, Release 0.23.4

– Added skiprows and na_values arguments to pandas.io.parsers functions for more flexible IO

– parseCSV / read_csv functions and others in pandas.io.parsers now can take a list of custom NA values,
and also a list of rows to skip

• Can slice DataFrame and get a view of the data (when homogeneously typed), e.g. frame.xs(idx, copy=False)
or frame.ix[idx]

• Many speed optimizations throughout Series and DataFrame

• Eager evaluation of groups when calling groupby functions, so if there is an exception with the grouping
function it will raised immediately versus sometime later on when the groups are needed

• datetools.WeekOfMonth offset can be parameterized with n different than 1 or -1.

• Statistical methods on DataFrame like mean, std, var, skew will now ignore non-numerical data. Before a
not very useful error message was generated. A flag numeric_only has been added to DataFrame.sum and
DataFrame.count to enable this behavior in those methods if so desired (disabled by default)

• DataFrame.pivot generalized to enable pivoting multiple columns into a DataFrame with hierarchical columns

• DataFrame constructor can accept structured / record arrays

• Panel constructor can accept a dict of DataFrame-like objects. Do not need to use from_dict anymore (from_dict
is there to stay, though).

38.43.3 API Changes

• The DataMatrix variable now refers to DataFrame, will be removed within two releases

• WidePanel is now known as Panel. The WidePanel variable in the pandas namespace now refers to the renamed
Panel class

• LongPanel and Panel / WidePanel now no longer have a common subclass. LongPanel is now a subclass of
DataFrame having a number of additional methods and a hierarchical index instead of the old LongPanelIndex
object, which has been removed. Legacy LongPanel pickles may not load properly

• Cython is now required to build pandas from a development branch. This was done to avoid continuing to check
in cythonized C files into source control. Builds from released source distributions will not require Cython

• Cython code has been moved up to a top level pandas/src directory. Cython extension modules have been
renamed and promoted from the lib subpackage to the top level, i.e.

– pandas.lib.tseries -> pandas._tseries

– pandas.lib.sparse -> pandas._sparse

• DataFrame pickling format has changed. Backwards compatibility for legacy pickles is provided, but it’s rec-
ommended to consider PyTables-based HDFStore for storing data with a longer expected shelf life

• A copy argument has been added to the DataFrame constructor to avoid unnecessary copying of data. Data is
no longer copied by default when passed into the constructor

• Handling of boolean dtype in DataFrame has been improved to support storage of boolean data with NA / NaN
values. Before it was being converted to float64 so this should not (in theory) cause API breakage

• To optimize performance, Index objects now only check that their labels are unique when uniqueness matters
(i.e. when someone goes to perform a lookup). This is a potentially dangerous tradeoff, but will lead to much
better performance in many places (like groupby).

• Boolean indexing using Series must now have the same indices (labels)

• Backwards compatibility support for begin/end/nPeriods keyword arguments in DateRange class has been re-
moved

38.43. pandas 0.4.0 2561

pandas: powerful Python data analysis toolkit, Release 0.23.4

• More intuitive / shorter filling aliases ffill (for pad) and bfill (for backfill) have been added to the functions that
use them: reindex, asfreq, fillna.

• pandas.core.mixins code moved to pandas.core.generic

• buffer keyword arguments (e.g. DataFrame.toString) renamed to buf to avoid using Python built-in name

• DataFrame.rows() removed (use DataFrame.index)

• Added deprecation warning to DataFrame.cols(), to be removed in next release

• DataFrame deprecations and de-camelCasing: merge, asMatrix, toDataMatrix, _firstTimeWithValue, _lastTime-
WithValue, toRecords, fromRecords, tgroupby, toString

• pandas.io.parsers method deprecations

– parseCSV is now read_csv and keyword arguments have been de-camelCased

– parseText is now read_table

– parseExcel is replaced by the ExcelFile class and its parse method

• fillMethod arguments (deprecated in prior release) removed, should be replaced with method

• Series.fill, DataFrame.fill, and Panel.fill removed, use fillna instead

• groupby functions now exclude NA / NaN values from the list of groups. This matches R behavior with NAs in
factors e.g. with the tapply function

• Removed parseText, parseCSV and parseExcel from pandas namespace

• Series.combineFunc renamed to Series.combine and made a bit more general with a fill_value keyword argument
defaulting to NaN

• Removed pandas.core.pytools module. Code has been moved to pandas.core.common

• Tacked on groupName attribute for groups in GroupBy renamed to name

• Panel/LongPanel dims attribute renamed to shape to be more conformant

• Slicing a Series returns a view now

• More Series deprecations / renaming: toCSV to to_csv, asOf to asof, merge to map, applymap to apply, toDict
to to_dict, combineFirst to combine_first. Will print FutureWarning.

• DataFrame.to_csv does not write an “index” column label by default anymore since the output file can be read
back without it. However, there is a new index_label argument. So you can do index_label='index'
to emulate the old behavior

• datetools.Week argument renamed from dayOfWeek to weekday

• timeRule argument in shift has been deprecated in favor of using the offset argument for everything. So you can
still pass a time rule string to offset

• Added optional encoding argument to read_csv, read_table, to_csv, from_csv to handle unicode in Python 2.x

38.43.4 Bug Fixes

• Column ordering in pandas.io.parsers.parseCSV will match CSV in the presence of mixed-type data

• Fixed handling of Excel 2003 dates in pandas.io.parsers

• DateRange caching was happening with high resolution DateOffset objects, e.g. DateOffset(seconds=1). This
has been fixed

• Fixed __truediv__ issue in DataFrame

2562 Chapter 38. Release Notes

pandas: powerful Python data analysis toolkit, Release 0.23.4

• Fixed DataFrame.toCSV bug preventing IO round trips in some cases

• Fixed bug in Series.plot causing matplotlib to barf in exceptional cases

• Disabled Index objects from being hashable, like ndarrays

• Added __ne__ implementation to Index so that operations like ts[ts != idx] will work

• Added __ne__ implementation to DataFrame

• Bug / unintuitive result when calling fillna on unordered labels

• Bug calling sum on boolean DataFrame

• Bug fix when creating a DataFrame from a dict with scalar values

• Series.{sum, mean, std, . . . } now return NA/NaN when the whole Series is NA

• NumPy 1.4 through 1.6 compatibility fixes

• Fixed bug in bias correction in rolling_cov, was affecting rolling_corr too

• R-square value was incorrect in the presence of fixed and time effects in the PanelOLS classes

• HDFStore can handle duplicates in table format, will take

38.43.5 Thanks

• Joon Ro

• Michael Pennington

• Chris Uga

• Chris Withers

• Jeff Reback

• Ted Square

• Craig Austin

• William Ferreira

• Daniel Fortunov

• Tony Roberts

• Martin Felder

• John Marino

• Tim McNamara

• Justin Berka

• Dieter Vandenbussche

• Shane Conway

• Skipper Seabold

• Chris Jordan-Squire

38.43. pandas 0.4.0 2563

pandas: powerful Python data analysis toolkit, Release 0.23.4

38.44 pandas 0.3.0

Release date: February 20, 2011

38.44.1 New features

• corrwith function to compute column- or row-wise correlations between two DataFrame objects

• Can boolean-index DataFrame objects, e.g. df[df > 2] = 2, px[px > last_px] = 0

• Added comparison magic methods (__lt__, __gt__, etc.)

• Flexible explicit arithmetic methods (add, mul, sub, div, etc.)

• Added reindex_like method

• Added reindex_like method to WidePanel

• Convenience functions for accessing SQL-like databases in pandas.io.sql module

• Added (still experimental) HDFStore class for storing pandas data structures using HDF5 / PyTables in pan-
das.io.pytables module

• Added WeekOfMonth date offset

• pandas.rpy (experimental) module created, provide some interfacing / conversion between rpy2 and pandas

38.44.2 Improvements to existing features

• Unit test coverage: 100% line coverage of core data structures

• Speed enhancement to rolling_{median, max, min}

• Column ordering between DataFrame and DataMatrix is now consistent: before DataFrame would not respect
column order

• Improved {Series, DataFrame}.plot methods to be more flexible (can pass matplotlib Axis arguments, plot
DataFrame columns in multiple subplots, etc.)

38.44.3 API Changes

• Exponentially-weighted moment functions in pandas.stats.moments have a more consistent API and accept a
min_periods argument like their regular moving counterparts.

• fillMethod argument in Series, DataFrame changed to method, FutureWarning added.

• fill method in Series, DataFrame/DataMatrix, WidePanel renamed to fillna, FutureWarning added to fill

• Renamed DataFrame.getXS to xs, FutureWarning added

• Removed cap and floor functions from DataFrame, renamed to clip_upper and clip_lower for consistency with
NumPy

2564 Chapter 38. Release Notes

pandas: powerful Python data analysis toolkit, Release 0.23.4

38.44.4 Bug Fixes

• Fixed bug in IndexableSkiplist Cython code that was breaking rolling_max function

• Numerous numpy.int64-related indexing fixes

• Several NumPy 1.4.0 NaN-handling fixes

• Bug fixes to pandas.io.parsers.parseCSV

• Fixed DateRange caching issue with unusual date offsets

• Fixed bug in DateRange.union

• Fixed corner case in IndexableSkiplist implementation

38.44. pandas 0.3.0 2565

pandas: powerful Python data analysis toolkit, Release 0.23.4

2566 Chapter 38. Release Notes

BIBLIOGRAPHY

[R16] http://docs.sqlalchemy.org

[R17] https://www.python.org/dev/peps/pep-0249/

[R27] https://docs.python.org/3/library/pickle.html

[R28] http://docs.sqlalchemy.org

[R29] https://www.python.org/dev/peps/pep-0249/

[R15] https://docs.python.org/3/library/pickle.html

[R21] https://docs.python.org/3/library/pickle.html

[R22] http://docs.sqlalchemy.org

[R23] https://www.python.org/dev/peps/pep-0249/

[R30] https://en.wikipedia.org/wiki/Imputation_(statistics)

[R31] https://en.wikipedia.org/wiki/Imputation_(statistics)

[R32] https://en.wikipedia.org/wiki/Imputation_(statistics)

[R33] “Bootstrapping (statistics)” in https://en.wikipedia.org/wiki/Bootstrapping_%28statistics%29

2567

http://docs.sqlalchemy.org
https://www.python.org/dev/peps/pep-0249/
https://docs.python.org/3/library/pickle.html
http://docs.sqlalchemy.org
https://www.python.org/dev/peps/pep-0249/
https://docs.python.org/3/library/pickle.html
https://docs.python.org/3/library/pickle.html
http://docs.sqlalchemy.org
https://www.python.org/dev/peps/pep-0249/
https://en.wikipedia.org/wiki/Imputation_(statistics
https://en.wikipedia.org/wiki/Imputation_(statistics
https://en.wikipedia.org/wiki/Imputation_(statistics
https://en.wikipedia.org/wiki/Bootstrapping_%28statistics%29

pandas: powerful Python data analysis toolkit, Release 0.23.4

2568 Bibliography

PYTHON MODULE INDEX

p
pandas, ??

2569

