pandas: powerful Python data analysis

toolkit
Release 0.23.4

Wes McKinney & PyData Development Team

Aug 06, 2018

CONTENTS

pandas: powerful Python data analysis toolkit, Release 0.23.4

PDF Version

Zipped HTML

Date: Aug 06, 2018 Version: 0.23.4

Binary Installers: https://pypi.org/project/pandas

Source Repository: http://github.com/pandas-dev/pandas

Issues & Ideas: https://github.com/pandas-dev/pandas/issues
Q&A Support: http://stackoverflow.com/questions/tagged/pandas
Developer Mailing List: http://groups.google.com/group/pydata

pandas is a Python package providing fast, flexible, and expressive data structures designed to make working with
“relational” or “labeled” data both easy and intuitive. It aims to be the fundamental high-level building block for doing
practical, real world data analysis in Python. Additionally, it has the broader goal of becoming the most powerful
and flexible open source data analysis / manipulation tool available in any language. It is already well on its way
toward this goal.

pandas is well suited for many different kinds of data:
 Tabular data with heterogeneously-typed columns, as in an SQL table or Excel spreadsheet
* Ordered and unordered (not necessarily fixed-frequency) time series data.
 Arbitrary matrix data (homogeneously typed or heterogeneous) with row and column labels

* Any other form of observational / statistical data sets. The data actually need not be labeled at all to be placed
into a pandas data structure

The two primary data structures of pandas, Series (1-dimensional) and DataFrame (2-dimensional), handle the
vast majority of typical use cases in finance, statistics, social science, and many areas of engineering. For R users,
DataFrame provides everything that R’s data . frame provides and much more. pandas is built on top of NumPy
and is intended to integrate well within a scientific computing environment with many other 3rd party libraries.

Here are just a few of the things that pandas does well:
 Easy handling of missing data (represented as NaN) in floating point as well as non-floating point data
 Size mutability: columns can be inserted and deleted from DataFrame and higher dimensional objects

* Automatic and explicit data alignment: objects can be explicitly aligned to a set of labels, or the user can
simply ignore the labels and let Series, DataFrame, etc. automatically align the data for you in computations

» Powerful, flexible group by functionality to perform split-apply-combine operations on data sets, for both ag-
gregating and transforming data

* Make it easy to convert ragged, differently-indexed data in other Python and NumPy data structures into
DataFrame objects

* Intelligent label-based slicing, fancy indexing, and subsetting of large data sets
* Intuitive merging and joining data sets

* Flexible reshaping and pivoting of data sets

* Hierarchical labeling of axes (possible to have multiple labels per tick)

* Robust IO tools for loading data from flat files (CSV and delimited), Excel files, databases, and saving / loading
data from the ultrafast HDF5 format

* Time series-specific functionality: date range generation and frequency conversion, moving window statistics,
moving window linear regressions, date shifting and lagging, etc.

CONTENTS 1

pandas.zip
https://pypi.org/project/pandas
http://github.com/pandas-dev/pandas
https://github.com/pandas-dev/pandas/issues
http://stackoverflow.com/questions/tagged/pandas
http://groups.google.com/group/pydata
http://www.python.org
http://www.numpy.org

pandas: powerful Python data analysis toolkit, Release 0.23.4

Many of these principles are here to address the shortcomings frequently experienced using other languages / scientific
research environments. For data scientists, working with data is typically divided into multiple stages: munging and
cleaning data, analyzing / modeling it, then organizing the results of the analysis into a form suitable for plotting or
tabular display. pandas is the ideal tool for all of these tasks.

Some other notes

* pandas is fast. Many of the low-level algorithmic bits have been extensively tweaked in Cython code. However,
as with anything else generalization usually sacrifices performance. So if you focus on one feature for your
application you may be able to create a faster specialized tool.

* pandas is a dependency of statsmodels, making it an important part of the statistical computing ecosystem in
Python.

 pandas has been used extensively in production in financial applications.

Note: This documentation assumes general familiarity with NumPy. If you haven’t used NumPy much or at all, do
invest some time in learning about NumPy first.

See the package overview for more detail about what’s in the library.

2 CONTENTS

http://cython.org
http://www.statsmodels.org/stable/index.html
http://docs.scipy.org

CHAPTER
ONE

WHAT’S NEW

These are new features and improvements of note in each release.

1.1 v0.23.4 (August 3, 2018)

This is a minor bug-fix release in the 0.23.x series and includes some small regression fixes and bug fixes. We

recommend that all users upgrade to this version.

Warning: Starting January 1, 2019, pandas feature releases will support Python 3 only. See Plan for dropping

Python 2.7 for more.

What’s new in v0.23.4

* Fixed Regressions

* Bug Fixes

1.1.1 Fixed Regressions

* Python 3.7 with Windows gave all missing values for rolling variance calculations (GH21813)

1.1.2 Bug Fixes

Groupby/Resample/Rolling
* Bug where calling DataFrameGroupBy.agg () with a list of functions including oh1lc as the non-initial
element would raise a ValueError (GH21716)
* Buginroll_qguantile caused a memory leak when calling .rolling(...) .quantile (q) with gin
(0,1) (GH21965)
Missing
* Bug in Series.clip() and DataFrame.clip () cannot accept list-like threshold containing NaN
(GH19992)

https://github.com/pandas-dev/pandas/issues/21813
https://github.com/pandas-dev/pandas/issues/21716
https://github.com/pandas-dev/pandas/issues/21965
https://github.com/pandas-dev/pandas/issues/19992

pandas: powerful Python data analysis toolkit, Release 0.23.4

1.2 v0.23.3 (July 7, 2018)

This release fixes a build issue with the sdist for Python 3.7 (GH21785) There are no other changes.

1.3 v0.23.2

This is a minor bug-fix release in the 0.23.x series and includes some small regression fixes and bug fixes. We
recommend that all users upgrade to this version.

Note: Pandas 0.23.2 is first pandas release that’s compatible with Python 3.7 (GH20552)

Warning: Starting January 1, 2019, pandas feature releases will support Python 3 only. See Plan for dropping
Python 2.7 for more.

What’s new in v0.23.2

* Logical Reductions over Entire DataFrame
* Fixed Regressions

* Build Changes

* Bug Fixes

1.3.1 Logical Reductions over Entire DataFrame

DataFrame.all () and DataFrame.any () now accept axis=None to reduce over all axes to a scalar
(GH19976)

In [1]: df = pd.DataFrame({"A": [1, 2], "B": [True, Falsel})

In [2]: df.all(axis=None)
Out[2]: False

This also provides compatibility with NumPy 1.15, which now dispatches to DataFrame.all. With NumPy 1.15
and pandas 0.23.1 or earlier, numpy .all () will no longer reduce over every axis:

>>> # NumPy 1.15, pandas 0.23.1

>>> np.any (pd.DataFrame ({"A": [False], "B": [Falsel}))
A False
B False

dtype: bool

With pandas 0.23.2, that will correctly return False, as it did with NumPy < 1.15.

In [3]: np.any(pd.DataFrame ({"A": [False], "B": [Falsel}))
Out [3]: False

4 Chapter 1. What’s New

https://github.com/pandas-dev/pandas/issues/21785
https://github.com/pandas-dev/pandas/issues/20552
https://github.com/pandas-dev/pandas/issues/19976
https://docs.scipy.org/doc/numpy/reference/generated/numpy.all.html#numpy.all

pandas: powerful Python data analysis toolkit, Release 0.23.4

1.3.2 Fixed Regressions

Fixed regression in to_csv () when handling file-like object incorrectly (GH21471)

Re-allowed duplicate level names of a MultiIndex. Accessing a level that has a duplicate name by name still
raises an error (GH19029).

Buginboth DataFrame. first_valid_index () and Series.first_valid_index () raised fora
row index having duplicate values (GH21441)

Fixed printing of DataFrames with hierarchical columns with long names (GH21180)

Fixed regression in reindex () and groupby () with a Multilndex or multiple keys that contains categorical
datetime-like values (GH21390).

Fixed regression in unary negative operations with object dtype (GH21380)

Bug in Timestamp.ceil () and Timestamp.floor () when timestamp is a multiple of the rounding
frequency (GH21262)

Fixed regression in to_clipboard () that defaulted to copying dataframes with space delimited instead of
tab delimited (GH21104)

1.3.3 Build Changes

The source and binary distributions no longer include test data files, resulting in smaller download sizes. Tests
relying on these data files will be skipped when using pandas.test (). (GH19320)

1.3.4 Bug Fixes

Conversion

Bug in constructing Index with an iterator or generator (GH21470)

Bug in Series.nlargest () for signed and unsigned integer dtypes when the minimum value is present
(GH21426)

Indexing

Bugin Index.get_indexer._non_unique () with categorical key (GH21448)

Bug in comparison operations for MultiTIndex where error was raised on equality / inequality comparison
involving a Multilndex with nlevels == 1 (GH21149)

Bug in DataFrame.drop () behaviour is not consistent for unique and non-unique indexes (GH21494)

Bug in DataFrame.duplicated () with alarge number of columns causing a ‘maximum recursion depth
exceeded’ (GH21524).

/0
* Bugin read_csv () that caused it to incorrectly raise an error when nrows=0, low_memory=True, and
index_col was not None (GH21141)
* Bugin json_normalize () when formatting the record_prefix with integer columns (GH21536)
Categorical
* Buginrendering Series with Categorical dtype in rare conditions under Python 2.7 (GH21002)
Timezones

1.3. v0.23.2 5

https://github.com/pandas-dev/pandas/issues/21471
https://github.com/pandas-dev/pandas/issues/19029
https://github.com/pandas-dev/pandas/issues/21441
https://github.com/pandas-dev/pandas/issues/21180
https://github.com/pandas-dev/pandas/issues/21390
https://github.com/pandas-dev/pandas/issues/21380
https://github.com/pandas-dev/pandas/issues/21262
https://github.com/pandas-dev/pandas/issues/21104
https://github.com/pandas-dev/pandas/issues/19320
https://github.com/pandas-dev/pandas/issues/21470
https://github.com/pandas-dev/pandas/issues/21426
https://github.com/pandas-dev/pandas/issues/21448
https://github.com/pandas-dev/pandas/issues/21149
https://github.com/pandas-dev/pandas/issues/21494
https://github.com/pandas-dev/pandas/issues/21524
https://github.com/pandas-dev/pandas/issues/21141
https://github.com/pandas-dev/pandas/issues/21536
https://github.com/pandas-dev/pandas/issues/21002

pandas: powerful Python data analysis toolkit, Release 0.23.4

* Bug in Timestamp and DatetimeIndex where passing a Timestamp localized after a DST transition
would return a datetime before the DST transition (GH20854)

* Bug in comparing DataFrame's with tz-aware :class: DatetimeIndex columns with a DST
transition that raised a KeyError (GH19970)

Timedelta

* Bugin Timedelta where non-zero timedeltas shorter than 1 microsecond were considered False (GH21484)

1.4 v0.23.1

This is a minor bug-fix release in the 0.23.x series and includes some small regression fixes and bug fixes. We
recommend that all users upgrade to this version.

Warning: Starting January 1, 2019, pandas feature releases will support Python 3 only. See Plan for dropping
Python 2.7 for more.

What’s new in v0.23.1

* Fixed Regressions

» Performance Improvements

* Bug Fixes

1.4.1 Fixed Regressions

Comparing Series with datetime.date

We’ve reverted a 0.23.0 change to comparing a Series holding datetimes and a datetime.date object
(GH21152). In pandas 0.22 and earlier, comparing a Series holding datetimes and datet ime.date objects would
coerce the datetime.date to a datetime before comapring. This was inconsistent with Python, NumPy, and
DatetimeIndex, which never consider a datetime and datetime.date equal.

In 0.23.0, we unified operations between Datetimelndex and Series, and in the process changed comparisons between
a Series of datetimes and datet ime . date without warning.

We’ve temporarily restored the 0.22.0 behavior, so datetimes and dates may again compare equal, but restore the 0.23.0
behavior in a future release.

To summarize, here’s the behavior in 0.22.0, 0.23.0, 0.23.1:

0.22.0... Silently coerce the datetime.date

>>> Series (pd.date_range('2017', periods=2)) == datetime.date (2017, 1, 1)
0 True

1 False

dtype: bool

0.23.0... Do not coerce the datetime.date

>>> Series (pd.date_range('2017', periods=2)) == datetime.date (2017, 1, 1)
0 False

1 False

(continues on next page)

6 Chapter 1. What’s New

https://github.com/pandas-dev/pandas/issues/20854
https://github.com/pandas-dev/pandas/issues/19970
https://github.com/pandas-dev/pandas/issues/21484
https://github.com/pandas-dev/pandas/issues/21152

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

dtype: bool

0.23.1... Coerce the datetime.date with a warning
>>> Series(pd.date_range ('2017', periods=2)) == datetime.date (2017, 1, 1)
/bin/python:1: FutureWarning: Comparing Series of datetimes with 'datetime.date'.
—Currently, the
'datetime.date' is coerced to a datetime. In the future pandas will
not coerce, and the values not compare equal to the 'datetime.date'.
To retain the current behavior, convert the 'datetime.date' to a
datetime with 'pd.Timestamp'.
#!/bin/python3
0 True
1 False
dtype: bool

In addition, ordering comparisons will raise a TypeError in the future.
Other Fixes

* Reverted the ability of to_sqgl () to perform multivalue inserts as this caused regression in certain cases
(GH21103). In the future this will be made configurable.

» Fixed regression in the DatetimeIndex.date and DatetimeIndex.time attributes in case of
timezone-aware data: DatetimeIndex.time returned a tz-aware time instead of tz-naive (GH21267) and
DatetimeIndex.date returned incorrect date when the input date has a non-UTC timezone (GH21230).

* Fixed regression in pandas.io. json. json_normalize () when called with None values in nested lev-
els in JSON, and to not drop keys with value as None (GH21158, GH21356).

* Bugin to_csv () causes encoding error when compression and encoding are specified (GH21241, GH21118)
* Bug preventing pandas from being importable with -OO optimization (GH21071)

* Bugin Categorical.fillna () incorrectly raising a TypeError when value the individual categories
are iterable and value is an iterable (GH21097, GH19788)

 Fixed regression in constructors coercing NA values like None to strings when passing dtype=str
(GH21083)

* Regressionin pivot_table () where an ordered Categorical with missing values for the pivot’s index
would give a mis-aligned result (GH21133)

* Fixed regression in merging on boolean index/columns (GH21119).

1.4.2 Performance Improvements

e Improved performance of CategoricalIndex.is_monotonic_increasing/(),
CategoricallIndex.is_monotonic_decreasing/() and CategoricalIndex.
is_monotonic () (GH21025)

* Improved performance of CategoricalIndex.is_unique () (GH21107)

1.4.3 Bug Fixes

Groupby/Resample/Rolling

* Bugin DataFrame.agg () where applying multiple aggregation functions to a DataFrame with duplicated
column names would cause a stack overflow (GH21063)

1.4. v0.23.1 7

https://github.com/pandas-dev/pandas/issues/21103
https://github.com/pandas-dev/pandas/issues/21267
https://github.com/pandas-dev/pandas/issues/21230
https://github.com/pandas-dev/pandas/issues/21158
https://github.com/pandas-dev/pandas/issues/21356
https://github.com/pandas-dev/pandas/issues/21241
https://github.com/pandas-dev/pandas/issues/21118
https://github.com/pandas-dev/pandas/issues/21071
https://github.com/pandas-dev/pandas/issues/21097
https://github.com/pandas-dev/pandas/issues/19788
https://github.com/pandas-dev/pandas/issues/21083
https://github.com/pandas-dev/pandas/issues/21133
https://github.com/pandas-dev/pandas/issues/21119
https://github.com/pandas-dev/pandas/issues/21025
https://github.com/pandas-dev/pandas/issues/21107
https://github.com/pandas-dev/pandas/issues/21063

pandas: powerful Python data analysis toolkit, Release 0.23.4

* Bug in pandas.core.groupby.GroupBy.ffill () and pandas.core.groupby.GroupBy.
bfill () where the fill within a grouping would not always be applied as intended due to the implementations’
use of a non-stable sort (GH21207)

* Bugin pandas. core.groupby.GroupBy. rank () where results did not scale to 100% when specifying
method="'dense' and pct=True

* Bug in pandas.DataFrame.rolling() and pandas.Series.rolling () which incorrectly ac-
cepted a 0 window size rather than raising (GH21286)

Data-type specific
* Bugin Series.str.replace () where the method throws TypeError on Python 3.5.2 (GH21078)
* Bugin Timedelta: where passing a float with a unit would prematurely round the float precision (GH14156)

* Bug in pandas.testing.assert_index_equal () which raised AssertionError incorrectly,
when comparing two CategoricalIndex objects with param check_categorical=False
(GH19776)

Sparse

* Bug in SparseArray.shape which previously only returned the shape SparseArray.sp_values
(GH21126)

Indexing

* Bug in Series.reset_index () where appropriate error was not raised with an invalid level name
(GH20925)

* Bugin interval_range () when start/periods or end/periods are specified with float start or
end (GH21161)

* Bug in MultiIndex.set_names () where error raised for a MultiIndex with nlevels ==
(GH21149)

* Bug in IntervalIndex constructors where creating an IntervalIndex from categorical data was not
fully supported (GH21243, GH21253)

* Bug in MultiIndex.sort_index () which was not guaranteed to sort correctly with level=1; this
was also causing data misalignment in particular DataFrame.stack () operations (GH20994, GH20945,
GH21052)

Plotting

e New keywords (sharex, sharey) to turn on/off sharing of x/y-axis by subplots generated with pan-
das.DataFrame().groupby().boxplot() (GH20968)

/0

* Bug in IO methods specifying compression="'zip"' which produced uncompressed zip archives (GH17778,
GH21144)

* Bug in DataFrame.to_stata () which prevented exporting DataFrames to buffers and most file-like ob-
jects (GH21041)

* Bugin read _stata () and StataReader which did not correctly decode utf-8 strings on Python 3 from
Stata 14 files (dta version 118) (GH21244)

* BuginIOJSON read_json () reading empty JSON schema with orient="table"' backto DataFrame
caused an error (GH21287)

Reshaping

8 Chapter 1. What’s New

https://github.com/pandas-dev/pandas/issues/21207
https://github.com/pandas-dev/pandas/issues/21286
https://github.com/pandas-dev/pandas/issues/21078
https://github.com/pandas-dev/pandas/issues/14156
https://github.com/pandas-dev/pandas/issues/19776
https://github.com/pandas-dev/pandas/issues/21126
https://github.com/pandas-dev/pandas/issues/20925
https://github.com/pandas-dev/pandas/issues/21161
https://github.com/pandas-dev/pandas/issues/21149
https://github.com/pandas-dev/pandas/issues/21243
https://github.com/pandas-dev/pandas/issues/21253
https://github.com/pandas-dev/pandas/issues/20994
https://github.com/pandas-dev/pandas/issues/20945
https://github.com/pandas-dev/pandas/issues/21052
https://github.com/pandas-dev/pandas/issues/20968
https://github.com/pandas-dev/pandas/issues/17778
https://github.com/pandas-dev/pandas/issues/21144
https://github.com/pandas-dev/pandas/issues/21041
https://github.com/pandas-dev/pandas/issues/21244
https://github.com/pandas-dev/pandas/issues/21287

pandas: powerful Python data analysis toolkit, Release 0.23.4

* Bug in concat () where error was raised in concatenating Series with numpy scalar and tuple names
(GH21015)

* Bugin concat () warning message providing the wrong guidance for future behavior (GH21101)
Other
* Tab completion on Index in IPython no longer outputs deprecation warnings (GH21125)

* Bug preventing pandas being used on Windows without C++ redistributable installed (GH21106)

1.5 v0.23.0 (May 15, 2018)

This is a major release from 0.22.0 and includes a number of API changes, deprecations, new features, enhancements,
and performance improvements along with a large number of bug fixes. We recommend that all users upgrade to this
version.

Highlights include:
* Round-trippable JSON format with ‘table’ orient.
e Instantiation from dicts respects order for Python 3.6+.
* Dependent column arguments for assign.
* Merging / sorting on a combination of columns and index levels.
» Extending Pandas with custom types.
e Excluding unobserved categories from groupby.
* Changes to make output shape of DataFrame.apply consistent.

Check the API Changes and deprecations before updating.

Warning: Starting January 1, 2019, pandas feature releases will support Python 3 only. See Plan for dropping
Python 2.7 for more.

What’s new in v0.23.0

* New features
— JSON read/write round-trippable with orient="table"'
— .assign () accepts dependent arguments
— Merging on a combination of columns and index levels
— Sorting by a combination of columns and index levels
— Extending Pandas with Custom Types (Experimental)

— New observed keyword for excluding unobserved categories in groupby

Rolling/Expanding.apply() accepts raw=False to pass a Series to the function
— DataFrame.interpolate has gained the 1imit_area kwarg

— get_dummies now supports dt ype argument

Timedelta mod method

1.5. v0.23.0 (May 15, 2018) 9

https://github.com/pandas-dev/pandas/issues/21015
https://github.com/pandas-dev/pandas/issues/21101
https://github.com/pandas-dev/pandas/issues/21125
https://github.com/pandas-dev/pandas/issues/21106

pandas: powerful Python data analysis toolkit, Release 0.23.4

. rank () handles inf values when NaN are present
— Series.str.cat has gained the join kwarg
— DataFrame.astype performs column-wise conversion to Categorical
— Other Enhancements
* Backwards incompatible API changes
— Dependencies have increased minimum versions
— Instantiation from dicts preserves dict insertion order for python 3.6+
— Deprecate Panel
— pandas.core.common removals
— Changes to make output of DataFrame . apply consistent
— Concatenation will no longer sort
— Build Changes
— Index Division By Zero Fills Correctly
— Extraction of matching patterns from strings
— Default value for the ordered parameter of CategoricalDtype
— Better pretty-printing of DataFrames in a terminal
— Datetimelike API Changes
— Other API Changes
* Deprecations
* Removal of prior version deprecations/changes
* Performance Improvements
* Documentation Changes

* Bug Fixes

Categorical

Datetimelike

Timedelta

Timezones

Offsets

— Numeric
— Strings
— Indexing

Multilndex

- 1/0

Plotting

Groupby/Resample/Rolling

10 Chapter 1. What’s New

pandas: powerful Python data analysis toolkit, Release 0.23.4

— Sparse
— Reshaping
— Other

1.5.1 New features

1.5.1.1 JSON read/write round-trippable with orient="table’

A DataFrame can now be written to and subsequently read back via JSON while preserving metadata through usage
of the orient="table"' argument (see GH18912 and GH9146). Previously, none of the available orient values
guaranteed the preservation of dtypes and index names, amongst other metadata.

In [1]: df = pd.DataFrame({'foo': [1, 2, 3, 41,
: 'bar': ['a', 'b', 'c', 'd'],
'baz': pd.date_range('2018-01-01", freg='d', periods=4),
'qux': pd.Categorical(['a', 'b', 'c', 'c'])
}, index=pd.Index (range(4), name='idx"))

In [2]: df
Oout[2]:

foo bar baz qux
idx
0 1 a 2018-01-01 a
1 2 b 2018-01-02 b
2 3 c 2018-01-03 c
3 4 d 2018-01-04 c

In [3]: df.dtypes
R N N N N R R N N R N N N N R N N N N N N N N N R N N N N N R N N N N R N R R N N N N N R R R R R RN

—

foo int64
bar object
baz datetime64 [ns]
qux category

dtype: object
In [4]: df.to_json('test.json', orient='table')
In [5]: new_df = pd.read_json('test.json', orient='table")

In [6]: new_df

Out[6]:

foo bar baz qux
idx
0 1 a 2018-01-01 a
1 2 b 2018-01-02 b
2 3 c 2018-01-03 c
3 4 d 2018-01-04 c

In [7]: new_df.dtypes
R N N R N N R N R N N N N N R R R R R N N N N N N N R N N N N N N N N e S R R RN

—

foo int64

(continues on next page)

1.5. v0.23.0 (May 15, 2018) 11

AN

ANV

https://github.com/pandas-dev/pandas/issues/18912
https://github.com/pandas-dev/pandas/issues/9146

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

bar object
baz datetime64 [ns]
qux category

dtype: object

Please note that the string index is not supported with the round trip format, as it is used by default in write_json
to indicate a missing index name.

In [8]: df.index.name = 'index'
In [9]: df.to_json('test.json', orient='table')
In [10]: new_df = pd.read_json('test.json', orient='table')

In [11]: new_df

Out[11]:

foo bar baz qux
0 1 a 2018-01-01 a
1 2 b 2018-01-02 b
2 3 c 2018-01-03 c
3 4 d 2018-01-04 c

In [12]: new_df.dtypes
R R N N R R R N N N N N N N R R R N N R N N N N N N N R N N N N N N N N N N N S A R R RN

.
foo inte64
bar object
baz datetime64 [ns]
qux category

dtype: object

1.5.1.2 .assign () accepts dependent arguments

The DataFrame.assign () now accepts dependent keyword arguments for python version later than 3.6 (see also
PEP 468). Later keyword arguments may now refer to earlier ones if the argument is a callable. See the documentation
here (GH14207)

In [13]: df = pd.DataFrame({'A': [1, 2, 31})

In [14]: df

Out[14]:
A

0 1

1 2

2 3

In [15]: df.assign(B=df.A, C=lambda x:x['A']+ x['B'])
AAAL VLN Out [15] ¢

A B C
o 1 1 2
1 2 2 4
2 3 3 6

12 Chapter 1. What’s New

ANV

https://www.python.org/dev/peps/pep-0468/
https://github.com/pandas-dev/pandas/issues/14207

pandas: powerful Python data analysis toolkit, Release 0.23.4

Warning: This may subtly change the behavior of your code when you’re using .assign () to update an
existing column. Previously, callables referring to other variables being updated would get the “old” values

Previous Behavior:

In [2]: df = pd.DataFrame ({"A": [1, 2, 31})

In [3]: df.assign(A=lambda df: df.A + 1, C=lambda df: df.A * -1)

Out[3]:

A C
0 2 -1
1 3 -2
2 4 -3

New Behavior:

In [16]: df.assign(A=df.A+1, C= lambda df: df.Ax -1)

Out[16]:

A C
0 2 -2
1 3 -3
2 4 -4

1.5.1.3 Merging on a combination of columns and index levels

Strings passed to DataFrame.merge () asthe on, left_on, and right_on parameters may now refer to either
column names or index level names. This enables merging Dat aFrame instances on a combination of index levels
and columns without resetting indexes. See the Merge on columns and levels documentation section. (GH14355)

In [17]: left_index = pd.Index(['KO', 'KO', 'Kl', 'K2'], name='keyl')

In [18]: left = pd.DataFrame({'A': ['AO', 'Al', 'A2', 'A3'],
et 'B': ['BO', 'Bl', 'B2', 'B3'],
el 'key2': ['KO', 'K1', 'KO', 'K1'l},

e index=left_index)

In [19]: right_index = pd.Index(['KO', 'Kl1', 'K2', 'K2'], name='keyl")

In [20]: right = pd.DataFrame({'C': ['CO', 'Cl1', 'Cc2', 'C3'],
'D': ['DO', 'Dl1', 'D2', 'D3'],
e 'key2': ['KO', 'KO', 'KO', 'K1'l},
e index=right_index)

In [21]: left.merge(right, on=['keyl', 'key2'])
Out[21]:
A B key2 C D

keyl

KO A0 BO KO CO DO
K1 A2 B2 KO Cl1 D1
K2 A3 B3 K1 C3 D3

1.5. v0.23.0 (May 15, 2018) 13

https://github.com/pandas-dev/pandas/issues/14355

pandas: powerful Python data analysis toolkit, Release 0.23.4

1.5.1.4 Sorting by a combination of columns and index levels

Strings passed to DataFrame.sort_values () as the by parameter may now refer to either column names or
index level names. This enables sorting DataFrame instances by a combination of index levels and columns without
resetting indexes. See the Sorting by Indexes and Values documentation section. (GH14353)

Build MultiIndex
In [22]: idx = pd.MultiIndex.from_tuples([('a', 1), ('a', 2), ('a', 2),
e ("', 2y, (', 1), ('b', 1)1)

In [23]: idx.names = ['first', 'second']

Build DataFrame
In [24]: df_multi = pd.DataFrame({'A': np.arange(6, 0, -1)},
et index=1idx)

In [25]: df_multi

Out [25] :
A
first second
a 1 6
5
2 4
b 2 3
1 2
1 1

Sort by 'second' (index) and 'A' (column)
In [26]: df_multi.sort_values (by=['second', 'A'])

R N N R N N N R N N N N N N N N N N N N N N N R N N N N N R N N N R N R R N R N N A R R R R R RN
A
first second
b 1 1
1 2
a 1 6
b 2 3
a 2 4
2 5

1.5.1.5 Extending Pandas with Custom Types (Experimental)

Pandas now supports storing array-like objects that aren’t necessarily 1-D NumPy arrays as columns in a DataFrame or
values in a Series. This allows third-party libraries to implement extensions to NumPy’s types, similar to how pandas
implemented categoricals, datetimes with timezones, periods, and intervals.

As a demonstration, we’ll use cyberpandas, which provides an IPArray type for storing ip addresses.

In [1]: from cyberpandas import IPArray

In [2]: values = IPArray ([
OI
32322357717,
42540766452641154071740215577757643572

(continues on next page)

14 Chapter 1. What’s New

AN

https://github.com/pandas-dev/pandas/issues/14353
https://cyberpandas.readthedocs.io/en/latest/

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

IPArray isn’t a normal 1-D NumPy array, but because it’s a pandas ~pandas.api.extension.ExtensionArray, it can be
stored properly inside pandas’ containers.

In [3]: ser = pd.Series(values)

In [4]: ser

Out [4]:

0 0.0.0.0
1 192.168.1.1
2 2001:db8:85a3::8a2e:370:7334
dtype: ip

Notice that the dtype is ip. The missing value semantics of the underlying array are respected:

In [5]: ser.isna()

Out [5]:

0 True
1 False
2 False

dtype: bool

For more, see the extension types documentation. If you build an extension array, publicize it on our ecosystem page.

1.5.1.6 New observed keyword for excluding unobserved categories in groupby

Grouping by a categorical includes the unobserved categories in the output. When grouping by multiple categorical
columns, this means you get the cartesian product of all the categories, including combinations where there are no
observations, which can result in a large number of groups. We have added a keyword observed to control this
behavior, it defaults to observed=False for backward-compatiblity. (GH14942, GH8138, GH15217, GH17594,
GHS8669, GH20583, GH20902)

In [27]: catl = pd.Categorical(["a", "a", "b", "b"],
e categories=["a", "b", "z"], ordered=True)

In [28]: cat2 = pd.Categorical(["c", "d4", "c", "d"],
et categories=["c", "d", "y"], ordered=True)

In [29]: df = pd.DataFrame ({"A": catl, "B": cat2, "values": [1, 2, 3, 41})
In [30]: df['C'] = ['foo', 'bar'] x 2

In [31]: df

Out[31]:

A B wvalues C
0 a c 1 foo
1 a d 2 bar
2 b c 3 foo
3 b d 4 bar

To show all values, the previous behavior:

1.5. v0.23.0 (May 15, 2018) 15

https://github.com/pandas-dev/pandas/issues/14942
https://github.com/pandas-dev/pandas/issues/8138
https://github.com/pandas-dev/pandas/issues/15217
https://github.com/pandas-dev/pandas/issues/17594
https://github.com/pandas-dev/pandas/issues/8669
https://github.com/pandas-dev/pandas/issues/20583
https://github.com/pandas-dev/pandas/issues/20902

pandas: powerful Python data analysis toolkit, Release 0.23.4

In [32]: df.groupby(['A', 'B', 'C'], observed=False) .count ()
Out [32]:
values
A B C
a ¢ bar NaN
foo 1.0
d bar 1.0
foo NaN
y bar NaN
foo NaN
b ¢ bar NaN
y foo NaN
z C bar NaN
foo NaN
d bar NaN
foo NaN
y bar NaN
foo NaN
[18 rows x 1 columns]
To show only observed values:
In [33]: df.groupby(['A', 'B', 'C'], observed=True) .count ()
Out [33]:
values
A B C
a ¢ foo 1
d bar 1
b ¢ foo 1
d bar 1

For pivotting operations, this behavior is already controlled by the dropna keyword:

In [34]: catl = pd.Categorical(["a", "a", "b", "b"],

e categories=["a", "b", "z"], ordered=True)
In [35]: cat2 = pd.Categorical(["c", "d", "c", "d"],

..... categories=["c", "d", "y"], ordered=True)
In [36]: df = DataFrame ({"A": catl, "B": cat2, "values": [1, 2, 3, 41})
In [37]: df
Out[37]:

A B values
0 a c 1
1 a d 2
2 b c 3
3 b d 4
In [38]: pd.pivot_table(df, values='values', index=['A', 'B'],

..... dropna=True)
Out [38]:

(continues on next page)

16 Chapter 1. What’s New

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

values

Q.0 Q0w
Sw N

In [39]: pd.pivot_table(df, values='values', index=['A', 'B'],
e dropna=False)

N N N N N N N R N R N R N N N N N R N N N N N R R R R R R RN e i
values

A

a

Koo oK oK 0w
S
o

1.5.1.7 Rolling/Expanding.apply() accepts raw=False to pass a Series to the function

Series.rolling().apply(), DataFrame.rolling () .apply (), Series.expanding() .
apply (), and DataFrame.expanding () .apply () have gained a raw=None parameter. This is similar to
DataFame.apply (). This parameter, if True allows one to send a np.ndarray to the applied function. If
False a Series will be passed. The default is None, which preserves backward compatibility, so this will default
to True, sending an np.ndarray. In a future version the default will be changed to False, sending a Series.
(GH5071, GH20584)

In [40]: s = pd.Series(np.arange(5), np.arange(5) + 1)

In [41]: s
Out [41]:
0

g w N
Sw N

dtype: int64

Pass a Series:

In [42]: s.rolling(2, min_periods=1) .apply(lambda x: x.iloc[-1], raw=False)
Out [42]:
0.

g w N
w N

sy

0
0
0
.0
0
£

dtype: float64d

1.5. v0.23.0 (May 15, 2018) 17

https://github.com/pandas-dev/pandas/issues/5071
https://github.com/pandas-dev/pandas/issues/20584

pandas: powerful Python data analysis toolkit, Release 0.23.4

Mimic the original behavior of passing a ndarray:

In [43]: s.rolling(2, min_periods=1) .apply(lambda x: x[-1], raw=True)

Out [43]:
1 0.0
2 1.0
3 2.0
4 3.0
5 4.0

dtype: float64d

1.5.1.8 DataFrame.interpolate has gained the 1imit_area kwarg

DataFrame.interpolate () has gained a limit_area parameter to allow further control of which
NaN s are replaced. Use limit_area='inside' to fill only NaNs surrounded by valid values or use
limit_area='outside' to fill only NaN s outside the existing valid values while preserving those inside.
(GH16284) See the full documentation here.

In [44]: ser = pd.Series([np.nan, np.nan, 5, np.nan, np.nan, np.nan, 13, np.nan, np.
—nanl])

In [45]: ser
Out [45] :

NaN
NaN
5.0
NaN
NaN
NaN
13.0
NaN
NaN
dtype: floaté64

O J o U W N O

Fill one consecutive inside value in both directions

In [46]: ser.interpolate(limit_direction='both', limit_area='inside', limit=1)
Out [46] :

NaN

NaN

w Jo U WN R O
Z
Q
=z

NaN
dtype: float64

Fill all consecutive outside values backward

In [47]: ser.interpolate(limit_direction='backward', limit_area='outside')

Oout [47]:

0 5.0
1 5.0
2 5.0

(continues on next page)

18 Chapter 1. What’s New

https://github.com/pandas-dev/pandas/issues/16284

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

NaN
NaN
NaN
13.0
NaN
NaN
dtype: float64d

QO J oy U1 b W

Fill all consecutive outside values in both directions

In [48]: ser.interpolate(limit_direction='both', limit_area='outside")
Out [48]:
5.
5.
5.
NaN
NaN
NaN
13.0
13.0
13.0
dtype: float64

o O O

O J o U W N O

1.5.1.9 get_dummies nhow supports dtype argument

The get_dummies () now accepts a dt ype argument, which specifies a dtype for the new columns. The default
remains uint8. (GH18330)

In [49]: df = pd.DataFrame({'a': [1, 2], 'b': [3, 4], 'c': [5, 61})

In [50]: pd.get_dummies (df, columns=['c']) .dtypes

Out [50] :

a int64
b inte64
c_5 uint8
c_6 uint8

dtype: object

In [51]: pd.get_dummies (df, columns=['c'], dtype=bool) .dtypes
ATTTTTTTVTETEET VRV A VNN NN NN\ OuE [51] -
a int64

b inte64
c_5 bool
c_6 bool

dtype: object

1.5.1.10 Timedelta mod method

mod (%) and divmod operations are now defined on Timedelta objects when operating with either timedelta-like
or with numeric arguments. See the documentation here. (GH19365)

In [52]: td = pd.Timedelta (hours=37)

(continues on next page)

1.5. v0.23.0 (May 15, 2018) 19

https://github.com/pandas-dev/pandas/issues/18330
https://github.com/pandas-dev/pandas/issues/19365

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

In [53]: td % pd.Timedelta (minutes=45)
Out [53]: Timedelta ('O days 00:15:00")

1.5.1.11 .rank () handles inf values when NaN are present

In previous versions, . rank () would assign inf elements NaN as their ranks. Now ranks are calculated properly.
(GH6945)

In [54]: s = pd.Series([-np.inf, 0, 1, np.nan, np.inf])

In [55]: s
Out [55] :

—-inf
0.000000
1.000000

NaN
inf
dtype: float64d

S w N PO

Previous Behavior:

In [11]: s.rank()
Out[11]:

1.0

2.0

3.0

NaN

NaN

dtype: float64

S W N RO

Current Behavior:

In [56]: s.rank()
Out [56] :

1.0

2.0

3.0

NaN

4.0

dtype: float64

Sw N RO

Furthermore, previously if you rank inf or —inf values together with NaN values, the calculation won’t distinguish
NaN from infinity when using ‘top’ or ‘bottom’ argument.

In [57]: s = pd.Series([np.nan, np.nan, -np.inf, -np.inf])
In [58]: s

Out [58]:

0 NaN

1 NaN

2 —-inf

3 —-inf

dtype: float64

Previous Behavior:

20 Chapter 1. What’s New

https://github.com/pandas-dev/pandas/issues/6945

pandas: powerful Python data analysis toolkit, Release 0.23.4

In [15]: s.rank(na_option='top')

Out [15]:
0 2.5
1 2.5
2 2.5
3 2.5
dtype: float64

Current Behavior:

In [59]: s.rank(na_option='top')

Out [59]:
0 1.5
1 1.5
2 3.5
3 3.5
dtype: float64d

These bugs were squashed:

e Bugin DataFrame.rank () and Series.rank () when method="'dense"' and pct=True in which
percentile ranks were not being used with the number of distinct observations (GH15630)

* Bugin Series.rank () and DataFrame.rank () when ascending="'False"' failed to return correct
ranks for infinity if NaN were present (GH19538)

* Bugin DataFrameGroupBy.rank () where ranks were incorrect when both infinity and NaN were present
(GH20561)

1.5.1.12 Series.str.cat has gained the join kwarg

Previously, Series.str.cat () did not — in contrast to most of pandas — align Series on their index before
concatenation (see GH18657). The method has now gained a keyword join to control the manner of alignment, see
examples below and here.

In v.0.23 join will default to None (meaning no alignment), but this default will change to ' left ' in a future version
of pandas.

In [60]: s = pd.Series(['a', 'b', 'c', 'd'])

In [61]: t

pd.Series(['b', 'd', 'e', 'c']l, index=[1, 3, 4, 2])

In [62]: s.str.cat(t)

Out [62] :
0 ab
1 bd
2 ce
3 dc

dtype: object

In [63]: s.str.cat(t, join='left', na_rep='-")
ALV Oue [63] ¢

0 a—
1 bb
2 cc
3 dd

dtype: object

1.5. v0.23.0 (May 15, 2018) 21

https://github.com/pandas-dev/pandas/issues/15630
https://github.com/pandas-dev/pandas/issues/19538
https://github.com/pandas-dev/pandas/issues/20561
https://github.com/pandas-dev/pandas/issues/18657

pandas: powerful Python data analysis toolkit, Release 0.23.4

Furthermore, Series.str.cat () now works for CategoricalIndex as well (previously raised a
ValueError; see GH20842).

1.5.1.13 DataFrame.astype performs column-wise conversion to Categorical

DataFrame.astype () can now perform column-wise conversion to Categorical by supplying the string
'category' or a CategoricalDtype. Previously, attempting this would raise a Not ImplementedError.
See the Object Creation section of the documentation for more details and examples. (GH12860, GH18099)

Supplying the string 'category' performs column-wise conversion, with only labels appearing in a given column
set as categories:

In [64]: df = pd.DataFrame({'A': list('abca'), 'B': list ('bccd')})

In [65]: df = df.astype('category')

In [66]: df['A'].dtype
Out[66]: CategoricalDtype (categories=['a', 'b', 'c'], ordered=False)

In [67]: df['B'].dtype
ATV LD LN NN NN\ OuE [67]
—CategoricalDtype (categories=['b', 'c', 'd'], ordered=False)

Supplying a CategoricalDtype will make the categories in each column consistent with the supplied dtype:

In [68]: from pandas.api.types import CategoricalDtype

In [69]: df = pd.DataFrame({'A': list('abca'), 'B': list('bccd')})

In [70]: cdt = CategoricalDtype (categories=1list ('abcd'), ordered=True)
In [71]: df = df.astype (cdt)

In [72]: df['A'] .dtype
Out [72]: CategoricalDtype (categories=['a', 'b', 'c', 'd'], ordered=True)

In [73]: df['B'].dtype
AT NN Out [73T 2

—CategoricalDtype (categories=['a', 'b', 'c', 'd']l, ordered=True)

1.5.1.14 Other Enhancements

e Unary + now permitted for Series and DataFrame as numeric operator (GH16073)
* Better support for to_excel () output with the x1sxwriter engine. (GH16149)
* pandas.tseries.frequencies.to_offset () now accepts leading ‘+” signs e.g. ‘+1h’. (GHI8171)

e MultiIndex.unique () now supports the level= argument, to get unique values from a specific index
level (GH17896)

e pandas.io.formats.style.Stylernowhasmethod hide_index () to determine whether the index
will be rendered in output (GH14194)

* pandas.io.formats.style.Styler now has method hide_columns () to determine whether
columns will be hidden in output (GH14194)

22 Chapter 1. What’s New

https://github.com/pandas-dev/pandas/issues/20842
https://github.com/pandas-dev/pandas/issues/12860
https://github.com/pandas-dev/pandas/issues/18099
https://github.com/pandas-dev/pandas/issues/16073
https://github.com/pandas-dev/pandas/issues/16149
https://github.com/pandas-dev/pandas/issues/18171
https://github.com/pandas-dev/pandas/issues/17896
https://github.com/pandas-dev/pandas/issues/14194
https://github.com/pandas-dev/pandas/issues/14194

pandas: powerful Python data analysis toolkit, Release 0.23.4

Improved wording of ValueError raisedin to_datetime () when unit= is passed with a non-convertible
value (GH14350)

Series.fillna () now accepts a Series or a dict as a value for a categorical dtype (GH17033)

pandas.read_clipboard () updated to use qtpy, falling back to PyQt5 and then PyQt4, adding compati-
bility with Python3 and multiple python-qt bindings (GH17722)

Improved wording of ValueError raised in read_csv () when the usecols argument cannot match all
columns. (GH17301)

DataFrame.corrwith () now silently drops non-numeric columns when passed a Series. Before, an ex-
ception was raised (GH18570).

IntervalIndex now supports time zone aware Interval objects (GH18537, GH18538)

Series () /| DataFrame () tab completion also returns identifiers in the first level of a MultiTIndex ().
(GH16326)

read_excel () has gained the nrows parameter (GH16645)

DataFrame.append () can now in more cases preserve the type of the calling dataframe’s columns (e.g. if
both are CategoricalIndex) (GH18359)

DataFrame.to_json () and Series.to_json () now accept an index argument which allows the
user to exclude the index from the JSON output (GH17394)

IntervalIndex.to_tuples () has gained the na_tuple parameter to control whether NA is returned
as a tuple of NA, or NA itself (GH18756)

Categorical.rename_categories, CategoricalIndex.rename_categories and Series.
cat.rename_categories can now take a callable as their argument (GH18862)

Interval and IntervalIndex have gained a length attribute (GH18789)

Resampler objects now have a functioning pipe method. Previously, calls to pipe were diverted to the
mean method (GH17905).

is_scalar () now returns True for DateOf fset objects (GH18943).
DataFrame.pivot () now accepts a list for the values= kwarg (GH17160).

Added pandas.api.extensions.register_dataframe_accessor(), pandas.
api.extensions.register _series_accessor(), and pandas.api.extensions.
register_index_accessor (), accessor for libraries downstream of pandas to register custom
accessors like . cat on pandas objects. See Registering Custom Accessors for more (GH14781).

IntervalIndex.astype now supports conversions between subtypes when passed an IntervalDtype
(GH19197)

IntervalIndex and its associated constructor methods (from_arrays, from_breaks,
from_tuples) have gained a dt ype parameter (GH19262)

Added pandas.core.groupby.SeriesGroupBy.1is_monotonic_increasing () and pandas.
core.groupby.SeriesGroupBy.1s_monotonic_decreasing () (GH17015)

For subclassed DataFrames, DataFrame.apply () will now preserve the Series subclass (if defined)
when passing the data to the applied function (GH19822)

DataFrame. from_dict () now accepts a columns argument that can be used to specify the column names
when orient="index" is used (GH18529)

Added option display.html.use_mathjax so MathJax can be disabled when rendering tables in
Jupyter notebooks (GH19856, GH19824)

1.5.

v0.23.0 (May 15, 2018) 23

https://github.com/pandas-dev/pandas/issues/14350
https://github.com/pandas-dev/pandas/issues/17033
https://github.com/pandas-dev/pandas/issues/17722
https://github.com/pandas-dev/pandas/issues/17301
https://github.com/pandas-dev/pandas/issues/18570
https://github.com/pandas-dev/pandas/issues/18537
https://github.com/pandas-dev/pandas/issues/18538
https://github.com/pandas-dev/pandas/issues/16326
https://github.com/pandas-dev/pandas/issues/16645
https://github.com/pandas-dev/pandas/issues/18359
https://github.com/pandas-dev/pandas/issues/17394
https://github.com/pandas-dev/pandas/issues/18756
https://github.com/pandas-dev/pandas/issues/18862
https://github.com/pandas-dev/pandas/issues/18789
https://github.com/pandas-dev/pandas/issues/17905
https://github.com/pandas-dev/pandas/issues/18943
https://github.com/pandas-dev/pandas/issues/17160
https://github.com/pandas-dev/pandas/issues/14781
https://github.com/pandas-dev/pandas/issues/19197
https://github.com/pandas-dev/pandas/issues/19262
https://github.com/pandas-dev/pandas/issues/17015
https://github.com/pandas-dev/pandas/issues/19822
https://github.com/pandas-dev/pandas/issues/18529
https://www.mathjax.org/
https://github.com/pandas-dev/pandas/issues/19856
https://github.com/pandas-dev/pandas/issues/19824

pandas: powerful Python data analysis toolkit, Release 0.23.4

* DataFrame.replace () now supports the met hod parameter, which can be used to specify the replacement
method when to_replace is a scalar, list or tuple and value is None (GH19632)

* Timestamp.month_name (), DatetimeIndex.month_name (), and Series.dt.
month_name () are now available (GH12805)

* Timestamp.day_name () and DatetimeIndex.day_name () are now available to return day names
with a specified locale (GH128006)

* DataFrame.to_sqgl () now performs a multivalue insert if the underlying connection supports itk
rather than inserting row by row. SQLAlchemy dialects supporting multivalue inserts include: mysqgl,
postgresql, sqlite and any dialect with supports_multivalues_insert. (GHI14315, GH8953)

* read_html () now accepts a displayed_only keyword argument to controls whether or not hidden ele-
ments are parsed (True by default) (GH20027)

* read_html () now reads all <tbody> elements in a <table>, not just the first. (GH20690)

* quantile() and quantile() now accept the interpolation keyword, linear by default
(GH20497)

e zip compression is supported via compression=zip in DataFrame.to_pickle(), Series.
to_pickle(), DataFrame.to_csv(), Series.to_csv (), DataFrame.to_json(), Series.
to_json (). (GH17778)

* WeekOfMonth constructor now supports n=0 (GH20517).
* DataFrame and Series now support matrix multiplication (@) operator (GH10259) for Python>=3.5

» Updated DataFrame.to_gbg() and pandas.read_gbg () signature and documentation to reflect
changes from the Pandas-GBQ library version 0.4.0. Adds intersphinx mapping to Pandas-GBQ library.
(GH20564)

* Added new writer for exporting Stata dta files in version 117, StataWriter117. This format supports
exporting strings with lengths up to 2,000,000 characters (GH16450)

* to_hdf () and read _hdf () now accept an errors keyword argument to control encoding error handling
(GH20835)

e cut () has gained the duplicates="raise'| "'drop' option to control whether to raise on duplicated
edges (GH20947)

* date_range (), timedelta_range (),and interval_ range () now return a linearly spaced index if
start, stop, and periods are specified, but freq is not. (GH20808, GH20983, GH20976)

1.5.2 Backwards incompatible API changes

1.5.2.1 Dependencies have increased minimum versions

We have updated our minimum supported versions of dependencies (GH15184). If installed, we now require:

Package Minimum Version | Required | Issue

python-dateutil | 2.5.0 X GH15184
openpyxl 24.0 GHI15184
beautifulsoup4 | 4.2.1 GH20082
setuptools 24.2.0 GH20698

24 Chapter 1. What’s New

https://github.com/pandas-dev/pandas/issues/19632
https://github.com/pandas-dev/pandas/issues/12805
https://github.com/pandas-dev/pandas/issues/12806
https://github.com/pandas-dev/pandas/issues/14315
https://github.com/pandas-dev/pandas/issues/8953
https://github.com/pandas-dev/pandas/issues/20027
https://github.com/pandas-dev/pandas/issues/20690
https://github.com/pandas-dev/pandas/issues/20497
https://github.com/pandas-dev/pandas/issues/17778
https://github.com/pandas-dev/pandas/issues/20517
https://github.com/pandas-dev/pandas/issues/10259
https://github.com/pandas-dev/pandas/issues/20564
https://github.com/pandas-dev/pandas/issues/16450
https://github.com/pandas-dev/pandas/issues/20835
https://github.com/pandas-dev/pandas/issues/20947
https://github.com/pandas-dev/pandas/issues/20808
https://github.com/pandas-dev/pandas/issues/20983
https://github.com/pandas-dev/pandas/issues/20976
https://github.com/pandas-dev/pandas/issues/15184
https://github.com/pandas-dev/pandas/issues/15184
https://github.com/pandas-dev/pandas/issues/15184
https://github.com/pandas-dev/pandas/issues/20082
https://github.com/pandas-dev/pandas/issues/20698

pandas: powerful Python data analysis toolkit, Release 0.23.4

1.5.2.2 Instantiation from dicts preserves dict insertion order for python 3.6+

Until Python 3.6, dicts in Python had no formally defined ordering. For Python version 3.6 and later, dicts are ordered
by insertion order, see PEP 468. Pandas will use the dict’s insertion order, when creating a Series or DataFrame
from a dict and you’re using Python version 3.6 or higher. (GH19884)

Previous Behavior (and current behavior if on Python < 3.6):

pd.Series ({'Income': 2000,

'Expenses': -1500,
'Taxes': -200,
'Net result': 300})
Expenses -1500
Income 2000
Net result 300
Taxes -200

dtype: int64

Note the Series above is ordered alphabetically by the index values.

New Behavior (for Python >= 3.6):

In [74]: pd.Series({'Income': 2000,
et 'Expenses': -1500,
e 'Taxes': -200,
e '"Net result': 300})

Out[74]:

Income 2000
Expenses -1500
Taxes =200
Net result 300

dtype: into64

Notice that the Series is now ordered by insertion order. This new behavior is used for all relevant pandas types
(Series,DataFrame, SparseSeries and SparseDataFrame).

If you wish to retain the old behavior while using Python >= 3.6, you can use . sort_index ():

In [75]: pd.Series ({'Income': 2000,
e 'Expenses': -1500,
e 'Taxes': =200,
e "Net result': 300}).sort_index ()

Out [75] :

Expenses -1500
Income 2000
Net result 300
Taxes -200

dtype: into4

1.5.2.3 Deprecate Panel

Panel was deprecated in the 0.20.x release, showing as a DeprecationWarning. Using Panel will now show a
FutureWarning. The recommended way to represent 3-D data are withaMultiIndex onaDataFrame viathe
to_frame () or with the xarray package. Pandas provides a to_xarray () method to automate this conversion.
For more details see Deprecate Panel documentation. (GH13563, GH18324).

1.5. v0.23.0 (May 15, 2018) 25

https://www.python.org/dev/peps/pep-0468/
https://github.com/pandas-dev/pandas/issues/19884
http://xarray.pydata.org/en/stable/
https://github.com/pandas-dev/pandas/issues/13563
https://github.com/pandas-dev/pandas/issues/18324

pandas: powerful Python data analysis toolkit, Release 0.23.4

In [76]: p = tm.makePanel ()

In [77]: p

Oout[77]:

<class 'pandas.core.panel.Panel'>

Dimensions: 3 (items) x 3 (major_axis) x 4 (minor_axis)
Items axis: ItemA to ItemC

Major_axis axis: 2000-01-03 00:00:00 to 2000-01-05 00:00:00
Minor_axis axis: A to D

Convert to a Multilndex DataFrame

In [78]: p.to_frame()

Oout [78]:
ItemA ItemB ItemC
major minor
2000-01-03 A 1.474071 -0.964980 -1.197071
B 0.781836 1.846883 -0.858447
C 2.353925 -1.717693 0.384316
D -0.744471 0.901805 0.476720
2000-01-04 A -0.064034 -0.845696 -1.066969
B -1.071357 -1.328865 0.306996
C 0.583787 0.888782 1.574159
D 0.758527 1.171216 0.473424
2000-01-05 A -1.282782 -1.340896 -0.303421
B 0.441153 1.682706 -0.028665
C 0.221471 0.228440 1.588931
D 1.729689 0.520260 -0.242861

Convert to an xarray DataArray

In [79]: p.to_xarray()

Oout [79]:
<xarray.DataArray (items: 3, major_axis: 3, minor_axis: 4)>
array ([[[1.474071, 0.781836, 2.353925, -0.744471],

[-0.064034, -1.071357, 0.583787, 0.758527],
[-1.282782, 0.441153, 0.221471, 1.729689]1],

0.96498 , 1.846883, -1.717693, 0.901805],
[-0.845696, -1.328865, 0.888782, 1.171216],
1.340896, 1.682706, 0.22844 , 0.52026 1],

[[-1.197071, -0.858447, 0.384316, 0.476¢72 1,
[-1.066969, 0.306996, 1.574159, 0.473424],
[-0.303421, -0.028665, 1.588931, -0.242861111)

Coordinates:
* ltems (items) object 'ItemA' 'ItemB' 'ItemC'
* major_axis (major_axis) datetime64[ns] 2000-01-03 2000-01-04 2000-01-05
* minor_axis (minor_axis) object 'A' 'B' 'C' 'D'

1.5.2.4 pandas.core.common removals

The following error & warning messages are removed from pandas . core.common (GH13634, GH19769):
* PerformanceWarning

* UnsupportedFunctionCall

26 Chapter 1. What’s New

https://github.com/pandas-dev/pandas/issues/13634
https://github.com/pandas-dev/pandas/issues/19769

pandas: powerful Python data analysis toolkit, Release 0.23.4

* UnsortedIndexError
e AbstractMethodError

These are available from import from pandas.errors (since 0.19.0).

1.5.2.5 Changes to make output of DataFrame.apply consistent

DataFrame.apply () was inconsistent when applying an arbitrary user-defined-function that returned a list-like
with axis=1. Several bugs and inconsistencies are resolved. If the applied function returns a Series, then pandas will
return a DataFrame; otherwise a Series will be returned, this includes the case where a list-like (e.g. tuple or 1ist
is returned) (GH16353, GH17437, GH17970, GH17348, GH17892, GH18573, GH17602, GH18775, GH18901,
GH18919).

In [80]: df = pd.DataFrame(np.tile(np.arange(3), 6).reshape(6, -1) + 1, columns=['A",
‘—)'B', ICIJ)

In [81]: df

Out [81]:

A B C
0 1 2 3
1 1 2 3
2 1 2 3
31 2 3
4 1 2 3
5 1 2 3

Previous Behavior: if the returned shape happened to match the length of original columns, this would return a
DataFrame. If the return shape did not match, a Series with lists was returned.

In [3]: df.apply(lambda x: [1, 2, 3], axis=l)
out[3]:
A B C
o 1 2 3
1 1 2 3
2 1 2 3
31 2 3
4 1 2 3
5 1 2 3

In [4]: df.apply(lambda x: [1, 2], axis=l1)
Out[4]:
[11
[ll
[1I
[11
[ll
[1, 2]

dtype: object

NN DN

]
]
]
]
]

(G ROV NV N @)

New Behavior: When the applied function returns a list-like, this will now always return a Series.

In [82]: df.apply(lambda x: [1, 2, 3], axis=1)

Oout [82]:

0 (1, 2, 3]
1 (1, 2, 3]
2 (1, 2, 3]

(continues on next page)

1.5. v0.23.0 (May 15, 2018) 27

https://github.com/pandas-dev/pandas/issues/16353
https://github.com/pandas-dev/pandas/issues/17437
https://github.com/pandas-dev/pandas/issues/17970
https://github.com/pandas-dev/pandas/issues/17348
https://github.com/pandas-dev/pandas/issues/17892
https://github.com/pandas-dev/pandas/issues/18573
https://github.com/pandas-dev/pandas/issues/17602
https://github.com/pandas-dev/pandas/issues/18775
https://github.com/pandas-dev/pandas/issues/18901
https://github.com/pandas-dev/pandas/issues/18919

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

3 [1,
4 (1, 2, 3]
5 (1, 2, 31
dtype: object

2, 3]

In [83]: df.apply(lambda x: [1, 2], axis=1)
RN N N N N N N R N N R N N N N N N N N N N N N R R N N N N N R N N N N N N R N N N N N A R R R R RN N

4

’

NN NN DN

]
]
]
]
]

4
14 21
object

O W N PO

(1
(1
(1,
(1
(1
(1

dtype:

To have expanded columns, you can use result_type='expand'

In [84]: df.apply(lambda x: [1, 2, 3], axis=1, result_type='expand')
Oout [84]:
o 1 2
0 1 2 3
1 1 2 3
2 1 2 3
31 2 3
4 1 2 3
5 1 2 3

To broadcast the result across the original columns (the old behaviour for list-likes of the correct length), you can use
result_type='broadcast'. The shape must match the original columns.

In [85]: df.apply(lambda x: [1, 2, 3], axis=1, result_type='broadcast')
Out [85] :
A B C
0 1 2 3
11 2 3
2 1 2 3
31 2 3
4 1 2 3
5 1 2 3

Returning a Series allows one to control the exact return structure and column names:

In [86]: df.apply(lambda x: Series([1, 2, 3], index=['D', 'E', 'F']), axis=l)
Out [86] :
D E F
o 1 2 3
1 1 2 3
2 1 2 3
31 2 3
4 1 2 3
5 1 2 3
28 Chapter 1. What’s New

AUV

pandas: powerful Python data analysis toolkit, Release 0.23.4

1.5.2.6 Concatenation will no longer sort

In a future version of pandas pandas.concat () will no longer sort the non-concatenation axis when it is not
already aligned. The current behavior is the same as the previous (sorting), but now a warning is issued when sort is
not specified and the non-concatenation axis is not aligned (GH4588).

In [87]: dfl = pd.DataFrame({"a": [1, 2], "b": [1, 2]}, columns=['b', 'a'])

In [88]: df2

pd.DataFrame ({"a": [4, 51})

In [89]: pd.concat ([dfl, df2])

Out [89]:
a b
0 1 1.0
1 2 2.0
0 4 NaN
1 5 NaN

To keep the previous behavior (sorting) and silence the warning, pass sort=True

In [90]: pd.concat ([dfl, df2], sort=True)

Out[90]:
a b
0 1 1.0
1 2 2.0
0 4 NaN
1 5 NaN

To accept the future behavior (no sorting), pass sort=False

Note that this change also applies to DataFrame. append (), which has also received a sort keyword for control-
ling this behavior.

1.5.2.7 Build Changes

* Building pandas for development now requires cython >= 0.24 (GH18613)
* Building from source now explicitly requires setuptools in setup.py (GH18113)

» Updated conda recipe to be in compliance with conda-build 3.0+ (GH18002)

1.5.2.8 Index Division By Zero Fills Correctly

Division operations on Index and subclasses will now fill division of positive numbers by zero with np . inf, division
of negative numbers by zero with —np.inf and 0 / 0 with np.nan. This matches existing Series behavior.
(GH19322, GH19347)

Previous Behavior:

In [6]: index = pd.Int64Index([-1, 0, 11])

In [7]: index / O
Out[7]: Int64Index ([0, 0, 0], dtype='int64d'")

Previous behavior yielded different results depending on the type of zero in the_
—divisor

(continues on next page)

1.5. v0.23.0 (May 15, 2018) 29

https://github.com/pandas-dev/pandas/issues/4588
https://github.com/pandas-dev/pandas/issues/18613
https://github.com/pandas-dev/pandas/issues/18113
https://github.com/pandas-dev/pandas/issues/18002
https://github.com/pandas-dev/pandas/issues/19322
https://github.com/pandas-dev/pandas/issues/19347

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

In [8]: index / 0.0
Out[8]: Float64Index([-inf, nan, inf], dtype='floato64d')

In [9]: index = pd.UInt64Index ([0, 117)

In [10]: index / np.array ([0, 0], dtype=np.uint64)
Out[10]: UInt64Index ([0, 0], dtype='uinted'")

In [11]: pd.RangeIndex (1, 5) / O
ZeroDivisionError: integer division or modulo by zero

Current Behavior:

In [91]: index = pd.Int64Index([-1, 0, 11)

division by zero gives -infinity where negative, +infinity where positive, and NaN_
—~for 0 / O

In [92]: index / O

Out[92]: Float64Index([—-inf, nan, inf], dtype='float64d'")

The result of division by zero should not depend on whether the zero is int or float
In [93]: index / 0.0

AT L L A DV VAN AN AN NN NANNNNNNNOut [93] ¢ Float64Index ([-inf, |
—nan, inf], dtype='float64")

In [94]: index = pd.UInt64Index ([0, 17])

In [95]: index / np.array ([0, 0], dtype=np.uint64)
Out[95]: Float64Index ([nan, inf], dtype='float64d')

In [96]: pd.RangeIndex (1, 5) / O
AT TV DDV VAV A NV NN\ Out [96] ¢ Float64Index ([inf, inf, |
—inf, inf], dtype='float64"')

1.5.2.9 Extraction of matching patterns from strings

By default, extracting matching patterns from strings with str.extract () used to return a Series if a sin-
gle group was being extracted (a DataFrame if more than one group was extracted). As of Pandas 0.23.0 str.
extract () always returns a DataFrame, unless expand is set to False. Finallay, None was an accepted value
for the expand parameter (which was equivalent to False), but now raises a ValueError. (GH11386)

Previous Behavior:

In [1]: s = pd.Series(['number 10', '12 eggs'])
In [2]: extracted = s.str.extract ('.x(\d\d).*")

In [3]: extracted

Oout [3]:
0 10
1 12

dtype: object

In [4]: type(extracted)
Out [4]:
pandas.core.series.Series

30 Chapter 1. What’s New

https://github.com/pandas-dev/pandas/issues/11386

pandas: powerful Python data analysis toolkit, Release 0.23.4

New Behavior:

In [97]: s = pd.Series(['number 10', '12 eggs'])
In [98]: extracted = s.str.extract ('.x (\d\d).x")

In [99]: extracted

Out[99]:
0

0 10

1 12

In [100]: type(extracted)
ANV AN NN AN\ \Out [100] ¢ pandas.core.frame.DataFrame

To restore previous behavior, simply set expand to False:

In [101]: s = pd.Series(['number 10', '12 eggs'])
In [102]: extracted = s.str.extract('.x(\d\d).x', expand=False)

In [103]: extracted

Out[103]:
0 10
1 12

dtype: object

In [104]: type (extracted)
ANV VLV VUV VNN NN NN\ NOut [104] ¢ pandas.core.series.Series

1.5.2.10 Default value for the ordered parameter of CategoricalDtype

The default value of the ordered parameter for CategoricalDtype has changed from False to None to allow
updating of categories without impacting ordered. Behavior should remain consistent for downstream objects,
such as Categorical (GH18790)

In previous versions, the default value for the ordered parameter was False. This could potentially lead
to the ordered parameter unintentionally being changed from True to False when users attempt to update
categories if ordered is not explicitly specified, as it would silently default to False. The new behavior
for ordered=None is to retain the existing value of ordered.

New Behavior:

In [105]: from pandas.api.types import CategoricalDtype
In [106]: cat = pd.Categorical (list ('abcaba'), ordered=True, categories=list('cba'))

In [107]: cat

Out[107]:
[a, b, ¢, a, b, al
Categories (3, object): [c < b < a]

In [108]: cdt = CategoricalDtype (categories=list ('cbad'))

In [109]: cat.astype (cdt)
Out[109]:

(continues on next page)

1.5. v0.23.0 (May 15, 2018) 31

https://github.com/pandas-dev/pandas/issues/18790

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

[al bl C, a, b, a}
Categories (4, object): [c < b < a < d]

Notice in the example above that the converted Categorical has retained ordered=True. Had the default
value for ordered remained as False, the converted Categorical would have become unordered, despite
ordered=False never being explicitly specified. To change the value of ordered, explicitly pass it to the new
dtype, e.g. CategoricalDtype (categories=1list ('cbad'), ordered=False).

Note that the unintenional conversion of ordered discussed above did not arise in previous versions due to separate
bugs that prevented astype from doing any type of category to category conversion (GH10696, GH18593). These
bugs have been fixed in this release, and motivated changing the default value of ordered.

1.5.2.11 Better pretty-printing of DataFrames in a terminal

Previously, the default value for the maximum number of columns was pd.options.display.
max_columns=20. This meant that relatively wide data frames would not fit within the terminal width, and pandas
would introduce line breaks to display these 20 columns. This resulted in an output that was relatively difficult to read:

@eCe Terminal
In [1]: import pandas as pd =]
In [2]: import numpy as np
In [2]: pd.DataFrame(np.random.rand(5, 10))
Out[3]:
8 1 2 3 4 5 Y
B B.146481 ©.933153 @.577028 @.617467 @.155179 @.929250 0.603B45
1 @.670827 @.BB5184 @.152009 @.028042 ©.01628B3 O.B437B6 @.B24537
2 B.261850 ©.372457 0.281256 @.461355 @.905%4714 @.763125 O0.0B6O964
3 A.7B9373 B.357872 0.8094504 0.434197 ©.266116 ©.861527 @.375119
4 B.256386 0.407358 0.7405%3 0.B82001% ©.962911 0.647236 0.323111
7 B 9
2 9.8p04801 ©.659965 @.985178
1 B.517137 8.673154 0.B29435
2 9.154479 B.4B6358B8 B8.252917
3 B.266601 ©.146791 @.776635
4 @A.607885 ©.200158 @.374B8092
In [4]: I

If Python runs in a terminal, the maximum number of columns is now determined automatically so that the printed data
frame fits within the current terminal width (pd.options.display.max_columns=0) (GH17023). If Python
runs as a Jupyter kernel (such as the Jupyter QtConsole or a Jupyter notebook, as well as in many IDEs), this value
cannot be inferred automatically and is thus set to 20 as in previous versions. In a terminal, this results in a much nicer
output:

32 Chapter 1. What’s New

https://github.com/pandas-dev/pandas/issues/10696
https://github.com/pandas-dev/pandas/issues/18593
https://github.com/pandas-dev/pandas/issues/17023

pandas: powerful Python data analysis toolkit, Release 0.23.4

eC e Terminal
In [1]: import pandas as pd =]
In [2]: import numpy as np
In [3]: pd.DataFrame(np.random.rand(5, 18)
Out[3]:

L} 1 2 3 wes 3] 7 B g
B 9.187275 0.354007 0.824795 B8.551881 B.BB9355 B.6B0411 ©.5B6967 @,293506
1 ©.466061 ©.402324 0.430665 0.193347 B.621158 ®@.756752 ©.217444 @,.558897
2 9.918215 ©.863201 0.1592118 @.812359 2.825381 @.1B85118 @.B209B5 @.20B8302
3 9.491853 0.612078 8.7911%% B@.5B88158 B.841184 B.6512280 ©.0256B7 ©.443603
4 B.171760 ©.921853 0.063030 0.448301 B.26B901 ©.292B62 O.4205B82 O.60B949

[5 rows x 18 columns]

In [41: i

Note that if you don’t like the new default, you can always set this option yourself. To revert to the old setting, you
can run this line:

pd.options.display.max_columns = 20

1.5.2.12 Datetimelike APl Changes

The default Timedelta constructor now accepts an ISO 8601 Duration string as an argument
(GH19040)

e Subtracting NaT from a Series with dtype='datetime64[ns]' returns a Series with
dtype='timedelta64 [ns] ' instead of dtype="datetime64 [ns] ' (GHI18808)

e Addition or subtraction of NaT from TimedeltaIndex will return TimedeltaIndex instead of
DatetimeIndex (GH19124)

* DatetimeIndex.shift () and TimedeltaIndex.shift () will now raise NullFrequencyError
(which subclasses ValueError, which was raised in older versions) when the index object frequency is None
(GH19147)

¢ Addition and subtraction of NaN from a Series with dtype="timedelta64[ns]"' will raise a
TypeError instead of treating the NaN as NaT (GH19274)

* NaT division with datetime.timedelta will now return NaN instead of raising (GH17876)

1.5. v0.23.0 (May 15, 2018) 33

https://github.com/pandas-dev/pandas/issues/19040
https://github.com/pandas-dev/pandas/issues/18808
https://github.com/pandas-dev/pandas/issues/19124
https://github.com/pandas-dev/pandas/issues/19147
https://github.com/pandas-dev/pandas/issues/19274
https://docs.python.org/3/library/datetime.html#datetime.timedelta
https://github.com/pandas-dev/pandas/issues/17876

pandas: powerful Python data analysis toolkit, Release 0.23.4

Operations between a Series with dtype dtype="datetime64 [ns] "' and a PeriodIndex will cor-
rectly raises TypeError (GH18850)

Subtraction of Series with timezone-aware dtype="'datetime64 [ns]' with mis-matched timezones
will raise TypeError instead of ValueError (GH18817)

Timestamp will no longer silently ignore unused or invalid t z or t zinfo keyword arguments (GH17690)
Timestamp will no longer silently ignore invalid freq arguments (GH5168)

CacheableOffset and WeekDay are no longer available in the pandas.tseries.offsets module
(GH17830)

pandas.tseries.frequencies.get_freq group() and pandas.tseries.frequencies.
DAYS are removed from the public API (GH18034)

Series.truncate () and DataFrame.truncate () will raise a ValueError if the index is not sorted
instead of an unhelpful KeyError (GH17935)

Series.first and DataFrame.first will now raise a TypeError rather than
NotImplementedError when index is not a DatetimeIndex (GH20725).

Series.last and DataFrame.last will now raise a TypeError rather than
NotImplementedError when index is not a Datet imeIndex (GH20725).

Restricted DateOf fset keyword arguments. Previously, DateOf fset subclasses allowed arbitrary keyword
arguments which could lead to unexpected behavior. Now, only valid arguments will be accepted. (GH17176,
GH18226).

pandas.merge () provides a more informative error message when trying to merge on timezone-aware and
timezone-naive columns (GH15800)

For DatetimeIndex and TimedeltaIndex with freg=None, addition or subtraction of integer-dtyped
array or Index will raise Nul1FrequencyError instead of TypeError (GH19895)

Timestamp constructor now accepts a nanosecond keyword or positional argument (GH18898)

DatetimeIndex will now raise an AttributeError when the tz attribute is set after instantiation
(GH3746)

DatetimeIndex with a pytz timezone will now return a consistent pyt z timezone (GH18595)

1.5.2.13 Other API Changes

Series.astype () and Index.astype () with an incompatible dtype will now raise a TypeError
rather than a ValueError (GH18231)

Series construction with an object dtyped tz-aware datetime and dtype=object specified, will now
return an ob ject dtyped Series, previously this would infer the datetime dtype (GH18231)

A Series of dtype=category constructed from an empty dict will now have categories of
dtype=object rather than dtype=£float 64, consistently with the case in which an empty list is passed
(GH18515)

All-NaN levels in aMultiIndex are now assigned f1loat rather than ob ject dtype, promoting consistency
with Index (GH17929).

Levels names of a MultiIndex (when not None) are now required to be unique: trying to create a
MultiIndex with repeated names will raise a ValueError (GH18872)

Both construction and renaming of Index/MultiIndex with non-hashable name/names will now raise
TypeError (GH20527)

34

Chapter 1. What’s New

https://github.com/pandas-dev/pandas/issues/18850
https://github.com/pandas-dev/pandas/issues/18817
https://github.com/pandas-dev/pandas/issues/17690
https://github.com/pandas-dev/pandas/issues/5168
https://github.com/pandas-dev/pandas/issues/17830
https://github.com/pandas-dev/pandas/issues/18034
https://github.com/pandas-dev/pandas/issues/17935
https://github.com/pandas-dev/pandas/issues/20725
https://github.com/pandas-dev/pandas/issues/20725
https://github.com/pandas-dev/pandas/issues/17176
https://github.com/pandas-dev/pandas/issues/18226
https://github.com/pandas-dev/pandas/issues/15800
https://github.com/pandas-dev/pandas/issues/19895
https://github.com/pandas-dev/pandas/issues/18898
https://github.com/pandas-dev/pandas/issues/3746
https://github.com/pandas-dev/pandas/issues/18595
https://github.com/pandas-dev/pandas/issues/18231
https://github.com/pandas-dev/pandas/issues/18231
https://github.com/pandas-dev/pandas/issues/18515
https://github.com/pandas-dev/pandas/issues/17929
https://github.com/pandas-dev/pandas/issues/18872
https://github.com/pandas-dev/pandas/issues/20527

pandas: powerful Python data analysis toolkit, Release 0.23.4

Index.map () can now accept Series and dictionary input objects (GH12756, GH18482, GH18509).
DataFrame.unstack () will now default to filling with np . nan for object columns. (GH12815)

IntervalIndex constructor will raise if the closed parameter conflicts with how the input data is inferred
to be closed (GH18421)

Inserting missing values into indexes will work for all types of indexes and automatically insert the correct type
of missing value (NaN, NaT, etc.) regardless of the type passed in (GH18295)

When created with duplicate labels, MultiIndex now raises a ValueError. (GH17464)

Series.fillna () now raises a TypeError instead of a ValueError when passed a list, tuple or
DataFrame as a value (GH18293)

pandas.DataFrame.merge () no longer casts a float column to object when merging on int and
float columns (GH16572)

pandas.merge () now raises a ValueError when trying to merge on incompatible data types (GH9780)

The default NA value for UInt 64Index has changed from O to NaN, which impacts methods that mask with
NA, such as UInt 64Index.where () (GH18398)

Refactored setup.py touse £ind_packages instead of explicitly listing out all subpackages (GH18535)
Rearranged the order of keyword arguments in read_excel () to align with read_csv () (GH16672)

wide_to_long () previously kept numeric-like suffixes as object dtype. Now they are cast to numeric if
possible (GH17627)

In read _excel (), the comment argument is now exposed as a named parameter (GH18735)
Rearranged the order of keyword arguments in read_excel () to align with read_csv () (GH16672)

The options html .border and mode.use_inf_as_null were deprecated in prior versions, these will
now show FutureWarning rather than a DeprecationWarning (GH19003)

IntervalIndex and IntervalDtype no longer support categorical, object, and string subtypes
(GH19016)

IntervalDtype now returns True when compared against 'interval' regardless of subtype, and
IntervalDtype.name now returns 'interval' regardless of subtype (GH18980)

KeyError now raises instead of ValueError in drop (), drop (), drop (), drop () when dropping a
non-existent element in an axis with duplicates (GH19186)

Series.to_csv () now accepts a compression argument that works in the same way as the
compression argument in DataFrame. to_csv () (GH18958)

Set operations (union, difference...) on IntervalIndex with incompatible index types will now raise a
TypeError rather than a ValueError (GH19329)

DateOffset objects render more simply, e.g. <DateOffset: days=1> instead of <DateOffset:
kwds={"'days': 1}>(GHI19403)

Categorical.fillna now validates its value and method keyword arguments. It now raises when both
or none are specified, matching the behavior of Series.fillna () (GH19682)

pd.to_datetime ('today') now returns a datetime, consistent with pd. Timestamp ('today"'); pre-
viously pd.to_datetime ('today"') returned a .normalized () datetime (GH19935)

Series.str.replace () now takes an optional regex keyword which, when set to False, uses literal
string replacement rather than regex replacement (GH16808)

DatetimeIndex.strftime () and PeriodIndex.strftime () now return an Index instead of a
numpy array to be consistent with similar accessors (GH20127)

1.5.

v0.23.0 (May 15, 2018) 35

https://github.com/pandas-dev/pandas/issues/12756
https://github.com/pandas-dev/pandas/issues/18482
https://github.com/pandas-dev/pandas/issues/18509
https://github.com/pandas-dev/pandas/issues/12815
https://github.com/pandas-dev/pandas/issues/18421
https://github.com/pandas-dev/pandas/issues/18295
https://github.com/pandas-dev/pandas/issues/17464
https://github.com/pandas-dev/pandas/issues/18293
https://github.com/pandas-dev/pandas/issues/16572
https://github.com/pandas-dev/pandas/issues/9780
https://github.com/pandas-dev/pandas/issues/18398
https://github.com/pandas-dev/pandas/issues/18535
https://github.com/pandas-dev/pandas/issues/16672
https://github.com/pandas-dev/pandas/issues/17627
https://github.com/pandas-dev/pandas/issues/18735
https://github.com/pandas-dev/pandas/issues/16672
https://github.com/pandas-dev/pandas/issues/19003
https://github.com/pandas-dev/pandas/issues/19016
https://github.com/pandas-dev/pandas/issues/18980
https://github.com/pandas-dev/pandas/issues/19186
https://github.com/pandas-dev/pandas/issues/18958
https://github.com/pandas-dev/pandas/issues/19329
https://github.com/pandas-dev/pandas/issues/19403
https://github.com/pandas-dev/pandas/issues/19682
https://github.com/pandas-dev/pandas/issues/19935
https://github.com/pandas-dev/pandas/issues/16808
https://github.com/pandas-dev/pandas/issues/20127

pandas: powerful Python data analysis toolkit, Release 0.23.4

Constructing a Series from a list of length 1 no longer broadcasts this list when a longer index is specified
(GH19714, GH20391).

DataFrame.to_dict () with orient="index"' no longer casts int columns to float for a DataFrame
with only int and float columns (GH18580)

A user-defined-function that is passed to Series.rolling().aggregate(), DataFrame.
rolling () .aggregate (), or its expanding cousins, will now always be passed a Series, rather
than a np.array; .apply () only has the raw keyword, see here. This is consistent with the signatures of
.aggregate () across pandas (GH20584)

Rolling and Expanding types raise Not ImplementedError upon iteration (GH11704).

1.5.3 Deprecations

Series.from_array and SparseSeries.from_array are deprecated. Use the normal constructor
Series(..) and SparseSeries (..) instead (GHI18213).

DataFrame.as_matrix is deprecated. Use DataFrame.values instead (GH18458).

Series.asobject, DatetimeIndex.asobject, PeriodIndex.asobject and
TimeDeltalIndex.asobject have been deprecated. Use .astype (object) instead (GH18572)

Grouping by a tuple of keys now emits a FutureWarning and is deprecated. In the future, a tuple passed to
'by ' will always refer to a single key that is the actual tuple, instead of treating the tuple as multiple keys. To
retain the previous behavior, use a list instead of a tuple (GH18314)

Series.validis deprecated. Use Series.dropna () instead (GH18800).
read_excel () has deprecated the skip_footer parameter. Use skipfooter instead (GH18836)

ExcelFile.parse () has deprecated sheetname in favor of sheet_name for consistency with
read_excel () (GH20920).

The is_copy attribute is deprecated and will be removed in a future version (GH18801).

IntervallIndex.from_intervals is deprecated in favor of the IntervalIndex constructor
(GH19263)

DataFrame.from_items is deprecated. Use DataFrame.from _dict () instead, or DataFrame.
from_dict (OrderedDict ()) if you wish to preserve the key order (GH17320, GH17312)

Indexing a MultiIndex or a FloatIndex with a list containing some missing keys will now show a
FutureWarning, which is consistent with other types of indexes (GH17758).

The broadcast parameter of .apply () is deprecated in favor of result_type='broadcast'
(GH18577)

The reduce parameter of .apply () is deprecated in favor of result_type="'reduce' (GHI8577)
The order parameter of factorize () is deprecated and will be removed in a future release (GH19727)

Timestamp.weekday_name, DatetimeIndex.weekday_name, and Series.dt.
weekday_name are deprecated in favor of Timestamp.day_name (), DatetimeIndex.
day_name (), and Series.dt.day_name () (GH12806)

pandas.tseries.plotting.tsplot is deprecated. Use Series.plot () instead (GH18627)
Index.summary () is deprecated and will be removed in a future version (GH18217)

NDFrame.get_ftype_counts () is deprecated and will be removed in a future version (GH18243)

36

Chapter 1. What’s New

https://github.com/pandas-dev/pandas/issues/19714
https://github.com/pandas-dev/pandas/issues/20391
https://github.com/pandas-dev/pandas/issues/18580
https://github.com/pandas-dev/pandas/issues/20584
https://github.com/pandas-dev/pandas/issues/11704
https://github.com/pandas-dev/pandas/issues/18213
https://github.com/pandas-dev/pandas/issues/18458
https://github.com/pandas-dev/pandas/issues/18572
https://github.com/pandas-dev/pandas/issues/18314
https://github.com/pandas-dev/pandas/issues/18800
https://github.com/pandas-dev/pandas/issues/18836
https://github.com/pandas-dev/pandas/issues/20920
https://github.com/pandas-dev/pandas/issues/18801
https://github.com/pandas-dev/pandas/issues/19263
https://github.com/pandas-dev/pandas/issues/17320
https://github.com/pandas-dev/pandas/issues/17312
https://docs.python.org/3/library/exceptions.html#FutureWarning
https://github.com/pandas-dev/pandas/issues/17758
https://github.com/pandas-dev/pandas/issues/18577
https://github.com/pandas-dev/pandas/issues/18577
https://github.com/pandas-dev/pandas/issues/19727
https://github.com/pandas-dev/pandas/issues/12806
https://github.com/pandas-dev/pandas/issues/18627
https://github.com/pandas-dev/pandas/issues/18217
https://github.com/pandas-dev/pandas/issues/18243

pandas: powerful Python data analysis toolkit, Release 0.23.4

e The convert_datetime64 parameter in DataFrame.to_records () has been deprecated and will be
removed in a future version. The NumPy bug motivating this parameter has been resolved. The default value
for this parameter has also changed from True to None (GH18160).

* Series.rolling().apply (), DataFrame.rolling().apply (), Series.expanding().
apply (), and DataFrame.expanding () .apply () have deprecated passing an np . array by default.
One will need to pass the new raw parameter to be explicit about what is passed (GH20584)

e The data,base, strides, flags and itemsize properties of the Series and Index classes have been
deprecated and will be removed in a future version (GH20419).

* DatetimeIndex.offset is deprecated. Use DatetimeIndex. freq instead (GH20716)

* Floor division between an integer ndarray and a Timedelta is deprecated. Divide by Timedelta.value
instead (GH19761)

e Setting PeriodIndex.freq (which was not guaranteed to work correctly) is deprecated. = Use
PeriodIndex.asfreq() instead (GH20678)

* Index.get_duplicates () is deprecated and will be removed in a future version (GH20239)

» The previous default behavior of negative indices in Categorical.take is deprecated. In a future version
it will change from meaning missing values to meaning positional indices from the right. The future behavior is
consistent with Series. take () (GH20664).

 Passing multiple axes to the axis parameter in DataFrame.dropna () has been deprecated and will be
removed in a future version (GH20987)

1.5.4 Removal of prior version deprecations/changes

* Warnings against the obsolete usage Categorical (codes, categories), which were emitted for in-
stance when the first two arguments to Categorical () had different dtypes, and recommended the use of
Categorical. from_codes, have now been removed (GH8074)

e The levels and labels attributes of a Mult i Index can no longer be set directly (GH4039).

e pd.tseries.util.pivot_annual has been removed (deprecated since v0.19). Use pivot_table
instead (GH18370)

e pd.tseries.util.isleapyear has been removed (deprecated since v0.19). Use .is_leap_year
property in Datetime-likes instead (GH18370)

* pd.ordered_merge has been removed (deprecated since v0.19). Use pd.merge_ordered instead
(GH18459)

¢ The SparseList class has been removed (GH14007)
e The pandas.io.wb and pandas.io.data stub modules have been removed (GH13735)
e Categorical.from_array has been removed (GH13854)

e The freq and how parameters have been removed from the rolling/expanding/ewm methods of
DataFrame and Series (deprecated since v0.18). Instead, resample before calling the methods. (GH18601
& GH18668)

e DatetimeIndex.to_datetime, Timestamp.to_datetime, PeriodIndex.to_datetime, and
Index.to_datetime have been removed (GH8254, GH14096, GH14113)

* read_csv () has dropped the skip_footer parameter (GH13386)
* read_csv () has dropped the as_recarray parameter (GH13373)

* read_csv () has dropped the buf fer_1ines parameter (GH13360)

1.5. v0.23.0 (May 15, 2018) 37

https://github.com/pandas-dev/pandas/issues/18160
https://github.com/pandas-dev/pandas/issues/20584
https://github.com/pandas-dev/pandas/issues/20419
https://github.com/pandas-dev/pandas/issues/20716
https://github.com/pandas-dev/pandas/issues/19761
https://github.com/pandas-dev/pandas/issues/20678
https://github.com/pandas-dev/pandas/issues/20239
https://github.com/pandas-dev/pandas/issues/20664
https://github.com/pandas-dev/pandas/issues/20987
https://github.com/pandas-dev/pandas/issues/8074
https://github.com/pandas-dev/pandas/issues/4039
https://github.com/pandas-dev/pandas/issues/18370
https://github.com/pandas-dev/pandas/issues/18370
https://github.com/pandas-dev/pandas/issues/18459
https://github.com/pandas-dev/pandas/issues/14007
https://github.com/pandas-dev/pandas/issues/13735
https://github.com/pandas-dev/pandas/issues/13854
https://github.com/pandas-dev/pandas/issues/18601
https://github.com/pandas-dev/pandas/issues/18668
https://github.com/pandas-dev/pandas/issues/8254
https://github.com/pandas-dev/pandas/issues/14096
https://github.com/pandas-dev/pandas/issues/14113
https://github.com/pandas-dev/pandas/issues/13386
https://github.com/pandas-dev/pandas/issues/13373
https://github.com/pandas-dev/pandas/issues/13360

pandas: powerful Python data analysis toolkit, Release 0.23.4

read_csv () has dropped the compact_ints and use_unsigned parameters (GH13323)
The Timestamp class has dropped the of fset attribute in favor of freq (GH13593)
The Series, Categorical, and Index classes have dropped the reshape method (GH13012)

pandas.tseries.frequencies.get_standard_freqg has been removed in favor of pandas.
tseries.frequencies.to_offset (freq) .rule_code (GH13874)

The fregstr keyword has been removed from pandas.tseries.frequencies.to_offset infavor
of freq (GH13874)

The Panel4D and Pane1ND classes have been removed (GH13776)
The Panel class has dropped the to_long and toLong methods (GH19077)

The options display.line_withand display.height are removed in favor of display.width and
display.max_rows respectively (GH4391, GH19107)

The labels attribute of the Categorical class has been removed in favor of Categorical.codes
(GH7768)

The flavor parameter have been removed from func:to_sql method (GH13611)
The modules pandas.tools.hashing and pandas.util.hashing have been removed (GH16223)

The top-level functions pd. rolling_x*, pd.expanding_* and pd.ewm= have been removed (Deprecated
since v0.18). Instead, use the DataFrame/Series methods rolling, expanding and ewm (GH18723)

Imports from pandas.core.common for functions such as is_datetime64_dtype are now removed.
These are located in pandas.api.types. (GH13634, GH19769)

The infer_dst keyword in Series.tz_localize(), DatetimeIndex.tz_localize () and
DatetimeIndex have been removed. infer_dst=True is equivalent to ambiguous="'infer"', and
infer_dst=False to ambiguous="'raise' (GH7963).

When . resample () was changed from an eager to a lazy operation, like . groupby () in v0.18.0, we put
in place compatibility (with a FutureWarning), so operations would continue to work. This is now fully
removed, so a Resampler will no longer forward compat operations (GH20554)

Remove long deprecated axis=None parameter from . replace () (GH20271)

1.5.5 Performance Improvements

Indexers on Series or DataFrame no longer create a reference cycle (GH17956)

Added a keyword argument, cache, to to_datetime () that improved the performance of converting dupli-
cate datetime arguments (GH11665)

DateOf fset arithmetic performance is improved (GH18218)

Converting a Series of Timedelta objects to days, seconds, etc... sped up through vectorization of under-
lying methods (GH18092)

Improved performance of .map () witha Series/dict input (GH15081)

The overridden Timedelta properties of days, seconds and microseconds have been removed, leveraging their
built-in Python versions instead (GH18242)

Series construction will reduce the number of copies made of the input data in certain cases (GH17449)
Improved performance of Series.dt.date () and DatetimeIndex.date () (GH18058)

Improved performance of Series.dt.time () and DatetimeIndex.time () (GH18461)

38

Chapter 1. What’s New

https://github.com/pandas-dev/pandas/issues/13323
https://github.com/pandas-dev/pandas/issues/13593
https://github.com/pandas-dev/pandas/issues/13012
https://github.com/pandas-dev/pandas/issues/13874
https://github.com/pandas-dev/pandas/issues/13874
https://github.com/pandas-dev/pandas/issues/13776
https://github.com/pandas-dev/pandas/issues/19077
https://github.com/pandas-dev/pandas/issues/4391
https://github.com/pandas-dev/pandas/issues/19107
https://github.com/pandas-dev/pandas/issues/7768
https://github.com/pandas-dev/pandas/issues/13611
https://github.com/pandas-dev/pandas/issues/16223
https://github.com/pandas-dev/pandas/issues/18723
https://github.com/pandas-dev/pandas/issues/13634
https://github.com/pandas-dev/pandas/issues/19769
https://github.com/pandas-dev/pandas/issues/7963
https://github.com/pandas-dev/pandas/issues/20554
https://github.com/pandas-dev/pandas/issues/20271
https://github.com/pandas-dev/pandas/issues/17956
https://github.com/pandas-dev/pandas/issues/11665
https://github.com/pandas-dev/pandas/issues/18218
https://github.com/pandas-dev/pandas/issues/18092
https://github.com/pandas-dev/pandas/issues/15081
https://github.com/pandas-dev/pandas/issues/18242
https://github.com/pandas-dev/pandas/issues/17449
https://github.com/pandas-dev/pandas/issues/18058
https://github.com/pandas-dev/pandas/issues/18461

pandas: powerful Python data analysis toolkit, Release 0.23.4

* Improved performance of IntervalIndex.symmetric_difference () (GH18475)

* Improved performance of DatetimeIndex and Series arithmetic operations with Business-Month and
Business-Quarter frequencies (GH18489)

e Series () / DataFrame () tab completion limits to 100 values, for better performance. (GH18587)
* Improved performance of DataFrame.median () with axis=1 when bottleneck is not installed (GH16468)

* Improved performance of MultiIndex.get_loc () for large indexes, at the cost of a reduction in perfor-
mance for small ones (GH18519)

 Improved performance of MultiIndex.remove_unused_levels () when there are no unused levels, at
the cost of a reduction in performance when there are (GH19289)

* Improved performance of Tndex.get_loc () for non-unique indexes (GH19478)

* Improved performance of pairwise . rolling () and .expanding () with .cov () and .corr () opera-
tions (GH17917)

* Improved performance of pandas. core.groupby.GroupBy.rank () (GH15779)
* Improved performance of variable . rolling () on .min () and .max () (GH19521)

e Improved performance of pandas.core.groupby.GroupBy.ffill() and pandas.core.
groupby.GroupBy.bfill () (GH11296)

* Improved performance of pandas. core.groupby.GroupBy.any () and pandas.core.groupby.
GroupBy.all () (GH15435)

* Improved performance of pandas. core.groupby.GroupBy.pct_change () (GH19165)
 Improved performance of Series. isin () inthe case of categorical dtypes (GH20003)

* Improved performance of getattr (Series, attr) when the Series has certain index types. This manifi-
ested in slow printing of large Series with a Datet imeIndex (GH19764)

* Fixed a performance regression for GroupBy.nth () and GroupBy.last () with some object columns
(GH19283)

* Improved performance of pandas.core.arrays.Categorical. from_codes () (GH18501)

1.5.6 Documentation Changes

Thanks to all of the contributors who participated in the Pandas Documentation Sprint, which took place on March
10th. We had about 500 participants from over 30 locations across the world. You should notice that many of the AP/
docstrings have greatly improved.

There were too many simultaneous contributions to include a release note for each improvement, but this GitHub
search should give you an idea of how many docstrings were improved.

Special thanks to Marc Garcia for organizing the sprint. For more information, read the NumFOCUS blogpost recap-
ping the sprint.

* Changed spelling of “numpy” to “NumPy”, and “python” to “Python”. (GH19017)

» Consistency when introducing code samples, using either colon or period. Rewrote some sentences for greater

clarity, added more dynamic references to functions, methods and classes. (GH18941, GH18948, GH18973,
GH19017)

e Added a reference to DataFrame.assign () in the concatenate section of the merging documentation
(GH18665)

1.5. v0.23.0 (May 15, 2018) 39

https://github.com/pandas-dev/pandas/issues/18475
https://github.com/pandas-dev/pandas/issues/18489
https://github.com/pandas-dev/pandas/issues/18587
https://github.com/pandas-dev/pandas/issues/16468
https://github.com/pandas-dev/pandas/issues/18519
https://github.com/pandas-dev/pandas/issues/19289
https://github.com/pandas-dev/pandas/issues/19478
https://github.com/pandas-dev/pandas/issues/17917
https://github.com/pandas-dev/pandas/issues/15779
https://github.com/pandas-dev/pandas/issues/19521
https://github.com/pandas-dev/pandas/issues/11296
https://github.com/pandas-dev/pandas/issues/15435
https://github.com/pandas-dev/pandas/issues/19165
https://github.com/pandas-dev/pandas/issues/20003
https://github.com/pandas-dev/pandas/issues/19764
https://github.com/pandas-dev/pandas/issues/19283
https://github.com/pandas-dev/pandas/issues/18501
https://github.com/pandas-dev/pandas/pulls?utf8=%E2%9C%93&q=is%3Apr+label%3ADocs+created%3A2018-03-10..2018-03-15+
https://github.com/pandas-dev/pandas/pulls?utf8=%E2%9C%93&q=is%3Apr+label%3ADocs+created%3A2018-03-10..2018-03-15+
https://github.com/datapythonista
https://www.numfocus.org/blog/worldwide-pandas-sprint/
https://github.com/pandas-dev/pandas/issues/19017
https://github.com/pandas-dev/pandas/issues/18941
https://github.com/pandas-dev/pandas/issues/18948
https://github.com/pandas-dev/pandas/issues/18973
https://github.com/pandas-dev/pandas/issues/19017
https://github.com/pandas-dev/pandas/issues/18665

pandas: powerful Python data analysis toolkit, Release 0.23.4

1.5.7 Bug Fixes

1.5.7.1 Categorical

Warning: A class of bugs were introduced in pandas 0.21 with CategoricalDtype that affects the correctness
of operations like merge, concat, and indexing when comparing multiple unordered Categorical arrays
that have the same categories, but in a different order. We highly recommend upgrading or manually aligning your
categories before doing these operations.

* Bugin Categorical.equals returning the wrong result when comparing two unordered Categorical
arrays with the same categories, but in a different order (GH16603)

* Bug in pandas.api.types.union_categoricals () returning the wrong result when for unordered
categoricals with the categories in a different order. This affected pandas.concat () with Categorical data
(GH19096).

* Bugin pandas.merge () returning the wrong result when joining on an unordered Categorical that had
the same categories but in a different order (GH19551)

* Bug in CategoricallIndex.get_indexer () returning the wrong result when target was an un-
ordered Categorical that had the same categories as se1f but in a different order (GH19551)

* Bug in Index.astype () with a categorical dtype where the resultant index is not converted to a
CategoricalIndex for all types of index (GH18630)

* Bugin Series.astype () and Categorical.astype () where an existing categorical data does not get
updated (GH10696, GH18593)

* Bug in Series.str.split () with expand=True incorrectly raising an IndexError on empty strings
(GH20002).

* Bug in Index constructor with dtype=CategoricalDtype (...) where categories and ordered
are not maintained (GH19032)

* Bugin Series constructor with scalar and dt ype=CategoricalDtype (. ..) where categories and
ordered are not maintained (GH19565)

* Bugin Categorical.__iter__ not converting to Python types (GH19909)

* Bug in pandas.factorize () returning the unique codes for the uniques. This now returns a
Categorical with the same dtype as the input (GH19721)

* Bug in pandas.factorize () including an item for missing values in the uniques return value
(GH19721)

* Bugin Series. take () with categorical data interpreting —1 in indices as missing value markers, rather than
the last element of the Series (GH20664)

1.5.7.2 Datetimelike

* Bugin Series.__sub__ () subtracting a non-nanosecond np.datetime64 object from a Series gave
incorrect results (GH7996)

* Bug in DatetimeIndex, TimedeltaIndex addition and subtraction of zero-dimensional integer arrays
gave incorrect results (GH19012)

40 Chapter 1. What’s New

https://github.com/pandas-dev/pandas/issues/16603
https://github.com/pandas-dev/pandas/issues/19096
https://github.com/pandas-dev/pandas/issues/19551
https://github.com/pandas-dev/pandas/issues/19551
https://github.com/pandas-dev/pandas/issues/18630
https://github.com/pandas-dev/pandas/issues/10696
https://github.com/pandas-dev/pandas/issues/18593
https://github.com/pandas-dev/pandas/issues/20002
https://github.com/pandas-dev/pandas/issues/19032
https://github.com/pandas-dev/pandas/issues/19565
https://github.com/pandas-dev/pandas/issues/19909
https://github.com/pandas-dev/pandas/issues/19721
https://github.com/pandas-dev/pandas/issues/19721
https://github.com/pandas-dev/pandas/issues/20664
https://github.com/pandas-dev/pandas/issues/7996
https://github.com/pandas-dev/pandas/issues/19012

pandas: powerful Python data analysis toolkit, Release 0.23.4

* Bug in DatetimeIndex and TimedeltaIndex where adding or subtracting an array-like of
DateOffset objects either raised (np.array, pd.Index) or broadcast incorrectly (pd.Series)
(GH18849)

* Bug in Series.__add__ () adding Series with dtype timedelta64[ns] to a timezone-aware
DatetimeIndex incorrectly dropped timezone information (GH13905)

* Adding a Period object to a datetime or Timestamp object will now correctly raise a TypeError
(GH17983)

* Bug in Timestamp where comparison with an array of Timestamp objects would result in a
RecursionError (GHI5183)

* Bugin Series floor-division where operating on a scalar t imedelta raises an exception (GH18846)

* Bugin Datet imeIndex where the repr was not showing high-precision time values at the end of a day (e.g.,
23:59:59.999999999) (GH19030)

* Bugin .astype () to non-ns timedelta units would hold the incorrect dtype (GH19176, GH19223, GH12425)
* Bug in subtracting Series from NaT incorrectly returning NaT (GH19158)

* Bugin Series.truncate () whichraises TypeError with a monotonic PeriodIndex (GH17717)

* Bugin pct_change () using periods and freq returned different length outputs (GH7292)

* Bug in comparison of DatetimeIndex against None or datetime.date objects raising TypeError for
== and ! = comparisons instead of all-False and all-True, respectively (GH19301)

* Bug in Timestamp and to_datetime () where a string representing a barely out-of-bounds timestamp
would be incorrectly rounded down instead of raising Out OfBoundsDatet ime (GH19382)

* Bugin Timestamp. floor () DatetimeIndex.floor () where time stamps far in the future and past
were not rounded correctly (GH19206)

* Bug in to_datetime () where passing an out-of-bounds datetime with errors='coerce' and
utc=True would raise Out OfBoundsDatet ime instead of parsing to NaT (GH19612)

* Bugin DatetimeIndex and TimedeltaIndex addition and subtraction where name of the returned object
was not always set consistently. (GH19744)

* Bug in DatetimeIndex and TimedeltaIndex addition and subtraction where operations with numpy
arrays raised TypeError (GH19847)

* Bugin DatetimeIndex and TimedeltaIndex where setting the freq attribute was not fully supported
(GH20678)

1.5.7.3 Timedelta
* Bugin Timedelta.__mul__ () where multiplying by NaT returned NaT instead of raising a TypeError
(GH19819)

* Bugin Series with dtype="timedelta64 [ns] ' where addition or subtraction of TimedeltaIndex
had results cast to dtype="int 64 "' (GH17250)

* Bugin Series with dtype="timedelta64 [ns] ' where addition or subtraction of TimedeltaIndex
could return a Series with an incorrect name (GH19043)

* BuginTimedelta.__floordiv__ () and Timedelta.__ rfloordiv__ () dividing by many incom-
patible numpy objects was incorrectly allowed (GH18846)

* Bug where dividing a scalar timedelta-like object with TimedeltaIndex performed the reciprocal operation
(GH19125)

1.5. v0.23.0 (May 15, 2018) 41

https://github.com/pandas-dev/pandas/issues/18849
https://github.com/pandas-dev/pandas/issues/13905
https://github.com/pandas-dev/pandas/issues/17983
https://github.com/pandas-dev/pandas/issues/15183
https://github.com/pandas-dev/pandas/issues/18846
https://github.com/pandas-dev/pandas/issues/19030
https://github.com/pandas-dev/pandas/issues/19176
https://github.com/pandas-dev/pandas/issues/19223
https://github.com/pandas-dev/pandas/issues/12425
https://github.com/pandas-dev/pandas/issues/19158
https://github.com/pandas-dev/pandas/issues/17717
https://github.com/pandas-dev/pandas/issues/7292
https://github.com/pandas-dev/pandas/issues/19301
https://github.com/pandas-dev/pandas/issues/19382
https://github.com/pandas-dev/pandas/issues/19206
https://github.com/pandas-dev/pandas/issues/19612
https://github.com/pandas-dev/pandas/issues/19744
https://github.com/pandas-dev/pandas/issues/19847
https://github.com/pandas-dev/pandas/issues/20678
https://github.com/pandas-dev/pandas/issues/19819
https://github.com/pandas-dev/pandas/issues/17250
https://github.com/pandas-dev/pandas/issues/19043
https://github.com/pandas-dev/pandas/issues/18846
https://github.com/pandas-dev/pandas/issues/19125

pandas: powerful Python data analysis toolkit, Release 0.23.4

Bug in TimedeltaIndex where division by a Series would return a TimedeltaIndex instead of a
Series (GH19042)

Bug in Timedelta.__add__ (), Timedelta.__sub__ () where adding or subtracting a np.
timedelta64 object would return another np.timedelta64 instead of a Timedelta (GH19738)

BuginTimedelta.__ floordiv__ (),Timedelta.__rfloordiv__ () where operating witha Tick
object would raise a TypeError instead of returning a numeric value (GH19738)

Bug in Period.asfreqg() where periods near datetime (1, 1, 1) could be converted incorrectly
(GH19643, GH19834)

Bug in Timedelta.total_seconds () causing precision errors, for example Timedelta ('30S") .
total_seconds ()==30.000000000000004 (GH19458)

Bug in Timedelta.__rmod__ () where operating with a numpy.timedelta64 returned a
timedelta64 object instead of a Timedelta (GH19820)

Multiplication of TimedeltaIndex by TimedeltalIndex will now raise TypeError instead of raising
ValueError in cases of length mis-match (GH19333)

Bug in indexing a TimedeltaIndex with a np.timedelta64 object which was raising a TypeError
(GH20393)

1.5.7.4 Timezones

Bug in creating a Series from an array that contains both tz-naive and tz-aware values will resultina Series
whose dtype is tz-aware instead of object (GH16406)

Bug in comparison of timezone-aware DatetimeIndex against NaT incorrectly raising TypeError
(GH19276)

BuginDatetimeIndex.astype () when converting between timezone aware dtypes, and converting from
timezone aware to naive (GH18951)

Bug in comparing DatetimeIndex, which failed to raise TypeError when attempting to compare
timezone-aware and timezone-naive datetimelike objects (GH18162)

Bug in localization of a naive, datetime string in a Series constructor with a datetime64 [ns, tz] dtype
(GH174151)

Timestamp.replace () will now handle Daylight Savings transitions gracefully (GH18319)

Bug in tz-aware DatetimeIndex where addition/subtraction with a TimedeltaIndex or array with
dtype="timedelta64 [ns] ' was incorrect (GH17558)

Bug in DatetimeIndex.insert () where inserting NaT into a timezone-aware index incorrectly raised
(GH16357)

Bug in DataFrame constructor, where tz-aware Datetimeindex and a given column name will result in an
empty DataFrame (GH19157)

Bug in Timestamp.tz_localize () where localizing a timestamp near the minimum or maximum valid
values could overflow and return a timestamp with an incorrect nanosecond value (GH12677)

Bug when iterating over Datet imeIndex that was localized with fixed timezone offset that rounded nanosec-
ond precision to microseconds (GH19603)

Bugin DataFrame.diff () thatraised an IndexError with tz-aware values (GH18578)

Bugin melt () that converted tz-aware dtypes to tz-naive (GH15785)

42

Chapter 1. What’s New

https://github.com/pandas-dev/pandas/issues/19042
https://github.com/pandas-dev/pandas/issues/19738
https://github.com/pandas-dev/pandas/issues/19738
https://github.com/pandas-dev/pandas/issues/19643
https://github.com/pandas-dev/pandas/issues/19834
https://github.com/pandas-dev/pandas/issues/19458
https://github.com/pandas-dev/pandas/issues/19820
https://github.com/pandas-dev/pandas/issues/19333
https://github.com/pandas-dev/pandas/issues/20393
https://github.com/pandas-dev/pandas/issues/16406
https://github.com/pandas-dev/pandas/issues/19276
https://github.com/pandas-dev/pandas/issues/18951
https://github.com/pandas-dev/pandas/issues/18162
https://github.com/pandas-dev/pandas/issues/174151
https://github.com/pandas-dev/pandas/issues/18319
https://github.com/pandas-dev/pandas/issues/17558
https://github.com/pandas-dev/pandas/issues/16357
https://github.com/pandas-dev/pandas/issues/19157
https://github.com/pandas-dev/pandas/issues/12677
https://github.com/pandas-dev/pandas/issues/19603
https://github.com/pandas-dev/pandas/issues/18578
https://github.com/pandas-dev/pandas/issues/15785

pandas: powerful Python data analysis toolkit, Release 0.23.4

* Bug in Dataframe.count () that raised an ValueError, if Dataframe.dropna () was called for a
single column with timezone-aware values. (GH13407)

1.5.7.5 Offsets
* Bug in WeekOfMonth and Week where addition and subtraction did not roll correctly (GH18510, GH18672,
GH18864)

* Bug in WeekOfMonth and LastWeekOfMonth where default keyword arguments for constructor raised
ValueError (GH19142)

* Bug in FY5253Quarter, LastWeekOfMonth where rollback and rollforward behavior was inconsistent
with addition and subtraction behavior (GH18854)

* Bugin FY5253 where datet ime addition and subtraction incremented incorrectly for dates on the year-end
but not normalized to midnight (GH18854)

* Bug in FY5253 where date offsets could incorrectly raise an AssertionError in arithmetic operatons
(GH14774)

1.5.7.6 Numeric
* Bug in Series constructor with an int or float list where specifying dtype=str, dtype="'str' or
dtype="U" failed to convert the data elements to strings (GH16605)

* Bug in Index multiplication and division methods where operating with a Series would return an Index
object instead of a Series object (GH19042)

* Bugin the DataFrame constructor in which data containing very large positive or very large negative numbers
was causing OverflowError (GH18584)

* Bugin Index constructor with dtype="uint 64 ' where int-like floats were not coerced to UInt 64 Index
(GH18400)

* Bug in DataFrame flex arithmetic (e.g. df.add (other, fill_value=foo)) witha fill value
other than None failed to raise Not ImplementedError in corner cases where either the frame or other
has length zero (GH19522)

e Multiplication and division of numeric-dtyped Index objects with timedelta-like scalars returns
TimedeltaIndex instead of raising TypeError (GH19333)

* Bug where NaN was returned instead of 0 by Series.pct_change () and DataFrame.pct_change ()
when £111_method is not None (GH19873)

1.5.7.7 Strings

* Bugin Series.str.get () with a dictionary in the values and the index not in the keys, raising KeyError
(GH20671)

1.5.7.8 Indexing

* Bugin Index construction from list of mixed type tuples (GH18505)
* Bugin Index.drop () when passing a list of both tuples and non-tuples (GH18304)

* Bug in DataFrame.drop(), Panel.drop(), Series.drop(), Index.drop() where no
KeyError is raised when dropping a non-existent element from an axis that contains duplicates (GH19186)

1.5. v0.23.0 (May 15, 2018) 43

https://github.com/pandas-dev/pandas/issues/13407
https://github.com/pandas-dev/pandas/issues/18510
https://github.com/pandas-dev/pandas/issues/18672
https://github.com/pandas-dev/pandas/issues/18864
https://github.com/pandas-dev/pandas/issues/19142
https://github.com/pandas-dev/pandas/issues/18854
https://github.com/pandas-dev/pandas/issues/18854
https://github.com/pandas-dev/pandas/issues/14774
https://github.com/pandas-dev/pandas/issues/16605
https://github.com/pandas-dev/pandas/issues/19042
https://github.com/pandas-dev/pandas/issues/18584
https://github.com/pandas-dev/pandas/issues/18400
https://github.com/pandas-dev/pandas/issues/19522
https://github.com/pandas-dev/pandas/issues/19333
https://github.com/pandas-dev/pandas/issues/19873
https://github.com/pandas-dev/pandas/issues/20671
https://github.com/pandas-dev/pandas/issues/18505
https://github.com/pandas-dev/pandas/issues/18304
https://github.com/pandas-dev/pandas/issues/19186

pandas: powerful Python data analysis toolkit, Release 0.23.4

* Bug in indexing a datetimelike Index that raised ValueError instead of IndexError (GH18386).
* Tndex.to_series () now accepts index and name kwargs (GH18699)
* DatetimeIndex.to_series () now accepts index and name kwargs (GH18699)

* Bug in indexing non-scalar value from Series having non-unique Index will return value flattened
(GH17610)

* Bug in indexing with iterator containing only missing keys, which raised no error (GH20748)

* Fixed inconsistency in . 1x between list and scalar keys when the index has integer dtype and does not include
the desired keys (GH20753)

* Bugin__setitem__ when indexing a DataFrame with a 2-d boolean ndarray (GH18582)

* Bugin str.extractall when there were no matches empty Index was returned instead of appropriate
MultiIndex (GH19034)

* Bugin IntervalIndex where empty and purely NA data was constructed inconsistently depending on the
construction method (GH18421)

* Bug in IntervalIndex.symmetric_difference () where the symmetric difference with a non-
IntervalIndex did not raise (GH18475)

* Bugin IntervalIndex where set operations that returned an empty IntervalIndex had the wrong dtype
(GH19101)

* Bug in DataFrame.drop_duplicates () where no KeyError is raised when passing in columns that
don’t exist on the DataFrame (GH19726)

* Bug in Index subclasses constructors that ignore unexpected keyword arguments (GH19348)
* Bugin Index.difference () when taking difference of an Index with itself (GH20040)

* Bug in DataFrame. first_valid_index () and DataFrame.last_valid_index () in presence
of entire rows of NaNs in the middle of values (GH20499).

* Bug in IntervalIndex where some indexing operations were not supported for overlapping or non-
monotonic uint 64 data (GH20636)

* Bug in Series.is_unique where extraneous output in stderr is shown if Series contains objects with
__ne___defined (GH20661)

* Bugin . loc assignment with a single-element list-like incorrectly assigns as a list (GH19474)

* Bug in partial string indexing on a Series/DataFrame with a monotonic decreasing DatetimeIndex
(GH19362)

* Bug in performing in-place operations on a Dat aFrame with a duplicate Index (GH17105)

* Bug in IntervalIndex.get_loc() and IntervalIndex.get_indexer () when used with an
IntervalIndex containing a single interval (GH17284, GH20921)

* Bugin .loc withauint64 indexer (GH20722)

1.5.7.9 Multilndex
* Bugin MultiIndex.__contains__ () where non-tuple keys would return True even if they had been
dropped (GH19027)

* Bugin MultiIndex.set_labels () which would cause casting (and potentially clipping) of the new labels
if the 1evel argument is not O or a list like [0, 1, ...] (GH19057)

44 Chapter 1. What’s New

https://github.com/pandas-dev/pandas/issues/18386
https://github.com/pandas-dev/pandas/issues/18699
https://github.com/pandas-dev/pandas/issues/18699
https://github.com/pandas-dev/pandas/issues/17610
https://github.com/pandas-dev/pandas/issues/20748
https://github.com/pandas-dev/pandas/issues/20753
https://github.com/pandas-dev/pandas/issues/18582
https://github.com/pandas-dev/pandas/issues/19034
https://github.com/pandas-dev/pandas/issues/18421
https://github.com/pandas-dev/pandas/issues/18475
https://github.com/pandas-dev/pandas/issues/19101
https://github.com/pandas-dev/pandas/issues/19726
https://github.com/pandas-dev/pandas/issues/19348
https://github.com/pandas-dev/pandas/issues/20040
https://github.com/pandas-dev/pandas/issues/20499
https://github.com/pandas-dev/pandas/issues/20636
https://github.com/pandas-dev/pandas/issues/20661
https://github.com/pandas-dev/pandas/issues/19474
https://github.com/pandas-dev/pandas/issues/19362
https://github.com/pandas-dev/pandas/issues/17105
https://github.com/pandas-dev/pandas/issues/17284
https://github.com/pandas-dev/pandas/issues/20921
https://github.com/pandas-dev/pandas/issues/20722
https://github.com/pandas-dev/pandas/issues/19027
https://github.com/pandas-dev/pandas/issues/19057

pandas: powerful Python data analysis toolkit, Release 0.23.4

Bug in MultiIndex.get_level_values () which would return an invalid index on level of ints with
missing values (GH17924)

Bugin MultiIndex.unique () when called on empty MultiIndex (GH20568)

Bugin MultiIndex.unique () which would not preserve level names (GH20570)

Bugin MultiIndex.remove_unused_levels () which would fill nan values (GH18417)

Bugin MultiIndex.from tuples () which would fail to take zipped tuples in python3 (GH18434)

Bug in MultiIndex.get_loc () which would fail to automatically cast values between float and int
(GH18818, GH15994)

Bugin MultiIndex.get_loc () which would cast boolean to integer labels (GH19086)
Bugin MultiIndex.get_loc () which would fail to locate keys containing NaN (GH18485)

Bug in MultiIndex.get_loc () in large MultiIndex, would fail when levels had different dtypes
(GH18520)

Bug in indexing where nested indexers having only numpy arrays are handled incorrectly (GH19686)

1.5.7.10 /O

read_html () now rewinds seekable IO objects after parse failure, before attempting to parse with a new
parser. If a parser errors and the object is non-seekable, an informative error is raised suggesting the use of a
different parser (GH17975)

DataFrame.to_html () now has an option to add an id to the leading <table> tag (GH8496)
Bug in read_msgpack () with a non existent file is passed in Python 2 (GH15296)

Bug in read_csv () where a MultiIndex with duplicate columns was not being mangled appropriately
(GH18062)

Bug in read csv() where missing values were not being handled properly when
keep_default_na=False with dictionary na_values (GH19227)

Bugin read_csv () causing heap corruption on 32-bit, big-endian architectures (GH20785)

Bug in read_sas () where a file with 0 variables gave an AttributeError incorrectly. Now it gives an
EmptyDataError (GH18184)

Bug in DataFrame.to_latex () where pairs of braces meant to serve as invisible placeholders were es-
caped (GH18667)

Bugin DataFrame.to_latex () where aNaNinaMultiIndex would cause an IndexError or incor-
rect output (GH14249)

Bug in DataFrame.to_latex () where a non-string index-level name would result in an
AttributeError (GH19981)

Bug in DataFrame.to_latex () where the combination of an index name and the index_names="False
option would result in incorrect output (GH18326)

Bug in DataFrame.to_latex () where a MultiIndex with an empty string as its name would result in
incorrect output (GH18669)

Bug in DataFrame.to_latex () where missing space characters caused wrong escaping and produced
non-valid latex in some cases (GH20859)

Bug in read_json () where large numeric values were causing an OverflowError (GHI18842)

Bugin DataFrame. to_parquet () where an exception was raised if the write destination is S3 (GH19134)

1.5.

v0.23.0 (May 15, 2018) 45

https://github.com/pandas-dev/pandas/issues/17924
https://github.com/pandas-dev/pandas/issues/20568
https://github.com/pandas-dev/pandas/issues/20570
https://github.com/pandas-dev/pandas/issues/18417
https://github.com/pandas-dev/pandas/issues/18434
https://github.com/pandas-dev/pandas/issues/18818
https://github.com/pandas-dev/pandas/issues/15994
https://github.com/pandas-dev/pandas/issues/19086
https://github.com/pandas-dev/pandas/issues/18485
https://github.com/pandas-dev/pandas/issues/18520
https://github.com/pandas-dev/pandas/issues/19686
https://github.com/pandas-dev/pandas/issues/17975
https://github.com/pandas-dev/pandas/issues/8496
https://github.com/pandas-dev/pandas/issues/15296
https://github.com/pandas-dev/pandas/issues/18062
https://github.com/pandas-dev/pandas/issues/19227
https://github.com/pandas-dev/pandas/issues/20785
https://github.com/pandas-dev/pandas/issues/18184
https://github.com/pandas-dev/pandas/issues/18667
https://github.com/pandas-dev/pandas/issues/14249
https://github.com/pandas-dev/pandas/issues/19981
https://github.com/pandas-dev/pandas/issues/18326
https://github.com/pandas-dev/pandas/issues/18669
https://github.com/pandas-dev/pandas/issues/20859
https://github.com/pandas-dev/pandas/issues/18842
https://github.com/pandas-dev/pandas/issues/19134

pandas: powerful Python data analysis toolkit, Release 0.23.4

Interval now supported in DataFrame. to_excel () for all Excel file types (GH19242)

Timedelta now supported in DataFrame.to_excel () for all Excel file types (GH19242, GH9155,
GH19900)

Bug in pandas.io.stata.StataReader.value_labels () raising an AttributeError when
called on very old files. Now returns an empty dict (GH19417)

Bug in read_pickle () when unpickling objects with TimedeltalIndex or Floaté64Index created
with pandas prior to version 0.20 (GH19939)

Bugin pandas.io. json. json_normalize () where subrecords are not properly normalized if any sub-
records values are NoneType (GH20030)

Bug in usecols parameter in read_csv () where error is not raised correctly when passing a string.
(GH20529)

Bug in HDF'Store. keys () when reading a file with a softlink causes exception (GH20523)

Bugin HDFStore.select_column () where a key which is not a valid store raised an Att ributeError
instead of a KeyError (GH17912)

1.5.7.11 Plotting

Better error message when attempting to plot but matplotlib is not installed (GH19810).
DataFrame.plot () nowraises aValueError when the x or y argument is improperly formed (GH18671)

Bugin DataFrame.plot () when x and y arguments given as positions caused incorrect referenced columns
for line, bar and area plots (GH20056)

Bug in formatting tick labels with datetime.time () and fractional seconds (GH18478).

Series.plot.kde () has exposed the args ind and bw_method in the docstring (GH18461). The argu-
ment ind may now also be an integer (number of sample points).

DataFrame.plot () now supports multiple columns to the y argument (GH19699)

1.5.7.12 Groupby/Resample/Rolling

Bug when grouping by a single column and aggregating with a class like 1ist or tuple (GH18079)

Fixed regression in DataFrame.groupby () which would not emit an error when called with a tuple key not
in the index (GH18798)

Bug in DataFrame.resample () which silently ignored unsupported (or mistyped) options for label,
closed and convention (GH19303)

Bugin DataFrame. groupby () where tuples were interpreted as lists of keys rather than as keys (GH17979,
GH18249)

Bug in DataFrame.groupby () where aggregation by first/last/min/max was causing timestamps to
lose precision (GH19526)

Bug in DataFrame.transform() where particular aggregation functions were being incorrectly cast to
match the dtype(s) of the grouped data (GH19200)

Bug in DataFrame.groupby () passing the on= kwarg, and subsequently using . apply () (GH17813)

Bug in DataFrame.resample () .aggregate not raising a KeyError when aggregating a non-existent
column (GH16766, GH19566)

46

Chapter 1. What’s New

https://github.com/pandas-dev/pandas/issues/19242
https://github.com/pandas-dev/pandas/issues/19242
https://github.com/pandas-dev/pandas/issues/9155
https://github.com/pandas-dev/pandas/issues/19900
https://github.com/pandas-dev/pandas/issues/19417
https://github.com/pandas-dev/pandas/issues/19939
https://github.com/pandas-dev/pandas/issues/20030
https://github.com/pandas-dev/pandas/issues/20529
https://github.com/pandas-dev/pandas/issues/20523
https://github.com/pandas-dev/pandas/issues/17912
https://github.com/pandas-dev/pandas/issues/19810
https://github.com/pandas-dev/pandas/issues/18671
https://github.com/pandas-dev/pandas/issues/20056
https://github.com/pandas-dev/pandas/issues/18478
https://github.com/pandas-dev/pandas/issues/18461
https://github.com/pandas-dev/pandas/issues/19699
https://github.com/pandas-dev/pandas/issues/18079
https://github.com/pandas-dev/pandas/issues/18798
https://github.com/pandas-dev/pandas/issues/19303
https://github.com/pandas-dev/pandas/issues/17979
https://github.com/pandas-dev/pandas/issues/18249
https://github.com/pandas-dev/pandas/issues/19526
https://github.com/pandas-dev/pandas/issues/19200
https://github.com/pandas-dev/pandas/issues/17813
https://github.com/pandas-dev/pandas/issues/16766
https://github.com/pandas-dev/pandas/issues/19566

pandas: powerful Python data analysis toolkit, Release 0.23.4

Bug in DataFrameGroupBy.cumsum () and DataFrameGroupBy.cumprod () when skipna was
passed (GH19806)

Bugin DataFrame.resample () that dropped timezone information (GH13238)

Bug in DataFrame.groupby () where transformations using np.all and np.any were raising a
ValueError (GH20653)

Bug in DataFrame.resample () where £fill, bfill, pad, backfill, fillna, interpolate,
and asfreq were ignoring 1offset. (GH20744)

Bug in DataFrame.groupby () when applying a function that has mixed data types and the user supplied
function can fail on the grouping column (GH20949)

Bug in DataFrameGroupBy.rolling () .apply () where operations performed against the associated
DataFrameGroupBy object could impact the inclusion of the grouped item(s) in the result (GH14013)

1.5.7.13 Sparse

Bug in which creating a SparseDataFrame from a dense Series or an unsupported type raised an uncon-
trolled exception (GH19374)

Bug in SparseDataFrame.to_csv causing exception (GH19384)

Bug in SparseSeries.memory_usage which caused segfault by accessing non sparse elements
(GH19368)

Bug in constructing a SparseArray: if data is a scalar and index is defined it will coerce to float 64
regardless of scalar’s dtype. (GH19163)

1.5.7.14 Reshaping

Bug in DataFrame.merge () where referencing a CategoricalIndex by name, where the by kwarg
would KeyError (GH20777)

Bug in DataFrame. stack () which fails trying to sort mixed type levels under Python 3 (GH18310)

Bug in DataFrame.unstack () which casts int to float if columns is a MultiIndex with unused levels
(GH17845)

Bug in DataFrame.unstack () which raises an error if index is a MultiIndex with unused labels on
the unstacked level (GH18562)

Fixed construction of a Series from a dict containing NaN as key (GH18480)
Fixed construction of a DataFrame from a dict containing NaN as key (GH18455)

Disabled construction of a Series where len(index) > len(data) = 1, which previously would broadcast the
data item, and now raises a ValueError (GH18819)

Suppressed error in the construction of a DataFrame from a dict containing scalar values when the corre-
sponding keys are not included in the passed index (GH18600)

Fixed (changed from object to float64) dtype of DataFrame initialized with axes, no data, and
dtype=int (GH19646)

Bugin Series.rank () where Series containing NaT modifies the Series inplace (GH18521)
Bug in cut () which fails when using readonly arrays (GH18773)

Bugin DataFrame.pivot_table () which fails when the aggfunc arg is of type string. The behavior is
now consistent with other methods like agg and apply (GH18713)

1.5.

v0.23.0 (May 15, 2018) 47

https://github.com/pandas-dev/pandas/issues/19806
https://github.com/pandas-dev/pandas/issues/13238
https://github.com/pandas-dev/pandas/issues/20653
https://github.com/pandas-dev/pandas/issues/20744
https://github.com/pandas-dev/pandas/issues/20949
https://github.com/pandas-dev/pandas/issues/14013
https://github.com/pandas-dev/pandas/issues/19374
https://github.com/pandas-dev/pandas/issues/19384
https://github.com/pandas-dev/pandas/issues/19368
https://github.com/pandas-dev/pandas/issues/19163
https://github.com/pandas-dev/pandas/issues/20777
https://github.com/pandas-dev/pandas/issues/18310
https://github.com/pandas-dev/pandas/issues/17845
https://github.com/pandas-dev/pandas/issues/18562
https://github.com/pandas-dev/pandas/issues/18480
https://github.com/pandas-dev/pandas/issues/18455
https://github.com/pandas-dev/pandas/issues/18819
https://github.com/pandas-dev/pandas/issues/18600
https://github.com/pandas-dev/pandas/issues/19646
https://github.com/pandas-dev/pandas/issues/18521
https://github.com/pandas-dev/pandas/issues/18773
https://github.com/pandas-dev/pandas/issues/18713

pandas: powerful Python data analysis toolkit, Release 0.23.4

Bug in DataFrame.merge () in which merging using Index objects as vectors raised an Exception
(GH19038)

Bugin DataFrame.stack (), DataFrame.unstack (), Series.unstack () which were not return-
ing subclasses (GH15563)

Bug in timezone comparisons, manifesting as a conversion of the index to UTC in . concat () (GH18523)

Bug in concat () when concatting sparse and dense series it returns only a SparseDataFrame. Should be
aDataFrame. (GH18914, GH18686, and GH16874)

Improved error message for DataFrame.merge () when there is no common merge key (GH19427)

Bug in DataFrame. join () which does an outer instead of a 1eft join when being called with multiple
DataFrames and some have non-unique indices (GH19624)

Series.rename () now accepts axis as a kwarg (GH18589)
Bug in rename () where an Index of same-length tuples was converted to a Multilndex (GH19497)

Comparisons between Series and Index would return a Series with an incorrect name, ignoring the
Index’s name attribute (GH19582)

Bug in gcut () where datetime and timedelta data with NaT present raised a ValueError (GH19768)

Bug in DataFrame.iterrows (), which would infers strings not compliant to ISO8601 to datetimes
(GH19671)

Bug in Series constructor with Categorical where a ValueError is not raised when an index of dif-
ferent length is given (GH19342)

Bugin DataFrame.astype () where column metadata is lost when converting to categorical or a dictionary
of dtypes (GH19920)

Bug in cut () and gcut () where timezone information was dropped (GH19872)
Bug in Series constructor with a dt ype=str, previously raised in some cases (GH19853)

Bugin get_dummies (),and select_dtypes (), where duplicate column names caused incorrect behav-
ior (GH20848)

Bug in isna (), which cannot handle ambiguous typed lists (GH20675)

Bug in concat () which raises an error when concatenating TZ-aware dataframes and all-NaT dataframes
(GH12396)

Bug in concat () which raises an error when concatenating empty TZ-aware series (GH18447)

1.5.7.15 Other

* Improved error message when attempting to use a Python keyword as an identifier in a numexpr backed query

(GH18221)

* Bug in accessing a pandas.get_option (), which raised KeyError rather than OptionError when

looking up a non-existant option key in some cases (GH19789)

* Bugin testing.assert_series_equal () and testing.assert_frame_equal () for Series or

DataFrames with differing unicode data (GH20503)

48

Chapter 1. What’s New

https://github.com/pandas-dev/pandas/issues/19038
https://github.com/pandas-dev/pandas/issues/15563
https://github.com/pandas-dev/pandas/issues/18523
https://github.com/pandas-dev/pandas/issues/18914
https://github.com/pandas-dev/pandas/issues/18686
https://github.com/pandas-dev/pandas/issues/16874
https://github.com/pandas-dev/pandas/issues/19427
https://github.com/pandas-dev/pandas/issues/19624
https://github.com/pandas-dev/pandas/issues/18589
https://github.com/pandas-dev/pandas/issues/19497
https://github.com/pandas-dev/pandas/issues/19582
https://github.com/pandas-dev/pandas/issues/19768
https://en.wikipedia.org/wiki/ISO_8601
https://github.com/pandas-dev/pandas/issues/19671
https://github.com/pandas-dev/pandas/issues/19342
https://github.com/pandas-dev/pandas/issues/19920
https://github.com/pandas-dev/pandas/issues/19872
https://github.com/pandas-dev/pandas/issues/19853
https://github.com/pandas-dev/pandas/issues/20848
https://github.com/pandas-dev/pandas/issues/20675
https://github.com/pandas-dev/pandas/issues/12396
https://github.com/pandas-dev/pandas/issues/18447
https://github.com/pandas-dev/pandas/issues/18221
https://github.com/pandas-dev/pandas/issues/19789
https://github.com/pandas-dev/pandas/issues/20503

pandas: powerful Python data analysis toolkit, Release 0.23.4

1.6 v0.22.0 (December 29, 2017)

This is a major release from 0.21.1 and includes a single, API-breaking change. We recommend that all users upgrade
to this version after carefully reading the release note (singular!).

1.6.1 Backwards incompatible API changes

Pandas 0.22.0 changes the handling of empty and all-NA sums and products. The summary is that
* The sum of an empty or all-NA Series is now 0
 The product of an empty or all-NA Series is now 1

* We’ve added a min_count parameter to .sum () and .prod () controlling the minimum number of valid
values for the result to be valid. If fewer than min_count non-NA values are present, the result is NA. The
default is 0. To return NaN, the 0.21 behavior, use min_count=1.

Some background: In pandas 0.21, we fixed a long-standing inconsistency in the return value of all-NA series de-
pending on whether or not bottleneck was installed. See Sum/Prod of all-NaN or empty Series/DataFrames is now
consistently NaN. At the same time, we changed the sum and prod of an empty Series to also be NaN.

Based on feedback, we’ve partially reverted those changes.
1.6.1.1 Arithmetic Operations

The default sum for empty or all-NA Series is now 0.

pandas 0.21.x

In [1]: pd.Series([]) .sum()
Out[1l]: nan

In [2]: pd.Series([np.nan]) .sum()
Out [2]: nan

pandas 0.22.0

In [1]: pd.Series([]) .sum()
Out[1l]: 0.0

In [2]: pd.Series([np.nan]) .sum()
NANANNNNANN\Out [2]: 0.0

The default behavior is the same as pandas 0.20.3 with bottleneck installed. It also matches the behavior of NumPy’s
np.nansum on empty and all-NA arrays.

To have the sum of an empty series return NaN (the default behavior of pandas 0.20.3 without bottleneck, or pandas
0.21.x), use the min_count keyword.

In [3]: pd.Series([]).sum(min_count=1)
Out[3]: nan

Thanks to the skipna parameter, the . sum on an all-NA series is conceptually the same as the . sum of an empty
one with skipna=True (the default).

In [4]: pd.Series([np.nan]) .sum(min_count=1) # skipna=True by default
Out [4]: nan

1.6. v0.22.0 (December 29, 2017) 49

pandas: powerful Python data analysis toolkit, Release 0.23.4

The min_count parameter refers to the minimum number of non-null values required for a non-NA sum or product.

Series.prod () has been updated to behave the same as Series. sum (), returning 1 instead.

In [5]: pd.Series([]) .prod()
Out[5]: 1.0

In [6]: pd.Series([np.nan]) .prod()
AN\ Out [6]: 1.0

In [7]: pd.Series([]) .prod(min_count=1)
AN\ OuE [7] ¢ nan

These changes affect DataFrame. sum () and DataFrame.prod () as well. Finally, a few less obvious places in
pandas are affected by this change.

1.6.1.2 Grouping by a Categorical

Grouping by a Categorical and summing now returns O instead of NaN for categories with no observations. The
product now returns 1 instead of NaN.

pandas 0.21.x

In [8]: grouper = pd.Categorical(['a', 'a'], categories=['a', 'b'])

In [9]: pd.Series([1l, 2]).groupby (grouper) .sum/()

Out[9]:
a 3.0
b NaN

dtype: float64

pandas 0.22

In [8]: grouper = pd.Categorical(['a', 'a'l, categories=['a', 'b'])

In [9]: pd.Series([1l, 2]).groupby (grouper) .sum/()

Oout[9]:
a 3
b 0

dtype: int64

To restore the 0.21 behavior of returning NaN for unobserved groups, use min_count>=1.

In [10]: pd.Series([1l, 2]).groupby (grouper) .sum(min_count=1)

Out [10]:
a 3.0
b NaN

dtype: floato64d

1.6.1.3 Resample

The sum and product of all-NA bins has changed from NaN to 0 for sum and 1 for product.

pandas 0.21.x

50 Chapter 1. What’s New

pandas: powerful Python data analysis toolkit, Release 0.23.4

In [11]: s = pd.Series([l, 1, np.nan, np.nan],
: index=pd.date_range ('2017', periods=4))
...: S
Out[11]:

2017-01-01 1.0
2017-01-02 1.0
2017-01-03 NaN
2017-01-04 NaN

Freq: D, dtype: float64

In [12]: s.resample('2d") .sum()

Out[1l2]:
2017-01-01 2.0
2017-01-03 NaN

Freqg: 2D, dtype: float64

pandas 0.22.0

In [11]: s = pd.Series([1l, 1, np.nan, np.nan],
e index=pd.date_range ('2017', periods=4))

In [12]: s.resample('2d") .sum()

Out[12]:
2017-01-01 2.0
2017-01-03 0.0

dtype: floaté64d

To restore the 0.21 behavior of returning NaN, use min_count>=1.

In [13]: s.resample('2d') .sum(min_count=1)

Out [13]:
2017-01-01 2.0
2017-01-03 NaN

dtype: float64

In particular, upsampling and taking the sum or product is affected, as upsampling introduces missing values even if
the original series was entirely valid.

pandas 0.21.x

In [14]: idx = pd.DatetimeIndex(['2017-01-01", '2017-01-02"1)

In [15]: pd.Series([1l, 2], index=idx) .resample('12H") .sum()

Out [15]:

2017-01-01 00:00:00 1.0
2017-01-01 12:00:00 NaN
2017-01-02 00:00:00 2.0

Freq: 12H, dtype: floaté64

pandas 0.22.0

In [14]: idx = pd.DatetimeIndex(['2017-01-01", '"2017-01-02"1)

In [15]: pd.Series([1l, 2], index=idx) .resample("12H") .sum/()
Out[15]:
2017-01-01 00:00:00 1

(continues on next page)

1.6. v0.22.0 (December 29, 2017) 51

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

2017-01-01 12:00:00 0
2017-01-02 00:00:00 2
Freqg: 12H, dtype: inté64

Once again, the min_count keyword is available to restore the 0.21 behavior.

In [16]: pd.Series([1l, 2], index=idx) .resample ("12H") .sum(min_count=1)
Out [16]:

2017-01-01 00:00:00 1.0

2017-01-01 12:00:00 NaN

2017-01-02 00:00:00 2.0

Freq: 12H, dtype: floaté64

1.6.1.4 Rolling and Expanding

Rolling and expanding already have a min_periods keyword that behaves similar to min_count. The only case
that changes is when doing a rolling or expanding sum with min_periods=0. Previously this returned NaN, when
fewer than min_periods non-NA values were in the window. Now it returns 0.

pandas 0.21.1

In [17]: s = pd.Series([np.nan, np.nan]j)

In [18]: s.rolling (2, min_periods=0) .sum()

Out[18]:
0 NaN
1 NaN

dtype: float64

pandas 0.22.0

In [17]: s = pd.Series([np.nan, np.nan]j)

In [18]: s.rolling (2, min_periods=0) .sum()

Out [18]:
0 0.0
1 0.0

dtype: float64

The default behavior of min_periods=None, implying that min_periods equals the window size, is unchanged.

1.6.2 Compatibility

If you maintain a library that should work across pandas versions, it may be easiest to exclude pandas 0.21 from your
requirements. Otherwise, all your sum () calls would need to check if the Series is empty before summing.

With setuptools, in your setup . py use:

install_requires=['pandas!=0.21.x"', ...]

With conda, use

requirements:
run:
- pandas !=0.21.0,!=0.21.1

52 Chapter 1. What’s New

pandas: powerful Python data analysis toolkit, Release 0.23.4

Note that the inconsistency in the return value for all-NA series is still there for pandas 0.20.3 and earlier. Avoiding
pandas 0.21 will only help with the empty case.

1.7 v0.21.1 (December 12, 2017)

This is a minor bug-fix release in the 0.21.x series and includes some small regression fixes, bug fixes and performance
improvements. We recommend that all users upgrade to this version.

Highlights include:

» Temporarily restore matplotlib datetime plotting functionality. This should resolve issues for users who implic-
itly relied on pandas to plot datetimes with matplotlib. See here.

* Improvements to the Parquet IO functions introduced in 0.21.0. See here.

What’s new in v(0.21.1

* Restore Matplotlib datetime Converter Registration
* New features
— Improvements to the Parquet 10 functionality
— Other Enhancements
* Deprecations
* Performance Improvements
* Bug Fixes
— Conversion
— Indexing
- 1/0
— Plotting
— Groupby/Resample/Rolling
— Reshaping
— Numeric

— Categorical

— String

1.7.1 Restore Matplotlib datetime Converter Registration

Pandas implements some matplotlib converters for nicely formatting the axis labels on plots with datetime or
Period values. Prior to pandas 0.21.0, these were implicitly registered with matplotlib, as a side effect of import
pandas.

In pandas 0.21.0, we required users to explicitly register the converter. This caused problems for some users who
relied on those converters being present for regular matplotlib.pyplot plotting methods, so we’re temporarily
reverting that change; pandas 0.21.1 again registers the converters on import, just like before 0.21.0.

1.7. v0.21.1 (December 12, 2017) 53

pandas: powerful Python data analysis toolkit, Release 0.23.4

We've added a new option to control the converters: pd.options.plotting.matplotlib.
register_converters. By default, they are registered. Toggling this to False removes pandas’ formatters and
restore any converters we overwrote when registering them (GH18301).

We’re working with the matplotlib developers to make this easier. We’re trying to balance user convenience (auto-
matically registering the converters) with import performance and best practices (importing pandas shouldn’t have the
side effect of overwriting any custom converters you’ve already set). In the future we hope to have most of the date-
time formatting functionality in matplotlib, with just the pandas-specific converters in pandas. We’ll then gracefully
deprecate the automatic registration of converters in favor of users explicitly registering them when they want them.

1.7.2 New features

1.7.2.1 Improvements to the Parquet 10 functionality
e DataFrame.to_parquet () will now write non-default indexes when the underlying engine supports it.
The indexes will be preserved when reading back in with read_parquet () (GH18581).
* read_parquet () now allows to specify the columns to read from a parquet file (GH18154)

* read_parquet () now allows to specify kwargs which are passed to the respective engine (GH18216)

1.7.2.2 Other Enhancements

* Timestamp.timestamp () is now available in Python 2.7. (GH17329)

* Grouper and TimeGrouper now have a friendly repr output (GH18203).

1.7.3 Deprecations

* pandas.tseries.register has been renamed to pandas.plotting.
register_matplotlib converters () (GH18301)

1.7.4 Performance Improvements

* Improved performance of plotting large series/dataframes (GH18236).

1.7.5 Bug Fixes

1.7.5.1 Conversion

* Bugin TimedeltalIndex subtraction could incorrectly overflow when NaT is present (GH17791)
* Bugin DatetimeIndex subtracting datetimelike from DatetimeIndex could fail to overflow (GH18020)

* Bug in IntervalIndex.copy () when copying and IntervalIndex with non-default closed
(GH18339)

* Bugin DataFrame.to_dict () where columns of datetime that are tz-aware were not converted to required
arrays when used with orient="records", raising TypeError (GH18372)

* Bug in DateTimeIndex and date_range () where mismatching tz-aware start and end timezones
would not raise an err if end.tzinfo is None (GH18431)

* Bugin Series. fillna () which raised when passed a long integer on Python 2 (GH18159).

54 Chapter 1. What’s New

https://github.com/pandas-dev/pandas/issues/18301
https://github.com/pandas-dev/pandas/issues/18581
https://github.com/pandas-dev/pandas/issues/18154
https://github.com/pandas-dev/pandas/issues/18216
https://github.com/pandas-dev/pandas/issues/17329
https://github.com/pandas-dev/pandas/issues/18203
https://github.com/pandas-dev/pandas/issues/18301
https://github.com/pandas-dev/pandas/issues/18236
https://github.com/pandas-dev/pandas/issues/17791
https://github.com/pandas-dev/pandas/issues/18020
https://github.com/pandas-dev/pandas/issues/18339
https://github.com/pandas-dev/pandas/issues/18372
https://github.com/pandas-dev/pandas/issues/18431
https://github.com/pandas-dev/pandas/issues/18159

pandas: powerful Python data analysis toolkit, Release 0.23.4

1.7.5.2 Indexing

* Bugin aboolean comparison of a datetime.datetime andadatetime64 [ns] dtype Series (GH17965)

* Bug where a Mult i Index with more than a million records was not raising At t ributeError when trying
to access a missing attribute (GH18165)

* Bugin IntervalIndex constructor when a list of intervals is passed with non-default closed (GH18334)
* Bugin Index.putmask when an invalid mask passed (GH18368)

* Bug in masked assignment of a timedelta64 [ns] dtype Series, incorrectly coerced to float (GH18493)

1.7.5.3 I/O

* Bug in class:~pandas.io.stata.StataReader not converting date/time columns with display formatting addressed
(GH17990). Previously columns with display formatting were normally left as ordinal numbers and not con-
verted to datetime objects.

* Bugin read_csv () when reading a compressed UTF-16 encoded file (GH18071)

* Bug in read_csv () for handling null values in index columns when specifying na_filter=False
(GH5239)

* Bugin read_csv () when reading numeric category fields with high cardinality (GH18186)

* Bugin DataFrame.to_csv () when the table had MultiIndex columns, and a list of strings was passed
in for header (GH5539)

* Bug in parsing integer datetime-like columns with specified format in read_sqgl (GH17855).

* Bugin DataFrame.to_msgpack () when serializing data of the numpy .bool_ datatype (GH18390)
* Bugin read_json () not decoding when reading line deliminted JSON from S3 (GH17200)

* Bugin pandas.io. json. json_normalize () to avoid modification of meta (GH18610)

* Bugin to_latex () where repeated multi-index values were not printed even though a higher level index
differed from the previous row (GH14484)

* Bug when reading NaN-only categorical columns in HDFStore (GH18413)

* Bugin DataFrame.to_latex () with longtable=True where a latex multicolumn always spanned over
three columns (GH17959)

1.7.5.4 Plotting

* Bugin DataFrame.plot () and Series.plot () with DatetimeIndex where a figure generated by
them is not pickleable in Python 3 (GH18439)

1.7.5.5 Groupby/Resample/Rolling

* BuginDataFrame.resample (...) .apply (...) when thereis a callable that returns different columns
(GH15169)
* BuginDataFrame.resample (...) when there is a time change (DST) and resampling frequecy is 12h or

higher (GH15549)
* Bugin pd.DataFrameGroupBy.count () when counting over a datetimelike column (GH13393)

* Bugin rolling.var where calculation is inaccurate with a zero-valued array (GH18430)

1.7. v0.21.1 (December 12, 2017) 55

https://github.com/pandas-dev/pandas/issues/17965
https://github.com/pandas-dev/pandas/issues/18165
https://github.com/pandas-dev/pandas/issues/18334
https://github.com/pandas-dev/pandas/issues/18368
https://github.com/pandas-dev/pandas/issues/18493
https://github.com/pandas-dev/pandas/issues/17990
https://github.com/pandas-dev/pandas/issues/18071
https://github.com/pandas-dev/pandas/issues/5239
https://github.com/pandas-dev/pandas/issues/18186
https://github.com/pandas-dev/pandas/issues/5539
https://github.com/pandas-dev/pandas/issues/17855
https://github.com/pandas-dev/pandas/issues/18390
https://github.com/pandas-dev/pandas/issues/17200
https://github.com/pandas-dev/pandas/issues/18610
https://github.com/pandas-dev/pandas/issues/14484
https://github.com/pandas-dev/pandas/issues/18413
https://github.com/pandas-dev/pandas/issues/17959
https://github.com/pandas-dev/pandas/issues/18439
https://github.com/pandas-dev/pandas/issues/15169
https://github.com/pandas-dev/pandas/issues/15549
https://github.com/pandas-dev/pandas/issues/13393
https://github.com/pandas-dev/pandas/issues/18430

pandas: powerful Python data analysis toolkit, Release 0.23.4

1.7.5.6 Reshaping
* Error message in pd.merge_asof () for key datatype mismatch now includes datatype of left and right key
(GH18068)
* Buginpd.concat when empty and non-empty DataFrames or Series are concatenated (GH18178 GH18187)
* BuginDataFrame.filter (...) when unicode is passed as a condition in Python 2 (GH13101)

* Bug when merging empty DataFrames when np . seterr (divide='raise"') is set (GH17776)

1.7.5.7 Numeric

* Bugin pd.Series.rolling.skew() and rolling.kurt () with all equal values has floating issue
(GH18044)

1.7.5.8 Categorical
* Bugin DataFrame.astype () where casting to ‘category’ on an empty Dat aF rame causes a segmentation
fault (GH18004)

» Error messages in the testing module have been improved when items have different CategoricalDtype
(GH18069)

* CategoricalIndex can now correctly take a pd.api.types.CategoricalDtype as its dtype
(GH18116)

* Bug in Categorical.unique () returning read-only codes array when all categories were NaN
(GH18051)

* BuginDataFrame.groupby (axis=1) witha CategoricalIndex (GH18432)

1.7.5.9 String

* Series.str.split () will now propagate NaN values across all expanded columns instead of None
(GH18450)

1.8 v0.21.0 (October 27, 2017)

This is a major release from 0.20.3 and includes a number of API changes, deprecations, new features, enhancements,
and performance improvements along with a large number of bug fixes. We recommend that all users upgrade to this
version.

Highlights include:

¢ Integration with Apache Parquet, including a new top-level read_parquet () function and DataFrame.
to_parquet () method, see here.

* New user-facing pandas.api.types.CategoricalDtype for specifying categoricals independent of
the data, see here.

e The behavior of sum and prod on all-NaN Series/DataFrames is now consistent and no longer depends on
whether bottleneck is installed, and sum and prod on empty Series now return NaN instead of 0, see here.

» Compatibility fixes for pypy, see here.

¢ Additions to the drop, reindex and rename API to make them more consistent, see here.

56 Chapter 1. What’s New

https://github.com/pandas-dev/pandas/issues/18068
https://github.com/pandas-dev/pandas/issues/18178
https://github.com/pandas-dev/pandas/issues/18187
https://github.com/pandas-dev/pandas/issues/13101
https://github.com/pandas-dev/pandas/issues/17776
https://github.com/pandas-dev/pandas/issues/18044
https://github.com/pandas-dev/pandas/issues/18004
https://github.com/pandas-dev/pandas/issues/18069
https://github.com/pandas-dev/pandas/issues/18116
https://github.com/pandas-dev/pandas/issues/18051
https://github.com/pandas-dev/pandas/issues/18432
https://github.com/pandas-dev/pandas/issues/18450
https://parquet.apache.org/
http://berkeleyanalytics.com/bottleneck

pandas: powerful Python data analysis toolkit, Release 0.23.4

¢ Addition of the new methods DataFrame.infer_objects (see here) and GroupBy .pipe (see here).

* Indexing with a list of labels, where one or more of the labels is missing, is deprecated and will raise a KeyError

in a future version, see here.

Check the API Changes and deprecations before updating.

What’s new in v(0.21.0

* New features

Integration with Apache Parquet file format
— infer._objects type conversion
— Improved warnings when attempting to create columns
— drop now also accepts index/columns keywords
— rename, reindex now also accept axis keyword
— CategoricalDtype for specifying categoricals
— GroupBy objects now have a pipe method
— Categorical.rename_categories accepts a dict-like
— Other Enhancements
* Backwards incompatible API changes
— Dependencies have increased minimum versions
— Sum/Prod of all-NaN or empty Series/DataFrames is now consistently NaN
— Indexing with a list with missing labels is Deprecated
— NA naming Changes
— Iteration of Series/Index will now return Python scalars
— Indexing with a Boolean Index
— PeriodIndex resampling
— Improved error handling during item assignment in pd.eval
— Dtype Conversions
— Multilndex Constructor with a Single Level

UTC Localization with Series

Consistency of Range Functions

No Automatic Matplotlib Converters
Other API Changes

* Deprecations
— Series.select and DataFrame.select
— Series.argmax and Series.argmin

* Removal of prior version deprecations/changes

* Performance Improvements

1.8. v0.21.0 (October 27, 2017)

57

pandas: powerful Python data analysis toolkit, Release 0.23.4

* Documentation Changes
* Bug Fixes

Conversion

Indexing
- 1/0

Plotting
Groupby/Resample/Rolling

Sparse

Reshaping

Numeric

Categorical
PyPy
Other

1.8.1 New features
1.8.1.1 Integration with Apache Parquet file format
Integration with Apache Parquet, including a new top-level read_parquet () and DataFrame.to_parquet ()

method, see here (GH15838, GH17438).

Apache Parquet provides a cross-language, binary file format for reading and writing data frames efficiently. Parquet is
designed to faithfully serialize and de-serialize DataF rame s, supporting all of the pandas dtypes, including extension
dtypes such as datetime with timezones.

This functionality depends on either the pyarrow or fastparquet library. For more details, see see the 10 docs on
Parquet.

1.8.1.2 infer_ objects type conversion

The DataFrame.infer_objects () and Series.infer_objects () methods have been added to perform
dtype inference on object columns, replacing some of the functionality of the deprecated convert_objects
method. See the documentation here for more details. (GH11221)

This method only performs soft conversions on object columns, converting Python objects to native types, but not any
coercive conversions. For example:

In [1]: df = pd.DataFrame({'A': [1, 2, 31,
: 'B': np.array([1l, 2, 3], dtype='object'),
ICI: [lll, l2l, |3IJ})

In [2]: df.dtypes

Out[2]:

A inte4
B object
C object

(continues on next page)

58 Chapter 1. What’s New

https://parquet.apache.org/
https://github.com/pandas-dev/pandas/issues/15838
https://github.com/pandas-dev/pandas/issues/17438
https://parquet.apache.org/
http://arrow.apache.org/docs/python/
https://fastparquet.readthedocs.io/en/latest/
https://github.com/pandas-dev/pandas/issues/11221

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

dtype: object

In [3]: df.infer_objects () .dtypes
ATV LT DA AN\ OuE [3] :

A int64
B int64
C object

dtype: object

Note that column 'C' was not converted - only scalar numeric types will be converted to a new type.
Other types of conversion should be accomplished using the to_numeric () function (or to_datetime (),
to _timedelta()).

In [4]: df = df.infer_objects()
In [5]: df['C'] = pd.to_numeric(df['C'], errors='coerce')

In [6]: df.dtypes

Out[6]:

A int64
B int64
C int64

dtype: object

1.8.1.3 Improved warnings when attempting to create columns

New users are often puzzled by the relationship between column operations and attribute access on DataFrame
instances (GH7175). One specific instance of this confusion is attempting to create a new column by setting an
attribute on the DataFrame:

In[l]: df = pd.DataFrame({'one': [1., 2., 3.1})
In[2]: df.two = [4, 5, 6]

This does not raise any obvious exceptions, but also does not create a new column:

In[3]: df

Oout [3]:
one

0

1

2

w N =
o O O

Setting a list-like data structure into a new attribute now raises a UserWarning about the potential for unexpected
behavior. See Attribute Access.

1.8.1.4 drop now also accepts index/columns keywords

The drop () method has gained index/columns keywords as an alternative to specifying the axis. This is similar
to the behavior of reindex (GH12392).

For example:

1.8. v0.21.0 (October 27, 2017) 59

https://github.com/pandas-dev/pandas/issues/7175
https://github.com/pandas-dev/pandas/issues/12392

pandas: powerful Python data analysis toolkit, Release 0.23.4

In [7]: df = pd.DataFrame (np.arange (8) .reshape(2,4),
: columns=['A', 'B', 'C', 'D'])

In [8]: df
Out[8]:

A B C D
o 0 1 2 3
1 4 5 o6 7

In [9]: df.drop(['B', 'C'], axis=1)
ALTTTLTLEL LT DN\ Out [9] -

A D
0 0 3
1 4 7

the following is now equivalent
In [10]: df.drop(columns=['B', 'C'])
A N R R N R N N N N N N N N N N N N N N N N R N N N N N N N R N N N N R N R N R RN elti

—

A D
0 0 3
1 4 7

1.8.1.5 rename, reindex now also accept axis keyword

The DataFrame.rename () and DataFrame.reindex () methods have gained the axis keyword to specify
the axis to target with the operation (GH12392).

Here’s rename:

In [11]: df = pd.DataFrame({"A": [1, 2, 31, "B": [4, 5, 6]1})

In [12]: df.rename(str.lower, axis='columns')

Out[12]:

a b
0O 1 4
1 2 5
2 3 6

In [13]: df.rename(id, axis="'index')

ATTTLVVVR TRV VUV Out [13] ¢

A B
94270759180800 1 4
94270759180832 2 5
94270759180864 3 6

And reindex:

In [14]: df.reindex(['A', 'B', 'C'], axis='columns')

Out[14]:

A B C
0 1 4 NaN
1 2 5 NaN
2 3 6 NaN

(continues on next page)

60 Chapter 1. What’s New

https://github.com/pandas-dev/pandas/issues/12392

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

In [15]: df.reindex ([0, 1, 3], axis='index")
ALV NN\ Out [15] ¢

A B
0 1.0 4.0
1 2.0 5.0

3 NaN NaN

The “index, columns” style continues to work as before.

In [16]: df.rename (index=1id, columns=str.lower)

Out [16]:

a b
94270759180800 1 4
94270759180832 2 5
94270759180864 3 6

In [17]: df.reindex(index=[0, 1, 3], columns=['A', 'B', 'C'])

R S N A R R R AR R RN
A B C

0 1.0 4.0 NaN

1 2.0 5.0 NaN

3 NaN NaN NaN

We highly encourage using named arguments to avoid confusion when using either style.

1.8.1.6 categoricalDtype for specifying categoricals

pandas.api.types.CategoricalDtype has been added to the public API and expanded to include the
categories and ordered attributes. A CategoricalDtype can be used to specify the set of categories and
orderedness of an array, independent of the data. This can be useful for example, when converting string data to a
Categorical (GH14711, GH15078, GH16015, GH17643):

In [18]: from pandas.api.types import CategoricalDtype
In [19]: s = pd.Series(['a', 'b', 'c', 'a'l) # strings
In [20]: dtype = CategoricalDtype (categories=['a', 'b', 'c', 'd'], ordered=True)

In [21]: s.astype (dtype)
Out [21]:

0 a

1 b

2 c

3 a

dtype: category

Categories (4, object): [a < b < ¢ < d]

One place that deserves special mention is in read_csv (). Previously, with dtype={'col': 'category'},
the returned values and categories would always be strings.

In [22]: data = 'A,B\na, 1\nb, 2\nc, 3"

In [23]: pd.read_csv(StringIO(data), dtype={'B': 'category'}) .B.cat.categories
Out[23]: Index(['1l', '2', '3'], dtype='object')

1.8. v0.21.0 (October 27, 2017) 61

\AA\\\Out [17

https://github.com/pandas-dev/pandas/issues/14711
https://github.com/pandas-dev/pandas/issues/15078
https://github.com/pandas-dev/pandas/issues/16015
https://github.com/pandas-dev/pandas/issues/17643

pandas: powerful Python data analysis toolkit, Release 0.23.4

Notice the “object” dtype.

With a CategoricalDtype of all numerics, datetimes, or timedeltas, we can automatically convert to the correct
type

In [24]: dtype = {'B': CategoricalDtype([1l, 2, 3])}

In [25]: pd.read_csv(StringIO(data), dtype=dtype) .B.cat.categories
Out[25]: Int64Index([1l, 2, 3], dtype='inté64d")

The values have been correctly interpreted as integers.

The .dtype property of a Categorical, CategoricalIndex or a Series with categorical type will now
return an instance of CategoricalDtype. While the repr has changed, str (CategoricalDtype ()) is still
the string 'category'. We'll take this moment to remind users that the preferred way to detect categorical data is
touse pandas.api.types.is _categorical_dtype (),andnot str (dtype) == 'category'.

See the CategoricalDtype docs for more.

1.8.1.7 GroupBy objects nhow have a pipe method

GroupBy objects now have a pipe method, similar to the one on DataFrame and Series, that allow for functions
that take a GroupBy to be composed in a clean, readable syntax. (GH17871)

For a concrete example on combining . groupby and . pipe , imagine having a DataFrame with columns for stores,
products, revenue and sold quantity. We’d like to do a groupwise calculation of prices (i.e. revenue/quantity) per store
and per product. We could do this in a multi-step operation, but expressing it in terms of piping can make the code
more readable.

First we set the data:

In [26]: import numpy as np
In [27]: n = 1000

In [28]: df = pd.DataFrame({'Store': np.random.choice(['Store_1', 'Store_2'], n),
et 'Product': np.random.choice(['Product_1', 'Product_2',

..... 'Revenue': (np.random.random(n)*50+10) .round(2),
e '"Quantity': np.random.randint (1, 10, size=n)})

In [29]: df.head(2)

Out[29]:

Store Product Revenue Quantity
0 Store_1 Product_3 54.28 3
1 Store_2 Product_2 30.91 1

Now, to find prices per store/product, we can simply do:

In [30]: (df.groupby(['Store', 'Product'])
et .pipe (lambda grp: grp.Revenue.sum()/grp.Quantity.sum())

et .unstack () .round (2))
Out [30]:
Product Product_1 Product_2 Product_3
Store

(continues on next page)

62 Chapter 1. What’s New

https://github.com/pandas-dev/pandas/issues/17871

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

Store_1 6.37 6.98 7.49
Store_2 7.60 7.01 7.13

See the documentation for more.

1.8.1.8 Categorical.rename_categories accepts a dict-like

rename_categories () now accepts a dict-like argument for new_categories. The previous categories are
looked up in the dictionary’s keys and replaced if found. The behavior of missing and extra keys is the same as in
DataFrame.rename ().

In [31]: ¢ = pd.Categorical(['a', 'a', 'b'])

In [32]: c.rename_categories({"a": "eh", "b": "bee"})
Out[32]:

[eh, eh, bee]

Categories (2, object): [eh, bee]

Warning: To assist with upgrading pandas, rename_categories treats Series as list-like. Typically, Series
are considered to be dict-like (e.g. in . rename, .map). In a future version of pandas rename_categories
will change to treat them as dict-like. Follow the warning message’s recommendations for writing future-proof
code.

In [33]: c.rename_categories (pd.Series ([0, 1], index=['a', 'c']l))

FutureWarning: Treating Series 'new_categories' as a list-like and using the values.
In a future version, 'rename_categories' will treat Series like a dictionary.

For dict-like, use 'new_categories.to_dict ()"’

For list-like, use 'new_categories.values'.

Out [33]:

[0, 0, 1]

Categories (2, int64): [0, 1]

1.8.1.9 Other Enhancements

New functions or methods

* nearest () is added to support nearest-neighbor upsampling (GH17496).
* Index has added support for a t o_frame method (GH15230).

New keywords

e Added a skipna parameter to infer. dtype () to support type inference in the presence of missing values
(GH17059).

e Series.to_dict () and DataFrame.to_dict () now support an into keyword which allows you to
specify the collections.Mapping subclass that you would like returned. The default is dict, which is
backwards compatible. (GH16122)

* Series.set_axis () and DataFrame.set_axis () now supportthe inplace parameter. (GH14636)

1.8. v0.21.0 (October 27, 2017) 63

https://github.com/pandas-dev/pandas/issues/17496
https://github.com/pandas-dev/pandas/issues/15230
https://github.com/pandas-dev/pandas/issues/17059
https://github.com/pandas-dev/pandas/issues/16122
https://github.com/pandas-dev/pandas/issues/14636

pandas: powerful Python data analysis toolkit, Release 0.23.4

Series.to_pickle() and DataFrame.to_pickle() have gained a protocol parameter
(GH16252). By default, this parameter is set to HHGHEST PROTOCOL

read_feather () has gained the nt hreads parameter for multi-threaded operations (GH16359)
DataFrame.clip () and Series.clip () have gained an inplace argument. (GH15388)

crosstab () has gained amargins_name parameter to define the name of the row / column that will contain
the totals when margins=True. (GH15972)

read_json () now accepts a chunksize parameter that can be used when 1ines=True. If chunksize
is passed, read_json now returns an iterator which reads in chunksize lines with each iteration. (GH17048)

read_json () and to_json () now accept a compression argument which allows them to transparently
handle compressed files. (GH17798)

Various enhancements

Improved the import time of pandas by about 2.25x. (GH16764)

Support for PEP 519 — Adding a file system path protocol on most readers (e.g. read_csv ()) and writers
(e.g. DataFrame.to_csv()) (GH13823).

Addeda__fspath__ methodto pd.HDFStore, pd.ExcelFile, and pd.ExcelWriter to work prop-
erly with the file system path protocol (GH13823).

The validate argument for merge () now checks whether a merge is one-to-one, one-to-many, many-to-
one, or many-to-many. If a merge is found to not be an example of specified merge type, an exception of type
MergeError will be raised. For more, see here (GH16270)

Added support for PEP 518 (pyproject .toml) to the build system (GH16745)
RangeIndex.append () now returns a RangeIndex object when possible (GH16212)

Series.rename_axis () and DataFrame.rename_axis () with inplace=True now return None
while renaming the axis inplace. (GH15704)

api.types.infer_dtype () now infers decimals. (GH15690)

DataFrame.select_dtypes () now accepts scalar values for include/exclude as well as list-like.
(GH16855)

date_range () now accepts ‘YS’ in addition to ‘AS’ as an alias for start of year. (GH9313)
date_range () now accepts ‘Y’ in addition to ‘A’ as an alias for end of year. (GH9313)

DataFrame.add prefix () and DataFrame.add _suffix () now accept strings containing the ‘%’
character. (GH17151)

Read/write methods that infer compression (read _csv (), read_table(), read_pickle(), and
to_pickle ())can now infer from path-like objects, such as pathlib.Path. (GH17206)

read_sas () now recognizes much more of the most frequently used date (datetime) formats in SAS7TBDAT
files. (GH15871)

DataFrame.items () and Series.items () are now present in both Python 2 and 3 and is lazy in all
cases. (GH13918, GH17213)

pandas.io.formats.style.Styler.where () hasbeen implemented as a convenience for pandas.
io.formats.style.Styler.applymap (). (GH17474)

MultiIndex.is_monotonic_decreasing () has been implemented. Previously returned False in all
cases. (GH16554)

64

Chapter 1. What’s New

https://github.com/pandas-dev/pandas/issues/16252
https://docs.python.org/3/library/pickle.html#data-stream-format
https://github.com/pandas-dev/pandas/issues/16359
https://github.com/pandas-dev/pandas/issues/15388
https://github.com/pandas-dev/pandas/issues/15972
https://github.com/pandas-dev/pandas/issues/17048
https://github.com/pandas-dev/pandas/issues/17798
https://github.com/pandas-dev/pandas/issues/16764
https://www.python.org/dev/peps/pep-0519/
https://github.com/pandas-dev/pandas/issues/13823
https://github.com/pandas-dev/pandas/issues/13823
https://github.com/pandas-dev/pandas/issues/16270
https://www.python.org/dev/peps/pep-0518/
https://github.com/pandas-dev/pandas/issues/16745
https://github.com/pandas-dev/pandas/issues/16212
https://github.com/pandas-dev/pandas/issues/15704
https://github.com/pandas-dev/pandas/issues/15690
https://github.com/pandas-dev/pandas/issues/16855
https://github.com/pandas-dev/pandas/issues/9313
https://github.com/pandas-dev/pandas/issues/9313
https://github.com/pandas-dev/pandas/issues/17151
https://github.com/pandas-dev/pandas/issues/17206
https://github.com/pandas-dev/pandas/issues/15871
https://github.com/pandas-dev/pandas/issues/13918
https://github.com/pandas-dev/pandas/issues/17213
https://github.com/pandas-dev/pandas/issues/17474
https://github.com/pandas-dev/pandas/issues/16554

pandas: powerful Python data analysis toolkit, Release 0.23.4

* read_excel () raises ImportError with a better message if x1rd is not installed. (GH17613)

* DataFrame.assign () will preserve the original order of x+kwargs for Python 3.6+ users instead of
sorting the column names. (GH14207)

* Series.reindex (), DataFrame.reindex (), Index.get_indexer () now support list-like argu-
ment for tolerance. (GH17367)

1.8.2 Backwards incompatible API changes

1.8.2.1 Dependencies have increased minimum versions

We have updated our minimum supported versions of dependencies (GH15206, GH15543, GH15214). If installed, we
now require:

Package | Minimum Version | Required

Numpy 1.9.0 X
Matplotlib | 1.4.3
Scipy 0.14.0

Bottleneck | 1.0.0

Additionally, support has been dropped for Python 3.4 (GH15251).

1.8.2.2 Sum/Prod of all-NaN or empty Series/DataFrames is now consistently NaN

Note: The changes described here have been partially reverted. See the v0.22.0 Whatsnew for more.

The behavior of sum and prod on all-NaN Series/DataFrames no longer depends on whether bottleneck is installed,
and return value of sum and prod on an empty Series has changed (GH9422, GH15507).

Calling sum or prod on an empty or all-NaN Series, or columns of a DataFrame, will result in NaN. See the
docs.

In [33]: s = Series([np.nan])

Previously WITHOUT bottleneck installed:

In [2]: s.sum()
Out[2]: np.nan

Previously WITH bottleneck:

In [2]: s.sum()
Out[2]: 0.0

New Behavior, without regard to the bottleneck installation:

In [34]: s.sum()
Out[34]: 0.0

Note that this also changes the sum of an empty Series. Previously this always returned O regardless of a
bottlenck installation:

1.8. v0.21.0 (October 27, 2017) 65

https://github.com/pandas-dev/pandas/issues/17613
https://github.com/pandas-dev/pandas/issues/14207
https://github.com/pandas-dev/pandas/issues/17367
https://github.com/pandas-dev/pandas/issues/15206
https://github.com/pandas-dev/pandas/issues/15543
https://github.com/pandas-dev/pandas/issues/15214
https://github.com/pandas-dev/pandas/issues/15251
http://berkeleyanalytics.com/bottleneck
https://github.com/pandas-dev/pandas/issues/9422
https://github.com/pandas-dev/pandas/issues/15507

pandas: powerful Python data analysis toolkit, Release 0.23.4

In [1]: pd.Series([]) .sum()
Out[1l]: O

but for consistency with the all-NaN case, this was changed to return NaN as well:

In [35]: pd.Series([]) .sum()
Out[35]: 0.0

1.8.2.3 Indexing with a list with missing labels is Deprecated

Previously, selecting with a list of labels, where one or more labels were missing would always succeed, returning NaN
for missing labels. This will now show a FutureWarning. In the future this will raise a KeyError (GHI15747).
This warning will trigger on a DataFrame or a Series for using .loc[] or [[]] when passing a list-of-labels
with at least 1 missing label. See the deprecation docs.

In [36]: s = pd.Series([1, 2, 3])

In [37]: s
Out[37]:

0 1

1 2

2 3
dtype: into4

Previous Behavior

In [4]: s.loc[[1l, 2, 31]

Out [4]:

1 2.0
2 3.0
3 NaN

dtype: float64

Current Behavior

In [4]: s.loc[[1, 2, 311
Passing list-likes to .loc or [] with any missing label will raise
KeyError in the future, you can use .reindex() as an alternative.

See the documentation here:
http://pandas.pydata.org/pandas—-docs/stable/indexing.htmlfdeprecate-loc-reindex—
—listlike

Out [4]:

1 2.0
2 3.0
3 NaN

dtype: float64

The idiomatic way to achieve selecting potentially not-found elements is via . reindex ()

In [38]: s.reindex([1, 2, 31])

Out [38]:
1 2.0
2 3.0

(continues on next page)

66 Chapter 1. What’s New

https://github.com/pandas-dev/pandas/issues/15747

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

3 NaN
dtype: floaté64d

Selection with all keys found is unchanged.

In [39]: s.loc[[1l, 21]

Out [39]:
1 2
2 3

dtype: int64

1.8.2.4 NA naming Changes

In order to promote more consistency among the pandas API, we have added additional top-level functions isna ()
and notna () that are aliases for isnull () and notnull (). The naming scheme is now more consistent with
methods like .dropna () and . £illna (). Furthermore in all cases where . isnull () and .notnull () meth-
ods are defined, these have additional methods named .isna () and .notna (), these are included for classes
Categorical, Index, Series, and DataFrame. (GHI5001).

The configuration option pd.options.mode.use_inf_as_null is deprecated, and pd.options.mode.
use_inf_as_na is added as a replacement.

1.8.2.5 lteration of Series/Index will now return Python scalars

Previously, when using certain iteration methods for a Series with dtype int or £loat, you would receive a
numpy scalar, e.g. anp . int 64, rather than a Python int. Issue (GH10904) corrected this for Series.tolist ()
and 1ist (Series). This change makes all iteration methods consistent, in particular, for __iter__ () and .
map () ; note that this only affects int/float dtypes. (GH13236, GH13258, GH14216).

In [40]: s = pd.Series([1l, 2, 31)

In [41]: s
Out [41]:

0 1

1 2

2 3
dtype: into4

Previously:

In [2]: type(list(s) [0])
Out[2]: numpy.inté4

New Behaviour:

In [42]: type(list(s) [0])
Out[42]: int

Furthermore this will now correctly box the results of iteration for DataFrame.to_dict () as well.

In [43]: d = {'a':[1], 'b'":['D']}

In [44]: df = pd.DataFrame (d)

1.8. v0.21.0 (October 27, 2017) 67

https://github.com/pandas-dev/pandas/issues/15001
https://github.com/pandas-dev/pandas/issues/10904
https://github.com/pandas-dev/pandas/issues/13236
https://github.com/pandas-dev/pandas/issues/13258
https://github.com/pandas-dev/pandas/issues/14216

pandas: powerful Python data analysis toolkit, Release 0.23.4

Previously:

In [8]: type(df.to_dict()['a']l[0])
Out[8]: numpy.inté64

New Behaviour:

In [45]: type(df.to_dict()['a'][0])
Out [45]: int

1.8.2.6 Indexing with a Boolean Index

Previously when passing a boolean Index to . loc, if the index of the Series/DataFrame had boolean labels,
you would get a label based selection, potentially duplicating result labels, rather than a boolean indexing selection
(where True selects elements), this was inconsistent how a boolean numpy array indexed. The new behavior is to act
like a boolean numpy array indexer. (GH17738)

Previous Behavior:

In [46]: s = pd.Series([1l, 2, 3], index=[False, True, False])

In [47]: s
Out [47] :

False 1
True 2
False 3

dtype: int64

In [59]: s.loc[pd.Index([True, False, Truel)]

Out[59]:

True 2
False 1
False 3
True 2

dtype: into64

Current Behavior

In [48]: s.loc[pd.Index([True, False, Truel)]

Out [48]:
False 1
False 3

dtype: into4

Furthermore, previously if you had an index that was non-numeric (e.g. strings), then a boolean Index would raise a
KeyError. This will now be treated as a boolean indexer.

Previously Behavior:

In [49]: s = pd.Series([1,2,3], index=['a', 'b', 'c'l])

In [50]: s
Out [50] :

a 1

b 2

c 3
dtype: int64

68 Chapter 1. What’s New

https://github.com/pandas-dev/pandas/issues/17738

pandas: powerful Python data analysis toolkit, Release 0.23.4

In [39]: s.loc[pd.Index([True, False, True])]
KeyError: "None of [Index([True, False, True], dtype='object')] are in the [index]"

Current Behavior

In [51]: s.loc[pd.Index([True, False, Truel)]

Out [51]:
a 1
c 3

dtype: into4

1.8.2.7 PeriodIndex resampling

In previous versions of pandas, resampling a Series/DataFrame indexed by a PeriodIndex returned a
DatetimeIndex in some cases (GH12884). Resampling to a multiplied frequency now returns a PeriodIndex
(GH15944). As a minor enhancement, resampling a PeriodIndex can now handle NaT values (GH13224)

Previous Behavior:

In [1]: pi = pd.period_range('2017-01", periods=12, freg='M")
In [2]: s = pd.Series(np.arange(12), index=pi)
In [3]: resampled = s.resample('2Q'") .mean ()

In [4]: resampled

Out[4]:

2017-03-31 1.0
2017-09-30 5.5
2018-03-31 10.0

Freqg: 2Q-DEC, dtype: float64

In [5]: resampled.index
Out[5]: DatetimeIndex(['2017-03-31', '2017-09-30', '2018-03-31'], dtype=
—'datetime64[ns]', freg='2Q-DEC'")

New Behavior:

In [52]: pi = pd.period_range('2017-01', periods=12, freg='M")
In [53]: s = pd.Series(np.arange(1l2), index=pi)
In [54]: resampled = s.resample('2Q') .mean ()

In [55]: resampled

Out [55] :
2017Q1 2.5
2017Q3 8.5

Freqg: 2Q0-DEC, dtype: float64

In [56]: resampled.index
AL\ Out [56] ¢
—PeriodIndex (['2017Q1"', '2017Q3'], dtype='period[2Q0-DEC]', freg='2Q-DEC')

Upsampling and calling .ohlc () previously returned a Series, basically identical to calling . asfreqg (). OHLC
upsampling now returns a DataFrame with columns open, high, low and close (GH13083). This is consistent
with downsampling and Datet imeIndex behavior.

1.8. v0.21.0 (October 27, 2017) 69

https://github.com/pandas-dev/pandas/issues/12884
https://github.com/pandas-dev/pandas/issues/15944
https://github.com/pandas-dev/pandas/issues/13224
https://github.com/pandas-dev/pandas/issues/13083

pandas: powerful Python data analysis toolkit, Release 0.23.4

Previous Behavior:

In [1]: pi = pd.PeriodIndex(start='2000-01-01", freg='D', periods=10)
In [2]: s = pd.Series(np.arange (10), index=pi)

In [3]: s.resample('H') .ohlc()
Out[3]:
2000-01-01 00:00 0.0

2000-01-10 23:00 NaN
Freq: H, Length: 240, dtype: floaté64

In [4]: s.resample('M') .ohlc()
Out[4]:

open high low close
2000-01 0 9 0 9

New Behavior:

In [57]: pi = pd.PeriodIndex(start='2000-01-01", freg='D', periods=10)
In [58]: s = pd.Series(np.arange(10), index=pi)

In [59]: s.resample('H'") .ohlc()

Out [59]:

open high low close
2000-01-01 00:00 0.0 0.0 0.0 0.0
2000-01-01 01:00 NaN NaN NaN NaN
2000-01-01 02:00 NaN NaN NaN NaN
2000-01-01 03:00 NaN NaN NaN NaN
2000-01-01 04:00 NaN NaN NaN NaN
2000-01-01 05:00 NaN NaN NaN NaN
2000-01-01 06:00 NaN NaN NaN NaN
2000-01-10 17:00 NaN NaN NaN NaN
2000-01-10 18:00 NaN NaN NaN NaN
2000-01-10 19:00 NaN NaN NaN NaN
2000-01-10 20:00 NaN NaN NaN NaN
2000-01-10 21:00 NaN NaN NaN NaN
2000-01-10 22:00 NaN NaN NaN NaN
2000-01-10 23:00 NaN NaN NaN NaN

[240 rows x 4 columns]

In [60]: s.resample('M").ohlc()

R N N N N R R N N N N N N N N N R N N N N R N N N N N N R N N N N R N R R N A N N R R R R RN
open high low close

2000-01 0 9 0 9

1.8.2.8 Improved error handling during item assignment in pd.eval

eval () will now raise a ValueError when item assignment malfunctions, or inplace operations are specified, but
there is no item assignment in the expression (GH16732)

70 Chapter 1. What’s New

AUV

https://github.com/pandas-dev/pandas/issues/16732

pandas: powerful Python data analysis toolkit, Release 0.23.4

In [61]: arr = np.array([1l, 2, 31])

Previously, if you attempted the following expression, you would get a not very helpful error message:

In [3]: pd.eval("a = 1 + 2", target=arr, inplace=True)

IndexError: only integers, slices (':°), ellipsis (...), numpy.newaxis (None)
and integer or boolean arrays are valid indices

This is a very long way of saying numpy arrays don’t support string-item indexing. With this change, the error message
is now this:

In [3]: pd.eval("a = 1 + 2", target=arr, inplace=True)

ValueError: Cannot assign expression output to target

It also used to be possible to evaluate expressions inplace, even if there was no item assignment:

In [4]: pd.eval ("1l + 2", target=arr, inplace=True)
Out[4]: 3

However, this input does not make much sense because the output is not being assigned to the target. Now, a
ValueError will be raised when such an input is passed in:

In [4]: pd.eval ("1l + 2", target=arr, inplace=True)

ValueError: Cannot operate inplace if there is no assignment

1.8.2.9 Dtype Conversions

Previously assignments, .where () and .fillna () with abool assignment, would coerce to same the type (e.g.
int / float), or raise for datetimelikes. These will now preserve the bools with object dtypes. (GH16821).

In [62]: s = Series([1l, 2, 3])

In [5]: s[l] = True

In [6]:
Out[6]:
0 1
1 1
2 3
dtype: int64

New Behavior

In [63]: s[l] = True

In [64]: s
Oout[64]:

0 1

1 True

2 3
dtype: object

1.8. v0.21.0 (October 27, 2017) 71

https://github.com/pandas-dev/pandas/issues/16821

pandas: powerful Python data analysis toolkit, Release 0.23.4

Previously, as assignment to a datetimelike with a non-datetimelike would coerce the non-datetime-like item being
assigned (GH14145).

In [65]: s = pd.Series([pd.Timestamp('2011-01-01"), pd.Timestamp('2012-01-01")171)

In [2]: s

out[2]:

0 2011-01-01 00:00:00.000000000
1 1970-01-01 00:00:00.000000001
dtype: datetime64[ns]

These now coerce to ob ject dtype.

In [66]: s[1] =1

In [67]: s

Out[67]:

0 2011-01-01 00:00:00
1 1

dtype: object

¢ Inconsistent behavior in .where () with datetimelikes which would raise rather than coerce to object
(GH16402)

* Bug in assignment against int 64 data with np.ndarray with float64 dtype may keep int 64 dtype
(GH14001)

1.8.2.10 Multilndex Constructor with a Single Level

The MultiIndex constructors no longer squeezes a Multilndex with all length-one levels down to a regular Index.
This affects all the MultiIndex constructors. (GH17178)

Previous behavior:

In [2]: pd.MultiIndex.from_tuples([('a',), ('b',)])
Out[2]: Index(['a', 'b'], dtype='object')

Length 1 levels are no longer special-cased. They behave exactly as if you had length 2+ levels, so a MultiIndex
is always returned from all of the Mult i Index constructors:

In [68]: pd.MultiIndex.from_ tuples([('a',), ('b',)]1)
Oout[68]:
MultiIndex (levels=[['a', 'b']l],

labels=[[0, 1]1)

1.8.2.11 UTC Localization with Series

Previously, to_datetime () did not localize datetime Series data when utc=True was passed. Now,
to_datetime () will correctly localize Series with a datetime64 [ns, UTC] dtype to be consistent with
how list-like and Index data are handled. (GH6415).

Previous Behavior

72 Chapter 1. What’s New

https://github.com/pandas-dev/pandas/issues/14145
https://github.com/pandas-dev/pandas/issues/16402
https://github.com/pandas-dev/pandas/issues/14001
https://github.com/pandas-dev/pandas/issues/17178
https://github.com/pandas-dev/pandas/issues/6415

pandas: powerful Python data analysis toolkit, Release 0.23.4

In [69]: s = Series(['20130101 00:00:00"'] = 3)

In [12]: pd.to_datetime (s, utc=True)
Out[12]:

0 2013-01-01

1 2013-01-01

2 2013-01-01

dtype: datetime64[ns]

New Behavior

In [70]: pd.to_datetime (s, utc=True)
Out[70]:

0 2013-01-01 00:00:004+00:00

1 2013-01-01 00:00:00+00:00

2 2013-01-01 00:00:004+00:00

dtype: datetime64[ns, UTC]

Additionally, DataFrames with datetime columns that were parsed by read sgl_table() and
read_sql_query () will also be localized to UTC only if the original SQL columns were timezone aware
datetime columns.

1.8.2.12 Consistency of Range Functions

In previous versions, there were some inconsistencies between the various range functions: date_range (),
bdate_range (), period_range (), timedelta_range (),and interval_range (). (GH17471).

One of the inconsistent behaviors occurred when the start, end and period parameters were all specified, poten-
tially leading to ambiguous ranges. When all three parameters were passed, interval_range ignored the period
parameter, period_range ignored the end parameter, and the other range functions raised. To promote consistency
among the range functions, and avoid potentially ambiguous ranges, interval_range and period_range will
now raise when all three parameters are passed.

Previous Behavior:

In [2]: pd.interval_range (start=0, end=4, periods=6)

Oout[2]:

IntervalIndex ([(0, 11, (1, 21, (2, 31]
closed="'right',
dtype='interval[int64]")

In [3]: pd.period_range (start='2017Q01', end='201704"', periods=6, freg='Q")
Out[3]: PeriodIndex (['2017Q1"', '2017Q2', '2017Q3', '2017Q4', '2018Q1', '2018Q2'],
—dtype="period[Q-DEC]"', freg='Q-DEC')

New Behavior:

In [2]: pd.interval_range (start=0, end=4, periods=6)
ValueError: Of the three parameters: start, end, and periods, exactly two must be
—specified

In [3]: pd.period_range (start='201701', end='201704"', periods=6, freg='Q")

ValueError: Of the three parameters: start, end, and periods, exactly two must be
—specified

1.8. v0.21.0 (October 27, 2017) 73

https://github.com/pandas-dev/pandas/issues/17471

pandas: powerful Python data analysis toolkit, Release 0.23.4

Additionally, the endpoint parameter end was not included in the intervals produced by interval_range. How-
ever, all other range functions include end in their output. To promote consistency among the range functions,
interval_range will now include end as the right endpoint of the final interval, except if freq is specified in a
way which skips end.

Previous Behavior:

In [4]: pd.interval_range (start=0, end=4)

Out [4]:

IntervalIndex ([(0, 11, (1, 21, (2, 31]
closed="'right',
dtype='interval[int64]")

New Behavior:

In [71]: pd.interval_range (start=0, end=4)

Out[71]:

IntervalIndex ([(0, 11, (1, 21, (2, 31, (3, 41]
closed='right',
dtype='interval[int64]")

1.8.2.13 No Automatic Matplotlib Converters

Pandas no longer registers our date, time, datetime, datetime64, and Period converters with matplotlib
when pandas is imported. Matplotlib plot methods (plt.plot, ax.plot,...), will not nicely format the x-axis for
DatetimeIndex or PeriodIndex values. You must explicitly register these methods:

Pandas built-in Series.plot and DataFrame.plot will register these converters on first-use (GH17710).

Note: This change has been temporarily reverted in pandas 0.21.1, for more details see here.

1.8.2.14 Other API Changes

» The Categorical constructor no longer accepts a scalar for the categories keyword. (GH16022)

* Accessing a non-existent attribute on a closed HDF St ore will now raise an AttributeError rather than a
ClosedFileError (GHI16301)

* read_csv () now issues a UserWarning if the names parameter contains duplicates (GH17095)
* read_csv () now treats 'null' and 'n/a"' strings as missing values by default (GH16471, GH16078)

* pandas.HDFStore’s string representation is now faster and less detailed. For the previous behavior, use
pandas.HDFStore.info (). (GH16503).

e Compression defaults in HDF stores now follow pytables standards. Default is no compression and if complib
is missing and complevel >0 z1ib is used (GH15943)

* Index.get_indexer_non_unique () now returns a ndarray indexer rather than an Index; this is con-
sistent with Index.get_indexer () (GH16819)

¢ Removed the @s1low decorator from pandas.util.testing, which caused issues for some downstream
packages’ test suites. Use @pytest .mark.slow instead, which achieves the same thing (GH16850)

* Moved definition of MergeError to the pandas.errors module.

74 Chapter 1. What’s New

https://github.com/pandas-dev/pandas/issues/17710
https://github.com/pandas-dev/pandas/issues/16022
https://github.com/pandas-dev/pandas/issues/16301
https://github.com/pandas-dev/pandas/issues/17095
https://github.com/pandas-dev/pandas/issues/16471
https://github.com/pandas-dev/pandas/issues/16078
https://github.com/pandas-dev/pandas/issues/16503
https://github.com/pandas-dev/pandas/issues/15943
https://github.com/pandas-dev/pandas/issues/16819
https://github.com/pandas-dev/pandas/issues/16850

pandas: powerful Python data analysis toolkit, Release 0.23.4

The signature of Series.set_axis() and DataFrame.set_axis () has been changed from
set_axis (axis, labels) to set_axis (labels, axis=0), for consistency with the rest of the
API The old signature is deprecated and will show a FutureWarning (GH14636)

Series.argmin () and Series.argmax () will now raise a TypeError when used with object
dtypes, instead of a ValueError (GH13595)

Period is now immutable, and will now raise an AttributeError when a user tries to assign a new value
to the ordinal or freq attributes (GH17116).

to_datetime () when passed a tz-aware origin= kwarg will now raise a more informative ValueError
rather than a TypeError (GH16842)

to_datetime () now raises a ValueError when format includes $W or $U without also including day of
the week and calendar year (GH16774)

Renamed non-functional index to index_col in read_stata () to improve API consistency (GH16342)

Bug in DataFrame.drop () caused boolean labels False and True to be treated as labels O and 1 respec-
tively when dropping indices from a numeric index. This will now raise a ValueError (GH16877)

Restricted DateOffset keyword arguments. Previously, DateOffset subclasses allowed arbitrary keyword
arguments which could lead to unexpected behavior. Now, only valid arguments will be accepted. (GH17176).

1.8.3 Deprecations

DataFrame.from_csv () and Series.from _csv () have been deprecated in favor of read csv ()
(GH4191)

read_excel () has deprecated sheetname in favor of sheet_name for consistency with . to_excel ()
(GH10559).

read_excel () has deprecated parse_cols in favor of usecols for consistency with read_csv ()
(GH4988)

read_csv () has deprecated the tupleize_cols argument. Column tuples will always be converted to a
MultiIndex (GH17060)

DataFrame.to_csv () has deprecated the tupleize_cols argument. Multi-index columns will be al-
ways written as rows in the CSV file (GH17060)

The convert parameter has been deprecated in the .take () method, as it was not being respected
(GH16948)

pd.options.html.border has been deprecated in favor of pd.options.display.html.border
(GH15793).

SeriesGroupBy.nth () has deprecated True in favor of 'all"' forits kwarg dropna (GH11038).
DataFrame.as_blocks () is deprecated, as this is exposing the internal implementation (GH17302)
pd.TimeGrouper is deprecated in favor of pandas.Grouper (GH16747)

cdate_range has been deprecated in favor of bdate_range (), which has gained weekmask and
holidays parameters for building custom frequency date ranges. See the documentation for more details
(GH17596)

passing categories or ordered kwargs to Series.astype () is deprecated, in favor of passing a Cat-
egoricalDtype (GH17636)

.get_value and .set_value on Series, DataFrame, Panel, SparseSeries, and
SparseDataFrame are deprecated in favor of using . iat [] or .at [] accessors (GH15269)

1.8.

v0.21.0 (October 27, 2017) 75

https://github.com/pandas-dev/pandas/issues/14636
https://github.com/pandas-dev/pandas/issues/13595
https://github.com/pandas-dev/pandas/issues/17116
https://github.com/pandas-dev/pandas/issues/16842
https://github.com/pandas-dev/pandas/issues/16774
https://github.com/pandas-dev/pandas/issues/16342
https://github.com/pandas-dev/pandas/issues/16877
https://github.com/pandas-dev/pandas/issues/17176
https://github.com/pandas-dev/pandas/issues/4191
https://github.com/pandas-dev/pandas/issues/10559
https://github.com/pandas-dev/pandas/issues/4988
https://github.com/pandas-dev/pandas/issues/17060
https://github.com/pandas-dev/pandas/issues/17060
https://github.com/pandas-dev/pandas/issues/16948
https://github.com/pandas-dev/pandas/issues/15793
https://github.com/pandas-dev/pandas/issues/11038
https://github.com/pandas-dev/pandas/issues/17302
https://github.com/pandas-dev/pandas/issues/16747
https://github.com/pandas-dev/pandas/issues/17596
https://github.com/pandas-dev/pandas/issues/17636
https://github.com/pandas-dev/pandas/issues/15269

pandas: powerful Python data analysis toolkit, Release 0.23.4

* Passing a non-existent column in .to_excel (..., columns=) isdeprecated and will raise a KeyError
in the future (GH17295)

* raise_on_error parameter to Series.where(), Series.mask (), DataFrame.where(),
DataFrame.mask () is deprecated, in favor of errors= (GH14968)

e Using DataFrame.rename_axis () and Series.rename_axis () to alter index or column labels is
now deprecated in favor of using . rename. rename_axis may still be used to alter the name of the index or
columns (GH17833).

* reindex_axis () has been deprecated in favor of reindex (). See here for more (GH17833).
1.8.3.1 Series.select and DataFrame.select

The Series.select () and DataFrame.select () methods are deprecated in favor of using df.
loc[labels.map (crit)] (GH12401)

In [72]: df = DataFrame({'A': [1, 2, 31}, index=['foo', 'bar', 'baz'])

In [3]: df.select (lambda x: x in ['bar', 'baz'])
FutureWarning: select is deprecated and will be removed in a future release. You can,
—use .loc[crit] as a replacement

Out[3]:
A
bar 2
baz 3
In [73]: df.loc[df.index.map(lambda x: x in ['bar', 'baz'])]
Out [73]:
A
bar 2
baz 3

1.8.3.2 Series.argmax and Series.argmin
The behavior of Series.argmax () and Series.argmin () have been deprecated in favor of Series.
idxmax () and Series.idxmin (), respectively (GH16830).

For compatibility with NumPy arrays, pd.Series implements argmax and argmin. Since pandas 0.13.0,
argmax has been an alias for pandas.Series.idxmax (), and argmin has been an alias for pandas.
Series.idxmin (). They return the label of the maximum or minimum, rather than the position.

We’ve deprecated the current behavior of Series.argmax and Series.argmin. Using either of these will emit
a FutureWarning. Use Series.idxmax () if you want the label of the maximum. Use Series.values.
argmax () if you want the position of the maximum. Likewise for the minimum. In a future release Series.
argmax and Series.argmin will return the position of the maximum or minimum.

1.8.4 Removal of prior version deprecations/changes

* read_excel () has dropped the has_index_names parameter (GH10967)

e The pd.options.display.height configuration has been dropped (GH3663)

e The pd.options.display.line_width configuration has been dropped (GH2881)
e The pd.options.display.mpl_style configuration has been dropped (GH12190)

76 Chapter 1. What’s New

https://github.com/pandas-dev/pandas/issues/17295
https://github.com/pandas-dev/pandas/issues/14968
https://github.com/pandas-dev/pandas/issues/17833
https://github.com/pandas-dev/pandas/issues/17833
https://github.com/pandas-dev/pandas/issues/12401
https://github.com/pandas-dev/pandas/issues/16830
https://github.com/pandas-dev/pandas/issues/10967
https://github.com/pandas-dev/pandas/issues/3663
https://github.com/pandas-dev/pandas/issues/2881
https://github.com/pandas-dev/pandas/issues/12190

pandas: powerful Python data analysis toolkit, Release 0.23.4

* Index has dropped the . sym_diff () method in favor of . symmetric_difference () (GHI12591)

* Categorical has dropped the .order () and .sort () methods in favor of .sort_values ()
(GH12882)

e eval () and DataFrame.eval () have changed the default of inplace from None to False (GH11149)

e The function get_offset_name has been dropped in favor of the .fregstr attribute for an offset
(GH11834)

* pandas no longer tests for compatibility with hdf5-files created with pandas < 0.11 (GH17404).

1.8.5 Performance Improvements

* Improved performance of instantiating SparseDataFrame (GH16773)

* Series.dt no longer performs frequency inference, yielding a large speedup when accessing the attribute
(GH17210)

 Improved performance of set_categories () by not materializing the values (GH17508)
* Timestamp.microsecond no longer re-computes on attribute access (GH17331)
* Improved performance of the CategoricalIndex for data that is already categorical dtype (GH17513)

* Improved performance of RangeIndex.min () and RangeIndex.max () by using RangeIndex prop-
erties to perform the computations (GH17607)

1.8.6 Documentation Changes

 Several NaT method docstrings (e.g. NaT.ctime ()) were incorrect (GH17327)

e The documentation has had references to versions < v0.17 removed and cleaned up (GH17442, GH17442,
GH17404 & GH17504)

1.8.7 Bug Fixes

1.8.7.1 Conversion

* Bug in assignment against datetime-like data with int may incorrectly convert to datetime-like (GH14145)

* Bug in assignment against int 64 data with np.ndarray with float64 dtype may keep int 64 dtype
(GH14001)

* Fixed the return type of IntervalIndex.is_non_overlapping_monotonic to be a Python bool
for consistency with similar attributes/methods. Previously returned a numpy .bool_. (GH17237)

* Bugin IntervalIndex.is_non_overlapping_monotonic when intervals are closed on both sides
and overlap at a point (GH16560)

* Bugin Series.fillna () returns frame when inplace=True and value is dict (GH16156)

* Bug in Timestamp.weekday name returning a UTC-based weekday name when localized to a timezone
(GH17354)

* Bugin Timestamp.replace when replacing t zinfo around DST changes (GH15683)

* Bugin Timedelta construction and arithmetic that would not propagate the Over £ 1 ow exception (GH17367)

1.8. v0.21.0 (October 27, 2017) 77

https://github.com/pandas-dev/pandas/issues/12591
https://github.com/pandas-dev/pandas/issues/12882
https://github.com/pandas-dev/pandas/issues/11149
https://github.com/pandas-dev/pandas/issues/11834
https://github.com/pandas-dev/pandas/issues/17404
https://github.com/pandas-dev/pandas/issues/16773
https://github.com/pandas-dev/pandas/issues/17210
https://github.com/pandas-dev/pandas/issues/17508
https://github.com/pandas-dev/pandas/issues/17331
https://github.com/pandas-dev/pandas/issues/17513
https://github.com/pandas-dev/pandas/issues/17607
https://github.com/pandas-dev/pandas/issues/17327
https://github.com/pandas-dev/pandas/issues/17442
https://github.com/pandas-dev/pandas/issues/17442
https://github.com/pandas-dev/pandas/issues/17404
https://github.com/pandas-dev/pandas/issues/17504
https://github.com/pandas-dev/pandas/issues/14145
https://github.com/pandas-dev/pandas/issues/14001
https://github.com/pandas-dev/pandas/issues/17237
https://github.com/pandas-dev/pandas/issues/16560
https://github.com/pandas-dev/pandas/issues/16156
https://github.com/pandas-dev/pandas/issues/17354
https://github.com/pandas-dev/pandas/issues/15683
https://github.com/pandas-dev/pandas/issues/17367

pandas: powerful Python data analysis toolkit, Release 0.23.4

* Bug in astype () converting to object dtype when passed extension type classes (DatetimeTZDtype,
CategoricalDtype) rather than instances. Now a TypeError is raised when a class is passed (GH17780).

* Bug in to_numeric() in which elements were not always being coerced to numeric when
errors='coerce' (GHI17007, GH17125)

* Bugin DataFrame and Series constructors where range objects are converted to int 32 dtype on Win-
dows instead of int 64 (GH16804)

1.8.7.2 Indexing
e When called with a null slice (e.g. df.iloc[:]),the .iloc and . loc indexers return a shallow copy of the
original object. Previously they returned the original object. (GH13873).

* When called on an unsorted MultiIndex, the loc indexer now will raise UnsortedIndexError only if
proper slicing is used on non-sorted levels (GH16734).

* Fixes regression in 0.20.3 when indexing with a string on a TimedeltaIndex (GH16896).
* Fixed TimedeltaIndex.get_loc () handling of np.timedelta64 inputs (GH16909).

e Fix MultiIndex.sort_index () ordering when ascending argument is a list, but not all levels are
specified, or are in a different order (GH16934).

* Fixes bug where indexing with np . inf caused an OverflowError to be raised (GH16957)

* Bug in reindexing on an empty CategoricalIndex (GH16770)

* Fixes DataFrame. loc for setting with alignment and tz-aware Datet ime Index (GH16889)
* Avoids IndexError when passing an Index or Series to . 1 1oc with older numpy (GH17193)
* Allow unicode empty strings as placeholders in multilevel columns in Python 2 (GH17099)

* Bugin . iloc when used with inplace addition or assignment and an int indexer on a MultiIndex causing
the wrong indexes to be read from and written to (GH17148)

* Bugin .isin () in which checking membership in empty Series objects raised an error (GH16991)

* Bug in CategoricalIndex reindexing in which specified indices containing duplicates were not being re-
spected (GH17323)

* Bug in intersection of Range Index with negative step (GH17296)

* Bug in IntervalIndex where performing a scalar lookup fails for included right endpoints of non-
overlapping monotonic decreasing indexes (GH16417, GH17271)

* Bug in DataFrame.first_valid_index () and DataFrame.last_valid_index () when no
valid entry (GH17400)

* Bugin Series.rename () when called with a callable, incorrectly alters the name of the Series, rather
than the name of the Index. (GH17407)

* Bugin String.str_get () raises IndexError instead of inserting NaNs when using a negative index.
(GH17704)

1.8.7.3 1/0

* Bugin read_hdf () when reading a timezone aware index from f i xed format HDFStore (GH17618)
* Bugin read_csv () in which columns were not being thoroughly de-duplicated (GH17060)

* Bugin read_csv () in which specified column names were not being thoroughly de-duplicated (GH17095)

78 Chapter 1. What’s New

https://github.com/pandas-dev/pandas/issues/17780
https://github.com/pandas-dev/pandas/issues/17007
https://github.com/pandas-dev/pandas/issues/17125
https://github.com/pandas-dev/pandas/issues/16804
https://github.com/pandas-dev/pandas/issues/13873
https://github.com/pandas-dev/pandas/issues/16734
https://github.com/pandas-dev/pandas/issues/16896
https://github.com/pandas-dev/pandas/issues/16909
https://github.com/pandas-dev/pandas/issues/16934
https://github.com/pandas-dev/pandas/issues/16957
https://github.com/pandas-dev/pandas/issues/16770
https://github.com/pandas-dev/pandas/issues/16889
https://github.com/pandas-dev/pandas/issues/17193
https://github.com/pandas-dev/pandas/issues/17099
https://github.com/pandas-dev/pandas/issues/17148
https://github.com/pandas-dev/pandas/issues/16991
https://github.com/pandas-dev/pandas/issues/17323
https://github.com/pandas-dev/pandas/issues/17296
https://github.com/pandas-dev/pandas/issues/16417
https://github.com/pandas-dev/pandas/issues/17271
https://github.com/pandas-dev/pandas/issues/17400
https://github.com/pandas-dev/pandas/issues/17407
https://github.com/pandas-dev/pandas/issues/17704
https://github.com/pandas-dev/pandas/issues/17618
https://github.com/pandas-dev/pandas/issues/17060
https://github.com/pandas-dev/pandas/issues/17095

pandas: powerful Python data analysis toolkit, Release 0.23.4

* Bug in read_csv () in which non integer values for the header argument generated an unhelpful / unrelated
error message (GH16338)

* Bug in read _csv () in which memory management issues in exception handling, under certain conditions,
would cause the interpreter to segfault (GH14696, GH16798).

* Bug in read _csv () when called with 1low_memory=False in which a CSV with at least one column >
2GB in size would incorrectly raise a MemoryError (GH16798).

* Bugin read _csv () when called with a single-element list header would return a DataFrame of all NaN
values (GH7757)

* Bugin DataFrame.to_csv () defaulting to ‘ascii’ encoding in Python 3, instead of ‘utf-8” (GH17097)
* Bugin read_stata () where value labels could not be read when using an iterator (GH16923)

* Bugin read_stata () where the index was not set (GH16342)

e Bugin read_html () where import check fails when run in multiple threads (GH16928)

* Bugin read_csv () where automatic delimiter detection caused a TypeError to be thrown when a bad line
was encountered rather than the correct error message (GH13374)

* Bug in DataFrame.to_html () with notebook=True where DataFrames with named indices or non-
Multilndex indices had undesired horizontal or vertical alignment for column or row labels, respectively
(GH16792)

* Bugin DataFrame.to_html () in which there was no validation of the justify parameter (GH17527)
* Bugin HDFStore. select () when reading a contiguous mixed-data table featuring VLArray (GH17021)

* Bugin to_json () where several conditions (including objects with unprintable symbols, objects with deep
recursion, overlong labels) caused segfaults instead of raising the appropriate exception (GH14256)

1.8.7.4 Plotting

* Bug in plotting methods using secondary_y and font size not setting secondary axis font size (GH12565)
* Bug when plotting t imedelta and datet ime dtypes on y-axis (GH16953)

* Line plots no longer assume monotonic x data when calculating xlims, they show the entire lines now even for
unsorted x data. (GH11310, GH11471)

» With matplotlib 2.0.0 and above, calculation of x limits for line plots is left to matplotlib, so that its new default
settings are applied. (GH15495)

* Bug in Series.plot.bar or DataFrame.plot.bar with y not respecting user-passed color
(GH16822)

* Bug causing plotting.parallel_coordinates to reset the random seed when using random colors
(GH17525)

1.8.7.5 Groupby/Resample/Rolling
* Bug in DataFrame.resample(...) .size () where an empty DataFrame did not return a Series
(GH14962)

* Bugin infer. freqg() causing indices with 2-day gaps during the working week to be wrongly inferred as
business daily (GH16624)

* Bug in .rolling(...).quantile() which incorrectly used different defaults than Series.
quantile () and DataFrame.quantile () (GH9413, GH16211)

1.8. v0.21.0 (October 27, 2017) 79

https://github.com/pandas-dev/pandas/issues/16338
https://github.com/pandas-dev/pandas/issues/14696
https://github.com/pandas-dev/pandas/issues/16798
https://github.com/pandas-dev/pandas/issues/16798
https://github.com/pandas-dev/pandas/issues/7757
https://github.com/pandas-dev/pandas/issues/17097
https://github.com/pandas-dev/pandas/issues/16923
https://github.com/pandas-dev/pandas/issues/16342
https://github.com/pandas-dev/pandas/issues/16928
https://github.com/pandas-dev/pandas/issues/13374
https://github.com/pandas-dev/pandas/issues/16792
https://github.com/pandas-dev/pandas/issues/17527
https://github.com/pandas-dev/pandas/issues/17021
https://github.com/pandas-dev/pandas/issues/14256
https://github.com/pandas-dev/pandas/issues/12565
https://github.com/pandas-dev/pandas/issues/16953
https://github.com/pandas-dev/pandas/issues/11310
https://github.com/pandas-dev/pandas/issues/11471
https://github.com/pandas-dev/pandas/issues/15495
https://github.com/pandas-dev/pandas/issues/16822
https://github.com/pandas-dev/pandas/issues/17525
https://github.com/pandas-dev/pandas/issues/14962
https://github.com/pandas-dev/pandas/issues/16624
https://github.com/pandas-dev/pandas/issues/9413
https://github.com/pandas-dev/pandas/issues/16211

pandas: powerful Python data analysis toolkit, Release 0.23.4

Bug in groupby .transform () that would coerce boolean dtypes back to float (GH16875)

Bugin Series.resample(...) .apply () where an empty Series modified the source index and did
not return the name of a Series (GH14313)

Bugin .rolling(...) .apply(...) with a DataFrame with a DatetimeIndex, a window of a
timedelta-convertible and min_periods >= 1 (GHI15305)

Bug in DataFrame.groupby where index and column keys were not recognized correctly when the number
of keys equaled the number of elements on the groupby axis (GH16859)

Bug in groupby .nunique () with TimeGrouper which cannot handle NaT correctly (GH17575)

Bug in DataFrame.groupby where a single level selection from a MultiIndex unexpectedly sorts
(GH17537)

Bug in DataFrame.groupby where spurious warning is raised when Grouper object is used to override
ambiguous column name (GH17383)

Bug in TimeGrouper differs when passes as a list and as a scalar (GH17530)

1.8.7.6 Sparse

Bugin SparseSeriesraises AttributeError when a dictionary is passed in as data (GH16905)

Bugin SparseDataFrame.fillna () not filling all NaNs when frame was instantiated from SciPy sparse
matrix (GH16112)

Bugin SparseSeries.unstack () and SparseDataFrame.stack () (GH16614, GH15045)

Buginmake_sparse () treating two numeric/boolean data, which have same bits, as same when array dt ype
is object (GH17574)

SparseArray.all () and SparseArray.any () are now implemented to handle SparseArray, these
were used but not implemented (GH17570)

1.8.7.7 Reshaping

Joining/Merging with a non unique PeriodIndex raised a TypeError (GH16871)

Bugin crosstab () where non-aligned series of integers were casted to float (GH17005)

Bug in merging with categorical dtypes with datetimelikes incorrectly raised a TypeError (GH16900)
Bug when using isin () on alarge object series and large comparison array (GH16012)

Fixes regression from 0.20, Series.aggregate () and DataFrame.aggregate () allow dictionaries
as return values again (GH16741)

Fixes dtype of result with integer dtype input, from pivot_table () when called with margins=True
(GH17013)

Bugin crosstab () where passing two Series with the same name raised a KeyError (GH13279)

Series.argmin (), Series.argmax (), and their counterparts on DataFrame and groupby objects
work correctly with floating point data that contains infinite values (GH13595).

Bug in unique () where checking a tuple of strings raised a TypeError (GH17108)

Bug in concat () where order of result index was unpredictable if it contained non-comparable elements
(GH17344)

80

Chapter 1. What’s New

https://github.com/pandas-dev/pandas/issues/16875
https://github.com/pandas-dev/pandas/issues/14313
https://github.com/pandas-dev/pandas/issues/15305
https://github.com/pandas-dev/pandas/issues/16859
https://github.com/pandas-dev/pandas/issues/17575
https://github.com/pandas-dev/pandas/issues/17537
https://github.com/pandas-dev/pandas/issues/17383
https://github.com/pandas-dev/pandas/issues/17530
https://github.com/pandas-dev/pandas/issues/16905
https://github.com/pandas-dev/pandas/issues/16112
https://github.com/pandas-dev/pandas/issues/16614
https://github.com/pandas-dev/pandas/issues/15045
https://github.com/pandas-dev/pandas/issues/17574
https://github.com/pandas-dev/pandas/issues/17570
https://github.com/pandas-dev/pandas/issues/16871
https://github.com/pandas-dev/pandas/issues/17005
https://github.com/pandas-dev/pandas/issues/16900
https://github.com/pandas-dev/pandas/issues/16012
https://github.com/pandas-dev/pandas/issues/16741
https://github.com/pandas-dev/pandas/issues/17013
https://github.com/pandas-dev/pandas/issues/13279
https://github.com/pandas-dev/pandas/issues/13595
https://github.com/pandas-dev/pandas/issues/17108
https://github.com/pandas-dev/pandas/issues/17344

pandas: powerful Python data analysis toolkit, Release 0.23.4

* Fixes regression when sorting by multiple columns on a datetime64 dtype Series with NaT values
(GH16836)

* Bugin pivot_table () where the result’s columns did not preserve the categorical dtype of columns when
dropna was False (GH17842)

* Bug in DataFrame.drop_duplicates where dropping with non-unique column names raised a
ValueError (GH17836)

* Bugin unstack () which, when called on a list of levels, would discard the £i11na argument (GH13971)

* Bug in the alignment of range objects and other list-likes with DataFrame leading to operations being
performed row-wise instead of column-wise (GH17901)

1.8.7.8 Numeric
* Bugin .clip () with axis=1 and alist-like for threshold is passed; previously this raised ValueError
(GH15390)

e Series.clip() and DataFrame.clip () now treat NA values for upper and lower arguments as None
instead of raising ValueError (GH17276).

1.8.7.9 Categorical

* Bugin Series.isin () when called with a categorical (GH16639)

* Bug in the categorical constructor with empty values and categories causing the . categories to be an empty
Float 64 Index rather than an empty Index with object dtype (GH17248)

* Bug in categorical operations with Series.cat not preserving the original Series’ name (GH17509)
* Bugin DataFrame.merge () failing for categorical columns with boolean/int data types (GH17187)

* Bug in constructing a Categorical/CategoricalDtype when the specified categories are of cate-
gorical type (GH17884).

1.8.7.10 PyPy
e Compatibility with PyPy in read csv () with usecols=[<unsorted ints>] and read_json ()
(GH17351)

* Split tests into cases for CPython and PyPy where needed, which highlights the fragility of index matching with
float ('nan'), np.nan and NAT (GH17351)

* Fix DataFrame.memory_usage () to support PyPy. Objects on PyPy do not have a fixed size, so an
approximation is used instead (GH17228)

1.8.7.11 Other

* Bug where some inplace operators were not being wrapped and produced a copy when invoked (GH12962)

* Bugin eval () where the inplace parameter was being incorrectly handled (GH16732)

1.8. v0.21.0 (October 27, 2017) 81

https://github.com/pandas-dev/pandas/issues/16836
https://github.com/pandas-dev/pandas/issues/17842
https://github.com/pandas-dev/pandas/issues/17836
https://github.com/pandas-dev/pandas/issues/13971
https://github.com/pandas-dev/pandas/issues/17901
https://github.com/pandas-dev/pandas/issues/15390
https://github.com/pandas-dev/pandas/issues/17276
https://github.com/pandas-dev/pandas/issues/16639
https://github.com/pandas-dev/pandas/issues/17248
https://github.com/pandas-dev/pandas/issues/17509
https://github.com/pandas-dev/pandas/issues/17187
https://github.com/pandas-dev/pandas/issues/17884
https://github.com/pandas-dev/pandas/issues/17351
https://github.com/pandas-dev/pandas/issues/17351
https://github.com/pandas-dev/pandas/issues/17228
https://github.com/pandas-dev/pandas/issues/12962
https://github.com/pandas-dev/pandas/issues/16732

pandas: powerful Python data analysis toolkit, Release 0.23.4

1.9 v0.20.3 (July 7, 2017)

This is a minor bug-fix release in the 0.20.x series and includes some small regression fixes and bug fixes. We
recommend that all users upgrade to this version.

What’s new in v0.20.3

* Bug Fixes

— Conversion

Indexing
- 1/0

Plotting

Reshaping

Categorical

1.9.1 Bug Fixes
* Fixed a bug in failing to compute rolling computations of a column-Multilndexed DataFrame (GH16789,
GH16825)

* Fixed a pytest marker failing downstream packages’ tests suites (GH16680)

1.9.1.1 Conversion
* Bug in pickle compat prior to the v0.20.x series, when UTC is a timezone in a Series/DataFrame/Index
(GH16608)
* Bugin Series construction when passing a Series with dtype="'category' (GH16524).

e Bugin DataFrame.astype () when passing a Series as the dtype kwarg. (GH16717).

1.9.1.2 Indexing
* Bugin Float 64 Index causing an empty array instead of None to be returned from .get (np.nan) on a
Series whose index did not contain any NaN s (GH8569)
* BuginMultiIndex.isin causing an error when passing an empty iterable (GH16777)

* Fixed a bug in a slicing DataFrame/Series that have a TimedeltaIndex (GH16637)

1.9.1.3 I/O
* Bugin read_csv () in which files weren’t opened as binary files by the C engine on Windows, causing EOF
characters mid-field, which would fail (GH16039, GH16559, GH16675)

* Bugin read_hdf () in which reading a Series saved to an HDF file in ‘fixed’ format fails when an explicit
mode="xr" argument is supplied (GH16583)

82 Chapter 1. What’s New

https://github.com/pandas-dev/pandas/issues/16789
https://github.com/pandas-dev/pandas/issues/16825
https://github.com/pandas-dev/pandas/issues/16680
https://github.com/pandas-dev/pandas/issues/16608
https://github.com/pandas-dev/pandas/issues/16524
https://github.com/pandas-dev/pandas/issues/16717
https://github.com/pandas-dev/pandas/issues/8569
https://github.com/pandas-dev/pandas/issues/16777
https://github.com/pandas-dev/pandas/issues/16637
https://github.com/pandas-dev/pandas/issues/16039
https://github.com/pandas-dev/pandas/issues/16559
https://github.com/pandas-dev/pandas/issues/16675
https://github.com/pandas-dev/pandas/issues/16583

pandas: powerful Python data analysis toolkit, Release 0.23.4

* Bug in DataFrame.to_latex () where bold_rows was wrongly specified to be True by default,
whereas in reality row labels remained non-bold whatever parameter provided. (GH16707)

* Fixed an issue with DataFrame. style () where generated element ids were not unique (GH16780)

¢ Fixed loading a DataFrame with a PeriodIndex, froma format="'fixed' HDFStore, in Python 3, that
was written in Python 2 (GH16781)

1.9.1.4 Plotting

* Fixed regression that prevented RGB and RGBA tuples from being used as color arguments (GH16233)

* Fixed an issue with DataFrame.plot.scatter () that incorrectly raised a KeyError when categorical
data is used for plotting (GH16199)

1.9.1.5 Reshaping

* PeriodIndex/TimedeltaIndex. join was missing the sort=kwarg (GH16541)
* Bugin joining on a MultiIndex with a category dtype for a level (GH16627).

* Bugin merge () when merging/joining with multiple categorical columns (GH16767)

1.9.1.6 Categorical

* BuginDataFrame.sort_values not respecting the kind parameter with categorical data (GH16793)

1.10 v0.20.2 (June 4, 2017)

This is a minor bug-fix release in the 0.20.x series and includes some small regression fixes, bug fixes and performance
improvements. We recommend that all users upgrade to this version.

What’s new in v0.20.2

* Enhancements
* Performance Improvements
* Bug Fixes

— Conversion

Indexing

- 1/0

Plotting

Groupby/Resample/Rolling

Sparse

Reshaping

— Numeric

— Categorical

1.10. v0.20.2 (June 4, 2017) 83

https://github.com/pandas-dev/pandas/issues/16707
https://github.com/pandas-dev/pandas/issues/16780
https://github.com/pandas-dev/pandas/issues/16781
https://github.com/pandas-dev/pandas/issues/16233
https://github.com/pandas-dev/pandas/issues/16199
https://github.com/pandas-dev/pandas/issues/16541
https://github.com/pandas-dev/pandas/issues/16627
https://github.com/pandas-dev/pandas/issues/16767
https://github.com/pandas-dev/pandas/issues/16793

pandas: powerful Python data analysis toolkit, Release 0.23.4

— Other I

1.10.1 Enhancements

e Unblocked access to additional compression types supported in pytables: ‘blosc:blosclz, ‘blosc:1z4’,
‘blosc:1z4hc’, ‘blosc:snappy’, ‘blosc:zlib’, ‘blosc:zstd’ (GH14478)

e Series provides a to_latex method (GH16180)

* A new groupby method ngroup (), parallel to the existing cumcount (), has been added to return the group
order (GH11642); see here.

1.10.2 Performance Improvements

* Performance regression fix when indexing with a list-like (GH16285)

* Performance regression fix for Multilndexes (GH16319, GH16346)
 Improved performance of . clip () with scalar arguments (GH15400)
* Improved performance of groupby with categorical groupers (GH16413)

e Improved performance of MultiIndex.remove_unused_levels () (GH16556)

1.10.3 Bug Fixes
* Silenced a warning on some Windows environments about “tput: terminal attributes: No such device or address”
when detecting the terminal size. This fix only applies to python 3 (GH16496)
* Buginusing pathlib.Pathorpy.path.local objects with io functions (GH16291)

* Bug in Index.symmetric_difference () on two equal Multilndex’s, results in a TypeError
(GH13490)

* BuginDataFrame.update () with overwrite=False and NaN values (GH15593)

e Passing an invalid engine to read csv() now raises an informative ValueError rather than
UnboundLocalError. (GHI16511)

* Bugin unique () on an array of tuples (GH16519)
* Bugin cut () when labels are set, resulting in incorrect label ordering (GH16459)

e Fixed a compatibility issue with IPython 6.0’s tab completion showing deprecation warnings on
Categoricals (GH16409)

1.10.3.1 Conversion

* Bugin to_numeric () in which empty data inputs were causing a segfault of the interpreter (GH16302)

* Silence numpy warnings when broadcasting DataFrame to Series with comparison ops (GH16378,
GH16306)

84 Chapter 1. What’s New

https://github.com/pandas-dev/pandas/issues/14478
https://github.com/pandas-dev/pandas/issues/16180
https://github.com/pandas-dev/pandas/issues/11642
https://github.com/pandas-dev/pandas/issues/16285
https://github.com/pandas-dev/pandas/issues/16319
https://github.com/pandas-dev/pandas/issues/16346
https://github.com/pandas-dev/pandas/issues/15400
https://github.com/pandas-dev/pandas/issues/16413
https://github.com/pandas-dev/pandas/issues/16556
https://github.com/pandas-dev/pandas/issues/16496
https://github.com/pandas-dev/pandas/issues/16291
https://github.com/pandas-dev/pandas/issues/13490
https://github.com/pandas-dev/pandas/issues/15593
https://github.com/pandas-dev/pandas/issues/16511
https://github.com/pandas-dev/pandas/issues/16519
https://github.com/pandas-dev/pandas/issues/16459
https://github.com/pandas-dev/pandas/issues/16409
https://github.com/pandas-dev/pandas/issues/16302
https://github.com/pandas-dev/pandas/issues/16378
https://github.com/pandas-dev/pandas/issues/16306

pandas: powerful Python data analysis toolkit, Release 0.23.4

1.10.3.2 Indexing

* BuginDataFrame.reset_index (level=) with single level index (GH16263)

* Bug in partial string indexing with a monotonic, but not strictly-monotonic, index incorrectly reversing the slice
bounds (GH16515)

* Bug in MultiIndex.remove_unused_levels () that would not return a MultiIndex equal to the
original. (GH16556)

1.10.3.3 I/O

* Bugin read_csv () when comment is passed in a space delimited text file (GH16472)

* Bugin read _csv () not raising an exception with nonexistent columns in usecols when it had the correct
length (GH14671)

* Bug that would force importing of the clipboard routines unnecessarily, potentially causing an import error on
startup (GH16288)

* Bug that raised IndexError when HTML-rendering an empty DataFrame (GH15953)

* Bug in read _csv () in which tarfile object inputs were raising an error in Python 2.x for the C engine
(GH16530)

* Bug where DataFrame.to_html () ignored the index_names parameter (GH16493)
* Bug where pd.read_hdf () returns numpy strings for index names (GH13492)

* Bugin HDFStore.select_as_multiple () where start/stop arguments were not respected (GH16209)

1.10.3.4 Plotting

* Bugin DataFrame.plot with a single column and a list-like color (GH3486)
* Bugin plot where NaT in DatetimeIndex results in Timestamp.min (GH12405)

* Bug in DataFrame.boxplot where figsize keyword was not respected for non-grouped boxplots
(GH11959)

1.10.3.5 Groupby/Resample/Rolling

* Bug in creating a time-based rolling window on an empty DataFrame (GH15819)
* Buginrolling.cov () with offset window (GH16058)

* Bugin .resample () and .groupby () when aggregating on integers (GH16361)

1.10.3.6 Sparse

* Bug in construction of SparseDataFrame from scipy.sparse.dok_matrix (GH16179)

1.10. v0.20.2 (June 4, 2017) 85

https://github.com/pandas-dev/pandas/issues/16263
https://github.com/pandas-dev/pandas/issues/16515
https://github.com/pandas-dev/pandas/issues/16556
https://github.com/pandas-dev/pandas/issues/16472
https://github.com/pandas-dev/pandas/issues/14671
https://github.com/pandas-dev/pandas/issues/16288
https://github.com/pandas-dev/pandas/issues/15953
https://github.com/pandas-dev/pandas/issues/16530
https://github.com/pandas-dev/pandas/issues/16493
https://github.com/pandas-dev/pandas/issues/13492
https://github.com/pandas-dev/pandas/issues/16209
https://github.com/pandas-dev/pandas/issues/3486
https://github.com/pandas-dev/pandas/issues/12405
https://github.com/pandas-dev/pandas/issues/11959
https://github.com/pandas-dev/pandas/issues/15819
https://github.com/pandas-dev/pandas/issues/16058
https://github.com/pandas-dev/pandas/issues/16361
https://github.com/pandas-dev/pandas/issues/16179

pandas: powerful Python data analysis toolkit, Release 0.23.4

1.10.3.7 Reshaping

* Bugin DataFrame. stack with unsorted levels in MultiIndex columns (GH16323)

* Buginpd.wide_to_long () where no error was raised when i was not a unique identifier (GH16382)
* Bugin Series.isin (..) withalist of tuples (GH16394)

* Bug in construction of a DataFrame with mixed dtypes including an all-NaT column. (GH16395)

* BuginDataFrame.agg () and Series.agg () with aggregating on non-callable attributes (GH16405)

1.10.3.8 Numeric

* Bugin .interpolate (), where 1imit_direction was not respected when limit=None (default)
was passed (GH16282)

1.10.3.9 Categorical

» Fixed comparison operations considering the order of the categories when both categoricals are unordered
(GH16014)

1.10.3.10 Other

* Bugin DataFrame.drop () with an empty-list with non-unique indices (GH16270)

1.11 v0.20.1 (May 5, 2017)

This is a major release from 0.19.2 and includes a number of API changes, deprecations, new features, enhancements,
and performance improvements along with a large number of bug fixes. We recommend that all users upgrade to this
version.

Highlights include:
* New .agg () API for Series/DataFrame similar to the groupby-rolling-resample APT’s, see here

* Integration with the feather-format, including a new top-level pd.read_feather () and
DataFrame.to_feather () method, see here.

* The . ix indexer has been deprecated, see here

* Panel has been deprecated, see here

* Addition of an IntervalIndex and Interval scalar type, see here

* Improved user API when grouping by index levels in . groupby (), see here
* Improved support for UInt 64 dtypes, see here

* A new orient for JSON serialization, orient="table"', that uses the Table Schema spec and that gives the
possibility for a more interactive repr in the Jupyter Notebook, see here

» Experimental support for exporting styled DataFrames (DataFrame. style) to Excel, see here

* Window binary corr/cov operations now return a Multilndexed Dat aFrame rather than a Panel, as Panel is
now deprecated, see here

* Support for S3 handling now uses s3fs, see here

86 Chapter 1. What’s New

https://github.com/pandas-dev/pandas/issues/16323
https://github.com/pandas-dev/pandas/issues/16382
https://github.com/pandas-dev/pandas/issues/16394
https://github.com/pandas-dev/pandas/issues/16395
https://github.com/pandas-dev/pandas/issues/16405
https://github.com/pandas-dev/pandas/issues/16282
https://github.com/pandas-dev/pandas/issues/16014
https://github.com/pandas-dev/pandas/issues/16270

pandas: powerful Python data analysis toolkit, Release 0.23.4

* Google BigQuery support now uses the pandas—gbq library, see here

Warning: Pandas has changed the internal structure and layout of the codebase. This can affect imports that are
not from the top-level pandas . « namespace, please see the changes here.

Check the API Changes and deprecations before updating.

Note: This is a combined release for 0.20.0 and and 0.20.1. Version 0.20.1 contains one additional change for
backwards-compatibility with downstream projects using pandas’ uti1ls routines. (GH16250)

What’s new in v0.20.0

* New features
— agqg API for DataFrame/Series
- dtype keyword for data 10
— .to_datetime () has gained an origin parameter
— Groupby Enhancements
— Better support for compressed URLs in read_csv
— Pickle file I/0O now supports compression
— Ulnt64 Support Improved
— GroupBy on Categoricals
— Table Schema Output
— SciPy sparse matrix from/to SparseDataFrame
— Excel output for styled DataFrames
— Intervallndex
— Other Enhancements
* Backwards incompatible API changes
— Possible incompatibility for HDF5 formats created with pandas < 0.13.0
— Map on Index types now return other Index types
— Accessing datetime fields of Index now return Index
— pd.unique will now be consistent with extension types

S3 File Handling

Partial String Indexing Changes

Concat of different float dtypes will not automatically upcast

Pandas Google BigQuery support has moved

Memory Usage for Index is more Accurate

— DataFrame.sort_index changes

1.11. v0.20.1 (May 5, 2017) 87

https://github.com/pandas-dev/pandas/issues/16250

pandas: powerful Python data analysis toolkit, Release 0.23.4

— Groupby Describe Formatting
— Window Binary Corr/Cov operations return a Multilndex DataFrame
— HDFStore where string comparison
— Index.intersection and inner join now preserve the order of the left Index
— Pivot Table always returns a DataFrame
— Other API Changes
* Reorganization of the library: Privacy Changes
Modules Privacy Has Changed

— pandas.errors
— pandas.testing

— pandas.plotting

Other Development Changes
* Deprecations
— Deprecate . ix
— Deprecate Panel
— Deprecate groupby.agg() with a dictionary when renaming
— Deprecate .plotting
— Other Deprecations
* Removal of prior version deprecations/changes
* Performance Improvements
* Bug Fixes

Conversion

Indexing

- 1/0

Plotting

Groupby/Resample/Rolling

Sparse

Reshaping

— Numeric

— Other

1.11.1 New features

1.11.1.1 agg API for DataFrame/Series

Series & DataFrame have been enhanced to support the aggregation APIL. This is a familiar API from groupby,
window operations, and resampling. This allows aggregation operations in a concise way by using agg () and

88

Chapter 1. What’s New

pandas: powerful Python data analysis toolkit, Release 0.23.4

transform (). The full documentation is here (GH1623).

Here is a sample

In [1]: df = pd.DataFrame (np.random.randn (10, 3), columns=['A', 'B', 'C'],
: index=pd.date_range('1/1/2000"', periods=10))

In [2]: df.iloc[3:7] = np.nan
In [3]: df
Out[3]:
A B C

2000-01-01 1.682600 0.413582 1.689516
2000-01-02 -2.099110 -1.180182 1.595661
2000-01-03 -0.419048 0.522165 -1.208946

2000-01-04 NaN NaN NaN
2000-01-05 NaN NaN NaN
2000-01-06 NaN NaN NaN
2000-01-07 NaN NaN NaN

2000-01-08 0.955435 -0.133009 2.011466
2000-01-09 0.578780 0.897126 -0.980013
2000-01-10 -0.045748 0.361601 -0.208039

One can operate using string function names, callables, lists, or dictionaries of these.

Using a single function is equivalent to . apply.

In [4]: df.agg('sum')

Out[4]:

A 0.652908
B 0.881282
C 2.899645

dtype: float64d

Multiple aggregations with a list of functions.

In [5]: df.agg(['sum', 'min'])
Out [5]:

A B C
sum 0.652908 0.881282 2.899645
min -2.099110 -1.180182 -1.208946

Using a dict provides the ability to apply specific aggregations per column. You will get a matrix-like output of all of
the aggregators. The output has one column per unique function. Those functions applied to a particular column will
be NaN:

In [6]: df.agg({'A'" : ['sum', 'min'], 'B' : ['min', 'max']})
Oout[6]:
A B
max NaN 0.897126
min -2.099110 -1.180182
sum 0.652908 NaN

The API also supports a . transform () function for broadcasting results.

In [7]: df.transform(['abs', lambda x: x - x.min()])
Oout[7]:

(continues on next page)

1.11. v0.20.1 (May 5, 2017) 89

https://github.com/pandas-dev/pandas/issues/1623

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

A B C
abs <lambda> abs <lambda> abs <lambda>
2000-01-01 1.682600 3.781710 0.413582 1.593764 1.689516 2.8984061
2000-01-02 2.099110 0.000000 1.180182 0.000000 1.595661 2.804606
2000-01-03 0.419048 1.680062 0.522165 1.702346 1.208946 0.000000

2000-01-04 NaN NaN NaN NaN NaN NaN
2000-01-05 NaN NaN NaN NaN NaN NaN
2000-01-06 NaN NaN NaN NaN NaN NaN
2000-01-07 NaN NaN NaN NaN NaN NaN

2000-01-08 0.955435 3.054545 0.133009 1.047173 2.011466 3.220412
2000-01-09 0.578780 .677890 0.897126 2.077307 0.980013 0.228932
2000-01-10 0.045748 2.053362 0.361601 1.541782 0.208039 1.000907

N

When presented with mixed dtypes that cannot be aggregated, . agg () will only take the valid aggregations. This is
similar to how groupby .agg () works. (GH15015)

In [8]: df = pd.DataFrame({'A': [1, 2, 3],
: '‘B': [1., 2., 3.1,
'c': ['"foo', 'bar', 'baz'l],

'D': pd.date_range ('20130101', periods=3)})

In [9]: df.dtypes

Out[9]:

A into4
B floato64d
C object
D datetime64 [ns]

dtype: object

In [10]: df.agg(['min', 'sum'])

Out [10]:

A B C D
min 1 1.0 bar 2013-01-01
sum 6 6.0 foobarbaz NaT

1.11.1.2 dtype keyword for data IO

The 'python' engine for read_csv (), as well as the read_fwf () function for parsing fixed-width text files
and read_excel () for parsing Excel files, now accept the dt ype keyword argument for specifying the types of
specific columns (GH14295). See the io docs for more information.

In [11]: data = "a b\nl 2\n3 4"

In [12]: pd.read_fwf (StringIO(data)) .dtypes

Out[12]:
a int64
b int64

dtype: object

In [13]: pd.read_fwf (StringIO(data), dtype={'a':'floated', 'b':'object'}) .dtypes
ATV LV NV NN NN\ Out [13] -

a floato64

b object

dtype: object

90 Chapter 1. What’s New

https://github.com/pandas-dev/pandas/issues/15015
https://github.com/pandas-dev/pandas/issues/14295

pandas: powerful Python data analysis toolkit, Release 0.23.4

1.11.1.3 .to_datetime () has gained an origin parameter

to_datetime () has gained a new parameter, origin, to define a reference date from where to compute the
resulting timestamps when parsing numerical values with a specific unit specified. (GH11276, GH11745)

For example, with 1960-01-01 as the starting date:

In [14]: pd.to_datetime([1l, 2, 3], unit='D', origin=pd.Timestamp('1960-01-01"))
Out[14]: DatetimeIndex(['1960-01-02', '1960-01-03', '1960-01-04'], dtype=
—'datetime64 [ns]', freg=None)

The default is set at origin="unix"', which defaults to 1970-01-01 00:00:00, which is commonly called
‘unix epoch’ or POSIX time. This was the previous default, so this is a backward compatible change.

In [15]: pd.to_datetime([1, 2, 3], unit='D")
Out[15]: DatetimeIndex(['1970-01-02"', '1970-01-03', '1970-01-04"'], dtype=
—'datetime64[ns] ', freg=None)

1.11.1.4 Groupby Enhancements

Strings passed to DataFrame .groupby () as the by parameter may now reference either column names or index
level names. Previously, only column names could be referenced. This allows to easily group by a column and index
level at the same time. (GH5677)

In [16]: arrays = [['bar', 'bar', 'baz', 'baz', 'foo', 'foo', 'qux', 'qux'l],
e ['one', 'two', 'one', 'two', 'one', 'two', 'one', 'two'l]]

In [17]: index = pd.MultiIndex.from_arrays(arrays, names=['first', 'second'])

In [18]: df = pd.DataFrame({'A': [1, 1, 1, 1, 2, 2, 3, 31,
e 'B': np.arange(8)},
e index=index)

In [19]: df

Out[19]:
A B
first second
bar one 1 0
two 1 1
baz one 1 2
two 1 3
foo one 2 4
two 2 5
qux one 3 6
two 3 7
In [20]: df.groupby(['second', '"A']).sum()
R S N N N N R N A R R R AR RN
B
second A
one 1 2
2 4
3

(continues on next page)

1.11. v0.20.1 (May 5, 2017) 91

ALV

https://github.com/pandas-dev/pandas/issues/11276
https://github.com/pandas-dev/pandas/issues/11745
https://github.com/pandas-dev/pandas/issues/5677

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

two 1 4
2
3 7

1.11.1.5 Better support for compressed URLs in read_csv

The compression code was refactored (GH12688). As a result, reading dataframes from URLs in read_csv () or
read_table () now supports additional compression methods: xz, bz2, and zip (GH14570). Previously, only
gzip compression was supported. By default, compression of URLs and paths are now inferred using their file
extensions. Additionally, support for bz2 compression in the python 2 C-engine improved (GH14874).

In [21]: url = 'https://github.com/{repo}/raw/{branch}/{path}'.format (

et repo = 'pandas-dev/pandas',

et branch = 'master',

e path = 'pandas/tests/io/parser/data/salaries.csv.bz2',

.....)
In [22]: df = pd.read_table(url, compression='infer') # default, infer compression
In [23]: df = pd.read_table(url, compression='bz2") # explicitly specify compression

In [24]: df.head(2)

Out[24]:

S X E M
0 13876 1 1 1
1 11608 1 3 O

1.11.1.6 Pickle file I/O now supports compression

read pickle (), DataFrame.to _pickle() and Series.to_pickle () can now read from and write to
compressed pickle files. Compression methods can be an explicit parameter or be inferred from the file extension. See
the docs here.

In [25]: df = pd.DataFrame ({
e '"A": np.random.randn (1000),
et 'B': 'foo',
e 'C': pd.date_range('20130101', periods=1000, freg='s')})

Using an explicit compression type

In [26]: df.to_pickle("data.pkl.compress", compression="gzip")
In [27]: rt = pd.read_pickle("data.pkl.compress", compression="gzip")

In [28]: rt.head()

Out [28]:

A B C
0 1.578227 foo 2013-01-01 00:00:00
1 -0.230575 foo 2013-01-01 00:00:01
2 0.695530 foo 2013-01-01 00:00:02
3 -0.466001 foo 2013-01-01 00:00:03
4 -0.154972 foo 2013-01-01 00:00:04

92 Chapter 1. What’s New

https://github.com/pandas-dev/pandas/issues/12688
https://github.com/pandas-dev/pandas/issues/14570
https://github.com/pandas-dev/pandas/issues/14874

pandas: powerful Python data analysis toolkit, Release 0.23.4

The default is to infer the compression type from the extension (compression="'infer'):

In [29]: df.to_pickle("data.pkl.gz")
In [30]: rt = pd.read_pickle("data.pkl.gz")

In [31]: rt.head()

Out[31]:

A B C
0 1.578227 foo 2013-01-01 00:00:00
1 -0.230575 foo 2013-01-01 00:00:01
2 0.695530 foo 2013-01-01 00:00:02
3 -0.466001 foo 2013-01-01 00:00:03
4 -0.154972 foo 2013-01-01 00:00:04

In [32]: df["A"].to_pickle("sl.pkl.bz2")
In [33]: rt = pd.read_pickle("sl.pkl.bz2")

In [34]: rt.head()
Out [34]:
1.578227
-0.230575
0.695530
-0.466001
-0.154972
Name: A, dtype: float64

sw N kO

1.11.1.7 UInt64 Support Improved

Pandas has significantly improved support for operations involving unsigned, or purely non-negative, integers. Pre-
viously, handling these integers would result in improper rounding or data-type casting, leading to incorrect results.
Notably, a new numerical index, UInt 64 Index, has been created (GH14937)

In [35]: idx = pd.UInt64Index([1, 2, 3])
In [36]: df = pd.DataFrame({'A': ['a', 'b', 'c']l}, index=idx)

In [37]: df.index
Out[37]: UInt64Index([1, 2, 3], dtype='uinto64d')

* Bug in converting object elements of array-like objects to unsigned 64-bit integers (GH4471, GH14982)
* Bugin Series.unique () in which unsigned 64-bit integers were causing overflow (GH14721)

* Bug in DataFrame construction in which unsigned 64-bit integer elements were being converted to objects
(GH14881)

* Bug in pd.read_csv () in which unsigned 64-bit integer elements were being improperly converted to the
wrong data types (GH14983)

* Bugin pd.unique () in which unsigned 64-bit integers were causing overflow (GH14915)

* Bug in pd.value_counts () in which unsigned 64-bit integers were being erroneously truncated in the
output (GH14934)

1.11. v0.20.1 (May 5, 2017) 93

https://github.com/pandas-dev/pandas/issues/14937
https://github.com/pandas-dev/pandas/issues/4471
https://github.com/pandas-dev/pandas/issues/14982
https://github.com/pandas-dev/pandas/issues/14721
https://github.com/pandas-dev/pandas/issues/14881
https://github.com/pandas-dev/pandas/issues/14983
https://github.com/pandas-dev/pandas/issues/14915
https://github.com/pandas-dev/pandas/issues/14934

pandas: powerful Python data analysis toolkit, Release 0.23.4

1.11.1.8 GroupBy on Categoricals

In previous versions, . groupby (..., sort=False) would fail with a ValueError when grouping on a cat-
egorical series with some categories not appearing in the data. (GH13179)

In [38]: chromosomes = np.r_[np.arange(l, 23).astype(str), ['X', 'Y']]

In [39]: df = pd.DataFrame ({
et '"A': np.random.randint (100),
e 'B': np.random.randint (100),
e 'C': np.random.randint (100),
e 'chromosomes': pd.Categorical (np.random.choice (chromosomes, 100),
e categories=chromosomes,
e ordered=True) })

Out [40]

A B C chromosomes
0 80 36 94 12
1 80 36 94 X
2 80 36 94 19
3 80 36 94 22
4 80 36 94 17
5 80 36 94 6
6 80 36 94 13
93 80 36 94 21
94 80 36 94 20
95 80 36 94 11
96 80 36 94 16
97 80 36 94 21
98 80 36 94 18
99 80 36 94 8

[100 rows x 4 columns]

Previous Behavior:

In [3]: df[df.chromosomes != '1'].groupby('chromosomes', sort=False).sum/()

ValueError: items in new_categories are not the same as in old categories

New Behavior:

In [41]: df[df.chromosomes != '"1'].groupby ('chromosomes', sort=False) .sum/()
Out [41]:

A B C
chromosomes
2 320 144 376
3 400 180 470
4 240 108 282
5 240 108 282
6 400 180 470
7 400 180 470
8 480 216 564

19 400 180 470

(continues on next page)

94 Chapter 1. What’s New

https://github.com/pandas-dev/pandas/issues/13179

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

20 160 72 188
21 480 216 564
22 160 72 188
X 400 180 470
Y 320 144 376
1 0 0 0

[24 rows x 3 columns]

1.11.1.9 Table Schema Output

The new orient 'table' for DataFrame.to_json () will generate a Table Schema compatible string represen-
tation of the data.

In [42]: df = pd.DataFrame (
el {'a': [1, 2, 31,
et 'B': ['a', 'b', 'c']l,
et 'C': pd.date_range('2016-01-01"', freg='d', periods=3),
e }, index=pd.Index(range (3), name='idx"))

In [43]: df

Out [43]:

A B ¢}
idx
0 1 a 2016-01-01
1 b 2016-01-02
2 3 ¢ 2016-01-03

In [44]: df.to_json(orient="'table')
R N N N S N A R R R AR RN

—'"{"schema": {"fields":[{"name":"idx","type":"integer"}, {"name":"A", "type":"integer"}
—, {"name":"B", "type":"string"}, {"name":"C", "type":"datetime"}], "primaryKey": ["idx"],
—"pandas_version":"0.20.0"}, "data": [{"idx":0,"A":1,"B":"a","C":"2016-01-

—01T00:00:00.000Z"}, {"idx":1,"A":2,"B":"b","C":"2016-01-02T00:00:00.0002"}, {"idx":2,
—"A":3,"B":"c","C":"2016-01-03T00:00:00.000Z2"}1}"

See 10: Table Schema for more information.

Additionally, the repr for DataFrame and Series can now publish this JSON Table schema representation of the
Series or DataFrame if you are using IPython (or another frontend like nteract using the Jupyter messaging protocol).
This gives frontends like the Jupyter notebook and nteract more flexiblity in how they display pandas objects, since
they have more information about the data. You must enable this by setting the display.html.table_schema
option to True.

1.11.1.10 SciPy sparse matrix from/to SparseDataFrame
Pandas now supports creating sparse dataframes directly from scipy.sparse.spmatrix instances. See the doc-
umentation for more information. (GH4343)

All sparse formats are supported, but matrices that are not in COOrdinate format will be converted, copying data as
needed.

1.11. v0.20.1 (May 5, 2017) 95

ANV

http://specs.frictionlessdata.io/json-table-schema/
http://nteract.io/
http://nteract.io/
https://github.com/pandas-dev/pandas/issues/4343
https://docs.scipy.org/doc/scipy/reference/sparse.html#module-scipy.sparse

pandas: powerful Python data analysis toolkit, Release 0.23.4

In [45]: from scipy.sparse import csr_matrix
In [46]: arr = np.random.random(size=(1000, 5))
In [47]: arr[arr < .9] = 0
In [48]: sp_arr = csr_matrix(arr)
In [49]: sp_arr
Out [49]:
<1000x5 sparse matrix of type '<class 'numpy.float64'>"
with 521 stored elements in Compressed Sparse Row format>

In [50]: sdf = pd.SparseDataFrame (sp_arr)

In [51]: sdf

Out [51]:

0 1 2 3 4
0 NaN NaN NaN NaN NaN
1 NaN NaN NaN 0.955103 NaN
2 NaN NaN NaN 0.900469 NaN
3 NaN NaN NaN NaN NaN
4 NaN 0.924771 NaN NaN NaN
5 NaN NaN NaN NaN NaN
6 NaN NaN NaN NaN NaN
993 NaN NaN NaN NaN NaN
994 NaN NaN NaN NaN 0.972191
995 NaN 0.979898 0.97901 NaN NaN
996 NaN NaN NaN NaN NaN
997 NaN NaN NaN NaN NaN
998 NaN NaN NaN NaN NaN
999 NaN NaN NaN NaN NaN

[1000 rows x 5 columns]

To convert a SparseDataFrame back to sparse SciPy matrix in COO format, you can use:

In [52]: sdf.to_coo()

Out [52]:

<1000x5 sparse matrix of type '<class 'numpy.float64d'>'
with 521 stored elements in COOrdinate format>

1.11.1.11 Excel output for styled DataFrames

Experimental support has been added to export DataFrame . style formats to Excel using the openpyx1 engine.
(GH15530)

For example, after running the following, styled.x1sx renders as below:

In [53]: np.random.seed(24)

In [54]: df = pd.DataFrame({'A': np.linspace(l, 10, 10)})

In [55]: df pd.concat ([df, pd.DataFrame (np.random.RandomState (24) .randn (10, 4),
e columns=1ist ('"BCDE")) 1],

(continues on next page)

96 Chapter 1. What’s New

https://github.com/pandas-dev/pandas/issues/15530

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

e axis=1)
In [56]: df.iloc[0, 2] = np.nan
In [57]: df
Out [57]:

A B C D E

0 1.0 1.329212 NaN -0.316280 -0.990810
1 2.0 -1.070816 —-1.438713 0.564417 0.295722
2 3.0 -1.626404 0.219565 0.678805 1.889273
3 4.0 0.961538 0.104011 -0.481165 0.850229
4 5.0 1.453425 1.057737 0.165562 0.515018
5 6.0 -1.336936 0.562861 1.392855 -0.063328
6 7.0 0.121668 1.207603 -0.002040 1.627796
7 8.0 0.354493 1.037528 -0.385684 0.519818
8 9.0 1.686583 -1.325963 1.428984 -2.089354
9 10.0 -0.129820 0.631523 -0.586538 0.290720

In [58]: styled = df.style.\
et applymap (lambda val: 'color: ' % 'red' if val < 0 else 'black').\
e highlight_max ()

In [59]: styled.to_excel('styled.xlsx', engine='openpyxl')

A B c D E F

1 A B c D E |
2 0 1 1329212 031628 -0.99081
3 1 2 -1.070816 -1.438713 0564417 0.295722
4 2 3 -1.626404 0.219565 0.678805 1.889273
: 3 4 0961538 0.104011 -0.481165 0.850229
6 a 5 1453425 1057737 0.165562 0.515018
7 5 6 -1.336936 0.562861 1.392855 -0.063328
8 6 7 0121668 1207603 -0.00204 1627796
: 7 8 0354493 1037528 -0.385684 0.519818
10 8 9 1686583 -1.325963 1.428984 -2.089354
1] 9 10 -0.12982 0.631523 -0.586538 0.29072

See the Style documentation for more detail.

1.11.1.12 Intervallndex

pandas has gained an IntervalIndex withits own dtype, interval as well as the Interval scalar type. These
allow first-class support for interval notation, specifically as a return type for the categories in cut () and gcut ().
The IntervalIndex allows some unique indexing, see the docs. (GH7640, GH8625)

1.11. v0.20.1 (May 5, 2017) 97

https://github.com/pandas-dev/pandas/issues/7640
https://github.com/pandas-dev/pandas/issues/8625

pandas: powerful Python data analysis toolkit, Release 0.23.4

Warning: These indexing behaviors of the Intervallndex are provisional and may change in a future version of
pandas. Feedback on usage is welcome.

Previous behavior:

The returned categories were strings, representing Intervals

In [1]: ¢ = pd.cut(range(4), bins=2)

In [2]: c

Oout[2]:

[(-0.003, 1.5], (-0.003, 1.5], (1.5, 3], (1.5, 31]

Categories (2, object): [(-0.003, 1.5] < (1.5, 311

In [3]: c.categories

Out[3]: Index(['(-0.003, 1.5]"', '(1.5, 3]1'], dtype='object')
New behavior:

In [60]: ¢ = pd.cut(range(4), bins=2)

In [61l]: c

Out[61]:

[(-0.003, 1.5], (-0.003, 1.5], (1.5, 3.0], (1.5, 3.011]
Categories (2, interval[float64]): [(-0.003, 1.5] < (1.5, 3.0]]
In [62]: c.categories

R N N N S N N R N A R R R AR RN
IntervalIndex ([(-0.003, 1.5], (1.5, 3.0]1]

closed="right',
dtype='interval[float64]")

Furthermore, this allows one to bin other data with these same bins, with NaN representing a missing value similar to
other dtypes.

In [63]: pd.cut ([0, 3, 5, 1], bins=c.categories)

Out[63]:

[(-0.003, 1.5], (1.5, 3.0], NaN, (-0.003, 1.5]]

Categories (2, interval[float64]): [(-0.003, 1.5] < (1.5, 3.0]]

An IntervalIndex can also be used in Series and DataFrame as the index.

In [64]: df = pd.DataFrame({'A': range(4),
..... 'B': pd.cut ([0, 3, 1, 1], bins=c.categories)}
.....) .set_index ('B'
In [65]: df
Out [65]
A
B
(-0.003, 1.51 O
(1.5, 3.0] 1
(-0.003, 1.51 2
(-0.003, 1.51 3
98 Chapter 1. What’s New

ANV

pandas: powerful Python data analysis toolkit, Release 0.23.4

Selecting via a specific interval:

In [66]: df.loc[pd.Interval(l.5, 3.0)]
Oout [66] :

A 1

Name: (1.5, 3.0], dtype: into64

Selecting via a scalar value that is contained in the intervals.

In [67]: df.loc[0]

Oout[67]:

A
B
(-0.003, 1.51 O
(-0.003, 1.51 2
(-0.003, 1.51 3

1.11.1.13 Other Enhancements
* DataFrame.rolling () now accepts the parameter closed="'right'|'left'|'both'| 'neither’
to choose the rolling window-endpoint closedness. See the documentation (GH13965)

* Integration with the feather-format, including a new top-level pd.read_feather () and
DataFrame.to_feather () method, see here.

* Series.str.replace () now accepts a callable, as replacement, which is passed to re . sub (GH15055)
* Series.str.replace () now accepts a compiled regular expression as a pattern (GH15446)
* Series.sort_index accepts parameters kind and na_position (GH13589, GH14444)

* DataFrame and DataFrame.groupby () have gained a nunique () method to count the distinct values
over an axis (GH14336, GH15197).

* DataFrame has gained a melt () method, equivalent to pd.melt (), for unpivoting from a wide to long
format (GH12640).

* pd.read_excel () now preserves sheet order when using sheetname=None (GH9930)
» Multiple offset aliases with decimal points are now supported (e.g. 0. 5min is parsed as 30s) (GH8419)

e .isnull() and .notnull () have been added to Index object to make them more consistent with the
Series API (GH15300)

* New UnsortedIndexError (subclass of KeyError) raised when indexing/slicing into an unsorted Mul-
tilndex (GH11897). This allows differentiation between errors due to lack of sorting or an incorrect key. See
here

e MultiIndex has gaineda .to_frame () method to convert to a DataFrame (GHI12397)
e pd.cut and pd.gcut now support datetime64 and timedelta64 dtypes (GH14714, GH14798)

* pd.gcut has gained the duplicates="'raise'| ' 'drop' option to control whether to raise on duplicated
edges (GH7751)

* Series provides a to_excel method to output Excel files (GH8825)
e The usecols argument in pd. read_csv () now accepts a callable function as a value (GH14154)
* The skiprows argument in pd. read_csv () now accepts a callable function as a value (GH10882)

e The nrows and chunksize arguments in pd.read_csv () are supported if both are passed (GH6774,
GH15755)

1.11. v0.20.1 (May 5, 2017) 99

https://github.com/pandas-dev/pandas/issues/13965
https://github.com/pandas-dev/pandas/issues/15055
https://github.com/pandas-dev/pandas/issues/15446
https://github.com/pandas-dev/pandas/issues/13589
https://github.com/pandas-dev/pandas/issues/14444
https://github.com/pandas-dev/pandas/issues/14336
https://github.com/pandas-dev/pandas/issues/15197
https://github.com/pandas-dev/pandas/issues/12640
https://github.com/pandas-dev/pandas/issues/9930
https://github.com/pandas-dev/pandas/issues/8419
https://github.com/pandas-dev/pandas/issues/15300
https://github.com/pandas-dev/pandas/issues/11897
https://github.com/pandas-dev/pandas/issues/12397
https://github.com/pandas-dev/pandas/issues/14714
https://github.com/pandas-dev/pandas/issues/14798
https://github.com/pandas-dev/pandas/issues/7751
https://github.com/pandas-dev/pandas/issues/8825
https://github.com/pandas-dev/pandas/issues/14154
https://github.com/pandas-dev/pandas/issues/10882
https://github.com/pandas-dev/pandas/issues/6774
https://github.com/pandas-dev/pandas/issues/15755

pandas: powerful Python data analysis toolkit, Release 0.23.4

DataFrame.plot now prints a title above each subplot if suplots=True and title is a list of strings
(GH14753)

DataFrame.plot can pass the matplotlib 2.0 default color cycle as a single string as color parameter, see
here. (GH15516)

Series.interpolate () now supports timedelta as an index type with method="time"' (GH6424)

Addition of a 1evel keyword to DataFrame/Series.rename to rename labels in the specified level of a
Multilndex (GH4160).

DataFrame.reset_index () will now interpret a tuple index.name as a key spanning across levels of
columns, if thisis aMultiIndex (GH16164)

Timedelta.isoformat method added for formatting Timedeltas as an ISO 8601 duration. See the
Timedelta docs (GH15136)

.select_dtypes () now allows the string datet imet z to generically select datetimes with tz (GH14910)

The .to_latex () method will now accept multicolumn and multirow arguments to use the accompa-
nying LaTeX enhancements

pd.merge_asof () gained the option direction='backward'|'forward'| ' 'nearest'
(GH14887)

Series/DataFrame.asfreq() have gaineda £il1l_value parameter, to fill missing values (GH3715).

Series/DataFrame.resample.asfreq have gained a fi11l_value parameter, to fill missing values
during resampling (GH3715).

pandas.util.hash_pandas_object () has gained the ability to hash a MultiIndex (GH15224)
Series/DataFrame.squeeze () have gained the axis parameter. (GH15339)

DataFrame.to_excel () has anew freeze_panes parameter to turn on Freeze Panes when exporting
to Excel (GH15160)

pd.read_html () will parse multiple header rows, creating a Mutlilndex header. (GH13434).
HTML table output skips colspan or rowspan attribute if equal to 1. (GH15403)

pandas.io.formats.style.Styler template now has blocks for easier extension, see the example
notebook (GH15649)

Styler.render () now accepts » xkwargs to allow user-defined variables in the template (GH15649)

Compatibility with Jupyter notebook 5.0; Multilndex column labels are left-aligned and Multilndex row-labels
are top-aligned (GH15379)

TimedeltaIndex now has a custom date-tick formatter specifically designed for nanosecond level precision
(GH8711)

pd.api.types.union_categoricals gained the ignore_ordered argument to allow ignoring the
ordered attribute of unioned categoricals (GH13410). See the categorical union docs for more information.

DataFrame.to_latex () and DataFrame.to_string() now allow optional header aliases.
(GH15536)

Re-enable the parse_dates keyword of pd.read_excel () to parse string columns as dates (GH14326)
Added . empty property to subclasses of Index. (GH15270)
Enabled floor division for Timedelta and TimedeltaIndex (GH15828)

pandas.io.json.json_normalize () gained the option errors="'ignore"' | 'raise"'; the default
iserrors="'raise' which is backward compatible. (GH14583)

100

Chapter 1. What’s New

https://github.com/pandas-dev/pandas/issues/14753
http://matplotlib.org/2.0.0/users/colors.html#cn-color-selection
https://github.com/pandas-dev/pandas/issues/15516
https://github.com/pandas-dev/pandas/issues/6424
https://github.com/pandas-dev/pandas/issues/4160
https://github.com/pandas-dev/pandas/issues/16164
https://en.wikipedia.org/wiki/ISO_8601#Durations
https://github.com/pandas-dev/pandas/issues/15136
https://github.com/pandas-dev/pandas/issues/14910
https://github.com/pandas-dev/pandas/issues/14887
https://github.com/pandas-dev/pandas/issues/3715
https://github.com/pandas-dev/pandas/issues/3715
https://github.com/pandas-dev/pandas/issues/15224
https://github.com/pandas-dev/pandas/issues/15339
https://github.com/pandas-dev/pandas/issues/15160
https://github.com/pandas-dev/pandas/issues/13434
https://github.com/pandas-dev/pandas/issues/15403
https://github.com/pandas-dev/pandas/issues/15649
https://github.com/pandas-dev/pandas/issues/15649
https://github.com/pandas-dev/pandas/issues/15379
https://github.com/pandas-dev/pandas/issues/8711
https://github.com/pandas-dev/pandas/issues/13410
https://github.com/pandas-dev/pandas/issues/15536
https://github.com/pandas-dev/pandas/issues/14326
https://github.com/pandas-dev/pandas/issues/15270
https://github.com/pandas-dev/pandas/issues/15828
https://github.com/pandas-dev/pandas/issues/14583

pandas: powerful Python data analysis toolkit, Release 0.23.4

* pandas.io.json.json_normalize () with an empty list will return an empty DataFrame
(GH15534)

* pandas.io.json.json_normalize () has gained a sep option that accepts str to separate joined
fields; the default is ., which is backward compatible. (GH14883)

e MultilIndex.remove_unused_levels () has been added to facilitate removing unused levels.
(GH15694)

* pd.read_csv () will now raise a ParserError error whenever any parsing error occurs (GH15913,
GH15925)

* pd.read_csv () now supports the error_bad_lines and warn_bad_1lines arguments for the Python
parser (GH15925)

e The display.show_dimensions option can now also be used to specify whether the length of a Series
should be shown in its repr (GH7117).

* parallel_coordinates () has gained a sort_labels keyword argument that sorts class labels and the
colors assigned to them (GH15908)

» Options added to allow one to turn on/off using bott leneck and numexpr, see here (GH16157)

* DataFrame.style.bar () now accepts two more options to further customize the bar chart. Bar alignment
isset with align="'1left'| 'mid'|'zero", the default is “left”, which is backward compatible; You can
now pass a list of color=[color_negative, color_positivel].(GHI14757)

1.11.2 Backwards incompatible APl changes

1.11.2.1 Possible incompatibility for HDF5 formats created with pandas < 0.13.0

pd.TimeSeries was deprecated officially in 0.17.0, though has already been an alias since 0.13.0. It has been
dropped in favor of pd. Series. (GH15098).

This may cause HDFS files that were created in prior versions to become unreadable if pd. TimeSeries was used.
This is most likely to be for pandas < 0.13.0. If you find yourself in this situation. You can use a recent prior version
of pandas to read in your HDFS5 files, then write them out again after applying the procedure below.

In [2]: s = pd.TimeSeries([1,2,3], index=pd.date_range ('20130101"', periods=3))

In [3]: s
Out[3]:
2013-01-01 1
2013-01-02 2
2013-01-03 3

Freqg: D, dtype: inté4

In [4]: type(s)
Out[4]: pandas.core.series.TimeSeries

In [5]: s = pd.Series(s)

In [6]: s
Out[6]:
2013-01-01 1
2013-01-02 2
2013-01-03 3

Freqg: D, dtype: inté4

(continues on next page)

1.11. v0.20.1 (May 5, 2017) 101

https://github.com/pandas-dev/pandas/issues/15534
https://github.com/pandas-dev/pandas/issues/14883
https://github.com/pandas-dev/pandas/issues/15694
https://github.com/pandas-dev/pandas/issues/15913
https://github.com/pandas-dev/pandas/issues/15925
https://github.com/pandas-dev/pandas/issues/15925
https://github.com/pandas-dev/pandas/issues/7117
https://github.com/pandas-dev/pandas/issues/15908
https://github.com/pandas-dev/pandas/issues/16157
https://github.com/pandas-dev/pandas/issues/14757
https://github.com/pandas-dev/pandas/issues/15098

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

In [7]: type(s)
Out[7]: pandas.core.series.Series

1.11.2.2 Map on Index types now return other Index types

map on an Index now returns an Index, not a numpy array (GH12766)

In [68]: idx = Index([1l, 21)

In [69]: idx
Out[69]: Int64Index([1l, 2], dtype='inte64d")

In [70]: mi = MultiIndex.from_tuples ([(1, 2), (2, 4)1)

In [71]: mi

Out[71]:

MultiIndex (levels=[[1, 21, [2, 4]1],
labels=[[0, 11, [0, 111)

Previous Behavior:

In [5]: idx.map(lambda x: x * 2)
Out[5]: array([2, 4])

In [6]: idx.map(lambda x: (x, x * 2))
Out[6]: array([(1, 2), (2, 4)], dtype=object)

In [7]: mi.map(lambda x: x)
Out[7]: array([(1, 2), (2, 4)], dtype=object)

In [8]: mi.map(lambda x: x[0])
Oout[8]: array([1l, 2])

New Behavior:

In [72]: idx.map(lambda x: x * 2)
Out[72]: Int64Index([2, 4], dtype='int64d"')

In [73]: idx.map(lambda x: (x, x * 2))
ALV VNN NN OuE [73] ¢
MultiIndex (levels=[[1, 21, [2, 4]1,

labels=[[0, 1], [0, 111)

In [74]: mi.map(lambda x: x)
R N N R N N N R N N N N N N R N N N N N N N N R N N N N R N N N N N N R N N N N N R R R R RN N
MultiIndex (levels=[[1, 2], [2, 4]],

labels=[[0, 11, [0, 111)

In [75]: mi.map(lambda x: x[0])
RN N N R N N R R N N N N N N N R N N N N N N N N R N N N N N N R N N N N N N R R N N N A R R R R R RN
—Int64Index([1, 2], dtype='int64")

map on a Series with datetime64 values may return int 64 dtypes rather than int 32

102 Chapter 1. What’s New

AN

AN

https://github.com/pandas-dev/pandas/issues/12766

pandas: powerful Python data analysis toolkit, Release 0.23.4

In [76]: s = Series(date_range('2011-01-02T00:00', '2011-01-02T02:00', freg='H') .tz_
—localize ('Asia/Tokyo'))

In [77]: s

Out[77]:

0 2011-01-02 00:00:00+09:00

1 2011-01-02 01:00:00+09:00

2 2011-01-02 02:00:00+09:00
dtype: datetime64[ns, Asia/Tokyo]

Previous Behavior:

In [9]: s.map(lambda x: x.hour)

Oout[9]:
0 0
1 1
2 2

dtype: int32

New Behavior:

In [78]: s.map(lambda x: x.hour)

Out[78]:
0 0
1 1
2 2

dtype: into4

1.11.2.3 Accessing datetime fields of Index now return Index

The datetime-related attributes (see here for an overview) of DatetimeIndex, PeriodIndex and
TimedeltaIndex previously returned numpy arrays. They will now return a new Index object, except in the
case of a boolean field, where the result will still be a boolean ndarray. (GH15022)

Previous behaviour:

In [1]: idx = pd.date_range("2015-01-01", periods=5, freg='10H")

In [2]: idx.hour
Out[2]: array([0, 10, 20, 6, 16], dtype=int32)

New Behavior:

In [79]: idx = pd.date_range("2015-01-01", periods=5, freg='10H")

In [80]: idx.hour
Out[80]: Int64Index ([0, 10, 20, 6, 16], dtype='int64d"')

This has the advantage that specific Index methods are still available on the result. On the other hand, this might
have backward incompatibilities: e.g. compared to numpy arrays, Index objects are not mutable. To get the original
ndarray, you can always convert explicitly using np.asarray (idx.hour).

1.11.2.4 pd.unique will now be consistent with extension types

In prior versions, using Series.unique () and pandas.unique () on Categorical and tz-aware data-types
would yield different return types. These are now made consistent. (GH15903)

1.11. v0.20.1 (May 5, 2017) 103

https://github.com/pandas-dev/pandas/issues/15022
https://github.com/pandas-dev/pandas/issues/15903

pandas: powerful Python data analysis toolkit, Release 0.23.4

¢ Datetime tz-aware

Previous behaviour:

Series

In [5]: pd.Series([pd.Timestamp ('20160101", tz='US/Eastern'),
pd.Timestamp ('20160101', tz='US/Eastern')]) .unique ()

Out[5]: array([Timestamp ('2016-01-01 00:00:00-0500"', tz='US/Eastern')],

—dtype=object)

In [6]: pd.unique (pd.Series([pd.Timestamp ('20160101"', tz='US/Eastern'),
pd.Timestamp ('20160101', tz='US/Eastern')]))
Out[6]: array(['2016-01-01T05:00:00.000000000"'], dtype='datetime64[ns]"')

Index
In [7]: pd.Index([pd.Timestamp ('20160101"', tz='US/Eastern'),
pd.Timestamp ('20160101"', tz='US/Eastern')]) .unique ()
Out[7]: DatetimeIndex (['2016-01-01 00:00:00-05:00"'], dtype='datetime64[ns, US/
—FEastern] ', freg=None)

In [8]: pd.unique ([pd.Timestamp ('20160101", tz='US/Eastern'),
pd.Timestamp ('20160101', tz='US/Eastern')])
Out[8]: array (['2016-01-01T05:00:00.000000000"'], dtype='datetime64[ns]"')

New Behavior:

Series, returns an array of Timestamp tz-aware
In [81]: pd.Series([pd.Timestamp('20160101"', tz='US/Eastern'),

e pd.Timestamp ('20160101"', tz='US/Eastern')]) .unique ()
Out[81]: array ([Timestamp ('2016-01-01 00:00:00-0500"', tz='US/Eastern')],
—dtype=object)

—

In [82]: pd.unique (pd.Series([pd.Timestamp('20160101", tz='US/Eastern'),

et pd.Timestamp ('20160101", tz='US/Eastern')]))
R N N N N N N N N N N N N N N N R N N N N N N N N N N N N N N N N N N N R N R R R R RN RN
—array ([Timestamp ('2016-01-01 00:00:00-0500"', tz='US/Eastern')], dtype=object)

Index, returns a DatetimelIndex
In [83]: pd.Index([pd.Timestamp('20160101"', tz='US/Eastern'),

e pd.Timestamp ('20160101", tz='US/Eastern')]) .unique ()
R N N N N N N R N N N N N R N N R N R R R R RN WY
—DatetimeIndex (['2016-01-01 05:00:00-05:00"'], dtype='datetime64[ns, US/Eastern]’',
— freg=None)

In [84]: pd.unique (pd.Index([pd.Timestamp ('20160101"', tz='US/Eastern'),

e pd.Timestamp ('20160101", tz='US/Eastern')]))
RN R R N N N R N N R N N N R N N N N R N N N N N N N N R N N N N N R R R R R R R R R RN
—DatetimeIndex (['2016-01-01 00:00:00-05:00"'], dtype='datetime64[ns, US/Eastern]',
— freg=None)

\\\\out [82] =

ANV

AUV

* Categoricals

Previous behaviour:

104

Chapter 1. What’s New

pandas: powerful Python data analysis toolkit, Release 0.23.4

In [1]: pd.Series(list ('baabc'), dtype='category') .unique ()
Out[1l]:

[b, a, c]

Categories (3, object): [b, a, c]

In [2]: pd.unique (pd.Series(list ('baabc'), dtype='category'))
Out[2]: array(['b', 'a', 'c'], dtype=object)

New Behavior:

returns a Categorical

In [85]: pd.Series(list ('baabc'), dtype='category') .unique ()
Out [85] :

[b, a, c]

Categories (3, object): [b, a, c]

In [86]: pd.unique (pd.Series(list ('baabc'), dtype='category'))
ATV DDV AN\ Out [86] -
[b, a, cl

Categories (3, object): [b, a, c]

1.11.2.5 S3 File Handling

pandas now uses s3fs for handling S3 connections. This shouldn’t break any code. However, since s3fs is not a
required dependency, you will need to install it separately, like bot o in prior versions of pandas. (GH11915).

1.11.2.6 Partial String Indexing Changes

Datetimelndex Partial String Indexing now works as an exact match, provided that string resolution coincides with
index resolution, including a case when both are seconds (GH14826). See Slice vs. Exact Match for details.

In [87]: df = DataFrame({'a': [1, 2, 31}, DatetimelIndex(['2011-12-31 23:59:59",
e '2012-01-01 00:00:00",
e '2012-01-01 00:00:01"'1))

Previous Behavior:

In [4]: df['2011-12-31 23:59:59"]

Out[4]:
a
2011-12-31 23:59:59 1
In [5]: df['a']['2011-12-31 23:59:59"']
Out [5]:
2011-12-31 23:59:59 1

Name: a, dtype: inté64

New Behavior:

In [4]: df['2011-12-31 23:59:59"']
KeyError: '2011-12-31 23:59:59'

In [5]: df['a']['2011-12-31 23:59:59"]
Out[5]: 1

1.11. v0.20.1 (May 5, 2017) 105

http://s3fs.readthedocs.io/
https://github.com/pandas-dev/pandas/issues/11915
https://github.com/pandas-dev/pandas/issues/14826

pandas: powerful Python data analysis toolkit, Release 0.23.4

1.11.2.7 Concat of different float dtypes will not automatically upcast

Previously, concat of multiple objects with different £1oat dtypes would automatically upcast results to a dtype of
float64. Now the smallest acceptable dtype will be used (GH13247)

In [88]: dfl = pd.DataFrame (np.array([1.0], dtype=np.float32, ndmin=2))

In [89]: dfl.dtypes
Out[89]:

0 float32

dtype: object

In [90]: df2 = pd.DataFrame (np.array([np.nan], dtype=np.float32, ndmin=2))

In [91]: df2.dtypes
Out[91]:

0 float32

dtype: object

Previous Behavior:

In [7]: pd.concat ([dfl, df2]).dtypes
Out[7]:

0 float64

dtype: object

New Behavior:

In [92]: pd.concat ([dfl, df2]).dtypes
Out[92]:

0 float32

dtype: object

1.11.2.8 Pandas Google BigQuery support has moved

pandas has split off Google BigQuery support into a separate package pandas—gbg. You can conda
install pandas-gbg -c conda-forge or pip install pandas-gbg to get it. The functional-
ity of read _gbg() and DataFrame.to_gbg() remain the same with the currently released version of
pandas—gbg=0.1.4. Documentation is now hosted here (GH15347)

1.11.2.9 Memory Usage for Index is more Accurate

In previous versions, showing .memory_usage () on a pandas structure that has an index, would only include
actual index values and not include structures that facilitated fast indexing. This will generally be different for Index
and MultiIndex and less-so for other index types. (GH15237)

Previous Behavior:

In [8]: index = Index(['foo', 'bar', 'baz'l])

In [9]: index.memory_usage (deep=True)
Out[9]: 180

In [10]: index.get_loc('foo')
Out[10]: O

(continues on next page)

106 Chapter 1. What’s New

https://github.com/pandas-dev/pandas/issues/13247
https://pandas-gbq.readthedocs.io/
https://github.com/pandas-dev/pandas/issues/15347
https://github.com/pandas-dev/pandas/issues/15237

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

In [11]: index.memory_usage (deep=True)
Out[1l1l]: 180

New Behavior:

In [8]: index = Index(['foo', 'bar', 'baz'l)

In [9]: index.memory_usage (deep=True)
Out[9]: 180

In [10]: index.get_loc('foo')
Out[10]: O

In [11]: index.memory_usage (deep=True)
Out[1l1l]: 260

1.11.2.10 DataFrame.sort_index changes

In certain cases, calling . sort_index () on a Multilndexed DataFrame would return the same DataFrame without
seeming to sort. This would happen with a 1exsorted, but non-monotonic levels. (GH15622, GH15687, GH14015,
GH13431, GH15797)

This is unchanged from prior versions, but shown for illustration purposes:

In [93]: df = DataFrame (np.arange(6), columns=['value'], index=MultiIndex.from_
—product ([1list ("BA'"), range(3)]))

In [94]: df

Oout[94]:
value
B O 0
1 1
2 2
A0 3
1 4
2 5

In [95]: df.index.is_lexsorted()
Out[95]: False

In [96]: df.index.is_monotonic

AMAANNAANNANNNNNNOutE [96] @ False

Sorting works as expected

In [97]: df.sort_index()
Oout [97]:

value
A

w
N = O N RO
N = O O W

1.11. v0.20.1 (May 5, 2017) 107

https://github.com/pandas-dev/pandas/issues/15622
https://github.com/pandas-dev/pandas/issues/15687
https://github.com/pandas-dev/pandas/issues/14015
https://github.com/pandas-dev/pandas/issues/13431
https://github.com/pandas-dev/pandas/issues/15797

pandas: powerful Python data analysis toolkit, Release 0.23.4

In [98]: df.sort_index().index.is_lexsorted()
Out[98]: True

In [99]: df.sort_index () .index.is_monotonic

AMAANNNNNNNNNNNOuE [99] ¢ True

However, this example, which has a non-monotonic 2nd level, doesn’t behave as desired.

In [100]: df = pd.DataFrame (
et {'value': [1, 2, 3, 41},
e index=pd.MultiIndex(levels=[["'a', 'b'], ['bb', 'aa'll,
e labels=[[0, O, 1, 1], [0, 1, 0O, 111))

In [101]: df

Out[101]:
value
a bb 1
aa 2
b bb 3
aa 4

Previous Behavior:

In [11]: df.sort_index ()

Out[11]:
value
a bb 1
aa 2
b bb 3
aa 4
In [14]: df.sort_index () .index.is_lexsorted()

Out[14]: True

In [15]: df.sort_index () .index.is_monotonic
Out[15]: False

New Behavior:

In [102]: df.sort_index ()

Out[102]:
value
a aa 2
bb 1
b aa 4
bb 3

In [103]: df.sort_index () .index.is_lexsorted()

ATV VAN Out [103] -

In [104]: df.sort_index () .index.is_monotonic

R N R R R N N N R R R N N R N O R N R N N N N N R N N N R N N N N R R R R RN RNl

—True

True

108 Chapter 1. What’s New

t[104]

pandas: powerful Python data analysis toolkit, Release 0.23.4

1.11.2.11 Groupby Describe Formatting

The output formatting of groupby .describe () now labels the describe () metrics in the columns instead of
the index. This format is consistent with groupby .agg () when applying multiple functions at once. (GH4792)

Previous Behavior:

In [1]: df = pd.DataFrame({'A': [1, 1, 2, 21, 'B': [1, 2, 3, 41})
In [2]: df.groupby('A'") .describe ()
Out[2]:
B
A
1 count 2.000000
mean 1.500000
std 0.707107
min 1.000000
25% 1.250000
50% 1.500000
75% 1.750000
max 2.000000
2 count 2.000000
mean 3.500000
std 0.707107
min 3.000000
25% 3.250000
50% 3.500000
75% 3.750000
max 4.000000
In [3]: df.groupby('A'") .agg([np.mean, np.std, np.min, np.max])
Out[3]:
B
mean std amin amax
A
1 1.5 0.707107 1 2
2 3.5 0.707107 3 4
New Behavior:
In [105]: df = pd.DataFrame({'A': [1, 1, 2, 2], 'B': [1, 2, 3, 41})
In [106]: df.groupby('A'") .describe ()
Out[106]:
B
count mean std min 25% 50% 75% max
A
1 2.0 1.5 0.707107 1.0 1.25 1.5 1.75 2.0
2 2.0 3.5 0.707107 3.0 3.25 3.5 3.75 4.0
In [107]: df.groupby('A'") .agg([np.mean, np.std, np.min, np.max])
N N R N N N R N N N N N R N N N N N N N N R N N N N N N R N N N N R N R R N N N N R R R R R RN
B
mean std amin amax
1 1.5 0.707107 1 2
2 3.5 0.707107 3 4

1.11. v0.20.1 (May 5, 2017) 109

AN

https://github.com/pandas-dev/pandas/issues/4792

pandas: powerful Python data analysis toolkit, Release 0.23.4

1.11.2.12 Window Binary Corr/Cov operations return a Multiindex DataFrame

A binary window operation, like .corr () or .cov (), when operatingona .rolling(..), .expanding(..
),or .ewm (..) object, will now return a 2-level MultiIndexed DataFrame rather than a Panel, as Panel
is now deprecated, see here. These are equivalent in function, but a Multilndexed Dat aF rame enjoys more support
in pandas. See the section on Windowed Binary Operations for more information. (GH15677)

In [108]: np.random.seed(1234)

In [109]: df = pd.DataFrame (np.random.rand (100, 2),
et columns=pd.Index(['A"'", 'B'], name='bar'),
et index=pd.date_range ('20160101",
e periods=100, freg='D', name='foo'))

In [110]: df.tail()

Out[110]:

bar A B
foo

2016-04-05 0.640880 0.126205
2016-04-06 0.171465 0.737086
2016-04-07 0.127029 0.369650
2016-04-08 0.604334 0.103104
2016-04-09 0.802374 0.945553

Previous Behavior:

In [2]: df.rolling(12) .corr ()

Out[2]:

<class 'pandas.core.panel.Panel'>

Dimensions: 100 (items) x 2 (major_axis) x 2 (minor_axis)
Items axis: 2016-01-01 00:00:00 to 2016-04-09 00:00:00
Major_axis axis: A to B

Minor_axis axis: A to B

New Behavior:

In [111]: res = df.rolling(12) .corr()

In [112]: res.tail()

Out[112]:

bar A B

foo bar

2016-04-07 B -0.132090 1.000000

2016-04-08 A 1.000000 -0.145775
B -0.145775 1.000000

2016-04-09 A 1.000000 0.119645
B 0.119645 1.000000

Retrieving a correlation matrix for a cross-section

In [113]: df.rolling(12).corr().loc['2016-04-07"]

Out[113]:

bar A B
foo bar

2016-04-07 A 1.00000 -0.13209

B -0.13209 1.00000

110 Chapter 1. What’s New

https://github.com/pandas-dev/pandas/issues/15677

pandas: powerful Python data analysis toolkit, Release 0.23.4

1.11.2.13 HDFStore where string comparison

In previous versions most types could be compared to string column in a HDF St ore usually resulting in an invalid
comparison, returning an empty result frame. These comparisons will now raise a TypeError (GH15492)

In [114]: df = pd.DataFrame ({'unparsed_date': ['2014-01-01", '2014-01-01"11})
In [115]: df.to_hdf('store.h5', 'key', format='table', data_columns=True)

In [116]: df.dtypes
Out[1l16]:

unparsed_date object
dtype: object

Previous Behavior:

In [4]: pd.read_hdf('store.h5', 'key', where='unparsed_date > ts')
File "<string>", line 1
(unparsed_date > 1970-01-01 00:00:01.388552400)

A

SyntaxError: invalid token

New Behavior:

In [18]: ts = pd.Timestamp('2014-01-01")

In [19]: pd.read_hdf('store.hb', 'key', where='unparsed_date > ts')
TypeError: Cannot compare 2014-01-01 00:00:00 of
type <class 'pandas.tslib.Timestamp'> to string column

1.11.2.14 Index.intersection and inner join now preserve the order of the left Index

Index.intersection () now preserves the order of the calling Index (left) instead of the other Index (right)
(GH15582). This affects inner joins, DataFrame. join () and merge (), and the . align method.

e Tndex.intersection

In [117]: left = pd.Index([2, 1, 0])

In [118]: left
Out[118]: Int64Index([2, 1, 0], dtype='into64d")

In [119]: right = pd.Index([1l, 2, 31)

In [120]: right
Out[120]: Int64Index([1, 2, 3], dtype='into64")

Previous Behavior:

In [4]: left.intersection(right)
Out[4]: Int64Index([1l, 2], dtype='int64d')

New Behavior:

In [121]: left.intersection(right)
Out[121]: Int64Index([2, 1], dtype='int64d"')

1.11. v0.20.1 (May 5, 2017) 111

https://github.com/pandas-dev/pandas/issues/15492
https://github.com/pandas-dev/pandas/issues/15582

pandas: powerful Python data analysis toolkit, Release 0.23.4

e DataFrame. join and pd.merge

In [122]: left = pd.DataFrame({'a': [20, 10, 0]}, index=[2, 1, 01])

In [123]: left
Out[123]:
a
2 20
1 10
0 0

In [124]: right = pd.DataFrame({'b': [100, 200, 300]}, index=[1, 2, 3])

In [125]: right

Out[125]:
b

1 100

2 200

3 300

Previous Behavior:

In [4]: left.join(right, how='inner')

Out [4]:

a b
1 10 100
2 20 200

New Behavior:

In [126]: left.join(right, how='inner'")

Out[126]:
a b

2 20 200

1 10 100

1.11.2.15 Pivot Table always returns a DataFrame

The documentation for pivot_table () states that a DataFrame is always returned. Here a bug is fixed that
allowed this to return a Series under certain circumstance. (GH4386)

In [127]: df = DataFrame({'coll': [3, 4, 51,
e 'col2': ['C', 'D', 'E'],
e 'col3': [1, 3, 91})

In [128]: df

Out[128]:

coll col2 col3
0 3 C 1
1 4 D 3
2 5 E 9

Previous Behavior:

112 Chapter 1. What’s New

https://github.com/pandas-dev/pandas/issues/4386

pandas: powerful Python data analysis toolkit, Release 0.23.4

In [2]: df.pivot_table('coll', index=['col3', 'col2'], aggfunc=np.sum)
Out[2]:

col3 col2

1 C 3

3 D 4

9 E 5

Name: coll, dtype: int64

New Behavior:

In [129]: df.pivot_table('coll', index=['col3', 'col2'], aggfunc=np.sum)
Out[129]:
coll
col3 col2
1 C 3
3 D 4
9 E 5

1.11.2.16 Other API Changes

numexpr version is now required to be >= 2.4.6 and it will not be used at all if this requisite is not fulfilled
(GH15213).

CParserError has beenrenamed to ParserErrorinpd.read_csv () and will be removed in the future
(GH12665)

SparseArray.cumsum () and SparseSeries.cumsum () will now always return SparseArray and
SparseSeries respectively (GH12855)

DataFrame.applymap () with an empty DataFrame will return a copy of the empty Dat aFrame instead
of a Series (GH8222)

Series.map () now respects default values of dictionary subclasses with a ___missing__ method, such as
collections.Counter (GH15999)

. 1loc has compat with . ix for accepting iterators, and NamedTuples (GH15120)

interpolate () and fillna () will raise a ValueError if the 1imit keyword argument is not greater
than 0. (GH9217)

pd.read_csv () will now issue a ParserWarning whenever there are conflicting values provided by the
dialect parameter and the user (GH14898)

pd.read_csv () will now raise a ValueError for the C engine if the quote character is larger than than
one byte (GH11592)

inplace arguments now require a boolean value, else a ValueError is thrown (GH14189)

pandas.api.types.is_datetime64_ns_dtype will now report True on a tz-aware dtype, similar
to pandas.api.types.is_datetime64_any_dtype

DataFrame.asof () will return a null filled Series instead the scalar NaN if a match is not found
(GH15118)

Specific support for copy . copy () and copy.deepcopy () functions on NDFrame objects (GH15444)

Series.sort_values () accepts a one element list of bool for consistency with the behavior of
DataFrame.sort_values () (GH15604)

.merge () and . join () on category dtype columns will now preserve the category dtype when possible
(GH10409)

1.11.

v0.20.1 (May 5, 2017) 113

https://github.com/pandas-dev/pandas/issues/15213
https://github.com/pandas-dev/pandas/issues/12665
https://github.com/pandas-dev/pandas/issues/12855
https://github.com/pandas-dev/pandas/issues/8222
https://github.com/pandas-dev/pandas/issues/15999
https://github.com/pandas-dev/pandas/issues/15120
https://github.com/pandas-dev/pandas/issues/9217
https://github.com/pandas-dev/pandas/issues/14898
https://github.com/pandas-dev/pandas/issues/11592
https://github.com/pandas-dev/pandas/issues/14189
https://github.com/pandas-dev/pandas/issues/15118
https://github.com/pandas-dev/pandas/issues/15444
https://github.com/pandas-dev/pandas/issues/15604
https://github.com/pandas-dev/pandas/issues/10409

pandas: powerful Python data analysis toolkit, Release 0.23.4

* SparseDataFrame.default_fill_value will be 0, previously was nan in the return from pd.

get_dummies (..., sparse=True) (GH15594)

The default behaviour of Series. str.match has changed from extracting groups to matching the pattern.
The extracting behaviour was deprecated since pandas version 0.13.0 and can be done with the Series.str.
extract method (GH5224). As a consequence, the as_indexer keyword is ignored (no longer needed to
specify the new behaviour) and is deprecated.

NaT will now correctly report False for datetimelike boolean operations such as is_month_start
(GH15781)

NaT will now correctly return np . nan for Timedelta and Period accessors such as days and quarter
(GH15782)

NaT will now returns NaT for tz_localize and tz_convert methods (GH15830)

DataFrame and Panel constructors with invalid input will now raise ValueError rather than
PandasError, if called with scalar inputs and not axes (GH15541)

DataFrame and Panel constructors with invalid input will now raise ValueError rather than pandas.
core.common.PandasError, if called with scalar inputs and not axes; The exception PandasError is
removed as well. (GH15541)

e The exception pandas.core.common.AmbiguousIndexError is removed as it is not referenced

(GH15541)

1.11.3 Reorganization of the library: Privacy Changes

1.11.3.1 Modules Privacy Has Changed

Some formerly public python/c/c++/cython extension modules have been moved and/or renamed. These are all re-
moved from the public API. Furthermore, the pandas.core, pandas.compat, and pandas.util top-level
modules are now considered to be PRIVATE. If indicated, a deprecation warning will be issued if you reference theses
modules. (GH12588)

114

Chapter 1. What’s New

https://github.com/pandas-dev/pandas/issues/15594
https://github.com/pandas-dev/pandas/issues/5224
https://github.com/pandas-dev/pandas/issues/15781
https://github.com/pandas-dev/pandas/issues/15782
https://github.com/pandas-dev/pandas/issues/15830
https://github.com/pandas-dev/pandas/issues/15541
https://github.com/pandas-dev/pandas/issues/15541
https://github.com/pandas-dev/pandas/issues/15541
https://github.com/pandas-dev/pandas/issues/12588

pandas: powerful Python data analysis toolkit, Release 0.23.4

Previous Location New Location Deprecated
pandas.lib pandas._libs.lib X
pandas.tslib pandas._libs.tslib X
pandas.computation pandas.core.computation X
pandas.msgpack pandas.io.msgpack

pandas.index pandas._libs.index

pandas.algos pandas._libs.algos

pandas.hashtable pandas._libs.hashtable

pandas.indexes pandas.core.indexes

pandas.json pandas._libs.json / pandas.io.json X
pandas.parser pandas._libs.parsers X
pandas.formats pandas.io.formats

pandas.sparse pandas.core.sparse

pandas.tools pandas.core.reshape X
pandas.types pandas.core.dtypes X
pandas.io.sas.saslib pandas.io.sas._sas

pandas._join pandas._libs.join

pandas._hash pandas._libs.hashing

pandas._period pandas._libs.period

pandas._sparse pandas._libs.sparse

pandas._testing pandas._libs.testing

pandas._window pandas._libs.window

Some new subpackages are created with public functionality that is not directly exposed in the top-level namespace:
pandas.errors, pandas.plotting and pandas.testing (more details below). Together with pandas.
api.types and certain functions in the pandas . io and pandas . t series submodules, these are now the public

subpackages.

Further changes:

e The function union_categoricals () is now importable from pandas.api.types, formerly from

pandas.types.concat (GH15998)

* The type import pandas.tslib.NaTType is deprecated and can be replaced by using type (pandas.

NaT) (GH16146)

* The public functions in pandas.tools.hashing deprecated from that locations, but are now importable

from pandas.util (GH16223)

e The modules in pandas.util:

decorators, print_versions, doctools, validators,

depr_module are now private. Only the functions exposed in pandas.util itself are public (GH16223)

1.11.3.2 pandas.errors

We are adding a standard public module for all pandas exceptions & warnings pandas.errors. (GH14800). Pre-
viously these exceptions & warnings could be imported from pandas.core.common or pandas.io.common.
These exceptions and warnings will be removed from the * . common locations in a future release. (GH15541)

The following are now part of this API:

['DtypeWarning',
'"EmptyDataError’',
'OutOfBoundsDatetime’',
'ParserError’',

(continues on next page)

1.11. v0.20.1 (May 5, 2017)

115

https://github.com/pandas-dev/pandas/issues/15998
https://github.com/pandas-dev/pandas/issues/16146
https://github.com/pandas-dev/pandas/issues/16223
https://github.com/pandas-dev/pandas/issues/16223
https://github.com/pandas-dev/pandas/issues/14800
https://github.com/pandas-dev/pandas/issues/15541

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

'ParserWarning’',
'PerformanceWarning’',
'UnsortedIndexError',
'UnsupportedFunctionCall']

1.11.3.3 pandas.testing
We are adding a standard module that exposes the public testing functions in pandas.testing (GH9895). Those
functions can be used when writing tests for functionality using pandas objects.
The following testing functions are now part of this API:
* testing.assert_frame_equal ()
* testing.assert_series_equal ()

* testing.assert_index_equal ()

1.11.3.4 pandas.plotting

A new public pandas.plotting module has been added that holds plotting functionality that was previously in
either pandas.tools.plotting orin the top-level namespace. See the deprecations sections for more details.

1.11.3.5 Other Development Changes

* Building pandas for development now requires cython >= 0.23 (GHI14831)

* Require at least 0.23 version of cython to avoid problems with character encodings (GH14699)
» Switched the test framework to use pytest (GH13097)

* Reorganization of tests directory layout (GH14854, GH15707).

1.11.4 Deprecations

1.11.4.1 Deprecate .ix

The . ix indexer is deprecated, in favor of the more strict . 1 1oc and . 1oc indexers. . ix offers a lot of magic on the
inference of what the user wants to do. To wit, . 1x can decide to index positionally OR via labels, depending on the
data type of the index. This has caused quite a bit of user confusion over the years. The full indexing documentation
is here. (GH14218)

The recommended methods of indexing are:
e .loc if you want to label index
e .iloc if you want to positionally index.

Using . ix will now show a DeprecationWarning with a link to some examples of how to convert code here.

In [130]: df = pd.DataFrame({'A': [1, 2, 3],
..... : 'B': [4, 5, 61},
index=1ist ('abc'))

(continues on next page)

116 Chapter 1. What’s New

https://github.com/pandas-dev/pandas/issues/9895
https://github.com/pandas-dev/pandas/issues/14831
https://github.com/pandas-dev/pandas/issues/14699
http://doc.pytest.org/en/latest
https://github.com/pandas-dev/pandas/issues/13097
https://github.com/pandas-dev/pandas/issues/14854
https://github.com/pandas-dev/pandas/issues/15707
https://github.com/pandas-dev/pandas/issues/14218

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

In [131]: df

Out[131]:
A B
a 1 4
b 2 5
c 3 6

Previous Behavior, where you wish to get the Oth and the 2nd elements from the index in the ‘A’ column.

In [3]: df.ix[[0, 2], 'A']

Out [3]:
a 1
c 3

Name: A, dtype: inte64

Using . 1loc. Here we will select the appropriate indexes from the index, then use label indexing.

In [132]: df.loc[df.index[[0, 2]1], 'A']

Out[132]:
a 1
c 3

Name: A, dtype: inté64

Using . iloc. Here we will get the location of the ‘A’ column, then use positional indexing to select things.

In [133]: df.iloc[[0, 2], df.columns.get_loc('A")]

Out[133]:
a 1
c 3

Name: A, dtype: int64

1.11.4.2 Deprecate Panel

Panel is deprecated and will be removed in a future version. The recommended way to represent 3-D data
are with a MultiIndex on a DataFrame via the to_frame () or with the xarray package. Pandas pro-
vides a to_xarray () method to automate this conversion. For more details see Deprecate Panel documentation.
(GH13563).

In [134]: p = tm.makePanel ()

In [135]: p

Out[135]:

<class 'pandas.core.panel.Panel'>

Dimensions: 3 (items) x 3 (major_axis) x 4 (minor_axis)
Items axis: ItemA to ItemC

Major_axis axis: 2000-01-03 00:00:00 to 2000-01-05 00:00:00
Minor_axis axis: A to D

Convert to a Multilndex DataFrame

In [136]: p.to_frame()

Out[136]:

ItemA ItemB ItemC
major minor
2000-01-03 A 0.628776 -1.409432 0.209395

(continues on next page)

1.11. v0.20.1 (May 5, 2017) 117

http://xarray.pydata.org/en/stable/
https://github.com/pandas-dev/pandas/issues/13563

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

B 0.988138 -1.347533 -0.896581
C -0.938153 1.272395 -0.161137
D -0.223019 -0.591863 -1.051539
2000-01-04 A 0.186494 1.422986 -0.59288¢6
B -0.072608 0.363565 1.104352
C -1.239072 -1.449567 0.889157
D 2.123692 -0.414505 -0.319561
2000-01-05 A 0.952478 -2.147855 -1.473116
B -0.550603 -0.014752 -0.431550
C 0.139683 -1.195524 0.288377
D 0.122273 -1.425795 -0.619993

Convert to an xarray DataArray

In [137]: p.to_xarray/()
Out[137]:
<xarray.DataArray (items: 3, major_axis: 3, minor_axis: 4)>
array ([[[0.628776, 0.988138, -0.938153, -0.223019],
[0.186494, -0.072608, -1.239072, 2.123692],
[0.952478, -0.550603, 0.139683, 0.12227311,

[[-1.409432, -1.347533, 1.272395, -0.591863],

[1.422986, 0.363565, -1.449567, -0.414505],
[-2.147855, -0.014752, -1.195524, -1.425795]11],

[[0.209395, -0.896581, -0.161137, -1.051539],
[-0.592886, 1.104352, 0.889157, -0.319561],
[-1.473116, -0.43155 , 0.288377, -0.619993]111)

Coordinates:
* ltems (items) object 'ItemA' 'ItemB' 'ItemC'
* major_axis (major_axis) datetime64[ns] 2000-01-03 2000-01-04 2000-01-05
* minor_axis (minor_axis) object 'A' 'B' 'C' 'D'

1.11.4.3 Deprecate groupby.agg() with a dictionary when renaming

The .groupby (..) .agg(..), .rolling(..).agg(..),and .resample(..) .agg(..) syntax can ac-
cept a variable of inputs, including scalars, list, and a dict of column names to scalars or lists. This provides a useful
syntax for constructing multiple (potentially different) aggregations.

However, .agg (. .) can also accept a dict that allows ‘renaming’ of the result columns. This is a complicated and
confusing syntax, as well as not consistent between Series and DataFrame. We are deprecating this ‘renaming’
functionaility.

* We are deprecating passing a dict to a grouped/rolled/resampled Series. This allowed one to rename
the resulting aggregation, but this had a completely different meaning than passing a dictionary to a grouped
DataFrame, which accepts column-to-aggregations.

* We are deprecating passing a dict-of-dicts to a grouped/rolled/resampled Dat aFrame in a similar manner.

This is an illustrative example:

pd.DataFrame ({'A': [1, 1, 1, 2,
'B': range(5),
'C': range(5)})

In [138]: df = 21,

(continues on next page)

118 Chapter 1. What’s New

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

In [139]: df

Out[139]:
A B C
0 1 0 O
1 1 1 1
2 1 2 2
3 2 3 3
4 2 4 4

Here is a typical useful syntax for computing different aggregations for different columns. This is a natural, and useful
syntax. We aggregate from the dict-to-list by taking the specified columns and applying the list of functions. This
returns a Mult i Index for the columns (this is not deprecated).

In [140]: df.groupby('A").agg({'B': 'sum', 'C': 'min'})
Out[140]:
B C

Here’s an example of the first deprecation, passing a dict to a grouped Series. This is a combination aggregation &
renaming:

In [6]: df.groupby('A'").B.agg({'foo': 'count'})
FutureWarning: using a dict on a Series for aggregation
is deprecated and will be removed in a future version

Oout[6]:
foo

A

1 3

2 2

You can accomplish the same operation, more idiomatically by:

In [141]: df.groupby('A'").B.agg(['count']) .rename (columns={'count': '"foo'})
Out[141]:
foo

=
w

Here’s an example of the second deprecation, passing a dict-of-dict to a grouped Dat aFrame:

In [23]: (df.groupby('A")
.agg({'B': {'foo': 'sum'}, 'C': {'bar': 'min'}})
)
FutureWarning: using a dict with renaming is deprecated and
will be removed in a future version

out [23]:
B C
foo bar
1 0
2 7 3

1.11. v0.20.1 (May 5, 2017) 119

pandas: powerful Python data analysis toolkit, Release 0.23.4

You can accomplish nearly the same by:

In [142]: (df.groupby('A")
et .agg({'B': 'sum', 'C': 'min'})
e .rename (columns={'B': 'foo', 'C': 'bar'})

Out[142]:
foo Dbar

A

1 3 0

2 7 3

1.11.4.4 Deprecate .plotting
The pandas.tools.plotting module has been deprecated, in favor of the top level pandas.plotting mod-
ule. All the public plotting functions are now available from pandas.plotting (GH12548).

Furthermore, the top-level pandas.scatter_matrix and pandas.plot_params are deprecated. Users can
import these from pandas.plotting as well.

Previous script:

pd.tools.plotting.scatter_matrix (df)
pd.scatter_matrix(df)

Should be changed to:

pd.plotting.scatter_matrix (df)

1.11.4.5 Other Deprecations
* SparseArray.to_dense () has deprecated the £i11 parameter, as that parameter was not being respected
(GH14647)
* SparseSeries.to_dense () has deprecated the sparse_only parameter (GH14647)
* Series.repeat () has deprecated the reps parameter in favor of repeats (GH12662)

e The Series constructor and .astype method have deprecated accepting timestamp dtypes without a fre-
quency (e.g. np.datetime64) for the dt ype parameter (GH15524)

* Index.repeat () and MultiIndex.repeat () have deprecated the n parameter in favor of repeats
(GH12662)

* Categorical.searchsorted() and Series.searchsorted () have deprecated the v parameter in
favor of value (GH12662)

e TimedeltaIndex.searchsorted(), DatetimeIndex.searchsorted(), and PeriodIndex.
searchsorted () have deprecated the key parameter in favor of value (GH12662)

* DataFrame.astype () has deprecated the raise_on_error parameter in favor of errors (GH14878)

* Series.sortlevel and DataFrame.sortlevel have been deprecated in favor of Series.
sort_index and DataFrame.sort_index (GH15099)

e importing concat from pandas.tools.merge has been deprecated in favor of imports from the pandas
namespace. This should only affect explicit imports (GH15358)

120 Chapter 1. What’s New

https://github.com/pandas-dev/pandas/issues/12548
https://github.com/pandas-dev/pandas/issues/14647
https://github.com/pandas-dev/pandas/issues/14647
https://github.com/pandas-dev/pandas/issues/12662
https://github.com/pandas-dev/pandas/issues/15524
https://github.com/pandas-dev/pandas/issues/12662
https://github.com/pandas-dev/pandas/issues/12662
https://github.com/pandas-dev/pandas/issues/12662
https://github.com/pandas-dev/pandas/issues/14878
https://github.com/pandas-dev/pandas/issues/15099
https://github.com/pandas-dev/pandas/issues/15358

pandas: powerful Python data analysis toolkit, Release 0.23.4

* Series/DataFrame/Panel.consolidate () been deprecated as a public method. (GH15483)
* The as_indexer keyword of Series.str.match () has been deprecated (ignored keyword) (GH15257).

* The following top-level pandas functions have been deprecated and will be removed in a future version
(GH13790, GH15940)

— pd.pnow (), replaced by Period.now ()

— pd.Term, is removed, as it is not applicable to user code. Instead use in-line string expressions in the
where clause when searching in HDFStore

- pd.Expr, is removed, as it is not applicable to user code.

— pd.match (), is removed.

— pd.groupby (), replaced by using the . groupby () method directly on a Series/DataFrame
- pd.get_store (), replaced by a direct call to pd . HDFStore (.. .)

e is_any_int_dtype, is_floating_dtype, and is_sequence are deprecated from pandas.api.
types (GH16042)

1.11.5 Removal of prior version deprecations/changes
* The pandas. rpy module is removed. Similar functionality can be accessed through the rpy?2 project. See the
R interfacing docs for more details.

¢ The pandas.io.ga module with a google—analytics interface is removed (GH11308). Similar func-
tionality can be found in the Google2Pandas package.

* pd.to_datetime and pd.to_timedelta have dropped the coerce parameter in favor of errors
(GH13602)

e pandas.stats.fama_macbeth, pandas.stats.ols, pandas.stats.plm and pandas.
stats.var, as well as the top-level pandas.fama_macbeth and pandas.ols routines are removed.
Similar functionaility can be found in the statsmodels package. (GH11898)

e The TimeSeriesand SparseTimeSeries classes, aliases of Series and SparseSeries, are removed
(GH10890, GH15098).

* Series.is_time_series is dropped in favor of Series.index.is_all_dates (GH15098)

e The deprecated i row, icol, iget and iget_value methods are removed in favor of iloc and iat as
explained here (GH10711).

e The deprecated DataFrame.iterkv () has been removed in favor of DataFrame.iteritems ()
(GH10711)

e The Categorical constructor has dropped the name parameter (GH10632)
* Categorical has dropped support for NaN categories (GH10748)

e The take_last parameter has been dropped from duplicated(), drop_duplicates(),
nlargest (), and nsmallest () methods (GH10236, GH10792, GH10920)

e Series, Index, and DataFrame have dropped the sort and order methods (GH10726)

* Where clauses in pytables are only accepted as strings and expressions types and not other data-types
(GH12027)

* DataFrame has dropped the combineAdd and combineMult methods in favor of add and mul respec-
tively (GH10735)

1.11. v0.20.1 (May 5, 2017) 121

https://github.com/pandas-dev/pandas/issues/15483
https://github.com/pandas-dev/pandas/issues/15257
https://github.com/pandas-dev/pandas/issues/13790
https://github.com/pandas-dev/pandas/issues/15940
https://github.com/pandas-dev/pandas/issues/16042
https://rpy2.readthedocs.io/
https://github.com/pandas-dev/pandas/issues/11308
https://github.com/panalysis/Google2Pandas
https://github.com/pandas-dev/pandas/issues/13602
shttp://www.statsmodels.org/dev/
https://github.com/pandas-dev/pandas/issues/11898
https://github.com/pandas-dev/pandas/issues/10890
https://github.com/pandas-dev/pandas/issues/15098
https://github.com/pandas-dev/pandas/issues/15098
https://github.com/pandas-dev/pandas/issues/10711
https://github.com/pandas-dev/pandas/issues/10711
https://github.com/pandas-dev/pandas/issues/10632
https://github.com/pandas-dev/pandas/issues/10748
https://github.com/pandas-dev/pandas/issues/10236
https://github.com/pandas-dev/pandas/issues/10792
https://github.com/pandas-dev/pandas/issues/10920
https://github.com/pandas-dev/pandas/issues/10726
https://github.com/pandas-dev/pandas/issues/12027
https://github.com/pandas-dev/pandas/issues/10735

pandas: powerful Python data analysis toolkit, Release 0.23.4

1.11.6 Performance Improvements

Improved performance of pd.wide_to_long () (GH14779)

Improved performance of pd.factorize () by releasing the GIL with object dtype when inferred as
strings (GH14859, GH16057)

Improved performance of timeseries plotting with an irregular Datetimelndex (or with compat_x=True)
(GH15073).

Improved performance of groupby () .cummin () and groupby () .cummax () (GH15048, GH15109,
GH15561, GH15635)

Improved performance and reduced memory when indexing with a MultiIndex (GH15245)

When reading buffer object in read_sas () method without specified format, filepath string is inferred rather
than buffer object. (GH14947)

Improved performance of . rank () for categorical data (GH15498)

Improved performance when using . unstack () (GH15503)

Improved performance of merge/join on category columns (GH10409)
Improved performance of drop_duplicates () on bool columns (GH12963)

Improve performance of pd. core.groupby.GroupBy .apply when the applied function used the . name
attribute of the group DataFrame (GH15062).

Improved performance of i 1oc indexing with a list or array (GH15504).
Improved performance of Series.sort_index () with a monotonic index (GH15694)

Improved performance in pd. read_csv () on some platforms with buffered reads (GH16039)

1.11.7 Bug Fixes

1.11.7.1 Conversion

Bugin Timestamp.replace now raises TypeError when incorrect argument names are given; previously
this raised ValueError (GH15240)

Bugin Timestamp.replace with compat for passing long integers (GH15030)

Bug in Timestamp returning UTC based time/date attributes when a timezone was provided (GH13303,
GH6538)

Bug in Timestamp incorrectly localizing timezones during construction (GH11481, GH15777)
Bug in TimedeltaIndex addition where overflow was being allowed without error (GH14816)
Bug in TimedeltaIndex raising a ValueError when boolean indexing with 1oc (GH14946)
Bug in catching an overflow in Timestamp + Timedelta/Offset operations (GHI5126)

BuginDatetimeIndex.round () and Timestamp.round () floating point accuracy when rounding by
milliseconds or less (GH14440, GH15578)

Bug in astype () where inf values were incorrectly converted to integers. Now raises error now with
astype () for Series and DataFrames (GH14265)

BuginDataFrame (..) .apply (to_numeric) when values are of type decimal.Decimal. (GH14827)

122

Chapter 1. What’s New

https://github.com/pandas-dev/pandas/issues/14779
https://github.com/pandas-dev/pandas/issues/14859
https://github.com/pandas-dev/pandas/issues/16057
https://github.com/pandas-dev/pandas/issues/15073
https://github.com/pandas-dev/pandas/issues/15048
https://github.com/pandas-dev/pandas/issues/15109
https://github.com/pandas-dev/pandas/issues/15561
https://github.com/pandas-dev/pandas/issues/15635
https://github.com/pandas-dev/pandas/issues/15245
https://github.com/pandas-dev/pandas/issues/14947
https://github.com/pandas-dev/pandas/issues/15498
https://github.com/pandas-dev/pandas/issues/15503
https://github.com/pandas-dev/pandas/issues/10409
https://github.com/pandas-dev/pandas/issues/12963
https://github.com/pandas-dev/pandas/issues/15062
https://github.com/pandas-dev/pandas/issues/15504
https://github.com/pandas-dev/pandas/issues/15694
https://github.com/pandas-dev/pandas/issues/16039
https://github.com/pandas-dev/pandas/issues/15240
https://github.com/pandas-dev/pandas/issues/15030
https://github.com/pandas-dev/pandas/issues/13303
https://github.com/pandas-dev/pandas/issues/6538
https://github.com/pandas-dev/pandas/issues/11481
https://github.com/pandas-dev/pandas/issues/15777
https://github.com/pandas-dev/pandas/issues/14816
https://github.com/pandas-dev/pandas/issues/14946
https://github.com/pandas-dev/pandas/issues/15126
https://github.com/pandas-dev/pandas/issues/14440
https://github.com/pandas-dev/pandas/issues/15578
https://github.com/pandas-dev/pandas/issues/14265
https://github.com/pandas-dev/pandas/issues/14827

pandas: powerful Python data analysis toolkit, Release 0.23.4

* Bugin describe () when passing a numpy array which does not contain the median to the percentiles
keyword argument (GH14908)

* Cleaned up PeriodIndex constructor, including raising on floats more consistently (GH13277)

* Buginusing ___deepcopy___ on empty NDFrame objects (GH15370)

* Bugin . replace () may result in incorrect dtypes. (GH12747, GH15765)

* Bugin Series.replace and DataFrame. replace which failed on empty replacement dicts (GH15289)
* Bugin Series.replace which replaced a numeric by string (GH15743)

* Bug in Index construction with NaN elements and integer dtype specified (GH15187)

* Bugin Series construction with a datetimetz (GH14928)

* Bugin Series.dt.round () inconsistent behaviour on NaT ‘s with different arguments (GH14940)

* Bugin Series constructor when both copy=True and dt ype arguments are provided (GH15125)

¢ Incorrect dtyped Series was returned by comparison methods (e.g., 1t, gt, ...) against a constant for an
empty DataFrame (GH15077)

* Bugin Series.ffill () with mixed dtypes containing tz-aware datetimes. (GH14956)

* Bugin DataFrame.fillna () where the argument downcast was ignored when fillna value was of type
dict (GH15277)

* Bugin .asfreq(), where frequency was not set for empty Series (GH14320)
* Bugin DataFrame construction with nulls and datetimes in a list-like (GH15869)
* BuginDataFrame.fillna () with tz-aware datetimes (GH15855)

* Bugin is_string_dtype, is_timedelta64_ns_dtype, and is_string_like_dtype in which
an error was raised when None was passed in (GH15941)

* Bug in the return type of pd.unique on a Categorical, which was returning an ndarray and not a
Categorical (GH15903)

* Bug in Index.to_series () where the index was not copied (and so mutating later would change the
original), (GH15949)

* Bug in indexing with partial string indexing with a len-1 DataFrame (GH16071)

* Bugin Series construction where passing invalid dtype didn’t raise an error. (GH15520)

1.11.7.2 Indexing

* Bug in Index power operations with reversed operands (GH14973)

* Bug in DataFrame.sort_values () when sorting by multiple columns where one column is of type
int 64 and contains NaT (GH14922)

* BuginDataFrame.reindex () in which method was ignored when passing columns (GH14992)
* Bugin DataFrame. loc with indexing a MultiIndex with a Series indexer (GH14730, GH15424)
* Bugin DataFrame. loc with indexing a MultiIndex with a numpy array (GH15434)

* Bugin Series.asof which raised if the series contained all np.nan (GH15713)

* Bugin . at when selecting from a tz-aware column (GH15822)

* Bug in Series.where () and DataFrame.where () where array-like conditionals were being rejected
(GH15414)

1.11. v0.20.1 (May 5, 2017) 123

https://github.com/pandas-dev/pandas/issues/14908
https://github.com/pandas-dev/pandas/issues/13277
https://github.com/pandas-dev/pandas/issues/15370
https://github.com/pandas-dev/pandas/issues/12747
https://github.com/pandas-dev/pandas/issues/15765
https://github.com/pandas-dev/pandas/issues/15289
https://github.com/pandas-dev/pandas/issues/15743
https://github.com/pandas-dev/pandas/issues/15187
https://github.com/pandas-dev/pandas/issues/14928
https://github.com/pandas-dev/pandas/issues/14940
https://github.com/pandas-dev/pandas/issues/15125
https://github.com/pandas-dev/pandas/issues/15077
https://github.com/pandas-dev/pandas/issues/14956
https://github.com/pandas-dev/pandas/issues/15277
https://github.com/pandas-dev/pandas/issues/14320
https://github.com/pandas-dev/pandas/issues/15869
https://github.com/pandas-dev/pandas/issues/15855
https://github.com/pandas-dev/pandas/issues/15941
https://github.com/pandas-dev/pandas/issues/15903
https://github.com/pandas-dev/pandas/issues/15949
https://github.com/pandas-dev/pandas/issues/16071
https://github.com/pandas-dev/pandas/issues/15520
https://github.com/pandas-dev/pandas/issues/14973
https://github.com/pandas-dev/pandas/issues/14922
https://github.com/pandas-dev/pandas/issues/14992
https://github.com/pandas-dev/pandas/issues/14730
https://github.com/pandas-dev/pandas/issues/15424
https://github.com/pandas-dev/pandas/issues/15434
https://github.com/pandas-dev/pandas/issues/15713
https://github.com/pandas-dev/pandas/issues/15822
https://github.com/pandas-dev/pandas/issues/15414

pandas: powerful Python data analysis toolkit, Release 0.23.4

Bugin Series.where () where TZ-aware data was converted to float representation (GH15701)
Bug in . 1oc that would not return the correct dtype for scalar access for a DataFrame (GH11617)
Bug in output formatting of a Mult i Index when names are integers (GH12223, GH15262)

Bugin Categorical.searchsorted () where alphabetical instead of the provided categorical order was
used (GH14522)

Bug in Series.iloc where a Categorical object for list-like indexes input was returned, where a
Series was expected. (GH14580)

Bugin DataFrame. isin comparing datetimelike to empty frame (GH15473)
Bugin . reset_index () when an all NaN level of a MultiIndex would fail (GH6322)

Bug in .reset_index () when raising error for index name already present in MultiIndex columns
(GH16120)

Bug in creating a Mult i Index with tuples and not passing a list of names; this will now raise ValueError
(GH15110)

Bug in the HTML display with with a MultiIndex and truncation (GH14882)

Bug in the display of .info () where a qualifier (+) would always be displayed with a MultiIndex that
contains only non-strings (GH15245)

Bugin pd.concat () where the names of Mult i Index of resulting DataFrame are not handled correctly
when None is presented in the names of MultiIndex of input DataFrame (GH15787)

Bugin DataFrame.sort_index () and Series.sort_index () where na_position doesn’t work
with aMultiIndex (GH14784, GH16604)

Buginin pd.concat () when combining objects with a CategoricalIndex (GHI16111)

Bug in indexing with a scalar and a CategoricalIndex (GH16123)

1.11.7.3 I/O

Bug in pd.to_numeric () in which float and unsigned integer elements were being improperly casted
(GH14941, GH15005)

Bug in pd.read_fwf () where the skiprows parameter was not being respected during column width infer-
ence (GH11256)

Bug in pd.read_csv () in which the dialect parameter was not being verified before processing
(GH14898)

Bugin pd.read_csv () in which missing data was being improperly handled with usecols (GH6710)

Bug in pd.read_csv () in which a file containing a row with many columns followed by rows with fewer
columns would cause a crash (GH14125)

Bug in pd.read_csv() for the C engine where usecols were being indexed incorrectly with
parse_dates (GH14792)

Bugin pd.read_csv () with parse_dates when multiline headers are specified (GH15376)

Bugin pd.read_csv () with float_precision="round_trip"' which caused a segfault when a text
entry is parsed (GH15140)

Bugin pd.read_csv () when an index was specified and no values were specified as null values (GH15835)

Buginpd.read_csv () in which certain invalid file objects caused the Python interpreter to crash (GH15337)

124

Chapter 1. What’s New

https://github.com/pandas-dev/pandas/issues/15701
https://github.com/pandas-dev/pandas/issues/11617
https://github.com/pandas-dev/pandas/issues/12223
https://github.com/pandas-dev/pandas/issues/15262
https://github.com/pandas-dev/pandas/issues/14522
https://github.com/pandas-dev/pandas/issues/14580
https://github.com/pandas-dev/pandas/issues/15473
https://github.com/pandas-dev/pandas/issues/6322
https://github.com/pandas-dev/pandas/issues/16120
https://github.com/pandas-dev/pandas/issues/15110
https://github.com/pandas-dev/pandas/issues/14882
https://github.com/pandas-dev/pandas/issues/15245
https://github.com/pandas-dev/pandas/issues/15787
https://github.com/pandas-dev/pandas/issues/14784
https://github.com/pandas-dev/pandas/issues/16604
https://github.com/pandas-dev/pandas/issues/16111
https://github.com/pandas-dev/pandas/issues/16123
https://github.com/pandas-dev/pandas/issues/14941
https://github.com/pandas-dev/pandas/issues/15005
https://github.com/pandas-dev/pandas/issues/11256
https://github.com/pandas-dev/pandas/issues/14898
https://github.com/pandas-dev/pandas/issues/6710
https://github.com/pandas-dev/pandas/issues/14125
https://github.com/pandas-dev/pandas/issues/14792
https://github.com/pandas-dev/pandas/issues/15376
https://github.com/pandas-dev/pandas/issues/15140
https://github.com/pandas-dev/pandas/issues/15835
https://github.com/pandas-dev/pandas/issues/15337

pandas: powerful Python data analysis toolkit, Release 0.23.4

* Buginpd.read_csv () in which invalid values for nrows and chunksize were allowed (GH15767)

* Bug in pd.read_csv () for the Python engine in which unhelpful error messages were being raised when
parsing errors occurred (GH15910)

* Buginpd.read_csv () in which the skipfooter parameter was not being properly validated (GH15925)

* Bug in pd.to_csv () in which there was numeric overflow when a timestamp index was being written
(GH15982)

* Buginpd.util.hashing.hash_pandas_object () in which hashing of categoricals depended on the
ordering of categories, instead of just their values. (GH15143)

* Bug in .to_json() where lines=True and contents (keys or values) contain escaped characters
(GH15096)

* Bugin .to_json () causing single byte ascii characters to be expanded to four byte unicode (GH15344)

* Bugin .to_json () for the C engine where rollover was not correctly handled for case where frac is odd and
diff is exactly 0.5 (GH15716, GH15864)

* Buginpd.read_json () for Python 2 where 1ines=True and contents contain non-ascii unicode charac-
ters (GH15132)

* Bugin pd.read_msgpack () in which Series categoricals were being improperly processed (GH14901)

* Bug in pd.read_msgpack () which did not allow loading of a dataframe with an index of type
CategoricalIndex (GH15487)

* Bugin pd.read_msgpack () when deserializing a CategoricalIndex (GH15487)

* BuginDataFrame.to_records () with converting a Datet imeIndex with a timezone (GH13937)
* BuginDataFrame.to_records () which failed with unicode characters in column names (GH11879)
* Bugin .to_sqgl () when writing a DataFrame with numeric index names (GH15404).

* Bug in DataFrame.to_html () with index=False and max_rows raising in IndexError
(GH14998)

* Buginpd.read_hdf () passing a Timestamp to the where parameter with a non date column (GH15492)

* Bug in DataFrame.to_stata () and StataWriter which produces incorrectly formatted files to be
produced for some locales (GH13856)

* Bugin StataReader and StataWriter which allows invalid encodings (GH15723)

* Bugin the Series repr not showing the length when the output was truncated (GH15962).

1.11.7.4 Plotting
* BuginDataFrame.hist whereplt.tight_layout causedanAttributeError (usematplotlib
>= 2.0.1) (GH9351)
* Bugin DataFrame.boxplot where fontsize was not applied to the tick labels on both axes (GH15108)

* Bug in the date and time converters pandas registers with matplotlib not handling multiple dimensions
(GH16026)

* Buginpd.scatter_matrix () could accept either color or c, but not both (GH14855)

1.11. v0.20.1 (May 5, 2017) 125

https://github.com/pandas-dev/pandas/issues/15767
https://github.com/pandas-dev/pandas/issues/15910
https://github.com/pandas-dev/pandas/issues/15925
https://github.com/pandas-dev/pandas/issues/15982
https://github.com/pandas-dev/pandas/issues/15143
https://github.com/pandas-dev/pandas/issues/15096
https://github.com/pandas-dev/pandas/issues/15344
https://github.com/pandas-dev/pandas/issues/15716
https://github.com/pandas-dev/pandas/issues/15864
https://github.com/pandas-dev/pandas/issues/15132
https://github.com/pandas-dev/pandas/issues/14901
https://github.com/pandas-dev/pandas/issues/15487
https://github.com/pandas-dev/pandas/issues/15487
https://github.com/pandas-dev/pandas/issues/13937
https://github.com/pandas-dev/pandas/issues/11879
https://github.com/pandas-dev/pandas/issues/15404
https://github.com/pandas-dev/pandas/issues/14998
https://github.com/pandas-dev/pandas/issues/15492
https://github.com/pandas-dev/pandas/issues/13856
https://github.com/pandas-dev/pandas/issues/15723
https://github.com/pandas-dev/pandas/issues/15962
https://github.com/pandas-dev/pandas/issues/9351
https://github.com/pandas-dev/pandas/issues/15108
https://github.com/pandas-dev/pandas/issues/16026
https://github.com/pandas-dev/pandas/issues/14855

pandas: powerful Python data analysis toolkit, Release 0.23.4

1.11.7.5 Groupby/Resample/Rolling

Bugin .groupby (..) .resample () when passed the on= kwarg. (GH15021)
Properly set __name___and __qualname__ for Groupby . » functions (GH14620)
Bug in GroupBy.get_group () failing with a categorical grouper (GH15155)

Bugin .groupby (...) .rolling(...) when on is specified and using a Datet imeIndex (GH15130,
GH13966)

Bug in groupby operations with t imedelta64 when passing numeric_only=False (GH5724)

Bug in groupby.apply () coercing object dtypes to numeric types, when not all values were numeric
(GH14423, GH15421, GH15670)

Bugin resample, where a non-string 1of f set argument would not be applied when resampling a timeseries
(GH13218)

Bugin DataFrame.groupby () .describe () when grouping on Index containing tuples (GH14848)
Bug in groupby () .nunique () with a datetimelike-grouper where bins counts were incorrect (GH13453)

Bug in groupby.transform() that would coerce the resultant dtypes back to the original (GH10972,
GH11444)

Bug in groupby .agg () incorrectly localizing timezone on datetime (GH15426, GH10668, GH13046)

Bug in .rolling/expanding () functions where count () was not counting np.Inf, nor handling
object dtypes (GH12541)

Bugin .rolling () where pd.Timedelta or datetime.timedelta was not accepted as a window
argument (GH15440)

Bug in Rolling.quantile function that caused a segmentation fault when called with a quantile value
outside of the range [0, 1] (GH15463)

Bugin DataFrame.resample () .median () if duplicate column names are present (GH14233)

1.11.7.6 Sparse

* Bugin SparseSeries.reindex on single level with list of length 1 (GH15447)
* Bug in repr-formatting a SparseDataF rame after a value was set on (a copy of) one of its series (GH15488)
* Bugin SparseDataFrame construction with lists not coercing to dtype (GH15682)

* Bug in sparse array indexing in which indices were not being validated (GH15863)

1.11.7.7 Reshaping

Bugin pd.merge_asof () where left_index or right_index caused a failure when multiple by was
specified (GH15676)

Bug in pd.merge_asof () where left_index/right_index together caused a failure when
tolerance was specified (GH15135)

Bug in DataFrame.pivot_table () where dropna=True would not drop all-NaN columns when the
columns was a category dtype (GH15193)

Bugin pd.melt () where passing a tuple value for value_vars caused a TypeError (GH15348)

126

Chapter 1. What’s New

https://github.com/pandas-dev/pandas/issues/15021
https://github.com/pandas-dev/pandas/issues/14620
https://github.com/pandas-dev/pandas/issues/15155
https://github.com/pandas-dev/pandas/issues/15130
https://github.com/pandas-dev/pandas/issues/13966
https://github.com/pandas-dev/pandas/issues/5724
https://github.com/pandas-dev/pandas/issues/14423
https://github.com/pandas-dev/pandas/issues/15421
https://github.com/pandas-dev/pandas/issues/15670
https://github.com/pandas-dev/pandas/issues/13218
https://github.com/pandas-dev/pandas/issues/14848
https://github.com/pandas-dev/pandas/issues/13453
https://github.com/pandas-dev/pandas/issues/10972
https://github.com/pandas-dev/pandas/issues/11444
https://github.com/pandas-dev/pandas/issues/15426
https://github.com/pandas-dev/pandas/issues/10668
https://github.com/pandas-dev/pandas/issues/13046
https://github.com/pandas-dev/pandas/issues/12541
https://github.com/pandas-dev/pandas/issues/15440
https://github.com/pandas-dev/pandas/issues/15463
https://github.com/pandas-dev/pandas/issues/14233
https://github.com/pandas-dev/pandas/issues/15447
https://github.com/pandas-dev/pandas/issues/15488
https://github.com/pandas-dev/pandas/issues/15682
https://github.com/pandas-dev/pandas/issues/15863
https://github.com/pandas-dev/pandas/issues/15676
https://github.com/pandas-dev/pandas/issues/15135
https://github.com/pandas-dev/pandas/issues/15193
https://github.com/pandas-dev/pandas/issues/15348

pandas: powerful Python data analysis toolkit, Release 0.23.4

* Bug in pd.pivot_table () where no error was raised when values argument was not in the columns
(GH14938)

* Bug in pd.concat () in which concatenating with an empty dataframe with join="'inner' was being
improperly handled (GH15328)

* Bug with sort=True in DataFrame. join and pd.merge when joining on indexes (GH15582)

* Bug in DataFrame.nsmallest and DataFrame.nlargest where identical values resulted in dupli-
cated rows (GH15297)

* Bug in pandas.pivot_table () incorrectly raising UnicodeError when passing unicode input for
margins keyword (GH13292)

1.11.7.8 Numeric

* Bugin . rank () which incorrectly ranks ordered categories (GH15420)

* Bugin .corr () and .cov () where the column and index were the same object (GH14617)
* Bugin .mode () where mode was not returned if was only a single value (GH15714)

* Bugin pd.cut () with a single bin on an all Os array (GH15428)

* Bugin pd.gcut () with a single quantile and an array with identical values (GH15431)

* Bug in pandas.tools.utils.cartesian_product () with large input can cause overflow on win-
dows (GH15265)

* Bugin .eval () which caused multiline evals to fail with local variables not on the first line (GH15342)

1.11.7.9 Other

e Compat with SciPy 0.19.0 for testing on . interpolate () (GH15662)
* Compat for 32-bit platforms for . gcut /cut; bins will now be int 64 dtype (GH14866)
* Bug in interactions with Ot when a QtApplication already exists (GH14372)

e Avoid use of np.finfo () during import pandas removed to mitigate deadlock on Python GIL misuse
(GH14641)

1.12 v0.19.2 (December 24, 2016)

This is a minor bug-fix release in the 0.19.x series and includes some small regression fixes, bug fixes and performance
improvements. We recommend that all users upgrade to this version.

Highlights include:
* Compatibility with Python 3.6
¢ Added a Pandas Cheat Sheet. (GH13202).

What’s new in v0.19.2

e Enhancements

* Performance Improvements

1.12. v0.19.2 (December 24, 2016) 127

https://github.com/pandas-dev/pandas/issues/14938
https://github.com/pandas-dev/pandas/issues/15328
https://github.com/pandas-dev/pandas/issues/15582
https://github.com/pandas-dev/pandas/issues/15297
https://github.com/pandas-dev/pandas/issues/13292
https://github.com/pandas-dev/pandas/issues/15420
https://github.com/pandas-dev/pandas/issues/14617
https://github.com/pandas-dev/pandas/issues/15714
https://github.com/pandas-dev/pandas/issues/15428
https://github.com/pandas-dev/pandas/issues/15431
https://github.com/pandas-dev/pandas/issues/15265
https://github.com/pandas-dev/pandas/issues/15342
https://github.com/pandas-dev/pandas/issues/15662
https://github.com/pandas-dev/pandas/issues/14866
https://github.com/pandas-dev/pandas/issues/14372
https://github.com/pandas-dev/pandas/issues/14641
https://github.com/pandas-dev/pandas/tree/master/doc/cheatsheet/Pandas_Cheat_Sheet.pdf
https://github.com/pandas-dev/pandas/issues/13202

pandas: powerful Python data analysis toolkit, Release 0.23.4

* Bug Fixes I

1.12.1 Enhancements

The pd.merge_asof (), added in 0.19.0, gained some improvements:

e pd.merge_asof () gained left_index/right_index and left_by/right_by arguments
(GH14253)

* pd.merge_asof () can take multiple columns in by parameter and has specialized dtypes for better perfor-
mance (GH13936)

1.12.2 Performance Improvements

* Performance regression with PeriodIndex (GH14822)
* Performance regression in indexing with getitem (GH14930)
* Improved performance of . replace () (GH12745)

* Improved performance Series creation with a datetime index and dictionary data (GH14894)

1.12.3 Bug Fixes

* Compat with python 3.6 for pickling of some offsets (GH14685)

* Compat with python 3.6 for some indexing exception types (GH14684, GH14689)

* Compat with python 3.6 for deprecation warnings in the test suite (GH14681)

* Compat with python 3.6 for Timestamp pickles (GH14689)

e Compat with dateutil==2.6.0; segfault reported in the testing suite (GH14621)
e Allow nanoseconds in Timestamp.replace as a kwarg (GH14621)

* Bug in pd.read_csv in which aliasing was being done for na_values when passed in as a dictionary
(GH14203)

* Bug in pd.read_csv in which column indices for a dict-like na_values were not being respected
(GH14203)

* Bugin pd. read_csv where reading files fails, if the number of headers is equal to the number of lines in the
file (GH14515)

* Bug in pd.read_csv for the Python engine in which an unhelpful error message was being raised when
multi-char delimiters were not being respected with quotes (GH14582)

» Fix bugs (GH14734, GH13654)in pd.read_sas and pandas.io.sas.sas7bdat.SAS7BDATReader
that caused problems when reading a SAS file incrementally.

* Bug in pd.read_csv for the Python engine in which an unhelpful error message was being raised when
skipfooter was not being respected by Python’s CSV library (GH13879)

* Bugin .fillna () in which timezone aware datetime64 values were incorrectly rounded (GH14872)

* Bugin .groupby (..., sort=True) of a non-lexsorted Multilndex when grouping with multiple levels
(GH14776)

* Bugin pd. cut with negative values and a single bin (GH14652)

128 Chapter 1. What’s New

https://github.com/pandas-dev/pandas/issues/14253
https://github.com/pandas-dev/pandas/issues/13936
https://github.com/pandas-dev/pandas/issues/14822
https://github.com/pandas-dev/pandas/issues/14930
https://github.com/pandas-dev/pandas/issues/12745
https://github.com/pandas-dev/pandas/issues/14894
https://github.com/pandas-dev/pandas/issues/14685
https://github.com/pandas-dev/pandas/issues/14684
https://github.com/pandas-dev/pandas/issues/14689
https://github.com/pandas-dev/pandas/issues/14681
https://github.com/pandas-dev/pandas/issues/14689
https://github.com/pandas-dev/pandas/issues/14621
https://github.com/pandas-dev/pandas/issues/14621
https://github.com/pandas-dev/pandas/issues/14203
https://github.com/pandas-dev/pandas/issues/14203
https://github.com/pandas-dev/pandas/issues/14515
https://github.com/pandas-dev/pandas/issues/14582
https://github.com/pandas-dev/pandas/issues/14734
https://github.com/pandas-dev/pandas/issues/13654
https://github.com/pandas-dev/pandas/issues/13879
https://github.com/pandas-dev/pandas/issues/14872
https://github.com/pandas-dev/pandas/issues/14776
https://github.com/pandas-dev/pandas/issues/14652

pandas: powerful Python data analysis toolkit, Release 0.23.4

* Bugin pd.to_numeric where a 0 was not unsigned on a downcast="unsigned' argument (GH14401)

* Bug in plotting regular and irregular timeseries using shared axes (sharex=True or ax.twinx())
(GH13341, GH14322).

* Bug in not propagating exceptions in parsing invalid datetimes, noted in python 3.6 (GH14561)

* Bug in resampling a DatetimeIndex in local TZ, covering a DST change, which would raise
AmbiguousTimeError (GH14682)

* Bug in indexing that transformed RecursionError into KeyError or IndexingError (GH14554)
* Bugin HDFStore when writing a MultiIndex when using data_columns=True (GH14435)

* Bugin HDFStore.append () when writing a Series and passing amin_itemsize argument containing
a value for the index (GH11412)

* Bug when writing to a HDF Store in table format withamin_itemsize value for the index and without
asking to append (GH10381)

* Bugin Series.groupby.nunique () raising an IndexError for an empty Series (GH12553)

* Bug in DataFrame.nlargest and DataFrame.nsmallest when the index had duplicate values
(GH13412)

* Bug in clipboard functions on linux with python2 with unicode and separators (GH13747)

* Bug in clipboard functions on Windows 10 and python 3 (GH14362, GH12807)

* Bugin .to_clipboard () and Excel compat (GH12529)

* BuginDataFrame.combine_first () for integer columns (GH14687).

* Bugin pd.read_csv () in which the dt ype parameter was not being respected for empty data (GH14712)

* Bugin pd.read_csv () in which the nrows parameter was not being respected for large input when using
the C engine for parsing (GH7626)

* Bugin pd.merge_asof () could not handle timezone-aware Datetimelndex when a tolerance was specified
(GH14844)

» Explicit check in to_stata and StataWriter for out-of-range values when writing doubles (GH14618)

* Bugin .plot (kind="'kde"') which did not drop missing values to generate the KDE Plot, instead generating
an empty plot. (GH14821)

* Bugin unstack () if called with a list of column(s) as an argument, regardless of the dtypes of all columns,
they get coerced to object (GH11847)

1.13 v0.19.1 (November 3, 2016)

This is a minor bug-fix release from 0.19.0 and includes some small regression fixes, bug fixes and performance
improvements. We recommend that all users upgrade to this version.

What’s new in v0.19.1

* Performance Improvements

* Bug Fixes

1.13. v0.19.1 (November 3, 2016) 129

https://github.com/pandas-dev/pandas/issues/14401
https://github.com/pandas-dev/pandas/issues/13341
https://github.com/pandas-dev/pandas/issues/14322
https://github.com/pandas-dev/pandas/issues/14561
https://github.com/pandas-dev/pandas/issues/14682
https://github.com/pandas-dev/pandas/issues/14554
https://github.com/pandas-dev/pandas/issues/14435
https://github.com/pandas-dev/pandas/issues/11412
https://github.com/pandas-dev/pandas/issues/10381
https://github.com/pandas-dev/pandas/issues/12553
https://github.com/pandas-dev/pandas/issues/13412
https://github.com/pandas-dev/pandas/issues/13747
https://github.com/pandas-dev/pandas/issues/14362
https://github.com/pandas-dev/pandas/issues/12807
https://github.com/pandas-dev/pandas/issues/12529
https://github.com/pandas-dev/pandas/issues/14687
https://github.com/pandas-dev/pandas/issues/14712
https://github.com/pandas-dev/pandas/issues/7626
https://github.com/pandas-dev/pandas/issues/14844
https://github.com/pandas-dev/pandas/issues/14618
https://github.com/pandas-dev/pandas/issues/14821
https://github.com/pandas-dev/pandas/issues/11847

pandas: powerful Python data analysis toolkit, Release 0.23.4

1.13.1 Performance Improvements

Fixed performance regression in factorization of Period data (GH14338)

Fixed performance regression in Series.asof (where) when where is a scalar (GH14461)
Improved performance in DataFrame.asof (where) when where is a scalar (GH14461)
Improved performance in .to_7json () when 1ines=True (GH14408)

Improved performance in certain types of loc indexing with a Multilndex (GH14551).

1.13.2 Bug Fixes

Source installs from PyPI will now again work without cython installed, as in previous versions (GH14204)
Compat with Cython 0.25 for building (GH14496)
Fixed regression where user-provided file handles were closed in read_csv (c engine) (GH14418).

Fixed regression in DataFrame.quantile when missing values where present in some columns
(GH14357).

Fixed regression in Index.difference where the freq of a DatetimeIndex was incorrectly set
(GH14323)

Added back pandas.core.common.array_equivalent with a deprecation warning (GH14555).

Bug in pd. read_csv for the C engine in which quotation marks were improperly parsed in skipped rows
(GH14459)

Bug in pd.read_csv for Python 2.x in which Unicode quote characters were no longer being respected
(GH14477)

Fixed regression in Index . append when categorical indices were appended (GH14545).

Fixed regression in pd . DataFrame where constructor fails when given dict with None value (GH14381)
Fixed regression in DatetimeIndex._maybe_cast_slice_bound when index is empty (GH14354).
Bug in localizing an ambiguous timezone when a boolean is passed (GH14402)

Bug in TimedeltaIndex addition with a Datetime-like object where addition overflow in the negative direc-
tion was not being caught (GH14068, GH14453)

Bug in string indexing against data with object Index may raise AttributeError (GH14424)
Corrrecly raise ValueError on empty input to pd.eval () and df .query () (GH13139)

Bug in RangeIndex.intersection when result is a empty set (GH14364).

Bug in groupby-transform broadcasting that could cause incorrect dtype coercion (GH14457)

Bugin Series._setitem _ which allowed mutating read-only arrays (GH14359).

Bugin DataFrame.insert where multiple calls with duplicate columns can fail (GH14291)

pd.merge () will raise ValueError with non-boolean parameters in passed boolean type arguments
(GH14434)

Bug in Timestamp where dates very near the minimum (1677-09) could underflow on creation (GH14415)
Bugin pd.concat where names of the keys were not propagated to the resulting MultiIndex (GH14252)

Bug in pd. concat where axis cannot take string parameters ' rows' or 'columns' (GH14369)

130

Chapter 1. What’s New

https://github.com/pandas-dev/pandas/issues/14338
https://github.com/pandas-dev/pandas/issues/14461
https://github.com/pandas-dev/pandas/issues/14461
https://github.com/pandas-dev/pandas/issues/14408
https://github.com/pandas-dev/pandas/issues/14551
https://github.com/pandas-dev/pandas/issues/14204
https://github.com/pandas-dev/pandas/issues/14496
https://github.com/pandas-dev/pandas/issues/14418
https://github.com/pandas-dev/pandas/issues/14357
https://github.com/pandas-dev/pandas/issues/14323
https://github.com/pandas-dev/pandas/issues/14555
https://github.com/pandas-dev/pandas/issues/14459
https://github.com/pandas-dev/pandas/issues/14477
https://github.com/pandas-dev/pandas/issues/14545
https://github.com/pandas-dev/pandas/issues/14381
https://github.com/pandas-dev/pandas/issues/14354
https://github.com/pandas-dev/pandas/issues/14402
https://github.com/pandas-dev/pandas/issues/14068
https://github.com/pandas-dev/pandas/issues/14453
https://github.com/pandas-dev/pandas/issues/14424
https://github.com/pandas-dev/pandas/issues/13139
https://github.com/pandas-dev/pandas/issues/14364
https://github.com/pandas-dev/pandas/issues/14457
https://github.com/pandas-dev/pandas/issues/14359
https://github.com/pandas-dev/pandas/issues/14291
https://github.com/pandas-dev/pandas/issues/14434
https://github.com/pandas-dev/pandas/issues/14415
https://github.com/pandas-dev/pandas/issues/14252
https://github.com/pandas-dev/pandas/issues/14369

pandas: powerful Python data analysis toolkit, Release 0.23.4

* Bugin pd.concat with dataframes heterogeneous in length and tuple keys (GH14438)
* BuginMultiIndex.set_levels where illegal level values were still set after raising an error (GH13754)
* BuginDataFrame.to_json where lines=True and a value contained a } character (GH14391)

* Bug in df.groupby causing an AttributeError when grouping a single index frame by a column and
the index level (GH14327)

* Bug in df.groupby where TypeError raised when pd.Grouper (key=...) is passed in a list
(GH14334)

* Buginpd.pivot_table mayraise TypeError or ValueError when index or columns is not scalar
and values is not specified (GH14380)

1.14 v0.19.0 (October 2, 2016)

This is a major release from 0.18.1 and includes number of API changes, several new features, enhancements, and
performance improvements along with a large number of bug fixes. We recommend that all users upgrade to this
version.

Highlights include:
* merge_asof () for asof-style time-series joining, see here
e .rolling () is now time-series aware, see here
* read_csv () now supports parsing Categorical data, see here
* A function union_categorical () has been added for combining categoricals, see here

* PeriodIndex now has its own period dtype, and changed to be more consistent with other Index classes.
See here

» Sparse data structures gained enhanced support of int and bool dtypes, see here
» Comparison operations with Series no longer ignores the index, see here for an overview of the API changes.
¢ Introduction of a pandas development API for utility functions, see here.

* Deprecation of Panel4D and Pane1ND. We recommend to represent these types of n-dimensional data with
the xarray package.

* Removal of the previously deprecated modules pandas.io.data, pandas.io.wb, pandas.tools.
rplot.

Warning: pandas >= 0.19.0 will no longer silence numpy ufunc warnings upon import, see here.

What’s new in v0.19.0

* New features

— merge_asof for asof-style time-series joining

.rolling () is now time-series aware

read_csv has improved support for duplicate column names

— read_csvsupports parsing Categorical directly

1.14. v0.19.0 (October 2, 2016) 131

https://github.com/pandas-dev/pandas/issues/14438
https://github.com/pandas-dev/pandas/issues/13754
https://github.com/pandas-dev/pandas/issues/14391
https://github.com/pandas-dev/pandas/issues/14327
https://github.com/pandas-dev/pandas/issues/14334
https://github.com/pandas-dev/pandas/issues/14380
http://xarray.pydata.org/en/stable/

pandas: powerful Python data analysis toolkit, Release 0.23.4

Categorical Concatenation

Semi-Month Offsets

New Index methods

Google BigQuery Enhancements

Fine-grained numpy errstate

get_dummies now returns integer dtypes

Downcast values to smallest possible dtype in to_numeric

pandas development API

Other enhancements

* API changes
— Series.tolist () will now return Python types
— Series operators for different indexes
x Arithmetic operators
x Comparison operators
x Logical operators

x Flexible comparison methods

Series type promotion on assignment

.to_datetime () changes

Merging changes

.describe () changes

Period changes
* PeriodIndex now has period dtype
* Period('NaT') now returns pd.NaT

* PeriodIndex.values now returns array of Period object

Index +/ — no longer used for set operations

Index.differenceand . symmetric_difference changes

— Index.unique consistently returns Index

MultiIndex constructors, groupby and set_index preserve categorical dtypes

— read_csv will progressively enumerate chunks

Sparse Changes
% 1nt64 and bool support enhancements
% Operators now preserve dtypes

x Other sparse fixes

— Indexer dtype changes
— Other API Changes

132 Chapter 1. What’s New

pandas: powerful Python data analysis toolkit, Release 0.23.4

* Deprecations
* Removal of prior version deprecations/changes

» Performance Improvements

* Bug Fixes

1.14.1 New features
1.14.1.1 merge_asof for asof-style time-series joining

A long-time requested feature has been added through the merge_asof () function, to support asof style joining of
time-series (GH1870, GH13695, GH13709, GH13902). Full documentation is here.

The merge_asof () performs an asof merge, which is similar to a left-join except that we match on nearest key
rather than equal keys.

In [1]: left = pd.DataFrame({'a': [1, 5, 107,
: 'left_val': ['a', 'b', 'c'l})

In [2]: right = pd.DataFrame({'a': [1, 2, 3, 6, 7],
. 'right_val': [1, 2, 3, 6, 71})

In [3]: left

Out[3]:

a left_val
0 1 a
1 5 b
2 10 c

In [4]: right
AL VNN AN\ Out [4] -
a right_val

0 1
1 2

2 3 3
3 6 6
4 7 7

We typically want to match exactly when possible, and use the most recent value otherwise.

In [5]: pd.merge_asof (left, right, on='a')

Out [5]:

a left_val right_val
0 1 a 1
1 5 b 3
2 10 c 7

We can also match rows ONLY with prior data, and not an exact match.

In [6]: pd.merge_asof (left, right, on='a', allow_exact_matches=False)
Oout[6]:
a left_val right_val

(continues on next page)

1.14. v0.19.0 (October 2, 2016) 133

https://github.com/pandas-dev/pandas/issues/1870
https://github.com/pandas-dev/pandas/issues/13695
https://github.com/pandas-dev/pandas/issues/13709
https://github.com/pandas-dev/pandas/issues/13902

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

0 1 a NaN
1 5 b 3.0
2 10 c 7.0

In a typical time-series example, we have trades and quotes and we want to asof—join them. This also
illustrates using the by parameter to group data before merging.

In [7]: trades = pd.DataFrame ({
: 'time': pd.to_datetime (['20160525 13:30:00.023",
'20160525 13:30:00.038",
'20160525 13:30:00.048",
'20160525 13:30:00.048",
'20160525 13:30:00.048']),
'ticker': ['MSFT', 'MSFT',
'GOOG', 'GOOG', 'AAPL'],
'price': [51.95, 51.95,
720.77, 720.92, 98.00],
'quantity': [75, 155,
100, 100, 1001},
columns=['time', 'ticker', 'price', 'quantity'])
In [8]: gquotes = pd.DataFrame ({
: 'time': pd.to_datetime (['20160525 13:30:00.023",
'20160525 13:30:00.023",
'20160525 13:30:00.030",
'20160525 13:30:00.041",
'20160525 13:30:00.048",
'20160525 13:30:00.049",
'20160525 13:30:00.072",
'20160525 13:30:00.075"']),
'ticker': ['GOOG', 'MSFT', 'MSFT',
'MSFT', 'GOOG', 'AAPL', 'GOOG',
"MSFT'],
'bid': [720.50, 51.95, 51.97, 51.99,
720.50, 97.99, 720.50, 52.01],
'ask': [720.93, 51.96, 51.98, 52.00,
720.93, 98.01, 720.88, 52.03]},
columns=['time', 'ticker', 'bid', 'ask'])
In [9]: trades
Oout[9]:
time ticker price quantity
0 2016-05-25 13:30:00.023 MSFET 51.95 75
1 2016-05-25 13:30:00.038 MSFT 51.95 155
2 2016-05-25 13:30:00.048 GOOG 720.77 100
3 2016-05-25 13:30:00.048 GOOG 720.92 100
4 2016-05-25 13:30:00.048 AAPL 98.00 100
In [10]: quotes
R N S S N R N A R R R AR R RN
time ticker bid ask
0 2016-05-25 13:30:00.023 GOOG 720.50 720.93
1 2016-05-25 13:30:00.023 MSFT 51.95 51.96

(continues on next page)

134 Chapter 1. What’s New

ANV

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

2016-05-25 13:30:00.030 MSFE'T 51.97 51.98
2016-05-25 13:30:00.041 MSE'T 51.99 52.00
2016-05-25 13:30:00.048 GOOG 720.50 720.93
2016-05-25 13:30:00.049 AAPL 97.99 98.01
2016-05-25 13:30:00.072 GOOG 720.50 720.88
2016-05-25 13:30:00.075 MSFET 52.01 52.03

~ o U1 W N

An asof merge joins on the on, typically a datetimelike field, which is ordered, and in this case we are using a grouper
in the by field. This is like a left-outer join, except that forward filling happens automatically taking the most recent
non-NaN value.

In [11]: pd.merge_asof (trades, quotes,
et on="time',
e by="ticker")

Out[11]

time ticker price quantity bid ask
0 2016-05-25 13:30:00.023 MSFET 51.95 75 51.95 51.96
1 2016-05-25 13:30:00.038 MSFT 51.95 155 51.97 51.98
2 2016-05-25 13:30:00.048 GOOG 720.77 100 720.50 720.93
3 2016-05-25 13:30:00.048 GOOG 720.92 100 720.50 720.93
4 2016-05-25 13:30:00.048 AAPL 98.00 100 NaN NaN

This returns a merged DataFrame with the entries in the same order as the original left passed DataFrame (t rades
in this case), with the fields of the quotes merged.

1.14.1.2 .rolling() is now time-series aware

.rolling () objects are now time-series aware and can accept a time-series offset (or convertible) for the window
argument (GH13327, GH12995). See the full documentation here.

In [12]: dft = pd.DataFrame({'B': [0, 1, 2, np.nan, 4]},
R index=pd.date_range ('20130101 09:00:00', periods=5, freg=

In [13]: dft
Out [13]:

2013-01-01 09:00:00
2013-01-01 09:00:01
2013-01-01 09:00:02
2013-01-01 09:00:03 NaN
2013-01-01 09:00:04 4.0

N O
o o ow

This is a regular frequency index. Using an integer window parameter works to roll along the window frequency.

In [14]: dft.rolling(2) .sum()
Out[14]:

B
2013-01-01 09:00:00 NaN
2013-01-01 09:00:01 1.0
2013-01-01 09:00:02 3.0
2013-01-01 09:00:03 NaN
2013-01-01 09:00:04 NaN

(continues on next page)

1.14. v0.19.0 (October 2, 2016) 135

https://github.com/pandas-dev/pandas/issues/13327
https://github.com/pandas-dev/pandas/issues/12995

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

In [15]: dft.rolling (2, min_periods=1) .sum()
R N N N S N N N N R N R N N N N N N N N A R R R AR R RN

—

2013-01-01 09:00:00
2013-01-01 09:00:01
2013-01-01 09:00:02
2013-01-01 09:00:03
2013-01-01 09:00:04

BN W R o
oo oo oW

Specifying an offset allows a more intuitive specification of the rolling frequency.

In [16]: dft.rolling('2s') .sum()
Out[16]:

2013-01-01 09:00:00
2013-01-01 09:00:01
2013-01-01 09:00:02
2013-01-01 09:00:03
2013-01-01 09:00:04

SN W R o
oo ooow

Using a non-regular, but still monotonic index, rolling with an integer window does not impart any special calculation.

In [17]: dft = DataFrame({'B': [0, 1, 2, np.nan, 41},
e index = pd.Index([pd.Timestamp ('20130101 09:00:00")
e pd.Timestamp ('20130101 09:00:02")
e pd.Timestamp ('20130101 09:00:03"),
e pd.Timestamp ('20130101 09:00:05"),
e pd.Timestamp ('20130101 09:00:06")1,
et name="'foo'))

In [18]: dft

Out[18]:

B
foo
2013-01-01 09:00:00 0.0
2013-01-01 09:00:02 1.0
2013-01-01 09:00:03 2.0

2013-01-01 09:00:05 NaN
2013-01-01 09:00:06 4.0

In [19]: dft.rolling(2) .sum()

N S N N N N N N R N N N R N N N N N N N N N R N R N N N N N N R N R R R R SRR
B

foo

2013-01-01 09:00:00 NaN

2013-01-01 09:00:02 1.0

2013-01-01 09:00:03 3.0

2013-01-01 09:00:05 NaN

2013-01-01 09:00:06 NaN

Using the time-specification generates variable windows for this sparse data.

136 Chapter 1. What’s New

ALV

ANV

pandas: powerful Python data analysis toolkit, Release 0.23.4

In [20]: dft.rolling('2s") .sum()

Out[20]:

B
foo
2013-01-01 09:00:00 0.0
2013-01-01 09:00:02 1.0
2013-01-01 09:00:03 3.0

2013-01-01 09:00:05 NaN
2013-01-01 09:00:06 4.0

Furthermore, we now allow an optional on parameter to specify a column (rather than the default of the index) in a
DataFrame.

In [21]: dft = dft.reset_index()

In [22]: dft

Oout [22]:

foo B
0 2013-01-01 09:00:00 0.0
1 2013-01-01 09:00:02 1.0
2 2013-01-01 09:00:03 2.0
3 2013-01-01 09:00:05 NaN
4 2013-01-01 09:00:06 4.0

In [23]: dft.rolling('2s', on='foo') .sum()
R S N N S N A R R R RN R RN
foo
2013-01-01 09:00:00
2013-01-01 09:00:02
2013-01-01 09:00:03
2013-01-01 09:00:05 NaN
2013-01-01 09:00:06 4.0

Dw e o
w o
o o ow

1.14.1.3 read_csv has improved support for duplicate column names

Duplicate column names are now supported in read_csv () whether they are in the file or passed in as the names
parameter (GH7160, GH9424)

In [24]: data = '0,1,2\n3,4,5"

In [25]: names = ['a', 'b', 'a'l]

Previous behavior:

In [2]: pd.read_csv(StringIO(data), names=names)

Out[2]:

a b a
0o 2 1 2
1 5 4 5

The first a column contained the same data as the second a column, when it should have contained the values [0,
3].

New behavior:

1.14. v0.19.0 (October 2, 2016) 137

ANV

https://github.com/pandas-dev/pandas/issues/7160
https://github.com/pandas-dev/pandas/issues/9424

pandas: powerful Python data analysis toolkit, Release 0.23.4

In [26]: pd.read_csv(StringIO(data), names=names)
Out[26]:
a b a.l
0 0 1 2
1 3 4 5

1.14.1.4 read_csv supports parsing Categorical directly

The read_csv () function now supports parsing a Categorical column when specified as a dtype (GH10153).
Depending on the structure of the data, this can result in a faster parse time and lower memory usage compared to
converting to Categorical after parsing. See the io docs here.

In [27]: data = 'coll,col2,col3\na,b,1\na,b,2\nc,d, 3"
In [28]: pd.read_csv(StringIO (data))
Oout [28]:
coll col2 col3
0 a b 1
1 a b 2
2 c d 3
In [29]: pd.read_csv(StringIO(data)) .dtypes
R N R N N N N N N R N N N R N R N N N N N R R R R R eie i oy
coll object
col2 object
col3 inte64
dtype: object
In [30]: pd.read_csv(StringIO(data), dtype='category') .dtypes

R R R R R R R N N N N N N R R N N R N N N R N N N N N N N N R N N RN RN

—

coll category
col2 category
col3 category
dtype: object

Individual columns can be parsed as a Categorical using a dict specification

In [31]: pd.read_csv(StringIO(data), dtype={'coll': 'category'}) .dtypes
Out [31]:

coll category

col2 object

col3 inte64

dtype: object

Note: The resulting categories will always be parsed as strings (object dtype). If the categories are numeric they can
be converted using the to_numeric () function, or as appropriate, another converter such as to_datetime ().

In [32]: df = pd.read_csv(StringIO(data), dtype='category')
In [33]: df.dtypes
Out [33]:
coll category
(continues on next page)
138 Chapter 1. What’s New

L

AV

https://github.com/pandas-dev/pandas/issues/10153

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

col2 category
col3 category
dtype: object

In [34]: df['col3']
ALV LD LN\ Oue [34] -
0 1

1 2

2 3

Name: col3, dtype: category

Categories (3, object): [1, 2, 3]

In [35]: df['col3'].cat.categories = pd.to_numeric(df['col3'].cat.categories)

In [36]: df['col3"']

Out [36] :

0 1

1 2

2 3

Name: col3, dtype: category
Categories (3, inté4): [1, 2, 3]

1.14.1.5 Categorical Concatenation

e Afunctionunion_categoricals () hasbeen added for combining categoricals, see Unioning Categoricals
(GH13361, GH13763, GH13846, GH14173)

In [37]: from pandas.api.types import union_categoricals
In [38]: a = pd.Categorical(["b", "c"])

In [39]: b

pd.Categorical (["a", "b"])

In [40]: union_categoricals([a, bl)
Out[40]:

[b, ¢, a, b]

Categories (3, object): [b, c, al

e concat and append now can concat category dtypes with different categories as object dtype
(GH13524)

In [41]: sl = pd.Series(['a', 'b']l, dtype='category')

In [42]: s2 pd.Series(['b", 'c']l, dtype='category')

Previous behavior:

In [1]: pd.concat([sl, s2])
ValueError: incompatible categories in categorical concat

New behavior:

In [43]: pd.concat([sl, s2])
Out [43]:

(continues on next page)

1.14. v0.19.0 (October 2, 2016) 139

https://github.com/pandas-dev/pandas/issues/13361
https://github.com/pandas-dev/pandas/issues/13763
https://github.com/pandas-dev/pandas/issues/13846
https://github.com/pandas-dev/pandas/issues/14173
https://github.com/pandas-dev/pandas/issues/13524

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

0 a
1 b
0 b
c
dtype: object

1.14.1.6 Semi-Month Offsets

Pandas has gained new frequency offsets, SemiMonthEnd (‘SM’) and SemiMonthBegin (‘SMS’). These provide
date offsets anchored (by default) to the 15th and end of month, and 15th and st of month respectively. (GH1543)

In [44]: from pandas.tseries.offsets import SemiMonthEnd, SemiMonthBegin

SemiMonthEnd:

In [45]: Timestamp('2016-01-01") + SemiMonthEnd ()
Out[45]: Timestamp('2016-01-15 00:00:00")

In [46]: pd.date_range('2015-01-01', freg='SM', periods=4)
AUV \Out [46] ¢ DatetimeIndex (['2015-01-15", '2015-
—~01-31', '2015-02-15', '2015-02-28'], dtype='datetime64[ns]', freg='SM-15")

SemiMonthBegin:

In [47]: Timestamp('2016-01-01") + SemiMonthBegin ()
Out[47]: Timestamp('2016-01-15 00:00:00")

In [48]: pd.date_range('2015-01-01", freg='SMS', periods=4)
ALTLULLL VLUV NV VNN NN NN\ Out [48] ¢ DatetimeIndex (['2015-01-01', '2015-
—~01-15"', '2015-02-01"', '2015-02-15"'], dtype='datetime64[ns]', freg='SMS-15")

Using the anchoring suffix, you can also specify the day of month to use instead of the 15th.

In [49]: pd.date_range('2015-01-01", freg='SMS-16"', periods=4)
Out[49]: DatetimeIndex(['2015-01-01', '2015-01-16', '2015-02-01', '2015-02-16'],
—dtype="datetime64 [ns] ', freg='SMS-16")

In [50]: pd.date_range('2015-01-01", freg='SM-14', periods=4)

N S N S S N N R N N N R N R N R R R R AR R RN
—DatetimeIndex(['2015-01-14"', '2015-01-31', '2015-02-14"', '2015-02-28'], dtype=
—'datetime64 [ns] ', freg='SM-14")

1.14.1.7 New Index methods

The following methods and options are added to Index, to be more consistent with the Series and DataFrame
APL

Index now supports the . where () function for same shape indexing (GH13170)

In [51]: idx = pd.Index(['a', 'b', 'c'])

In [52]: idx.where([True, False, Truel)
Out[52]: Index(['a', nan, 'c'], dtype='object')

140 Chapter 1. What’s New

ANV

https://github.com/pandas-dev/pandas/issues/1543
https://github.com/pandas-dev/pandas/issues/13170

pandas: powerful Python data analysis toolkit, Release 0.23.4

Index now supports .dropna () to exclude missing values (GH6194)

In [53]: idx = pd.Index([1, 2, np.nan, 4])

In [54]: idx.dropna/()
Out[54]: Float64Index([1.0, 2.0, 4.0], dtype='floato64d")

For MultiIndex, values are dropped if any level is missing by default. Specifying how="'all"' only drops values
where all levels are missing.

In [55]: midx = pd.Multilndex.from_arrays([[l, 2, np.nan, 4],
e [1, 2, np.nan, np.nan]])

In [56]: midx
Out [56] :
MultiIndex (levels=[[1, 2, 4], [1, 211,
labels=[[0, 1, -1, 21, [0, 1, -1, -111)

In [57]: midx.dropna ()
AT DAL ATV VNV
MultiIndex (levels=[[1, 2, 41, [1, 211,

labels=[[0, 1], [0, 111)

In [58]: midx.dropna (how='all'")
R S N N N N N N N N R N R N N N N A R R R R RN RN
MultiIndex (levels=[[1, 2, 41, [1, 211,

labels=[[0, 1, 2], [0, 1, -111)

Index now supports . str.extractall () whichreturns aDataFrame, see the docs here (GH10008, GH13156)

In [59]: idx = pd.Index(["ala2", "bl", "cl"])

In [60]: idx.str.extractall ("[ab] (?P<digit>\d)")

Out[60]:
digit
match
00 1
1
10 1

Index.astype () now accepts an optional boolean argument copy, which allows optional copying if the require-
ments on dtype are satisfied (GH13209)

1.14.1.8 Google BigQuery Enhancements
e The read_ghbg () method has gained the dialect argument to allow users to specify whether to use Big-
Query’s legacy SQL or BigQuery’s standard SQL. See the docs for more details (GH13615).

e The to_gbg () method now allows the DataFrame column order to differ from the destination table schema
(GH11359).

1.14. v0.19.0 (October 2, 2016) 141

ANV

ANV

https://github.com/pandas-dev/pandas/issues/6194
https://github.com/pandas-dev/pandas/issues/10008
https://github.com/pandas-dev/pandas/issues/13156
https://github.com/pandas-dev/pandas/issues/13209
https://pandas-gbq.readthedocs.io/en/latest/reading.html
https://github.com/pandas-dev/pandas/issues/13615
https://github.com/pandas-dev/pandas/issues/11359

pandas: powerful Python data analysis toolkit, Release 0.23.4

1.14.1.9 Fine-grained numpy errstate

Previous versions of pandas would permanently silence numpy’s ufunc error handling when pandas was imported.
Pandas did this in order to silence the warnings that would arise from using numpy ufuncs on missing data, which are
usually represented as NaN s. Unfortunately, this silenced legitimate warnings arising in non-pandas code in the ap-
plication. Starting with 0.19.0, pandas will use the numpy . errstate context manager to silence these warnings in
a more fine-grained manner, only around where these operations are actually used in the pandas codebase. (GH13109,
GH13145)

After upgrading pandas, you may see new Runt imeWarnings being issued from your code. These are likely legiti-
mate, and the underlying cause likely existed in the code when using previous versions of pandas that simply silenced
the warning. Use numpy.errstate around the source of the Runt imeWarning to control how these conditions are
handled.

1.14.1.10 get_dummies now returns integer dtypes

The pd.get_dummies function now returns dummy-encoded columns as small integers, rather than floats
(GH8725). This should provide an improved memory footprint.

Previous behavior:

In [1]: pd.get_dummies(['a', 'b', 'a', 'c']l).dtypes

Out[1l]:

a float64
b floato64
c floato4d

dtype: object

New behavior:

In [61]: pd.get_dummies(['a', 'b', 'a', 'c']).dtypes
Out[61]:

a uint8

b uint8

c uint8

dtype: object

1.14.1.11 Downcast values to smallest possible dtype in to_numeric

pd.to_numeric () now accepts a downcast parameter, which will downcast the data if possible to smallest
specified numerical dtype (GH13352)

In [62]: s = ['1l', 2, 3]

In [63]: pd.to_numeric (s, downcast='unsigned')
Out[63]: array([1l, 2, 3], dtype=uint8)

In [64]: pd.to_numeric (s, downcast='integer')

AV Ot [64] : array ([1, 2, 3], dtype=int8)

142 Chapter 1. What’s New

https://github.com/pandas-dev/pandas/issues/13109
https://github.com/pandas-dev/pandas/issues/13145
http://docs.scipy.org/doc/numpy/reference/generated/numpy.errstate.html
https://github.com/pandas-dev/pandas/issues/8725
https://github.com/pandas-dev/pandas/issues/13352

pandas: powerful Python data analysis toolkit, Release 0.23.4

1.14.1.12 pandas development API

As part of making pandas API more uniform and accessible in the future, we have created a standard sub-package of
pandas, pandas.api to hold public API’s. We are starting by exposing type introspection functions in pandas.
api.types. More sub-packages and officially sanctioned API’s will be published in future versions of pandas
(GH13147, GH13634)

The following are now part of this API:

In [65]: import pprint
In [66]: from pandas.api import types
In [67]: funcs = [£ for f in dir(types) if not f.startswith('_"')]

In [68]: pprint.pprint (funcs)
['"CategoricalDtype',
'DatetimeTZDtype"',
'IntervalDtype',
'PeriodDtype’,
'infer_dtype',
'is_any_int_dtype',
'is_array_like',
'is_bool',
'is_bool_dtype',
'is_categorical',
'is_categorical_dtype',
'is_complex',
'is_complex_dtype',
'is_datetime64_any_dtype',
'is_datetime64_dtype',
'is_datetime64_ns_dtype',
'is_datetime64tz_dtype',
'is_datetimetz',
'is_dict_1like',
'is_dtype_equal',
'is_extension_type',
'is_file_1like',
'is_float',
'is_float_dtype',
'is_floating_dtype',
'is_hashable',
'is_int64_dtype',
'is_integer',
'is_integer_dtype',
'is_interval',
'is_interval_dtype',
'is_iterator',
'is_list_1like',
'is_named_tuple',
'is_number',
'is_numeric_dtype',
'is_object_dtype',
'is_period',
'is_period_dtype',
'is_re',
'is_re_compilable’',
'is_scalar',

(continues on next page)

1.14. v0.19.0 (October 2, 2016) 143

https://github.com/pandas-dev/pandas/issues/13147
https://github.com/pandas-dev/pandas/issues/13634

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

'is_sequence',
'is_signed_integer_dtype',
'is_sparse',
'is_string_dtype',
'is_timedelta64_dtype',
'is_timedelta64_ns_dtype',
'is_unsigned_integer_dtype',
'pandas_dtype',
'union_categoricals']

Note:

Calling these functions from the internal module pandas.core.common will now show a

DeprecationWarning (GH13990)

1.14.1.13 Other enhancements

Timestamp can now accept positional and keyword parameters similar to datetime.datetime ()
(GH10758, GH11630)

In [69]: pd.Timestamp (2012, 1, 1)
Out[69]: Timestamp ('2012-01-01 00:00:00")

In [70]: pd.Timestamp (year=2012, month=1, day=1, hour=8, minute=30)
ATV VANV AN AN NN AN NN\ Out [70] ¢ Timestamp ('2012-01-01 08:30:00

")

The .resample () function now accepts a on= or Level= parameter for resampling on a datetimelike col-
umn or MultiIndex level (GH13500)

In [71]: df = pd.DataFrame ({'date': pd.date_range('2015-01-01", freg='W',
—periods=5),

e 'a': np.arange(5) },

e index=pd.MultiIndex.from_arrays ([

el [1,2,3,4,5],

et pd.date_range ('2015-01-01", freg='W',

et names=['v','d"']))

In [72]: df
Oout[72]:
date a
v d
1 2015-01-04 2015-01-04
2 2015-01-11 2015-01-11
3 2015-01-18 2015-01-18
4 2015-01-25 2015-01-25
5 2015-02-01 2015-02-01

Sw N RO

In [73]: df.resample('M', on='date') .sum()
AR R N N N N N R N N N N N N N R N N N N R N N N N N R N N N N N R R R R R R R R R RN

—

date

(continues on next page)

144

Chapter 1. What’s New

AUV

https://github.com/pandas-dev/pandas/issues/13990
https://github.com/pandas-dev/pandas/issues/10758
https://github.com/pandas-dev/pandas/issues/11630
https://github.com/pandas-dev/pandas/issues/13500

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

2015-01-31 6
2015-02-28 4

In [74]: df.resample('M', level='d'") .sum()

R N N R R N N N R N N R R N N R N N N N N R N N N R N R RN RN
a
d

2015-01-31 6
2015-02-28 4

The .get_credentials () method of GbgConnector can now first try to fetch the application default
credentials. See the docs for more details (GH13577).

The .tz_localize () method of DatetimeIndex and Timestamp has gained the errors keyword,
so you can potentially coerce nonexistent timestamps to NaT. The default behavior remains to raising a
NonExistentTimeError (GH13057)

.to_hdf/read_hdf () now accept path objects (e.g. pathlib.Path, py.path.local) for the file
path (GH11773)

The pd.read_csv () with engine="'python' has gained support for the decimal (GH12933),
na_filter (GHI13321) and the memory_map option (GH13381).

Consistent with the Python API, pd.read_csv () will now interpret +inf as positive infinity (GH13274)

The pd.read_html () has gained support for the na_values, converters, keep_default_na op-
tions (GH13461)

Categorical.astype () now accepts an optional boolean argument copy, effective when dtype is cate-
gorical (GH13209)

DataFrame has gained the .asof () method to return the last non-NaN values according to the selected
subset (GH13358)

The DataFrame constructor will now respect key ordering if a list of OrderedDict objects are passed in
(GH13304)

pd.read_html () has gained support for the decimal option (GH12907)

Series has gained the properties .is_monotonic, .is_monotonic_increasing,
is_monotonic_decreasing, similarto Index (GH13336)

DataFrame.to_sqgl () now allows a single value as the SQL type for all columns (GH11886).
Series.append now supports the ignore_index option (GH13677)

.to_stata () and StataWriter can now write variable labels to Stata dta files using a dictionary to make
column names to labels (GH13535, GH13536)

.to_stata () and StataWriter will automatically convert datetime64 [ns] columns to Stata format
%t c, rather than raising a ValueError (GH12259)

read_stata () and StataReader raise with a more explicit error message when reading Stata files with
repeated value labels when convert_categoricals=True (GH13923)

DataFrame. style will now render sparsified Multilndexes (GH11655)
DataFrame. style will now show column level names (e.g. DataFrame.columns.names) (GHI13775)

DataFrame has gained support to re-order the columns based on the values in a row using df.
sort_values (by='"..."', axis=1) (GH10806)

. v0.19.0 (October 2, 2016) 145

ANV

https://developers.google.com/identity/protocols/application-default-credentials
https://developers.google.com/identity/protocols/application-default-credentials
https://github.com/pandas-dev/pandas/issues/13577
https://github.com/pandas-dev/pandas/issues/13057
https://github.com/pandas-dev/pandas/issues/11773
https://github.com/pandas-dev/pandas/issues/12933
https://github.com/pandas-dev/pandas/issues/13321
https://github.com/pandas-dev/pandas/issues/13381
https://github.com/pandas-dev/pandas/issues/13274
https://github.com/pandas-dev/pandas/issues/13461
https://github.com/pandas-dev/pandas/issues/13209
https://github.com/pandas-dev/pandas/issues/13358
https://github.com/pandas-dev/pandas/issues/13304
https://github.com/pandas-dev/pandas/issues/12907
https://github.com/pandas-dev/pandas/issues/13336
https://github.com/pandas-dev/pandas/issues/11886
https://github.com/pandas-dev/pandas/issues/13677
https://github.com/pandas-dev/pandas/issues/13535
https://github.com/pandas-dev/pandas/issues/13536
https://github.com/pandas-dev/pandas/issues/12259
https://github.com/pandas-dev/pandas/issues/13923
https://github.com/pandas-dev/pandas/issues/11655
https://github.com/pandas-dev/pandas/issues/13775
https://github.com/pandas-dev/pandas/issues/10806

pandas: powerful Python data analysis toolkit, Release 0.23.4

In [75]: df = pd.DataFrame({'A': [2, 71, 'B': [3, 51, 'C': [4, 81},
R index=["'rowl', 'row2'])

In [76]: df
Out[76]:

A B C
rowl 2 3 4
row2 7 5 8

In [77]: df.sort_values (by='row2', axis=1)

ATV VDV AN NN OuE [77] -
B A C

rowl 3 2 4

row2 5 7 8

* Added documentation to /O regarding the perils of reading in columns with mixed dtypes and how to handle it
(GH13746)

* to_html () now has aborder argument to control the value in the opening <t able> tag. The default is the
value of the html .border option, which defaults to 1. This also affects the notebook HTML repr, but since
Jupyter’s CSS includes a border-width attribute, the visual effect is the same. (GH11563).

* Raise ImportError in the sql functions when sglalchemy is not installed and a connection string is used
(GH11920).

» Compatibility with matplotlib 2.0. Older versions of pandas should also work with matplotlib 2.0 (GH13333)

e Timestamp, Period, DatetimeIndex, PeriodIndex and .dt accessor have gained a
is_leap_year property to check whether the date belongs to a leap year. (GH13727)

e astype () will now accept a dict of column name to data types mapping as the dt ype argument. (GH12086)

e The pd.read_jsonand DataFrame.to_json has gained support for reading and writing json lines with
lines option see Line delimited json (GH9180)

* read_excel () now supports the true_values and false_values keyword arguments (GH13347)

* groupby () will now accept a scalar and a single-element list for specifying 1level on a non-MultiIndex
grouper. (GH13907)

¢ Non-convertible dates in an excel date column will be returned without conversion and the column will be
object dtype, rather than raising an exception (GH10001).

* pd.Timedelta (None) is now accepted and will return NaT, mirroring pd . Timestamp (GH13687)

* pd.read_stata () can now handle some format 111 files, which are produced by SAS when generating
Stata dta files (GH11526)

* Series and Index now support divmod which will return a tuple of series or indices. This behaves like a
standard binary operator with regards to broadcasting rules (GH14208).

1.14.2 API changes

1.14.2.1 Series.tolist () will now return Python types

Series.tolist () will now return Python types in the output, mimicking NumPy .tolist () behavior
(GH10904)

146 Chapter 1. What’s New

https://github.com/pandas-dev/pandas/issues/13746
https://github.com/pandas-dev/pandas/issues/11563
https://github.com/pandas-dev/pandas/issues/11920
https://github.com/pandas-dev/pandas/issues/13333
https://github.com/pandas-dev/pandas/issues/13727
https://github.com/pandas-dev/pandas/issues/12086
https://github.com/pandas-dev/pandas/issues/9180
https://github.com/pandas-dev/pandas/issues/13347
https://github.com/pandas-dev/pandas/issues/13907
https://github.com/pandas-dev/pandas/issues/10001
https://github.com/pandas-dev/pandas/issues/13687
https://github.com/pandas-dev/pandas/issues/11526
https://github.com/pandas-dev/pandas/issues/14208
https://github.com/pandas-dev/pandas/issues/10904

pandas: powerful Python data analysis toolkit, Release 0.23.4

In [78]: s = pd.Series([1,2,3])

Previous behavior:

In [7]: type(s.tolist () [0])
Out[7]:
<class 'numpy.int64'>

New behavior:

In [79]: type(s.tolist () [0])
Out[79]: int

1.14.2.2 series operators for different indexes

Following Series operators have been changed to make all operators consistent, including DataFrame (GH1134,
GH4581, GH13538)

* Series comparison operators now raise ValueError when index are different.

* Series logical operators align both index of left and right hand side.

Warning: Until 0.18.1, comparing Series with the same length, would succeed even if the .index are
different (the result ignores . index). As of 0.19.0, this will raises ValueError to be more strict. This section
also describes how to keep previous behavior or align different indexes, using the flexible comparison methods like
.eq.

As aresult, Series and DataFrame operators behave as below:

Arithmetic operators

Arithmetic operators align both index (no changes).

In [80]: sl

pd.Series([1, 2, 3], index=list ('ABC'"))

In [81]: s2

pd.Series([2, 2, 2], index=list ('ABD'"))

In [82]: sl + s2

Out[82]:
A 3.0
B 4.0
C NaN
D NaN

dtype: float64d
In [83]: dfl = pd.DataFrame([1l, 2, 3], index=1list ('ABC'"))
In [84]: df2 = pd.DataFrame([2, 2, 2], index=1list ('ABD'))

In [85]: dfl + df2

Out [85] :
0
A 3.0

(continues on next page)

1.14. v0.19.0 (October 2, 2016) 147

https://github.com/pandas-dev/pandas/issues/1134
https://github.com/pandas-dev/pandas/issues/4581
https://github.com/pandas-dev/pandas/issues/13538

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

B 4.0
C NaN
D NaN

Comparison operators

Comparison operators raise ValueError when . index are different.
Previous Behavior (Series):

Series compared values ignoring the . index as long as both had the same length:

In [1]: sl == s2
Out[1]:

A False

B True

C False
dtype: bool

New behavior (Series):

In [2]: sl == s2
Oout[2]:
ValueError: Can only compare identically-labeled Series objects

Note: To achieve the same result as previous versions (compare values based on locations ignoring .index),
compare both .values.

In [86]: sl.values == s2.values
Out[86]: array([False, True, False], dtype=bool)

If you want to compare Series aligning its . index, see flexible comparison methods section below:

In [87]: sl.eq(s2)

Out[87]:

A False
B True
C False
D False

dtype: bool

Current Behavior (DataFrame, no change):

In [3]: dfl == df2
Out[3]:
ValueError: Can only compare identically-labeled DataFrame objects

Logical operators

Logical operators align both . index of left and right hand side.

Previous behavior (Series), only left hand side index was kept:

148 Chapter 1. What’s New

pandas: powerful Python data analysis toolkit, Release 0.23.4

In [4]: sl = pd.Series([True, False, True], index=list ('ABC'))
In [5]: s2 = pd.Series([True, True, True], index=list ('ABD'"))
In [6]: sl & s2

Out[6]:

A True
B False
C False

dtype: bool

New behavior (Series):

In [88]: sl = pd.Series([True, False, True], index=list ('ABC'"))
In [89]: s2 = pd.Series([True, True, True], index=list ('ABD'))

In [90]: sl & s2

Out [90]:

A True
B False
C False
D False

dtype: bool

Note: Series logical operators fill a NaN result with False.

Note: To achieve the same result as previous versions (compare values based on only left hand side index), you can
use reindex_like:

In [91]: sl & s2.reindex_like(sl)

Out[91]:

A True
B False
C False

dtype: bool

Current Behavior (DataFrame, no change):

In [92]: dfl = pd.DataFrame([True, False, True], index=1list ('ABC'"))
In [93]: df2 = pd.DataFrame([True, True, True], index=list ('ABD'))

In [94]: dfl & df2

Out[94]:

0
A True
B False
C NaN
D NaN

1.14. v0.19.0 (October 2, 2016) 149

pandas: powerful Python data analysis toolkit, Release 0.23.4

Flexible comparison methods

Series flexible comparison methods like eq, ne, 1e, 1t, ge and gt now align both index. Use these operators
if you want to compare two Series which has the different index.

In [95]: sl = pd.Series([1l, 2, 3], index=['a', 'b', 'c'l])
In [96]: s2 = pd.Series([2, 2, 2], index=['b', 'c', 'd'l])

In [97]: sl.eqg(s2)

Oout[97]:

a False
b True
c False
d False

dtype: bool

In [98]: sl.ge(s2)
AT LDV VNN Out [98] -
a False

b True
] True
d False

dtype: bool

Previously, this worked the same as comparison operators (see above).

1.14.2.3 Series type promotion on assignment

A Series will now correctly promote its dtype for assignment with incompat values to the current dtype (GH13234)

In [99]: s = pd.Series()

Previous behavior:

In [2]: s["a"] = pd.Timestamp ("2016-01-01")

In [3]: s["b"] = 3.0
TypeError: invalid type promotion

New behavior:

In [100]: s["a"] = pd.Timestamp ("2016-01-01")

In [101]: s["b"] = 3.0

In [102]: s

Out[102]:
a 2016-01-01 00:00:00
b 3

dtype: object

In [103]: s.dtype
ATV DDAV VAN AN NN Out [103T 2
—dtype ('0")

150 Chapter 1. What’s New

https://github.com/pandas-dev/pandas/issues/13234

pandas: powerful Python data analysis toolkit, Release 0.23.4

1.14.2.4 .to_datetime () changes

Previously if .to_datetime () encountered mixed integers/floats and strings, but no datetimes with
errors="coerce' it would convert all to NaT.

Previous behavior:

In [2]: pd.to_datetime([1l, 'foo'], errors='coerce')
Out[2]: DatetimeIndex(['NaT', 'NaT'], dtype='datetime64[ns]', freg=None)

Current behavior:

This will now convert integers/floats with the default unit of ns.

In [104]: pd.to_datetime([l, 'foo'], errors='coerce')
Out[104]: DatetimeIndex (['1970-01-01 00:00:00.000000001"', 'NaT'], dtype=
—'datetime64[ns] ', freg=None)

Bug fixes related to . to_datetime ():

* Bug in pd.to_datetime () when passing integers or floats, and no unit and errors='coerce'
(GH13180).

* Buginpd.to_datetime () when passing invalid datatypes (e.g. bool); will now respect the errors key-
word (GH13176)

* Buginpd.to_datetime () which overflowed on int 8, and int16 dtypes (GH13451)

* Bug in pd.to_datetime () raise AttributeError with NaN and the other string is not valid when
errors="ignore' (GH12424)

* Bugin pd.to_datetime () did not cast floats correctly when unit was specified, resulting in truncated
datetime (GH13834)

1.14.2.5 Merging changes

Merging will now preserve the dtype of the join keys (GH8596)

In [105]: dfl = pd.DataFrame ({'key': [1], 'v1': [101})
In [106]: df1l
Out[106]:
key vl
0 1 10
In [107]: df2 = pd.DataFrame({'key': [1, 2], 'vl': [20, 30]})

In [108]: df2

Out[108]:
key vl

0 1 20

1 2 30

Previous behavior:

In [5]: pd.merge(dfl, df2, how='outer')
Out [5]:

key vl
0 1.0 10.0

(continues on next page)

1.14. v0.19.0 (October 2, 2016) 151

https://github.com/pandas-dev/pandas/issues/13180
https://github.com/pandas-dev/pandas/issues/13176
https://github.com/pandas-dev/pandas/issues/13451
https://github.com/pandas-dev/pandas/issues/12424
https://github.com/pandas-dev/pandas/issues/13834
https://github.com/pandas-dev/pandas/issues/8596

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

1 1.0
2 2.0 30.0

In [6]: pd.merge (dfl, df2, how='outer') .dtypes

Out[6]:
key float64
vl float64

dtype: object

New behavior:

We are able to preserve the join keys

In [109]: pd.merge(dfl, df2, how='outer')

Out[109]:
key vl
0 1 10
1 1 20
2 2 30

In [110]: pd.merge(dfl, df2, how='outer').dtypes

AT LDV VAV AN AN AN\ Out [110] -
key int64

vl int64

dtype: object

Of course if you have missing values that are introduced, then the resulting dtype will be upcast, which is unchanged
from previous.

In [111]: pd.merge(dfl, df2, how='outer', on='key')

Out[111]:

key vl_x vl_y
0 1 10.0 20
1 2 NaN 30

In [112]: pd.merge(dfl, df2, how='outer', on='key') .dtypes
RN N N R N N N N R N N N N N R N N R R R N N R N N R R R R R R R R R S R S S S S S S S R @14 o A 2 B

key int64
vl x floato64d
vl_y intoe4

dtype: object

1.14.2.6 .describe () changes

Percentile identifiers in the index of a .describe () output will now be rounded to the least precision that keeps
them distinct (GH13104)

In [113]: s = pd.Series ([0, 1, 2, 3, 41)

In [114]: df = pd.DataFrame ([0, 1, 2, 3, 41)

Previous behavior:

The percentiles were rounded to at most one decimal place, which could raise ValueError for a data frame if the
percentiles were duplicated.

152 Chapter 1. What’s New

https://github.com/pandas-dev/pandas/issues/13104

pandas: powerful Python data analysis toolkit, Release 0.23.4

In [3]: s.describe(percentiles=[0.0001, 0.0005, 0.001, 0.999, 0.9995, 0.9999])

Out[3]:

count 5.000000
mean 2.000000
std 1.581139
min 0.000000
0.0% 0.000400
0.1% 0.002000
0.1% 0.004000
50% 2.000000
99.9% 3.996000
100.0% 3.998000
100.0% 3.999600
max 4.000000

dtype: float64

In [4]: df.describe(percentiles=[0.0001, 0.0005, 0.001, 0.999, 0.9995, 0.9999])
Out[4]:

ValueError: cannot reindex from a duplicate axis

New behavior:

In [115]: s.describe(percentiles=[0.0001, 0.0005, 0.001, 0.999, 0.9995, 0.9999])

Out[115]:

count 5.000000
mean 2.000000
std 1.581139
min 0.000000
0.01% 0.000400
0.05% 0.002000
0.1% 0.004000
50% 2.000000
99.9% 3.996000
99.95% 3.998000
99.99% 3.999600
max 4.000000

dtype: float64

In [116]: df.describe (percentiles=[0.0001, 0.0005, 0.001, 0.999, 0.9995, 0.99991])
R R N R R R R N S R R R N R N N N R N R R N N N A R RN RN RN

—

0
count 5.000000
mean 2.000000
std 1.581139
min 0.000000
0.01% 0.000400
0.05% 0.002000
0.1% 0.004000
50% 2.000000
99.9% 3.996000
99.95% 3.998000
99.99% 3.999600
max 4.000000
Furthermore:

1.14. v0.19.0 (October 2, 2016) 153

pandas: powerful Python data analysis toolkit, Release 0.23.4

* Passing duplicated percentiles will now raise a ValueError.

* Bug in .describe () on a DataFrame with a mixed-dtype column index, which would previously raise a
TypeError (GH13288)

1.14.2.7 Period changes

PeriodIndex how has period dtype

PeriodIndex now has its own period dtype. The period dtype is a pandas extension dtype like category or
the timezone aware dtype (datetime64 [ns, tz])(GHI13941). As aconsequence of this change, PeriodIndex
no longer has an integer dtype:

Previous behavior:

In [1]: pi = pd.PeriodIndex(['2016-08-01"'], freg='D")

In [2]: pi
Out[2]: PeriodIndex(['2016-08-01'], dtype='inte64', freg='D")

In [3]: pd.api.types.is_integer_dtype (pi)
Out[3]: True

In [4]: pi.dtype
Out[4]: dtype('int64"')

New behavior:

In [117]: pi = pd.PeriodIndex(['2016-08-01"'], freg='D")

In [118]: pi
Out[118]: PeriodIndex (['2016-08-01"], dtype='period[D]', freg='D")

In [119]: pd.api.types.is_integer_dtype (pi)
AT L LD LDV LDV VD VAN Out [119] ¢ False

In [120]: pd.api.types.is_period_dtype (pi)
AT AN Out [

—True

In [121]: pi.dtype
R S N N N N N N N R N N N N N N N N N N N N N N N N N N N R N N N N N N N N A R R R AR R RN
—period[D]

In [122]: type (pi.dtype)
A N N R N R R N N N N N N N N N N N N N R N N N N N N N N N N N N R R R R RN

—pandas.core.dtypes.dtypes.PeriodDtype

Period('NaT') now returns pd.NaT

Previously, Period hasits own Period ('NaT') representation different from pd.NaT. Now Period ('NaT")
has been changed to return pd . NaT. (GH12759, GH13582)

Previous behavior:

154 Chapter 1. What’s New

AN Out

AN

https://github.com/pandas-dev/pandas/issues/13288
https://github.com/pandas-dev/pandas/issues/13941
https://github.com/pandas-dev/pandas/issues/12759
https://github.com/pandas-dev/pandas/issues/13582

pandas: powerful Python data analysis toolkit, Release 0.23.4

In [5]: pd.Period('NaT', freg='D")
Out [5]: Period('NaT', 'D')

New behavior:

These result in pd . NaT without providing £ req option.

In [123]: pd.Period('NaT')
Out[123]: NaT

In [124]: pd.Period(None)
NN\ Out [124]: NaT

To be compatible with Period addition and subtraction, pd . NaT now supports addition and subtraction with int.
Previously it raised ValueError.

Previous behavior:

In [5]: pd.NaT + 1

ValueError: Cannot add integral value to Timestamp without freq.

New behavior:

In [125]: pd.NaT + 1
Out[125]: NaT

In [126]: pd.NaT - 1
AAANANNNANNNN\Out [126] : NaT

PeriodIndex.values how returns array of Period object

.values is changed to return an array of Period objects, rather than an array of integers (GH13988).

Previous behavior:

In [6]: pi = pd.PeriodIndex(['2011-01", '2011-02"'], freg='M")
In [7]: pi.values
array ([492, 493])

New behavior:

In [127]: pi = pd.PeriodIndex(['2011-01', '2011-02'], freg='M")

In [128]: pi.values
Out[128]: array([Period('2011-01', 'M'), Period('2011-02', 'M')], dtype=object)

1.14.2.8 Index + / - no longer used for set operations

Addition and subtraction of the base Index type and of Datetimelndex (not the numeric index types) previously per-
formed set operations (set union and difference). This behavior was already deprecated since 0.15.0 (in favor using
the specific .union () and .difference () methods), and is now disabled. When possible, + and — are now used
for element-wise operations, for example for concatenating strings or subtracting datetimes (GH8227, GH14127).

Previous behavior:

1.14. v0.19.0 (October 2, 2016) 155

https://github.com/pandas-dev/pandas/issues/13988
https://github.com/pandas-dev/pandas/issues/8227
https://github.com/pandas-dev/pandas/issues/14127

pandas: powerful Python data analysis toolkit, Release 0.23.4

In [1]: pd.Index(['a', 'b']) + pd.Index(['a', 'c'])
FutureWarning: using '+' to provide set union with Indexes is deprecated, use '|' or
—union ()

Out[1l]: Index(['a', 'b', 'c'], dtype='object')

New behavior: the same operation will now perform element-wise addition:

In [129]: pd.Index(['a', 'b']) + pd.Index(['a', 'c'])
Out[129]: Index(['aa', 'bc'], dtype='object')

Note that numeric Index objects already performed element-wise operations. For example, the behavior of adding two
integer Indexes is unchanged. The base Index is now made consistent with this behavior.

In [130]: pd.Index([1, 2, 3]) + pd.Index([2, 3, 4])
Out[130]: Int64Index([3, 5, 7], dtype='into64d")

Further, because of this change, it is now possible to subtract two DatetimeIndex objects resulting in a Timedeltalndex:

Previous behavior:

In [1]: pd.DatetimeIndex(['2016-01-01", '2016-01-02']) - pd.DatetimeIndex(['2016-01-02
', '2016-01-03"'])
FutureWarning: using '—-' to provide set differences with datetimelike Indexes is_

—deprecated, use .difference()
Out[l]: DatetimeIndex (['2016-01-01"'], dtype='datetimeb64[ns]', freg=None)

New behavior:

In [131]: pd.DatetimeIndex(['2016-01-01", '2016-01-02"]) - pd.DatetimeIndex(['2016-01—
—02', '2016-01-03"'1)
Out[131]: TimedeltalIndex(['-1l days', '-1 days'], dtype='timedelta64[ns]', freg=None)

1.14.2.9 Index.difference and .symmetric_difference changes

Index.difference and Index.symmetric_difference will now, more consistently, treat NaN values as
any other values. (GHI13514)

In [132]: idxl = pd.Index([1, 2, 3, np.nan])

In [133]: idx2 = pd.Index ([0, 1, np.nan])

Previous behavior:

In [3]: idxl.difference (idx2)
Out[3]: Float64Index([nan, 2.0, 3.0], dtype='float6d"')

In [4]: idxl.symmetric_difference (idx2)
Out[4]: Float64Index([0.0, nan, 2.0, 3.0], dtype='float64')

New behavior:

In [134]: idxl.difference (idx2)
Out[134]: Float64Index([2.0, 3.0], dtype='floated")

In [135]: idxl.symmetric_difference (idx2)
AL\ Out [135] ¢ Float64Index([0.0, 2.0,

301 dtsrpe='flogt 4 ')
T SEY P oot oa—)

7

(continues on next page)

156 Chapter 1. What’s New

https://github.com/pandas-dev/pandas/issues/13514

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

|

1.14.2.10 Index.unique consistently returns Index

Index.unique () now returns unique values as an Index of the appropriate dt ype. (GH13395). Previously, most
Index classes returned np .ndarray, and Datet imeIndex, TimedeltaIndex and PeriodIndex returned
Index to keep metadata like timezone.

Previous behavior:

In [1]: pd.Index([1l, 2, 31).unique()
Out[1l]: array([1l, 2, 31)

In [2]: pd.DatetimeIndex(['2011-01-01", '2011-01-02', '2011-01-03'], tz='Asia/Tokyo').
—unique ()
Oout[2]:
DatetimeIndex (['2011-01-01 00:00:00+09:00"', '2011-01-02 00:00:00+09:00",
'2011-01-03 00:00:00+409:00"1,
dtype='datetime64[ns, Asia/Tokyo]', freg=None)

New behavior:

In [136]: pd.Index([1l, 2, 3]).unique()
Out[136]: Int64Index([1l, 2, 3], dtype='into64")

In [137]: pd.DatetimeIndex (['2011-01-01', '2011-01-02', '2011-01-03'], tz='Asia/Tokyo
— ') .unique ()
ATV U NN NN\ Out [137] ¢
DatetimeIndex (['2011-01-01 00:00:00+09:00', '2011-01-02 00:00:00+09:00",
'2011-01-03 00:00:00+09:00"'7,
dtype='datetime64 [ns, Asia/Tokyo]', freg=None)

1.14.2.11 MultiIndex constructors, groupby and set_index preserve categorical dtypes

MultiIndex.from_arrays and MultiIndex.from_product will now preserve categorical dtype in
MultiIndex levels (GH13743, GH13854).

In [138]: cat = pd.Categorical(['a', 'b'], categories=list ("bac"))
In [139]: 1vll = ['foo', 'bar']
In [140]: midx = pd.MultilIndex.from_arrays([cat, 1lv11l])

In [141]: midx
Out[141]:
MultiIndex (levels=[['b', 'a', 'c']

; ['bar', 'foo'l],
labels=[[1, 0], [1, 011)

Previous behavior:

In [4]: midx.levels[0]
Out[4]: Index(['b', 'a', 'c'], dtype='object')

In [5]: midx.get_level_values|[O0]
Out[5]: Index(['a', 'b'], dtype='object')

1.14. v0.19.0 (October 2, 2016) 157

https://github.com/pandas-dev/pandas/issues/13395
https://github.com/pandas-dev/pandas/issues/13743
https://github.com/pandas-dev/pandas/issues/13854

pandas: powerful Python data analysis toolkit, Release 0.23.4

New behavior: the single level is now a CategoricalIndex:

In [142]: midx.levels[O0]
Out[142]: Categoricallndex(['b',
— dtype='category')

'a', 'c'], categories=['b', 'a', 'c'], ordered=False,

In [143]: midx.get_level_values (0)

R N N N S N A R R R AR RN
—CategoricalIndex(['a', 'b'], categories=['b', 'a', 'c'], ordered=False, dtype=
—'category"')

An analogous change has been made to MultiIndex.from product.
set_index also preserve categorical dtypes in indexes

As a consequence, groupby and

In [144]: df = pd.DataFrame({'A': [0, 1], 'B': [10, 11], 'C': cat})
In [145]: df_grouped = df.groupby(by=['A"', 'C']).first ()
In [146]: df_set_idx = df.set_index(['A', 'C'])

Previous behavior:

In [11]: df_grouped.index.levels[1]

Out[1l1l]: Index(['b', 'a', 'c']l, dtype='object', name='C'")
In [12]: df_grouped.reset_index () .dtypes

Out[12]:

A int64

C object

B floato4

dtype: object

In [13]: df_set_idx.index.levels[1]

Out[13]: Index(['b', 'a', 'c'], dtype='object', name='C")
In [14]: df_set_idx.reset_index () .dtypes

Out[14]:

A int64

C object

B int64

dtype: object

New behavior:

In [147]: df_grouped.index.levels[1]

Out[147]: CategoricallIndex(['b', 'a', 'c'], categories=['b', 'a', 'c'], ordered=False,

— name='C', dtype='category')

In [148]: df_grouped.reset_index () .dtypes

R N R N N N N N N N N A R R R AR R RN
A int64

C category

B float64

dtype: object

In [149]: df_set_idx.index.levels[1]

R N N N N N R N A R R R AR RN
—CategoricalIndex(['b', 'a', 'c'], categories=['b', 'a', 'c'], ordered=False, name='C

— ', dtype='category')

(continues on next page)

158 Chapter 1. What’s New

ANV

ALV

ANV

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

In [150]: df_set_idx.reset_index () .dtypes
R N N N S N N N N R N R N N N N N N N N A R R R AR R RN

<
A int64
C category
B int64

dtype: object

1.14.2.12 read_csv will progressively enumerate chunks

When read_csv () is called with chunksize=n and without specifying an index, each chunk used to have an
independently generated index from 0 to n—1. They are now given instead a progressive index, starting from 0 for
the first chunk, from n for the second, and so on, so that, when concatenated, they are identical to the result of calling
read_csv () without the chunksize= argument (GH12185).

In [151]: data = 'A,B\n0,1\n2, 3\n4,5\n6, 7'

Previous behavior:

In [2]: pd.concat (pd.read_csv(StringIO(data), chunksize=2))

Oout[2]:

A B
0 1
1 2 3
0 4 5
1 6 7

New behavior:

In [152]: pd.concat (pd.read_csv (StringIO(data), chunksize=2))

Out[152]:
A B

0 0 1

1 2 3

2 4 5

3 6 7

1.14.2.13 Sparse Changes

These changes allow pandas to handle sparse data with more dtypes, and for work to make a smoother experience with
data handling.

int 64 and bool support enhancements

Sparse data structures now gained enhanced support of int 64 and bool dtype (GH667, GH13849).

Previously, sparse data were £1oat 64 dtype by default, even if all inputs were of int or bool dtype. You had to
specify dt ype explicitly to create sparse data with int 64 dtype. Also, £111_value had to be specified explicitly
because the default was np . nan which doesn’t appear in int 64 or bool data.

1.14. v0.19.0 (October 2, 2016) 159

ALV

https://github.com/pandas-dev/pandas/issues/12185
https://github.com/pandas-dev/pandas/issues/667
https://github.com/pandas-dev/pandas/issues/13849

pandas: powerful Python data analysis toolkit, Release 0.23.4

In [1]: pd.SparseArray([l, 2, 0, 01)
Out[1]:

[1.0, 2.0, 0.0, 0.0]

Fill: nan

IntIndex

Indices: array ([0, 1, 2, 3], dtype=int32)

specifying int64 dtype, but all values are stored in sp_values because
£ill_value default is np.nan

In [2]: pd.SparseArray([l, 2, 0, 0], dtype=np.int64)

Out[2]:

[1, 2, 0, 0]

Fill: nan

IntIndex

Indices: array ([0, 1, 2, 3], dtype=int32)

In [3]: pd.SparseArray([1l, 2, 0, 0], dtype=np.int64, fill value=0)
Out[3]:

[1, 2, 0, 0]

Fill: O

IntIndex

Indices: array ([0, 1], dtype=int32)

As of v0.19.0, sparse data keeps the input dtype, and uses more appropriate £111_value defaults (0 for int 64
dtype, False for bool dtype).

In [153]: pd.SparseArray([l, 2, 0, 0], dtype=np.int64)
Out[153]:

[1, 2, 0, 0]

Fill: O

IntIndex

Indices: array ([0, 1], dtype=int32)

In [154]: pd.SparseArray([True, False, False, Falsel])

R N N R N R N R N N N N R N R N N N R N N R N N N R R R R S R S N R S S N S S ROt ol B Y
[True, False, False, False]

Fill: False

IntIndex

Indices: array([0], dtype=int32)

See the docs for more details.

Operators now preserve dtypes

* Sparse data structure now can preserve dt ype after arithmetic ops (GH13848)

In [155]: s = pd.SparseSeries ([0, 2, 0, 1], fill_value=0, dtype=np.int64)

In [156]: s.dtype
Out [156]: dtype('inted"')

In [157]: s + 1
AN OutE [157] ¢
0 1

1 3

(continues on next page)

160 Chapter 1. What’s New

https://github.com/pandas-dev/pandas/issues/13848

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

2 1

3 2

dtype: int64

BlockIndex

Block locations: array([1l, 3], dtype=int32)
Block lengths: array([1l, 1], dtype=int32)

Sparse data structure now support astype to convert internal dtype (GH13900)

In [158]: s = pd.SparseSeries([l., 0., 2., 0.], £ill value=0)

In [159]: s

Out[159]:

0 1.0

1 0.0

2 2.0

3 0.0
dtype: floaté64
BlockIndex

Block locations: array ([0, 2], dtype=int32)
Block lengths: array([1l, 1], dtype=int32)

In [160]: s.astype(np.int64)

R N N N R R R N R N R N N R N N R N N N N N R N N N N R N R RN RRR N
0 1
1 0
2 2
0

dtype: int64

BlockIndex

Block locations: array ([0, 2], dtype=int32)
Block lengths: array([1l, 1], dtype=int32)

astype fails if data contains values which cannot be converted to specified dt ype. Note that the limitation is
applied to £111_value which default is np . nan.

In [7]: pd.SparseSeries([l., np.nan, 2., np.nan], fill value=np.nan) .astype (np.
—1into64)

Out[7]:

ValueError: unable to coerce current fill_value nan to int64 dtype

Other sparse fixes

Subclassed SparseDataFrame and SparseSeries now preserve class types when slicing or transposing.
(GH13787)

SparseArray with bool dtype now supports logical (bool) operators (GH14000)

Bugin SparseSeries withMultiIndex [] indexing may raise IndexError (GH13144)
Bugin SparseSeries withMultiIndex [] indexing result may have normal Index (GH13144)
Bug in SparseDataFrame in which axis=None did not default to axis=0 (GH13048)

Bug in SparseSeries and SparseDataFrame creation with object dtype may raise TypeError
(GH11633)

. v0.19.0 (October 2, 2016) 161

ANV

https://github.com/pandas-dev/pandas/issues/13900
https://github.com/pandas-dev/pandas/issues/13787
https://github.com/pandas-dev/pandas/issues/14000
https://github.com/pandas-dev/pandas/issues/13144
https://github.com/pandas-dev/pandas/issues/13144
https://github.com/pandas-dev/pandas/issues/13048
https://github.com/pandas-dev/pandas/issues/11633

pandas: powerful Python data analysis toolkit, Release 0.23.4

* Bug in SparseDataFrame doesn’t respect passed SparseArray or SparseSeries ‘s dtype and
fill_value (GH13866)

* Bugin SparseArray and SparseSeries don’tapply ufuncto £ill_value (GHI13853)
* Bugin SparseSeries.abs incorrectly keeps negative £111_value (GH13853)

* Bug in single row slicing on multi-type SparseDataFrame s, types were previously forced to float
(GH13917)

* Bugin SparseSeries slicing changes integer dtype to float (GH8292)

* Bugin SparseDataFarme comparison ops may raise TypeError (GH13001)

* Bugin SparseDataFarme.isnull raises ValueError (GH8276)

* Bugin SparseSeries representation with bool dtype may raise IndexError (GH13110)

* Bug in SparseSeries and SparseDataFrame of bool or int64 dtype may display its values like
float64 dtype (GH13110)

* Bug in sparse indexing using SparseArray with bool dtype may return incorrect result (GH13985)
* Bugin SparseArray created from SparseSeries may lose dtype (GH13999)

* Bug in SparseSeries comparison with dense returns normal Series rather than SparseSeries
(GH13999)

1.14.2.14 Indexer dtype changes

Note: This change only affects 64 bit python running on Windows, and only affects relatively advanced indexing
operations

Methods such as Index.get_indexer that return an indexer array, coerce that array to a “platform int”, so that
it can be directly used in 3rd party library operations like numpy . take. Previously, a platform int was defined as
np.int_ which corresponds to a C integer, but the correct type, and what is being used now, is np . intp, which
corresponds to the C integer size that can hold a pointer (GH3033, GH13972).

These types are the same on many platform, but for 64 bit python on Windows, np . int_ is 32 bits, and np. intp
is 64 bits. Changing this behavior improves performance for many operations on that platform.

Previous behavior:

In [1]: 1 = pd.Index(['a', 'b', 'c'])

In [2]: i.get_indexer(['b', 'b', 'c']).dtype
Out[2]: dtype('int32")

New behavior:

In [1]: i = pd.Index(['a', 'b', 'c'])

In [2]: i.get_indexer(['b', 'b', 'c']).dtype
Out[2]: dtype('inted")

162 Chapter 1. What’s New

https://github.com/pandas-dev/pandas/issues/13866
https://github.com/pandas-dev/pandas/issues/13853
https://github.com/pandas-dev/pandas/issues/13853
https://github.com/pandas-dev/pandas/issues/13917
https://github.com/pandas-dev/pandas/issues/8292
https://github.com/pandas-dev/pandas/issues/13001
https://github.com/pandas-dev/pandas/issues/8276
https://github.com/pandas-dev/pandas/issues/13110
https://github.com/pandas-dev/pandas/issues/13110
https://github.com/pandas-dev/pandas/issues/13985
https://github.com/pandas-dev/pandas/issues/13999
https://github.com/pandas-dev/pandas/issues/13999
https://github.com/pandas-dev/pandas/issues/3033
https://github.com/pandas-dev/pandas/issues/13972

pandas: powerful Python data analysis toolkit, Release 0.23.4

1.14.2.15 Other API Changes

Timestamp.to_pydatetime will issue a UserWarning when warn=True, and the instance has a non-
zero number of nanoseconds, previously this would print a message to stdout (GH14101).

Series.unique () with datetime and timezone now returns return array of Timestamp with timezone
(GH13565).

Panel.to_sparse () willraise a Not ImplementedError exception when called (GH13778).
Index.reshape () will raise a Not ImplementedError exception when called (GH12882).
.filter () enforces mutual exclusion of the keyword arguments (GH12399).

eval’s upcasting rules for f1oat 32 types have been updated to be more consistent with NumPy’s rules. New
behavior will not upcast to £ 1oat 64 if you multiply a pandas £ Loat 32 object by a scalar float64 (GH12388).

An UnsupportedFunctionCall error is now raised if NumPy ufuncs like np . mean are called on groupby
or resample objects (GH12811).

__setitem__ will no longer apply a callable rhs as a function instead of storing it. Call where directly to
get the previous behavior (GH13299).

Calls to . sample () will respect the random seed set via numpy . random. seed (n) (GH13161)

Styler.apply is now more strict about the outputs your function must return. For axis=0 or axis=1, the
output shape must be identical. For axis=None, the output must be a DataFrame with identical columns and
index labels (GH13222).

Float64Index.astype (int) will now raise ValueError if Float64Index contains NaN values
(GH13149)

TimedeltaIndex.astype (int) and DatetimeIndex.astype(int) will now return
Int64Index instead of np.array (GH13209)

Passing Period with multiple frequencies to normal Index now returns Index with object dtype
(GH13664)

PeriodIndex.fillna with Period has different freq now coerces to object dtype (GH13664)

Faceted boxplots from DataFrame.boxplot (by=col) now return a Series when return_type is
not None. Previously these returned an OrderedDict. Note that when return_type=None, the default,
these still return a 2-D NumPy array (GH12216, GH7096).

pd.read_hdf will now raise a ValueError instead of KeyError, if a mode other than r, r+ and a is
supplied. (GH13623)

pd.read_csv (), pd.read_table (), and pd.read_hdf () raise the builtin FileNotFoundError
exception for Python 3.x when called on a nonexistent file; this is back-ported as TOError in Python 2.x
(GH14086)

More informative exceptions are passed through the csv parser. The exception type would now be the original
exception type instead of CParserError (GHI13652).

pd.read_csv () in the C engine will now issue a ParserWarning or raise a ValueError when sep
encoded is more than one character long (GH14065)

DataFrame.values will now return float 64 with a DataFrame of mixed int 64 and uint 64 dtypes,
conforming to np . find_common_type (GH10364, GH13917)

.groupby.groups will now return a dictionary of Index objects, rather than a dictionary of np.ndarray
or 1ists (GH14293)

. v0.19.0 (October 2, 2016) 163

https://github.com/pandas-dev/pandas/issues/14101
https://github.com/pandas-dev/pandas/issues/13565
https://github.com/pandas-dev/pandas/issues/13778
https://github.com/pandas-dev/pandas/issues/12882
https://github.com/pandas-dev/pandas/issues/12399
https://github.com/pandas-dev/pandas/issues/12388
https://github.com/pandas-dev/pandas/issues/12811
https://github.com/pandas-dev/pandas/issues/13299
https://github.com/pandas-dev/pandas/issues/13161
https://github.com/pandas-dev/pandas/issues/13222
https://github.com/pandas-dev/pandas/issues/13149
https://github.com/pandas-dev/pandas/issues/13209
https://github.com/pandas-dev/pandas/issues/13664
https://github.com/pandas-dev/pandas/issues/13664
https://github.com/pandas-dev/pandas/issues/12216
https://github.com/pandas-dev/pandas/issues/7096
https://github.com/pandas-dev/pandas/issues/13623
https://github.com/pandas-dev/pandas/issues/14086
https://github.com/pandas-dev/pandas/issues/13652
https://github.com/pandas-dev/pandas/issues/14065
https://github.com/pandas-dev/pandas/issues/10364
https://github.com/pandas-dev/pandas/issues/13917
https://github.com/pandas-dev/pandas/issues/14293

pan

das: powerful Python data analysis toolkit, Release 0.23.4

1.14.3 Deprecations

e Series.reshape and Categorical.reshape have been deprecated and will be removed in a subse-

quent release (GH12882, GH12882)

* PeriodIndex.to_datetime has been deprecated in favor of PeriodIndex.to_timestamp

(GH8254)

e Timestamp.to_datetime has been deprecated in favor of Timestamp.to_pydatetime (GH8254)

* Index.to_datetime and DatetimeIndex.to_datetime have been deprecated in favor of pd.

to_datetime (GH8254)

* pandas.core.datetools module has been deprecated and will be removed in a subsequent release

(GH14094)

* SparseList has been deprecated and will be removed in a future version (GH13784)

1.1

* DataFrame.to_html () and DataFrame.to_latex () have dropped the colSpace parameter in fa-
vor of col_space (GH13857)

* DataFrame.to_sqgl () has deprecated the f1lavor parameter, as it is superfluous when SQLAlIchemy is
not installed (GH13611)

¢ Deprecated read_csv keywords:

— compact_ints and use_unsigned have been deprecated and will be removed in a future version
(GH13320)

— buffer_lines has been deprecated and will be removed in a future version (GH13360)
— as_recarray has been deprecated and will be removed in a future version (GH13373)

— skip_footer has been deprecated in favor of skipfooter and will be removed in a future version
(GH13349)

* top-level pd.ordered_merge () has been renamed to pd.merge_ordered () and the original name will
be removed in a future version (GH13358)

* Timestamp.offset property (and named arg in the constructor), has been deprecated in favor of freq
(GH12160)

* pd.tseries.util.pivot_annual is deprecated. Use pivot_table as alternative, an example is here
(GH736)

e pd.tseries.util.isleapyear has been deprecated and will be removed in a subsequent release.
Datetime-likes now have a . is_leap_year property (GH13727)

* Panel4D and PanelND constructors are deprecated and will be removed in a future version. The recom-
mended way to represent these types of n-dimensional data are with the xarray package. Pandas provides a
to_xarray () method to automate this conversion (GH13564).

* pandas.tseries.frequencies.get_standard_freq is deprecated. Use pandas.tseries.
frequencies.to_offset (freq) .rule_code instead (GH13874)

* pandas.tseries.frequencies.to_offset’s fregstr keyword is deprecated in favor of freq
(GH13874)

* Categorical.from_array has been deprecated and will be removed in a future version (GH13854)

4.4 Removal of prior version deprecations/changes

¢ The SparsePanel class has been removed (GH13778)

164

Chapter 1. What’s New

https://github.com/pandas-dev/pandas/issues/12882
https://github.com/pandas-dev/pandas/issues/12882
https://github.com/pandas-dev/pandas/issues/8254
https://github.com/pandas-dev/pandas/issues/8254
https://github.com/pandas-dev/pandas/issues/8254
https://github.com/pandas-dev/pandas/issues/14094
https://github.com/pandas-dev/pandas/issues/13784
https://github.com/pandas-dev/pandas/issues/13857
https://github.com/pandas-dev/pandas/issues/13611
https://github.com/pandas-dev/pandas/issues/13320
https://github.com/pandas-dev/pandas/issues/13360
https://github.com/pandas-dev/pandas/issues/13373
https://github.com/pandas-dev/pandas/issues/13349
https://github.com/pandas-dev/pandas/issues/13358
https://github.com/pandas-dev/pandas/issues/12160
https://github.com/pandas-dev/pandas/issues/736
https://github.com/pandas-dev/pandas/issues/13727
http://xarray.pydata.org/en/stable/
https://github.com/pandas-dev/pandas/issues/13564
https://github.com/pandas-dev/pandas/issues/13874
https://github.com/pandas-dev/pandas/issues/13874
https://github.com/pandas-dev/pandas/issues/13854
https://github.com/pandas-dev/pandas/issues/13778

pandas: powerful Python data analysis toolkit, Release 0.23.4

The pd. sandbox module has been removed in favor of the external library pandas—qgt (GH13670)

The pandas.io.dataand pandas.io.wb modules are removed in favor of the pandas-datareader package
(GH13724).

The pandas.tools.rplot module has been removed in favor of the seaborn package (GH13855)

DataFrame.to_csv () has dropped the engine parameter, as was deprecated in 0.17.1 (GH11274,
GH13419)

DataFrame.to_dict () has dropped the outtype parameter in favor of orient (GH13627, GH8486)

pd.Categorical has dropped setting of the ordered attribute directly in favor of the set_ordered
method (GH13671)

pd.Categorical has dropped the 1evels attribute in favor of categories (GH8376)
DataFrame.to_sqgl () has dropped the mysql option for the f1avor parameter (GH13611)
Panel.shift () hasdropped the 1ags parameter in favor of periods (GH14041)

pd. Index has dropped the di f £ method in favor of difference (GH13669)
pd.DataFrame has dropped the t o_wide method in favor of to_panel (GH14039)
Series.to_csv has dropped the nanRep parameter in favor of na_rep (GH13804)

Series.xs, DataFrame.xs, Panel.xs, Panel.major_xs, and Panel.minor_xs have dropped
the copy parameter (GH13781)

str.split has dropped the return_type parameter in favor of expand (GHI13701)

Removal of the legacy time rules (offset aliases), deprecated since 0.17.0 (this has been alias since 0.8.0)
(GH13590, GH13868). Now legacy time rules raises ValueError. For the list of currently supported off-
sets, see here.

The default value for the return_type parameter for DataFrame.plot.box and DataFrame.
boxplot changed from None to "axes". These methods will now return a matplotlib axes by default instead
of a dictionary of artists. See here (GH6581).

The tquery and uquery functions in the pandas.io.sqgl module are removed (GH5950).

1.14.5 Performance Improvements

Improved performance of sparse Int Index.intersect (GH13082)

Improved performance of sparse arithmetic with BlockIndex when the number of blocks are large, though
recommended to use Int Index in such cases (GH13082)

Improved performance of DataFrame.quantile () as it now operates per-block (GH11623)

Improved performance of float64 hash table operations, fixing some very slow indexing and groupby operations
in python 3 (GH13166, GH13334)

Improved performance of DataFrameGroupBy.transform (GH12737)
Improved performance of Index and Series .duplicated (GH10235)
Improved performance of Index.difference (GH12044)

Improved performance of RangelIndex.is_monotonic_increasing and
is_monotonic_decreasing (GH13749)

Improved performance of datetime string parsing in Datet imeIndex (GH13692)

Improved performance of hashing Period (GH12817)

. v0.19.0 (October 2, 2016) 165

https://github.com/pandas-dev/pandas/issues/13670
https://github.com/pydata/pandas-datareader
https://github.com/pandas-dev/pandas/issues/13724
https://github.com/mwaskom/seaborn
https://github.com/pandas-dev/pandas/issues/13855
https://github.com/pandas-dev/pandas/issues/11274
https://github.com/pandas-dev/pandas/issues/13419
https://github.com/pandas-dev/pandas/issues/13627
https://github.com/pandas-dev/pandas/issues/8486
https://github.com/pandas-dev/pandas/issues/13671
https://github.com/pandas-dev/pandas/issues/8376
https://github.com/pandas-dev/pandas/issues/13611
https://github.com/pandas-dev/pandas/issues/14041
https://github.com/pandas-dev/pandas/issues/13669
https://github.com/pandas-dev/pandas/issues/14039
https://github.com/pandas-dev/pandas/issues/13804
https://github.com/pandas-dev/pandas/issues/13781
https://github.com/pandas-dev/pandas/issues/13701
https://github.com/pandas-dev/pandas/issues/13590
https://github.com/pandas-dev/pandas/issues/13868
https://github.com/pandas-dev/pandas/issues/6581
https://github.com/pandas-dev/pandas/issues/5950
https://github.com/pandas-dev/pandas/issues/13082
https://github.com/pandas-dev/pandas/issues/13082
https://github.com/pandas-dev/pandas/issues/11623
https://github.com/pandas-dev/pandas/issues/13166
https://github.com/pandas-dev/pandas/issues/13334
https://github.com/pandas-dev/pandas/issues/12737
https://github.com/pandas-dev/pandas/issues/10235
https://github.com/pandas-dev/pandas/issues/12044
https://github.com/pandas-dev/pandas/issues/13749
https://github.com/pandas-dev/pandas/issues/13692
https://github.com/pandas-dev/pandas/issues/12817

pandas: powerful Python data analysis toolkit, Release 0.23.4

Improved performance of factorize of datetime with timezone (GH13750)
Improved performance of by lazily creating indexing hashtables on larger Indexes (GH14266)
Improved performance of groupby . groups (GH14293)

Unnecessary materializing of a Multilndex when introspecting for memory usage (GH14308)

1.14.6 Bug Fixes

Bug in groupby () .shift (), which could cause a segfault or corruption in rare circumstances when group-
ing by columns with missing values (GH13813)

Bug in groupby () . cumsum () calculating cumprod when axis=1. (GH13994)

Bugin pd.to_timedelta () in which the errors parameter was not being respected (GH13613)
Bugin io. json. json_normalize (), where non-ascii keys raised an exception (GH13213)

Bug when passing a not-default-indexed Series as xerr or yerrin .plot () (GH11858)

Bug in area plot draws legend incorrectly if subplot is enabled or legend is moved after plot (matplotlib 1.5.0 is
required to draw area plot legend properly) (GHO9161, GH13544)

Bug in DataFrame assignment with an object-dtyped Index where the resultant column is mutable to the
original object. (GH13522)

Bug in matplotlib Aut oDat aFormat ter; this restores the second scaled formatting and re-adds micro-second
scaled formatting (GH13131)

Bug in selection from a HDF St ore with a fixed format and start and/or stop specified will now return the
selected range (GH8287)

Bug in Categorical.from_codes () where an unhelpful error was raised when an invalid ordered
parameter was passed in (GH14058)

Bugin Series construction from a tuple of integers on windows not returning default dtype (int64) (GH13646)

Bug in TimedeltaIndex addition with a Datetime-like object where addition overflow was not being caught
(GH14068)

Bugin .groupby (..) .resample (..) when the same object is called multiple times (GH13174)
Bugin .to_records () when index name is a unicode string (GH13172)
Bug in calling .memory_usage () on object which doesn’t implement (GH12924)

Regression in Series.quantile with nans (also shows up in .median () and .describe ()); further-
more now names the Series with the quantile (GH13098, GH13146)

Bugin SeriesGroupBy.transform with datetime values and missing groups (GHI13191)
Bug where empty Series were incorrectly coerced in datetime-like numeric operations (GH13844)

Bug in Categorical constructor when passed a Categorical containing datetimes with timezones
(GH14190)

Bugin Series.str.extractall () with str index raises ValueError (GH13156)
Bugin Series.str.extractall () with single group and quantifier (GH13382)

Bug in DatetimeIndex and Period subtraction raises ValueError or AttributeError rather than
TypeError (GH13078)

Bug in Index and Series created with NaN and NaT mixed data may not have datetime64 dtype
(GH13324)

166

Chapter 1. What’s New

https://github.com/pandas-dev/pandas/issues/13750
https://github.com/pandas-dev/pandas/issues/14266
https://github.com/pandas-dev/pandas/issues/14293
https://github.com/pandas-dev/pandas/issues/14308
https://github.com/pandas-dev/pandas/issues/13813
https://github.com/pandas-dev/pandas/issues/13994
https://github.com/pandas-dev/pandas/issues/13613
https://github.com/pandas-dev/pandas/issues/13213
https://github.com/pandas-dev/pandas/issues/11858
https://github.com/pandas-dev/pandas/issues/9161
https://github.com/pandas-dev/pandas/issues/13544
https://github.com/pandas-dev/pandas/issues/13522
https://github.com/pandas-dev/pandas/issues/13131
https://github.com/pandas-dev/pandas/issues/8287
https://github.com/pandas-dev/pandas/issues/14058
https://github.com/pandas-dev/pandas/issues/13646
https://github.com/pandas-dev/pandas/issues/14068
https://github.com/pandas-dev/pandas/issues/13174
https://github.com/pandas-dev/pandas/issues/13172
https://github.com/pandas-dev/pandas/issues/12924
https://github.com/pandas-dev/pandas/issues/13098
https://github.com/pandas-dev/pandas/issues/13146
https://github.com/pandas-dev/pandas/issues/13191
https://github.com/pandas-dev/pandas/issues/13844
https://github.com/pandas-dev/pandas/issues/14190
https://github.com/pandas-dev/pandas/issues/13156
https://github.com/pandas-dev/pandas/issues/13382
https://github.com/pandas-dev/pandas/issues/13078
https://github.com/pandas-dev/pandas/issues/13324

pandas: powerful Python data analysis toolkit, Release 0.23.4

Bug in Index and Series may ignore np.datetime64 ('nat') and np.timdelta64 ('nat') to
infer dtype (GH13324)

Bugin PeriodIndex and Period subtraction raises AttributeError (GH13071)
Bug in PeriodIndex construction returning a f1oat 64 index in some circumstances (GH13067)
Bugin .resample (..) withaPeriodIndex notchanging its f req appropriately when empty (GH13067)

Bugin .resample (..) with a PeriodIndex not retaining its type or name with an empty DataFrame
appropriately when empty (GH13212)

Bugin groupby (..) .apply (..) when the passed function returns scalar values per group (GH13468).
Bugin groupby (. .) .resample (..) where passing some keywords would raise an exception (GH13235)

Bug in .tz_convert on a tz-aware DateTimeIndex that relied on index being sorted for correct results
(GH13306)

Bugin .tz_localize withdateutil.tz.tzlocal may return incorrect result (GH13583)

Bug in DatetimeTZDtype dtype with dateutil.tz.tzlocal cannot be regarded as valid dtype
(GH13583)

Bug in pd.read_hdf () where attempting to load an HDF file with a single dataset, that had one or more
categorical columns, failed unless the key argument was set to the name of the dataset. (GH13231)

Bugin .rolling () that allowed a negative integer window in construction of the Rol1ing () object, but
would later fail on aggregation (GH13383)

Bug in Series indexing with tuple-valued data and a numeric index (GH13509)

Bug in printing pd.DataFrame where unusual elements with the object dtype were causing segfaults
(GH13717)

Bug in ranking Series which could result in segfaults (GH13445)
Bug in various index types, which did not propagate the name of passed index (GH12309)
Bug in Datet imeIndex, which did not honour the copy=True (GH13205)

Bug in DatetimeIndex.is_normalized returns incorrectly for normalized date_range in case of local
timezones (GH13459)

Buginpd.concat and . append may coerces datetime 64 and t imedelta to object dtype containing
python built-in datetime or t imedelta rather than Timestamp or Timedelta (GH13626)

Bug in PeriodIndex.append may raises AttributeError when the result is object dtype
(GH13221)

Bugin CategoricalIndex.append may accept normal 1ist (GH13626)
Bugin pd.concat and . append with the same timezone get reset to UTC (GH7795)

Bug in Series and DataFrame .append raises AmbiguousTimeError if data contains datetime near
DST boundary (GH13626)

Bug in DataFrame.to_csv () in which float values were being quoted even though quotations were speci-
fied for non-numeric values only (GH12922, GH13259)

Bugin DataFrame.describe () raising ValueError with only boolean columns (GH13898)
Bug in MultiIndex slicing where extra elements were returned when level is non-unique (GH12896)
Bugin .str.replace does not raise TypeError for invalid replacement (GH13438)

BuginMultiIndex.from_arrays which didn’t check for input array lengths matching (GH13599)

. v0.19.0 (October 2, 2016) 167

https://github.com/pandas-dev/pandas/issues/13324
https://github.com/pandas-dev/pandas/issues/13071
https://github.com/pandas-dev/pandas/issues/13067
https://github.com/pandas-dev/pandas/issues/13067
https://github.com/pandas-dev/pandas/issues/13212
https://github.com/pandas-dev/pandas/issues/13468
https://github.com/pandas-dev/pandas/issues/13235
https://github.com/pandas-dev/pandas/issues/13306
https://github.com/pandas-dev/pandas/issues/13583
https://github.com/pandas-dev/pandas/issues/13583
https://github.com/pandas-dev/pandas/issues/13231
https://github.com/pandas-dev/pandas/issues/13383
https://github.com/pandas-dev/pandas/issues/13509
https://github.com/pandas-dev/pandas/issues/13717
https://github.com/pandas-dev/pandas/issues/13445
https://github.com/pandas-dev/pandas/issues/12309
https://github.com/pandas-dev/pandas/issues/13205
https://github.com/pandas-dev/pandas/issues/13459
https://github.com/pandas-dev/pandas/issues/13626
https://github.com/pandas-dev/pandas/issues/13221
https://github.com/pandas-dev/pandas/issues/13626
https://github.com/pandas-dev/pandas/issues/7795
https://github.com/pandas-dev/pandas/issues/13626
https://github.com/pandas-dev/pandas/issues/12922
https://github.com/pandas-dev/pandas/issues/13259
https://github.com/pandas-dev/pandas/issues/13898
https://github.com/pandas-dev/pandas/issues/12896
https://github.com/pandas-dev/pandas/issues/13438
https://github.com/pandas-dev/pandas/issues/13599

pandas: powerful Python data analysis toolkit, Release 0.23.4

Bugin cartesian_product and MultiIndex.from_product which may raise with empty input ar-
rays (GH12258)

Bug in pd.read_csv () which may cause a segfault or corruption when iterating in large chunks over a
stream/file under rare circumstances (GH13703)

Bug in pd.read_csv () which caused errors to be raised when a dictionary containing scalars is passed in
for na_values (GH12224)

Buginpd.read_csv () which caused BOM files to be incorrectly parsed by not ignoring the BOM (GH4793)

Bug in pd.read_csv () with engine="python' which raised errors when a numpy array was passed in
for usecols (GH12546)

Bugin pd. read_csv () where the index columns were being incorrectly parsed when parsed as dates with a
thousands parameter (GH140606)

Bug in pd.read_csv () with engine="python' in which NaN values weren’t being detected after data
was converted to numeric values (GH13314)

Bug in pd.read_csv () in which the nrows argument was not properly validated for both engines
(GH10476)

Bugin pd.read_csv () with engine="'python' in which infinities of mixed-case forms were not being
interpreted properly (GH13274)

Bug in pd.read_csv () with engine="python' in which trailing NaN values were not being parsed
(GH13320)

Bug in pd.read_csv () with engine="'python' when reading from a tempfile.TemporaryFile
on Windows with Python 3 (GH13398)

Bug in pd.read_csv () that prevents usecols kwarg from accepting single-byte unicode strings
(GH13219)

Bug in pd.read_csv () that prevents usecols from being an empty set (GH13402)

Bug in pd.read_csv () in the C engine where the NULL character was not being parsed as NULL
(GH14012)

Bug in pd.read_csv () with engine="'c"' in which NULL quotechar was not accepted even though
quot ing was specified as None (GH13411)

Buginpd.read_csv () withengine="c"' in which fields were not properly cast to float when quoting was
specified as non-numeric (GH13411)

Bugin pd.read_csv () in Python 2.x with non-UTF8 encoded, multi-character separated data (GH3404)

Buginpd.read_csv (), where aliases for utf-xx (e.g. UTF-xx, UTF_xx, utf_xx) raised UnicodeDecodeError
(GH13549)

Buginpd.read_csv,pd.read_table,pd.read_fwf, pd.read_stata and pd.read_sas where
files were opened by parsers but not closed if both chunksize and iterator were None. (GH13940)

Bugin StataReader, StataWriter, XportReader and SAS7BDATReader where a file was not prop-
erly closed when an error was raised. (GH13940)

Bugin pd.pivot_table () where margins_name is ignored when aggfunc is a list (GH13354)

Bug in pd.Series.str.zfill, center, 1just, rjust, and pad when passing non-integers, did not
raise TypeError (GH13598)

Bug in checking for any null objects in a TimedeltaIndex, which always returned True (GH13603)

Bug in Series arithmetic raises TypeError if it contains datetime-like as object dtype (GH13043)

168

Chapter 1. What’s New

https://github.com/pandas-dev/pandas/issues/12258
https://github.com/pandas-dev/pandas/issues/13703
https://github.com/pandas-dev/pandas/issues/12224
https://github.com/pandas-dev/pandas/issues/4793
https://github.com/pandas-dev/pandas/issues/12546
https://github.com/pandas-dev/pandas/issues/14066
https://github.com/pandas-dev/pandas/issues/13314
https://github.com/pandas-dev/pandas/issues/10476
https://github.com/pandas-dev/pandas/issues/13274
https://github.com/pandas-dev/pandas/issues/13320
https://github.com/pandas-dev/pandas/issues/13398
https://github.com/pandas-dev/pandas/issues/13219
https://github.com/pandas-dev/pandas/issues/13402
https://github.com/pandas-dev/pandas/issues/14012
https://github.com/pandas-dev/pandas/issues/13411
https://github.com/pandas-dev/pandas/issues/13411
https://github.com/pandas-dev/pandas/issues/3404
https://github.com/pandas-dev/pandas/issues/13549
https://github.com/pandas-dev/pandas/issues/13940
https://github.com/pandas-dev/pandas/issues/13940
https://github.com/pandas-dev/pandas/issues/13354
https://github.com/pandas-dev/pandas/issues/13598
https://github.com/pandas-dev/pandas/issues/13603
https://github.com/pandas-dev/pandas/issues/13043

pandas: powerful Python data analysis toolkit, Release 0.23.4

* Bug Series.isnull () and Series.notnull () ignore Period ('NaT"') (GHI13737)
* Bug Series.fillna() and Series.dropna () don’t affectto Period ('NaT"') (GHI13737

* Bug in .fillna(value=np.nan) incorrectly raises KeyError on a category dtyped Series
(GH14021)

* Bug in extension dtype creation where the created types were not is/identical (GH13285)

* Bugin .resample (..) where incorrect warnings were triggered by IPython introspection (GH13618)
* BuginNaT - Periodraises AttributeError (GH13071)

* Bugin Series comparison may output incorrect result if rhs contains NaT (GH9005)

* Bug in Series and Index comparison may output incorrect result if it contains NaT with obJject dtype
(GH13592)

* Bugin Period addition raises TypeError if Period is on right hand side (GH13069)

* BuginPeirodand Series or Index comparison raises TypeError (GH13200)

* Buginpd.set_eng_float_format () that would prevent NaN and Inf from formatting (GH11981)

* Bugin .unstack with Categorical dtyperesets .ordered to True (GH13249)

¢ Clean some compile time warnings in datetime parsing (GH13607)

* Bugin factorize raises AmbiguousTimeError if data contains datetime near DST boundary (GH13750)

* Bugin .set_index raises AmbiguousTimeError if new index contains DST boundary and multi levels
(GH12920)

* Bugin .shift raises AmbiguousTimeError if data contains datetime near DST boundary (GH13926)

* Bug in pd.read_hdf () returns incorrect result when a DataFrame with a categorical column and a
query which doesn’t match any values (GH13792)

* Bugin . iloc when indexing with a non lex-sorted Multilndex (GH13797)

* Bugin . loc when indexing with date strings in a reverse sorted Datet imeIndex (GH14316)
* Bugin Series comparison operators when dealing with zero dim NumPy arrays (GH130006)

* Bugin .combine_first may return incorrect dt ype (GH7630, GH10567)

* Bug in groupby where apply returns different result depending on whether first result is None or not
(GH12824)

* Bug in groupby (. .) .nth () where the group key is included inconsistently if called after .head () /.
tail () (GH12839)

* Bugin .to_html, .to_latexand .to_string silently ignore custom datetime formatter passed through
the formatters key word (GH10690)

* BuginDataFrame.iterrows (), notyielding a Series subclasse if defined (GH13977)
* Buginpd.to_numeric when errors="'coerce' and input contains non-hashable objects (GH13324)

* Bug in invalid Timedelta arithmetic and comparison may raise ValueError rather than TypeError
(GH13624)

* Bug in invalid datetime parsing in to_datetime and DatetimeIndex may raise TypeError rather than
ValueError (GH11169, GH11287)

* Bug in Index created with tz-aware Timestamp and mismatched tz option incorrectly coerces timezone
(GH13692)

1.14. v0.19.0 (October 2, 2016) 169

https://github.com/pandas-dev/pandas/issues/13737
https://github.com/pandas-dev/pandas/issues/13737
https://github.com/pandas-dev/pandas/issues/14021
https://github.com/pandas-dev/pandas/issues/13285
https://github.com/pandas-dev/pandas/issues/13618
https://github.com/pandas-dev/pandas/issues/13071
https://github.com/pandas-dev/pandas/issues/9005
https://github.com/pandas-dev/pandas/issues/13592
https://github.com/pandas-dev/pandas/issues/13069
https://github.com/pandas-dev/pandas/issues/13200
https://github.com/pandas-dev/pandas/issues/11981
https://github.com/pandas-dev/pandas/issues/13249
https://github.com/pandas-dev/pandas/issues/13607
https://github.com/pandas-dev/pandas/issues/13750
https://github.com/pandas-dev/pandas/issues/12920
https://github.com/pandas-dev/pandas/issues/13926
https://github.com/pandas-dev/pandas/issues/13792
https://github.com/pandas-dev/pandas/issues/13797
https://github.com/pandas-dev/pandas/issues/14316
https://github.com/pandas-dev/pandas/issues/13006
https://github.com/pandas-dev/pandas/issues/7630
https://github.com/pandas-dev/pandas/issues/10567
https://github.com/pandas-dev/pandas/issues/12824
https://github.com/pandas-dev/pandas/issues/12839
https://github.com/pandas-dev/pandas/issues/10690
https://github.com/pandas-dev/pandas/issues/13977
https://github.com/pandas-dev/pandas/issues/13324
https://github.com/pandas-dev/pandas/issues/13624
https://github.com/pandas-dev/pandas/issues/11169
https://github.com/pandas-dev/pandas/issues/11287
https://github.com/pandas-dev/pandas/issues/13692

pandas: powerful Python data analysis toolkit, Release 0.23.4

Bug in DatetimeIndex with nanosecond frequency does not include timestamp specified with end
(GH13672)

Bugin * Series when setting a slice with a np.timedelta64 (GH14155)

Bug in Index raises OutOfBoundsDatetime if datetime exceeds datetime64 [ns] bounds, rather
than coercing to object dtype (GH13663)

Bug in Index may ignore specified datetime64 or timedelta64 passed as dtype (GH13981)
Bug in RangeIndex can be created without no arguments rather than raises TypeError (GH13793)

Bug in .value_counts () raises OutOfBoundsDatet ime if data exceeds datetime64 [ns] bounds
(GH13663)

Bug in DatetimeIndex may raise OutOfBoundsDatetime if input np.datetime64 has other unit
than ns (GH9114)

Bug in Series creation with np.datetime64 which has other unit than ns as obJject dtype results in
incorrect values (GH13876)

Bug in resample with timedelta data where data was casted to float (GH13119).

Bug in pd.isnull () pd.notnull () raise TypeError if input datetime-like has other unit than ns
(GH13389)

Bug in pd.merge () may raise TypeError if input datetime-like has other unit than ns (GH13389)
Bug in HDFStore/read_hdf () discarded DatetimeIndex.name if tz was set (GH13884)

Bug in Categorical.remove_unused_categories () changes .codes dtype to platform int
(GH13261)

Bug in groupby with as_index=False returns all NaN’s when grouping on multiple columns including a
categorical one (GH13204)

Bugin df.groupby (...) [...] where getitem with Int 64Index raised an error (GH13731)

Bug in the CSS classes assigned to DataFrame.style for index names. Previously they were assigned
"col_heading level<n> col<c>" where n was the number of levels + 1. Now they are assigned
"index_name level<n>", where n is the correct level for that Multilndex.

Bug where pd.read_gbg () could throw ImportError: No module named discovery as are-
sult of a naming conflict with another python package called apiclient (GH13454)

Bug in Index.union returns an incorrect result with a named empty index (GH13432)

Bugs in Index.difference and DataFrame. join raise in Python3 when using mixed-integer indexes
(GH13432, GH12814)

Bug in subtract tz-aware datetime.datet ime from tz-aware datet ime64 series (GH14088)

Bug in .to_excel () when DataFrame contains a Multilndex which contains a label with a NaN value
(GH13511)

Bug in invalid frequency offset string like “D1”, “-2-3H” may not raise ValueError (GH13930)
Bug in concat and groupby for hierarchical frames with RangeIndex levels (GH13542).
Bugin Series.str.contains () for Series containing only NaN values of object dtype (GH14171)

Bug in agg () function on groupby dataframe changes dtype of datetime64 [ns] column to float64
(GH12821)

170

Chapter 1. What’s New

https://github.com/pandas-dev/pandas/issues/13672
https://github.com/pandas-dev/pandas/issues/14155
https://github.com/pandas-dev/pandas/issues/13663
https://github.com/pandas-dev/pandas/issues/13981
https://github.com/pandas-dev/pandas/issues/13793
https://github.com/pandas-dev/pandas/issues/13663
https://github.com/pandas-dev/pandas/issues/9114
https://github.com/pandas-dev/pandas/issues/13876
https://github.com/pandas-dev/pandas/issues/13119
https://github.com/pandas-dev/pandas/issues/13389
https://github.com/pandas-dev/pandas/issues/13389
https://github.com/pandas-dev/pandas/issues/13884
https://github.com/pandas-dev/pandas/issues/13261
https://github.com/pandas-dev/pandas/issues/13204
https://github.com/pandas-dev/pandas/issues/13731
https://github.com/pandas-dev/pandas/issues/13454
https://github.com/pandas-dev/pandas/issues/13432
https://github.com/pandas-dev/pandas/issues/13432
https://github.com/pandas-dev/pandas/issues/12814
https://github.com/pandas-dev/pandas/issues/14088
https://github.com/pandas-dev/pandas/issues/13511
https://github.com/pandas-dev/pandas/issues/13930
https://github.com/pandas-dev/pandas/issues/13542
https://github.com/pandas-dev/pandas/issues/14171
https://github.com/pandas-dev/pandas/issues/12821

pandas: powerful Python data analysis toolkit, Release 0.23.4

Bug in using NumPy ufunc with PeriodIndex to add or subtract integer raise
IncompatibleFrequency. Note that using standard operator like + or — is recommended, because
standard operators use more efficient path (GH13980)

Bug in operations on NaT returning £1oat instead of datetime64 [ns] (GH12941)

Bug in Series flexible arithmetic methods (like .add()) raises ValueError when axis=None
(GH13894)

Bug in DataFrame.to_csv () with MultiIndex columns in which a stray empty line was added
(GH6618)

Bug in DatetimeIndex, TimedeltaIndex and PeriodIndex.equals () may return True when
input isn’t Index but contains the same values (GH13107)

Bug in assignment against datetime with timezone may not work if it contains datetime near DST boundary
(GH14146)

Bugin pd.eval () and HDFStore query truncating long float literals with python 2 (GH14241)

Bug in Index raises KeyError displaying incorrect column when column is not in the df and columns con-
tains duplicate values (GH13822)

Bug in Period and PeriodIndex creating wrong dates when frequency has combined offset aliases
(GH13874)

Bugin .to_string () when called with an integer 1ine_width and index=False raises an Unbound-
LocalError exception because idx referenced before assignment.

Bugin eval () where the resolvers argument would not accept a list (GH14095)

Bugs in stack, get_dummies, make_axis_dummies which don’t preserve categorical dtypes in
(multi)indexes (GH13854)

PeriodIndex can now accept 1ist and array which contains pd.NaT (GH13430)

Bug in df . groupby where .median () returns arbitrary values if grouped dataframe contains empty bins
(GH13629)

Bugin Index.copy () where name parameter was ignored (GH14302)

1.15 v0.18.1 (May 3, 2016)

This is a minor bug-fix release from 0.18.0 and includes a large number of bug fixes along with several new features,
enhancements, and performance improvements. We recommend that all users upgrade to this version.

Highlights include:
e .groupby (...) has been enhanced to provide convenient syntax when working with .rolling(..),
.expanding(..) and .resample (..) per group, see here

pd.to_datetime () has gained the ability to assemble dates from a DataFrame, see here
Method chaining improvements, see here.

Custom business hour offset, see here.

Many bug fixes in the handling of sparse, see here

Expanded the Tutorials section with a feature on modern pandas, courtesy of @ TomAugsburger. (GH13045).

. v0.18.1 (May 3, 2016) 171

https://github.com/pandas-dev/pandas/issues/13980
https://github.com/pandas-dev/pandas/issues/12941
https://github.com/pandas-dev/pandas/issues/13894
https://github.com/pandas-dev/pandas/issues/6618
https://github.com/pandas-dev/pandas/issues/13107
https://github.com/pandas-dev/pandas/issues/14146
https://github.com/pandas-dev/pandas/issues/14241
https://github.com/pandas-dev/pandas/issues/13822
https://github.com/pandas-dev/pandas/issues/13874
https://github.com/pandas-dev/pandas/issues/14095
https://github.com/pandas-dev/pandas/issues/13854
https://github.com/pandas-dev/pandas/issues/13430
https://github.com/pandas-dev/pandas/issues/13629
https://github.com/pandas-dev/pandas/issues/14302
https://twitter.com/TomAugspurger
https://github.com/pandas-dev/pandas/issues/13045

pandas: powerful Python data analysis toolkit, Release 0.23.4

What’s new in v0.18.1

* New features

Custom Business Hour

.groupby (..) syntax with window and resample operations

Method chaininng improvements
% .where () and .mask ()
* .loc[], .iloc[], .ix[]

x [] indexing

Partial string indexing on DateTimeIndex when part of a MultiIndex
— Assembling Datetimes
— Other Enhancements

* Sparse changes

* API changes
— .groupby (..).nth () changes

numpy function compatibility

Using . apply on groupby resampling

Changes in read_csv exceptions

to_datet ime error changes

Other API changes
— Deprecations

* Performance Improvements

* Bug Fixes

1.15.1 New features

1.15.1.1 Custom Business Hour

The CustomBusinessHour is a mixture of BusinessHour and CustomBusinessDay which allows you to
specify arbitrary holidays. For details, see Custom Business Hour (GH11514)

In [1]: from pandas.tseries.offsets import CustomBusinessHour
In [2]: from pandas.tseries.holiday import USFederalHolidayCalendar

In [3]: bhour_us = CustomBusinessHour (calendar=USFederalHolidayCalendar ())

Friday before MLK Day

In [4]: dt = datetime (2014, 1, 17, 15)

(continues on next page)

172 Chapter 1. What’s New

https://github.com/pandas-dev/pandas/issues/11514

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

In [5]: dt + bhour_us
Out[5]: Timestamp ('2014-01-17 16:00:00")

Tuesday after MLK Day (Monday is skipped because it’s a holiday)

In [6]: dt + bhour_us * 2
Out[6]: Timestamp ('2014-01-20 09:00:00")

1.15.1.2 .groupby (. .) syntax with window and resample operations
.groupby (...) has been enhanced to provide convenient syntax when working with .rolling(..),
expanding(..) and .resample (..) per group, see (GH12486, GH12738).

You can now use . rolling (..) and .expanding (..) as methods on groupbys. These return another deferred
object (similar to what . rolling () and .expanding () do on ungrouped pandas objects). You can then operate
on these Rol11ingGroupby objects in a similar manner.

Previously you would have to do this to get a rolling window mean per-group:

In [7]: df = pd.DataFrame({'A': [1] » 20 + [2] * 12 + [3] = 8,
. 'B': np.arange (40) })

In [8]: df
Oout[8]:

A B
0 1 0
1 1 1
2 1 2
3 1 3
4 1 4
5 1 5
6 1 6
33 3 33
34 3 34
35 3 35
36 3 36
37 3 37
38 3 38
39 3 39

[40 rows x 2 columns]

In [9]: df.groupby('A') .apply(lambda x: x.rolling(4) .B.mean())

Out[9]:

A

1 0 NaN
1 NaN
2 NaN
3 1.5
4 2.5
5 3.5
6 4.5

(continues on next page)

1.15. v0.18.1 (May 3, 2016) 173

https://github.com/pandas-dev/pandas/issues/12486
https://github.com/pandas-dev/pandas/issues/12738

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

3 33 NaN
34 NaN
35 33.5
36 34.5
37 35.5
38 36.5
39 37.5

Name: B, Length: 40, dtype: float64

Now you can do:

In [10]: df.groupby('A'"').rolling(4) .B.mean()

Out [10]:

A

1 0 NaN
1 NaN
2 NaN
3 1.5
4 2.5
5 3.5
6 4.5

3 33 NaN
34 NaN
35 33.5
36 34.5
37 35.5
38 36.5
39 37.5

Name: B, Length: 40, dtype: float64

For .resample (. .) type of operations, previously you would have to:

In [11]: df = pd.DataFrame({'date': pd.date_range(start='2016-01-01",
R periods=4,
et freg='w"),
et 'group': [1, 1, 2, 2],
e 'val': [5, 6, 7, 8]}).set_index('date')

In [12]: df
Out[12]:
group val
date
2016-01-03
2016-01-10
2016-01-17
2016-01-24

NN
0 J o U

In [13]: df.groupby('group') .apply(lambda x: x.resample('1D').£f£fill())
Out[13]:

group val
group date

1 2016-01-03 1 5
2016-01-04 1 5
2016-01-05 1 5

(continues on next page)

174 Chapter 1. What’s New

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

2016-01-06
2016-01-07
2016-01-08
2016-01-09

2016-01-18
2016-01-19
2016-01-20
2016-01-21
2016-01-22
2016-01-23
2016-01-24

e

DD DNDNDDNDDNDDN

[16 rows x 2 columns]

[S2BNC BNC BNE;]

O J 3 J ~J 3 I -

Now you can do:

In [14]:

Out[14]:

group date

1

2016-01-03
2016-01-04
2016-01-05
2016-01-06
2016-01-07
2016-01-08
2016-01-09

2016-01-18
2016-01-19
2016-01-20
2016-01-21
2016-01-22
2016-01-23
2016-01-24

group

el e e el

DD NDDNDDNDDN -

[16 rows x 2 columns]

df .groupby ('group")

val

[S2BNC BNC, NG, BNC) RGN C)]

O J ~J 3 J 3 J -

.resample (

1D

) .££111 ()

1.15.1.3 Method chaininng improvements

The following methods / indexers now accepta callable. Itis intended to make these more useful in method chains,
see the documentation. (GH11485, GH12533)

e [] indexing

e .where () and .mask ()

.where () and .mask ()

These can accept a callable for the condition and ot her arguments.

e .loc[],iloc[] and .ix[]

1.15. v0.18.1 (May 3, 2016)

175

https://github.com/pandas-dev/pandas/issues/11485
https://github.com/pandas-dev/pandas/issues/12533

pandas: powerful Python data analysis toolkit, Release 0.23.4

In [15]: df = pd.DataFrame({'A': [1, 2, 3],
'B': [4, 5, 6]/
et '‘c': [7, 8, 911)

In [16]: df.where(lambda x: x > 4, lambda x: x + 10)

Out[16]:

A B C
0 11 14 7
1 12 5 8
2 13 6 9

.loc[], .iloc[], .ix[]

These can accept a callable, and a tuple of callable as a slicer. The callable can return a valid boolean indexer or
anything which is valid for these indexer’s input.

callable returns bool indexer
In [17]: df.loc[lambda x: x.A >= 2, lambda x: x.sum() > 10]

Out[17]:

B C
1 5 8
2 6 9

callable returns list of labels
In [18]: df.loc[lambda x: [1, 2], lambda x: ['A', 'B']l]
ANV VNN Out [18] ¢

A B
1 2 5
2 3 6
[1 indexing

Finally, you can use a callable in [] indexing of Series, DataFrame and Panel. The callable must return a valid input
for [] indexing depending on its class and index type.

In [19]: df[lambda x: 'A']

Out[19]:
0 1
1 2
2 3

Name: A, dtype: int64

Using these methods / indexers, you can chain data selection operations without using temporary variable.

In [20]: bb = pd.read_csv('data/baseball.csv', index_col='id")

In [21]: (bb.groupby(['year', 'team'])
e .sum{()
e .loc[lambda df: df.r > 100]

Out[21]:

(continues on next page)

176 Chapter 1. What’s New

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

—ibb

year

—

2007

—0

-0

-0

—0

-0

-0

—0

—0

hbp
team

CIN
1.0
DET
10.0
HOU
9.0
LAN
9.0
NYN
23.0
SFN
8.0
TEX
5.0
TOR
12.0

stint

16.

18.

16.

4.

S

6

.0

0

g
h

379
15.0
301
8.0
311
6.0
413
8.0
622
15.0
482
6.0
198
8.0
459
16.0

ab
sf gidp

745
18.0
1062
28.0

926
17.0
1021
29.0
1854
48.0
1305
41.0

729
16.0
1408
38.0

101

109

153

240

115

187

203

283

218

293

509

337

200

378

X2Db

35

54

47

61

101

67

40

96

X3b

hr

36

37

14

36

61

40

28

58

rbi

125.0

144.0

77.0

154.0

243.0

171.0

115.0

223.0

10.

24.

10.

22.

26.

21.

sb

0 1
0o 7
0 4
0 5
0 4
o 7
0 4
0 2

cs bb
.0 105
0 97
0 60
.0 114
.0 174
.0 235
0 73
.0 190

127.

176.

212.

141.

310.

188.

140.

265.

so
0 14
0 3
0 3
0 8
0 24
0 51
0 4
0 16

1.15.1.4 Partial string indexing on DateTimeIndex When part of a MultilIndex

Partial string indexing now matches on DateTimeIndex when part of aMultiIndex (GH10331)

In [2

In [2
Out [2

2013-01-01 00:

2013-
2013-
2013-
2013-
2013~

2013-

2013-

2]: dftz2

3]: dft2

3]:

01-01

01-02

01-02

01-04
01-04

01-05

01-05

12:

00:

12:

00:
12:

00:

12:

00:

00:

00:

00:

00:
00:

00:

00:

pd.DataFrame (np.random.randn (20,
columns=["'A"],

00

00

00

» O o o oo

00

00
00

00

00

o v oo oo o

0.1569
-0.5714
1.0576
-0.7914
-0.5246
0.0718
1.9107

1.0154
0.7491
-0.6755
0.4402
0.6889
-0.2766
1.9245

1)y

index=pd.MultiIndex.from_product ([pd.date_range ('20130101

A
98
55
33
89
27
78
59
05
85
21
66
72
46
33

freg="'12H

(continues on next page)

1.15. v0.18.1 (May 3, 2016)

177

https://github.com/pandas-dev/pandas/issues/10331

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

[20 rows x 1 columns]

In [24]: dft2.loc['2013-01-05"]
R R R R R R R N N R N N R R N R R N N R N R N N N N N N N N N R N R R RN

—

A

2013-01-05 00:00:00 a 0.440266
b 0.688972

2013-01-05 12:00:00 a -0.276646
b 1.924533

On other levels

In [25]: idx = pd.IndexSlice
In [26]: dft2 = dft2.swaplevel (0, 1).sort_index()

In [27]: dft2

Oout [27]:
A
a 2013-01-01 00:00:00 0.156998
2013-01-01 12:00:00 1.057633
2013-01-02 00:00:00 -0.524627
2013-01-02 12:00:00 1.910759
2013-01-03 00:00:00 0.513082
2013-01-03 12:00:00 1.043945
2013-01-04 00:00:00 1.459927

b 2013-01-02 12:00:00 0.787965
2013-01-03 00:00:00 -0.546416
2013-01-03 12:00:00 2.107785
2013-01-04 00:00:00 1.015405
2013-01-04 12:00:00 -0.675521
2013-01-05 00:00:00 0.688972
2013-01-05 12:00:00 1.924533

[20 rows x 1 columns]

In [28]: dft2.loc[idx[:, '2013-01-05'], :]
R R R R R R R R R N R R N R R N N N N R N N N R R N S N R R R R RN
A
a 2013-01-05 00:00:00 0.440266
2013-01-05 12:00:00 -0.276646
b 2013-01-05 00:00:00 0.688972
2013-01-05 12:00:00 1.924533

1.15.1.5 Assembling Datetimes

pd.to_datetime () has gained the ability to assemble datetimes from a passed in DataFrame or a dict.
(GHS8158).

In [29]: df = pd.DataFrame({'year': [2015, 201l6],
e 'month': [2, 3],
et 'day': [4, 5],

(continues on next page)

178 Chapter 1. What’s New

AN

ALV

https://github.com/pandas-dev/pandas/issues/8158

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

In [30]: df

Out [30]:

year month day hour
0 2015 2 4 2
1 2016 3 5 3

Assembling using the passed frame.

In [31]: pd.to_datetime (df)
Out [31]:

0 2015-02-04 02:00:00

1 2016-03-05 03:00:00
dtype: datetime64[ns]

You can pass only the columns that you need to assemble.

In [32]: pd.to_datetime(df[['year', 'month', 'day']])
Out [32]:

0 2015-02-04

1 2016-03-05

dtype: datetime64[ns]

1.15.1.6 Other Enhancements

* pd.read_csv () now supports delim_whitespace=True for the Python engine (GH12958)

* pd.read_csv () now supports opening ZIP files that contains a single CSV, via extension inference or explicit
compression="zip' (GHI12175)

* pd.read_csv () now supports opening files using xz compression, via extension inference or explicit
compression="'xz" is specified; xz compressions is also supported by DataFrame.to_csv in the same
way (GH11852)

* pd.read_msgpack () now always gives writeable ndarrays even when compression is used (GH12359).
* pd.read_msgpack () now supports serializing and de-serializing categoricals with msgpack (GH12573)
* .to_Jjson () now supports NDFrames that contain categorical and sparse data (GH10778)

* interpolate () now supports method="akima"' (GH7588).

* pd.read_excel () now accepts path objects (e.g. pathlib.Path, py.path.local) for the file path,
in line with other read_ » functions (GH12655)

e Added .weekday_name property as a component to DatetimeIndex and the . dt accessor. (GH11128)

* Index.takenow handles allow_fill and £i11_value consistently (GH12631)

In [33]: idx = pd.Index([1., 2., 3., 4.], dtype='float")

default, allow_fill=True, fill_value=None
In [34]: idx.take([2, -11)
Out[34]: Float64Index ([3.0, 4.0], dtype='floate64d"')

(continues on next page)

1.15. v0.18.1 (May 3, 2016) 179

https://github.com/pandas-dev/pandas/issues/12958
https://github.com/pandas-dev/pandas/issues/12175
https://github.com/pandas-dev/pandas/issues/11852
https://github.com/pandas-dev/pandas/issues/12359
https://github.com/pandas-dev/pandas/issues/12573
https://github.com/pandas-dev/pandas/issues/10778
https://github.com/pandas-dev/pandas/issues/7588
https://github.com/pandas-dev/pandas/issues/12655
https://github.com/pandas-dev/pandas/issues/11128
https://github.com/pandas-dev/pandas/issues/12631

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

In [35]: idx.take([2, -1], fill_value=True)
AL\ Out [35] ¢ Float64Index ([3.0,
—nan], dtype='float64')

e Index now supports .str.get_dummies () which returns MultiIndex, see Creating Indicator Vari-
ables (GH10008, GH10103)

In [36]: idx = pd.Index(['alb', '"alc', 'blc'])

In [37]: idx.str.get_dummies('|")

Out [37]:

MultiIndex(levels=[[0, 1], [0, 1], [0, 111,
labels=[[1, 1, 0], [1, O, 171, [0, 1, 111,
names=['a', 'b', 'c'])

* pd.crosstab () has gained a normalize argument for normalizing frequency tables (GH12569). Exam-
ples in the updated docs here.

* .resample(..) .interpolate () is now supported (GH12925)

e .isin () now accepts passed sets (GHI12988)

1.15.2 Sparse changes
These changes conform sparse handling to return the correct types and work to make a smoother experience with
indexing.

SparseArray.take now returns a scalar for scalar input, SparseArray for others. Furthermore, it handles a
negative indexer with the same rule as Index (GH10560, GH12796)

In [38]: s = pd.SparseArray([np.nan, np.nan, 1, 2, 3, np.nan, 4, 5, np.nan, 6])

In [39]: s.take(0)
Out [39]: nan

In [40]: s.take([1, 2, 31])
AMAANNANNNANNNNNOutE [40] -

[nan, 1.0, 2.0]

Fill: nan

IntIndex

Indices: array([1l, 2], dtype=int32)

* Bugin SparseSeries|[] indexing with E11ipsis raises KeyError (GH9467)
* Bugin SparseArray [] indexing with tuples are not handled properly (GH12966)
* Bugin SparseSeries.loc[] with list-like input raises TypeError (GH10560)
* Bugin SparseSeries.iloc[] with scalar input may raise IndexError (GH10560)

e Bug in SparseSeries.loc[], .iloc[] with slice returns SparseArray, rather than
SparseSeries (GH10560)

* Bugin SparseDataFrame.loc[], .1loc[] may results in dense Series, rather than SparseSeries
(GH12787)

* Bugin SparseArray addition ignores £111_value of right hand side (GH12910)

* Bugin SparseArray modraises AttributeError (GH12910)

180 Chapter 1. What’s New

https://github.com/pandas-dev/pandas/issues/10008
https://github.com/pandas-dev/pandas/issues/10103
https://github.com/pandas-dev/pandas/issues/12569
https://github.com/pandas-dev/pandas/issues/12925
https://github.com/pandas-dev/pandas/issues/12988
https://github.com/pandas-dev/pandas/issues/10560
https://github.com/pandas-dev/pandas/issues/12796
https://github.com/pandas-dev/pandas/issues/9467
https://github.com/pandas-dev/pandas/issues/12966
https://github.com/pandas-dev/pandas/issues/10560
https://github.com/pandas-dev/pandas/issues/10560
https://github.com/pandas-dev/pandas/issues/10560
https://github.com/pandas-dev/pandas/issues/12787
https://github.com/pandas-dev/pandas/issues/12910
https://github.com/pandas-dev/pandas/issues/12910

pandas: powerful Python data analysis toolkit, Release 0.23.4

* Bugin SparseArray pow calculates 1 ** np.nan as np.nan which must be 1 (GH12910)

* Bugin SparseArray comparison output may incorrect result or raise ValueError (GH12971)

* Bugin SparseSeries.__ _repr__ raises TypeError when it is longer than max_rows (GH10560)

* Bugin SparseSeries.shapeignores fil1l_value (GH10452)

* Bugin SparseSeries and SparseArray may have different dt ype from its dense values (GH12908)
* Bugin SparseSeries.reindex incorrectly handle fil1l_value (GH12797)

* Bugin SparseArray.to_frame () results in DataF rame, rather than SparseDataFrame (GH9850)
* Bugin SparseSeries.value_counts () doesnotcount £i11_value (GH6749)

* Bugin SparseArray.to_dense () does not preserve dtype (GH10648)

* Bugin SparseArray.to_dense () incorrectly handle £111_value (GHI12797)

* Buginpd.concat () of SparseSeries results in dense (GH10536)

* Bugin pd.concat () of SparseDataFrame incorrectly handle £i11_value (GH9765)

* Buginpd.concat () of SparseDataFrame may raise AttributeError (GH12174)

* Bugin SparseArray.shift () may raise NameError or TypeError (GH12908)

1.15.3 API changes

1.15.3.1 .groupby(..) .nth() changes

The index in .groupby (..) .nth () output is now more consistent when the as_index argument is passed
(GH11039):
In [41]: df = DataFrame ({'A" : ['a', 'b', 'a'l,

et ‘BT [1, 2, 31}1)

In [42]: df

Out [42]:

A B
0 a 1
1 b 2
2 a 3

Previous Behavior:

In [3]: df.groupby('A', as_index=True) ['B'].nth(0)

Out [3]:
0 1
1 2

Name: B, dtype: int64

In [4]: df.groupby('A', as_index=False)['B'].nth(0)

Out [4]:
0 1
1 2

Name: B, dtype: int64

New Behavior:

1.15. v0.18.1 (May 3, 2016) 181

https://github.com/pandas-dev/pandas/issues/12910
https://github.com/pandas-dev/pandas/issues/12971
https://github.com/pandas-dev/pandas/issues/10560
https://github.com/pandas-dev/pandas/issues/10452
https://github.com/pandas-dev/pandas/issues/12908
https://github.com/pandas-dev/pandas/issues/12797
https://github.com/pandas-dev/pandas/issues/9850
https://github.com/pandas-dev/pandas/issues/6749
https://github.com/pandas-dev/pandas/issues/10648
https://github.com/pandas-dev/pandas/issues/12797
https://github.com/pandas-dev/pandas/issues/10536
https://github.com/pandas-dev/pandas/issues/9765
https://github.com/pandas-dev/pandas/issues/12174
https://github.com/pandas-dev/pandas/issues/12908
https://github.com/pandas-dev/pandas/issues/11039

pandas: powerful Python data analysis toolkit, Release 0.23.4

In [43]: df.groupby('A', as_index=True) ['B'].nth(0)

Out[43]:
A

a 1
b 2

Name: B, dtype: inté64

In [44]: df.groupby('A', as_index=False)['B'].nth(0)
ATV VAN NN NOut [44] -
0 1

1 2

Name: B, dtype: int64

Furthermore, previously, a . groupby would always sort, regardless if sort=False was passed with .nth ().

In [45]: np.random.seed(1234)
In [46]: df = pd.DataFrame (np.random.randn (100, 2), columns=['a', 'b'])

In [47]: df['c'] = np.random.randint (0, 4, 100)

Previous Behavior:

In [4]: df.groupby('c', sort=True) .nth(1l)

Out [4]:

a b
c
0 -0.334077 0.002118
1 0.036142 -2.074978
2 -0.720589 0.887163
3 0.859588 -0.636524

In [5]: df.groupby('c', sort=False).nth(l)

Out [5]:

a b
c
0 -0.334077 0.002118
1 0.036142 -2.074978
2 -0.720589 0.887163
3 0.859588 -0.636524

New Behavior:

In [48]: df.groupby('c', sort=True) .nth(1l)

Out [48]:

a b
c
0 -0.334077 0.002118
1 0.036142 -2.074978
2 -0.720589 0.887163
3 0.859588 -0.636524

In [49]: df.groupby('c', sort=False).nth(1l)
R N N R N S N R R N N N N N R N N N N N N N N N N N N N N R N N N N N N N S A R R R AR R RN

a b

(continues on next page)

182 Chapter 1. What’s New

ALV

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

2 -0.720589 0.887163
3 0.859588 -0.636524
0 -0.334077 0.002118
1 0.036142 -2.074978

1.15.3.2 numpy function compatibility

Compatibility between pandas array-like methods (e.g. sum and t ake) and their numpy counterparts has been greatly
increased by augmenting the signatures of the pandas methods so as to accept arguments that can be passed in from
numpy, even if they are not necessarily used in the pandas implementation (GH12644, GH12638, GH12687)

* .searchsorted() for Index and TimedeltaIndex now accepta sorter argument to maintain com-
patibility with numpy’s searchsorted function (GH12238)

* Bug in numpy compatibility of np. round () ona Series (GH12600)

An example of this signature augmentation is illustrated below:

In [50]: sp = pd.SparseDataFrame([1, 2, 31])

In [51]: sp

Out [51]:
0

0 1

1 2

2 3

Previous behaviour:

In [2]: np.cumsum(sp, axis=0)

TypeError: cumsum() takes at most 2 arguments (4 given)

New behaviour:

In [52]: np.cumsum(sp, axis=0)

Out [52]:
0

0 1

1 3

2 6

1.15.3.3 Using . apply on groupby resampling

Using apply on resampling groupby operations (using a pd. TimeGrouper) now has the same output types as
similar apply calls on other groupby operations. (GH11742).

In [53]: df = pd.DataFrame({'date': pd.to_datetime(['10/10/2000", '11/10/2000']),
'value': [10, 1311})

In [54]: df
Out [54]:
date wvalue

(continues on next page)

1.15. v0.18.1 (May 3, 2016) 183

https://github.com/pandas-dev/pandas/issues/12644
https://github.com/pandas-dev/pandas/issues/12638
https://github.com/pandas-dev/pandas/issues/12687
https://github.com/pandas-dev/pandas/issues/12238
https://github.com/pandas-dev/pandas/issues/12600
https://github.com/pandas-dev/pandas/issues/11742

pandas: powerful Python data analysis toolkit, Release 0.23.4

(continued from previous page)

0 2000-10-10 10
1 2000-11-10 13

Previous behavior:

In [1]: df.groupby (pd.TimeGrouper (key='date', freg='M')) .apply(lambda x: x.value.
—sum())
Out[1l]:

TypeError: cannot concatenate a non-NDFrame object
Output is a Series

In [2]: df.groupby (pd.TimeGrouper (key='date', fregq='M'")) .apply(lambda x: x[['value']].
—sum())

Out[2]:

date

2000-10-31 wvalue 10
2000-11-30 wvalue 13

dtype: int64

New Behavior:

Output is a Series
In [55]: df.groupby (pd.TimeGrouper (key="'date', freg='M')) .apply(lambda x: x.value.
—sum())

Out [55]:

date

2000-10-31 10
2000-11-30 13

Freqg: M, dtype: inté64

Output is a DataFrame
In [56]: df.groupby (pd.TimeGrouper (key="date', freg='M')) .apply(lambda x: x[['value
—"]].sum())

Oout [56] :

value
date
2000-10-31 10
2000-11-30 13

1.15.3.4 Changes in read_csv exceptions

In order to standardize the read_csv API for both the ¢ and python engines, both will now raise an
EmptyDataError, a subclass of ValueError, in response to empty columns or header (GH12493, GH12506)

Previous behaviour:

In [1]: df = pd.read_csv(StringIO(''), engine='c'")
ValueError: No columns to parse from file
In [2]: df = pd.read_csv(StringIO(''), engine='python')

StoplIteration

New behaviour:

184 Chapter 1. What’s New

https://github.com/pandas-dev/pandas/issues/12493
https://github.com/pandas-dev/pandas/issues/12506

pandas: powerful Python data analysis toolkit, Release 0.23.4

In [1]: df = pd.read_csv(StringIO(''), engine='c')
pandas.io.common.EmptyDataError: No columns to parse from file
In [2]: df = pd.read_csv(StringIO(''), engine='python')

pandas.io.common.EmptyDataError: No columns to parse from file

In addition to this error change, several others have been made as well:
* CParserError now sub-classes ValueError instead of just a Exception (GHI2551)

* A CParserError is now raised instead of a generic Exception in read_csv when the c engine cannot
parse a column (GH125006)

* AValueError is now raised instead of a generic Exception in read_csv when the c engine encounters
a NaN value in an integer column (GH12506)

* A ValueError is now raised instead of a generic Exception in read_csv when true_values is
specified, and the c engine encounters an element in a column containing unencodable bytes (GH125006)

* pandas.parser.OverflowError exception has been removed and has been replaced with Python’s built-
in OverflowError exception (GH12506)

* pd.read_csv () no longer allows a combination of strings and integers for the usecols parameter
(GH12678)

1.15.3.5 to_datetime error changes

Bugs in pd.to_datetime () when passing a unit with convertible entries and errors="'coerce' or non-
convertible with errors="'ignore'. Furthermore, an Out OfBoundsDateime exception will be raised when an
out-of-range value is encountered for that unit when errors="'raise"'. (GH11758, GH13052, GH13059)

Previous behaviour:

In [27]: pd.to_datetime (1420043460, unit='s', errors='coerce')
Out[27]: NaT

In [28]: pd.to_datetime (11111111, unit='D', errors='ignore')
OverflowError: Python int too large to convert to C long

In [29]: pd.to_datetime (11111111, unit='D', errors='raise')
OverflowError: Python int too large to convert to C long

New behaviour:

In [2]: pd.to_datetime (1420043460, unit='s', errors='coerce')
Out[2]: Timestamp ('2014-12-31 16:31:00")

In [3]: pd.to_datetime (11111111, unit='D', errors='ignore')
Out[3]: 11111111

In [4]: pd.to_datetime (11111111, unit='D', errors='raise')
OutOfBoundsDatetime: cannot convert input with unit 'D’

1.15. v0.18.1 (May 3, 2016) 185

https://github.com/pandas-dev/pandas/issues/12551
https://github.com/pandas-dev/pandas/issues/12506
https://github.com/pandas-dev/pandas/issues/12506
https://github.com/pandas-dev/pandas/issues/12506
https://github.com/pandas-dev/pandas/issues/12506
https://github.com/pandas-dev/pandas/issues/12678
https://github.com/pandas-dev/pandas/issues/11758
https://github.com/pandas-dev/pandas/issues/13052
https://github.com/pandas-dev/pandas/issues/13059

pandas: powerful Python data analysis toolkit, Release 0.23.4

1.15.3.6 Other API changes

.swaplevel () for Series, DataFrame, Panel, and MultiIndex now features defaults for its first
two parameters i and j that swap the two innermost levels of the index. (GH12934)

.searchsorted () for Index and TimedeltaIndex now accept a sorter argument to maintain com-
patibility with numpy’s searchsorted function (GH12238)

Period and PeriodIndex now raises IncompatibleFrequency error which inherits ValueError
rather than raw ValueError (GH12615)

Series.apply for category dtype now applies the passed function to each of the .categories (and not
the . codes), and returns a category dtype if possible (GH12473)

read_csv will now raise a TypeError if parse_dates is neither a boolean, list, or dictionary (matches
the doc-string) (GH5636)

The default for .query () /.eval () is now engine=None, which will use numexpr if it’s installed;
otherwise it will fallback to the python engine. This mimics the pre-0.18.1 behavior if numexpr is installed
(and which, previously, if numexpr was not installed, . query () /.eval () would raise). (GH12749)

pd.show_versions () now includes pandas_datareader version (GH12740)
Provide a proper __name___and __qualname___ attributes for generic functions (GH12021)
pd.concat (ignore_index=True) now uses RangeIndex as default (GH12695)

pd.merge () and DataFrame. join () will show a UserWarning when merging/joining a single- with
a multi-leveled dataframe (GH9455, GH12219)

Compat with scipy > 0.17 for deprecated piecewise_polynomial interpolation method; support for the
replacement from_derivatives method (GH12887)

1.15.3.7 Deprecations

e The method name Index.sym diff() is deprecated and can be replaced by Index.

symmetric_difference () (GHI2591)

e The method name Categorical.sort () is deprecated in favor of Categorical.sort_values ()

(GH12882)

1.15.4 Performance Improvements

Improved speed of SAS reader (GH12656, GH12961)
Performance improvements in . groupby (. .) . cumcount () (GH11039)
Improved memory usage in pd. read_csv () when using skiprows=an_integer (GHI13005)

Improved performance of DataFrame.to_sqgl when checking case sensitivity for tables. Now only checks
if table has been created correctly when table name is not lower case. (GH12876)

Improved performance of Period construction and time series plotting (GH12903, GH11831).
Improved performance of . str.encode () and .str.decode () methods (GH13008)
Improved performance of t o_numeric if input is numeric dtype (GH12777)

Improved performance of sparse arithmetic with Int Index (GH13036)

186

Chapter 1. What’s New

https://github.com/pandas-dev/pandas/issues/12934
https://github.com/pandas-dev/pandas/issues/12238
https://github.com/pandas-dev/pandas/issues/12615
https://github.com/pandas-dev/pandas/issues/12473
https://github.com/pandas-dev/pandas/issues/5636
https://github.com/pandas-dev/pandas/issues/12749
https://github.com/pandas-dev/pandas/issues/12740
https://github.com/pandas-dev/pandas/issues/12021
https://github.com/pandas-dev/pandas/issues/12695
https://github.com/pandas-dev/pandas/issues/9455
https://github.com/pandas-dev/pandas/issues/12219
https://github.com/pandas-dev/pandas/issues/12887
https://github.com/pandas-dev/pandas/issues/12591
https://github.com/pandas-dev/pandas/issues/12882
https://github.com/pandas-dev/pandas/issues/12656
https://github.com/pandas-dev/pandas/issues/12961
https://github.com/pandas-dev/pandas/issues/11039
https://github.com/pandas-dev/pandas/issues/13005
https://github.com/pandas-dev/pandas/issues/12876
https://github.com/pandas-dev/pandas/issues/12903
https://github.com/pandas-dev/pandas/issues/11831
https://github.com/pandas-dev/pandas/issues/13008
https://github.com/pandas-dev/pandas/issues/12777
https://github.com/pandas-dev/pandas/issues/13036

pandas: powerful Python data analysis toolkit, Release 0.23.4

1.15.5 Bug Fixes

usecols parameter in pd.read_csv is now respected even when the lines of a CSV file are not even
(GH12203)

Bug in groupby.transform(..) when axis=1 is specified with a non-monotonic ordered index
(GH12713)

Bug in Period and PeriodIndex creation raises KeyError if freg="Minute" is specified. Note that
“Minute” freq is deprecated in v0.17.0, and recommended to use freg="T" instead (GH11854)

Bugin .resample (...) .count () withaPeriodIndex always raising a TypeError (GH12774)
Bugin .resample (...) withaPeriodIndex casting to a DatetimeIndex when empty (GH12868)
Bugin .resample (...) with a PeriodIndex when resampling to an existing frequency (GH12770)

Bug in printing data which contains Period with different freq raises ValueError (GH12615)
Bug in Series construction with Categorical and dtype="'category" is specified (GH12574)

Bugs in concatenation with a coercable dtype was too aggressive, resulting in different dtypes in outputfor-
matting when an object was longer than display.max_rows (GH12411, GH12045, GH11594, GH10571,
GH12211)

Bugin float_format option with option not being validated as a callable. (GH12706)

Bug in GroupBy.filter when dropna=False and no groups fulfilled the criteria (GH12768)
Bugin __name__ of . cumx functions (GH12021)

Bugin .astype () ofaFloat64Inde/Int64Index toan Int64Index (GHI12881)

Bug in roundtripping an integer based index in .to_json () /.read_json () when orient="index"
(the default) (GH12866)

Bug in plotting Categorical dtypes cause error when attempting stacked bar plot (GH13019)
Compat with >= numpy 1.11 for NaT comparions (GH12969)

Bugin .drop () with a non-unique MultiIndex. (GHI12701)

Bug in . concat of datetime tz-aware and naive DataFrames (GH12467)

Bug in correctly raising a ValueError in .resample(..).fillna(..) when passing a non-string
(GH12952)

Bug fixes in various encoding and header processing issues in pd.read_sas () (GHI12659, GH12654,
GH12647, GH12809)

Bugin pd.crosstab () where would silently ignore aggfunc if values=None (GH12569).
Potential segfault in DataFrame.to_json when serialising datetime.time (GH11473).
Potential segfault in DataFrame.to_json when attempting to serialise 0d array (GH11299).

Segfault in to__json when attempting to serialise a DataFrame or Series with non-ndarray values; now
supports serialization of category, sparse, and datetime64 [ns, tz] dtypes (GH10778).

Bug in DataFrame.to_json with unsupported dtype not passed to default handler (GH12554).
Bug in . align not returning the sub-class (GH12983)
Bug in aligning a Series with a DataFrame (GH13037)

Bug in ABCPanel in which Panel4D was not being considered as a valid instance of this generic type
(GH12810)

. v0.18.1 (May 3, 2016) 187

https://github.com/pandas-dev/pandas/issues/12203
https://github.com/pandas-dev/pandas/issues/12713
https://github.com/pandas-dev/pandas/issues/11854
https://github.com/pandas-dev/pandas/issues/12774
https://github.com/pandas-dev/pandas/issues/12868
https://github.com/pandas-dev/pandas/issues/12770
https://github.com/pandas-dev/pandas/issues/12615
https://github.com/pandas-dev/pandas/issues/12574
https://github.com/pandas-dev/pandas/issues/12411
https://github.com/pandas-dev/pandas/issues/12045
https://github.com/pandas-dev/pandas/issues/11594
https://github.com/pandas-dev/pandas/issues/10571
https://github.com/pandas-dev/pandas/issues/12211
https://github.com/pandas-dev/pandas/issues/12706
https://github.com/pandas-dev/pandas/issues/12768
https://github.com/pandas-dev/pandas/issues/12021
https://github.com/pandas-dev/pandas/issues/12881
https://github.com/pandas-dev/pandas/issues/12866
https://github.com/pandas-dev/pandas/issues/13019
https://github.com/pandas-dev/pandas/issues/12969
https://github.com/pandas-dev/pandas/issues/12701
https://github.com/pandas-dev/pandas/issues/12467
https://github.com/pandas-dev/pandas/issues/12952
https://github.com/pandas-dev/pandas/issues/12659
https://github.com/pandas-dev/pandas/issues/12654
https://github.com/pandas-dev/pandas/issues/12647
https://github.com/pandas-dev/pandas/issues/12809
https://github.com/pandas-dev/pandas/issues/12569
https://github.com/pandas-dev/pandas/issues/11473
https://github.com/pandas-dev/pandas/issues/11299
https://github.com/pandas-dev/pandas/issues/10778
https://github.com/pandas-dev/pandas/issues/12554
https://github.com/pandas-dev/pandas/issues/12983
https://github.com/pandas-dev/pandas/issues/13037
https://github.com/pandas-dev/pandas/issues/12810

pandas: powerful Python data analysis toolkit, Release 0.23.4

Bug in consistency of .name on .groupby (..) .apply (..) cases (GH12363)
Bugin Timestamp.__repr__ that caused pprint to fail in nested structures (GH12622)

Bug in Timedelta.min and Timedelta.max, the properties now report the true minimum/maximum
timedeltas as recognized by pandas. See the documentation. (GH12727)

Bugin .quantile () with interpolation may coerce to £ 1oat unexpectedly (GH12772)
Bugin .quantile () with empty Series may return scalar rather than empty Series (GHI12772)

Bug in .loc with out-of-bounds in a large indexer would raise IndexError rather than KeyError
(GH12527)

Bug in resampling when using a TimedeltaIndex and .asfreq (), would previously not include the final
fencepost (GH12926)

Bug in equality testing with a Categorical in a DataFrame (GH12564)
Bugin GroupBy.first (), .last () returns incorrect row when TimeGrouper is used (GH7453)

Bug in pd.read_csv () with the ¢ engine when specifying skiprows with newlines in quoted items
(GH10911, GH12775)

Bug in Dat aFrame timezone lost when assigning tz-aware datetime Series with alignment (GH12981)

Bug in .value_counts () when normalize=True and dropna=True where nulls still contributed to
the normalized count (GH12558)

Bugin Series.value_counts () loses name if its dtype is category (GH12835)
Bugin Series.value_counts () loses timezone info (GH12835)

Bug in Series.value_counts (normalize=True) with Categorical raises
UnboundLocalError (GH12835)

Bugin Panel.fillna () ignoring inplace=True (GHI12633)

Bug in pd.read_csv () when specifying names, usecols, and parse_dates simultaneously with the
c engine (GH9755)

Bug in pd.read_csv () when specifying delim_whitespace=True and lineterminator simulta-
neously with the ¢ engine (GH12912)

Bug in Series.rename, DataFrame.rename and DataFrame.rename_axis not treating Series
as mappings to relabel (GH12623).

Cleanin .rolling.minand .rolling.max to enhance dtype handling (GH12373)

Bug in groupby where complex types are coerced to float (GH12902)

Bugin Series.map raises TypeError if its dtype is category or tz-aware datetime (GH12473)
Bugs on 32bit platforms for some test comparisons (GH12972)

Bug in index coercion when falling back from RangeIndex construction (GH12893)

Better error message in window functions when invalid argument (e.g. a float window) is passed (GH12669)

Bug in slicing subclassed DataFrame defined to return subclassed Series may return normal Series
(GH11559)

Bug in . str accessor methods may raise ValueError if input has name and the result is DataFrame or
MultiIndex (GH12617)

Bug in DataFrame.last_valid_index () and DataFrame.first_valid_index () on empty
frames (GH12800)

188

Chapter 1. What’s New

https://github.com/pandas-dev/pandas/issues/12363
https://github.com/pandas-dev/pandas/issues/12622
https://github.com/pandas-dev/pandas/issues/12727
https://github.com/pandas-dev/pandas/issues/12772
https://github.com/pandas-dev/pandas/issues/12772
https://github.com/pandas-dev/pandas/issues/12527
https://github.com/pandas-dev/pandas/issues/12926
https://github.com/pandas-dev/pandas/issues/12564
https://github.com/pandas-dev/pandas/issues/7453
https://github.com/pandas-dev/pandas/issues/10911
https://github.com/pandas-dev/pandas/issues/12775
https://github.com/pandas-dev/pandas/issues/12981
https://github.com/pandas-dev/pandas/issues/12558
https://github.com/pandas-dev/pandas/issues/12835
https://github.com/pandas-dev/pandas/issues/12835
https://github.com/pandas-dev/pandas/issues/12835
https://github.com/pandas-dev/pandas/issues/12633
https://github.com/pandas-dev/pandas/issues/9755
https://github.com/pandas-dev/pandas/issues/12912
https://github.com/pandas-dev/pandas/issues/12623
https://github.com/pandas-dev/pandas/issues/12373
https://github.com/pandas-dev/pandas/issues/12902
https://github.com/pandas-dev/pandas/issues/12473
https://github.com/pandas-dev/pandas/issues/12972
https://github.com/pandas-dev/pandas/issues/12893
https://github.com/pandas-dev/pandas/issues/12669
https://github.com/pandas-dev/pandas/issues/11559
https://github.com/pandas-dev/pandas/issues/12617
https://github.com/pandas-dev/pandas/issues/12800

pandas: powerful Python data analysis toolkit, Release 0.23.4

* Bugin CategoricalIndex.get_loc returns different result from regular Index (GH12531)
* Bugin PeriodIndex.resample where name not propagated (GH12769)
* Bugindate_range closed keyword and timezones (GH12684).

* Bug in pd.concat raises AttributeError when input data contains tz-aware datetime and timedelta
(GH12620)

* Bugin pd.concat did not handle empty Series properly (GH11082)
* Bugin .plot .bar alginment when width is specified with int (GH12979)
* Bugin £i11_value isignored if the argument to a binary operator is a constant (GH12723)

* Bug in pd.read_html () when using bs4 flavor and parsing table with a header and only one column
(GH9178)

* Bugin .pivot_table when margins=True and dropna=True where nulls still contributed to margin
count (GH12577)

* Bugin .pivot_table when dropna=False where table index/column names disappear (GH12133)
* Buginpd.crosstab () whenmargins=True and dropna=False which raised (GH12642)

* Bugin Series.name when name attribute can be a hashable type (GH12610)

* Bugin .describe () resets categorical columns information (GH11558)

* Bug where loffset argument was not applied when calling resample () .count () on a timeseries
(GH12725)

* pd.read_excel () now accepts column names associated with keyword argument names (GH12870)
* Buginpd.to_numeric () with Index returns np.ndarray, rather than Index (GH12777)
* Buginpd.to_numeric () with datetime-like may raise TypeError (GH12777)

* Bugin pd.to_numeric () with scalar raises ValueError (GH127